MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE PELOTAS FACULDADE DE NUTRIÇÃO PROGRAMA DE PÓS-GRADUAÇÃO EM NUTRIÇÃO E ALIMENTOS

Dissertação

BIODISPONIBILIDADE DE FERRO NA ALIMENTAÇÃO DE PRÉ-ESCOLARES: COMPARAÇÃO ENTRE MÉTODOS DE AVALIAÇÃO

Antônio Augusto Schäfer

Pelotas, 2011

Dados Internacionais de Catalogação na Publicação (CIP)

S296b Schäfer, Antônio Augusto

Biodisponibilidade de ferro na alimentação de pré-escolares: comparação entre métodos de avaliação / Antônio Augusto Schäfer. Pelotas, 2011.

63 f.; il.

Dissertação (Mestrado em Nutrição e Alimentos) – Faculdade de Nutrição, Universidade Federal de Pelotas, 2011. Orientação: Maria Cecília Formoso Assunção; co-orientação: Gisele Ane Bortolini.

Nutrição.
 Anemia ferropriva.
 Biodisponibilidade de ferro.
 Pré-escolares.
 Algoritmos.
 I.Título.

CDD: 641.1

ANTÔNIO AUGUSTO SCHÄFER

BIODISPONIBILIDADE DE FERRO NA ALIMENTAÇÃO DE PRÉ-ESCOLARES: COMPARAÇÃO ENTRE MÉTODOS DE AVALIAÇÃO

Dissertação apresentada ao programa de Pós-Graduação em Nutrição e Alimentos da Universidade Federal de Pelotas, como requisito parcial à obtenção do título de Mestre em Ciências da Saúde.

Orientadora: Dra. Maria Cecília Formoso Assunção

Co-orientadora: Ma. Gisele Ane Bortolini

Banca examinadora:
•
Dra. Ângela Nunes Moreira
Dra. Helena Strelow Thurow

Sumário

Projeto de pesquisa	5
Alterações no projeto de pesquisa	37
Artigo	39
Anexo 1 - Cálculo da absorção de ferro segundo Monsen et al	56
Anexo 2 - Cálculo da absorção de ferro segundo Halberg & Hulthen	57
Anexo 3 - Tabela para determinação de fitatos e taninos nos alimentos	58
Anexo 4 - Classificação da biodisponibilidade de ferro	62

Projeto de pesquisa

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE PELOTAS FACULDADE DE NUTRIÇÃO PROGRAMA DE PÓS-GRADUAÇÃO EM NUTRIÇÃO E ALIMENTOS

Projeto de pesquisa

BIODISPONIBILIDADE DE FERRO NA ALIMENTAÇÃO DE PRÉ-ESCOLARES: COMPARAÇÃO ENTRE MÉTODOS DE AVALIAÇÃO

Antônio Augusto Schäfer

1 Introdução

A anemia na infância pode provocar dificuldades na aprendizagem da linguagem, distúrbios psicológicos e comportamentais, além de debilitar a defesa imunológica, facultando a ocorrência e/ou agravamento de doenças infecciosas (OLIVARES e WALTER, 2004).

A anemia por deficiência de ferro representa um dos maiores problemas nutricionais presentes em todo o mundo, afetando, sobretudo indivíduos de países em desenvolvimento (WHO, 2003). Segundo uma revisão sistemática conduzida por Jordão (2009), sobre a prevalência de anemia em crianças menores de cinco anos no Brasil, com estudos publicados entre 1996 e 2007, a mediana de prevalência de anemia foi de 53%. Outra revisão sistemática referente à prevalência de anemia em crianças brasileiras menores de sete anos, com artigos publicados a partir de 1996, evidenciou prevalência de 40,1% em estudos de base populacional e de 66,5% em populações em iniquidades (VIEIRA e FERREIRA, 2010).

Conhecidamente, as principais causas de deficiência de ferro são a depleção dos estoques de ferro ao nascimento, o decréscimo da sua ingestão, o aumento das perdas de ferro orgânico, a redução na sua absorção e o aumento da demanda (OSORIO, 2002).

A biodisponibilidade é a medida da proporção dos nutrientes alimentares ingeridos que é efetivamente absorvida e utilizada (SHARMA, 2003). O termo biodisponibilidade, relacionado ao mineral ferro, é a medida daquela fração do ferro alimentar capaz de ser absorvida pelo trato gastrointestinal e, subsequentemente armazenada e incorporada ao heme (BIANCHI, SILVA e OLIVEIRA, 1992).

O ferro dietético, quando protegido pelo núcleo hematínico, é chamado de ferro heme, e responde por cerca de 40% do ferro provindo de alimentos de origem animal que contêm hemoproteínas, notadamente as carnes. Comparado ao ferro não heme, o ferro heme apresenta taxa de absorção superior, próxima a 30% (DOMENE e ASSUMPÇÃO, 2008), independente da composição da refeição e pouco afetada por fatores facilitadores e/ou inibidores da absorção. Além de ser bem absorvido, o ferro heme melhora o aproveitamento do *pool* de ferro não heme

(QUEIROZ e TORRES, 2000). São esperadas, para o ferro não heme, taxas de absorção menores, variando entre 5 e 20%. O ferro não heme é representado por todo o ferro presente em grãos, vegetais, frutas, nozes, ovos e produtos lácteos, bem como os 60% restantes do ferro (não heme) das carnes (DOMENE e ASSUMPÇÃO, 2008).

Os algoritmos da biodisponibilidade, ou os modelos matemáticos usados para estimar a biodisponibilidade de nutrientes nas diferentes dietas, podem ser aplicados a uma matriz dietética complexa, predizendo o aumento ou redução, sem medida direta da absorção, facilitando a avaliação das dietas e recomendações. A aplicação de algoritmos de biodisponibilidade pode ser muito útil para populações com status baixo ou excesso de determinado nutriente (MONSEN e BALINTFLY, 1982; HUNT, 1996).

Vários algoritmos já foram desenvolvidos com o objetivo de determinar a biodisponibilidade do ferro ingerido, sendo instrumentos importantes e válidos que permitem fazer essa avaliação em estudos populacionais e individuais (FILHO et al., 2008).

Dentre as estratégias utilizadas para a prevenção da anemia por deficiência de ferro, encontra-se a fortificação de alimentos, apontada como a melhor abordagem para aumentar a ingestão desse mineral e diminuir as altas prevalências de anemia no longo prazo (INACG, 2004). Porém, estudo realizado com o objetivo de avaliar o efeito desta medida sobre a anemia em pré-escolares (ASSUNÇÃO et al., 2007) não mostrou aumento dos níveis de hemoglobina. E, como maneira de entender possíveis causas que podem comprometer o impacto esperado desta medida, o presente trabalho investigará a alimentação das crianças estudadas para verificar a biodisponibilidade do ferro por elas ingerido.

2 Justificativa

Conforme o exposto observa-se que a anemia ferropriva é um dos problemas nutricionais mais prevalentes em todo o mundo. Levando em consideração que a biodisponibilidade do ferro dos alimentos pode estar relacionada à determinação ou não desta patologia e observando a ausência de uma metodologia de consenso para avaliar a biodisponibilidade da ingestão de ferro nesta faixa etária, o presente estudo pretende comparar a biodisponibilidade de ferro de uma dieta padrão obtida pelo ferro dialisável com a biodisponibilidade do ferro determinada pelos algoritmos de Monsen (1978) e de Hallberg (2000). Esses algoritmos foram selecionados por serem os modelos matemáticos que melhor predizem a absorção de ferro pelo organismo, segundo as evidências encontradas na literatura.

3 Revisão bibliográfica

A revisão bibliográfica foi realizada com o intuito de obter informações referentes à anemia, à biodisponibilidade de ferro dos alimentos, aos métodos de avaliação da biodisponibilidade (*in vitro* e algoritmos) e à fortificação de alimentos com ferro.

Para realizar a busca de artigos relacionados ao tema proposto, foram acessadas as bases de dados Pubmed e Lilacs, onde foram incluídos apenas os artigos em humanos, sem limite de data e nos idiomas português, espanhol e inglês.

Os descritores utilizados durante a busca bibliográfica, bem como o número de artigos encontrados e selecionados são apresentados no Quadro 1.

Assim, ao término desta revisão, 23 artigos referentes ao assunto foram selecionados como referências para a elaboração do trabalho. O resumo dos artigos selecionados, os quais serviram de base para a elaboração do projeto, incluindo artigo; autores; local e ano de publicação; objetivo; delineamento; amostra e os principais resultados, são apresentados em tabela no Quadro 2.

Em síntese, a revisão bibliográfica afirma que a anemia é uma patologia multifatorial com prevalências elevadas em diversas faixas etárias em países desenvolvidos e em desenvolvimento, sendo que a biodisponibilidade de ferro ingerido é o principal fator etiológico.

Em relação aos alimentos fortificados com ferro, diversos estudos, principalmente de revisão, revelam que a grande maioria dos países utiliza na fortificação sais de ferro não recomendados e de baixa biodisponibilidade, podendo ser este um dos motivos que afeta o efeito esperado para esta medida, já que alguns artigos mostram que as melhorias dos estoques de ferro são maiores depois de intervenções dietéticas do que depois de ingestão de alimentos fortificados com ferro.

Para determinar a biodisponibilidade de ferro não existem evidências suficientes para apontar o melhor método *in vitro* ou o melhor algoritmo. No entanto a literatura demonstra que os métodos *in vitro* mais utilizados são as células Caco-2 e o ferro dialisável. Já em se tratando de algoritmos, as opções são diversas e

embora todos pareçam subestimar a real absorção de ferro, os que apresentam uma maior correlação com a realidade são os algoritmos propostos por Monsen et al. (1978) e por Hallberg e Hulthen (2000).

4 Objetivos

4.1 Objetivo geral

 Comparar a biodisponibilidade do ferro presente na alimentação de préescolares, determinada através de dois algoritmos de avaliação, com o ferro dialisável de uma dieta padrão dessas crianças participantes de um estudo de avaliação do impacto da fortificação das farinhas.

4.2 Objetivos específicos

- Avaliar a biodisponibilidade do ferro ingerido;
- Determinar o algoritmo que melhor prediz a absorção de ferro;
- Identificar a prevalência de anemia ferropriva em pré-escolares;
- Investigar o consumo de alimentos facilitadores e inibidores da absorção de ferro;
- Observar a influência dos estoques corporais de ferro sobre a absorção de ferro dietético;
- Investigar a relação da biodisponibilidade do ferro ingerido pelas crianças estudadas como causa comprometedora do impacto esperado da fortificação das farinhas sobre a anemia, considerando o nível socioeconômico e idade.

5 Hipóteses

- A maioria das crianças apresentará dietas com baixa biodisponibilidade de ferro;
- As dietas analisadas pelo algoritmo de Hallberg e Hulthen (2000), em comparação ao algoritmo de Monsen et al. (1978), apresentarão maiores prevalências de baixa biodisponibilidade e ambos subestimarão o valor do ferro dialisável;

6 Metodologia

No ano de 2008 foi realizado um inquérito transversal de base populacional, que compôs a quarta etapa de um estudo de série temporal com o objetivo de avaliar o efeito da fortificação das farinhas de trigo e milho sobre a anemia em préescolares (zero a cinco anos). Utilizou-se o mesmo processo de amostragem utilizado nos inquéritos anteriores (ASSUNÇÃO et al., 2007), em múltiplos estágios, visando resultar em uma amostra com igual probabilidade de inclusão para todas as crianças residentes na zona urbana de Pelotas. A alimentação das 799 crianças incluídas nesta avaliação será analisada para comparação entre dois métodos de avaliação da biodisponibilidade do ferro ingerido.

Estes dados foram coletados por dez entrevistadores, nutricionistas, que trabalharam em período integral e receberam treinamento para aplicação dos questionários. A coleta do sangue capilar para análise no Hemocue foi feita por três auxiliares de enfermagem treinados para este fim. Em uma sub amostra de 114 crianças, provenientes de sete setores censitários com renda média familiar inferior a dois salários mínimos, escolhidos aleatoriamente, foi coletado sangue para dosagem, laboratorial, de hemoglobina, ferritina e saturação de transferrina. Durante a coleta de dados foi realizado um rigoroso controle de qualidade através de: treinamento das técnicas de entrevista e coleta de sangue, calibração diária do hemoglobinômetro, supervisão e revisão da coleta de dados e repetição de 10% das entrevistas, de forma resumida, para confirmação das informações.

Foi elaborado um banco de dados no Programa Epi-info versão 6.0 para armazenagem das informações obtidas. Esses dados foram processados através de dupla digitação com checagem de consistência das informações.

Consentimento por escrito da mãe ou responsável foi obtido antes da coleta das informações e do sangue. As crianças que foram identificadas com anemia tiveram seus pais ou responsáveis avisados sobre este fato e os mesmos foram orientados a procurarem um serviço de saúde. O estudo foi aprovado pela Comissão de Ética da Faculdade de Medicina da Universidade Federal de Pelotas.

Para esse estudo serão utilizadas as seguintes variáveis independentes, dentre as coletadas para o estudo de avaliação de impacto da fortificação: demográficas (sexo e idade em meses); socioeconômicas (renda familiar atual em reais); ingestão de macro e micronutrientes (obtida através de recordatório alimentar de 24 horas, nunca coletados após domingos e feriados); dosagem de hemoglobina, obtida através da análise de sangue coletado por punção digital realizada no aparelho Hemocue e caracterizada como variável dicotômica, sendo considerada anêmica a criança com concentração de hemoglobina abaixo de 11 g/dL (WHO, 2001).

A variável dependente, biodisponibilidade do ferro ingerido, será calculada através de duas maneiras: para as 799 crianças através do algoritmo proposto por Monsen et al. (1978) que leva em conta o estoque corporal de ferro e a ingestão de ferro total; ferro heme; ferro não heme; vitamina C e a quantidade de carne (vermelha, frango ou peixe), por refeição (MONSEN et al., 1978).O algoritmo será calculado considerando que a população a ser estudada possui reservas corporais de ferro de 500 mg; para a sub amostra de 114 crianças através do algoritmo proposto por Hallberg e Hulthen (2000) que considera ferro total, ferro heme, ferro não heme, fatores facilitadores e inibidores da absorção de ferro como: vitamina C, carne, álcool, cálcio, fitatos, ovos, soja e além disso ajusta a absorção de ferro para os diferentes níveis de status corporais de reserva de ferro (ferritina sérica) (HALLBERG e HULTHEN, 2000); e, através da determinação do ferro dialisável da dieta padrão dos pré-escolares. Para obtenção do ferro dialisável, a dieta padrão será reproduzida e analisada laboratorialmente através do método proposto por Miller et al. (1981), que se fundamenta na simulação das etapas de digestão humana com pepsina e pancreatina, seguida da diálise do ferro (MW cut off 6000 -8000) que é liberado dessa matriz alimentar. O procedimento segue, então, as seguintes etapas: acidificação do homogenato até pH 2, digestão com pepsina, alcalinização do digesto (pH 7), digestão com pancreatina/bile e diálise (MILLER et al., 1981).

Os alimentos e preparações registrados nos recordatórios de 24 horas serão analisados em relação a sua composição nutricional no programa ADSNutri (Versão 9.0, 2006). Após, os bancos de dados serão reunidos sendo que a análise dos dados será executada no programa Stata versão 10.0.

O estudo apresentará análises descritivas. Serão descritas as médias, medianas e desvios-padrões das quantidades de ferro total, heme e não heme ingeridos. Os dados obtidos através dos algoritmos e da análise laboratorial serão expressos como percentuais de ferro biodisponível.

O estudo será submetido ao Comitê de Ética e Pesquisa da Faculdade de Medicina da Universidade Federal de Pelotas.

7 Cronograma

Atividade	Mês/ano
Revisão da literatura	Setembro 2010 – setembro 2011
Elaboração do projeto	Outubro – novembro 2010
Defesa do projeto	Novembro 2010
Análise das dietas	Janeiro – fevereiro 2011
Análise da biodisponibilidade de ferro e anemia	Março – abril 2011
Redação do artigo	Maio – setembro 2011
Defesa do artigo	Outubro 2011

8 Orçamento

Material Permanente:					
Descrição do Material	Quantidade	Valor (unidade - em reais)	Total		
Pipetas automáticas	03	400,00	1.200,00		
Vidraria	20	50,00	1.000,00		
Material de Consumo:					
Descrição do Material	Quantidade	Valor (unidade - em reais)	Total		
HNO3 conc. P.a.	6L	31,67	190,00		
Peróxido de hidrôgênio p.a	1L	17,00	17,00		
Água desmineralizada	3L	9,67	29,00		
Solução padrão de fe (titrisol– 1g/l)	1L	420,00	420,00		
Pepsina	100G	135,00	135,00		
Pancreatina	500G	28,40	142,00		
Extrato biliar	100G	380,00	380,00		
Bicarbonato de sódio	1Kg	16,00	16,00		
Membrana de diálise	1 Pacote	624,00	624,00		
HCl conc. P.a.	1L	22,00	22,00		
Hidróxido de potássio	1Kg	39,00	39,00		
Carbonato de sódio	1Kg	22,00	22,00		
H2SO4 conc. P.a.	1L	39,00	39,00		
AIN93G 160497	100G	800,00	800,00		

Deslocamento aéreo São Paulo-Porto Alegre-Pelotas: 1.500,00

Duas diárias com hospedagem e alimentação: 410,00

Assessoria para o trabalho laboratorial: 1000,00

Custo total do projeto: 7.985,00

Referências

- ALAOFÈ, H.; ZEE, J.; DOSSA, R.; O'BRIEN, H. T. Education and improved iron intakes for treatment of mild iron-deficiency anemia in adolescent girls in southern Benin. **Food Nutr Bull**, v. 30, n. 1, p. 24-36, 2009.
- ALAOFÈ, H.; ZEE, J.; TURGEON O'BRIEN, H. Dietary iron and iron deficiency anemia among adolescent girls from Benin. **Rev Epidemiol Sante Publique**, v. 55, n. 3, p. 187-196, 2007.
- ASSUNÇÃO, M. C. F.; SANTOS, I. S.; BARROS, A. J. D.; GIGANTE, D. P.; VICTORA, C. G. Efeito da fortificação de farinhas com ferro sobre anemia em préescolares, Pelotas, RS. **Rev Saude Publica**, v. 41, n. 4, p. 539-548, 2007.
- BEARD, J. L.; MURRAY-KOLB, L. E.; HAAS, J. D.; LAWRENCE, F. Iron absorption prediction equations lack agreement and underestimate iron absorption. **J Nutr**, v. 137, n. 7, p. 1741-1746, 2007.
- BIANCHI, M.L.P.; SILVA, H.C.; OLIVEIRA, J.E.D. Considerações sobre a disponibilidade de ferro dos alimentos. **Arch Latinoam de Nutr., Caracas**, v. 42, n.2, p.94-100, 1992.
- COCKELL, K. A. An overview of methods for assessment of iron bioavailability from foods nutritionally enhanced through biotechnology. **J AOAC Int**, v. 90, n. 5, p. 1480-1491, 2007.
- DOMENE, S. M. A.; ASSUMPÇÃO, D. Estimativa de ferro absorvível em dietas de pré-escolares residentes em bolsões de pobreza do município de Campinas. **Nutrire: Rev. Soc. Bras. Alim. Nutr.**, v. 33, n. 2, p. 75-86, ago., 2008.
- DU, S.; ZHAI, F.; WANG, Y.; POPKIN, B. M. Current methods for estimating dietary iron bioavailability do not work in China. **J Nutr**, v. 130, n. 2, p. 193-198, 2000.
- FILHO, M. B.; SOUZA, A. I. de; MIGLIOLI, T. C.; SANTOS, M. C. dos. Anemia e obesidade: um paradoxo da transição nutricional brasileira. **Cad. Saúde Pública, Rio de Janeiro**, v.24, n.2, p. S247-S257, 2008.
- HALLBERG, L.; HULTHEN, L. Prediction of dietary iron absorption: an algorithm for calculating absorption and bioavailability of dietary iron. **Am. J. Clin. Nutr.**, v. 71, p.1147–1160, 2000.
- HOPPE, M.; HULTHÉN, L.; HALLBERG, L. The importance of bioavailability of dietary iron in relation to the expected effect from iron fortification. **Eur J Clin Nutr**, v. 62, n. 6, p. 761-769, 2008.

HOPPE, M.; SJÖBERG, A.; HALLBERG, L.; HULTHÉN, L. Iron status in Swedish teenage girls impact of low dietary iron bioavailability. **Nutrition**, v. 24, n. 7-8, p. 638-645, 2008.

HUNT, J.R. Bioavailability Algorithms in Setting Recommended Dietary Allowances: lessons from iron, aplications to zinc. **J. Nutr., Bethesda**, v.126, n.9, p. 2345 – 2352, 1996.

HURRELL, R.; EGLI, I. Iron bioavailability and dietary reference values. **Am J Clin Nutr**, v. 91, n. 1423S-1429S, 2010.

HURRELL, R.; RANUM, P.; DE PEE, S.; BIEBINGER, R.; HULTHEN, L.; JOHNSON, Q.; LYNCH S. Revised recommendations for iron fortification of wheat flour and an evaluation of the expected impact of current national wheat flour fortification programs. **Food Nutr Bull**, v. 31, s. 1, p. S7-S21, 2010.

INTERNATIONAL NUTRITIONAL ANEMIA CONSULTATIVE GROUP. Efficacy and effectiveness of interventions to control iron deficiency and iron deficiency anemia. **Washington DC: International Life Sciences Institute**; 2004.

JORDÃO, R. E.; BERNARDI, J. L. D.; FILHO, A. A. B. Prevalência de anemia ferropriva no Brasil: uma revisão sistemática. **Rev. Paul. Pediatr.**, v. 27, n. 1, p. 90-98, 2009.

JYOTHI, L. A.; GUPTA, S.; PRAKASH, J. Comparative analysis of influence of promoters and inibitors on in vitro available iron using two methods. *Int J Food Sci Nutr*, v.57, n.7-8, p.559-569, 2006.

KLOOTS, W.; OP DEN KAMP, D.; ABRAHAMSE, L. In Vitro Iron Availability from Iron-Fortified Whole-Grain. **J Agric Food Chem,** v. 52, n. 26, p. 8132-8136, 2004.

LACERDA, E.; CUNHA, A. J. Anemia ferropriva e alimentação no segundo ano de vida no Rio de Janeiro, Brasil. **Rev. Panam. Salud. Publica**, v. 9, n. 5, 2001.

LUNG'AHO, M. G.; GLAHN, R. P. In vitro estimates of iron bioavailability in some Kenyan complementary foods. **Food Nutr Bull**, v. 30, n. 2, p. 145-152, 2009.

MILLER DD, SCHRICKER BR, RASMUSSEN RR, VAN CAMPEN D. An in vitro method for estimation of iron availability from meals. **Am. J. Clin. Nutr.**, v. 34, n. 10, p. 2248-2256, 1981.

MONSEN, E. R.; BALINTFY, J. L. Calculating dietary iron bioavailability: refinement and computerization. **J. Am. Diet Assoc.**, v. 80, p. 307–311, 1982.

MONSEN, E. R.; HALLBERG, L.; LAYRISSE, M.; HEGSTED, D. M.; COOK, J. D.; MERTZ, W.; FINCH, C. A. Estimation of available dietary iron. **Am. J. Clin. Nutr.**, v. 31, p. 134–141, 1978.

NAIR, K. M.; IYENGAR, V. Iron content, bioavailability & factors affecting iron status of Indians. **Indian J Med Res**, v. 130, p. 634-645, 2009.

- OLIVARES, M.; PIZARRO, F.; HERTRAMPF, E.; FUENMAYOR, G.; ESTÉVEZ, E. Iron absorption from wheat flour: effects of lemonade and chamomile infusion. **Nutrition**, v. 23, n. 4, p. 296-300, 2007.
- OLIVARES, M.; WALTER, T. Causas y consecuencias de la deficiencia de hierro. **Rev. nutr.**, v. 17, n. 1, p. 5-14, jan.-mar., 2004.
- OSORIO, M. A. Fatores determinantes da anemia em crianças. **J. Pediatr. Rio de Janeiro**, v. 78, n. 4, p. 269-278, 2002.
- PACHÓN, H.; ORTIZ, D. A.; ARAUJO, C.; BLAIR, M. W.; RESTREPO, J. Iron, zinc, and protein bioavailability proxy measures of meals prepared with nutritionally enhanced beans and maize. **J Food Sci**, v. 74, n. 5, p. 147-154, 2009.
- PACHÓN, H.; STOLTZFUS, R. J.; GLAHN, R. P. Chicken thigh, chicken liver, and iron-fortified wheat flour increase iron uptake in an in vitro digestion-Caco-2 cell model. **Nutr Res**, v. 28, n. 12, p. 851-858, 2008.
- QUEIROZ, S. S.; TORRES, M. A. A. Anemia ferropriva na infância. **J. Pediatr. São Paulo**, v. 76, n. 3, p. 298-304, 2000.
- RICKARD, A. P.; CHATFIELD, M. D.; CONWAY, R. E.; STEPHEN, A. M.; POWELL, J. J. An algorithm to assess intestinal iron availability for use in dietary surveys. **Br J Nutr.** v. 102, n. 11, p. 1678-1685, 2009.
- RODRÍGUEZ, S. C.; HOTZ, C.; RIVERA, J. A. Bioavailable Dietary Iron Is Associated with Hemoglobin Concentration in Mexican Preschool Children. **J Nutr**, v. 137, n. 10, p. 2304-2310, 2007.
- SHARMA, K. K. Improving bioavailability of iron in Indian diets through food-based approaches for the control of iron deficiency anemia. **Rev Aliment, Nutr y Agric., Roma**, v.32, p. 51-61, 2003.
- THANKACHAN, P.; WALCZYK, T.; MUTHAYYA, S.; KURPAD, A. V.; HURRELL, R. F. Iron absorption in young Indian women: the interaction of iron status with the influence of tea and ascorbic acid. **Am J Clin Nutr**, v. 87, n. 4, p. 881-886, 2008.
- VIEIRA, R. C. S.; FERREIRA, H. S. Prevalência de anemia em crianças brasileiras, segundo diferentes cenários epidemiológicos. **Rev. Nutr., Campinas**, v. 23, n. 3, p. 433-444, 2010.
- VITOLO, M. R.; BORTOLINI, G. A. Biodisponibilidade do ferro como fator de proteção contra anemia entre crianças de 12 a 16 meses. **J Pediatr. Rio de Janeiro,** v. 83, n. 1, p. 33-38, 2007.
- ZIMMERMANN, M. B.; CHAOUKI, N.; HURRELL, R. F. Iron deficiency due to consumption of a habitual diet low in bioavailable iron: a longitudinal cohort study in Moroccan children. **Am J Clin Nutr**, v. 81, n. 1, p. 115-121, 2005.

WORLD HEALTH ORGANIZATION. **Battling iron deficiency anemia. The challenge,** 2003. Disponível em: http://www.who.int/nutrition/topics/ida/en/index.html Acesso em: 28 nov 2008.

Quadro 1. Seleção dos artigos revisados nas bases de dados Pubmed e Lilacs.

	Des	critores	Encontrados	Selecionados
		Anemia iron deficiency	249	12
		Food fortified	236	06
ĪĒD	Iron bioavailability	Algorithm	28	00
PUBMED		Dialyzable iron	07	01
		Iron absorption	56	02
	Algorithm	Dialyzable iron	02	00
	Subtota	al	578	21
	Iron bi	oavailability	52	01
တ္သ	Dialy	zable iron	01	00
LILACS	Iron absorption		103	01
	Algorithm		265	00
	Subtota	al	421	02
	Total		999	23

Quadro 2. Resumo dos artigos selecionados.

Autor/Ano/Local/Título	Objetivo	Delineamento	Amostra	Principais Resultados
1. Jyothi L A, Gupta S, Prakash J. 2006. Índia. Comparative analysis of influence of promoters and inibitors on in vitro available iron using two methods.	Comparar duas técnicas in vitro, ferro dialisável e ferro ionizável, para determinar a biodisponibilidade de um modelo experimental.	Experimental	Fatores facilitadores e inibidores da absorção de ferro, avaliados pelo ferro dialisável e ferro ionizável.	Ácido cítrico, tartárico e ascórbico demonstraram melhorar o percentual de ferro disponível e houve uma forte correlação, indicando similaridade entre os métodos. Forte correlação observada, também, para alguns elementos inibidores da absorção como cálcio e fitato sódico. Em relação aos valores absolutos os métodos diferem entre si, o que pode ser devido a princípios inerentes a cada método.
2. Beard JL, Murray- Kolb LE, Haas JD, Lawrence F. 2007. EUA. Iron Absorption Prediction Equations Lack Agreement and Underestimate Iron Absorption.	Comparar o desempenho de 6 equações para predizer o ganho de ferro em freiras durante 9 meses utilizando o melhor método quantitativo de ingestão alimentar (pesagem dos alimentos) e marcadores dos estoques de ferro que	Prospectivo, randomizado, duplo-cego, longitudinal (9 meses) .	317 freiras.	Comparando os 6 algoritmos, em ordem decrescente da média de absorção, encontrou-se: Monsen e Balintfy; Hallberg e Hulthen; Reddy et al.; Bhargava et al.; Tseng et al. e Du et al. Todos os algoritmos subestimaram, amplamente, a real eficiência de absorção verificada pelo ganho de ferritina e ferro corporal.

	são mais sensíveis do que a hemoglobina.			
3. Rickard AP, Chatfield MD, Conway RE, Stephen AM, Powell JJ. 2009. Reino Unido. An algorithm to assess intestinal iron availability for use in dietary surveys.	Demonstrar uma nova abordagem e preparar uma equação não-linear, derivada, não só, a partir de dados de refeições teste, mas também incorporando o nosso conhecimento de absorção de Fe, com o objetivo de desenvolver uma ferramenta eficaz para pesquisas epidemiológicas da dieta.	Transversal	61 estudantes e funcionários da Universidade de Londres.	Desenvolveu-se um novo algoritmo para estimar o ferro disponível no intestino e que pode ser utilizado em estudos epidemiológicos para examinar a relação entre ferro dietético e saúde.
4. Pachón H, Stoltzfus RJ, Glahn RP. 2008. Peru. Chicken thigh, chicken liver, and ironfortified wheat flour increase iron uptake in an in vitro digestion-Caco-2 cell model.	O objetivo deste estudo foi fazer o screen de combinações de carnes e alimentos enriquecidos para identificar aqueles que maximizam a absorção de ferro in vitro, em um modelo digestão células Caco-2, um proxy para a biodisponibilidade do ferro, para o desenvolvimento de um	Experimental	Alimentos peruanos enriquecidos com ferro e carnes.	A adição de sangue de galinha,baço de frango, farinha de peixe e fígado de frango ao cereal de arroz infantil aumentou, significativamente, a concentração de ferro em relação ao cereal sozinho. As carnes aumentaram a biodisponibilidade de alimentos enriquecidos com ferro, mas alimentos fortificados com ferro não melhoraram o ferro biodisponível total, quando adicionado à carne.

	mingau infantil.			
5. Hoppe M, Sjöberg A, Hallberg L, Hulthén L. 2008. Suíça. Iron status in Swedish teenage girls impact of low dietary iron bioavailability.	Investigar a ingestão de ferro dietético, obtida por sete registros alimentares das adolescentes, calcular a absorção através do algoritmo de Hallberg and Hulthen e comparar a absorção de ferro com os requerimentos e estoques individuais.	Transversal	28 adolescentes do sexo feminino.	36% das meninas apresentavam depleção dos estoques de ferro (ferritina ≤ 15 ug/L) e duas estavam anêmicas (Hg ≤ 120g/L). A ingestão média de ferro disponível foi de 11,5±2,8 mg/d. 85% das meninas apresentaram ingestão de ferro abaixo das recomendações. A refeição com maior absorção de ferro foi o jantar (11,2%) e a com menor o café da manhã (7,4%). Não houve correlação entre a concentração de ferritina sérica e a ingestão total de ferro.
6. Hoppe M, Hulthén L, Hallberg L. 2008. Suécia. The importance of bioavailability of dietary iron in relation to the expected effect from iron fortification.	Investigar como a fortificação de ferro e as modificações dietéticas afetam a absorção de ferro e as taxas de mudanças dos estoques de ferro.	Experimental	Sete exemplos teóricos de refeições, com diferentes biodisponibilidades, visando refletir as refeições nos países em desenvolvimento.	A absorção de ferro das sete refeições (I – VII) variou de 0,6 – 14,4%. Após as modificações dietéticas, que é a mudança da dieta A para E, o percentual de absorção do ferro aumenta, aproximadamente, oito vezes. Considerando uma dieta com baixa biodisponibilidade, as melhorias nos estoques de ferro são maiores depois de modificações dietéticas do que depois da fortificação de ferro. Porém, o ideal é a combinação das duas estratégias,

				para que se atinja uma concentração de hemoglobina ótima.
7. Hurrell R, Egli I. 2010. Suíça. Iron bioavailability and dietary reference values.	Esta revisão descreve os fatores dietéticos e pessoais que influenciam a biodisponibilidade de ferro, a maneira como estes fatores tem sido utilizados para estabelecer os valores dietéticos de referência e a medida que os fatores de biodisponibilidade poderiam ser mais elaborados.	Revisão		A biodisponibilidade de ferro de dietas mistas em países desenvolvidos parece variar de 14 a 18% em indivíduos sem estoques de ferro. Existem algumas questões não resolvidas referente a biodisponibilidade de ferro, como o mecanismo pelo qual o cálcio inibe a absorção de ferro, a influência da vitamina A e dos carboidratos não digeríveis na biodisponibilidade do ferro, além da obesidade, que por ser um distúrbio inflamatório, poderia diminuir a biodisponibilidade.
8. Kloots W, Op den Kamp D, Abrahamse L. 2004. Holanda. In Vitro Iron Availability from Iron-Fortified Whole- Grain.	Determinar a disponibilidade de diferentes compostos que contem ferro proveniente de farinhas de trigo integrais.	Experimental	Farinhas de trigo fortificadas com diferentes fontes de ferro.	Análise do ferro dialisável mostrou que somente as farinhas fortificadas com NaFeEDTA ou SunActive Fe, mostraram maior concentração de ferro dialisável do que aquelas fortificadas com sulfato ferroso. Resultado semelhante foi observado analisando a absorção relativa de ferro pelas células Caco-2.
9. Pachón H, Ortiz DA,	Explorar se houve	Experimental	Preparações com	A média de ferro do feijão

Araujo C, Blair MW, Restrepo J. 2009. Colômbia. Iron, zinc, and protein bioavailability proxy measures of meals prepared with nutritionally enhanced beans and maize.	diferenças nas concentrações de nutrientes e na biodisponibilidade da merenda servida para as crianças do estudo colombiano que pode explicar o impacto dos cultivos biofortificados sobre o estado nutricional das crianças.		feijão e milho tradicionais e enriquecidos.	tradicional não diferiu, significativamente, da média do feijão enriquecido. Já o milho tradicional apresentou média de ferro superior ao enriquecido. Na análise in vitro do ferro dialisável de preparações que utilizaram feijão enriquecido e convencional, não houve diferença entre os dois, diferentemente do milho, onde as preparações que utilizaram milho enriquecido apresentaram ferro dialisável maior.
10. Vitolo MR, Bortolini GA. 2007. Brasil. Iron bioavailability as a protective factor against anemia among children aged 12 to 16 months.	Avaliar quais práticas alimentares estariam associadas à proteção contra a anemia ferropriva, além da adequação da ingestão de ferro à luz das novas recomendações.	Transversal aninhado à coorte.	369 crianças com idade entre 12 e 16 meses.	A prevalência de anemia e anemia grave entre as crianças foi de 63,7 e 18,3%, respectivamente. As proporções de crianças com consumo maior que 7 mg de ferro no grupo sem anemia foi de 26,8% e de 17,7% no grupo com anemia. O consumo de 3 mg ou mais de ferro por dia não mostrou associação com níveis de Hb ≥ 11 g/dL. A média de ingestão de ferro das crianças sem anemia foi de 5,71±2,82 mg/dia, significativamente maior do que o consumido pelas crianças com anemia, que foi de 5,03±2,40 mg/dia.

				O consumo de carne, fonte de ferro heme, mostrou-se presente em 78,4% dos inquéritos, porém a porção consumida foi insuficiente. Foi observada maior proporção (16,3%) de dietas com alta biodisponibilidade de ferro no grupo de crianças que não apresentaram anemia, quando comparada ao grupo com anemia (10,5%). A maior ingestão dietética de ferro e vitamina C mostrou-se associada à ausência de anemia nas crianças. As crianças sem anemia apresentaram consumo significativamente maior de energia no jantar do que as crianças com anemia; As mesmas análises, foram realizadas com as crianças que não apresentaram anemia grave, Hb < 9,5 g/dL, sendo a ausência significativamente associada a maior consumo de vitamina C, ferro heme e menor consumo de cálcio (observou-se que a média do consumo de leite de vaca foi menor nas crianças que não apresentaram anemia grave).
Turgeon O'Brien H.	Demonstrar o impacto da contribuição da ingestão de ferro	Transversal	100 meninas de 14 a 16 anos.	A ingestão de ferro foi menor do que o recomendado em mais de ¼ das meninas, no entanto ¾ tiveram

iron and iron deficiency anemia among adolescent girls from Benin.	absorvível no status individual de ferro.			absorção do ferro ingerido (Monsen) abaixo do recomendado. A média de ferro absorvido foi de 6%. A maior parte das adolescentes tiveram baixa ingestão de vitamina C (64%) e carne. 43% das meninas estavam anêmicas. Maior nível socioeconômico, menor número de pessoas dividindo as refeições e melhor absorção do ferro ingerido foram associados com maiores taxas de Hg e Ht.
12. Alaofè H, Zee J, Dossa R, O'Brien HT. 2009. Benin. Education and improved iron intakes for treatment of mild iron-deficiency anemia in adolescent girls in southern Benin.	Avaliar o impacto de um programa dietético intensivo no tratamento da anemia por deficiência de ferro em 34 meninas do grupo intervenção e 34 do controle.	Quase- experimental	68 meninas de 12 a 17 anos.	O conhecimento nutricional, ingestão de ferro e vitamina C, absorção de ferro, média de Hg e ferritina foram significantemente maiores no grupo intervenção do que no grupo controle, 26 semanas depois. A prevalência de anemia e anemia por deficiência de ferro foram significantemente menores no grupo intervenção.
13. Cockell KA. 2007. Canadá. An overview of methods for assessment of iron bioavailability from foods nutritionally	Fornecer um breve reumo dos métodos disponíveis para avaliação da biodisponibilidade de	Revisão		Algoritmos para avaliação da biodisponibilidade, em geral, não são adequados para serem usados como ferramentas de investigação para predizer os efeitos de novas

enhanced through biotechnology.	ferro.			circunstâncias, mas podem ser melhores para conselhos e planejamentos dietéticos e desenvolvimento de orientações de saúde pública.
14. Du S, Zhai F, Wang Y, Popkin BM. 2000. China. Current methods for estimating dietary iron bioavailability do not work in China.	Examinar os fatores dietéticos que podem afetar a biodisponibilidade de ferro na população chinesa e desenvolver um modelo aperfeiçoado para estimar a biodisponibilidade em dietas predominantemente vegetarianas.	Transversal	42.606 pessoas de 18 a 60 anos.	18% das pessoas estavam anêmicas. Mesmo os métodos que consideram diversos facilitadores e inibidores da absorção de ferro, não funcionam adequadamente para a dieta chinesa, já que a ingestão diária de ferro heme foi de apenas 3,3% (0,8mg). Propomos uma nova abordagem que prediz a absorção de ferro, mais específica para população chinesa, considerando arroz e feijão que são m padrão de consumo importante.
15. Hurrell R, Ranum P, de Pee S, Biebinger R, Hulthen L, Johnson Q, Lynch S. 2010. Revised recommendations for iron fortification of wheat flour and an evaluation of the expected impact of current national wheat flour fortification	Rever os estudos recentes de eficácia e atualizar as diretrizes para a fortificação de farinha de trigo com ferro.	Revisão		Somente nove de 78 programas nacionais (Argentina, Chile, Egito, Iran, Jordânia, Líbano, Síria, Turquemenistão e Uruguai) foram julgados ter, provavelmente, um significante impacto positivo sobre o status de ferro se a cobertura for otimizada. A maioria dos países utiliza ferro não recomendado e de baixa

programs.				biodisponibilidade.
16. Nair KM, Iyengar V. 2009. Índia. Iron content, bioavailability & factors affecting iron status of Indians.	Relacionar o padrão de consumo de cereais, a densidade de ferro e prevalência de anemia na Índia.	Revisão		Anemia na Índia é multifatorial, mas a baixa biodisponibilidade de ferro é o principal fator etiológico. A ingestão de ferro é menos do que 50% da RDA. É uma dieta baseada em cereais.
17. Olivares M, Pizarro F, Hertrampf E, Fuenmayor G, Estévez E. 2007. Chile. Iron absorption from wheat flour: effects of lemonade and chamomile infusion.	Medir a biodisponibilidade de ferro das refeições a base de farinha de trigo consumidas por uma população vulnerável na América Latina.	Transversal	13 mulheres de 32 a 50 anos.	A biodisponibilidade de ferro das farinhas de trigo, fortificadas com sulfato ferroso, é melhorada quando é acompanhada de limonada adoçada com "panela".
18. Rodríguez SC, Hotz C, Rivera JA. 2007. México. Bioavailable Dietary Iron Is Associated with Hemoglobin Concentration in Mexican Preschool Children.	Estimar a quantidade de ferro biodisponível na dieta de crianças mexicanas com idades entre 12 e 59 meses através do algoritmo de Bhargava e analisar a associação entre ferro biodisponível e concentração de Hg.	Transversal	919 crianças de 12 a 59 meses.	A maior prevalência de anemia foi evidenciada na faixa etária dos 12 a 23 meses (41,4%). A prevalência de anemia não diferiu entre meninos e meninas, entre moradores da zona rural e urbana. As crianças apresentaram baixo consumo de ferro heme e alto consumo de fitatos. A estimativa média de ferro biodisponível variou de 0,14 a 0,28 mg/dia para as crianças de 12 a 23 meses e 0,18 a 0,37 mg/dia para as

				de 24 a 59 meses. Ingestão de ferro biodisponível, idade, altitude e fator socioeconômico foram significantemente associados com a concentração de Hg.
19. Thankachan P, Walczyk T, Muthayya S, Kurpad AV, Hurrell RF. 2008. Índia. Iron absorption in young Indian women: the interaction of iron status with the influence of tea and ascorbic acid.	Avaliar a influência do status de ferro de mulheres jovens na absorção de ferro de uma refeição de arroz com ou sem adição de chá e AA.	Caso-controle	40 mulheres de 18 a 35 anos.	A média de absorção de ferro do arroz de referência foi 2,5 vezes maior no grupo com anemia ferropriva do que no grupo controle. O consumo de 1 ou 2 copos de chá diminuiu a absorção de ferro no grupo controle 49 e 66%, respectivamente, e no grupo dos anêmicos 59 e 67%, respectivamente. AA (2:1 ou 4:1) aumentou a absorção de ferro 270 e 343%, respectivamente, no grupo controle e 291 e 350% no grupo dos anêmicos, respectivamente.
20. Zimmermann MB, Chaouki N, Hurrell RF. 2005. Marrocos. Iron deficiency due to consumption of a habitual diet low in bioavailable iron: a longitudinal cohort study in Moroccan children.	Medir a mudança no status de ferro de crianças marroquinas que consumiram sua dieta habitual contendo baixas quantidades de ferro biodisponível.	Longitudinal	126 crianças de 6 a 10 anos.	A média diária de ingestão de ferro foi de 10,8mg, sendo que 97% do ferro era não heme. Cereais contribuíram com 58% do total de energia da dieta. Em relação ao total de ferro dietético absorvido, o algoritmo de Reddy estimou menor absorção nos três diferentes grupos de estoques

				corporais de ferro (baixo, médio e alto) do que o algoritmo de Tseng.
21. Lung'aho MG, Glahn RP. 2009. Quênia. In vitro estimates of iron bioavailability in some Kenyan complementary foods.	Avaliar a quantidade de ferro biodisponível na alimentação complementar no Quênia e determinar se estratégias como a diversificação dos alimentos locais, melhora a biodisponibilidade de ferro desses alimentos.	Experimental		As análises in vitro, utilizando as células Caco-2, sugerem que as receitas caseiras podem proporcionar uma quantidade de ferro biodisponível ≥ que os produtos não fortificados vendidos comercialmente. No entanto, as receitas não fortificadas apresentaram menor quantidade de ferro biodisponível do que produtos industrializados fortificados.
22. DOMENE, S. M. A.; ASSUMPÇÃO, D. 2008. Brasil. Estimativa de ferro absorvível em dietas de pré-escolares residentes em bolsões de pobreza do município de Campinas.	Avaliar a qualidade da dieta de pré-escolares atendidos pelo Programa Nacional de Alimentação Escolar (PNAE) no município de Campinas, SP quanto ao fornecimento de energia e ferro, por meio da quantificação da energia (Kcal), do ferro total (mg), e do ferro absorvido (mg) a partir das refeições consumidas no ano de 2003.	Transversal	148 crianças de 25 a 72 meses.	14,8% dos meninos e 5,4% das meninas apresentaram inadequação do consumo de ferro. Observou-se baixo consumo de vitamina C para 31% dos meninos e 17,8% das meninas, mas não há preocupação com o consumo de proteína, uma vez que 97,3% dos meninos e 94,6% das meninas apresentaram bom consumo do nutriente. As fontes protéicas de origem animal estiveram presentes em 593 das 616 refeições (almoço e jantar), o que mostra a elevada ocorrência destes alimentos na dieta da

				população estudada. Houve correlação positiva e forte entre a energia da refeição e o conteúdo de ferro, não observada entre energia e ferro absorvível. Levando em conta a avaliação da quantidade de ácido ascórbico e de carne das refeições, estimou-se que a absorção de ferro seja próxima a 6,3% do total ingerido pelos meninos, e a 5,5% do ingerido pelas meninas.
23. Lacerda, E.; Cunha, A. J. 2001. Brasil. Anemia ferropriva e alimentação no segundo ano de vida no Rio de Janeiro, Brasil.	Avaliar a influência de práticas alimentares na incidência de anemia em lactentes a partir do estudo do perfil alimentar das crianças atendidas em um ambulatório de pediatria no Rio de Janeiro, Brasil.	Transversal	288 crianças de 12 a 18 meses.	Observou-se consumo protéico adequado para todas as crianças; o consumo de energia, cálcio e vitamina C foi adequado na maioria das crianças. Foi encontrado baixo consumo de ferro e ferro biodisponível (Metodologia Mosen). O percentual médio de ferro biodisponível em relação ao consumo total de ferro foi de 7% caracterizando uma dieta com baixa biodisponibilidade de ferro. Considerando a freqüência de anemia, o consumo de ferro e de ferro biodisponível em crianças sem anemia foi 10 e 19% superior ao consumo em crianças com anemia, respectivamente. As crianças

	com consumo inadequado de ferro tinham 2,3 vezes mais chances de ter anemia grave quando comparadas com as crianças com consumo adequado de ferro. A chance de ter anemia grave foi 1,71 vez maior em crianças com consumo inadequado de ferro biodisponível quando comparadas com crianças com consumo adequado de ferro biodisponível. As grandes refeições (almoço e jantar) eram ricas em energia, proteína, ferro, ferro biodisponível, vitamina C e pobres em cálcio. A prevalência de anemia foi semelhante em crianças que consumiam refeições com carne e refeições sem carne.
--	---

Alterações no projeto de pesquisa

Quando o projeto foi elaborado, um dos objetivos era determinar o algoritmo que melhor predissesse a absorção de ferro. Isto seria possível comparando a biodisponibilidade de ferro predita pelos algoritmos de Monsen et al. (1978) e Hallberg e Hulthen (2000) com um método laboratorial que simula etapas da digestão humana, determinando a quantidade de ferro absorvida de uma dieta padrão (ferro dialisável). Porém, a dificuldade de aquisição dos materiais e reagentes necessários para a determinação do ferro dialisável impossibilitou a realização desta análise em tempo hábil para a defesa desta dissertação. Oportunamente, a mesma será realizada.

Anexos

Anexo 1. Exemplo do cálculo da absorção de ferro em um dia segundo algoritmo desenvolvido por Monsen et al. 17.

Refeição	Alimentos	Quantidade (g/ml)	Ferro total	Fator heme	Ferro heme	Ferro não heme	Vitamina C	Carne Peixe Frango	Nível de absor.	% ferro absor.	Total ferro absor. (mg)
Colação	Pão francês	50	0,5			0,5	0	0			
3	Margarina	5	0			0	0	0			
	Café solúvel	1	0,06			0,06	0	0			
	Açúcar refinado	20	0,02			0,02	0	0			
Subtotal	·					0,58	0	0	Baixo	3%	0,02
Almoço	Arroz	40	0,04			0,04	0	0			
Miloço	Batata inglesa	45	0,18			0,18	7,34	0			
	Feijão preto	117	1,76			1,76	0	0			
	Óleo de soja	17	0			0	Ö	Ö			
Subtotal						1,98	7,34	0	Baixo	3%	0,06
	Dão francês	75	0.75			0.75	0	0			
Lanche	Pão francês	75 7	0,75 0			0,75	0	0			
	Margarina Café solúvel	1	0,06			0 0,06	0 0	0 0			
	Açúcar refinado	20	0,00			0,00	0	0			
Subtotal	riçadai Tellilado	20	0,02			0,83	Ö	0	Baixo	3%	0,02
	•	00	0.00				•	•			
Janta	Arroz	60	0,06	0.4	0.40	0,06	0	0			
	Carne de rês	35	1,19	0,4	0,48	0,71	0	35			
	Feijão preto	117 66	1,76			1,76	0	0 0			
	Repolho cozido Óleo de soja	17	0,11 0			0,11 0	13,27 0	0			
Subtotal	Olco de soja	17	J			2,64	13,27	35	Médio		
Cablolai	Ferro não heme					2,64	10,21	00	Modio	5%	0,13
	Ferro heme				0,48	_,0 .				23%	0,11
-					0.40	0.00					
Total					0,48	6,03					0,34

Anexo 2. Esquematização dos cálculos do algoritmo de Hallberg e Hulthen¹⁹.

Efeito dos fitatos: $-0.30 \times \log (1 + F) (1)$

Onde F é fitato em miligramas.

Efeito dos taninos: (1 + 0,01 x C) x 10 $^{0,4515-[0,715-0,1825 \times \log (1+AA)] \times \log (1+T)}$ (2)

Sendo tanino (T) e ácido ascórbico (AA) em miligramas e carne (C) expressa em gramas do alimento cru.

Efeito do cálcio: 0,4081 + (0,5919/(1 + $10^{-[2,022 - \log{(Ca + 1)}] \times 2,919}$)) (3)

Onde Ca é o conteúdo de cálcio em miligramas.

Efeito dos ovos: $1 - 0.27 \times número de ovos$ (4)

Efeito da vitamina C: $1 + 0.01 \times AA + \log (F + 1) \times 0.01 \times 10^{0.8875 \times \log (AA + 1)}$ (5)

Sendo vitamina C (AA) e fitato (F) em miligramas.

Efeito das carnes: $1 + 0,00628 \times C \times [1 + 0,006 \times F]$ (6)

Onde carne (C) é expressa em gramas do alimento cru e F é fitato em miligramas.

% absorção de ferro não heme: 22,1 x (1) x (2) x (3) x (4) x (5) x (6)

% absorção ferro heme: 1,9897 – 0,3092 x log (FS)

Sendo FS a ferritina sérica em µg/L.

Posteriormente é ajustado pelo efeito do cálcio (equação 3).

A quantidade de ferro absorvido em cada refeição é dada pela multiplicação dos percentuais de absorção dos dois tipos de ferro pela quantidade, em miligramas, de ferro ingerido na refeição.

A quantidade diária de ferro absorvido é dada pelo somatório de absorção em cada refeição.

Ajuste para os níveis de ferritina: Ferro absorvido = Fe x $(23/FS)^{0.94049}$

Onde o ferro (Fe) é o ferro absorvido em miligramas, calculado pelo algoritmo e FS é a ferritina sérica em μ g/L, sendo que os valores de ferritina sérica inferiores a 15 μ g/L e superiores a 70 μ g/L, devem ser ajustados para 15 e 70 μ g/L, respectivamente.

Anexo 3. Tabela para determinação da quantidade de fitatos e taninos nos alimentos¹⁹.

TABLE A1

Phytate and iron binding polyphenols in vegetables, legumes, fruit, berries, beverages, spices, nuts, seeds, soy products, and cereal and cereal products

	Phytate phosphorus ¹	Tannin equivalents	Chlorogenic acid	Total tannin equivalents
		mg/100 g	dry matter	
Root, leaf, and stem				
vegetables, and legu	mes			
Aubergine, whole	3	7	51	31
Asparagus				
Green	2	-	_	13 -11
White	2 3	-	-	8
Beans				
Black	262	0	5 -5	0
Brown	195	0	(5-12	0
Green	15	2_3	2_2	6 <u>2 - 6</u> 2
Mung	188	140	_	140
Red	271	1	1 	1
White	269	0	-	0
Beetroot	2	3	5 . 5	3
Broccoli	10	1	40	20
Brussels sprouts	11	0	2_2	0
Cabbage				
Chinese	2	-	1000	S
White	1	0	5 -3	0

(Continued)

TABLE A1 (Continued)

IABLE AI (Comm				Total
	Phytate phosphorus ¹	Tannin equivalents	Chlorogenic acid	
	F		dry matter	1
Carrot	4	0	28	13
Cauliflower	3	o	_	0
Celeriac	5	0		0
Chicory	2	0		0
Com	24			
Cucumber	1	O	0	0
Garden cress	7			
Garlic	4	O	7	3
Horseradish	13			
Kohlrabi	2			
Leek	4	0	11	5
Lentils				
Brown	142	190		190
Red	122	0	_	0
Lettuce, iceberg	0.5	_		_
Mushrooms	13	1		1
Olives, black	3			
Onion	E	10		10
Red Yellow	5 16	10	_	10 6
Parsley leaves	8	6		0
Parsnips	9	0	20	9.5
Peas	,	O	20	9.5
Chickpeas	140	0	_	0
Green peas	175	0	0	0
Yellow peas	270	_	_	_
Peppers	2.0			
Sweet green	2	0		0
Sweet red	0.5	0	_	0
Sweet yellow	1	0		0
Potato	7	0	0	0
Radish				
White	4	0	_	0
Black	1			
Rutabaga	1	O		0
Sauerkraut	1	O	_	0
Skorzonera		0		0
(black salsify)				
Spinach	2	20	12	26
Squash, summer	3		_	
Tomato	2	0	_	0
Fruit and berries		1.00		1.00
Apple	0.1	160		160
Apricot	_	0	_	0
Avocado	1	0	_	0
Banana	0.4	40 390	_	40 390
Blackberry Blueberry	4 6	80	_	80
Currant	0	80	_	80
Black	78			
Red	55		_	
Dates		5		5
Figs	_	0	_	0
Kiwi	10	o	0	0
Cowberry	5	3	250	122
Mango	1	_		
Melon, honey	0.6		_	
Orange	2	0		0
Pears	0.2	4	70	37
Raspberry	4	70	61	99
				(Continued)

(Continued)

TABLE A1 (Continued)

	Phytate phosphorus ¹	Tannin equivalents	Chlorogenic acid	Total tannin equivalents
	phosphorus			equivalents
Rhubarb	0.2	mg/100 g 0	dry matter 16	8
Strawberry	4	_		_
Beverages	4			
Coffee, brewed ²		21	71	55
Tea				
English breakfast		53	14	60
Green ⁴		26	17	35
Herb		18		18
Peppermint ⁴		20	23	31
Cacao powder				
Marabou	504	4400	520	4648
De Zaan ⁵	513		_	
De Zaan low fat	342		_	_
Fazer ⁶	481			
With sugar	93	380	69	413
Beer Light lager	_	0.4	_	0.4
Light lager Strong	_	0.4	_	0.4
Whiskey, Cutty Sark	-7	2.9	_	2.9
Wine Wine		2.9		2.9
White		0	4	2
Red ^{5,8}		0.2-2.3	20-40	10-21
Fruit syrup, sloe		6.2		6.2
Spices ^o				
Allspice		0		0
Basil		2.7	7.9	6.5
Black pepper	_	2	_	2
Caraway		2.8	6.4	5.8
Cardamom		0.3		0.3
Chervel		0.4	2	1.4
Chili pepper	_	0.4	8.0	8.0
Cinnamon		43	14.3	50
Clove		95		95
Cumin		2.8	6.4	5.8
Curry	_	6.2	9.9	10.9
Fennel		0.3		0.3
Ginger		0.2		0.2
Green pepper		1.4		1.4
Marjoram		6.4	9.9	11.1
Oregano	0.2	21 12	6	24 14.1
Thyme Turmeric		34	4.4 0.7	34
Vanilla		0.7	0.7	0.7
White pepper		0.4	_	0.4
Nuts, seeds, and		0.4		0.4
soy products				
Brazil nut		10		10
Cashew nut		O		O
Hazel nut		256		256
Peanut		0		0
Walnut Sweet almond	303	1400		1400
Sweet almond Linseeds	296 296	43	_	43
Sesame seeds	576	14	_	14
Sunflower seeds	393	120		120
Soy sauce	222	120		120
Kikkoman ¹⁰	4			
Tamari ¹¹	15			
Chinese mushroon	m^{12} 5			_
Cereals and				
cereal products				

(Continued)

TABLE A1 (Continued)

	Phytate phosphorus ¹		Chlorogenic acid	Total tannin equivalents			
	mg/100 g dry matter						
Barley	185	_	_				
Oat	399-628	0	_	0			
Wheat	680-1189	0	58	28			
Wheat, coarse	1338	3	_	3			
Crisp bread							
Rye, thin	72-86	_	_				
Rye, fiber	114-193	_	_				
Graham	192	_	_	_			
Oat	166	_	_	_			
Rice cakes	113	_	_	_			
Rice flour	27	_	_	_			
Long grain	53-64	_	_	_			
Parboiled	71	_	_				
Wild, brown	181-215	0	_	0			
Starch							
Lentil	3		_				
Maize	3		_				
Rice	1-37		_				
Wheat	0		_				
Corn flakes	12	_	_	_			
Millet	217		_				
Oats, rolled	282	0	_	0			
Semolina	19	_	_	_			
Sorghum							
Red	279	480	_	480			
White	389	15	_	15			
Spaghetti							
Buitoni ¹³	6	_	_	_			
Barilla ¹⁴	71	_	_	_			
Wheat germ	467	0	_	0			

Anexo 4. Classificação das dietas de acordo com a biodisponibilidade de ferro²¹.

Categoria	Biodisponibilidade de ferro (%)	Características das dietas
Baixa	1-9	Simples, dieta monótona baseada em cereais, raízes ou tubérculos, com insignificantes quantidades de carne, peixe, ave ou comidas ricas em vitamina C. Dieta rica em comidas que inibem a absorção do ferro tais como milho, feijão, farinha de trigo integral e sorgo.
Média	10-15	Dieta de cereais, raízes ou tubérculos, com alguns alimentos de origem animal (carne, peixe ou ave) e/ou contendo alguma quantidade de vitamina C (provindo de frutas e vegetais).
Alta	>15	Dieta diversificada contendo grandes quantidades de carne, peixe, ave e/ou alimentos ricos em vitamina C.