Predição de dados em inquéritos populacionais utilizando técnicas de aprendizado de máquina
Resumen
O monitoramento do desenvolvimento dos indicadores de saúde e nutrição dos países depende de dados precisos e completos. Países de baixa e média renda dependem de inquéritos populacionais para tomada de decisões, já que seus sistemas de informação ainda são precários. Estes indicadores são desfechos de saúde que indicam a situação de uma intervenção, comportamento ou cuidado de saúde materno-infantil. Apesar de serem ótimas fontes de informação, os inquéritos populacionais também possuem informações incompletas que podem inviabilizar a construção destes indicadores de forma padronizada. O aprendizado de máquina surge como uma alternativa para completar estas lacunas existentes nos inquéritos com base em características sociodemográficas e preditores relacionados. Este trabalho avalia o desempenho de quatro técnicas de aprendizado de máquina (redes neurais, árvores de decisão, KNN e XGB) nesta tarefa, observando o comportamento de dois desfechos de saúde em quatro amostras diferentes. Os resultados apontam para a existência de uma grande variação no desempenho de acordo com o desfecho selecionado. A disponibilidade dos mesmos indicadores como preditores também é um desafio enfrentado. As técnicas de aprendizado de máquina estudadas apresentaram pouca variação de desempenho entre elas, o que sugere que a natureza dos dados é um fator determinante neste tipo de aplicação. Contudo, o primeiro desfecho apresentou resultados aceitáveis para uma aplicação prática, enquanto o segundo desfecho atingiu estimativas inferiores ao que especialistas consideram como um desempenho razoável.
Colecciones
El ítem tiene asociados los siguientes ficheros de licencia: