An API-based Framework for Clustering Meteorological Time Series for Agricultural Applications

Visualizar/ Abrir
Data
2023-12-12Autor
Oliveira Júnior, Marcos Antonio de
Metadata
Mostrar registro completoResumo
A variabilidade climática possui grande importância na definição dos resultados agrícolas, influenciando o crescimento das culturas, o rendimento e as estratégias de gestão de recursos. A capacidade de identificar padrões significativos em conjuntos de dados meteorológicos complexos é de grande valor para otimizar as práticas agrícolas e garantir a segurança alimentar mundial. O zoneamento climático, por exemplo, é um conhecimento importante que contribui para a precisão dos sistemas de recomendação agrícola. Neste contexto, este trabalho propõe um framework baseado em API para clusterizar dados meteorológicos em formato de série temporal para aplicações agrícolas. O principal objetivo do framework é viabilizar a identificação padrões climáticos em variáveis recolhidas por estações meteorológicas, a fim de subsidiar a tomada de decisões agrícolas com um zoneamento climático, de forma confiável e automatizada. Após uma extensa e descritiva revisão sistemática da literatura existente, técnicas estatísticas, algoritmos de clusterização e métricas de similaridade foram reunidos, estendidos e implementados no formato de API. O conjunto de métodos aplicados foi ordenado em uma sequência lógica e eficiente, de forma a guiar as tarefas de extração de dados, pré-processamento, engenharia de features, clusterização e validação. A aplicabilidade do framework foi validada por meio de dois estudos de caso utilizando dados meteorológicos, da FAWN/FL e do SIMAGRO-RS, seguidos de discussão dos resultados. Os resultados obtidos indicaram a viabilidade da utilização do framework, suas contribuições e limitações, destacando o seu potencial para melhoria da entrada de sistemas de decisão agrícola. Por fim, são destacados insights obtidos a partir da clusterização e são propostas formas de utilização da API, interligada com sistemas agrícolas.