• português (Brasil)
    • English
    • español
  • English 
    • português (Brasil)
    • English
    • español
  • Login
View Item 
  •   Home
  • Centro de Desenvolvimento Tecnológico - CDTec
  • Pós-Graduação em Computação - PPGC
  • PPGC: Dissertações e Teses
  • View Item
  •   Home
  • Centro de Desenvolvimento Tecnológico - CDTec
  • Pós-Graduação em Computação - PPGC
  • PPGC: Dissertações e Teses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

An API-based Framework for Clustering Meteorological Time Series for Agricultural Applications

Thumbnail
View/Open
Tese_Marcos Antonio de Oliveira Júnior.pdf (71.02Mb)
Date
2023-12-12
Author
Oliveira Júnior, Marcos Antonio de
Metadata
Show full item record
Abstract
A variabilidade climática possui grande importância na definição dos resultados agrícolas, influenciando o crescimento das culturas, o rendimento e as estratégias de gestão de recursos. A capacidade de identificar padrões significativos em conjuntos de dados meteorológicos complexos é de grande valor para otimizar as práticas agrícolas e garantir a segurança alimentar mundial. O zoneamento climático, por exemplo, é um conhecimento importante que contribui para a precisão dos sistemas de recomendação agrícola. Neste contexto, este trabalho propõe um framework baseado em API para clusterizar dados meteorológicos em formato de série temporal para aplicações agrícolas. O principal objetivo do framework é viabilizar a identificação padrões climáticos em variáveis recolhidas por estações meteorológicas, a fim de subsidiar a tomada de decisões agrícolas com um zoneamento climático, de forma confiável e automatizada. Após uma extensa e descritiva revisão sistemática da literatura existente, técnicas estatísticas, algoritmos de clusterização e métricas de similaridade foram reunidos, estendidos e implementados no formato de API. O conjunto de métodos aplicados foi ordenado em uma sequência lógica e eficiente, de forma a guiar as tarefas de extração de dados, pré-processamento, engenharia de features, clusterização e validação. A aplicabilidade do framework foi validada por meio de dois estudos de caso utilizando dados meteorológicos, da FAWN/FL e do SIMAGRO-RS, seguidos de discussão dos resultados. Os resultados obtidos indicaram a viabilidade da utilização do framework, suas contribuições e limitações, destacando o seu potencial para melhoria da entrada de sistemas de decisão agrícola. Por fim, são destacados insights obtidos a partir da clusterização e são propostas formas de utilização da API, interligada com sistemas agrícolas.
URI
http://guaiaca.ufpel.edu.br/xmlui/handle/prefix/12907
Collections
  • PPGC: Dissertações e Teses [230]

DSpace software copyright © 2002-2022  LYRASIS
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of RepositoryCommunities & CollectionsBy Issue DateAuthorsAdvisorsTitlesSubjectsKnowledge Areas (CNPq)DepartmentsProgramsDocument TypesAccess TypesThis CollectionBy Issue DateAuthorsAdvisorsTitlesSubjectsKnowledge Areas (CNPq)DepartmentsProgramsDocument TypesAccess Types

My Account

LoginRegister

Statistics

View Usage Statistics

DSpace software copyright © 2002-2022  LYRASIS
Contact Us | Send Feedback
Theme by 
Atmire NV