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RESUMO

FERRUGEM, Anderson Priebe. Extração de Mapas de Profundidades de Dense
Light Fields usando Deep Learning. Orientador: Bruno Zatt. 2022. 163 f. Tese
(Doutorado em Ciência da Computação) – Centro de Desenvolvimento Tecnológico,
Universidade Federal de Pelotas, Pelotas, 2022.

Diversos sistemas de imageamento utilizam a metrologia por imagem para
medir, identificar, inspecionar e diagnosticar. A demanda crescente por sistemas
de metrologia visual em diversas áreas que necessitam de sensores compactos
e robustos tem impulsionado o desenvolvimento de dispositivos para captura. Es-
tes sensores utilizam diferentes grandezas físicas para o imageamento e cálculo
das distâncias, cada um com suas limitações e vantagens. Entre as tecnologias
emergentes de imageamento, que usam apenas a informação de luz visível, temos
destaque para o uso de imagens light field capturadas através de câmeras light field
densas ou esparsas, que possuem vantagens intrínsecas em relação aos dispositivos
tradicionais. Por exemplo, essas câmeras são robustas em situações específicas de
oclusão e também em cenas com ambientes ruidosos (chuva, neve, etc.). Isso faz
com que câmeras light field, também chamadas de câmeras plenópticas, possuam
potencial de uso como um versátil sensor com múltiplas aplicações. Essa capacidade
é pouco aproveitada devido as características ópticas complexas relacionadas ao
sistema de captura e ao custo computacional do processamento relacionado. Para
se extrair o mapa de profundidade usando métodos geométricos tradicionais é
necessário estimar n-variáveis, atualizar seus valores e realizar novos cálculos a
cada mudança de parâmetro. Ao se usar redes neurais artificiais, essas relações
já ficam implícitas na própria rede neural, o que permite uma resposta imediata
a modificação dinâmica dos parâmetros. Essa tese apresenta duas técnicas para
extração de mapas de profundidade de imagens light field densas baseadas em redes
neurais com aprendizado profundo. A primeira proposta simplifica a rede EPINET,
reduzindo o fluxo de quatro entradas para apenas duas entradas. Já a segunda
proposta explora a rede de entrada multifluxo em uma rede neural convolucional
u-shaped. Cada proposta é explorada e por fim são apresentadas suas vantagens
e desvantagens. Ambas propostas calculam mapas de profundidade em tempos
menores que a EPINET original.

Palavras-chave: campo de luz denso. função plenóptica. aprendizado profundo. redes
neurais artificiais. visão computacional.



ABSTRACT

FERRUGEM, Anderson Priebe. Depth Map Extraction of Dense Light Fields using
Deep Learning. Advisor: Bruno Zatt. 2022. 163 f. Thesis (Doctorate in Computer
Science) – Technology Development Center, Federal University of Pelotas, Pelotas,
2022.

Several imaging systems use image metrology to measure, identify, inspect
and diagnose. The growing demand for visual metrology systems in several areas that
require compact and robust sensors has driven the development of capture devices.
These sensors use different physical quantities for imaging and calculating distances,
each with its limitations and advantages. Among the emerging imaging technologies,
which use only visible light information, we highlight the use of light field images
captured through dense or sparse light field cameras, which have intrinsic advantages
over traditional devices. For example, these cameras are robust in specific occlusion
situations and also in scenes with noisy environments (rain, snow, etc.). This makes
light field cameras, also called plenoptic cameras, potentially useful as a versatile
sensor with multiple applications. This capacity is little used due to the complex
optical characteristics related to the capture system and the computational cost of the
related processing. To extract the depth map using traditional geometric methods, it is
necessary to estimate n-variables, update their values and perform new calculations
at each parameter change. When using artificial neural networks, these relations are
already implicit in the neural network itself, which allows an immediate response to
the dynamic modification of the parameters. This thesis presents two techniques for
extracting depth maps from dense light field images based on neural networks with
deep learning. The first proposal simplifies the EPINET network, reducing the flow
from four inputs to just two inputs. The second proposal explores the multistream
input network in an u-shaped convolutional neural network. Each proposal is explored
and its advantages and disadvantages are presented. Both proposals calculate depth
maps in less time than the original EPINET.

Keywords: Dense Light Field. plenoptic function. Deep Learning. artificial neural
network. Computer Vision.
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1 INTRODUÇÃO

Sistemas de metrologia, telemetria, fotogrametria, reconstrução 3D, odometria vi-
sual, carros autônomos, robótica, microscopia, e outros sistemas que usam imagea-
mento para extrair medidas de uma cena, em muitas situações necessitam de sen-
sores compactos e robustos. Estes sensores usam vários tipos de grandezas físicas
para realizar o imageamento e o cálculo das distâncias, entre os mais usados pode-se
citar: o radar (ondas eletromagnéticas), sonar (ondas sonoras), LiDAR/ToF (luz/laser
pulsado), câmeras estéreo (imagem 3D) e câmeras RGB-D (uma câmera 2D e uma
câmera infravermelho combinadas). Sendo que cada tipo de sensor possui suas limi-
tações e vantagens.

Por exemplo, sistemas como o LiDAR possuem um alto desempenho no cálculo
de distâncias, mas a medida que os objetos se distanciam de seu ponto de dispersão
radial se perde a resolução e, dependendo da localização e distanciamento, objetos
entre dois feixes ou em uma área de sombreamento não são detectados. Tal com-
portamento pode ser observado na Figura 1, onde a sombra escura é na verdade a
região onde o laser não é projetado, visto que o mesmo foi bloqueado por um objeto
mais próximo.

Figura 1 – Objetos podem ficar oclusos na região escura. Fonte: Luminar Technologies/IEEE
Spectrum - Hecht (2017)

O mesmo pode ocorrer em câmeras RGB-D que projetam um padrão salpicado de
pontos em frequência infravermelha (Figura 2), portanto não visível para humanos, em
uma cena. Como as posições relativas e diferenças entre os pontos é fixa, o cálculo
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da distância dos objetos e do mapa de profundidade de uma cena é feito a partir das
distorções causadas nesse padrão. Como se trata de uma projeção, também existem
regiões de sombra. Além disso, um sistema RGB-D sofre interferência de outras fontes
de infravermelho (como o sol) e pode gerar falsos positivos através da detecção de
padrões semelhantes gerados de forma aleatória por essas fontes externas.

Figura 2 – Padrões de pontos infravermelhos projetados pelas câmeras RGB-D Intel Realsense
D435 e D415. Fonte: Grunnet-jepsen et al. (2020)

.

Os sistemas citados, dependendo das condições de uso e necessidades, são ro-
bustos, mas também com limitações severas. O LiDAR, por exemplo, se for usado de
forma massiva em carros autônomos, pode vir a causar lesões nas retinas de pedes-
tres e danificar câmeras digitais, justamente por ser um feixe laser pulsado, além de ter
baixo desempenho em situações climáticas adversas e possuir um custo mais elevado
em relação a outros sensores. Já câmeras digitais, que usam a faixa de frequência
eletromagnética visível para humanos, possuem um potencial de aplicação que vai
além do cálculo de distâncias. Elas podem ser usadas para reconhecimento de ob-
jetos, padrões, avaliação de contexto, reconhecimento de estruturas, etc. Câmeras
monoculares podem calcular a distância entre objetos através do conhecimento da
geometria projetiva da câmera usada ou através de marcos pré-estabelecidos na ima-
gem. Já sistemas de visão estéreo podem calcular a distância através da triangulação
entre dois planos focais, tendo essa estrutura a capacidade de tratar alguns tipos de
oclusões e ruídos. Entre tecnologias emergentes de imageamento, que usam apenas
a informação de luz visível, temos destaque para o uso de imagens light field cap-
turadas através de câmeras light field densas ou esparsas, que possuem vantagens
intrínsecas em relação aos dispositivos tradicionais citados.

Câmeras LF ou light field1 possuem potencial de uso como um versátil sensor com
múltiplas aplicações (aquisição de imagens, cálculo de distâncias, geração de mapas
de profundidade), desde que superados alguns desafios técnicos comuns em tecnolo-
gias emergentes (calibração, retificação, tratamento de ruído, extração de informação
relevante para construção de mapas de profundidade, etc.). Importante observar que
se em termos comerciais podemos considerar a tecnologia de light field recente, com

1em português e espanhol campo de luz
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a empresa Raytrix2 anunciando a produção e comercialização de câmeras com essa
tecnologia em 2010 (câmera plenóptica 2.0) e a empresa Lytro 3 em 2011 (câmera
plenóptica 1.0). Mesmo sendo uma tecnologia recente, seus conceitos remontam ao
século XIX. Já em 1846, Michael Faraday (FARADAY, M., 1846) sugeria que a luz e
outras radiações ocorrem em “linhas de força”, semelhantes às “linhas de força mag-
nética”, em outras palavras, um campo de luz. Em 1908 Lippmann (LIPPMANN, G.,
1908), apresenta a “Photographie intégrale” e a primeira menção a light field é no
trabalho de Gershun em 1939 (GERSHUN, 1939).

Observa-se que em meados dos anos 90 e início do século XXI temos o que pode
se chamar de "primeira onda LF". Essa fase começa com o interesse teórico na área
e a construção de protótipos de câmeras LF, fato correlacionado com o aumento da
capacidade de processamento, barateamento de sistemas de captura digital e novas
demandas na área de visão computacional. A partir de 2010 temos uma "segunda
onda LF" com o lançamento comercial das câmeras das empresas Lytro e Raytrix
e o crescimento do interesse na área e disponibilidade de datasets. Já nos últimos
seis anos, percebe-se uma "terceira onda LF" com desenvolvimento de novos dis-
positivos, tanto comerciais como protótipos, baseados em light field para captura e
imageamento, junto com um aumento significativo de pesquisas e projetos. Isso se
deve ao amadurecimento da área e à demanda por informações 3D e possibilidade
técnica de criação dos dispositivos. Por se tratar de uma área em franco desenvol-
vimento, muitos problemas permanecem em aberto, por exemplo, como representar,
transmitir e armazenar uma imagem light field, quais técnicas devem ser usadas para
a calibração das imagens das câmeras, como tratar regiões fronteiriças entre as mi-
crolentes, como construir monitores e telas para esse tipo de formato, etc. Portanto
é uma área com vários desafios em aberto e com crescente desenvolvimento teórico,
prático e comercial.

1.1 Motivação

Como já dito, as câmeras plenópticas possuem um potencial de uso como um sen-
sor versátil com múltiplas aplicações no campo da metrologia, robótica, carros autô-
nomos e etc. Esse potencial tem sido pouco explorado em virtude das características
ópticas complexas dessas câmeras e a quantidade de processamento necessário para
tratar a geometria projetiva usada na captura de imagens, principalmente quando não
se tem acesso a informações estruturais geométricas dos dispositivos. As imagens LF
capturadas por câmeras plenópticas densas são convertidas para sequências de vis-
tas com pequenas variações, o que permite a construção de mapas de profundidade,

2raytrix.de
3A empresa Lytro encerrou suas atividades em março de 2018

raytrix.de
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com a devida retificação, mesmo em ambientes externos sem controle da iluminação.
A principal limitação desse tipo de dispositivo são as linhas de base muito estreitas e
com ruído, o que torna as estimativas de profundidades difíceis (SHIN et al., 2018).

Apesar dessas adversidades, câmeras plenópticas possuem vantagens intrínsecas
em relação a sistemas LiDAR (Light Detection And Ranging), Radar e câmeras RGB-
D. Por exemplo, câmeras LF, também chamadas plenópticas, capturam informação
espacial e angular da cena, sendo mais robustas em condições extremas climáticas
que geram muito ruído, como chuva forte e neve, possuindo bom desempenho em
situações específicas de oclusão e com capacidade de remoção de reflexos e me-
lhoramento de imagens com baixa iluminação (BAJPAYEE; TECHET; SINGH, 2018;
ZANG et al., 2019).

O processamento de uma LF, estática ou dinâmica, possui várias etapas: deco-
dificação, calibração, retificação, cálculo da faixa refocável, construção do mapa de
profundidade, etc. Essas etapas em geral usam transformações lineares para a cons-
trução do mapa de profundidade. Mas uma das principais barreiras é gerar o mapa de
profundidade em tempo real a partir de imagens light field, uma vez que temos algo
semelhante a várias câmeras de captura gerando dados com alta dimensionalidade
4, o que leva esse procedimento apresentar um custo considerável em matéria de
tempo de processamento e uso de recursos computacionais (WU et al., 2017). Uma
forma de reduzir esses cálculos é usando um aproximador universal de funções que
aprenda essas relações e retorne os valores diretamente. Um dos mais conhecidos
algoritmos aproximador universal de função usado na área de aprendizado de má-
quina é o perceptron multicamada, que pode ser usado para receber como entrada
as imagens LF, aprender as relações ópticas e os parâmetros usados na captura,
diretamente do volume de entrada, e fornecer na saída o mapa de profundidade es-
timado. Essa abordagem reduz a complexidade ao trabalhar apenas com a imagem
LF, substituindo os cálculos geométricos usados para inferir a disparidade entre vistas,
que devem ser recalculados a cada nova cena, por uma rede neural que aprende a
relação entrada/saída

1.2 Objetivos

O objetivo principal desse trabalho foi a construção de um sistema com aprendi-
zado de máquina, baseado em redes convolucionais, que gera o mapa de profundi-
dade a partir do aprendizado das relações entre as disparidades entre as vistas e a
profundidade associada a esses deslocamentos, usando apenas como entrada ima-
gens LF produzidas de forma sintética ou real por uma câmera plenóptica 1.0 do tipo
denso, virtual ou real, e com velocidade de processamento que permitam o seu uso

4do inglês high dimensional data
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em sistemas near real time ou mesmo em sistemas real time.
No desenvolvimento da pesquisa foram identificados os seguintes subproblemas:

• Definir um dataset adequado para a abordagem proposta;

• Estudo das abordagens existentes para a solução do problema apresentado;

• Construção de um pipeline de aprendizado de máquina para testar variações
das redes neurais utilizadas;

• Desenvolvimento da solução para o problema exposto.

No decorrer do levantamento dos dados para esse projeto foi possível identificar
que esse é um tema de pesquisa promissor e que existe um crescente interesse co-
mercial na área.

1.3 Organização do texto

O texto está organizado de forma a apresentar inicialmente o fundamento teórico
necessário para o desenvolvimento e compreensão do trabalho e depois apresenta a
solução proposta. Os Capítulos 2 e 3 apresentam as bases em óptica e das técnicas
de aprendizado de máquina usadas. O Capítulo 2 apresenta as informações sobre
imageamento, óptica, light field e cálculo de profundidade. Já o Capítulo 3 apre-
senta uma breve introdução a redes neurais, com enfoque no aprendizado profundo.
No Capítulo 4 são apresentados trabalhos relacionados e como o mercado tem se
desenvolvido na área de light field. No Capítulo 5 são apresentados os materiais uti-
lizados e a abordagem utilizada para o desenvolvimento da solução proposta, que é
apresentada no Capítulo 6. Por fim, os resultados dos testes são apresentados no
Capítulo 7 e o fechamento da tese com as conclusões são feitas no Capítulo 8.



2 CONCEITOS BÁSICOS DE IMAGEAMENTO

Em sistemas monoculares, informações ópticas, como distância focal, em geral
não são necessários para o processamento das imagens. Já em sistemas de image-
amento n-dimensionais, onde em um único disparo do obturador são capturadas n-
pontos de vista, é necessário a compreensão de conceitos elementares da formação
da imagem, para que se possa trabalhar com alinhamento, triangulação, retificação
e outros procedimentos relacionados. Desta forma, para a definição do escopo do
trabalho é necessário o conhecimento de conceitos ópticos básicos de formação de
imagem em um dispositivo light field. Esta seção apresenta essas noções elementares
envolvidas na captura de imagens usando câmeras digitais. Os princípios apresen-
tados são fundamentais para o entendimento da escolha e construção do dataset e
no cálculo do mapa de profundidade.

2.1 Aquisição de imagens ou imageamento

Imagear é obter ou capturar uma imagem por meio de equipamento imageador.
Um equipamento imageador é um dispositivo que gera imagens de acordo com um
sistema de captura de entrada. Ele pode ser um instrumento óptico como uma câ-
mera fotográfica, aparelhos de diagnóstico que formam imagens a partir de fontes
diferentes (radiografia, ressonância magnética, tomografia computadorizada etc.) ou
mesmo um sistema optoeletrônico como um escâner, além de vários outros tipos de
equipamentos. Existem vários tipos de dispositivos para aquisição de imagens fotográ-
ficas conforme a Figura 3. Em virtude das particularidades do trabalho desenvolvido,
os equipamentos com as características ópticas que são objetos de estudo são as
câmeras SLR/DSLR e as câmeras digitais sem espelho (mirrorless).

Uma câmera "padrão” possui um visor óptico separado da lente da câmera. Dessa
forma, tanto a lente como o visor focalizam a cena separadamente, levando a dis-
crepâncias entre o que foi enquadrado pelo visor e o que foi capturado pelo conjunto
lente/sensor. Já em uma câmera SLR (abreviação de "single-lens reflex” em inglês)
existe um espelho que desvia a imagem capturada pela lente para o visor óptico. Isso
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Figura 3 – No sentido horário, acima a partir da esquerda, smartphone com câmera, câmera
compacta, câmera sem espelho (mirrorless), e câmera SLR digital. Fonte: Mchugh (2019)

permite que o fotógrafo saiba exatamente o que está sendo enquadrado pela câmera.
Em uma DSLR (abreviação de " digital single-lens reflex” em inglês) esse processo é
repetido através de uma tela LCD que mostra a imagem advinda do sensor de cap-
tura. Desta forma, assim como nas SLR analógicas, as DSLR permitem ao fotógrafo
visualizar diretamente o enquadramento realizado. Um avanço em relação as DSLR
são as câmeras com lentes intercambiáveis sem espelho (mirrorless) introduzidas em
meados de 2010 (ANG, 2018). Basicamente essas câmeras removem o visor óptico
da DSLR usando apenas a tela de LCD.

2.1.1 Lentes, conjunto de lentes e distância focal

O que é chamado de forma genérica como lente, na verdade é um conjunto de
lentes, referenciado nominalmente pela sua distância focal. Sendo que a distância
focal é a medida em milímetros do ponto de convergência (nodal) dos feixes de luz
capturados até a superfície do sensor da câmera conforme a Figura 4 (TAYLOR, 2015).

Figura 4 – Exemplo de um conjunto de lentes com distância focal de 50mm. Fonte: De autoria
própria.

O comprimento focal da lente determina a área/campo de visão capturada cha-
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mado de FoV (do inglês: Field of View), ou seja, ele determina o ângulo de visão,
e o quão ampliados os objetos aparecem no quadro de captura. Por ângulo de visão
se entende a medida em graus da cena capturada (TAYLOR, 2015). A Figura 5 apre-
senta um quadro ilustrativo da relação entre a distância focal, ângulo de abertura e
ampliação.

Figura 5 – Distância focal e ângulo de visão. Fonte: Adaptado de Taylor (2015)

2.1.2 Exposição

A quantidade de luz que irá alcançar o sensor de captura pode ser ajustada di-
retamente por dois controles físicos (TAYLOR, 2015): A abertura do diafragma e a
velocidade do obturador. A sensibilidade da captura de imagem em relação a quanti-
dade de luz incidente também é determinada pela ISO aplicada ao sensor. A seguir
são detalhadas essas características.

2.1.2.1 Abertura do diafragma

A abertura ou diâmetro do diafragma da lente (Figura 6) pode ser alterada atra-
vés do anel de abertura ou sistema equivalente. A abertura afeta a quantidade de
luz que chegará ao sensor ou filme, o que também altera a profundidade de campo
(HEDGECOE, 2005).

O diâmetro da abertura do diafragma é reduzido por um fator de 1.4 (≈
√
2).

Observa-se que o padrão f-number é criado a partir dos valores arredondados en-
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Figura 6 – Abertura do diafragma. Fonte: Tabora (2020)

contrados a partir deste fator de redução, o que corresponde a uma redução de área
pela metade conforme as relações a seguir:

1.4 · 1.4 = 1.96 ≈ 2 ⇒ f/2

2.0 · 1.4 = 2.8 ⇒ f/2.8

2.8 · 1.4 = 3.92 ≈ 4 ⇒ f/4

. . .

Esses valores são usados para calcular o f-number / f-stop. O f-number representa
uma abertura específica do diafragma definida como a razão entre o comprimento
focal (f) e o diâmetro da abertura do diafragma (D): N = f/D (MAÎTRE, 2017)(BLACK,
2015). Através desse cálculo e as variações padrão da abertura do diafragma pode-se
gerar a série padrão internacional de f-number :

f/1 → f/1.4 → f/2 → f/2.8 → f/4 → f/5.6 → f/8 → f/11 → f/16 → f/22 → . . .

O cálculo do diâmetro absoluto do diafragma depende do comprimento focal da
lente (BLACK, 2015). Por exemplo, fotografando com uma lente com comprimento de
50 mm com uma abertura de f/1.4, o diâmetro da abertura real da lente é 35,7mm
(50/1.4)(BLACK, 2015). Por este princípio, pode-se obter o mesmo diâmetro de aber-
tura real mudando essas variáveis.

2.1.2.2 Velocidade do Obturador

O obturador controla o tempo (t) de exposição total (H) dada ao sensor. O total de
iluminação da imagem (Ei) é dado pelo f-stop da abertura (Equação 1)(RAY, 1999).

H = Eit (1)

O valor de t é chamado de velocidade do obturador. A estrutura mecânica do
obturador pode variar conforme a Figura 7.
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Figura 7 – Tipos de obturador. Fonte: Adaptado de Hedgecoe (2005)

A velocidade do obturador em geral é utilizada para objetos em movimento ou
em situações em que se deseja alterar a quantidade de exposição a luz de forma
complementar.

2.1.2.3 Número ISO ou ISO Speed

O número ISO ou ISO Speed representa o grau de sensibilidade do sensor a quan-
tidade de luz incidente. Quanto mais alto o valor de do número ISO utilizado mais
sensível o sensor é a luz. Esse valor influencia na qualidade da imagem e no ruído
obtido no sensor de captura. O termo speed é associado aos antigos filmes fotográfi-
cos, onde o tempo de exposição para a fixação química da imagem poderia ser mais
rápido ou mais lento. O número ISO é separado em três categorias: (i) rápidos; (ii)
médios; (iii) lentos. Se o sensor está ajustado com um valor de ISO alto, isso significa
que ele necessita de pouca luz para capturar a imagem, em outras palavras, ele é
mais sensível e reage rapidamente a exposição da luz, por isso essa ISO também é
chamada de high ISO speed, quanto maior o valor ISO, mais sensível a luz. O uso de
um valor errado pode gerar muito ruído, ou baixa qualidade da imagem. Portanto, um
ISO alto/rápido é usado em situações de pouca luz, e um ISO baixo é ideal quando os
níveis de luz são adequados e se busca mais qualidade com detalhes finos (HEDGE-
COE, 2005). A Figura 8 mostra efeito de se usar um valor de ISO alto em uma cena
com iluminação adequada.

Em termos técnicos, um filme monocromático o valor de ISO speed é definido
como S = 0.8/Hm. Onde Hm representa a exposição em um ponto m. H é medido em
lux por segundo. Uma boa exposição para uma cena externa, neste caso, corresponde
a aproximadamente H0 = 9.4/Hm (JOHNSON JR., 2017) .

2.1.3 Profundidade de Campo

Profundidade de Campo ou DoF (do inglês Depth of Field) é a região em torno do
plano em que se encontra o ponto focal da imagem que permanece em foco (ANG,
2018). Essa região se encontra tanto a frente como atrás do plano do ponto focal
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Figura 8 – ISO diferentes aplicadas a mesma cena, com a mesma velocidade de obturador. Ao
se usar um ISO de valor alto, a imagem que possui iluminação adequada, passa a apresentar
ruído. Fonte: Adaptado de Correll (2021)

conforme se vê na Figura 9.

Figura 9 – Dois tamanhos distintos de profundidade de campo aplicadas na mesma cena.
Fonte: De autoria própria.

A principal forma de controlar a DoF é através da abertura das lentes. Se diminuir-
mos a abertura de lente (por exemplo usando f/11 no lugar de f/4) a profundidade de
campo aumenta. Outro fator é a distância focal da lente. Quanto menor a distância
focal da lente, maior a profundidade de campo. Por exemplo, para uma mesma distân-
cia, se usarmos uma abertura de lente fixa no valor de f/11, a profundidade de campo
é maior em uma lente de 28 mm se comparada a uma lente de 300mm. Na Figura
10 podemos observar essa relação entre quantidade de luz recebida pelo sensor de
acordo com abertura do obturador e sua influência na profundidade de campo.

O cálculo do DoF já é bem estabelecido na literatura. Conforme se observa na
Equação 2 e na Figura 11, ele possui dois limites, um valor superior e um inferior, que
engloba toda região em foco na imagem.
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Figura 10 – Quando a abertura de diafragma diminui o sensor recebe uma quantidade de luz
menor e a profundidade de campo aumenta. Fonte: De autoria própria.

DoF = DoFLimite distante −DoFLimite próximo (2)

Figura 11 – Diagrama representando o círculo de confusão e sua relação como o DoF. Fonte:
De autoria própria.

Para se determinar os limites inferior e superior do DoF, é necessário usar o con-
ceito de círculo de confusão ou CoC (do inglês circle of confusion). O CoC define
a região que se percebe como focada/nítida no sensor (Figura 11). Uma região fora
da profundidade de campo possuí o CoC embaçado/desfocado de forma perceptível
(MCHUGH, 2019).

O limite superior, ou ponto mais distante dentro da profundidade de campo é dado
pela Equação 3, e o limite inferior pela Equação 4, onde H é a distância hiperfocal,
f é o comprimento focal da lente usada e u a distância do foco.

DoFLimite distante =
H.u

H − (u− f)
(3)

DoFLimite próximo =
H.u

H + (u− f)
(4)
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A distância hiperfocal é a distância focal que dá o máximo de profundidade de
campo. Ela é calculada pela Equação 5 , onde C representa o limite do CoC e N a
abertura (f-number ).

H = f +
f 2

N.C
(5)

A informação DoF é importante para determinar a região focada na imagem e
permitir o cálculo da distância dos pontos que se encontram no mesmo plano
focal.

2.1.4 Resolução, tamanho do sensor e fator de corte

Uma imagem digital pode ser visualizada como uma matriz 2D onde em cada po-
sição é armazenado um valor de intensidade luminosa associada ao pixel que se en-
contra na respectiva coordenada espacial da imagem projetada no sensor de captura.
No caso de imagens coloridas pode-se tratar cada posição como um vetor com três
valores, um para cada canal de cor RGB, ou como três matrizes de tamanhos idênti-
cos onde cada matriz representa uma imagem com valores de intensidade associados
a um canal de cor. O tamanho dessa matriz junto com a quantidade de dados arma-
zenados para cada pixel individual determinam respectivamente a resolução espacial
e a quantização da imagem (bit resolution) (SOLOMON; BRECKON, 2010).

A resolução espacial é a quantidade total de pixels independentes usados para
cobrir o espaço visual capturado da cena projetada no sensor. Em geral, esse valor é
representado pelo total de colunas versus linhas, por exemplo: 640x480.

A profundidade de bit determina o valor máximo de intensidade de um pixel, ou
seja, a quantização da informação da imagem (SOLOMON; BRECKON, 2010).

O tamanho do sensor de captura influencia na geometria das características que
serão expressas na imagem. O tamanho típico de filmes fotográficos era de 35mm,
esse tamanho foi transportado para os sensores digitais (JOHNSON JR., 2017). Sen-
sores com esse tamanho são chamados full frame ou FF. A Tabela 1 mostra alguns
tamanhos de sensores usados em câmeras digitais. Para uma comparação visual a
Figura 12 mostra os tipos mais comuns de sensores.

Figura 12 – Tamanho relativo entre os tipos de sensores. Fonte: Johnson jr. (2017).
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Tabela 1 – Sensores típicos de câmeras digitais (2015). Adaptado de (JOHNSON JR., 2017)
Tipo Proporção de tela Largura (mm) Altura(mm) Diagonal(mm)
1/3” 4:3 4,8 3,6 6,0
1/2.5” 4:3 5,76 4,29 7,18
1/1.7” 4:3 7,6 5,7 9,6
1.0” 4:3 13,2 8,8 15,9
4/3” 4:3 17,3 13,0 21,6
APS-C 3:2 22,2 14,8 27,04
FF (35 mm) 3:2 36,0 24,0 43,27
Formato Médio 4:3 43,8 32,8 54,72

Um pixel não possui um valor fixo em termos de área ocupada e seu tamanho de-
pende das dimensões do sensor, diagonal do sensor, largura do pixel e distância entre
os centros de cada pixel (pixel pitch). Por exemplo, em um sensor de 1/3 polegadas
com 8 megapixels (3264 x 2448), o pixel pitch é de 1, 48 µm com 17.272 PPI1. Em sen-
sores APS-C e FF 35mm (que são mais comuns em câmeras digitais) o pixel pitch é
mais largo (JOHNSON JR., 2017). Em uma câmera com sensor FF 35mm é de 8, 42

µm para 12, 2 megapixel e 4, 13 µm para 50, 6 megapixel (JOHNSON JR., 2017).
O fator de corte (do inglês crop factor ) reflete a relação da lente com o tamanho

do sensor de captura. Para uma mesma lente fotográfica ou objetiva a projeção sobre
o sensor será a mesma, mas a captura total da cena depende do tamanho do sensor.
Sensores menores capturam uma região menor. Por exemplo, na Figura 13 temos a
comparação entre a área coberta por um sensor FF e por um sensor APS-C (conforme
a Tabela 1) para a mesma objetiva.

Entre os sensores padrão o FF-full frame é o que captura a maior área possível.
Isso faz com que ele seja usado como referencial. Desta forma, o fator de corte
sempre indica o quanto de cena é capturada em comparação a um sensor full frame.
Por exemplo, ao se utilizar uma lente de 50mm em um sensor FF, se tem a máxima
área de captura (fator de corte 1). Ao manter a objetiva e todas outras variáveis
constantes, mas utilizar um sensor APS-C com fator de corte 1.6, a região capturada
pela Equação 6 é equivalente a de uma lente de 80mm (50mm x 1.6 = 80mm).

Área = Lente x Fator de Corte (6)

Portanto para cobrir a mesma área de um sensor FF com uma lente de 80mm em
um sensor APS-C a objetiva usada deve ser de 50mm. Deve-se ressaltar que o único
fator que é alterado é a região da imagem capturada. A lente de 50mm não se com-
porta como uma de 80mm em um sensor com fator de corte 1.6. Suas características
como profundidade de campo e aberrações ópticas continuam as mesmas. Apenas

1Pixels Per Inch
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a região projetada é equivalente. A Figura 5 permite visualizar essa equivalência em
termo de abertura angular.

Figura 13 – Simulação aproximada do fator de corte para um sensor FF e um APS-C com a
mesma lente objetiva. Fonte: De autoria própria.

2.1.5 Considerações

Essa seção apresentou definições basilares necessárias para a criação de data-
sets utilizando câmeras comerciais. Essas informações também foram úteis no pro-
cesso de seleção de datasets já existentes.

2.2 Imagens com múltiplas perspectivas

As câmeras citadas até aqui fazem a captura de imagens a partir de um único
ponto de vista. Isso resulta na perda de informações de profundidades da cena. Para
se obter dados de profundidade, usa-se duas ou mais câmeras com características e
configurações idênticas, mas com variações de posição em relação a seus eixos ho-
rizontal, vertical ou em ambos. No caso de uma cena estática, podemos mover uma
câmera nesses eixos e capturar a cena a partir de novas perspectivas com sobreposi-
ção de regiões entre as imagens.

2.2.1 Visão estéreo

O processo de extração da informação 3D feito a partir de duas perspectivas distin-
tas é chamado de visão estéreo (IKEUCHI, 2014). A visão estéreo serve como base
para entendimento dos métodos usados em imagens com mais de duas perspectivas,
como é o caso das imagens light field.

Para fins de definição dos parâmetros usados, em imagens estéreo, cada vista
possui uma matriz de projeção P e P ′ associadas a cada uma das câmeras (câmera
P e câmera P ′). Sendo que o apóstrofo (’) é usado para apontar parâmetros referentes
ao que é designado como segunda perspectiva, e sua ausência denota parâmetros da
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primeira vista. Exemplificando, um ponto espacial tridimensional X, com as coorde-
nadas espaciais (x, y, z), é projetado como a transformação geométrica x = PX na
primeira perspectiva e como x′ = P ′X na segunda (HARTLEY; ZISSERMAN, 2004).
Os pontos x e x′ são correspondentes, pois representam a projeção bidimensional do
mesmo ponto X tridimensional. Essa abordagem aponta para três problemas básicos
(HARTLEY; ZISSERMAN, 2004):

1. Geometria da correspondência- De que forma a localização de um ponto x na
primeira perspectiva restringe a localização de x′ na segunda vista?

2. Geometria da câmera (movimento) - Dada uma imagem e seu conjunto de
pontos correspondentes xi ↔ x′

i, i = 1, ..., n, quais são as câmeras (matrizes) P
e P’ para as duas visualizações?

3. Geometria (estrutura) da cena - Dado os pontos de imagem correspondentes
x ↔ x′ e matrizes P e P’, qual é a posição de X no espaço 3D?

A última questão é o objetivo final dessa proposta quando aplicada a n-vistas. Mas
para se chegar neste ponto é necessário responder as duas questões anteriores. Con-
vém ressaltar que o problema da retificação das imagens não está sendo abordado
nesse trabalho, pois as imagens geradas já estão retificadas pelos softwares utiliza-
dos.

2.2.2 Geometria Epipolar

A primeira questão apresentada é também conhecida como problema da corres-
pondência estéreo. Como existem dois pontos de vista do objeto, um ponto locali-
zado na superfície de um objeto 3D ocupa coordenadas distintas em cada perspectiva.
Por exemplo, na Figura 14 o ponto X é projetado nos planos de captura da esquerda
nas coordenadas x e o mesmo ponto é projetado nas coordenadas x′ no plano da
direita.

Desta forma, é necessário localizar para cada ponto x ∈ I a projeção x′ em I ′ para
poder determinar a diferença entre as coordenadas. Como saída desse processo
temos um mapa de disparidade onde o valor de intensidade representa a diferença
entre x e x′ (ZHANG, 2013). Portanto, encontrar a correspondência estéreo do
ponto X é identificar o local de sua projeção em cada plano com suas respectivas
coordenadas.

Segundo (DAVIES, 2017) existem duas principais abordagens para mapear a infor-
mação de profundidade em imagens: light striping em imagens monoculares e linhas
epipolares em imagens estéreo. A primeira técnica é baseada em iluminação estrutu-
rada (light striping) para marcar pontos conforme a Figura 15 e se usa a distorção do
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Figura 14 – Projeção de uma imagem 3D. Fonte: Adaptado de Zhang (2013)

padrão para calcular o mapa de profundidade. Essa abordagem não é usada nesse
projeto.

Figura 15 – Luz estruturada monocular usando faixas coloridas. Fonte: Geng (2011).

A segunda abordagem, linhas epipolares, é a mais comum em se tratando de ima-
gens estéreo sem controle estruturado de iluminação. Por geometria epipolar se en-
tende as relações geométricas associadas a geometria projetiva intrínseca entre duas
vistas de um objeto espacial (OROZCO et al., 2017) . Essa geometria é independente
da estrutura da cena e depende apenas dos parâmetros internos das câmeras (matriz
intrínseca) e das poses relativas (HARTLEY; ZISSERMAN, 2004).

A ideia básica é reduzir a região de busca para encontrar o pares x e x′. Conforme
a Figura 16, existe um ponto x correspondente a projeção de X. Em vez de varrer
toda imagem da direita atrás das coordenadas x′ se estabelece uma linha e′ para a
busca do ponto correspondente a X nesse plano. Essa linha é chamada de linha
epipolar. Ela pode variar de acordo com as características geométricas das imagens,
por exemplo, distorções das lentes.

Para se definir a linha epipolar é necessário se definir a geometria epipolar. Na
Figura 16 cada câmera é indicada por seus centros de convergência C e C ′ e seus
respectivos planos de imagem. A linha de base (baseline) une os centros das câme-
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ras C e C ′, sendo que os pontos de intersecção entre ela e os planos de imagens são
chamados de epipolos, representados na Figura 16a como e e e′. Na mesma Figura
se observa que o plano epipolar π é determinado pelos centros das câmeras e pelo
ponto espacial X. Para cada intersecção de um plano epipolar com um plano visual
temos uma linha epipolar. Como o plano epipolar intersecta ambos planos visuais
temos pares de linhas epipolares (l,l′) correspondentes.

Se for conhecida apenas as coordenadas x, pode-se restringir a busca do ponto x′

a linha epipolar no plano da imagem I ′. O epipolo e′ funciona como limite para a busca.
Na Figura 16b temos a visão da linha epipolar em ambos planos, após a retificação das
vistas I e I ′. As perspectivas são retificadas de forma a ficarem coplanares, desta
forma as linhas epipolares para cada par de pontos (x,x′) passam a ser colineares.

Figura 16 – Geometria das linhas epipolares. A linha de base (baseline) une os centros das
câmeras C e C ′, sendo que os pontos de intersecção entre ela e os planos de imagens são
chamados de epipolos (e, e’). Fonte: Adaptado de Orozco et al. (2017).

Uma vez estabelecidos os pares de linhas epipolares, se busca em l′ o ponto x′

relativo a x usando uma função de custo que retorne os pares de pontos com máxima
correspondência.

2.2.3 Matrizes de projeção das câmeras

A projeção de uma imagem em um plano visual (Figura 14) depende das carac-
terísticas ópticas e físicas da câmera. As relações entre as coordenadas 3D de um
ponto X e sua projeção 2D em uma câmera é descrita por uma matriz de transforma-
ção chamada matriz intrínseca (P ). Ao multiplicarmos a matriz intrínseca P pelo vetor
que contém as coordenadas espaciais (Xi, Yi, Zi) do ponto X obtemos os valores das
coordenadas (xi, yi) na projeção 2D (Equação 7). Na Equação 8 temos os parâmetros
da matriz P : A distância focal (fx = fy); o ponto central da imagem (cx, cy); e o valor w
que é igual a Zi. Se a distância focal for modificada, as coordenadas 2D mudam. Para
fins de simplificação a matriz extrínseca será chamada apenas de câmera a partir de
agora.
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x = PX (7)

xi

yi

wi

 =

fx 0 cx

0 fx cy

0 0 1


Xi

Yi

Zi

 (8)

Uma projeção estéreo é calculada usando os conjuntos de pares (P ,P ′) e as coor-
denadas espaciais X conforme a Equação 9.

x = PX

x′ = P ′X
(9)

Quando os sistemas de coordenadas da câmera e do mundo real não estão usando
o mesmo referencial de posição, ou seja, o plano focal de projeção 2D da imagem não
está paralelo ao plano da imagem 3D, é necessário realizar o ajuste através de uma
transformação geométrica. Isso é feito através da matriz extrínseca que converte as
coordenadas do mundo real para o mesmo referencial do sistema de coordenadas da
câmera. Essa abordagem não é necessária nesse trabalho.

2.2.4 Estrutura da cena e cálculo de distâncias

A última questão envolve a busca da posição de X no espaço 3D dado os pontos
de imagem correspondentes x ↔ x′ e as matrizes P e P ′, ou seja, busca a estrutura da
cena capturada em termos de posição e distância em relação ao ponto de observação.
O conceito para o cálculo de distâncias envolve triangulação dos pontos conhecidos,
lembrando que sempre existe um erro associado, visto que existe ruído na captura.

Antes de se calcular as relações trigonométricas na projeção estéreo é necessário
entender o comportamento da captura de um ponto em uma única câmera. Para fins
de simplificação na Figura 17 é usada uma câmera pinhole. Observa-se que o ponto
tridimensional X é projetado na posição xi do sensor de captura, equivalente ao ponto
xf no plano frontal. A variável f é a distância focal da lente, sendo o deslocamento
de xi e f proporcional a Xc e Zc, estabelecendo as relações dadas na Equação 10.

xi

f
=

Xc

Zc

⇒ xi =
(

f
Zc
Xc

)
yi
f

=
Yc

Zc

⇒ yi =
(

f
Zc
Yc

) (10)

Para que se possa calcular a estrutura da cena por um sistema estéreo a partir
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Figura 17 – Relações trigonométricas na projeção de um ponto em uma câmera pinhole. Fonte:
Adaptado de Shapiro; Stockman (2001)

.

dessas relações básicas é necessário realizar a retificação, onde os planos visuais
são ajustados de forma a ficarem coplanares. Desta forma, as câmeras ficam em eixos
ópticos colineares, tendo apenas deslocamento horizontal entre elas (Figura 18). Uma
vez que se encontre o mesmo ponto em ambas imagens (x e x′) pode se estimar sua
distância.

Figura 18 – Planos visuais retificados, prontos para a triângulação. Fonte: De autoria própria.

Pelas relações trigonométricas da Figura 19 temos a disparidade d entre os pontos
x e x′ dada pela Equação 11. Uma vez conhecida a disparidade é possível calcular a
profundidade pela linha base horizontal b e a distância focal f (Equação 12), ou pela
descoberta dos ângulos α e β determinados pelos valores x e x′ (Equação 13).

d = x− x′ (11)
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Figura 19 – Relações trigonométricas em um sistema de captura estéreo retificado. Fonte: De
autoria própria.

.

x− x′

b
=

z − f

z
⇒ z =

fb

d
(12)

b =
z

tan(α)
+

z

tan(β)
(13)

Observa-se pela Equação 11 que a profundidade é inversamente proporcional a
disparidade.

2.2.5 Mapa de disparidade e mapa de profundidade

O conjunto de disparidades entre todos os pontos das imagens I e I ′ (Figura 19)
formam o mapa de disparidade. Conforme já citado, dado o mapa de disparidade é
possível calcular a profundidade de cada ponto através da linha base horizontal b e a
distância focal f pela Equação 12, criando uma imagem em tons de cinza chamada
mapa de profundidade, onde o valor de intensidade de cada pixel é proporcional a
distância (Figura 20). O mapa de disparidade pode ser convertido para uma nuvem
de pontos 3D representando a cena.

2.3 Função plenóptica e representação da imagem

A função plenóptica (Equação 14) descreve a intensidade de cada raio de luz no
mundo como uma função do ângulo visual, comprimento de onda, tempo e posição do
observador (IKEUCHI, 2014).
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Figura 20 – O mapa de disparidade é obtido a partir da imagem esquerda (I) e da imagem
direita (I ′), onde a correspondência estéreo é realizada para encontrar os pontos correspon-
dentes (px e p′x), localizados na mesma linha horizontal. O valor da disparidade d corresponde
a portanto a diferença horizontal entre eles. Fonte: Shahnewaz; Pandey (2020)

.

P = P (θ, ϕ, λ, t, Vx, Vy, Vz) (14)

Em uma câmera fotográfica convencional, se considerarmos o sensor de captura
como ponto de convergência dos raios luminosos (Figura 21), nem todos raios serão
observados. Mas ao contrário do que ocorre nesses sistemas usuais, a função ple-
nóptica parametriza todos raios que chegam a todos pontos no espaço. Desta forma,
a função plenóptica descreve o comportamento de todos raios luminosos, mesmo os
que não podem ser capturados por sistemas usuais.

Figura 21 – A função plenóptica representa toda a informação visual que chega a um ponto
do espaço em um determinado momento independente do observador. Na Figura temos dois
observadores que não percebem os raios luminosos em cinza. Fonte: De autoria própria.

Podemos representar um raio luminoso na forma de um vetor em um sistema de
coordenadas esféricas como na Figura 22. O ponto O representa o ponto de conver-
gência (observador) e centro do sistema de coordenadas. Neste sistema se descreve
a direção ou ângulo de visão através de duas coordenadas: θ que representa a cola-
titude (ângulo polar ou ângulo zenital) e ϕ o azimute. Desta forma todos os raios que
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chegam em um ponto de vista são especificados como P (θ, ϕ). Essa equação não
leva em conta o comprimento de onda do raio luminoso (cor).

O sistema de coordenadas esféricas é uma forma simples de representar a esfera
completa de raios luminosos que chegam a um ponto no espaço (Figura 23a), mas
pode se optar por usar um sistema de coordenadas cartesianas, onde (x, y) represen-
tam as coordenadas espaciais de um plano imaginário da cena a uma distância pré-
definida do ponto de observação como na Figura 23b (ADELSON; BERGEN, 1991).

Figura 22 – Sistema esférico de coordenadas - r representa o raio de luz incidente com as
coordenadas P (θ, ϕ). Fonte: De autoria própria.

Figura 23 – A função plenóptica pode parametrizar um raio de luz r através de coordenadas
esféricas (A) ou de coordenadas cartesianas(B), onde d representa a distância do observador
ao plano imaginário da imagem. Fonte: De autoria própria.

A função plenóptica com sistema de coordenadas cartesianas fica representada
na forma da Equação 15 .

P = P (x, y, λ, t, Vx, Vy, Vz) (15)

Podemos representar uma cena ou ponto de vista conforme a Figura 24a, em tons
de cinza pelo conjunto de raios de luz que a compõe pela função P (θ, ϕ). Ao adicionar
o parâmetro λ que representa o comprimento de onda, cor, de cada raio de luz, pas-
samos a ter a função P (θ, ϕ, λ) que representa uma cena colorida a partir de um único
ponto de vista conforme a Figura 24b.
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Figura 24 – (A) Cena representada pela totalidade de raios P (θ, ϕ) que são capturadas em
um único ponto de vista. (B) Informação de comprimento de onda λ acrescentada. Fonte: De
autoria própria.

O parâmetro t representa o momento temporal da cena que está sendo observada,
geralmente usado em vídeos para representar o momento temporal de captura de um
frame dentro de uma sequência um vídeo. Já os parâmetros Vx, Vy, Vz representam
todos pontos de vista possíveis (Figura 25). Chegamos dessa forma ao Equação 15 .

Figura 25 – Os parâmetros Vx, Vy, Vz que representam todos pontos de vista possíveis. Na
Figura são apresentados alguns pontos de vista na forma de câmeras. Fonte: De autoria
própria.

2.3.1 Função plenóptica 5D

A alta dimensionalidade proposta pela função plenóptica da Equação 14 é difícil de
gravar e manipular na prática (WU et al., 2017). Mas pode-se simplificar essa função
assumindo que a imagem é monocromática e invariante no decorrer do tempo como
na Equação 16.

L(Vx, Vy, Vz, θ, ϕ) (16)

Nessa proposta, o comprimento de onda de cada raio de luz é gravado de forma
independente em canais de cores, e a sequência de tempo t é armazenada como
uma sequência de frames se for o caso de um vídeo light field. Por fim se substitui
(Vx, Vy, Vz) por (x, y, z) que indica a posição do ponto de origem (observador) no es-
paço 3D. Com essas modificações se chega à descrição da função plenóptica 5D na
forma representada na Equação 17.

L(x, y, z, θ, ϕ) (17)



47

2.3.2 Light Field 4D

Levoy e Hanraham (LEVOY; HANRAHAN, 1996) e Gorler et al. (GORTLER et al.,
1996) fizeram uma nova simplificação na Equação 17. Considerando que o campo
de luz (light field) está sendo medido em um espaço livre, pode-se assumir que a
radiância permanece constante ao longo da linha de propagação. Desta forma se
remove mais uma dimensão e se tem a representação chamada 4D light field.

Para se representar a 4D light field, a solução mais comum é parametrizar os raios
de luz através da intersecção interna entre dois planos colocados em posições de
forma arbitrária (WU et al., 2017). O sistema de coordenadas do primeiro plano é
representado pelos eixos (u, v) e do segundo plano por (s, t) conforme a Figura 26,
chegando assim à representação de um raio de luz L em um sistema 4D light field
pelos pares de coordenadas L(u, v, s, t), onde um raio de luz intercepta o primeiro
plano nas coordenadas (u, v) e o segundo plano nas coordenadas (x, y).

Figura 26 – Sistemas de coordenadas em um sistema 4D light field. Fonte: De autoria própria.

2.4 Câmeras LF

A estratégia de aquisição de imagens LF pode variar entre esparsa ou densa
organizadas de forma estruturada ou não estruturada, usando câmeras comuns ou
desenvolvidas especificamente para a captura de light fields. O termo LF esparsa ou
SLF (do inglês sparse light field) é aplicado a grupamentos de câmeras distintas e
individuais que realizam a aquisição de imagens LF, tanto de forma estruturada ou
não estruturada.

Em uma LF esparsa estruturada se conhece a posição de cada câmera usada
na aquisição. A forma de disposição da câmeras pode ser uma matriz, um vetor,
ou mesmo uma única câmera que se desloca em um sistema mecânico capturando
poses em posições pré-determinadas (BROXTON et al., 2020). Na Figura 27a temos
uma LF esparsa composta por uma matriz de câmeras 8x12 (WILBURN et al., 2005),
capaz de gerar vídeos e imagens. Na Figura 27b (FLYNN et al., 2019), a proposta é
usar 16 câmeras GoPro® Hero4 dispostas em um plano variando os ângulos de visão
(câmeras) usados na construção do LF dataset. Na Figura 27c temos um array de 16
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GoPro® Hero4 que rotacionam sobre um eixo capturando as LF (OVERBECK et al.,
2018). A Figura 27d mostra um conjunto de 47 câmeras Xiaomi® dispostas na parte
côncava de disco parabólico (BROXTON et al., 2019).

Figura 27 – Quatro sistemas de aquisição de light fields esparsas estruturadas.a (WILBURN
et al., 2005),b (FLYNN et al., 2019),c (OVERBECK et al., 2018),d (BROXTON et al., 2019)

Em uma LF esparsa não-estruturada o conjunto de imagens é adquirido de forma
livre onde a imagem LF é construída através da triangulação das imagens (DAVIS;
LEVOY; DURAND, 2012). A Figura 28 mostra o processo. É feita a captura em vários
ângulos, que irão formar um conjunto de pontos de vista de uma cena em comum. A
LF é construída pela integração dessas perspectivas via algoritmos.

Figura 28 – Construção de uma LF esparsa não-estruturada. Fonte: Davis; Levoy; Durand
(2012)

A abordagem LF densa ou DLF (do inglês Dense Light Field) utiliza um conjunto de
microlentes responsável pela variação do ponto de vista, conforme será apresentado
a seguir.

2.5 Câmeras Dense Light Fields - DLF

Dense Light Fields (DLF) são câmeras plenópticas compactas; elas usam uma
matriz de microlentes entre a lente principal e o sensor de imagem. As câmeras DLF
são geralmente divididas em duas categorias (ZHU et al., 2018):

• ULF Unfocused Light Field (desfocada) ou plenóptica 1.0;

• FLF Focused Light Field (focada) ou plenóptica 2.0;
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Cada tipo será descrito a seguir de forma mais detalhada.

2.5.1 Plenóptica 1.0 (Unfocused Light Field)

A UFL foi proposta pela primeira vez por (ADELSON; WANG, 1992) em 1992. Essa
configuração de lentes para captura de LF foi aprimorada em 2006 (NG, 2006). Poste-
riormente, esse aprimoramento se tornou uma câmera comercial produzida e vendida
pela empresa Lytro®2.

A Figura 29 mostra a configuração básica de uma câmera UFL (ZHU et al., 2018).
Pode-se observar o sensor de captura no plano focal localizado a uma distância B
após a matriz de microlentes. Essa matriz é chamada de MLA (do inglês microlens
array ).

Figura 29 – Câmera plenóptica 1.0. Fonte: Adaptado de Zhu et al. (2018)

A MLA é responsável por mapear raios de luz de um mesmo local com diferentes
direções para pixels vizinhos no sensor de captura (IKEUCHI, 2014). Dessa forma,
a imagem registrada é uma matriz de macropixels; onde cada macropixels contém o
conjunto de pixels vizinhos que armazenam informações de raios com determinado
conjunto de direções (IKEUCHI, 2014). Esse conjunto de macropixels é chamado de
microimagem. Na Figura 30 pode se observar uma fotografia light field bruta como é
capturada por uma DLF com destaque para as microimagens na região ampliada.

A partir das microimagens é possível reconstruir as subaberturas (vistas). Na Fi-
gura 31a temos uma imagem LF bruta já retificada, composta por um conjunto de
microimagens. Cada microimagem possui um grupamento de 3x3 pixels que repre-
sentam perspectivas diferentes do mesmo ponto do FoV, com três vistas em des-
taque representadas por cores distintas na Figura 31a (azul, amarela e verde). Na
Figura 31b estão reconstruídas as subaberturas correspondentes a cada perspectiva,
processo que é feito associando cada pixel de uma microimagem a sua subabertura
na coordenada correspondente. Pode-se observar que a Figura 31 usa uma MLA 3x3
já que gera microimagens desse mesmo tamanho. Já as imagens resultantes de cada
plano (u, v) são matrizes 6x6.

2Essa empresa encerrou suas operações em 2018
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Figura 30 – Imagem bruta (raw image) de uma fotografia light field. A região ampliada mostra
detalhes das micro imagens. Fonte: Hahne et al. (2016).

Figura 31 – (a) imagem light field bruta composta por microimagens. (b) Subaberturas extraí-
das. Fonte: Hahne (2016).

2.5.2 Plenóptica 2.0 (Focused Light Field)

As câmeras plenópticas 2.0 foram propostas por Lumsdaine e Georgiev (LUMS-
DAINE; GEORGIEV, 2009). Em termos gerais, uma câmera FLF difere de uma ULF
na distância do MLA ao sensor de captura e no ponto onde a imagem intermediaria é
projetada. Na Figura 32 são demostrados os dois tipos de configurações do conjunto
de lentes: Kleperiana e Galileana (ZHU et al., 2018).

Na configuração Kepleriana o plano da imagem (imagem intermediária) é projetado
em frente à MLA (LIU; JIN; DAI, 2017). Desta forma, as microlentes estão focadas em
uma imagem intermediária real (LUMSDAINE; GEORGIEV, 2009). Já na configura-
ção Galileana, o plano da imagem é projetado atrás do sensor, fazendo com que as
microlentes estejam focadas em uma imagem intermediária virtual (LUMSDAINE; GE-
ORGIEV, 2009). As câmeras produzidas pela empresa Raytrix®3 usam esse tipo de

3https://raytrix.de
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Figura 32 – Câmera plenóptica 2.0. (a) Configuração Kepleriana. (b) Configuração Galileana .
Fonte: Adaptado de Zhu et al. (2018)

configuração.

2.6 A câmera Lytro Illum®

A câmera DLF usada na obtenção das imagens do dataset construído para esse
trabalho e usada para os testes é a Lytro Illum®(Figura 33). Essa é uma câmera
plenóptica 1.0 densa do tipo SLR digital sem espelho que foi produzida pela empresa
Lytro®. A Lytro ILLUM® possui uma abertura constante de diafragma com f-stop igual
a f/2. Conforme a Tabela 2, a distância focal varia de 30 à 250 mm, como a câmera
possui um fator de corte (crop factor ) de 3, 19, a faixa focal efetiva é de 9, 5− 77, 8 mm.
Convém ressaltar que ao aumentar a distância focal ocorre a compressão da faixa de
profundidade de campo- DoF como em qualquer outra câmera.

Segundo (SCHAMBACH; PUENTE LEÓN, 2020), o sensor de captura possui reso-
lução total de 7728 × 5368 pixels, tendo 1, 4µm de área ocupada por pixel com profun-
didade de 10 bits por pixel e fator gama de 0, 4. As microlentes são dispostas em uma
grade hexagonal, sendo estimado o desvio padrão ocasionado por ruído em 0, 1% do
diâmetro da microlente, ou seja, σ = 0, 0143 pixels. Como as microlentes possuem
diâmetro aproximado de 20µm e f-stop fixo igual a f/2, o comprimento focal ideal é de
40µm (SCHAMBACH; PUENTE LEÓN, 2020).

Figura 33 – Câmera Lytro Illum usada nos experimentos e na construção do dataset. Fonte:
De autoria própria.

Cada microlente cobre em torno de 225 pixels no sensor de captura (15x15) (SILVA,
2016), mas são geradas apenas 196 SAI’s em vez de 225 (RANGAPPA et al., 2019).
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Tabela 2 – Especificações Técnicas da Lytro Illum: Lentes. Fonte: De autoria própria.
Lentes
Distância Focal 9.5 – 77.8 mm (equivalente a 30-250 mm)
Fator de Corte 3.19
Zoom 8.3x Óptico
Abertura de lente Constante f/2.0
Macro Focus 0 mm a partir da frente da lente
Macro Ratio 1:3
Microlentes ≈ 200.000 lentes hexagonais

Tabela 3 – Especificações Técnicas da Lytro Illum: Sensor de Imagem e características de
captura. Fonte: De autoria própria.
Sensor de Imagem e características de captura
Tecnologia sensor CMOS
Image ratio w:h 3:2
Sensor size 1/2"(6.4 x 4.8 mm)
Resolução da light field 40 Megaray
Resolução efetiva máxima ≈ 4 Megapixels (2450x1634)
Resolução total do sensor ≈ 40Megapixel (5300x7600 pixels)
Formato do sensor 1/1.2”
Área ativa 10.82 x7.52 mm
Faixa ISO 80-3200
Shutter speed mínimo 32 segundos
Shutter speed máximo 1/4000 segundos
Disparo contínuo 3.0 fps

Isso se deve ao fato de nem todos pixels possuírem informação viável por ocuparem
posições limítrofes da microlente, sendo descartados na geração das SAI’s. Deste
conjunto de pixels desprezados, aproximadamente metade possuem informação par-
cial e o restante pouca ou nenhuma informação. Esse perda ocorre devido ao fenô-
meno de vignetting da lente, onde o brilho ou saturação da imagem capturada é redu-
zido a medida que se aproxima da borda da microlente (ZHANG, 2021). Desta forma,
a microimagem na prática é uma matriz de 14x14 pixels4.

A Tabela 3 apresenta algumas características da câmera. Nela se observa que
apesar de não produzir vídeo, a Illum pode realizar capturas sequenciais de 3 frames
por segundo. Outras informações úteis são a resolução total, efetiva e de light field,
que permitem dimensionar os datasets e a precisão intrínseca. A imagem de saída
bruta sem processamento é de 5368x7728 (ŘEŘÁBEK; EBRAHIMI, 2016; SCHAM-
BACH; PUENTE LEÓN, 2020). A resolução da imagem light field capturada é de 40
Megaray de resolução angular. Esse valor registra o número de raios de luz captura-
dos pelo sensor. Considerando a resolução total do sensor existem aproximadamente

4Esse valor é o usado pelo Lytro Desktop
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200.000 microlentes com uso efetivo (Equação 18).

Microlentes =
5300.7600

196
≈ 205510

Microlentes =
5300.7600

225
≈ 179022

(18)

O plano do sensor da câmera fica localizado na posição indicada pelo símbolo �
conforme a Figura 34. Para que se possa inferir as distâncias dos objetos capturados
é necessário conhecer a distância da lente até o sensor (Figura 35).

Figura 34 – O símbolo � indica a posição do sensor CCD da câmera. O plano do sensor está
a aproximadamente 115 mm da borda da lente. Fonte: De autoria própria.

A Figura 35 mostra de forma esquemática a incidência de dois raios luminosos em
duas microlentes distintas. Esse comportamento dos raios luminosos na aquisição das
imagens é usado na triangulação da imagem para o cálculo do mapa de profundidade.

Figura 35 – O plano do sensor fica aproximadamente no local indicado na figura acima. Fonte:
De autoria própria.

2.6.1 Lytro Desktop

O software Lytro Desktop é uma aplicação para manipulação e gerenciamento das
imagens adquiridas via câmera Lytro Illum (formato LFR). Esse software permite gerar
todas 196 subaberturas de um arquivo LFR em duas resoluções com 24 bits por pixel:
1620x1080 e 1080x720 no formato PNG. Além de criar e permitir manipular o mapa de
profundidade. Observa-se que essas resoluções ultrapassam a capacidade máxima
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do sensor de captura de acordo com a Tabela 3, desta forma o software usa uma
técnica não informada de super-resolução para fazer o upscaling das imagens.

2.6.2 Lytro Power Tools

O Lytro Desktop é basicamente um editor de imagens, o que limita bastante seu
uso na pesquisa das imagens light fields capturadas. Visando ampliar a utilização da
câmera, a empresa Lytro criou o Lytro Power Tools tendo como público alvo progra-
madores, desenvolvedores e pesquisadores, permitindo a realização de experiências
com os dados do light field.

O Lytro Power Tools é um conjunto de ferramentas em Python 2.7 para controle
das imagens, uso na web e construção de aplicativos (LYTRO, 2015b). Nele existe um
módulo que permite processar, importar, exportar e realizar operações de metadados
em arquivos LFR chamado Light Field Processing Tool. As operações de interesse
para essa proposta são:

• Processar arquivos brutos (raw) de imagens light fields (.LFR);

• Produzir imagens de profundidade de campo (Extended Depth of Field - EDOF)
com tudo em foco (all in focus) em cinco formatos possíveis (jpeg, png, tiff, bmp,
exr), de resolução de 2022 x 1404 x 24 bbp, com variações no eixos (u, v) de
[−0.3464,−0.2000] até [0.3464, 0.2000];

• Gerar o mapa de profundidade em tons de cinza dos objetos de cena com reso-
lução de 541x326x8 bbp e formatos png, bmp ou dat;

• Gerar imagens focadas em diferentes planos de distância;

• Gerar EDOF e imagens refocadas em diferentes valores de perspectiva (mu-
dança do ponto de vista).

Cada imagem raw (.LFR) processado no formato .ESLF (external standardized
light field) possui 7574×5264 pixels. Esse módulo também permite gerar sequências
com mudanças de perspectiva nas coordenada U (eixo horizontal) e V (eixo vertical).
O intervalo recomendado é de -0,5 a 0,5, mas são aceitos valores na faixa de -1,0
a 1,0. Essa ferramenta também gera uma mapa de profundidade relativo, usando
uma técnica de alongamento de histograma no mapa de profundidade gerado. Isso
faz com que não se possa usar o mapa de profundidade gerado diretamente como
ground truth.

2.6.3 Light Field Toolbox for Matlab

Light Field Toolbox for Matlab (LFT) (DANSEREAU, 2020) é um conjunto de ferra-
mentas para trabalhar com imageamento de light fields em MATLAB. Essa toolbox é
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usada na geração dos datasets disponíveis no JPEG Pleno framework5 de acordo
com o as condições de teste comum estabelecidas em (ISO; IEC; JTC, 2019). A LFT
representa as LF como uma pilha de imagens RGB de baixa resolução. As imagens
possuem resolução de 434x625, com 3 canais de cor RGB mais um canal de pondera-
ção e 15x15 SAI (ŘEŘÁBEK; EBRAHIMI, 2016).

As características estabelecidas nesses datasets 6 são (ISO; IEC; JTC, 2019):

• Aquisição feita em câmera Lytro Illum;

• Formato - imagens PPM (componentes de cores RGB, não entrelaçados);

• Conteúdo - natural, ao ar livre;

• 15 × 15 SAI, mas apenas as visualizações centrais 13 × 13 são usadas para
evitar o uso das visualizações escuras associadas ao vignetting;

• Resolução espacial - 625 × 434;

• Profundidade de bits - 10 bits;

• Mapa de profundidade para imagem de sub-abertura central.

Existe um problema em usar a LF Toolbox para estimar profundidade. As câme-
ras Lytro sofrem distorções duplas, na lente principal e nas microlentes. A Light
Field Toolbox lida apenas com a distorção da lente principal, desta forma, para se
fazer uma estimativa precisa da profundidade deve-se usar uma toolbox geométrica,
como a proposta em (BOK; JEON; KWEON, 2017) para uma estimativa precisa da
profundidade.

2.6.4 Biblioteca Plenpy.

Este é uma biblioteca em Python para calibrar, processar e analisar imagens LF
(SCHAMBACH; PUENTE LEÓN, 2020). Por ser escrito em Python permite a cone-
xão direta com o OpenCV e outras toolboxes de processamento de imagens e de
aprendizado de máquina, o que torna um ferramenta versátil na proposta apresentada
(SCHAMBACH, 2021).

2.7 Considerações finais

Nesse capítulo foram introduzidos conceitos básicos de óptica e captura de ima-
gens em câmeras digitais. Esses princípios são importantes para o entendimento da

5https://jpeg.org/jpegpleno/
6https://jpeg.org/jpegpleno/plenodb.html
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formação e captura de retratos em dispositivos com sensores digitais e como modifi-
cações em parâmetros, tais como profundidade de campo e abertura de diafragma,
influenciam o resultado final. Na sequência foram apresentados conceitos de ima-
gens estéreo, com o objetivo de caracterizar a construção de mapas de profundidade
e detalhar a triangulação usada para o cálculo de distâncias em uma cena. Convém
destacar que a triangulação com apenas 2 vistas (estéreo) é a versão mais simples
quando se trata de cálculo de distâncias envolvendo n-vistas. Os conceitos de imagem
plenóptica foram detalhados a partir do conhecimento previamente apresentado. Por
fim, foi introduzida a câmera plenóptica usada no projeto e junto suas características
básicas. Os principais softwares usados também foram comentados nesse capítulo.

As informações desse capítulo são a base para o entendimento de como se dá a
formação e a captura de uma imagem plenóptica. Esse conhecimento é necessário
para justificar as escolhas tomadas no desenvolvimento do projeto. No próximo capí-
tulo serão abordado conceitos básicos de redes neurais e aprendizado de máquina.



3 REDES NEURAIS ARTIFICIAIS E PROBLEMAS DE RE-
GRESSÃO

Em um problema de regressão o objetivo é predizer o valor de uma ou mais va-
riáveis contínuas t dado um vetor de entrada D-dimensional com x valores (BISHOP,
2006). Esse é um problema característico de aprendizado supervisionado, onde se
tem um conjunto de dados de treinamento compreendendo N observações xn, sendo
n = 1, ..., N , com seus valores alvos correspondentes tn, o objetivo é predizer o valor
de t para um valor x de entrada inédito (BISHOP, 2006). Existem várias técnicas para
análise de regressão: modelos lineares paramétricos, modelos não lineares paramé-
tricos, métodos baseados em kernels, etc. Uma das principais abordagens usadas em
problemas de regressão são redes neurais artificiais.

O termo Rede Neural Artificial ou apenas Rede Neural (RN) é utilizado para
classificar um subconjunto de algoritmos de aprendizado de máquina dentro da IA
que possuem uma abordagem livremente inspirada nas redes neurais biológicas. Por
livremente se entende que elas não possuem por objetivo simular ipsis litteris o com-
portamento biológico de uma rede neural, e desta forma, existe liberdade na seleção e
na forma de uso das características a serem implementadas. Esses algoritmos apre-
sentam grande variação em suas arquiteturas e aplicações, mas possuem elementos
em comum que recebem a mesma nomenclatura de seus análogos biológicos.

Em termos mais gerais uma rede neural é composta por um conjunto de unidades
ou nodos que realizam processamento dos sinais entradas de forma paralela chama-
dos neurônios artificiais ou simplesmente neurônios. Esses neurônios possuem
entradas ponderadas de sinais, e se conectam entre si formando a rede neural propri-
amente dita. A forma como esses neurônios são estruturados, o fluxo de informação,
como se dá o aprendizado, as funções de transferência usadas, a quantidade de ca-
madas, as conexões entre neurônios e outras características compõe o que se chama
arquitetura da rede neural. A seguir serão detalhados alguns conceitos básicos.
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3.1 Rede Neural Artificial

Uma rede neural artificial é um modelo não-linear paramétrico, sendo que a ar-
quitetura mais bem sucedida no contexto de reconhecimento de padrões é o feed-
forward ou perceptron multicamadas (BISHOP, 2006). Atualmente as redes neurais
de aprendizado profundo (DNN-Deep neural network ) são o estado da arte em termos
de desempenho quando são usados grandes datasets no treinamento. As redes neu-
rais tradicionais podem ser classificadas de forma geral em três arquiteturas (HAYKIN,
2009):

• Redes feedforward de camada única;

• Redes feedforward com múltiplas camadas;

• Redes recorrentes.

As redes feedforward de camada única possuem uma camada de entrada ligada
diretamente aos neurônios da camada de saída conforme a Figura 36a. Nessa rede
a propagação é apenas adiante e apesar de possuir "duas"camadas, a camada de
entrada não é contabilizada como camada da rede neural por não realizar nenhuma
computação. Esse tipo de rede é um grafo acíclico direcionado com nós de entrada
e saída pré-estabelecidos (RUSSELL; NORVIG, 2020). O fluxo da informação se dá
dos nós de entrada para saída, onde cada nó computa suas entradas de acordo com
uma função (função de ativação) e passa os resultados para sua saída.

As redes feedforward com múltiplas camadas (do inglês multilayer feedforward
networks) se diferenciam das de uma única camada, justamente por possuírem uma
ou mais camadas ocultas (Figura 36b). Essas camadas recebem este nome por
encontrarem-se entre a camada de entrada e a camada de saída conforme a Figura
36b. Por último, as redes recorrentes (do inglês recurrent networks1) se diferenciam
das redes feedforward por apresentarem ao menos um loop de realimentação, con-
forme a Figura 36c.

3.2 Funções de Ativação

A escolha da função de ativação Φ(.) é um ponto crítico no projeto de uma rede
neural (AGGARWAL, 2018), sendo seu principal objetivo introduzir não-linearidade na
saída de um neurônio e limitar a amplitude do sinal de saída de um neurônio (HAYKIN,
2009). Entre as características de uma função de ativação Φ(.) pode se observar a
existência ou ausência das seguintes características (KOVÁCS, 2006):

• Monotonicidade - comportamento monotônico sobre uma faixa dinâmica;
1Não confundir com recursive neural network que são uma rede de aprendizado profundo.
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Figura 36 – Arquiteturas tradicionais de redes neurais. Fonte: Haykin (2009)

• Saturação - saída saturada fora da faixa dinâmica x.

Além dessas características, a função de ativação deve ser derivável para que a
rede neural aprenda. Essa propriedade é necessária para o cálculo da derivada do
erro em relação aos pesos em cada camada, da saída em direção a entrada, de forma
a minimizar a função de perda definida na camada de saída. Pelo mesmo motivo, é
importante que a função de ativação não desloque o gradiente para zero 2, pois isso
pode eliminar totalmente o valor de gradiente durante a retropropagação a medida
que se avança na direção das primeiras camadas. Outra característica importante é
Φ(.) ser centrada no valor zero de forma a evitar que os gradientes mudem para uma
direção específica.

As funções de ativação utilizadas no desenvolvimento inicial das RN e considera-
das clássicas são: de sinal, sigmoide e tangente hiperbólica (Figura 37 b-d). Já as
funções como a ReLU (Rectified Linear Unit) e Hard Tanh (Hard hyperbolic tangent)
37 e-f) dominam aplicações que usam aprendizado profundo. Na Figura 38 estão
representadas as derivadas das funções de ativação citadas.

A função de ativação depende do tipo de aplicação e saída da rede ou neurônio.
Por exemplo, em um perceptron na camada de saída onde se faz uma rotulagem biná-
ria, o uso de uma função do tipo sigmóide (Figura 37c) é a mais adequada. Se a saída
da rede for um valor real, a função identidade ou função linear (Figura 37a) pode ser
aplicada. Observa-se que a função identidade não fornece nenhuma não linearidade,
e portanto serve como um mapeamento entre os valores de entrada e a saída Φ(.).
Pela Equação 19 se observa que a mesma é monotônica, mas não saturada (KO-
VÁCS, 2006). A função linear também pode ser aplicada em saídas discretas quando
se necessita criar uma função de perda suavizada na saída (AGGARWAL, 2018).

2Problema de desaparecimento de gradiente, do inglês:vanishing gradient problem
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Figura 37 – Funções de ativação. Fonte: Aggarwal (2018).

Figura 38 – Derivadas das funções de ativação. Fonte: Aggarwal (2018).

Φ(x) = x (19)

A função sinal usada no modelo de McCulloch & Pitts (KOVÁCS, 2006), também
chamada de degrau (Equação 20), não é monotônica, apenas a saturação é mantida.
O principal problema dessa função é o fato de não ser derivável no ponto onde x =

0 e sua derivada ser igual a zero para valores onde x ̸= 0, o que impossibilita o
aprendizado em redes multicamadas (Figura 38b).

Φ(x) =

0, se x < 0

1, se x ≥ 0
(20)

A função sigmoide da Equação 21 é uma das formas mais comuns de função
de ativação usadas em redes neurais tradicionais (HAYKIN, 2009). Ela é contínua e
portanto derivável. Quando essa função é usada em redes neurais com muitas ca-
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madas (redes de aprendizado profundo) apresenta o problema de desaparecimento
de gradiente (vanishing gradient problem), ou seja, em redes com muitas camadas o
valor de gradiente é zerado na retropropagação, impedindo o aprendizado. A função
tangente hiperbólica da Equação 22, possui a vantagem, em relação a função sig-
moide, de apresentar valores negativos na saída. Infelizmente ela também apresenta
o problema de desaparecimento de gradiente, o que dificulta seu uso em redes de
aprendizado profundo.

Φ(x) =
1

1 + e−x
(21)

Φ(x) =
ex − e−x

ex + e−x
(22)

A função ReLU (do inglês rectified linear unit), é amplamente usada em camadas
escondidas de DNN, pois é de fácil computação (baixa complexidade), não satura e
não causa o problema de desaparecimento de gradiente. Pela a Equação 23 observa-
se que a função devolve zero para valores negativos e a identidade para valores posi-
tivos (Φ(x) = max(0, x)). Apesar de não ser derivável para x = 0, pode-se escolher de
forma arbitrária um valor de 0 ou 1 nesse ponto. Ao substituir valores positivos pela
identidade e tornar qualquer valor negativo em zero, a ReLU evita o efeito em cascata
de um valor baixo puxar outras entradas também para baixo e acabar por zerar os
valores a medida que avança na retropropagação, causando o problema de despare-
cimento do gradiente. Um efeito colateral do uso dessa função é o problema da ReLU
morimbunda (do inglês Dying ReLU problem) que ocorre quando temos uma taxa de
aprendizado alta com muitos valores ao mesmo tempo negativos, isso faz com que o
ReLU torne todas suas entradas inativas reduzindo a capacidade de aprendizado da
rede.

Φ(x) =

0, se x < 0

x, se x ≥ 0
(23)

A função hard hyperbolic tangent (Equação 24) tem sido utilizada nas modernas
RN pelos mesmos motivos da ReLU.

Φ(x) =


−1, se x < −1

x, se − 1 ≤ x ≤ 1

1, se x > 1

(24)

Outra função de ativação atualmente usada é a Softmax, também chamada de sof-
targmax ou função normalizada exponencial (do inglês normalized exponential func-
tion). Esta função é geralmente usada na saída de um classificador para representar
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a distribuição de probabilidade entre as classes (GOODFELLOW; BENGIO; COUR-
VILLE, 2016). Por exemplo, na Equação 25 tem-se a função Softmax Φ(x)i sendo
aplicada sobre x, que é o vetor de saída da última camada, onde K é o número de
classes e, portanto, x obrigatoriamente deve ter a mesma dimensão de K. Nessa
mesma equação j representa a classe cuja probabilidade categórica se deseja calcu-
lar.

Φ(x)i =
exi∑K
j=1 e

xi
(25)

3.3 Redes feedforward com camada única: O Perceptron

O Perceptron é uma rede neural artificial de camada única com alimentação adi-
ante (feedforward) proposta por Frank Rosenblatt em 1958. O neurônio do Perceptron
é composto por um combinador linear v associado a limitador abrupto Φ(v) (função de
ativação sinal) que introduz não linearidade em sua saída e funciona como um classifi-
cador linear (binário) (HAYKIN, 1998). Um nodo de entrada adicional chamado viés ou
bias b pode ser adicionado (Figura 39). O bias é um termo constante que não depende
de qualquer valor de entrada e permite ajustar a saída aumentando ou diminuindo a
entrada da função de ativação (HAYKIN, 2009) e dessa forma deslocar a saída y da
função de ativação para esquerda ou direita em relação ao ponto de origem dos eixos
(0, 0) adiantando ou atrasando o disparo de Φ(.).

Figura 39 – Arquitetura básica de um Perceptron. Fonte: De autoria própria.

Pela Figura 39 observa-se que o combinador linear v recebe o vetor de entradas
X junto com seu vetor de pesos W , onde X = [x1, ..., xn] e W = [w1, ..., wn], podendo
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ou não possuir o bias b, e aplica uma soma ponderada sobre a entrada (Equações
26,27,28).

b = 1.w0 (26)

v =
n∑

j=1

wjxj = X.W
T

(27)

v =
n∑

j=1

wjxj + b = X.W
T
+ b (28)

A saída y do perceptron (Equação 29) gera uma etiqueta de classe binária através
da aplicação da função de ativação sinal Φ(.) (Equação 20) sobre o valor agregado v.

y = Φ(v) (29)

A maioria dos modelos básicos de aprendizado de máquina como regressão de
mínimos quadrados com alvos numéricos, máquina de vetores de suporte, ou classi-
ficador de regressão logística, podem ser facilmente representados nessa arquitetura
de rede neural simples através da escolha de diferentes funções de ativação (AG-
GARWAL, 2018).

A principal limitação dessa rede é o fato do Perceptron ser incapaz de trabalhar
com classes de problemas não separáveis linearmente, pois como o mesmo é uma
combinação de discriminadores lineares, e toda combinação de discriminadores line-
ares pode ser substituída por uma única função discriminadora linear, é impossível
resolver problemas não separáveis linearmente como o representado na Figura 40.

Figura 40 – Exemplo de dados com duas classes distintas. Em (a) os dados estão distribuídos
de forma a serem linearmente separáveis, em (b) as classes são linearmente inseparáveis.
Fonte: De autoria própria.
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3.4 Redes feedforward com múltiplas camadas: Multilayer Per-
ceptron

A incapacidade do Perceptron de camada única de separar/classificar classes não-
linearmente separáveis (Figura 40) fez com que a área de redes neurais ficasse es-
tagnada com poucos investimentos na década de 70, apesar da pesquisa continuar
em alguns nichos acadêmicos nessa época. A resposta para o problema do percep-
tron, entre outras contribuições de vários cientistas, foi o desenvolvimento do algoritmo
backpropagation relatado por Rumelhart, Hilton e Willians em 1986 3 (HAYKIN, 1998)
e permitiu o treinamento de redes perceptrons de multicamadas e a resolução de pro-
blemas não separáveis linearmente.

Uma rede perceptrons de multicamadas (PMC), ou em inglês multilayer percep-
trons (MLP), é a base do que chamamos de modelo de aprendizado profundo (do
inglês deep learning) (GOODFELLOW; BENGIO; COURVILLE, 2016).

Figura 41 – Perceptron Multicamada com duas camadas escondidas. Fonte: Haykin (2009).

O MLP, conforme se observa na Figura 41, é uma rede de tipo feedforward com-
posta por mais de um perceptron e com n camadas escondidas, cujo objetivo é aproxi-
mar alguma função f ∗. Em um classificador, isso significa termos uma saída y = f(x)

que mapeia uma entrada x em uma classe y. Esse tipo de rede define um mapea-
mento na forma y = f(x; θ) onde θ representa os valores dos parâmetros que preci-
sam ser aprendidos de forma que a saída y apresente a melhor aproximação a função
f(x) (GOODFELLOW; BENGIO; COURVILLE, 2016). Na MLP o treinamento é feito
de forma supervisionada através do algoritmo de retropropagação de erro (em inglês
error backpropagation) (HAYKIN, 1998). Para que a rede possa aprender de forma
supervisionada, são apresentados para a rede os pares de vetores de entrada X e o
vetor de resposta desejada Y (alvo) e então é aplicado o algoritmo de aprendizagem
por correção de erro. A ideia básica do treinamento supervisionado é modificar os pe-
sos das conexões da rede de forma que a saída gerada para o vetor de entrada pela

3O algoritmo de backprogation foi proposto de forma independente em mais dois outros lugares.
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rede (valor real) seja o mais próximo possível do vetor de saída apresentado (valor
desejado). Essa estrutura permite que a MLP aprenda e possa generalizar de forma
a apresentar saídas corretas para entradas não treinadas.

O backpropagation possui basicamente dois passos através das camadas da rede:
um passo para frente, a propagação, e um passo para trás, a retropropagação. Na
propagação, é apresentado na camada de entrada o padrão (vetor de entrada X) que
desejamos que a rede aprenda, sendo seu efeito de ativação propagado por toda a
rede, camada por camada, até gerar a ativação dos neurônios na camada de saída.
Durante o passo de propagação, os pesos sinápticos da rede são todos fixos (HAYKIN,
1998). Na retropropagação os pesos sinápticos são todos ajustados de acordo com
uma regra de correção de erro. Na camada de saída é calculado o sinal de erro que
é a resposta real gerada pela rede subtraída da resposta desejada. Esse sinal de
erro é propagado em direção as camadas de entrada. Ao realizar a retropropagação
os pesos sinápticos são ajustados de modo que a resposta real da rede se mova na
direção da resposta desejada, reduzindo dessa forma o erro (descida de gradiente).

3.5 Redes neurais com aprendizado profundo

Conforme já citado, algumas funções de ativação possuem o problema de desapa-
recimento de gradiente quando aplicadas a redes que usam métodos de aprendizado
baseado em gradientes. Algumas das principais soluções propostas para mitigar esse
problema foram (SCHMIDHUBER, 2015):

• Pré-treinamento não supervisionado de RNN (recurrent neural network ) hierár-
quicas;

• Desenvolvimento de redes LSTM (long short-term memory ), arquitetura não afe-
tada pelo problema;

• Criação e uso de hardware mais potente que o utilizado durante os anos 1990.
Mesmo em redes neurais tradicionais, isso permitiu aumentar a propagação de
erros em mais algumas camadas dentro de um tempo razoável de processa-
mento. Essa abordagem mitigou, mas não resolveu o problema;

• Uso da otimização Hessian-free;

• Uso de outras funções de ativação como ReLU.

Essas soluções permitiram vários avanços na área nos últimos 20 anos. Atual-
mente temos uma grande variedade de arquiteturas e aplicações que exploram esses
desenvolvimentos. Nas próximas seções será apresentada a DNN relacionada com
essa proposta de tese: as convolutional neural networks (CNN).
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3.6 Filtragem espacial e filtros convolucionais

A convolução é uma das técnicas de filtragem utilizada quando se trabalha com
imagens no domínio espacial. O objetivo de aplicar um filtro em uma imagem é des-
tacar ou atenuar certas características de interesse. A ideia básica da convolução é
transformar uma imagem original em uma imagem destino, percorrendo todos pixels
da imagem original e aplicando sobre cada pixel alvo uma matriz de convolução que
irá gerar um novo valor de acordo com o valor original do pixel e dos pixels em sua
vizinhança. A matriz de convolução é chamada de kernel ou máscara. As dimensões
de um kernel e seus valores determinam o efeito de transformação do processo de
convolução.

Figura 42 – Convolução de um kernel de tamanho 3x3. Essa máscara é o filtro de Sobel Gx.
Fonte: De autoria própria.

Na Figura 42 pode se observar o efeito de se usar um filtro de Sobel Gx sobre os
dois primeiros pixels alcançáveis pelo kernel de tamanho 3x3. Os pixels não alcançá-
veis são chamados de bordas e devem receber tratamento especial dependendo da
aplicação.

As técnicas de filtragem são usadas na extração de características, buscando re-
duzir a complexidade das imagens de entrada de uma rede neural tradicional. Em
redes neurais convolucionais é exatamente isso que a camada convolucional faz. Ela
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aprende kernels que destacam características que melhor descrevem a imagem, com
a vantagem dos filtros aprendidos não terem necessariamente estrutura e valores de
kernels usuais de processamento de imagens.

3.7 Rede Neural Convolucional

As Redes Neurais Convolucionais (ConvNets ou CNNs) são redes neurais artifici-
ais profundas que podem ser usadas para classificar imagens, agrupá-las por simila-
ridade e realizar reconhecimento de objetos como indivíduos e sinais de rua em uma
imagem.

Uma CNN (do inglês convolutional neural networks) pode ser descrita, de forma
sintetizada, como separada em dois módulos (Figura 43): um módulo para extração
de características e outro para classificação.

O aprendizado dessa rede é do tipo supervisionado, onde são apresentadas as
entradas com as respectivas saídas desejadas. A CNN recebe o padrão de entrada
do objeto a ser reconhecido. Esse padrão é submetido a uma camada de convolução
que aprende quais filtros/kernels (matrizes de convolução) devem ser usadas para
representar os dados de entrada, em outras palavras, aprende que padrões espaciais
são característicos do objeto a ser classificado. Após a etapa de convolução segue-
se uma etapa de subamostragem, também chamada de pooling, em que se reduz a
dimensionalidade dos filtros da camada anterior. Esse processo continua até o fim
do módulo de extração/aprendizado de características. Por fim, os padrões espaciais
extraídos são apresentados a uma rede neural totalmente conectada, por exemplo,
uma rede MLP com algoritmo de aprendizado backpropagation.

Figura 43 – CNN sendo usada para reconhecimento de dígitos escritos a mão. A entrada é
uma imagem e a saída o digito identificado na faixa de 0 a 9. Fonte: De autoria própria.

A camada convolucional, conforme já citado, é responsável pelo aprendizado
dos filtros independentes que irão representar as características do objeto de entrada.
Para que a camada de convolução funcione corretamente é necessário determinar
como se dá o deslocamento do kernel do filtro a ser aprendido, em outras palavras,
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qual será o tamanho da passada do kernel, ou em inglês stride. Também é neces-
sário determinar qual será o tratamento das bordas da imagem. A técnica de preen-
chimento, chamada em inglês de padding, é a normalmente usada. Essa técnica,
acrescenta bordas a imagem de entrada visando manter coerente a saída da convo-
lução. Essa duas técnicas, stride e padding, determinam o tamanho da camada de
saída.

Cada filtro aplicado gera uma imagem chamada mapa de características. Na Fi-
gura 43 foram aplicados, na primeira camada de convolução C1, quatro kernels 5x5 que
geraram quatro (4) mapas de características 28x28. Observa-se então que a profundi-
dade da camada de convolução indica quantos filtros são aprendidos na respectiva
camada (ex. 28x28x4).

Após a camada de convolução segue-se geralmente uma camada de subamostra-
gem (pooling). O objetivo é diminuir a dimensionalidade buscando reduzir o número
de parâmetros e custo computacional. Esse processo abrevia o tempo de treinamento
e controla o overfitting. As técnicas mais usadas são o max pooling que pega o va-
lor mais alto de uma janela do kernel aplicado. Por exemplo, na Figura 43, na saída
resultante do pooling foram gerados quatro mapas de características com dimensões
reduzidas para 14x14.

Outra técnica importante aplicada é o dropout , ou abandono de neurônios. O ob-
jetivo do dropout é simplificar a rede neural removendo conexões que não contribuem
para o aprendizado. Por fim a normalização em lote ou batchnorm faz a regulariza-
ção através da estandardização e normalização de valores para evitar o overfitting e
fixar os valores da rede dentro de uma faixa específica. As funções de ativação mais
usadas são as ReLU e a softmax.

Existem inúmeras variações da CNN como: R-CNN (Region Based Convolutional
Neural Networks), Fast R-CNN, Faster R-CNN, U-Net, etc.

3.8 Autoencoders e Redes Neurais artificiais U-shaped

Esta seção trata de um grupo de arquiteturas de redes neurais convolucionais nas
quais a principal característica é apresentar na saída de cada grupamento de convo-
luções uma redução nas dimensões em relação a resolução de entrada (enconder ) e
depois reconstruir o sinal original seguindo o processo inverso (decoder ).

3.8.1 Autoencoder

Autoencoders (AE) são redes neurais treinadas para gerar em sua saída uma có-
pia da entrada (GOODFELLOW; BENGIO; COURVILLE, 2016). A ideia básica é usar
redes de convolução para aprender filtros que capturem a representação da entrada a
cada camada, reduzindo as dimensões de entrada, e dessa forma chegar a um con-
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junto de atributos relevantes chamado de espaço de características latentes, que
será usado para reconstruir a imagem original. Apesar do propósito primário de um
autoencoder ser a reconstrução de sua entrada, uma vez que os atributos da imagem
de entrada são aprendidos, pode-se manipular essa informação na reconstrução do
sinal, de forma a recuperar apenas características específicas (MICHELUCCI, 2022).
Essa propriedade seletiva permite o uso de autoencoders em aplicações de segmen-
tação, filtragem e restauração, por exemplo.

Conforme se observa na Figura 44, a estrutura básica de um autoencoder é for-
mada por três componentes básicos: (i) entrada/codificador e; (ii) espaço de repre-
sentação latente h, que codifica as características latentes; e, (iii) saída/decodificador
d (YALÇIN, 2021).

Figura 44 – Componentes básicos de um autoencoder : encoder (codificador), espaço de re-
presentação latente, e decoder (decodificador). Fonte: De autoria própria.

As camadas de entrada mais o espaço latente formam a etapa de codificação e,
cuja saída h (espaço de representação latente) é a função de codificação h = e(x),
aplicada ao dado de entrada x. Já o espaço latente h mais as camadas de saída
formam a etapa de decodificação d, que reconstrói o sinal de entrada x, gerando a
imagem reconstruída de saída r, através de uma função r = d(h). Autoencoders
funcionam como gargalos em que a dimensionalidade dos dados é reduzida a cada
etapa e o número de filtros para extração de características sofre um aumento, até a
geração do espaço de representação latente. Na etapa de decodificação o processo
se inverte culminando na imagem reconstruída (Figura 45).

3.8.2 U-Net

A rede U-Net proposta em (RONNEBERGER; FISCHER; BROX, 2015) para seg-
mentação semântica também usa a estrutura de gargalo para redução de dimensio-
nalidade e extração de características. Essa rede usa o conceito de skip connections,
que transportam a saída de uma etapa de contração para a etapa de expansão, o que
permite recuperar a informação espacial original na reconstrução do sinal de entrada.

A rede U-Net, conforme a Figura 46, possui uma etapa de contração e uma etapa
de expansão. No artigo original (RONNEBERGER; FISCHER; BROX, 2015), na etapa
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Figura 45 – Estrutura simplificada de um autoencoder e suas relações entre a dimensionali-
dade de entrada/saída e o número de camadas convolucionais. Fonte: De autoria própria.

de contração são aplicadas duas convoluções 3x3 sem preenchimento (unpadded)
seguidas da função de ativação ReLU e uma operação de max pooling 2x2 com stride
2, que reduz para a metade a dimensão da imagem no downsampling. Para cada
passo de downsampling o número de filtros de características é dobrado. Na etapa
de expansão é realizado a convolução transposta transposed convolution do mapa de
características de saída de cada nível. No nível imediatamente superior são conca-
tenados a saída da convolução transposta com o mapa de características (skip con-
nections) oriundo da etapa de contração pertencente ao mesmo nível. Como o mapa
de características da etapa de contração não possui dimensões maiores que o mapa
de características da etapa de expansão, em virtude de não usar o preenchimento
(padding), é necessário recortar (cropping) o mesmo para ajustá-lo antes de realizar
a concatenação. A esse processo se segue duas convoluções 3x3 seguidas por uma
camada ReLU. Ao final é usada uma camada com convolução 1x1 para mapear o vetor
de características com 64 componentes para o número desejado de classes (no artigo
original a rede era usada para segmentação semântica).

Figura 46 – Estrutura básica de um U-Net. Fonte: Adaptado de Ronneberger; Fischer; Brox
(2015)
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3.8.3 SegNet

A SegNet (BADRINARAYANAN; KENDALL; CIPOLLA, 2017) é uma deep fully con-
volutional neural network architecture para segmentação semântica por pixel. A Seg-
Net se diferencia da U-Net na forma como faz o upsamples. Nesse processo, no lugar
de usar convolução transposta, o decodificador utiliza índices de agrupamento (poo-
ling indices) computados durante o processo de maxpooling na etapa de codificação
e os utiliza para realizar um upsampling não linear, tornando desnecessário que o
decoder aprenda esses filtros.

Pela Figura 47 observa-se que o decodificador faz upsample de sua entrada
usando os índices de poolling transferidos da etapa de codificação para produzir os
chamados mapas de recursos esparsos. Em seguida, ele realiza a convolução com
um banco de filtros treinável para densificar o mapa de recursos. Os mapas de recur-
sos de saída do decodificador final passam por uma função de ativação softmax.

Figura 47 – Estrutura básica da SegNet. Fonte: Badrinarayanan; Kendall; Cipolla (2017)

3.8.4 LinkNet

A LinkNet (CHAURASIA; CULURCIELLO, 2017) é também uma arquitetura u-
shaped, em formato de U, como a U-Net. Sua principal diferença está nas skip connec-
tions. A Figura 48 mostra um comparativo entre ambas. Enquanto a U-Net concatena
a saída de cada bloco do encoder a entrada equivalente do bloco de decodificação, na
LinkNet a saída de cada bloco de codificação, ao invés de ser concatenada, é somada
a entrada do bloco de decodificação.

Figura 48 – (a) Arquitetura da U-Net , (b)Arquitetura da LinkNet. Fonte: Iakubovskii (2019).
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A Figura 49 apresenta a arquitetura completa da LinkNet (CHAURASIA; CULUR-
CIELLO, 2017). Essa estrutura permite o aprendizado sem aumento significativo no
número de parâmetros.

Figura 49 – Estrutura básica da LinkNet. (a) Arquitetura da LinkNet, (b) Módulos convolucionais
no encoder-block, (c) Módulos convolucionais no decoder-block. Fonte: Chaurasia; Culurciello
(2017).

3.9 Considerações finais

Nesse Capítulo foram apresentadas as definições básicas de redes neurais arti-
ficiais. Nas primeiras seções foram introduzidos o funcionamento de uma rede neu-
ral tradicional, as principais arquiteturas e problemas relacionados. Na sequência o
processo de filtragem espacial usando kernels foi discutido brevemente. A partir do
conhecimento previamente apresentado foi construída a noção de funcionamento de
uma rede neural convolucional e de redes u-shaped. Esses conceitos são necessários
para o entendimento do trabalho que será detalhado nos próximos capítulos.



4 TRABALHOS RELACIONADOS E APLICAÇÕES COMER-
CIAIS

De forma a justificar a existência desse trabalho, é importante precisar a teoria e
tecnologia light field como uma área emergente. Para tal propósito, torna-se impor-
tante demonstrar o interesse tanto da indústria quanto da academia no tema. Neste
capítulo, primeiramente são relacionados artigos no domínio de concentração da tese,
partindo dos trabalhos mais abrangentes até chegar no assunto específico da tese.
Por fim, apresenta-se uma sinopse do mercado comercial no setor de dispositivos
light field.

4.1 Trabalhos relacionados

O problema de correspondência estéreo continua em aberto na visão computacio-
nal apesar de soluções eficientes terem sido propostas. Alguns dos maiores desafios
enfrentados são: (i) oclusão total do objeto em uma das vistas, essa situação im-
possibilita encontrar a disparidade nessa região oclusa, uma vez que essa informação
está ausente; (ii) tratamento de regiões homogêneas ou com textura repetitiva,
nesse contexto existe problemas em encontrar os pontos homólogos nas vistas, uma
vez que as características dos pontos em questão, ou são iguais, ou são cíclicas, cri-
ando impasses no cálculo de disparidades usado para a construção dos mapas de
profundidade; e, (iii) distorções ópticas e ruídos intrínsecos ao equipamento de
captura, que também podem gerar impasses e dificuldades na localização de ponto
homólogos entre as vistas, por exemplo, as câmeras Lytro sofrem distorções tanto na
lente principal quanto nas microlentes, o que pode provocar problemas na etapa de
retificação das vistas.

Para o cálculo de distâncias, em sistemas estéreos ou com n-vistas, são usadas
duas ou mais imagens com variações na perspectiva, de forma que se possa deduzir
as informações de profundidade a partir das disparidades do mesmo ponto espacial
nas n-vistas. Uma aplicação com crescente demanda é o uso de visão estéreo em
carros autônomos (KEMSARAM; DAS; DUBBELMAN, 2020) e em sistemas robóticos.
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Câmeras do tipo LF também possuem aplicações em áreas com demanda de infor-
mações espaciais como: robótica (Z.ZHOU; CHEN; O.C.JENKINS, 2019)(Z.ZHOU;
SUI; C.JENKINS, 2018), imagens médicas (DE FARIA et al., 2019), carros autôno-
mos (BAJPAYEE; TECHET; SINGH, 2018), etc. Por exemplo, no artigo (Z.ZHOU; SUI;
C.JENKINS, 2018) é proposto um método que permite um braço robótico pegar um
objeto localizado atrás de um obstáculo translúcido usando imagens plenópticas de
uma câmera Lytro. Em (DE FARIA et al., 2019) é proposto um dataset contendo 250
imagens LF de lesões cutâneas classificadas em oito categorias clínicas. Esse tipo
de dataset permite desenvolvimento de novas técnicas e algoritmos em estudos der-
matológicos. Outro exemplo é o uso de sistemas de imageamento LF em carros autô-
nomos, como em (BAJPAYEE; TECHET; SINGH, 2018), onde é proposto um método
capaz de suportar qualquer matriz de múltiplas câmeras formando uma SLF. Esse tipo
de sistema de visão pode substituir ou ser usado em conjunto com sensores LIDAR,
radar, sonar e etc.

As principais abordagens atuais com deep learning para extração de mapas de
profundidade utilizam rede neural convolucional (CNN) em diferentes combinações e
arquiteturas. As propostas de extração de mapas de profundidade usando aprendi-
zado de máquina podem ser divididas por tipo entrada: uma entrada simples, com
apenas um fluxo; ou n-entradas, com vários fluxos tratados inicialmente de forma
independente. De uma perspectiva abrangente, ambas as abordagens têm uma uni-
dade dedicada para extração de recursos e uma unidade para construção de mapas
de profundidade. A principal diferença é a forma como a entrada é processada.

A estimativa de profundidade com base em imagens LF sucede a tradicional cor-
respondência estéreo binocular e profundidade de imagens monoculares (HAN et al.,
2021). A criação de mapas de profundidade a partir de imagens LF avançou de forma
significativa, mas ainda existe problemas em balancear o tempo de processamento
com a precisão da estimativa da profundidade. Como a base do processo é a
geometria das LF, essa área se mostra um campo de exploração promissor para a
aplicação de algoritmos de aprendizado profundo (HAN et al., 2021).

4.1.1 Cálculo de profundidade e distâncias

Os métodos para estimar a profundidade e as distâncias em uma imagem podem
ser divididos em três classes de acordo com sua abordagem (WU et al., 2017): (i)
baseados em correspondência de valores das subaberturas da imagem LF de
entrada; (ii) baseados em geometria epipolar; (iii) baseados em aprendizado de
máquina. O tipo de entrada também influencia na complexidade dos métodos usados.
Como esse trabalho utiliza apenas imagens, os tipos de entradas podem ser divididos
em duas classes básicas: par de imagens (imagem estéreo); e, imagens com n-
vistas. Na última categoria se encaixam os formatos light field já citados (esparsa,
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densa, focada, desfocada, etc). A seguir serão detalhados alguns trabalhos relacio-
nados por categoria, com especial ênfase nos métodos baseados em aprendizado de
máquina.

4.1.1.1 Baseados em correspondência de valores entre subaberturas

Em uma LF densa, cada par de subabertura possui uma linha base muito es-
treita1 (WU et al., 2017), fazendo com que a faixa de disparidade entre as imagens
de subaberturas também seja muito pequena. Outro problema é que o deslocamento
de um ponto espacial entre as projeções nas SAI’s pode ser causado por uma inter-
polação com borramento, e não necessariamente por uma real disparidade. Isso leva
a baixo desempenho em câmeras DLF de abordagens baseadas em correspondên-
cia, sendo improvável o uso de pares de subaberturas para buscar correspondências
estéreo em virtude de a linha base ser estreita (WU et al., 2017). A alternativa é não
usar correspondência estéreo, mas de aplicar restrições que favoreçam o uso de toda
a informação gerada pelas LF e use todas as subaberturas para estimar um mapa de
profundidade inicial (WU et al., 2017).

Em (WANG; EFROS; RAMAMOORTHI, 2015) essa técnica é usada para criar um
mapa de profundidade inicial. Os autores propõem um modelo de oclusão para light fi-
eld com base na formação da imagem física. Como existe variação do ponto de vista,
alguns blocos da imagem se mantêm consistentes, enquanto regiões com oclusões
não se mantêm. Uma vez identificadas essas regiões, pode-se tratar cada caso sepa-
radamente. Desta forma, a técnica serve para informar locais de oclusão modeladas
explicitamente usando orientação da borda para dividir com uma linha reta o bloco
angular em duas regiões iguais. Após identificar as regiões inconsistentes o mapa de
profundidade é refinado através de outras técnicas (Figura 50). O método melhorou
os resultados de profundidade para situações de oclusão única em linha, mas uma
linha reta não é suficiente para lidar com situações de oclusões múltiplas (AI; XIANG;
YU, 2019).

Figura 50 – (a) imagem colorida. (b) Mapa de profundidade inicial. (c) Mapa de detecção para
pontos ocluídos em outras visualizações (regiões claras). (d) mapa de profundidade refinado.
Fonte: Ai; Xiang; Yu (2019).

Em (YU et al., 2013) é explorada a própria estrutura geométrica das linhas 3D
no espaço dos raios luminosos para melhorar a triangulação com light field e fazer

1Na câmera Lytro é menor que 1 pixel
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a correspondência estéreo, conforme a Figura 51. O problema da triangulação visa
preencher o espaço de raios de luz de forma contínua e não sobreposta ancoradas em
alguns raios de luz usados como referências. No artigo é demostrado que o espaço
de light field é altamente bilinear, então, visto que a triangulação feita diretamente no
espaço bilinear leva a grandes erros, o artigo propõe mapear os subespaços bilineares
para linhas delimitadas e aplicar a triangulação restrita de Delaunay para encontrar os
pixels com correspondências nas subaberturas.

Figura 51 – Estruturas de raios bilineares. (a) Um linha de segmento 3D l mapeia para um
subespaço bilinear em uma LF; (b) l mapeia para uma curva em um corte diagonal; (c) O
volume é criado através da triangulação usando força bruta. Fonte: Yu et al. (2013).

Em (ZHOU; SUI; JENKINS, 2018) é utilizado o método de monte carlo para achar
a localização de um objeto que se encontra atrás de um obstáculo translúcido. Con-
forme a Figura 52, a câmera Lytro instalada no efetor final de um braço robótico cap-
tura sequências de imagens LF. Para cada light field, as imagens das subaberturas
são extraídas (vista central em vermelho na Figura 52 ). O volume de probabilidade
de profundidade (DLV 2) é calculado como uma matriz 3D com probabilidades de pro-
fundidade ao longo de certos pixels (i, j) localizados em uma profundidade d. O DLV
é um comparador de semelhança de cor e gradiente entre a vista central e outras ima-
gens de subaberturas. Assumindo uma geometria conhecida e região de interesse, a
posição do objeto com 6-DOF (seis graus de liberdade) é estimada através da locali-
zação por filtro de partículas ou MCL (do inglês Monte Carlo Location) sobre o volume
de probabilidade DLV.

4.1.1.2 Baseados em geometria epipolar

A geometria epipolar é usada em imagens estéreo na reconstrução de cenas a
partir de duas perspectivas diferentes (WU et al., 2017). Com o advento das câmeras
ligh field densas a EPI (do inglês Epipolar-Plane Image) ou imagem do plano epipolar
pôde ser criada diretamente das imagens LF, visto que as inclinações das linhas são
indicativas das profundidades dos diferentes objetos (WU et al., 2017). Devido a essa
característica das LF, grande parte das técnicas que calculam o mapa de profundi-
dade tendo como estrutura base a EPI acabam usando essas inclinações e propondo
variações nesse tipo de abordagem (WU et al., 2017). Em (KIM et al., 2013) é feita a
reconstrução de cenas de ambientes complexos e detalhados a partir de EPIs de alta

2depth likelihood volume
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Figura 52 – Pipeline da técnica PMCL. Fonte: Zhou; Sui; Jenkins (2018)

resolução angular, através das informações de profundidade 3D para todos os pontos
visíveis da cena. Nesse artigo, é aplicada uma medida de confiança no espaço EPI
para calcular a confiabilidade da profundidade estimada (WU et al., 2017).

4.1.1.3 Baseados em aprendizado de máquina

Nos últimos anos houve um aumento no uso de técnicas de aprendizado de má-
quina na área de LF, justamente pelas vantagens que existem em relação as técnicas
anteriores citadas que demandam um alto consumo de computação devido a quanti-
dade de parâmetros que envolvem uma simples imagem LF. As principais abordagens
usam redes CNN em variadas combinações e arquiteturas. A seguir são destacados
alguns artigos.

Em (ZHOU; CHEN; JENKINS, 2020), os autores apresentam um algoritmo com
dois estágios para estimativa de pose de objetos transparentes usando uma câmera
LF e renderização fotorrealística. Na Figura 53 pode se observar os dois estágios.
O primeiro estágio recebe como entrada imagens LF e fornece como saída a seg-
mentação do material translúcido e o centro estimado do objeto. Os resultados da
segmentação são apresentados para uma rede de detecção que rotula o objeto. No
segundo estágio, para cada centro estimado, é prevista sua probabilidade através da
estimativa de profundidade local calculada a partir do volume de probabilidade de
profundidade. Nesse estágio uma otimização de partículas é iniciada com base nas
estimativas de rede e profundidade, que convergem para as poses finais 6D (ZHOU;
CHEN; JENKINS, 2020).

Muitas propostas atuais envolvem redes siamesas. Uma rede siamesa (do inglês
siamese networks) consiste de duas ou mais sub-redes neurais idênticas com os mes-
mos parâmetros conforme a Figura 54. Nesse tipo de rede são fornecidas duas ou
mais imagens e através do acréscimo de uma etapa de integração, os valores de



78

Figura 53 – Sistema LIT - Light-field Inference of Transparency (ZHOU; CHEN; JENKINS,
2020). Fonte: Zhou; Chen; Jenkins (2020)

saída das redes são comparados visando verificar a similaridade das imagens de en-
trada. Desta forma, a saída da rede não é a probabilidade de predição de cada classe
como em CNNs tradicionais, mais sim a distância entre as imagens. Essa caracterís-
tica permite apenas calcular o grau de similaridade entre as imagens avaliadas como
no caso da rede SigNet para verificação de assinatura (DEY et al., 2017).

Figura 54 – Rede siamesa SigNet usada para comparação entre duas assinaturas de entrada.
Fonte: Dey et al. (2017).

Em (ŽBONTAR; LECUN, 2016) e (LUO; SCHWING; URTASUN, 2016) é proposto
o uso de uma rede siamesa para computar o mapa de disparidade entre duas ima-
gens capturadas de forma estéreo. Para evitar apresentar na saída apenas o grau de
similaridade entre duas imagens, foi modificada a abordagem original. Conforme a
Figura 55, a imagem da esquerda é dividida em K blocos de tamanho nxn. A ideia
básica é descobrir o valor da disparidade para cada pixel dos K blocos da imagem da
esquerda. Dado que as imagens estão retificadas, o deslocamento é feito horizontal-
mente entre a imagem direita e a esquerda. Uma vez estabelecidos os K blocos da
imagem esquerda, repete-se o processo dividindo a imagem da direita também em K

blocos de tamanho nxn ao longo da mesma linha usada para a criação dos blocos da
imagem da esquerda, isso faz com que a disparidade máxima de cada pixel seja igual
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a K (disparidade ≤ K). A imagem direita é apresentada para sua CNN, gerando uma
representação que pode ser associada a cada bloco da imagem. O mesmo ocorre
para cada bloco da imagem esquerda. Por fim, cada representação produzida a partir
da imagem esquerda é passada ao longo do volume gerado da imagem direita (con-
voluído) criando uma matriz nxn para cada K bloco. Desta forma é produzida uma
saída Kxnxn, onde para cada pixel da imagem da esquerda é calculado uma pon-
tuação para as disparidades associadas, que é usada para se encontrar o valor de
disparidade mais provável. Em (ŽBONTAR; LECUN, 2016) é proposta uma rede se-
melhante, onde o treinamento da CNN é feita através de pares de pequenos blocos
com disparidade conhecida. Na Figura 56 se observa o mapa de disparidade gerado
por essa rede.

Figura 55 – Rede siamesa para cálculo de disparidade entre duas imagens apresentada em
(LUO; SCHWING; URTASUN, 2016). Fonte: Luo; Schwing; Urtasun (2016)

Figura 56 – Mapa de disparidade gerada pela rede CNN proposta em (ŽBONTAR; LECUN,
2016). Fonte: Žbontar; Lecun (2016)

(SHI; JIANG; GUILLEMOT, 2019) propõe um framework para estimar a profundi-
dade da cena baseado em aprendizado supervisionado, onde a entrada é um sub-
conjunto flexível de vistas que compõe uma light field. Nessa proposta é construído
o mapa de disparidade para todas subaberturas da LF. O uso de subconjuntos de
aberturas da LF tem como objetivo aumentar a acurácia e limitar a complexidade
computacional. As estimativas de disparidade iniciais são computadas entre pares
de subaberturas alinhadas usando a arquitetura FlowNet 2.0 (ILG et al., 2017). O
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FlowNet 2.0 é basicamente um optical flow com aprendizado de máquina profundo,
que estima a disparidade em LF densos e esparsos. Essas disparidades são usadas
para remodelar um conjunto flexível de subaberturas referenciais gerando um ponto
de vista destino. A fusão das estimativas iniciais de disparidade, na forma do vence-
dor leva tudo, permite ter uma maior acurácia em regiões com oclusão e ao longo dos
contornos.

A Figura 57 mostra um exemplo com uma LF 5x5. A imagem alvo Lt (em azul), é a
vista para a qual se busca estimar a disparidade. Os retângulos amarelo e vermelho
são respectivamente visualizações estéreo horizontais e verticais (Ls). A imagem Lt

e as imagens Ls são usadas para calcular os mapas de disparidade preliminares di

usando o modelo FlowNet 2.0. Vistas âncora ou referenciais La (retângulos azuis
escuros) podem ser compostas por qualquer subconjunto de subaberturas, à exceção
de Lt que são usadas para estimar o erro de distorção (warping error ) para a fusão
das estimativas iniciais. Uma rede de aprendizado residual multiescalar corrige os
artefatos presentes na fusão e suaviza o mapa de disparidade final em uma última
etapa de refinamento.

Figura 57 – Visão geral do framework proposto sobre a arquitetura FlowNet 2.0. Fonte: Shi;
Jiang; Guillemot (2019)

O artigo (GUO; WEN; HAN, 2020) apresenta uma proposta diferente, com foco no
reconhecimento e segmentação de objetos baseado em seus materiais/texturas. Na
abordagem, conforme se observa na Figura 58, é feito o desacoplamento de infor-
mações angulares e espaciais estabelecendo correspondências no domínio angular,
sendo depois empregada a regularização para se ter invariância rotacional. A rede
recebe como entradas subaberturas espaçadas selecionadas de acordo com os des-
locamentos estimados de cada subimagem através da transformada de Fourier.

Em (HEBER; YU; POCK, 2017) é usada uma rede do tipo U-Net para extrair a
informação geométrica de uma LF esparsa, conforme a Figura 59. A rede proposta
recebe como entrada uma imagem LF capturada na forma esparsa e usa camadas
convolucionais 3D que permitem propagar a informação espacial bidimensional junto
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Figura 58 – Framework proposto em (GUO; WEN; HAN, 2020). Fonte: Guo; Wen; Han (2020)

com uma dimensão direcional. Cada nível possui quatro camada convolucionais se-
guidas por uma camada ReLU. As camadas convolucionais realizam convoluções 3D
com núcleos de tamanho 3 × 3 × 3 (HEBER; YU; POCK, 2017).

Figura 59 – Rede U-Net proposta em (HEBER; YU; POCK, 2017). Fonte: Heber; Yu; Pock
(2017)

Em (SHIN et al., 2018) é apresentada a rede EPINET, que possui uma arquitetura
chamada pelos autores de multifluxo que lembra as redes siamesas, pois usa redes
neurais em paralelo que compartilham a mesma estrutura, mas que possuem valores
diferentes de pesos. Cada conjunto de subaberturas na mesma direção angular repre-
senta um "fluxo": horizontal, vertical, diagonal esquerda e diagonal direita. Portanto,
cada imagem LF é dividida nesses conjuntos de subaberturas e apresentadas como
uma pilha de imagens para sua respectiva rede neural conforme a Figura 60.

Essa separação das subaberturas faz com que as redes neurais produzam filtros
representativos restritos ao seu tipo de fluxo (SHIN et al., 2018). Cada rede é com-
posta por três camadas de FCN (do inglês fully convolutional network ): Conv-ReLU-
Conv-BN-ReLU responsaveis por medir a disparidade por pixel em uma região/camilho
local. Os autores usam um kernel 2x2 com passo 1 para medir pequenas disparidades
(±4 pixels). Isso é necessário devido a linha base ser estreita em imagens LF produzi-
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Figura 60 – EPINET. Fonte: Shin et al. (2018)

das por câmeras densas conforme já citado. As saídas das quatro redes de multifluxo
são concatenadas e apresentadas como entrada para um rede com oito blocos convo-
lucionais. Os sete primeiros blocos são idênticos aos usados nos blocos multifluxos,
apenas o último bloco responsável por inferir os valores de disparidade apresenta uma
configuração distinta (Conv-ReLU-Conv).

O framework com aprendizado não-supervisionado proposto em (LIN et al., 2022),
utiliza uma estratégia mista com aprendizado de máquina e técnicas usuais de pro-
cessamento de imagem. Essa abordagem utiliza uma técnica de aprendizado apro-
ximado, que gera funções de perda diferenciáveis, combinada com restrições ge-
ralmente aplicadas em imagens LF para redução de complexidade. Primeiramente
é estimado o mapa de profundidade através de uma rede com aprendizado não-
supervisionado, e depois é projetada a perda de consistência espaço-angular adap-
tativa combinada com as versões diferenciáveis das restrições usuais. A Figura 61
mostra a estrutura completa.

Figura 61 – Arquitetura proposta em (LIN et al., 2022). Fonte: Lin et al. (2022)

Em (KHAN; KIM; TOMPKIN, 2021), os autores estimam o mapa de profundidade
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utilizando um conjunto esparso de bordas de profundidade e gradientes. A abordagem
deduz que as arestas verdadeiramente profundas são mais sensíveis às restrições lo-
cais do que bordas compostas por textura e, portanto, podem ser diferenciadas de
forma confiável por meio de um processo de difusão bidirecional. Primeiro o sistema
usa o plano epipolar para estimar a disparidade de subpixel em um conjunto esparso
de pixels. Para encontrar pontos esparsos de forma eficiente, é feito um refinamento
baseado na entropia da estimativa da linha de um conjunto limitado de bancos de
filtros orientados. Em seguida, para estimar a direção de difusão a partir dos pon-
tos esparsos, é aplicado o método de difusão bidirecional. Isso resolve o problema
de ambiguidade que pode surgir ao tentar encontrar a superfície a qual a borda ob-
servada pertence, separando de forma confiável bordas com profundidade de bordas
pertencentes a texturas (KHAN; KIM; TOMPKIN, 2021).

Em (LI et al., 2021), é apresentada uma estrutura de aprendizado auto-
supervisionado para a construção do mapa de profundidade. Esse sistema usa como
entrada uma pilha de EPI. A rede estima a mudança de disparidade de EPI por meio
da refocalização. Para reduzir a sensibilidade do EPI ao ruído, o artigo propõe um
novo modo de entrada chamado EPI-Stack, que empilha EPIs. A Figura 62 apresenta
a estrutura geral proposta.

Figura 62 – Estrutura proposta em (LI et al., 2021). Fonte: Li et al. (2021)

4.1.2 Resumo comparativo e Desafios de Pesquisa

Esse trabalho encontrou vários desafios por ser uma área onde ainda estão se
criando os padrões a respeito da forma de captura e representação. Por exemplo,
tipos diferentes de sistemas podem capturar uma LF se concentrando em aspectos
distintos como: resolução espacial, densidade angular e FoV, já os dados adquiri-
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dos na captura podem ser representados em formatos como: Lenslet, 4D Multiview,
4D volumétrico, Geometry-Assisted, modelo MPI (Multi-Plane Image) e modelo MSI
(Multi-Sphere Image). Essa falta de padronização leva a alguns lapsos de informa-
ção como é o caso das especificações técnicas da câmera Lytro Illum. Em diferentes
artigos se encontra variações no tamanho máximo do sensor de captura e do tama-
nho máximo de uma subabertura sem upscaling. A compreensão do comportamento
óptico de uma DLF também representa um desafio, dado o número de microlentes e
distorções apresentadas por seu diminuto tamanho.

Nas técnicas citadas para o cálculo de profundidade e distâncias entre objetos,
pela Tabela 4, se nota uma maior concentração de abordagens baseadas em apren-
dizado de máquina a partir do final da década de 2010. Essa correlação não surpre-
ende, pois ambas as técnicas tiveram seu desenvolvimento justamente durante esse
período. Mas o motivo real que leva o aprendizado profundo ser uma boa estra-
tégia de abordagem para o problema de cálculo de distâncias é a complexidade
de se trabalhar com imagens LF somada a incerteza associada as característi-
cas internas das câmeras DLF. Todas técnicas citadas, com aprendizado profundo,
permitem a criação de mapas de profundidade, variando o tempo de treinamento e
precisão da rede neural. O principal problema abordado por essa tese é o balance-
amento entre acurácia e tempo de execução, pois a maioria dos trabalhos não se
preocupa com o tempo de execução.

4.2 Aplicações comerciais, mercado e empresas afins

O mercado de light field tem crescido com o surgimento tanto de dispositivos de
captura como de dispositivos de apresentação de imagens e vídeos light field. Isso se
deve a demanda cada vez maior para representar e apresentar informação tridimen-
sional, através de dispositivos robustos e de fácil uso. Dentro desse escopo, o uso
de imagens plenópticas tem se apresentado como uma abordagem promissora com
soluções comerciais já em uso, conforme será apresentado no decorrer dessa seção.

Pode se apontar o surgimento do mercado de light field com a criação dos primei-
ros dispositivos comerciais entre 2010 e 2011. Em 2010, a empresa Raytrix GmbH
anunciou a produção e comercialização da primeira câmera plenóptica 2.0. Em 2011
foi a vez da empresa Lytro, Inc. lançar uma nova câmera, com o diferencial de ser do
tipo plenóptica 1.0. Enquanto a Lytro investiu no mercado fotográfico e de vídeos, a
Raytrix investiu em mercados específicos como o de microscopia, inspeção industrial
e pesquisa científica. O ponto de maior convergência entre ambas empresas foi o
setor de sistemas imersivos.

A empresa Lytro encerrou suas atividades em março de 2018, após sete anos
tentando propor um novo paradigma no centenário mercado fotográfico. Mas apesar
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Tabela 4 – Resumo comparativo entre os algoritmos citados. . Fonte: De autoria própria.
Categoria Abordagem Característica Entrada Saída
Baseado em
correspondência (WANG; EFROS; RAMAMOORTHI,

2015)
Modelo de oclusão para LF LF 1.0 mapa de disparidade

(YU et al., 2013) Estrutura geométrica
Estéreo
LF esparsa
LF 1.0

mapa de disparidade

(ZHOU; SUI; JENKINS, 2018) Estrutura geométrica
Monte Carlo Localization LF 1.0 posição estimada

Baseado em
em EPI (KIM et al., 2013) Reconstrução da cena LF 1.0 mapa de disparidade

Baseado em
aprendizado (ŽBONTAR; LECUN, 2016) CNN (Siamesa) Estéreo mapa de disparidade

(LUO; SCHWING; URTASUN, 2016) CNN (Siamesa) Estéreo mapa de disparidade

(ZHOU; CHEN; JENKINS, 2020) CNN com
Filtro de partículas LF 1.0 posição estimada

(HEBER; YU; POCK, 2017) CNN (U-Net) LF esparsa mapa de disparidade

(SHIN et al., 2018) CNN (EPINET)
Multifluxo LF 1.0 mapa de disparidade

(SHI; JIANG; GUILLEMOT, 2019) CNN (Autoencoder)
FlowNet 2.0

LF 1.0
LF esparsa mapa de disparidade

(GUO; WEN; HAN, 2020) CNN (Multifluxo)
Transformada de Fourier LF 1.0 segmentação por

tipo de material

(LIN et al., 2022) Aprendizado não-supervisionado
Autoencoder LF 1.0 mapa de disparidade

(LI et al., 2021) CNN
EPI-Stack LF 1.0 mapa de disparidade

desse revés, novas empresas estão surgindo e tradicionais empresas também inves-
tem em pesquisa na área. Pode-se dizer que um dos principais focos são sistemas
com realidade aumentada e realidade mista, hologramas e sistemas imersivos em
geral.

4.2.1 Aplicações

Uma aplicação típica do uso de processamento de imagens e visão computacional
em plantas industriais é a inspeção óptica automática. Tipicamente são dispositivos
para inspeção da qualidade de uma superfície, medições e verificação de integridade
de estruturas. Entre as principais vantagens do uso de câmeras DLF em sistemas de
inspeção está a visualização espacial-3D do objeto e o uso de apenas um dispositivo
de captura, ao contrário de sistemas de captura estéreo ou baseados em laser. Essas
qualidades também são convenientes em dispositivos de imagem usados no cálculo
da velocidade de partículas (particle image velocimetry ). Esses sistemas medem a
velocidade de fluídos ou do ar.

Inspeção industrial, microscopia, exames de diagnóstico por imagens são
algumas das áreas beneficiadas com o uso de tecnologia LF. Para exemplificar pode-
se citar a microscopia 3D, que tem tanto aplicações industriais como laboratoriais,
onde o uso de sistemas LF permite realizar aferições do tamanho de células, identificar
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conexões eletrônicas e detectar falhas em estruturas mecânicas de forma mais precisa
e ampla.

O desenvolvimento de telas baseadas em light field permitirá o uso de 3D em
televisores, celulares e tablets sem a necessidade de aparatos adicionais como óculos
e outros acessórios. A simples mudança de posicionamento permite ao usuário a
sensação de um novo ponto de vista por estar observando um conjunto diferente de
raios de luz, desta forma, os displays LF podem finalmente ampliar o uso do 3D no
cotidiano. Dentro da mesma linha de pesquisa, óculos de imersão baseados nessa
tecnologia devem ampliar o uso de 3D em plantas industriais e jogos imersivos, ou
qualquer sistema que use realidade virtual ou realidade aumentada.

O uso de câmeras plenópticas em robótica e veículos autônomos também pos-
sui amplo apelo. Uma única câmera DLF pode capturar dados 2D e 3D, calcular a
profundidade e medir a distância dos elementos na cena a partir desses dados. Ou-
tras áreas de aplicação que podem ser citadas são: modelagem, escaneamento e
renderização 3D de objetos, reconstrução de imagens e animação.

4.2.2 Empresas do setor

Apesar da empresa Lytro3 encerrar suas atividades em 2018, várias câmeras
ainda estão disponíveis para compra. Uma das grandes vantagens das câmeras Lytro
são o seu preço, visto elas terem sido desenvolvidas para ocupar um nicho no mer-
cado fotográfico. A empresa desenvolveu duas câmeras portáteis: A câmera Lytro®

de primeira geração e a câmera Lytro Illum®. A empresa também tentou se inserir no
mercado de realidade virtual com a câmera Lytro Immerge®, câmera de captura para
gravação de volumes com 360 graus de cobertura e 6DoF (seis graus de liberdade).
Outro dispositivo da empresa foi a Lytro Cinema Camera®, câmera de captura de
vídeo e de uso cinematográfico.

A empresa Raytrix, pioneira no mercado de câmeras light field, continua ativa,
desenvolvendo novos produtos e criando parcerias com laboratórios acadêmicos de
pesquisa. A empresa possui várias câmeras do tipo plenóptica 2.0, tanto de captura
de imagem quanto vídeo, além de softwares e suportes específicos para uso em sis-
temas de inspeção, microscopia, reconhecimento de faces, robôs cirúrgicos, scanners
dentais, medições de volume e outras aplicações semelhantes. Em virtude de seu
uso específico, as câmeras da Raytrix possuem preços elevados, de ordem superior a
e5.000, o que impede o seu uso de forma mais ampla.

Outras empresas possuem investimentos na área de LF. A empresa Google Inc.,
possui várias iniciativas no setor, como o lançamento no serviço Steam® de um apli-
cativo baseado em imagens LF4, onde prometia uma experiência em realidade virtual

3web.archive.org/web/20110627085842/http://www.lytro.com/
4store.steampowered.com/app/771310/Welcome_to_Light_Fields

web.archive.org/web/20110627085842/http://www.lytro.com/
store.steampowered.com/app/771310/Welcome_to_Light_Fields


87

com reflexos, profundidade e translucidez do mundo real. Para a captura dessas ima-
gens a empresa desenvolveu um sistema de aquisição, processamento e renderização
Light Field (OVERBECK et al., 2018). A empresa também desenvolveu uma aborda-
gem com aprendizado profundo para sintetizar cenas LF usando várias imagens com
multiplanos (FLYNN et al., 2019) e propôs um array de câmeras de baixo custo para
captura de vídeos panorâmicos de LF (BROXTON et al., 2019). Em maio de 2021, a
Google apresentou o projeto Starline, um sistema de vídeo conferência onde as pes-
soas ficam posicionadas em frente a um monitor LF de 65 polegadas e possuem a
sensação de volume 3D na imagem projetada (Figura 63) .

Figura 63 – Protótipo apresentado do projeto Skyle. Fonte: Google

Empresas tradicionais com Apple Inc. e LG Corporation também apresentam
interesse no setor. Em 2018, a LG Corporation patenteou um telefone celular com 16
câmeras (KIM et al., 2018). Em 2020, foi publicada pelo US Patent & Trademark Office
o pedido de patente da Apple Inc.5 de um sistema de câmera panorâmica light field
para iDevices e HMD que criará cenas imersivas com 6 graus de liberdade, através da
captura convencional de fotos e da criação, via software, de imagens light field.

No desenvolvimento de hardware de captura com custos mais acessíveis pode-se
destacar as empresas: K|Lens, Doitplenoptic e Wooptix. A empresa K|Lens de-
senvolveu um conjunto de lentes de captura de light field para uso em câmeras DSLR
padrão, gerando várias imagens com diferentes exposições em um único disparo. Já a
Doitplenoptic patenteou um dispositivo chamado Doit 3D Micro que permite transfor-
mar qualquer microscópio óptico em um microscópio 3D ou 4D. A empresa Wooptix
possui uma proposta diferenciada em seu dispositivo de captura de light field. Em vez
de usar um sistema com várias lentes em um array, ou um conjunto de lentes, como
a proposta da K|Lens, ela utiliza uma única lente com foco variável.

Em termos de dispositivos para apresentação de imagens e vídeos light field, pode-
se destacar as empresas: Avegant, Leia inc e Light Field Lab. A empresa Light Field

5https://www.patentlyapple.com/patently-apple/2020/04/apple-invents-a-light-field-panorama-
camera-system-for-idevices-hmd-that-will-create-immersive-scenes-with-6-degrees-of-fre.html
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Lab apresentou em 2021 a tecnologia Solidlight holograms, uma tela que permite visu-
alizar hologramas 3D de forma realista. A empresa Leia inc está produzindo o tablet
Lume Pad que permitem a experiência 3D sem necessidade de óculos. Já a Aven-
gant vai no sentido oposto, na construção de dispositivos compactos que possam ser
acoplados em óculos e permitir imersão e realidade aumentada.

Na Tabela 5 temos uma amostra do setor e das empresas envolvidas.

Tabela 5 – Empresas que trabalham com tecnologias Light Fields. Fonte: De autoria própria.

Empresa Produtos e protótipos Homepage
Apple Patente de um sistema panorâ-

mico de captura de imagens
www.apple.com

Avegant Dispositivos para sistemas
imersivos

www.avegant.com/light-field

Doitplenoptic Microscopia www.doitplenoptic.com
Google Câmeras esparsas, monitores e

sistemas de realidade aumen-
tada e virtual

https://
augmentedperception.github.
io/deepviewvideo/

K|Lens Conjunto de lentes para uso em
câmeras DSLR padrão

www.k-lens.de

Leia inc Tablet (Lume Pad) com tela 3D
light field

www.leiainc.com

Light Field Lab Monitores e ecossistemas www.lightfieldlab.com
Raytrix Câmeras para aplicações pro-

fissionais e pesquisa
www.raytrix.de

Wooptix Câmera de captura com uma
única lente variável

www.wooptix.com

4.2.3 Investimentos e desenvolvimento de padrões

O desenvolvimento recente de novas tecnologias light field também foi impulsio-
nado por projetos como o SAUCE6. Esse projeto teve como objetivo produzir, testar
e demonstrar um conjunto de ferramentas e técnicas profissionais visando reduzir os
custos na produção de conteúdo digital em indústrias criativas. Um do principais tópi-
cos abordados foi referente a possibilidades e desafios de integrar captura e proces-
samento de LF em produções de mídia (TROTTNOW et al., 2019). O projeto SAUCE
durou três anos (de janeiro de 2018 até dezembro de 2020) e envolveu laboratórios e
pesquisadores das seguintes entidades: Universitat Pompeu Fabra, Foundry, DNEG,
Brno University of Technology, Filmakademie Baden-Württemberg, Saarland Univer-
sity, Trinity College Dublin, Disney Research.

Outra ação importante para a indústria é a criação do JPEG Pleno7 pelo comitê
JPEG (Joint Photographic Experts Group) que tem uma longa tradição na criação de

6https://www.sauceproject.eu/Technology/Light-Fields
7https://jpeg.org/jpegpleno/

www.apple.com
www.avegant.com/light-field
www.doitplenoptic.com
https://augmentedperception.github.io/deepviewvideo/
https://augmentedperception.github.io/deepviewvideo/
https://augmentedperception.github.io/deepviewvideo/
www.k-lens.de
www.leiainc.com
www.lightfieldlab.com
www.raytrix.de
www.wooptix.com
https://www.sauceproject.eu/Technology/Light-Fields
https://jpeg.org/jpegpleno/
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padrões de codificação de imagens estáticas. JPEG é um grupo de trabalho conjunto
da International Standardization Organization (ISO) e da International Electrotechnical
Commission (IEC). O objetivo do núcleo JPEG Pleno é fornecer uma estrutura pa-
drão para representar novas modalidades de imageamento, como light field, nuvem
de pontos e imagens holográficas. O framework JPEG Pleno busca integrar todas
as ferramentas necessárias em um único sistema para representar a mesma reali-
dade visual, considerando diferentes modalidades, requisitos e funcionalidades. Em
agosto de 2022, grupo do JPEG Pleno organizou o 1st JPEG Pleno Workshop on
Learning-Based Light Field Coding Proceedings.

Desta forma, a área de light field possui um potencial que tem sido capturado por
várias empresas da área tecnológica, mas por ser um tecnologia comercial nova, ainda
depende da criação de padrões, métodos de transmissão e compactação.

4.3 Considerações finais

Esse capítulo apresentou o crescente uso de tecnologias baseadas em light field,
com a descrição de diversos dispositivos desenvolvidos ou em fase de testes para uso
comercial. Foram citados também os esforços na criação de padrões por parte do co-
mitê JPEG (Joint Photographic Experts Group), responsável pela criação de padrões
de codificação de imagens. Na seção de trabalhos relacionados foram apresentadas
técnicas que constroem os mapas de profundidade que são necessários para o cálculo
de distâncias, ao mesmo tempo que se enfatizou a falta de estudos mais consistentes
que reúnam informação visual com informações numéricas conhecidas e gerem na
saída uma imagem com dados de distância entre os objetos na cena e o observador
(câmera) de forma plástica.



5 MATERIAIS E MÉTODOS DE PESQUISA

Conforme citado nos capítulo prévios, essa tese busca apresentar técnicas que
melhorem o balanceamento entre acurácia e tempo de execução na criação de
mapas de profundidades a partir de imagens DLF. De todas as técnicas citadas, as que
usam estratégias com aprendizado profundo são as que possuem maior plasticidade,
podendo variar o tempo de processamento e a precisão da rede neural de acordo com
a arquitetura apresentada. Desta forma, o aprendizado profundo é uma boa estratégia
de abordagem para o problema apresentado devido sua flexibilidade em relação a
mudança de parâmetros de entrada, o que se apresenta como vantajoso considerando
a complexidade de se trabalhar com imagens LF. Com base nessa observação, essa
tese usa conhecimentos de aprendizado de máquina, óptica e light field para propor
modelos de redes neurais profundas capazes de inferir o mapa de profundidade a
partir de imagens LF densa. Por possuir um escopo amplo, o método de abordagem
foi guiado pelos seguintes objetivos gerais:

• Propor e avaliar soluções para extração de mapas de profundidade baseadas
em deep learning;

• Filtrar estratégias mais apropriadas ao problema proposto;

• Investigar as redes neurais mais propícias para o uso no problema de pesquisa;

Partindo dos objetivos gerais, se estabeleceu os seguintes objetivos específicos:

• Determinar o dataset a ser aplicado no treinamento;

• Selecionar as ferramentas mais adequadas;

• Definir o pipeline de aprendizado de máquina para o estudo e desenvolvimento
das redes neurais;

• Projetar e desenvolver as arquiteturas de redes neurais voltadas a geração dos
mapas de profundidade a partir de imagens ligth field densa.
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5.1 Projeto do Pipeline de aprendizado

Uma pipeline de aprendizado de máquina é uma estrutura que esquematiza o fluxo
de trabalho e as etapas envolvidas na construção de modelos de aprendizado de má-
quina. Essa estrutura representa todos os passos necessários, desde a extração de
dados, pré-processamento, treinamento, avaliação e desenvolvimento propriamente
dito. Pipelines não são fluxos unidirecionais. Eles são cíclicos por natureza e permitem
interações para melhorar as pontuações dos algoritmos de aprendizado de máquina e
tornar o modelo escalonável, conforme se observa na Figura 64.

Figura 64 – Pipeline genérico de um sistema de aprendizado de máquina. Fonte: Adaptado de
Hapke; Nelson (2020).

O projeto apresentado nessa tese envolve dois ciclos com um total de seis tarefas
básicas:

• Definição de dados e dataset :

– Definir o problema e preparar a abordagem a ser seguida;

– Sumarizar e entender os dados a serem usados no projeto;

• Implementação e testes:

– Definir e implementar os algoritmos;

– Processar e avaliar os dados;

– Avaliar os algoritmos;

– Melhorar os resultados.

Na primeira etapa do trabalho, definir o problema e preparar a abordagem a
ser seguida, se estabeleceu o tema e o contexto de aplicação através do levanta-
mento bibliográfico inicial. Com base nas abordagens utilizadas em diversos artigos
foi determinado o formato de arquivo a ser usado no dataset e na saída do sistema.

O passo para sumarizar e entender os dados a serem usados no projeto envol-
veu três etapas básicas parcialmente independentes: (i) estudo da câmera de captura;
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(ii) idealização e construção do dataset real; (iii) seleção do dataset sintético. Essas
etapas são detalhadas na seção 5.2. Por fim, as etapas associadas a implementação
e testes é abordada no Capítulo 6 que descreve o trabalho propriamente dito.

5.2 Especificação do dataset

A escolha do dataset para treinamento é uma etapa básica. Existem datasets
LF sintéticos e datasets LF de imagens reais. Os datasets LF de imagens reais são
feitos com câmeras comerciais e/ou protótipos. Os principais problemas encontrados
ao se trabalhar com os datasets LF de imagens reais são: o ruído, a retificação das
imagens, problemas nas anotações e descrições das disparidades e principalmente o
método usado para extrair o mapa de profundidade que será utilizado como ground
truth na etapa de treinamento. Por exemplo, o software proprietário da Lytro Illum gera
mapas de profundidade e aplica um algoritmo de alongamento de histograma para
realçar as diferenças entre as disparidades encontradas. Esse método é interessante
quando se trabalha apenas com questões estéticas do tratamento da imagem, mas
como ele altera as relações de disparidade no mapa de profundidade, não é útil no
processamento de informações de distância da imagem.

A estratégia usada nesse trabalho foi usar datasets sintéticos na etapa de treina-
mento, pois esses dados possuem precisão no ground truth e no controle nas carac-
terísticas intrínsecas e extrínsecas da câmera. Para potenciais testes do sistema, foi
gerado um dataset LF de imagens reais próprio com uma câmera LF densa, a Lytro
Illum ®, em um ambiente controlado.

5.2.1 Dataset sintético

O dataset sintético utilizado é o proposto em (WANG et al., 2016)1. Esse conjunto
de imagens foi construído para ser usado com o 4D Light Field Benchmark, que foi
elaborado para avaliar o desempenho de algoritmos na estimativa de profundidade em
cenas lambertianas (WANG et al., 2016).

O 4D Light Field Benchmark apresenta um total de vinte oito cenas, sendo quatro
cenas estratificadas, quatro cenas para teste, quatro cenas para treinamento (Figura
65) e dezesseis cenas adicionais (Figura 66). Segundo (WANG et al., 2016), todas
as câmeras virtuais estão deslocadas em relação a um plano de foco, mantendo os
eixos ópticos paralelos, o que faz a disparidade zero não corresponder a profundidade
infinita. Para cada cena são fornecidos:

• Imagens light field com 3 canais de cor e 256 níveis de intensidadede (8
bits) por canal, resolução angular de 9x9 e resolução espacial de 512x512
(9x9x512x512x3), armazenadas como imagens individuais no formato PNG;

1https://lightfield-analysis.uni-konstanz.de/

https://lightfield-analysis.uni-konstanz.de/
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• Arquivos de configuração com informações da câmera e da faixa de disparidade
da cena;

• Para cada vista central (menos para as quatro cenas de teste):

– Mapas de profundidade e disparidade com resolução de 512x512 e
5120x5120 no formato PFM;

– Máscaras de avaliação com resolução de 512x512 e 5120x5120 no formato
PNG.

Figura 65 – Dataset sintético do 4D Light Field Benchmark. Fonte: Wang et al. (2016).

Todas cenas foram criadas no software Blender2. Nas cenas estratificadas foram
usadas o renderizador interno do software, e nas cenas fotorrealistas o renderizador
Cycles (WANG et al., 2016).

5.2.2 Dataset de cenas reais

Para esse trabalho foi construído um dataset de imagens LF, onde os objetos estão
em posições e distâncias conhecidas. O primeiro passo estabeleceu o dataset mínimo
para a geração de dados. Foi necessário um ambiente controlado, com as configu-
rações da câmera em parâmetros fixos e com marcações visuais das distâncias de
cada objeto ao plano de captura. As configurações estabelecidas foram baseadas em
princípios ópticos previamente calculados e averiguadas em experimentos de campo.

2https://www.blender.org/

https://www.blender.org/


94

Figura 66 – Dataset sintético adicional do 4D Light Field Benchmark. Fonte: Wang et al. (2016).

Para cada imagem LF é gerado um mapa de profundidade para servir como ground
truth e os parâmetros da câmera são armazenados em dois arquivos JSON.

5.2.2.1 Câmera Lytro Illum®

A etapa de estudo da câmera de captura (câmera Lytro Illum®) foi basilar para o
projeto. Uma vez que não existem datasets com imagens reais com as característi-
cas necessárias para o trabalho proposto, foi essencial o completo entendimento dos
arquivos gerados pelo equipamento disponibilizado para essa tarefa.

A câmera Lytro Illum® gera, a cada captura, um arquivo LFR (Light Field Raw)
que contém: a imagem bruta capturada pelo sensor (Figura 30); metadados com a
configuração do dispositivo no momento da captura; os números seriais do sensor e
da câmera; e, uma miniatura, no formato JPG, da vista central (SILVA, 2016).

Para extrair as informações de configuração da câmera foi usada a ferramenta
Lytro Power Tool®, escrita em código aberto na linguagem Python 2.7, que gera um
arquivo JSON (Figura 67). Levando em conta a facilidade de manipulação, se optou
extrair cada SAI como uma imagem PNG independente. Essa extração pode ser feita
através do software comercial da própria câmera (Lytro Desktop®) , das bibliotecas
Plenpy (python) 3 e Light Field Toolbox (Matlab)4, da toolbox Lytro Power Tool®, ou do
software PlenoptiCam5.

3https://iiit-public.gitlab.io/plenpy/
4https://dgd.vision/Tools/LFToolbox/
5http://www.plenoptic.info/pages/software.html

https://iiit-public.gitlab.io/plenpy/
https://dgd.vision/Tools/LFToolbox/
http://www.plenoptic.info/pages/software.html
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Figura 67 – Fragmento do arquivo JSON gerado pela ferramenta Lytro Power Tool®. Fonte: De
autoria própria.

5.2.2.2 Método de construção do dataset

As imagens são adquiridas por uma câmera Lytro Illum com o sensor de captura a
uma distância de 600mm do plano onde se encontra os objetos, conforme a figura 68.
Observa-se que os objetos são dispostos a cada 100mm, somando um total de 500mm
entre o início do plano e o fim. Desta forma, ao adicionar a distância da câmera, os
objetos se encontram em uma faixa de 600mm até um total de 1200mm do sensor
de captura. Não existe um limite em relação a quantidade de objetos a uma mesma
distância do sensor. O critério usado foi manter uma quantidade que permita visualizar
todos objetos na cena conforme se vê na Figura 69b, visto que o objetivo do dataset
é extrair a informação de distância. O plano usado também possui marcações laterais
de 100mm conforme se observa na Figura 69a.

Figura 68 – Esquema usado na captura das imagens. Fonte: De autoria própria.
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(a) Plano usado (b) Disposição dos objetos
Figura 69 – Processo de captura. Fonte: De autoria própria.

Na Figura 70 é possível visualizar uma amostra do dataset processado pela fer-
ramenta Lytro Power Tools®. A Figura 70a apresenta todos objetos focados. Essa
imagem é gerada através da junção das imagens LF capturadas. Já o mapa de pro-
fundidade da imagem é mostrado na Figura 70b. Pode-se notar que com as caracterís-
ticas ópticas escolhidas o mapa gerado possui uma separação visível a cada 100mm.
Isso é possível em virtude do comprimento focal ser de 48mm 6, o que faz, para as
características da câmera e distância do objeto que está no centro do tabuleiro, haver
uma região focável, tanto à frente do objeto quanto atrás, de aproximadamente 10 cm.

(a) Imagem focada (b) Mapa de profundidade
Figura 70 – Exemplo de imagem do dataset. Fonte: De autoria própria.

Pode-se fazer uma analogia entre o DoF de uma câmera convencional e a forma
como a câmera Lytro captura uma imagem LF. No DoF existe regiões nítidas (focadas)
em frente e atrás do ponto focal; na Lytro temos uma subfaixa refocável em frente
e atrás do ponto focal. A Figura 71 mostra essa organização, onde a faixa refocável
abrange todos os pontos que podem assumir foco relativamente nítido depois que
a foto é capturada (LYTRO, 2015a). Cada subfaixa refocável oferece um espectro
de nitidez relativa, que depende da profundidade em que a imagem é refocada. Na
Figura 71, quanto mais brilhante for o tom da faixa azul ou laranja, mais nítidos serão
os objetos localizados na distância associada (LYTRO, 2015a). A faixa mais brilhante
dentro de cada subfaixa refocável é seu pico - onde os objetos serão mais nítidos na
refocalização (LYTRO, 2015a).

615mm considerando o crop de 3.19
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Figura 71 – Faixa refocável com lente ajustada para distância focal de 50 mm (equivalente a 35
mm) e foco óptico em aproximadamente 42cm. As distâncias físicas da câmera são mostradas
em cinza. Fonte: Lytro (2015a).

Para garantir imagens com boas características de refocagem, o focus bracketing
foi ajustado para 5 disparos com 10 depth steps. O focus bracketing faz com que a câ-
mera tire uma série de fotos cada vez que o obturador é pressionado, incrementando o
foco de acordo com os depth steps. Isso significa que o intervalo de refocagem é modi-
ficado, criando mais chances de capturar uma imagem com maiores possibilidades de
refocagem (LYTRO, 2015a). Na Figura 73 é possível ver o efeito desse ajuste. Nesse
exemplo foram feitos três disparos com um depth step (DS). No primeiro disparo a
captura é feita com a configuração de foco original (Figura 73a). No segundo disparo
é realizado um depth step de −1 que comprime a faixa refocável (Figura 73b). Por fim,
no terceiro disparo é realizado um depth step de +1 (em relação ao foco original), que
aumenta a faixa refocável (Figura 73c).

(a) Configuração da câmera
(b) Subaberturas de uma imagem do da-
taset

Figura 72 – Configuração da câmera e SAIs geradas. Fonte: De autoria própria.

Segundo (GEORGIEV et al., 2013), a ferramenta Lytro Desktop consegue aumen-
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(a) Faixa refocável original (b) Faixa refocável com -1 DS (c) Faixa refocável com +1 DS
Figura 73 – Faixa refocável com focus bracketing definido para 3 fotos e 1 passo de profundi-
dade. Fonte: (LYTRO, 2015a).

tar a resolução de saída usando de forma simultânea as configurações Kleperiana e
Galileana (Figura 32). Conforme a Figura 74, a lente principal cria uma imagem em
foco em frente das microlentes, e uma imagem virtual focada atrás das microlentes
(GEORGIEV et al., 2013), ambas visualizadas pelo sensor. A correção ou mistura
apropriada de tais microimagens produz as imagens com resolução mais alta obser-
vadas na renderização final.

Figura 74 – Captura de imagem Galileana (esquerda) e Kepleriana (direita) em uma câmera
plenoptica 1.0. A área sombreada representa a área de boa focagem das microlentes. Fonte:
Georgiev et al. (2013).

Como esse método usado para fazer o upscale da imagem e a forma de combi-
nação entre as projeções são algoritmos não acessíveis ao usuário das ferramentas
Lytro Desktop® e Lytro Power Tool ®, se optou por usar ferramentas que extraiam dire-
tamente as vistas.

Com base nessas considerações foi criado um dataset com 81 poses, com dois
formatos de saída e duas resoluções para as vistas (SAI), conforme a Tabela 6. Para
extrair as SAI’s foram usados os softwares Light Field Toolbox e PlenoptiCam. Já
o método usado para gerar o ground truth depth map foi o proposto em (JEON et al.,
2015), com implementação para MatLab® 7

A saída com a resolução 1 é gerada pela Light Field Toolbox e a resolução 2
pela PlenoptiCam. A resolução de 625x434 sem upscaling é usada na maioria dos
datasets consultados. São adicionados ao dataset dois arquivos JSON. Um gerado
pela ferramente Lytro Power Tools, mantido caso algum pesquisador queira acessar

7Disponível em https://github.com/Vincentqyw/Depth-Estimation-Light-Field/tree/
master/LF

https://github.com/Vincentqyw/Depth-Estimation-Light-Field/tree/master/LF
https://github.com/Vincentqyw/Depth-Estimation-Light-Field/tree/master/LF
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Tabela 6 – Dataset proposto - ver Apêndice B. Fonte: De autoria própria.
Dataset
Imagens LF 81 poses
SAI 9x9 e 7x7
Resolução 1 625x434
Resolução 2 620x430
Abertura de lente Constante - f/2.0
All in focus 2022x1494 formato tiff

detalhes padrão da captura, e o outro é uma versão simplificada, com dados ópticos
relevantes para o cálculo de distâncias absolutas. Nesse arquivo, estão a informa-
ções de ISO, abertura da câmera, distância focal, tempo de exposição, velocidade do
obturador. Podem ser adicionados futuramente outros parâmetros, caso se provem
necessários.

5.3 Ferramentas

Para implementação do projeto, foi selecionada a linguagem Python (versão 3.x)
e o framework Tensorflow (versão 2.6.0), que é uma plataforma end-to-end e open
source para aprendizado de máquina. O Tensorflow vem com uma API de alto ní-
vel chamada tf.keras que permite criar e treinar modelos de aprendizado profundo. A
junção da linguagem Python e o framework Tensorflow, permitem a flexibilidade ne-
cessária para a prototipagem rápida e integração com outras bibliotecas.

Para essa tomada de decisão foram estudadas as ferramentas descritas abaixo.

• Para uso com Python:

– Plenpy - https://gitlab.com/iiit-public/plenpy.

– Plenopticam - http://www.plenoptic.info/pages/software.html.

– Lytro Power Tools - http://lightfield-forum.com/lytro/lytro-archive/

– Plenoptic 2.0 Toolbox - https://github.com/freerafiki/

PlenopticToolbox2.0

• Para uso com MATLAB:

– Light Field Toolbox for MATLAB - https://dgd.vision/Tools/LFToolbox/).

– FDL toolbox - https://github.com/LEPENDUM/FDL-Toolbox.

5.4 Conclusão

Esse capítulo apresentou a abordagem usada no desenvolvimento do projeto, bem
como a seleção de ferramentas. O capítulo sumarizou as estratégias para construção

https://gitlab.com/iiit-public/plenpy
http://www.plenoptic.info/pages/software.html
http://lightfield-forum.com/lytro/lytro-archive/
https://github.com/freerafiki/PlenopticToolbox2.0
https://github.com/freerafiki/PlenopticToolbox2.0
https://dgd.vision/Tools/LFToolbox/
https://github.com/LEPENDUM/FDL-Toolbox
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do dataset real e escolha do dataset sintético. Por fim, apresentou o pipeline utilizado
e sua abordagem.



6 TRABALHO DESENVOLVIDO

Existem duas abordagens tradicionais para o cálculo de profundidade: através da
triangulação geométrica entre vistas diferentes; e através da variação focal. A tri-
angulação geométrica em light field é feita através de uma adaptação do esquema
de triangulação convencional estéreo. Para isso é necessário resolver o problema de
correspondência entre pontos das vistas, encontrar as disparidades entre as subaber-
turas e criar o mapa de profundidade. Uma vez feitos esses passos, é necessário
calcular as distâncias absolutas através da relação entre as disparidades em pixels
na imagem e as características intrínsecas da câmera. Na variação focal a aborda-
gem empregada utiliza a refocalização. Essa técnica também possui como entrada
as imagens de subaberturas LF. Encontra-se a região em foco em cada uma das su-
baberturas e através do uso das características específicas da câmera, definida pela
matriz intrínseca, junto com informações da distância focal e dimensões do sensor,
acha-se a distância dos objetos. Na Figura 75, observa-se os vários planos α refoca-
lizados, dados pela equação α = F ′/F , onde F é a distância entre a lente principal e
o array de microlentes, e F ′ é a distância entre a lente principal e o plano α onde a
região de interesse se encontra focalizada.

Um ponto crítico nessas abordagens é o balanceamento entre acurácia e tempo
de processamento na criação de mapas de profundidades. Isso ocorre pela de-

(a) Direção dos raios de luz em relação ao foco (b) Refocagem
Figura 75 – Esquema ilustrativo do refoco em uma LF. Raios vindos do ponto P da cena
possuem a mesma radiação e convergem no ponto refocado P ′

α. Fonte Zhou et al. (2019)
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manda de cálculos envolvidos. Em geral são necessários avaliar n-variáveis, atualizar
seus valores e fazer novos cálculos a cada mudança de algum parâmetro. Uma alter-
nativa é usar abordagens com aprendizado profundo, que possuem maior plasticidade,
podendo variar o tempo de processamento e a precisão da rede neural de acordo com
a arquitetura apresentada. Nos sistemas baseados em aprendizado de máquina e
redes neurais convolucionais ocorre uma resposta direta a modificação dinâmica dos
parâmetros devido ao processo de aprendizado das relações entre entrada e saída.

O modelo de aprendizado de máquina usado como base nessa proposta é a rede
EPINET (SHIN et al., 2018), chamada pelos autores de arquitetura de multifluxo.
Apesar do artigo original dessa arquitura ser de 2018, ela continua como referência na
área. Conforme observa-se na Figura 76, o desempenho dessa arquitetura (Epinet-
fcn9x9) continua próximo de algoritmos mais novos. Nesse gráfico temos a compara-
ção da rede EPINET com dois algoritmos que estão entre os melhores desempenhos
na página de benchmark 4D Light Field Dataset: (i) AttMLFNet (CHEN; ZHANG; LIN,
2021); (ii) CAPNet (LIU et al., 2020). Convém ressaltar que ambos métodos fazem a
separação das vistas da imagem LF igual a EPINET.

Figura 76 – Comparação da rede EPINET com outros algoritmos. Fonte: Gerado em 4D Light
Field Dataset, 2022. Disponível em: <https://lightfield-analysis.uni-konstanz.de/>.
Acesso em: 24 de novembro de 2022.

A disposição da rede EPINET lembra as redes siamesas, pois usa redes neurais

https://lightfield-analysis.uni-konstanz.de/
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em paralelo que compartilham a mesma estrutura. Apesar da semelhança, não se
pode classificar a EPINET como uma rede siamesa, pois a mesma apresenta valores
diferentes de pesos entre as ramificações de entrada.

Esse trabalho fez um estudo da arquitetura de multifluxo da EPINET e propõe
duas arquiteturas derivadas para extrair as informações de profundidade a partir de
imagens plenópticas: a EPINET-FAST e a U-EPINET. O objetivo é apresentar métodos
que possam ser utilizados por pesquisadores que pretendem usar imagens light field
em aplicações de tempo real ou próximas do tempo real, como é caso da robótica
móvel e carros autônomos. Nas próximas seções serão descritos os formatos de
entrada usados e as arquiteturas criadas.

6.1 Dados de entrada

Como dados de entrada para treinamento se optou por dados sintéticos, uma vez
que os dados reais gerados possuem necessidade de ajustes manuais no ground
truth devido ao ruído e as distorções duplas da câmera Lytro (na lente principal e nas
microlentes), além da adequação aos parâmetros da câmera no momento da captura
(foco, zoom, DoF, etc.). Como esse ajuste não é o foco principal dessa tese, se optou
por usar o dataset real apenas nas etapas de testes, e futuramente viabilizar o uso
do mesmo na etapa de treinamento.

As imagens light field sintéticas usadas no treinamento e teste advém do dataset
HCI da Heidelberg University1 (WANG et al., 2016). Esse dataset fornece imagens
light field de 8 bits com resoluções de (9×9×512×512×3), ou seja, resolução angular
de 9x9 (81 vistas), com resolução espacial de 512×512 e três canais de cor. Estas
light field estão disponíveis como uma sequência de 81 imagens no formato PNG que
devem ser organizadas em uma matriz 9x9 conforme a Figura 78. Além disso, para
cada imagem plenóptica são fornecidos os parâmetros da câmera de captura e o mapa
de profundidade em formato PFM com resolução de 5120x5120.

Cada vista apresenta variações na localização de um mesmo pixel em relação
a vista central, conforme a Figura 77. Essas variações representam a disparidade
entre os pixels que pertencem a uma mesma região. A partir de um conjunto de vistas
(pilha de vistas) é possível montar um mapa de disparidade, que pode ser usado para
calcular o mapa de profundidade a partir das características intrínsecas da câmera.

Para cada imagem light field são criados volumes usando a totalidade das vistas,
ou selecionando, de acordo com algum critério prévio, apenas um subconjunto des-
tas. A EPINET usa quatro subconjuntos de 9 vistas, conforme a Figura 78. Cada
agrupamento é construído de acordo com quatro critérios:

• Diagonal principal - passa pela vista central (vista 40) com inclinação de 45°;
1http://hci-lightfield.iwr.uni-heidelberg.de/

http://hci-lightfield.iwr.uni-heidelberg.de/
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Figura 77 – Exemplo de disparidade entre as vistas. Os eixos vermelhos marcam um pixel na
vista central. Na vista mais a esquerda se nota, pela linha vertical roxa, que o mesmo pixel
sofreu um deslocamento horizontal para a direita da vista central. Já na vista mais a direita,
o mesmo ponto na cena sofreu um deslocamento horizontal para a esquerda em relação a
vista central. Essas diferenças em relação a vista central é chamada de disparidade. A junção
dessas diferentes perspectivas formam o chamado volume/pilha de vistas. Fonte: De autoria
própria.

• Diagonal secundária - passa pela vista central (vista 40) com inclinação de 135°;

• Eixo de 90° - passa pela vista central;

• Eixo de 0° - passa pela vista central.

Figura 78 – Geração dos volumes de entrada baseados na disposição das vistas capturadas.
Fonte: De autoria própria.
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Para gerar esses dados são usadas 16 imagens para treinamento (grupo chamado
additional) e 8 LF para teste. São criados os quatro volumes de vistas para cada LF
de acordo com os critérios citados (Figura 78).

Compete ressaltar que as imagens são convertidas para tons de cinza usando
valores ponderados para cada canal, onde: canal R igual a 0, 299; canal G igual a
0, 587; canal B igual a 0, 114.

6.1.1 Data augmentation

Um dos principais problemas de usar imagens light field no treinamento de redes
neurais é a baixa disponibilidade de imagens com características semelhantes em ter-
mos de luminosidade e ao mesmo tempo com alta variabilidade de objetos, materiais e
distâncias entre objetos. Outro problema é a qualidade ou precisão dos mapas de dis-
paridade disponíveis nestes datasets. Por exemplo, os que são extraídos via softwa-
res como o Lytro Desktop ® não podem ser diretamente usados como ground truth
uma vez que geram mapas de profundidade relativos, onde se aplica alongamento
de histograma e outras transformações, fazendo com que se perca as informações
necessárias para a construção de um mapa de profundidade absoluto. Para resolver
esse problema é necessário fazer um remapeamento entre o ground truth gerado e o
ground truth real 2. Por sua vez, extrair geometricamente o ground truth de imagens
reais pode gerar ruído em virtude de características da câmera e do sistema óptico.
Desta forma, acaba-se ficando limitado a um pequeno conjunto de imagens LF sintéti-
cas que conseguem atender as demandas necessárias. Mas quando se trabalha com
redes neurais convolucionais é necessário usar uma grande quantidade de dados para
que a rede neural consiga generalizar. Essa limitação de imagens torna necessário
aumentar a quantidade de dados mantendo as relações geométricas entre as imagens
de subaberturas (vistas) e ao mesmo tempo contornar o problema de overfitting que
pode acontecer se apenas apresentarmos o mesmo conjunto de imagens de forma
reiterada.

A estratégia para aumentar a quantidade de dados (data augmentation em inglês)
neste trabalho foi retirada de (SHIN et al., 2018), que consiste nas técnicas de :

• Deslocar a vista central através de translação;

• Rotacionar as imagens LF em 90°, 180° e 270°;

• Reescalar o tamanho das imagens;

• Espelhar a imagem - flipping.
2Isso só é possível se as informações de distâncias estiverem disponíveis, como no caso do dataset

gerado para essa tese.
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6.1.2 Deslocar a vista central

Cada volume construído captura variações epipolares em uma das quatro direções.
Conforme se observa na Figura 80, cada um desses volumes é associado a uma
entrada distinta. Uma estratégia simples para aumentar a quantidade de dados é
mudar a subabertura usada como referencial e construir novos volumes baseados
nessa nova vista central conforme se observa na Figura 79.

Figura 79 – Deslocamento da vista central em (-1,-1). Fonte: De autoria própria.

Figura 80 – Cada volume construído é associado a uma entrada. Fonte: De autoria própria.

6.1.3 Rotação das imagens LF

Essa técnica é largamente utilizada para o aumento de dados de entrada. Imagens
LF possuem uma particularidade - precisam manter as relações de disparidade. De
acordo com (SHIN et al., 2018), pixels na direção horizontal estão fortemente relacio-
nados entre si nos volumes de vistas horizontais. Ao rotacionar a imagem, de forma
a manter a informação epipolar, esses pixels passam a representar variações no sen-
tido de variação vertical, desta forma, a rotação do volume muda a entrada associada
ao volume criado. Na Figura 80, o volume é associado a entrada horizontal, após a
rotação esse conjunto de vistas passa a ser associado a entrada vertical (Figura 81).
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A mesma lógica é aplicada as demais entradas e volumes.

Figura 81 – Mudança da entrada associada ao conjunto de imagens após rotação. Fonte: De
autoria própria.

6.1.4 Redimensionar o tamanho das imagens

Ao se redimensionar as imagens os valores de diparidades precisam ser ajustados
de forma apropriada. A abordagem novamente é a usada em (SHIN et al., 2018),
onde, tanto as dimensões da imagem, quanto os valores de disparidade são ajustados
multiplicados por um fator de 1/N , onde N assume os valores de 1, 2, 3 ou 4.

6.1.5 Espelhamento da imagem - flipping

O espelhamento não apresenta os mesmos problemas associados a rotação. O
único cuidado a ser observado no espelhamento é a inversão do sinal de disparidade.

6.2 Modelos propostos

Nos últimos anos houve um aumento no uso de técnicas de deep learning na área
de LF, justamente pelas vantagens que existem em relação as técnicas geométricas
tradicionais que demandam um alto consumo de computação devido a quantidade de
dados que envolvem uma simples imagem light field. As principais abordagens atuais
usam redes neurais convolucionais com variadas combinações e arquiteturas.

Nessa seção são apresentados os modelos propostos. O trabalho é constituído por
duas abordagens: (i) modelos derivados diretamente da abordagem EPINET - cha-
mados de EPINET-FAST; (ii) modelos multifluxo com redes em formato u (u-shaped
neural networks) - chamados U-EPINET.
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6.2.1 EPINET-FAST

A arquitetura EPINET-FAST é uma versão simplificada da rede EPINET (SHIN
et al., 2018), buscando maior velocidade de processamento na etapa de extração de
mapas de profundidade. Sua abordagem básica é composta de duas redes idênticas
com três blocos FCN (fully convolutional networks). Cada bloco possui três sequências
iguais de camadas fully convolutional com a seguinte sequência: Conv-ReLU-Conv-
BN-ReLU. Foi usado um kernel 2x2 com stride 1. O kernel e o stride apresentam
essas dimensões reduzidas para medir as pequenas disparidades apresentadas. Isso
é necessário devido a linha base ser estreita em imagens LF produzidas por câmeras
densas (±4 pixels), conforme já citado. As saídas das duas redes de multifluxo são
concatenadas, criando um novo volume de dados com o dobro do tamanho de cada
saída individual, e apresentadas como entrada para uma rede com oito blocos convo-
lucionais. Os sete primeiros blocos são idênticos aos usados nos blocos multifluxos,
apenas o último bloco, responsável por inferir os valores de disparidade, apresenta
uma configuração distinta (Conv-ReLU-Conv). A Figura 82 apresenta a rede EPINET-
FAST.

Figura 82 – EPINET-FAST. Fonte: De autoria própria.

Para cada light field são criados dois volumes usando apenas as vistas que se
encontram na diagonal principal e secundária, ou seja, subaberturas que variam em
um eixo de inclinação de 45° e de 135° criando dois volumes distintos por diagonal
conforme mostrado na Figura 83. Essa é uma simplificação da estrutura usada na
EPINET (SHIN et al., 2018), que usa além das diagonais o eixo horizontal e o eixo
vertical tendo como origem a vista central. A estratégia para aumentar a quantidade
de dados consiste em deslocar a vista central e pegar novas diagonais, usar rotação
de imagem em todas vistas, fazer mudança de escala e flipping.

Para a geração do mapa de disparidade foram construídas a EPINET original (EPI-
NET_TF_20) e três variações da EPINET-FAST básica (Figura 82). Todas foram im-
plementadas no Tensorflow 2.4 usando a API funcional com Python 3.8. As variações
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Figura 83 – Geração do volume de entrada baseado na disposição das vistas capturadas.
Fonte: De autoria própria.

Tabela 7 – Efeito do número de pontos de vista no desempenho (SHIN et al., 2018).

1- stream 2- stream 4- stream

Input views
MSE 2.165 1.729 1.393
Bad pixel ratio
(<0.07px) 7.61 5,94 3,87

da EPINET-FAST básica são as seguintes:

• EPINET-FAST-D Possui a estrutura apresentada na Figura 82.

• EPINET-FAST_0_90 - Possui a estrutura apresentada na Figura 82, mas recebe
com entrada as subaberturas localizadas a 0◦ e 90◦ a partir da vista central.

• EPINET-FAST_45_135 - Possui a estrutura apresentada na Figura 82, mas com
modificação na quantidade de filtros aplicados nos oito blocos finais. Nessa
implementação são usados 210 filtros.

• EPINET-FAST_45_135_F - Semelhante a anterior. A única diferença é o fato
da imagem de saída passar por uma abertura e um fechamento morfológico
para tentar eliminar potenciais distorções. O elemento estruturante de ambas
operações é em forma de cruz com raio igual a 1.

Convém ressaltar que a estrutura semelhante a EPINET-FAST_0_90 já havia sido
explorada no artigo original ((SHIN et al., 2018)) e que já havia sido detectado a inefi-
ciência de se usar apenas dois volumes com entrada as subaberturas localizadas a 0◦

e 90◦ a partir da vista central. A Tabela 7 (SHIN et al., 2018) apresenta os resultados
encontrados pelos autores.
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6.2.1.1 EPINET-FAST com alteração no backbone

Uma das formas de melhorar os indicadores de desempenho tanto da EPINET
quanto da EPINET-FAST, em termos de qualidade do mapa de disparidade gerado,
é aumentando o número de blocos convolucionais para a extração da informação de
profundidade. Essa estratégia pode implicar em aumento no tempo de processamento
e gerar o problema de desaparecimento de gradiente (vanishing gradient).

Em relação ao desaparecimento de gradiente, uma forma usual de evitá-lo é
usando como backbone (estrutura base) a rede ResNet (do inglês Residual Networks)
no modelo de arquitetura proposto. A ResNet usa o conceito de conexões residuais
(shotcuts), que existem dentro dos chamados módulos e/ou blocos residuais. Um
módulo/bloco residual representa uma sequência de convoluções, operações de nor-
malização e ativações ReLU que culminam com uma conexão residual (KROHN; BEY-
LEVELD; BASSENS, 2020). Exemplos de blocos básicos de uma ResNet são apre-
sentados na Figura 84.

Figura 84 – Blocos de construção da ResNet. A esquerda o bloco de construção original pro-
posto em (HE et al., 2016). A direita a variante mais comum que usa um gargalo (bottleneck )
para reduzir o número de canais antes da convolução. As conexões diretas (shotcuts) permi-
tem evitar o desaparecimento de gradiente durante o treinamento. Fonte: Szeliski (2022).

A ResNet impede a perda de gradiente através do uso dos shotcuts entre os blocos.
Os shotcuts somam a entrada de cada conjunto de blocos convolucionais com sua
saída. Isso proporciona a recuperação da informação de gradiente, permitindo redes
mais profundas.

Para a proposta foram criados blocos residuais ajustados aos problemas de restri-
ções impostas pela base estreita entre SAI’s e para gerar dados com bom desempe-
nho na geração dos mapas de profundidade, com tempos de processamento próximos
aos encontrados na EPINET-FAST original.

As variações com backbone ResNet da EPINET-FAST são as seguintes:

• EPINET-RES_1_3_2_ReLU - EPINET com bloco residual da Figura 85c e estru-
tura apresentada na Figura 86. Essa abordagem foi criada para fins de compa-
ração entre os testes.

• FAST-RES_1_3_2_ReLU - EPINET-FAST com bloco residual da Figura 85c e
estrutura apresentada na Figura 87.
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(a) (b)

(c) (d)
Figura 85 – Blocos residuais básicos usados no trabalho. Na Figura (a) o segundo estágio
apresenta convolução com kernel 2x2. Na Figura (b) o segundo estágio apresenta convolução
com kernel 3x3. A Figura (c) apresenta o bloco básico modificado, e a Figura (d) apresenta o
mesmo bloco de (b) adicionado de uma saída ReLU. Fonte: De autoria própria.

• FAST-RES_1_3_1_ReLU - EPINET-FAST com bloco residual da Figura 85d e
estrutura apresentada na Figura 87.
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6.2.2 U-EPINET

A U-Net é uma arquitetura desenvolvida para segmentação de imagens biomédicas
(KROHN; BEYLEVELD; BASSENS, 2020), mas que também é usada para a geração
de mapas de profundidade a partir de imagens monoculares (CANTRELL; MILLER;
MORATO, 2020), e de imagens estéreo (RENTERIA-VIDALES et al., 2020). No caso
de imagens LF, Heber (HEBER; YU; POCK, 2017) propõe usar a U-Net para extra-
ção de mapas de profundidade utilizando como entrada um único volume RGB EPI e
fornecendo na saída um volume de disparidades.

Essa tese propõe uma arquitetura chamada U-EPINET, que é a fusão entre a en-
trada multifluxo da EPINET com a estrutura da U-Net. O resultado é uma rede que
apresenta a extração de características multifluxo na etapa de codificação e usa ape-
nas uma saída na etapa de decodificação. Apesar da U-EPINET ser inspirada na
arquitetura apresentada em (HEBER; YU; POCK, 2017), sua entrada de dados e a
saída diferem substancialmente desse artigo. Na U-EPINET as entradas são volumes
de SAI’s e a saída é diretamente o mapa de disparidade. A Figura 88 apresenta o
modelo geral simplificado dessa fusão de arquiteturas. Nessa figura é possível obser-
var o gargalho crescente e a forma como são concatenadas as saídas multifluxos. A
seguir são detalhados os modelos e estratégias usadas.

Figura 88 – Estrutura u-shaped genérica simplificada da U-EPINET. Fonte: De autoria própria.
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6.2.2.1 U-EPINET Universal

A U-EPINET Universal é a estrutura referencial usada como base para a cons-
trução dos demais modelos. Essa abordagem apresenta uma fusão simples entre as
arquiteturas U-Net e EPINET. A Figura 89 apresenta a U-EPINET Universal de forma
detalhada. Nessa rede as entradas são os mesmos quatro volumes de entrada da
EPINET (SHIN et al., 2018) e cada nível é composto por dois blocos com cama-
das convolucionais, tal como na U-Net original (RONNEBERGER; FISCHER; BROX,
2015). Convém ressaltar que cada bloco convolucional é composto por uma camada
convolucional (Conv-Relu) com kernel 3x3. Em estudos preliminares se constatou
que dependendo do tamanho do kernel e stride usado na etapa de upsampling podem
ocorrer padrões do tipo checkerboard artifacts 3. Na U-Net não é aplicado o padding a
cada bloco, o que resulta em imagens com dimensões menores nas saídas. A fim de
manter padronizado as saídas/entradas nas etapas de enconder /decoder e como o
uso de preenchimento não trouxe nenhum ônus detectado, para fins de simplicidade,
se manteve o padding na U-EPINET.

6.2.2.2 U-EPINET Modelo ingênuo

Os modelos U-EPINET_MODEL-A0 (Apêndice A.0.1) e U-EPINET_MODEL-A1
(Apêndice A.0.2) são modelos ditos ingênuos por reproduzirem a abordagem da U-
EPINET Universal. Conforme observa-se na Figura 90, o modelo U-EPINET-MODEL-
A0 possui apenas um bloco (Conv-BN-ReLU-Conv-BN-ReLU) por nível, tanto na
etapa de encoder como na de decoder. Na etapa de encoder é feita uma cópia por
nível do bloco convolucional de saída de cada ramo multifluxo. Essas cópias são
concatenadas entre si gerando um bloco convolucional quatro vezes maior, que é
usado como entrada das skip-connections. Em cada ramo multifluxo, no enconder,
os blocos passam por um processo de redução de dimensionalidade/downsampling
através do uso da operação de max pooling para dados espaciais 2D 4 com kernel
de tamanho 2x2. Esse processo faz com que as dimensões sejam reduzidas pela
metade mantendo o mesmo número de filtros convolucionais. Na etapa de decoder o
aumento de dimensionalidade/upsampling é feito através da convolução transposta
bidimensional 5 com kernel 4x4 e passo/stride igual a 2 para dobrar as dimensões,
mantendo o número de filtros convolucionais e evitando checkerboard artifacts.

Na etapa de enconder são usadas as seguintes quantidades de filtros/camadas
convolucionais por nível em ordem crescente: 16, 32, 64, 128 e 256. Já na etapa de
decoder, os filtros por nível em ordem decrescente são: 128, 64, 32 e 16.

O modelo U-EPINET-MODEL-A1 (Figura 91) possui a mesma configuração na
3São padrões que lembram tabuleiros de xadrez
4MaxPool2D
5Conv2DTranspose
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etapa de encoder da rede U-EPINET-MODEL-A0. Seu diferencial é na etapa de de-
coder, onde o número de características/filtros por bloco foi modificado buscando ba-
lancear o número de filtros oriundos das skip-connections com a quantidade de filtros
usados nos blocos convolucionais. Desta forma, as convoluções por nível em ordem
decrescente na etapa de decoder são: 512, 256, 128 e 64.

6.2.2.3 U-EPINET Modelo LinkNet

A U-EPINET Modelo LinkNet utiliza a mesma estratégia da LinkNet (CHAURASIA;
CULURCIELLO, 2017) nas skip-connections. Na U-Net para se recuperar a informa-
ção espacial associada a cada filtro na etapa de decodificação, concatena-se a saída
de cada nível de codificação (antes do downsample) com a entrada do primeiro bloco
convolucional no nível equivalente de decodificação. Em uma U-EPINET com modelo
ingênuo, as saídas dos quatro fluxos são concatenadas entre si e depois anexadas
a entrada do nível de decodificação. Essa estratégia dificultou o aprendizado e não
trouxe ganhos em termos de velocidade. A estratégia da LinkNet é somar a saída
do enconder com a entrada equivalente no decoder, assim a informação espacial é
recuperada e o processamento torna-se muito mais rápido. Na U-EPINET Modelo
LinkNet se adotou uma estratégia mista, as saídas das etapas são somadas e o re-
sultante dessa soma é concatenado com a entrada do primeiro bloco convolucional
do decoder. Desta forma, se recupera a informação espacial e se simplifica os fil-
tros resultantes que armazenam as disparidades. Foram criadas duas arquiteturas
U-EPINET Modelo LinkNet: Arquitetura U-EPINET MODEL_B1 (Apêndice A.0.3 ) e
Arquitetura U-EPINET MODEL_B2 (Apêndice A.0.4).

As arquiteturas U-EPINET MODEL_B1 (Figura 92) e U-EPINET MODEL_B2 (Fi-
gura 93) , apresentam um bloco convolucional simplificado (Conv-ReLU). Para down-
sampling as redes utilizam max pooling com kernel 2x2, e para upsampling usam
camadas de convolução transposta bidimensional com kernel 8x8 e stride igual a 2
6. Na etapa de enconder são usadas as seguintes camadas convolucionais por nível
em ordem crescente: 64, 128, 256 e 512; e na etapa de decoder, em ordem decres-
cente: 512, 256, 128 e 64. O único diferencial entre ambos modelos é a última camada
convolucional antes do mapa de disparidade ser gerado. Na U-EPINET MODEL_B1
esse bloco é (Conv-SoftMax) e na U-EPINET MODEL_B2 o bloco permanece como
(Conv-ReLU)

6Para evitar checkerboard artifacts o tamanho do kernel deve ser divisível pelo stride
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6.2.2.4 U-EPINET Modelo com skip-connections convoluidas

Esse modelo utiliza convoluções para agrupar as saídas de cada ramo dos multiflu-
xos de entrada. Antes de concatenar com a entrada do decoder, as saídas do encoder,
por nível, são concatenadas entre si e passam por uma camada de convolução para
gerar um filtro, conforme o destaque na Figura 94. Isso faz com que seja passada uma
combinação de filtros do encoder com o mesmo tamanho da entrada do decoder. A
inspiração para essa abordagem é a propriedade associativa da convolução (Equação
30). Ao invés de apenas somar as convoluções, pode-se gerar uma única saída que
agrupe as entradas e mantenha a informação espacial. Ao se aplicar a estratégia de
aprendizado na skip-conection, se permite que a convolução associada a combinação
de filtros seja inferida. Essa metodologia permite aprender também convoluções não
lineares.

(f ∗ h) ∗ g = f ∗ (h ∗ g) (30)

Figura 94 – Skip-connections convoluidas. Fonte: De autoria própria.

O modelo usado é o mesmo U-EPINET MODEL_B2, com o uso de skip-
connections com convoluções.

6.3 Conclusão

Esse capítulo apresentou duas novas abordagens para a geração de mapas de
profundidade a partir de imagens LF. A primeira abordagem explora a poda de fluxos
de entrada na EPINET (SHIN et al., 2018) e propõe soluções a partir de modificações
nas camadas convolucionais e filtragens morfológicas. Já a segunda abordagem é



123

totalmente nova, apresentando soluções híbridas entre a entrada multifluxo, redes U-
Net e LinkNet. No próximo capítulo são avaliados os desempenhos dessas redes em
relação a EPINET.



7 RESULTADOS EXPERIMENTAIS

Nessa etapa, a partir da idealização e modelagem propostas no capítulo anterior,
foram construídas as redes neurais e realizados os testes de desempenho.

7.1 Plataforma dos experimentos

Os experimentos foram realizados em um Intel®Core™ i9-9900KF CPU
@3.60GHz × 16, com uma placa de vídeo Nvidia Titan V, rodando no sistema operaci-
onal Ubuntu 20.04.4 LTS-64 bits. Os experimentos são avaliados usando a ferramenta
padrão para LF, o 4D Light Field Benchmark. Esse modelo pode ser rodado local-
mente, ou os dados podem ser enviados para o site 1. Optou-se por rodar localmente
devido ao tempo de resposta do site. O benchmark tem como entrada imagens LF
padrão do 4D Light Field Dataset, com tamanho de 512x512x9x9.

7.2 4D Light Field Benchmark Dataset

O dataset se concentra em cinco problemas/desafios que imagens LF apresentam:
(i) limites de oclusão; (ii) estruturas finas; (iii) baixa textura; (iv) superfícies lisas; e (v)
ruído da câmera. As cenas fornecidas são renderizadas sinteticamente em virtude da
imprecisão na acurácia que ocorre ao se usar imagens reais para gerar o ground truth.
Segundo os autores (WANG et al., 2016), para criar um ground truth mais acurado em
uma imagem real, seria necessário o uso de algoritmos de visão computacional para
realizar esse processamento, o que não é o foco do benchmark.

A cenas geradas são divididas em cenas estratificadas 2 e fotorrealísticas 3. As
cenas estratificadas são imagens simples dedicadas a apenas um grupo limitado dos
problemas citados, permitindo desacoplar a análise de desempenho para cada pro-
blema individualmente (WANG et al., 2016). As cenas estratificadas são:

1https://lightfield-analysis.uni-konstanz.de/benchmark/table?column-type=images&
metric=badpix_0070

2Em inglês stratified scenes
3Em inglês fotorealistic scenes

https://lightfield-analysis.uni-konstanz.de/benchmark/table?column-type=images&metric=badpix_0070
https://lightfield-analysis.uni-konstanz.de/benchmark/table?column-type=images&metric=badpix_0070
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• Backgammon - Cena projetada para avaliar a interação entre estruturas finas,
limites de oclusão e diferenças de disparidade;

• Dots - Cena projetada para avaliar o efeito do ruído da câmera na reconstrução
de objetos com tamanhos variados;

• Pyramids - Cena projetada para avaliar o desempenho do algoritmo entre ima-
gens com geometria convexa versus geometria côncava, e geometria arredon-
dada versus geometria planar;

• Stripes - Cena projetada para avaliar a influência da textura e contraste nos limi-
tes de oclusão.

O segundo conjunto de imagens é composto por cenas sintéticas fotorrealísticas
visando emular situações complexas do mundo real. Esse tipo de imagem contém de-
safios potencialmente significativos em combinações espaciais dos objetos na cena.
Cenas fotorrealísticas permitem avaliação de desempenho em estruturas finas, áreas
de oclusão complexas, superfícies planas inclinadas e superfícies não planas contí-
nuas (WANG et al., 2016).

7.3 Métricas usadas

O conjunto de métricas usadas no 4D Light Field Benchmark (WANG et al., 2016)
está dividido em três abordagens: (i) métricas de avaliação geral - aplicável a todas
as cenas; (ii) métricas para cenas estratificadas; e (iii) métricas para cenas fotorrea-
lísticas. As métricas usam o mapa de disparidade estimado pelo algoritmo chamado
de d ou algo, o mapa de disparidade real gt (do inglês ground-truth) e a máscara de
avaliação M, que será associada a uma característica específica.

7.3.1 Métricas de avaliação geral

O MSE é erro médio quadrático sobre todos os pixels em relação a máscara de
avaliação M multiplicado por 100 (Equação 31).

MSEM =

∑
x∈M

(d(x)− gt(x))2

|M|
∗ 100. (31)

Já o BadPix(t) fornece a porcentagem de pixels discrepantes dentro da máscara
M com valores maior que um limiar/threshold t, conforme a Equação 32. Podemos
interpretar de forma simplificada como abs(gt−algo) > t para uma máscara específica.
Os valores default usados no benchmark para t são: 0.01, 0.03, 0.07.

BadPixM(t) =
|{x ∈ M : |(d(x)− gt(x))| > t}|

|M|
. (32)
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A métrica Q25 apresenta o 25° percentil dos erros de disparidade. Ou seja, o erro
máximo de disparidade absoluta dos melhores 25% pixels multiplicado por 100. Por
fim, a métrica Runtime é o tempo de execução em segundos;

7.3.2 Métricas para cenas fotorrealísticas

Em imagens fotorrealísticas as métricas avaliam condições relacionadas a aspec-
tos gerais dos mapas de disparidade gerados.

Para medir o desempenho do algoritmo em superfícies planas e/ou em regiões
de curvas suaves se usa uma métrica chamada Bumpiness , ou ondulação em por-
tuguês (Equação 33). Essa medida estima a suavidade associada, mas não mede
desorientação ou deslocamento na LF (WANG et al., 2016).

Bumpiness =

∑
x∈M

min(0.05, ||Hf (x)||F )

|M|
∗ 100. (33)

A ondulação pode ser aplicada em planos irregulares (bumpiness planes) onde
retorna a média da norma de Frobenius(F ) da matriz Hessiana (H) de (gt− algo) em
regiões planas, multiplicada por 100; e também pode ser aplicada em superfícies com
continuidades irregulares (bumpiness planes), onde retorna a média da norma de
Frobenius da matriz Hessiana de (gt− algo) em regiões não planas lisas, multiplicada
por 100 (WANG et al., 2016).

O desbaste fino (fine thinning) retorna a porcentagem de pixels em torno de es-
truturas finas com (gt − algo) > 0, 15. O cálculo do fine thinning é feito pela Equação
34, onde M é a mascara para pixel de estruturas finas. Já o engrossamento fino
(fine fattening) retorna a porcentagem de pixels em torno de estruturas finas com
(gt − algo) < −0, 15. A Equação 35 realiza o cálculo do fine fattening, onde M é a
mascara para pixels em torno de estruturas finas.

ThinningM(t) =
|{x ∈ M : gt(x)− d(x) > t}|

|M|
. (34)

FatteningM(t) =
|{x ∈ M : gt(x)− d(x) < t}|

|M|
. (35)

As outras métricas associadas a imagens fotorrealisticas são:

• Descontinuidades - Discontinuities, porcentagem de pixels nas regiões de des-
continuidade com abs(gt− algo) > 0, 07;

• Erro angular mediano de superfícies normais em regiões planas - median
angular error planes ou MAE Planes;

• Erro angular mediano de superfícies normais em regiões lisas e não planas
- median angular error continuities surfaces ou MAE Continuities Surfaces.
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7.3.3 Métricas para cenas estratificadas

Conforme dito anteriormente, as cenas estratificadas possuem características se-
lecionadas para explorar problemas específicos associados as imagens LF. A seguir
são detalhadas as métricas por cena.

A cena Backgammon é idealizada para avaliar a interação de estruturas finas,
limites de oclusão e diferenças de disparidade. Para esse fim, a cena calcula o es-
pessamento de primeiro plano pela métrica Foreground Fattening que é definido nas
bordas de oclusão em uma máscara M que só possui os pixels de fundo conforme a
Equação 36, onde h é a soma do plano de fundo BG com o primeiro plano FG dividido
por 2 (Equação 37). Assim essa métrica retorna a porcentagem de pixels em torno de
estruturas finas cuja estimativa de disparidade está mais próxima do primeiro plano do
que do plano de fundo.

FG_Fattening =
|{x ∈ M : d(x) > h}|

|M|
. (36)

h =
BG+ FG

2
. (37)

O processo para calcular o afinamento do primeiro plano pela métrica Foreground
Fitting segue um raciocínio semelhante onde é calculada a porcentagem de pixels em
estruturas finas cuja estimativa de disparidade está mais próxima do plano de fundo
do que do primeiro plano (Equação 38).

FG_Fitting =
|{x ∈ M : d(x) < h}|

|M|
. (38)

Conforme dito anteriormente, a cena Pyramids é usada para avaliar o desempe-
nho em imagens LF entre estruturas com geometria convexa versus geometria côn-
cava; e entre geometria arredondada versus geometria planar. Para esse objetivo se
usa a equação de ondulação (Equação 33) com uma máscara M adequada. Assim
ela calcula a ondulação paralela (métrica Bumpiness Parallel) que retorna a média
da norma de Frobenius da matriz Hessiana de (gt − algo) em uma dada região plana
M; e a ondulação inclinada (métrica Bumpiness Slanted) que calcula a média da
norma de Frobenius da matriz hessiana de (gt− algo) em uma dada região plana M.

A cena Stripes avalia a influência da textura e do contraste nos limites com oclu-
são, para isso ela usa o Badpix com máscaras M para cada tipo de situação, tendo
o valor do threshold t igual a 0, 07. As métricas implementadas são:

• Bright Stripes - listras claras, porcentagem de pixels na máscara M sendo
abs(gt− algo) > 0, 07;

• Dark Stripes - listras escuras, porcentagem de pixels na máscara M sendo
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abs(gt− algo) > 0, 07;

• Low Texture - baixa textura, porcentagem de pixels na máscara M sendo
abs(gt− algo) > 0, 07

Já a cena Dots estuda o efeito do ruído da câmera na reconstrução de objetos
de tamanhos variados. Para gerar uma aproximação do ruído térmico e do ruído de
disparo de uma câmera LF foi adicionado ruído Gaussiano com variações lineares
crescentes entre 0, 0 e 0, 2, seguindo a ordem de disposição dos objetos na linha prin-
cipal (WANG et al., 2016). A quantificação da robustez contra ruído é calculada pelo
MSE aplicado ao plano de fundo (WANG et al., 2016). Para mensurar a sensibilidade
em pequenas geometrias é calculada a porcentagem de pontos detectados, onde um
ponto conta como detectado se a maioria de suas estimativas de disparidade local for
distinguível do plano de fundo por estar com um escore maior que 50% em relação ao
ponto real indicado no ground truth, dado o BadPix(t) com threshold t de 0, 4.

7.4 Implementação e testes

Nessa seção são apresentados os cenários explorados, testes realizados e de-
sempenho apresentado.

7.4.1 Estudo preliminar e adequação dos códigos

A primeira etapa consiste em transpôr a rede EPINET (SHIN et al., 2018)4 para os
mesmos parâmetros usados nesse trabalho, afim de avaliar o tempo de execução. O
código original usa a API sequencial do Tensorflow com Keras (que não é integrado a
essa API) e Python 2.x. O primeiro passo foi atualizar o código para a versão Python
3.7 e Tensorflow 2.4, que possui a API Keras integrada, de forma a trabalhar com am-
bientes com máxima similaridade. Cabe ressaltar que o tempo de execução varia de
acordo com o hardware usado, por isso a importância de garantir o mesmo ambiente
para fins de comparação. O próximo passo foi comparar os resultados que rodaram
localmente com os que foram disponibilizado no site do 4D Light Field Benchmark.

As configurações são as seguintes:

• 4D Light Field Benchmark

– EPINETFCN: EPINET usando as entradas 0° , 90° , 45°, 135°;

– EPINETFCN9x9: modelo que usa todos os pontos de vista 9×9.

• Benchmark local

– EPINET_TF_20: Atualização da EPINETFCN rodando localmente.
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Figura 95 – Métricas de comparação entre as arquiteturas EPINET. Fonte: De autoria própria,
gerado no software 4D Light Field Benchmark.

Conforme se observa na Figura 95, o comportamento para as cenas foi bastante
próximo ao apresentado pelo site de benchmark, inclusive com desempenho melhor
em alguns critérios. Sendo os três principais: MSE, MAE Planes e MAE Contin surfa-
ces próximos do publicado. Na Figura 96 se observa que diferenças entre o apresen-
tado no dataset e o obtido, permite usar a rede EPINET_TF_20 para fins de compara-
ção.

7.4.2 EPINET-FAST: primeiro cenário

Para a geração do mapa de disparidade foram construídas três variações da
EPINET-FAST (Figura 82). Para esse cenário se fez variações tanto na qualidade de
entradas (volumes usados) quanto na quantidades de filtros utilizados nas camadas
convolucionais, a fim de comparação entre os desempenhos.

As variações da EPINET-FAST são as seguintes:

• EPINET-FAST-D Possui a estrutura apresentada na Figura 82.

• EPINET-FAST_0_90 - Possui a estrutura apresentada na Figura 82, mas recebe
com entrada as subaberturas localizadas a 0◦ e 90◦ a partir da vista central.

• EPINET-FAST_45_135 - Possui a estrutura apresentada na Figura 82, mas com
4disponibilizada em https://github.com/chshin10/epinet

https://github.com/chshin10/epinet
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Figura 96 – Comparação entre os algoritmos EPINET. A primeira coluna ilustra os mapas
de disparidade dos algoritmos. A segunda coluna representa a diferença de disparidade em
relação ao ground truth. As áreas brancas representam estimativas altamente precisas, es-
timativas muito próximas nas áreas azuis e muito distantes nas áreas vermelhas. A terceira
coluna apresentam o comportamento dos algoritmos em relação ao desempenho mediano.
Amarelo representa desempenho médio, verde acima da média e vermelho abaixo da média.
Fonte: De autoria própria, gerado no software 4D Light Field Benchmark.

modificação na quantidade de filtros aplicados nos oito blocos finais. Nessa
implementação são usados 210 filtros por bloco.

• EPINET-FAST_45_135_F - Semelhante a anterior. A única diferença é o fato da
imagem de saída passar por uma abertura e um fechamento morfológico para
tentar eliminar potenciais distorções.

Observa-se na Figura 97 que as redes propostas apresentarem desempenho me-
nor que a (EPINET_TF_20) em termos de MSE. O pior desempenho fica com EPINET-
FAST_0_90, enquanto as outras estratégias com apenas os fluxos das vistas a 45◦ e
135◦ podem se aproximar bastante do desempenho da EPINET_TF_20.

A Figura 98 mostra que o erro médio quadrático depende muito das caracterís-
ticas da imagem. Cenas como a Boxes, que possui muita informação horizontal e
vertical, apresentam um bom desempenho do algoritmo EPINET-FAST_0_90. Apesar
desse desempenho específico, percebe-se que o algoritmo EPINET-FAST-D também
se aproxima bastante em termos de MSE. Isso sugere que os fluxos das diagonais
mantêm informação vertical e horizontal.

Pela tabela 8 percebe-se que o tempo de processamento da EPINET é alto para
uso em tempo real. Por outro lado, as podas de fluxos de entrada reduziram em média
o tempo de processamento em ≈ 1/3. Esse ganho de velocidade somado a pequena
queda de desempenho em outras métricas pode justificar a poda de duas ramificações
de entrada. Importante ressaltar que o tipo de imagem LF impacta diretamente no de-
sempenho. Por exemplo, o erro quadrático médio (MSE) da EPINET_45_135_F é de
0, 24 para a cena Cotton (Figura 98), que é menor que da EPINET_TF_20 que pos-
suí 0, 28. Mas para a segunda imagem (Boxes), o MSE da EPINET-FAST_45_135_F
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Figura 97 – Métricas de comparação entre as arquiteturas propostas. Fonte: De autoria pró-
pria, gerado no software 4D Light Field Benchmark.

passa para 9, 71 e o MSE da EPINET_TF_20 se torna o menor entre todos algoritmos
avaliados, com o valor de 6, 39.

Tabela 8 – Comparação entre os tempos de processamento da EPINET (SHIN et al., 2018) e
a FAST-EPINET em segundos.
Algoritmo EPINET_TF_20 EPINET_0_90_H EPINET_45_135 EPINET_45_135_F EPINET-FAST-D
Cena MSE runtime MSE runtime MSE runtime MSE runtime MSE runtime
Boxes 6,3893 13,5446 6,79043 4,72332 9,4500 7,8325 9,7144 6,1787 8,8249 4,7120
Cotton 0,2798 0,3290 0,36449 0,10658 0,3567 0,1763 0,2435 0,1516 0,2855 0,1070
Dino 0,3146 0,3281 3,30862 0,10541 0,2561 0,1758 0,6051 0,1557 1,7363 0,1024
Sideboard 0,7453 0,3246 0,90149 0,10585 0,9417 0,1797 0,9741 0,1523 0,9354 0,1096

A Figura 99 mostra a comparação entre os algoritmos citados. Pode-se perceber o
desempenho próximo nos mapas de disparidades gerados.

7.4.3 EPINET-FAST: segundo cenário

Esse cenário explora o desempenho da EPINET-FAST com backbone ResNet. As
variações criadas são as seguintes:

• EPINET-RES_1_3_2_ReLU - EPINET com bloco residual da Figura 85c e estru-
tura apresentada na Figura 86. Essa abordagem foi criada para fins de compa-
ração entre os testes.

• FAST-RES_1_3_2_ReLU - EPINET-FAST com bloco residual da Figura 85c e
estrutura apresentada na Figura 87.
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Figura 98 – Comparação do MSE entre as arquiteturas usando as cenas: Cotton, Boxes,
Dino. Fonte: De autoria própria, gerado no software 4D Light Field Benchmark.

• FAST-RES_1_3_1_ReLU - EPINET-FAST com bloco residual da Figura 85d e
estrutura apresentada na Figura 87.

A Figura 100 mostra o impacto nas métricas no uso do backbone ResNet.

7.4.4 Discussão sobre os resultados

Em ambos cenários se fez variações tanto na qualidade de entradas (volumes usa-
dos), quanto nas quantidades de filtros utilizados nas camadas convolucionais. Foram
realizados os seguintes estudos de amplitude em relação a rede EPINET: variação
do número de redes convolucionais, troca do backbone para ResNet e alteração do
número de entradas. Se constatou que os elementos que causam mais impacto na
velocidade de processamento, uma vez a rede treinada, é a quantidade de cama-
das convolucionais e o número de filtros associados a cada camada. Ao se reduzir o
número de entradas para apenas dois fluxos, se tem um ganho de velocidade de apro-
ximadamente 3 vezes, sendo que o problema de degradação na qualidade do mapa
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Figura 99 – Métricas de comparação entre os algoritmos EPINET-FAST. Fonte: De autoria
própria, gerado no software 4D Light Field Benchmark.

de disparidade de saída pode ser tratado com acréscimos de mais camadas ou filtros
convolucionais, ou com tratamento na saída com filtros tradicionais.

O uso do backbone ResNet apresentou melhoras de desempenho em relação a
EPINET-FAST do primeiro cenário, conforme se observa pela Figura 101. O tempo de
runtime é ligeiramente maior, mas em termos de MSE a melhora é significativa. Isso
indica que a estrategia de shotcuts da ResNet permitem alcançar um desempenho
melhor que a EPINET-FAST do primeiro cenário e manter o tempo de execução em
um patamar próximo.

7.5 U-EPINET

A U-EPINET é uma fusão entre a entrada multifluxo da EPINET com a estrutura
de uma U-NET. Dessa forma, ela é uma rede que realiza a extração de características
multifluxo na etapa de codificação e usa apenas uma saída na etapa de decodificação.
Nessa seção é apresentado o estudo realizado com a U-EPINET

7.5.1 U-EPINET-MODEL-A

Os modelos A são baseados na estrutura geral apresentada na Figura 89. Sendo
sua principal característica usar skip-connections baseadas na concatenação entre
entrada e saída. Os modelos usados estão descritos detalhadamente no Apêndice A.

Os dois modelos avaliados nessa seção são:

• A0 descrição no Apêndice A - seção A.0.1;

• A1 descrição no Apêndice A - seção A.0.2.



134

Figura 100 – Métricas de comparação entre as arquiteturas com backbone ResNet e a EPI-
NET original (EPINET_TF_20). Fonte: De autoria própria, gerado no software 4D Light Field
Benchmark.

A Figura 102 mostra que apesar da rede apresentar um desempenho em termos
de velocidade o mais rápido que o modelo EPINET-FAST, o mesmo não ocorre com
outros parâmetros. A tabela 9 demonstra a discrepância entre MSE e tempo de exe-
cução. As modificações de balanceamento impostas no MODEL_A1 se mostrou efe-
tivo, mas não o suficiente para se aproximar da EPINET-FAST. Essa arquitetura perde
muita definição em virtude do formato de concatenação dos filtros da etapa de codi-
ficação com a entrada da etapa de decodificação. O que aparenta causar a perda
de detalhes. Mesmo assim o balanceamento das skip connections causou melhora
no desempenho das redes. Para fins comparativos, a Figura 103 demonstra que os
mapas de disparidade possuem pouca precisão, mas que existe potencial de melhora
ao se trabalhar na questão de balanceamento e composição dos filtros.

7.5.2 U-EPINET-MODEL-B

Esses modelos trabalham a questão das skip connections de forma híbrida. As
saídas de cada fluxo são somadas e depois concatenadas a entrada do decodificador
no nível correspondente.

Os dois modelos avaliados nessa seção são:

• B1 descrição no Apêndice A - seção A.0.3;



135

Figura 101 – Métricas de comparação entre as arquiteturas com melhores resultados. Fonte:
De autoria própria, gerado no software 4D Light Field Benchmark.

• B2 descrição no Apêndice A - seção A.0.4.

A Figura 104 mostra o gráfico comparativo entre os modelos. Convém ressaltar
que os valores ruins nas métricas objetivas, ocorre em virtude do ruído gerado na
etapa de decodificação. Apesar desses valores desfavoráveis, o modelo MODEL_B1
possui potencial para resolver a questão ruído.
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Figura 102 – Comparação entre saída e valores obtidos com MODEL_A0 e MODEL_A1. Fonte:
De autoria própria, gerado no software 4D Light Field Benchmark.

7.5.3 Discussão sobre os resultados

Essa seção mostrou que a U-EPINET MODEL B possui potencial para resolver o
problema de tempo de processamento. Na Figura 105 observa-se que a qualidade do
mapa de disparidade é próxima da EPINET e da EPINET-FAST. O motivo das métricas
se apresentarem desfavoráveis ao modelo é o ruído gerado na forma de tratamento
das skip connections. O ajuste correto desse parâmetro deve melhorar a relação de
ruído e elevar a qualidade do modelo.

7.6 Conclusão

Este capítulo apresentou dois modelos distintos para a geração de mapas de dis-
paridade, ambos possuem potencial para aplicações que buscam balancear o tempo
de processamento versus a qualidade do mapa. Um dos grandes potenciais é o mo-
delo MODEL_B1 que possui uma boa granularidade no mapa de disparidade, devendo
ser tratada a questão ruído para que o mesmo melhore seu desempenho nas métricas
quantitativas.
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Tabela 9 – Comparação entre os tempos de processamento da MODEL_A0 e MODEL_A1 em
segundos.

Algoritmo MODEL A0 MODEL A1
Cena MSE runtime MSE runtime
backgammon 50,4538 0,0453 28,1674 0,0767
boxes 59,0208 2,3012 15,2162 3,2076
cotton 33,3946 0,0488 5,9795 0,0801
dino 14,8461 0,0500 3,1895 0,0719
dots 20,9963 0,0446 31,2299 0,0703
pyramids 6,6916 0,0442 1,2494 0,0720
sideboard 32,1372 0,0459 11,8280 0,0764
stripes 59,3751 0,0444 17,6984 0,0681

Figura 103 – Comparação entre saída e valores obtidos em MODEL_A0 versus MODEL_A1.
Fonte: De autoria própria, gerado no software 4D Light Field Benchmark.
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Figura 104 – Comparação entre saída e valores obtidos em MODEL_B1 e MODEL_B2. Fonte:
De autoria própria, gerado no software 4D Light Field Benchmark.
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8 CONCLUSÃO

A área de Light Field se encontra em franca expansão e aberta em vários seto-
res de desenvolvimento e pesquisa. Existem muitos trabalhos que se concentram no
estudo de formas de representação, codificação e transmissão. Essa tese abordou o
problema relacionado à extração de informação 3D, através da construção de mapas
de profundidade, inferidas de imagens LF. Os procedimentos aqui expostos esperam
simplificar o uso de informações 3D embutidas em imagens light field, permitindo aos
pesquisadores desenvolverem estudos sem a necessidade de acessar e trabalhar di-
retamente na geometria óptica envolvida na geração das vistas, assim como ocorre
hoje em imagens monoculares e estéreos, onde pesquisadores de processamento de
imagens e visão computacional podem abstrair as informações do hardware usado na
captura e operar diretamente nas imagens.

O trabalho se concentrou em três abordagens complementares:

• Estudo e construção de um dataset de imagens reais usando a câmera Lytro
Illum®;

• Criação da EPINET-FAST, baseada no estudo e modificação da rede EPINET,
rede de referência na área de LF para extração de mapas de profundidade;

• Proposta da U-EPINET, rede u-shaped com entrada multifluxo para extração de
mapas de profundidade.

A etapa de construção do dataset evidenciou algumas limitações do hardware
usado para aquisição de imagens. Um do maiores limitantes é o efeito caixa-preta1,
onde se tem acesso aos dados de entrada e aos dados de saída, mas se desconhece
o funcionamento do processamento envolvido. Isso é bastante evidente nos mapas de
profundidade fornecidos pelos softwares da extinta empresa Lytro ®, que fornece ape-
nas mapas de profundidade relativos entre os objetos para fins de re-focagem. Esse
processamento aparenta aplicar uma espécie de alargamento de contraste no mapa
profundidade gerado, além de outros processamentos citados ao longo do texto, o que

1black-box effect
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dificulta a extração de informação de distâncias absolutas. Mas apesar desses entra-
ves, esse trabalho encontrou características de abertura, valores de ISO e velocidade
do obturador que permitem a geração de mapas de profundidades bem definidos atra-
vés de métodos geométricos externos aos softwares fornecidos com o hardware. A
construção desse dataset com distâncias absolutas bem definidas, somadas à
definição desses parâmetros contribuem para projetos vindouros que trabalhem
com dados reais.

Já a proposta da EPINET-FAST demonstra que subabertures images com varia-
ções nos eixos de 45° e 135° fornecem maior diversidade de informações ângulares do
que o uso de imagens apenas nos eixos vertical e horizontal. Isso pode ser explicado
pelo fato que os eixos a 0° e 90°, em relação a vista central, apresentam maiores con-
centração de disparidades apenas mesmo sentido do eixo. Por exemplo, vistas que
estão no eixo horizontal tende a apresentar maior concentração de disparidades no
eixo horizontal, e poucas no sentido vertical, e vistas que estão no eixo vertical (90°)
tendem a apresentar maior concentração de disparidades no eixo vertical, e poucas
no sentido horizontal. Isso se dá exatamente pela variação angular capturada por es-
sas pilhas de vistas. O trabalho demostra que se pode abrir mão desses dois fluxos
de entradas para se conseguir maior velocidade de processamento. Isso pode gerar
degradações no mapa de profundidade, que podem ser corrigidas através de pro-
cessamento de imagens ordinários como filtragens, operações morfológicas, Markov
Random Field, etc. ou com o uso de mais camadas convolucionais. O problema de
usar mais camadas convolucionais é o tempo de processamento voltar a se aproximar
da rede EPINET original. Desta forma, deve-se procurar um balanceamento entre o
objetivo a ser alcançado e a velocidade de processamento necessária ao se usar essa
arquitetura. Com o uso do backbone ResNet, esse balanceamento foi encontrado e
indica uma possibilidade de exploração em estudos futuros.

Por fim, foi apresentada a rede U-EPINET, que usa o mesmo conceito de quatro
entradas multifluxo, mas com uma estrutura em formato de U (u-shaped). Essa abor-
dagem se mostra bastante promissora, pois o próprio formato de construção da rede
apresenta um processamento mais rápido sem a necessidade de acréscimo de muitas
camadas convolucionais. Uma das contribuições dessa abordagem é o uso de skip-
conections no formato usado pela rede LinkNet e não a proposta de concatenação de
camadas conforme o usado na rede U-Net. Essa rede apresentou bom desempenho
em algumas métricas em relação a EPINET, mas com o tempo de processamento
menor que a da EPINET-FAST. O trabalho mostra que não é interessante usar todos
níveis da U-Net original, pois se perde muitos detalhes, ao mesmo tempo é importante
testar variações nos parâmetros utilizados para uma melhor eficiência na construção
do mapa de profundidade. Outra inovação foi o uso de skip-connections convoluídas
para buscar a correta forma de agregar a saída de cada ramo da entrada multifluxo.



142

A abordagem U-EPINET se mostra bem promissora, e com vários aspectos a serem
explorados.

Desta forma, pode-se concluir que a tese apresenta dois caminhos a serem
seguidos, com especial destaque para a U-EPINET e para a EPINET-FAST com
backbone ResNet, que possuem muitos aspectos a serem explorados e potencial
de uso em tempo real. Para fins de estudo, o código usado está disponível em
https://github.com/MFerrugem/.

8.1 Trabalhos futuros

Uma das limitações desse trabalho e de outras propostas é o uso das mesmas
SAI’s, independente das cenas avaliadas. Em outros trabalhos são usadas outras
SAI’s na construção do volume de entrada, mas que se mantém fixas independente
da cena capturada. Um ponto a ser explorado é a construção de um algoritmo
para a seleção dinâmica das vistas que use informações angulares na construção
do volume de entrada, pois cada cena capturada possui características únicas que
impactam de formas diversas na disparidade, e dessa forma não é interessante usar
sempre as mesmas vistas.

Outro ponto a ser explorado é a busca de uma configuração de hiperparâmetros
visando otimizar o funcionamento da U-EPINET. Variações na quantidade e nas
dimensões dos filtros convolucionais, e o uso de dropout e batch normalization ainda
estão em aberto no uso da U-EPINET.

Por fim, pode-se sugerir a construção de um U-EPINET 3D, onde as SAI’s são
tratadas como volumes 3D em vez de sequências de vistas.

Ainda existe muita coisa a ser feita, mas permitir o fácil manuseio de imagens LF
passa por mais propostas como aqui apresentada. Apesar de não propôr uma solução
definitiva para o problema de extração de profundidade em LFs, essa tese apresenta
para soluções potenciais bem estabelecidas e aponta para novos trabalhos a serem
desenvolvidos.

https://github.com/MFerrugem/
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APÊNDICE A – Modelos U-EPINET

Modelos desenvolvidos a partir da estrutura genérica apresentada na figura 89.
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A.0.1 U-EPINET-MODEL-A0

A tabela 10 apresenta os hiper-parâmetros da rede. A figura 106 apresenta exem-
plos da saída gerada versus o ground-truth. A arquitetura da rede é demostrada deta-
lhadamente na figura 90.

Tabela 10 – Tabela de dados do MODEL_A0.
Características gerais
Otimizador Algoritmo Adam
Learning rate 0,0001
Skip-connections Concatenadas
Quantidade de Filtros no
bloco convolucional de saída 1

Bloco de Convolução
Convolução Filtros 3x3
Passo (stride) 1x1
Normalização Batch normalization
Função de ativação ReLU
Encoder

Quantidade de blocos
de convolução 2

Método de downsample MaxPool2D de tamanho 2x2
Padding same
Quantidade de filtros em cada bloco
convolucional de acordo com o nível crescente 16,32,64,128,256

Decoder
Quantidade de filtros em cada bloco
convolucional de acordo com o nível decrescente 128,64,32,16

Método de upsample Camada de convolução transposta (Conv2DTranspose),
com filtro de tamanho 4x4, passo (stride)=2

Padding same

Figura 106 – MODEL_A0: Comparação entre saída e valores obtidos. Acima estão o ground-
truth e abaixo os depth maps gerados pela arquitetura. Fonte: De autoria própria
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A.0.2 U-EPINET-MODEL-A1

U-EPINET baseada no Modelo anterior (MODEL-A0), com variação na quantidade
de filtros nos blocos do encoder de forma a balancear valores advindos da skip-
connection com o valor up sampled. A tabela 11 apresenta os hiper-parâmetros da
rede. A figura 107 apresenta exemplos da saída gerada versus o ground-truth. A
arquitetura da rede é demostrada detalhadamente na figura 91.

Tabela 11 – Tabela de dados do MODEL_A1.
Características gerais
Otimizador Algoritmo Adam
Learning rate 0,0001
Skip-connections Concatenadas
Quantidade de Filtros no
bloco convolucional de saída 1

Bloco de Convolução
Convolução Filtros 3x3
Passo (stride) 1x1
Normalização Batch normalization
Função de ativação ReLU
Encoder
Quantidade de blocos
de convolução 2

Método de downsample MaxPool2D de tamanho 2x2
Padding same
Quantidade de filtros em cada bloco
convolucional de acordo com o nível crescente 16,32,64,128,256

Decoder
Quantidade de filtros em cada bloco
convolucional de acordo com o nível decrescente 512,256,128,64

Método de upsample Camada de convolução transposta (Conv2DTranspose),
com filtro de tamanho 4x4, passo (stride)=2

Padding same

Figura 107 – MODEL_A1: Comparação entre saída e valores obtidos. Acima estão o ground-
truth e abaixo os depth maps gerados pela arquitetura. Fonte: De autoria própria
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A.0.3 U-EPINET-MODEL-B1

Esse modelo é possui skip-connections somadas em vez de concatenadas. A ta-
bela 12 apresenta os hiper-parâmetros da rede. A figura 108 apresenta exemplos da
saída gerada versus o ground-truth. A arquitetura da rede é demostrada detalhada-
mente na figura 92.

Tabela 12 – Tabela de dados do MODEL_B1.
Características gerais
Otimizador Algoritmo Adam
Learning rate 0,0001
Skip-connections Somadas
Quantidade de Filtros no
bloco convolucional de saída 1

Bloco de Convolução
Convolução Filtros 3x3
Passo (stride) 1x1
Normalização Não utilizado
Função de ativação ReLU/Softmax
Encoder
Quantidade de blocos
de convolução 2

Método de downsample MaxPool2D de tamanho 2x2
Padding same
Quantidade de filtros em cada bloco
convolucional de acordo com o nível crescente 64,128,256,512

Decoder
Quantidade de filtros em cada bloco
convolucional de acordo com o nível decrescente 512,256,128,64

Método de upsample Camada de convolução transposta (Conv2DTranspose),
com filtro de tamanho 8x8, passo (stride)=2

Padding same

Figura 108 – Arquitetura U-EPINET MODEL_B1: Comparação entre saída e valores obtidos.
Acima estão o ground-truth e abaixo os depth maps gerados pela arquitetura. Fonte: De
autoria própria
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A.0.4 U-EPINET-MODEL-B2

Esse modelo é possui skip-connections somadas em vez de concatenadas. A ta-
bela 13 apresenta os hiper-parâmetros da rede. A Figura 109 apresenta exemplos da
saída gerada versus o ground-truth. A arquitetura da rede é demostrada detalhada-
mente na figura 93.

Tabela 13 – Tabela de dados do MODEL_B2.
Características gerais
Otimizador Algoritmo Adam
Learning rate 0,0001
Skip-connections Somadas
Quantidade de Filtros no
bloco convolucional de saída 1

Bloco de Convolução
Convolução Filtros 3x3
Passo (stride) 1x1
Normalização Não utilizado
Função de ativação ReLU
Encoder
Quantidade de blocos
de convolução 2

Método de downsample MaxPool2D de tamanho 2x2
Padding same
Quantidade de filtros em cada bloco
convolucional de acordo com o nível crescente 64,128,256,512

Decoder
Quantidade de filtros em cada bloco
convolucional de acordo com o nível decrescente 512,256,128,64

Método de upsample Camada de convolução transposta (Conv2DTranspose),
com filtro de tamanho 8x8, passo (stride)=2

Padding same

Figura 109 – MODEL_B2: Comparação entre saída e valores obtidos. Acima estão o ground-
truth e abaixo os depth maps gerados pela arquitetura. Fonte: De autoria própria.



158

APÊNDICE B – Dataset Lytro

Para garantir encontrar imagens com boas características de refocagem, o focus
bracketing foi ajustado para 5 disparos com 10 de depth steps. O focus bracketing faz
com que a câmera tire uma série de fotos cada vez que o obturador é pressionado,
incrementando o foco de acordo com os depth steps. Isso faz com que cenas iguais
possuam variação no depth steps. Isso ocorre com as primeiras cenas da figura 110,
apesar de capturarem a mesma imagem, cada captura possui incremento em seu
depth steps em relação a anterior.

• ISO - 80;

• Velocidade do obturador - 1/100;

• Distância focal - 48 mm, equivalente a 15 mm devido ao fator de corte (crop)
igual a 3, 19.
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Figura 110 – Primeira parte do dataset gerado. Fonte: De autoria própria.
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Figura 111 – Segunda parte do dataset gerado. Fonte: De autoria própria.
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Figura 112 – Terceira parte do dataset gerado. Fonte: De autoria própria.
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Figura 113 – Quarta parte do dataset gerado. Fonte: De autoria própria.
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Figura 114 – Quinta parte do dataset gerado. Fonte: De autoria própria.

Figura 115 – Sexta parte do dataset gerado. Fonte: De autoria própria.
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