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RESUMO

FERRUGEM, Anderson Priebe. Extracao de Mapas de Profundidades de Dense
Light Fields usando Deep Learning. Orientador: Bruno Zatt. 2022. 163 f. Tese
(Doutorado em Ciéncia da Computagédo) — Centro de Desenvolvimento Tecnolégico,
Universidade Federal de Pelotas, Pelotas, 2022.

Diversos sistemas de imageamento utilizam a metrologia por imagem para
medir, identificar, inspecionar e diagnosticar. A demanda crescente por sistemas
de metrologia visual em diversas areas que necessitam de sensores compactos
e robustos tem impulsionado o desenvolvimento de dispositivos para captura. Es-
tes sensores utilizam diferentes grandezas fisicas para o imageamento e calculo
das distancias, cada um com suas limitacbes e vantagens. Entre as tecnologias
emergentes de imageamento, que usam apenas a informacao de luz visivel, temos
destaque para o uso de imagens light field capturadas através de cameras light field
densas ou esparsas, que possuem vantagens intrinsecas em relacdo aos dispositivos
tradicionais. Por exemplo, essas cameras sao robustas em situacdes especificas de
oclusao e também em cenas com ambientes ruidosos (chuva, neve, etc.). Isso faz
com que cameras light field, também chamadas de cameras plendpticas, possuam
potencial de uso como um versatil sensor com multiplas aplica¢des. Essa capacidade
€ pouco aproveitada devido as caracteristicas épticas complexas relacionadas ao
sistema de captura e ao custo computacional do processamento relacionado. Para
se extrair o mapa de profundidade usando métodos geométricos tradicionais €
necessario estimar n-variaveis, atualizar seus valores e realizar novos calculos a
cada mudancga de parametro. Ao se usar redes neurais artificiais, essas relacdes
ja ficam implicitas na propria rede neural, o que permite uma resposta imediata
a modificagdo dindmica dos parametros. Essa tese apresenta duas técnicas para
extragdo de mapas de profundidade de imagens light field densas baseadas em redes
neurais com aprendizado profundo. A primeira proposta simplifica a rede EPINET,
reduzindo o fluxo de quatro entradas para apenas duas entradas. Ja a segunda
proposta explora a rede de entrada multifluxo em uma rede neural convolucional
u-shaped. Cada proposta é explorada e por fim sdo apresentadas suas vantagens
e desvantagens. Ambas propostas calculam mapas de profundidade em tempos
menores que a EPINET original.

Palavras-chave: campo de luz denso. funcéo plendptica. aprendizado profundo. redes
neurais artificiais. visdo computacional.



ABSTRACT

FERRUGEM, Anderson Priebe. Depth Map Extraction of Dense Light Fields using
Deep Learning. Advisor: Bruno Zatt. 2022. 163 f. Thesis (Doctorate in Computer
Science) — Technology Development Center, Federal University of Pelotas, Pelotas,
2022.

Several imaging systems use image metrology to measure, identify, inspect
and diagnose. The growing demand for visual metrology systems in several areas that
require compact and robust sensors has driven the development of capture devices.
These sensors use different physical quantities for imaging and calculating distances,
each with its limitations and advantages. Among the emerging imaging technologies,
which use only visible light information, we highlight the use of light field images
captured through dense or sparse light field cameras, which have intrinsic advantages
over traditional devices. For example, these cameras are robust in specific occlusion
situations and also in scenes with noisy environments (rain, snow, etc.). This makes
light field cameras, also called plenoptic cameras, potentially useful as a versatile
sensor with multiple applications. This capacity is little used due to the complex
optical characteristics related to the capture system and the computational cost of the
related processing. To extract the depth map using traditional geometric methods, it is
necessary to estimate n-variables, update their values and perform new calculations
at each parameter change. When using artificial neural networks, these relations are
already implicit in the neural network itself, which allows an immediate response to
the dynamic modification of the parameters. This thesis presents two techniques for
extracting depth maps from dense light field images based on neural networks with
deep learning. The first proposal simplifies the EPINET network, reducing the flow
from four inputs to just two inputs. The second proposal explores the multistream
input network in an u-shaped convolutional neural network. Each proposal is explored
and its advantages and disadvantages are presented. Both proposals calculate depth
maps in less time than the original EPINET.

Keywords: Dense Light Field. plenoptic function. Deep Learning. artificial neural
network. Computer Vision.
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1 INTRODUCAO

Sistemas de metrologia, telemetria, fotogrametria, reconstrucao 3D, odometria vi-
sual, carros autbnomos, robética, microscopia, € outros sistemas que usam imagea-
mento para extrair medidas de uma cena, em muitas situagdes necessitam de sen-
sores compactos e robustos. Estes sensores usam varios tipos de grandezas fisicas
para realizar o imageamento e o calculo das distancias, entre os mais usados pode-se
citar: o radar (ondas eletromagnéticas), sonar (ondas sonoras), LiDAR/ToF (luz/laser
pulsado), cameras estéreo (imagem 3D) e cameras RGB-D (uma camera 2D e uma
camera infravermelho combinadas). Sendo que cada tipo de sensor possui suas limi-
tacdes e vantagens.

Por exemplo, sistemas como o LiDAR possuem um alto desempenho no calculo
de distancias, mas a medida que os objetos se distanciam de seu ponto de disperséo
radial se perde a resolucéo e, dependendo da localizacédo e distanciamento, objetos
entre dois feixes ou em uma area de sombreamento nao sao detectados. Tal com-
portamento pode ser observado na Figura 1, onde a sombra escura é na verdade a
regido onde o laser ndo € projetado, visto que o0 mesmo foi bloqueado por um objeto
mais proximo.

Figura 1 — Objetos podem ficar oclusos na regido escura. Fonte: Luminar Technologies/IEEE
Spectrum - Hecht (2017)

O mesmo pode ocorrer em cameras RGB-D que projetam um padrao salpicado de
pontos em frequéncia infravermelha (Figura 2), portanto n&o visivel para humanos, em
uma cena. Como as posicoes relativas e diferencas entre os pontos é fixa, o célculo
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da distancia dos objetos e do mapa de profundidade de uma cena é feito a partir das
distorcdes causadas nesse padrdo. Como se trata de uma projecéo, também existem
regides de sombra. Além disso, um sistema RGB-D sofre interferéncia de outras fontes
de infravermelho (como o sol) e pode gerar falsos positivos através da deteccao de
padroes semelhantes gerados de forma aleatéria por essas fontes externas.

D435 projector 7 b D415 projector

Figura 2 — Padrdes de pontos infravermelhos projetados pelas cameras RGB-D Intel Realsense
D435 e D415. Fonte: Grunnet-jepsen et al. (2020)

Os sistemas citados, dependendo das condigdes de uso e necessidades, sao ro-
bustos, mas também com limitacdes severas. O LiDAR, por exemplo, se for usado de
forma massiva em carros autbnomos, pode vir a causar lesées nas retinas de pedes-
tres e danificar cameras digitais, justamente por ser um feixe laser pulsado, além de ter
baixo desempenho em situagdes climaticas adversas e possuir um custo mais elevado
em relagdo a outros sensores. Ja cameras digitais, que usam a faixa de frequéncia
eletromagnética visivel para humanos, possuem um potencial de aplicacdo que vai
além do calculo de distancias. Elas podem ser usadas para reconhecimento de ob-
jetos, padrdes, avaliacdo de contexto, reconhecimento de estruturas, etc. Cameras
monoculares podem calcular a distancia entre objetos através do conhecimento da
geometria projetiva da cdmera usada ou através de marcos pré-estabelecidos na ima-
gem. Ja sistemas de visdo estéreo podem calcular a disténcia atraves da triangulagéo
entre dois planos focais, tendo essa estrutura a capacidade de tratar alguns tipos de
oclusdes e ruidos. Entre tecnologias emergentes de imageamento, que usam apenas
a informacao de luz visivel, temos destaque para o uso de imagens light field cap-
turadas através de cameras light field densas ou esparsas, que possuem vantagens
intrinsecas em relagao aos dispositivos tradicionais citados.

Cameras LF ou light field" possuem potencial de uso como um versatil sensor com
multiplas aplicacdes (aquisicao de imagens, célculo de distancias, geracao de mapas
de profundidade), desde que superados alguns desafios técnicos comuns em tecnolo-
gias emergentes (calibragao, retificacao, tratamento de ruido, extragdo de informacéo
relevante para constru¢cao de mapas de profundidade, etc.). Importante observar que
se em termos comerciais podemos considerar a tecnologia de light field recente, com

Tem portugués e espanhol campo de luz
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a empresa Raytrix? anunciando a producgdo e comercializa¢cdo de cdmeras com essa
tecnologia em 2010 (cAmera plendptica 2.0) e a empresa Lytro 2 em 2011 (cAmera
plenoptica 1.0). Mesmo sendo uma tecnologia recente, seus conceitos remontam ao
século XIX. Ja em 1846, Michael Faraday (FARADAY, M., 1846) sugeria que a luz e
outras radiagdes ocorrem em “linhas de for¢a”, semelhantes as “linhas de forca mag-
nética”, em outras palavras, um campo de luz. Em 1908 Lippmann (LIPPMANN, G.,
1908), apresenta a “Photographie intégrale” e a primeira mencao a light field é no
trabalho de Gershun em 1939 (GERSHUN, 1939).

Observa-se que em meados dos anos 90 e inicio do século XXI temos o que pode
se chamar de "primeira onda LF". Essa fase comeca com o interesse tedérico na area
e a construcao de protétipos de cameras LF, fato correlacionado com o aumento da
capacidade de processamento, barateamento de sistemas de captura digital e novas
demandas na area de visdo computacional. A partir de 2010 temos uma "segunda
onda LF" com o langcamento comercial das cAmeras das empresas Lytro e Raytrix
e o0 crescimento do interesse na area e disponibilidade de datasets. Ja nos ultimos
seis anos, percebe-se uma "terceira onda LF'" com desenvolvimento de novos dis-
positivos, tanto comerciais como prototipos, baseados em light field para captura e
imageamento, junto com um aumento significativo de pesquisas e projetos. Isso se
deve ao amadurecimento da area e a demanda por informag¢des 3D e possibilidade
técnica de criacao dos dispositivos. Por se tratar de uma area em franco desenvol-
vimento, muitos problemas permanecem em aberto, por exemplo, como representar,
transmitir e armazenar uma imagem light field, quais técnicas devem ser usadas para
a calibracdo das imagens das cameras, como tratar regides fronteiricas entre as mi-
crolentes, como construir monitores e telas para esse tipo de formato, etc. Portanto
€ uma area com varios desafios em aberto e com crescente desenvolvimento teorico,
pratico e comercial.

1.1 Motivacao

Como ja dito, as cameras plendpticas possuem um potencial de uso como um sen-
sor versatil com multiplas aplicagdes no campo da metrologia, robética, carros auté-
nomos € etc. Esse potencial tem sido pouco explorado em virtude das caracteristicas
Opticas complexas dessas cameras e a quantidade de processamento necessario para
tratar a geometria projetiva usada na captura de imagens, principalmente quando néao
se tem acesso a informacdes estruturais geométricas dos dispositivos. As imagens LF
capturadas por cameras plendpticas densas sao convertidas para sequéncias de vis-
tas com pequenas variagoes, o que permite a construcdo de mapas de profundidade,

2raytrix .de
3A empresa Lytro encerrou suas atividades em margo de 2018


raytrix.de

26

com a devida retificacdo, mesmo em ambientes externos sem controle da iluminagéo.
A principal limitagdo desse tipo de dispositivo s&o as linhas de base muito estreitas e
com ruido, o que torna as estimativas de profundidades dificeis (SHIN et al., 2018).

Apesar dessas adversidades, cameras plenépticas possuem vantagens intrinsecas
em relacao a sistemas LiDAR (Light Detection And Ranging), Radar e cameras RGB-
D. Por exemplo, cadmeras LF, também chamadas plendpticas, capturam informagéo
espacial e angular da cena, sendo mais robustas em condi¢coes extremas climaticas
gue geram muito ruido, como chuva forte e neve, possuindo bom desempenho em
situacdes especificas de oclusdo e com capacidade de remogao de reflexos e me-
lhoramento de imagens com baixa iluminacao (BAJPAYEE; TECHET; SINGH, 2018;
ZANG et al., 2019).

O processamento de uma LF, estatica ou dinamica, possui varias etapas: deco-
dificacao, calibracédo, retificacdo, célculo da faixa refocavel, construcdo do mapa de
profundidade, etc. Essas etapas em geral usam transformacoes lineares para a cons-
trucdo do mapa de profundidade. Mas uma das principais barreiras € gerar o mapa de
profundidade em tempo real a partir de imagens light field, uma vez que temos algo
semelhante a varias cameras de captura gerando dados com alta dimensionalidade
4 0 que leva esse procedimento apresentar um custo consideravel em matéria de
tempo de processamento e uso de recursos computacionais (WU et al., 2017). Uma
forma de reduzir esses calculos é usando um aproximador universal de fungdes que
aprenda essas relagdes e retorne os valores diretamente. Um dos mais conhecidos
algoritmos aproximador universal de fungdo usado na area de aprendizado de ma-
quina é o perceptron multicamada, que pode ser usado para receber como entrada
as imagens LF, aprender as relacbes Opticas e os parametros usados na captura,
diretamente do volume de entrada, e fornecer na saida o mapa de profundidade es-
timado. Essa abordagem reduz a complexidade ao trabalhar apenas com a imagem
LF, substituindo os céalculos geométricos usados para inferir a disparidade entre vistas,
que devem ser recalculados a cada nova cena, por uma rede neural que aprende a
relacdo entrada/saida

1.2 Objetivos

O objetivo principal desse trabalho foi a constru¢cdo de um sistema com aprendi-
zado de maquina, baseado em redes convolucionais, que gera o mapa de profundi-
dade a partir do aprendizado das relagdes entre as disparidades entre as vistas e a
profundidade associada a esses deslocamentos, usando apenas como entrada ima-
gens LF produzidas de forma sintética ou real por uma camera plendptica 1.0 do tipo
denso, virtual ou real, e com velocidade de processamento que permitam 0 seu uso

4do inglés high dimensional data
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em sistemas near real time ou mesmo em sistemas real time.
No desenvolvimento da pesquisa foram identificados os seguintes subproblemas:

» Definir um dataset adequado para a abordagem proposta;

Estudo das abordagens existentes para a solu¢ao do problema apresentado;

» Construcdo de um pipeline de aprendizado de maquina para testar variacoes
das redes neurais utilizadas;

» Desenvolvimento da solugao para o problema exposto.

No decorrer do levantamento dos dados para esse projeto foi possivel identificar
gue esse € um tema de pesquisa promissor e que existe um crescente interesse co-
mercial na area.

1.3 Organizacao do texto

O texto esta organizado de forma a apresentar inicialmente o fundamento tedrico
necessario para o desenvolvimento e compreensao do trabalho e depois apresenta a
solucao proposta. Os Capitulos 2 e 3 apresentam as bases em dptica e das técnicas
de aprendizado de maquina usadas. O Capitulo 2 apresenta as informacodes sobre
imageamento, 6ptica, light field e calculo de profundidade. Ja o Capitulo 3 apre-
senta uma breve introducdo a redes neurais, com enfoque no aprendizado profundo.
No Capitulo 4 sdo apresentados trabalhos relacionados e como o mercado tem se
desenvolvido na area de light field. No Capitulo 5 sdo apresentados os materiais uti-
lizados e a abordagem utilizada para o desenvolvimento da solugdo proposta, que é
apresentada no Capitulo 6. Por fim, os resultados dos testes sdo apresentados no
Capitulo 7 e o fechamento da tese com as conclusdes sao feitas no Capitulo 8.



2 CONCEITOS BASICOS DE IMAGEAMENTO

Em sistemas monoculares, informagdes épticas, como distancia focal, em geral
Nao Sa0 necessarios para o processamento das imagens. Ja em sistemas de image-
amento n-dimensionais, onde em um Unico disparo do obturador sdo capturadas n-
pontos de vista, é necessario a compreensao de conceitos elementares da formacao
da imagem, para que se possa trabalhar com alinhamento, triangulagéo, retificacdo
e outros procedimentos relacionados. Desta forma, para a definicdo do escopo do
trabalho é necessario o conhecimento de conceitos Opticos basicos de formacéo de
imagem em um dispositivo light field. Esta se¢do apresenta essas nogdes elementares
envolvidas na captura de imagens usando cameras digitais. Os principios apresen-
tados sdo fundamentais para o entendimento da escolha e construgcdo do dataset e
no calculo do mapa de profundidade.

2.1 Aquisicao de imagens ou imageamento

Imagear é obter ou capturar uma imagem por meio de equipamento imageador.
Um equipamento imageador é um dispositivo que gera imagens de acordo com um
sistema de captura de entrada. Ele pode ser um instrumento 6ptico como uma céa-
mera fotografica, aparelhos de diagndéstico que formam imagens a partir de fontes
diferentes (radiografia, ressonancia magnética, tomografia computadorizada etc.) ou
mesmo um sistema optoeletrdbnico como um escaner, além de varios outros tipos de
equipamentos. Existem varios tipos de dispositivos para aquisicao de imagens fotogra-
ficas conforme a Figura 3. Em virtude das particularidades do trabalho desenvolvido,
0s equipamentos com as caracteristicas dpticas que sédo objetos de estudo sédo as
cameras SLR/DSLR e as cameras digitais sem espelho (mirrorless).

Uma camera "padrao” possui um visor éptico separado da lente da camera. Dessa
forma, tanto a lente como o visor focalizam a cena separadamente, levando a dis-
crepancias entre o que foi enquadrado pelo visor e o que foi capturado pelo conjunto
lente/sensor. Ja em uma camera SLR (abreviacao de "single-lens reflex” em inglés)
existe um espelho que desvia a imagem capturada pela lente para o visor 6ptico. Isso
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Figura 3 — No sentido horario, acima a partir da esquerda, smartphone com camera, camera
compacta, camera sem espelho (mirrorless), e camera SLR digital. Fonte: Mchugh (2019)

permite que o fotdégrafo saiba exatamente o que esta sendo enquadrado pela camera.
Em uma DSLR (abreviacdo de " digital single-lens reflex” em inglés) esse processo é
repetido através de uma tela LCD que mostra a imagem advinda do sensor de cap-
tura. Desta forma, assim como nas SLR analdgicas, as DSLR permitem ao fotégrafo
visualizar diretamente o enquadramento realizado. Um avango em relagédo as DSLR
sao as cameras com lentes intercambiaveis sem espelho (mirrorless) introduzidas em
meados de 2010 (ANG, 2018). Basicamente essas cameras removem 0 visor optico
da DSLR usando apenas a tela de LCD.

2.1.1 Lentes, conjunto de lentes e distancia focal

O que é chamado de forma genérica como lente, na verdade é um conjunto de
lentes, referenciado nominalmente pela sua distancia focal. Sendo que a distancia
focal é a medida em milimetros do ponto de convergéncia (nodal) dos feixes de luz
capturados até a superficie do sensor da camera conforme a Figura 4 (TAYLOR, 2015).

50 mm h /

Canjunto de lentes =

Luz

Sencor

Ponta de canvergencia =%

Eloco camera =

Figura 4 — Exemplo de um conjunto de lentes com distancia focal de 50mm. Fonte: De autoria
propria.

O comprimento focal da lente determina a area/campo de visdo capturada cha-
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mado de FoV (do inglés: Field of View), ou seja, ele determina o angulo de visao,
e 0 quao ampliados os objetos aparecem no quadro de captura. Por angulo de visdo
se entende a medida em graus da cena capturada (TAYLOR, 2015). A Figura 5 apre-
senta um quadro ilustrativo da relagao entre a distancia focal, &ngulo de abertura e
ampliagao.

lente olho de peixe lente grande angular lente padrao lente de focolongo  lente de extremo foco longo

Figura 5 — Distancia focal e angulo de visao. Fonte: Adaptado de Taylor (2015)

2.1.2 Exposicao

A quantidade de luz que ira alcancar o sensor de captura pode ser ajustada di-
retamente por dois controles fisicos (TAYLOR, 2015): A abertura do diafragma e a
velocidade do obturador. A sensibilidade da captura de imagem em relagcéo a quanti-
dade de luz incidente também é determinada pela ISO aplicada ao sensor. A seguir
séo detalhadas essas caracteristicas.

2.1.2.1 Abertura do diafragma

A abertura ou didmetro do diafragma da lente (Figura 6) pode ser alterada atra-
vés do anel de abertura ou sistema equivalente. A abertura afeta a quantidade de
luz que chegara ao sensor ou filme, o que também altera a profundidade de campo
(HEDGECOE, 2005).

O diametro da abertura do diafragma é reduzido por um fator de 1.4 (=~ v/2).
Observa-se que o padrao f-number é criado a partir dos valores arredondados en-
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000

Figura 6 — Abertura do diafragma. Fonte: Tabora (2020)

contrados a partir deste fator de redugéo, o que corresponde a uma reducéo de area
pela metade conforme as relagdes a seguir:

14-14=19%6~2= f/2
20-14=28= f/2.8

28-14=392~4= f/4

Esses valores sdo usados para calcular o f-number/ f-stop. O f-number representa
uma abertura especifica do diafragma definida como a razdo entre o comprimento
focal (f) e o diametro da abertura do diafragma (D): N = f/D (MAITRE, 2017)(BLACK,
2015). Através desse célculo e as variagdes padrao da abertura do diafragma pode-se
gerar a série padrao internacional de f-number:

f/l—= f/14— f/2— /28 = f/4 — /5.6 — f/8 — f/11 — f/16 — f/22 — ...

O calculo do diametro absoluto do diafragma depende do comprimento focal da
lente (BLACK, 2015). Por exemplo, fotografando com uma lente com comprimento de
50 mm com uma abertura de /1.4, o diametro da abertura real da lente é 35,7mm
(50/1.4)(BLACK, 2015). Por este principio, pode-se obter o mesmo diametro de aber-
tura real mudando essas variaveis.

2.1.2.2 \Velocidade do Obturador

O obturador controla o tempo (t) de exposi¢ao total (H) dada ao sensor. O total de
iluminacao da imagem (E;) € dado pelo f-stop da abertura (Equacao 1)(RAY, 1999).
H = Eit (1)

O valor de t é chamado de velocidade do obturador. A estrutura mecénica do
obturador pode variar conforme a Figura 7.
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Obturader de plans focal
fechada

5]

o

(|
Obturador com LEmina Obturader de plane focal

aberte abarta

Figura 7 — Tipos de obturador. Fonte: Adaptado de Hedgecoe (2005)

A velocidade do obturador em geral é utilizada para objetos em movimento ou
em situagcées em que se deseja alterar a quantidade de exposicédo a luz de forma
complementar.

2.1.2.3 Numero ISO ou ISO Speed

O numero ISO ou ISO Speed representa o grau de sensibilidade do sensor a quan-
tidade de luz incidente. Quanto mais alto o valor de do numero ISO utilizado mais
sensivel o sensor é a luz. Esse valor influencia na qualidade da imagem e no ruido
obtido no sensor de captura. O termo speed é associado aos antigos filmes fotografi-
cos, onde o tempo de exposi¢do para a fixagdo quimica da imagem poderia ser mais
rapido ou mais lento. O numero ISO é separado em trés categorias: (i) rapidos; (ii)
meédios; (iii) lentos. Se o sensor esta ajustado com um valor de 1SO alto, isso significa
qgue ele necessita de pouca luz para capturar a imagem, em outras palavras, ele é
mais sensivel e reage rapidamente a exposicao da luz, por isso essa ISO também é
chamada de high ISO speed, quanto maior o valor ISO, mais sensivel a luz. O uso de
um valor errado pode gerar muito ruido, ou baixa qualidade da imagem. Portanto, um
ISO alto/rapido € usado em situagdes de pouca luz, e um ISO baixo é ideal quando os
niveis de luz sdo adequados e se busca mais qualidade com detalhes finos (HEDGE-
COE, 2005). A Figura 8 mostra efeito de se usar um valor de ISO alto em uma cena
com iluminag&o adequada.

Em termos técnicos, um filme monocromatico o valor de 1ISO speed é definido
como S = 0.8/H,,. Onde H,, representa a exposi¢do em um ponto m. H é medido em
lux por segundo. Uma boa exposicao para uma cena externa, neste caso, corresponde
a aproximadamente Hy, = 9.4/Hm (JOHNSON JR., 2017) .

2.1.3 Profundidade de Campo

Profundidade de Campo ou DoF (do inglés Depth of Field) é a regidao em torno do
plano em que se encontra o ponto focal da imagem que permanece em foco (ANG,
2018). Essa regido se encontra tanto a frente como atras do plano do ponto focal
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ISOALTO ISO BAIXO

=¥

150 BAIXO " UISOALTO
Figura 8 — ISO diferentes aplicadas a mesma cena, com a mesma velocidade de obturador. Ao
se usar um ISO de valor alto, a imagem que possui iluminacdo adequada, passa a apresentar
ruido. Fonte: Adaptado de Correll (2021)

conforme se vé na Figura 9.

Porta Focal

Distancia Focal

Profundidade
de campa
(DoF) estreita

Panto Focal

Distancia Foca

4
T Profundidade de campo (CoF) larga

Figura 9 — Dois tamanhos distintos de profundidade de campo aplicadas na mesma cena.
Fonte: De autoria prépria.

A principal forma de controlar a DoF é através da abertura das lentes. Se diminuir-
mos a abertura de lente (por exemplo usando /11 no lugar de f/4) a profundidade de
campo aumenta. Outro fator é a distancia focal da lente. Quanto menor a distancia
focal da lente, maior a profundidade de campo. Por exemplo, para uma mesma distan-
cia, se usarmos uma abertura de lente fixa no valor de /11, a profundidade de campo
€ maior em uma lente de 28 mm se comparada a uma lente de 300mm. Na Figura
10 podemos observar essa relacdo entre quantidade de luz recebida pelo sensor de
acordo com abertura do obturador e sua influéncia na profundidade de campo.

O calculo do DoF ja é bem estabelecido na literatura. Conforme se observa na
Equacéo 2 e na Figura 11, ele possui dois limites, um valor superior e um inferior, que
engloba toda regidao em foco na imagem.
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Figura 10 — Quando a abertura de diafragma diminui o sensor recebe uma quantidade de luz
menor e a profundidade de campo aumenta. Fonte: De autoria prépria.

DoF' = DoF| jmite distante — POF Limite préximo @)
- p e ol
| = e et e
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\// Mty

I Distancia do foco I

Flano do Limite Plano Plano do Limite Flanao do Filme ou
Distante Focal Praximao do sensor digital

Figura 11 — Diagrama representando o circulo de confuséo e sua relagdo como o DoF. Fonte:
De autoria prépria.

Para se determinar os limites inferior e superior do DoF, € necessario usar o con-
ceito de circulo de confusao ou CoC (do inglés circle of confusion). O CoC define
a regiao que se percebe como focada/nitida no sensor (Figura 11). Uma regiao fora
da profundidade de campo possui 0 CoC embagado/desfocado de forma perceptivel
(MCHUGH, 2019).

O limite superior, ou ponto mais distante dentro da profundidade de campo é dado
pela Equacao 3, e o limite inferior pela Equacao 4, onde H é a distancia hiperfocal,
f € o comprimento focal da lente usada e u a distancia do foco.

H.u
DoF| jmite distante = H—(u—f) 3)

Hu
DoF imite préximo = m (4)
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A distancia hiperfocal é a distancia focal que da o maximo de profundidade de
campo. Ela é calculada pela Equacao 5, onde C representa o limite do CoC e N a
abertura (f-number).

f2
N.C ©)

A informacao DoF é importante para determinar a regiao focada na imagem e
permitir o calculo da distancia dos pontos que se encontram no mesmo plano
focal.

H=f+

2.1.4 Resolucao, tamanho do sensor e fator de corte

Uma imagem digital pode ser visualizada como uma matriz 2D onde em cada po-
sicdo é armazenado um valor de intensidade luminosa associada ao pixel que se en-
contra na respectiva coordenada espacial da imagem projetada no sensor de captura.
No caso de imagens coloridas pode-se tratar cada posicdo como um vetor com trés
valores, um para cada canal de cor RGB, ou como trés matrizes de tamanhos idénti-
cos onde cada matriz representa uma imagem com valores de intensidade associados
a um canal de cor. O tamanho dessa matriz junto com a quantidade de dados arma-
zenados para cada pixel individual determinam respectivamente a resolucéo espacial
e a quantizacao da imagem (bit resolution) (SOLOMON; BRECKON, 2010).

A resolucao espacial é a quantidade total de pixels independentes usados para
cobrir 0 espaco visual capturado da cena projetada no sensor. Em geral, esse valor €
representado pelo total de colunas versus linhas, por exemplo: 640x480.

A profundidade de bit determina o valor maximo de intensidade de um pixel, ou
seja, a quantizagao da informagéo da imagem (SOLOMON; BRECKON, 2010).

O tamanho do sensor de captura influencia na geometria das caracteristicas que
serdo expressas na imagem. O tamanho tipico de filmes fotograficos era de 35mm,
esse tamanho foi transportado para os sensores digitais (JOHNSON JR., 2017). Sen-
sores com esse tamanho sdo chamados full frame ou FF. A Tabela 1 mostra alguns
tamanhos de sensores usados em cameras digitais. Para uma comparagao visual a
Figura 12 mostra os tipos mais comuns de sensores.

24.0

15.0

4.29

1/2.5
5.76 23.7 36.0

Figura 12 — Tamanho relativo entre os tipos de sensores. Fonte: Johnson jr. (2017).
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Tabela 1 — Sensores tipicos de cameras digitais (2015). Adaptado de (JOHNSON JR., 2017)

Tipo Proporgao de tela Largura (mm) Altura(mm) Diagonal(mm)
1/3” 4:3 4,8 3,6 6,0

1/2.5” 4:3 5,76 4,29 7,18

11.7” 4:3 7,6 5,7 9,6

1.0” 4:3 13,2 8,8 15,9

4/3” 4:3 17,3 13,0 21,6

APS-C 3:2 22,2 14,8 27,04

FF (35 mm) 3:2 36,0 24,0 43,27
Formato Médio 4:3 43,8 32,8 54,72

Um pixel ndo possui um valor fixo em termos de area ocupada e seu tamanho de-
pende das dimensdes do sensor, diagonal do sensor, largura do pixel e distancia entre
os centros de cada pixel (pixel pitch). Por exemplo, em um sensor de 1/3 polegadas
com 8 megapixels (3264 x 2448), o pixel pitch é de 1,48 pm com 17.272 PPI'. Em sen-
sores APS-C e FF 35mm (que s&o mais comuns em cameras digitais) o pixel pitch é
mais largo (JOHNSON JR., 2017). Em uma camera com sensor FF 35mm é de 8, 42
pm para 12,2 megapixel e 4, 13 pm para 50,6 megapixel (JOHNSON JR., 2017).

O fator de corte (do inglés crop factor) reflete a relagdo da lente com o tamanho
do sensor de captura. Para uma mesma lente fotografica ou objetiva a projecéo sobre
0 sensor serd a mesma, mas a captura total da cena depende do tamanho do sensor.
Sensores menores capturam uma regido menor. Por exemplo, na Figura 13 temos a
comparacao entre a area coberta por um sensor FF e por um sensor APS-C (conforme
a Tabela 1) para a mesma obijetiva.

Entre os sensores padrdao o FF-full frame € o que captura a maior area possivel.
Isso faz com que ele seja usado como referencial. Desta forma, o fator de corte
sempre indica o quanto de cena é capturada em comparacao a um sensor full frame.
Por exemplo, ao se utilizar uma lente de 50mm em um sensor FF, se tem a maxima
area de captura (fator de corte 1). Ao manter a objetiva e todas outras variaveis
constantes, mas utilizar um sensor APS-C com fator de corte 1.6, a regidao capturada
pela Equacéo 6 € equivalente a de uma lente de 80mm (50mm x 1.6 = 80mm).

Area = Lente x Fator de Corte (6)

Portanto para cobrir a mesma area de um sensor FF com uma lente de 80mm em
um sensor APS-C a objetiva usada deve ser de 50mm. Deve-se ressaltar que o Unico
fator que é alterado é a regidao da imagem capturada. A lente de 50mm nao se com-
porta como uma de 80mm em um sensor com fator de corte 1.6. Suas caracteristicas
como profundidade de campo e aberracdes Opticas continuam as mesmas. Apenas

' Pixels Per Inch
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a regiao projetada € equivalente. A Figura 5 permite visualizar essa equivaléncia em
termo de abertura angular.

.

=

Sengor APS-LC

Figura 13 — Simulagao aproximada do fator de corte para um sensor FF e um APS-C com a
mesma lente objetiva. Fonte: De autoria propria.

2.1.5 Consideracoes

Essa secdo apresentou definicbes basilares necessérias para a criacao de data-
sets utilizando cameras comerciais. Essas informag¢des também foram uteis no pro-
cesso de selecdo de datasets ja existentes.

2.2 Imagens com multiplas perspectivas

As cameras citadas até aqui fazem a captura de imagens a partir de um Unico
ponto de vista. Isso resulta na perda de informacdes de profundidades da cena. Para
se obter dados de profundidade, usa-se duas ou mais cameras com caracteristicas e
configuracdes idénticas, mas com variagdes de posicao em relacao a seus eixos ho-
rizontal, vertical ou em ambos. No caso de uma cena estatica, podemos mover uma
camera nesses eixos e capturar a cena a partir de novas perspectivas com sobreposi-
cao de regides entre as imagens.

2.2.1 Visao estéreo

O processo de extracao da informacgéao 3D feito a partir de duas perspectivas distin-
tas € chamado de visédo estéreo (IKEUCHI, 2014). A visdo estéreo serve como base
para entendimento dos métodos usados em imagens com mais de duas perspectivas,
como é o caso das imagens light field.

Para fins de definicdo dos paradmetros usados, em imagens estéreo, cada vista
possui uma matriz de projecdo P e P’ associadas a cada uma das cameras (camera
P e camera P’). Sendo que o apdéstrofo (°) € usado para apontar parametros referentes
ao que é designado como segunda perspectiva, e sua auséncia denota parametros da
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primeira vista. Exemplificando, um ponto espacial tridimensional X, com as coorde-
nadas espaciais (z,y, z), € projetado como a transformacao geométrica x = PX na
primeira perspectiva e como ' = P’'X na segunda (HARTLEY; ZISSERMAN, 2004).
Os pontos = e =’ sdo correspondentes, pois representam a projecao bidimensional do
mesmo ponto X tridimensional. Essa abordagem aponta para trés problemas basicos
(HARTLEY; ZISSERMAN, 2004):

1. Geometria da correspondéncia- De que forma a localizacdo de um ponto = na
primeira perspectiva restringe a localizacao de z’ na segunda vista?

2. Geometria da camera (movimento) - Dada uma imagem e seu conjunto de
pontos correspondentes z; <+ =, i = 1, ...,n, quais sdo as cameras (matrizes) P
e P’ para as duas visualizagbes?

3. Geometria (estrutura) da cena - Dado os pontos de imagem correspondentes
x < 2’ e matrizes P e P’, qual é a posi¢ao de X no espaco 3D?

A ultima questao é o objetivo final dessa proposta quando aplicada a n-vistas. Mas
para se chegar neste ponto é necessario responder as duas questdes anteriores. Con-
vém ressaltar que o problema da retificagdo das imagens nao esta sendo abordado
nesse trabalho, pois as imagens geradas ja estao retificadas pelos softwares utiliza-
dos.

2.2.2 Geometria Epipolar

A primeira questdo apresentada é também conhecida como problema da corres-
pondéncia estéreo. Como existem dois pontos de vista do objeto, um ponto locali-
zado na superficie de um objeto 3D ocupa coordenadas distintas em cada perspectiva.
Por exemplo, na Figura 14 o ponto X € projetado nos planos de captura da esquerda
nas coordenadas x € o0 mesmo ponto é projetado nas coordenadas =’ no plano da
direita.

Desta forma, é necessario localizar para cada ponto x € I a projecao =’ em I’ para
poder determinar a diferenca entre as coordenadas. Como saida desse processo
temos um mapa de disparidade onde o valor de intensidade representa a diferenca
entre x e ©/ (ZHANG, 2013). Portanto, encontrar a correspondéncia estéreo do
ponto X é identificar o local de sua projecdo em cada plano com suas respectivas
coordenadas.

Segundo (DAVIES, 2017) existem duas principais abordagens para mapear a infor-
macao de profundidade em imagens: light striping em imagens monoculares e linhas
epipolares em imagens estéreo. A primeira técnica é baseada em iluminagéo estrutu-
rada (light striping) para marcar pontos conforme a Figura 15 e se usa a distor¢do do
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Figura 14 — Projecdo de uma imagem 3D. Fonte: Adaptado de Zhang (2013)

padrao para calcular o mapa de profundidade. Essa abordagem néo € usada nesse

projeto.
Projetor de luz
estruturada Camera

W&

> [ A
Objeto3Dnacena

Figura 15 — Luz estruturada monocular usando faixas coloridas. Fonte: Geng (2011).

A segunda abordagem, linhas epipolares, € a mais comum em se tratando de ima-
gens estéreo sem controle estruturado de iluminagcdo. Por geometria epipolar se en-
tende as relagcdes geométricas associadas a geometria projetiva intrinseca entre duas
vistas de um objeto espacial (OROZCO et al., 2017) . Essa geometria € independente
da estrutura da cena e depende apenas dos parametros internos das cameras (matriz
intrinseca) e das poses relativas (HARTLEY; ZISSERMAN, 2004).

A ideia basica € reduzir a regido de busca para encontrar o pares x e z’. Conforme
a Figura 16, existe um ponto = correspondente a projecdo de X. Em vez de varrer
toda imagem da direita atras das coordenadas z’ se estabelece uma linha ¢’ para a
busca do ponto correspondente a X nesse plano. Essa linha é chamada de linha
epipolar. Ela pode variar de acordo com as caracteristicas geométricas das imagens,
por exemplo, distorcdes das lentes.

Para se definir a linha epipolar é necessario se definir a geometria epipolar. Na
Figura 16 cada camera é indicada por seus centros de convergéncia C' e C’ e seus
respectivos planos de imagem. A linha de base (baseline) une os centros das came-
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ras C' e (', sendo que 0s pontos de intersecgao entre ela e os planos de imagens sao
chamados de epipolos, representados na Figura 16a como e e ¢/. Na mesma Figura
se observa que o plano epipolar 7 é determinado pelos centros das cameras e pelo
ponto espacial X. Para cada interseccdo de um plano epipolar com um plano visual
temos uma linha epipolar. Como o plano epipolar intersecta ambos planos visuais
temos pares de linhas epipolares (/,I') correspondentes.

Se for conhecida apenas as coordenadas x, pode-se restringir a busca do ponto z’
a linha epipolar no plano da imagem I’. O epipolo ¢’ funciona como limite para a busca.
Na Figura 16b temos a visao da linha epipolar em ambos planos, apés a retificacao das
vistas I e I'. As perspectivas sao retificadas de forma a ficarem coplanares, desta
forma as linhas epipolares para cada par de pontos (z,z’) passam a ser colineares.

."_.;.q

I : r
Linha X X

epipalar & Planc Epipolar TT \'\__.

C )

I Linha base - baseling #

Linha epipolar esquerda | Linka epipolar direita | ©

(A) (B)

Figura 16 — Geometria das linhas epipolares. A linha de base (baseline) une os centros das
cameras C e C’, sendo que os pontos de intersecgédo entre ela e os planos de imagens sao
chamados de epipolos (e, €’). Fonte: Adaptado de Orozco et al. (2017).

Uma vez estabelecidos os pares de linhas epipolares, se busca em [’ o ponto «’
relativo a x usando uma fungéo de custo que retorne os pares de pontos com maxima
correspondéncia.

2.2.3 Matrizes de projecao das cameras

A projecao de uma imagem em um plano visual (Figura 14) depende das carac-
teristicas opticas e fisicas da camera. As relagdes entre as coordenadas 3D de um
ponto X e sua projecado 2D em uma camera é descrita por uma matriz de transforma-
cao chamada matriz intrinseca (P). Ao multiplicarmos a matriz intrinseca P pelo vetor
que contém as coordenadas espaciais (X;, Y;, Z;) do ponto X obtemos os valores das
coordenadas (z;,y;) ha proje¢do 2D (Equacao 7). Na Equagéo 8 temos os parametros
da matriz P: A distancia focal (f, = f,); o ponto central da imagem (c,, ¢,); € o valor w
que é igual a Z;. Se a distancia focal for modificada, as coordenadas 2D mudam. Para
fins de simplificacdo a matriz extrinseca sera chamada apenas de camera a partir de
agora.
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xr=PX (7)
W 0O 0 1 Z;

Uma projecao estéreo é calculada usando os conjuntos de pares (P,P’) e as coor-
denadas espaciais X conforme a Equagéao 9.

r=PX

¥ =PX ®)
Quando os sistemas de coordenadas da camera e do mundo real ndo estdo usando
o mesmo referencial de posicéo, ou seja, o plano focal de projecao 2D da imagem nao
esta paralelo ao plano da imagem 3D, € necessario realizar o ajuste através de uma
transformagéao geométrica. Isso é feito através da matriz extrinseca que converte as
coordenadas do mundo real para 0 mesmo referencial do sistema de coordenadas da

camera. Essa abordagem néo é necessaria nesse trabalho.

2.2.4 Estrutura da cena e calculo de distancias

A Ultima questao envolve a busca da posicao de X no espaco 3D dado os pontos
de imagem correspondentes x «+» z’ e as matrizes P e P’, ou seja, busca a estrutura da
cena capturada em termos de posicao e distancia em relacao ao ponto de observacao.
O conceito para o calculo de distancias envolve triangulacao dos pontos conhecidos,
lembrando que sempre existe um erro associado, visto que existe ruido na captura.

Antes de se calcular as relagdes trigonométricas na projecao estéreo é necessario
entender o comportamento da captura de um ponto em uma unica camera. Para fins
de simplificagdo na Figura 17 é usada uma camera pinhole. Observa-se que o ponto
tridimensional X é projetado na posicéo x; do sensor de captura, equivalente ao ponto
zy no plano frontal. A variavel f é a distancia focal da lente, sendo o deslocamento
de x; e f proporcional a X, e Z,., estabelecendo as relagbes dadas na Equacéao 10.

X Xc f
Tz o (£x)

Yi  Ic . < f >
- = — :> P = =Y.
; -z v \nk

(10)

Para que se possa calcular a estrutura da cena por um sistema estéreo a partir
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Plano visual real da projegao

Plano visual frontal da projecdo

f=distancia focal

a o<1 Ponto tridimensional
*

Figura 17 — Relagdes trigopnométricas na proje¢do de um ponto em uma camera pinhole. Fonte:
Adaptado de Shapiro; Stockman (2001)

dessas relagdes basicas é necessario realizar a retificacao, onde os planos visuais
séo ajustados de forma a ficarem coplanares. Desta forma, as cameras ficam em eixos
Opticos colineares, tendo apenas deslocamento horizontal entre elas (Figura 18). Uma
vez que se encontre 0 mesmo ponto em ambas imagens (x e 2’) pode se estimar sua
distancia.

o
T

il !
=

camera i
esquerda

fizo, e W “camera
e, . sk
b direita

Figura 18 — Planos visuais retificados, prontos para a tridangulacdo. Fonte: De autoria prépria.

Pelas relagbes trigonométricas da Figura 19 temos a disparidade d entre os pontos
x e x’ dada pela Equacao 11. Uma vez conhecida a disparidade € possivel calcular a
profundidade pela linha base horizontal b e a distancia focal f (Equacéo 12), ou pela
descoberta dos angulos « e  determinados pelos valores x e 2’ (Equacgéao 13).

d=x—1a (11)
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& x=(xp)
1= x-x X—X :Z_f:z:&
b z d
Plano visual da =) L=y Plano visual da
cdmera esquerda : - - camera direita
z
f f f=distancia entre o plano e
o centro da projecao
e B
& 1 1 " -
centro da projecéao  C C' centro da projegdo
b e, 3

linha base horizontal - b i) " tmiE

Figura 19 — Relac¢des trigonométricas em um sistema de captura estéreo retificado. Fonte: De
autoria prépria.

= = 2= (12)

- tan(«) * tan(3) (13)

Observa-se pela Equacédo 11 que a profundidade é inversamente proporcional a
disparidade.

2.2.5 Mapa de disparidade e mapa de profundidade

O conjunto de disparidades entre todos os pontos das imagens I e I’ (Figura 19)
formam o mapa de disparidade. Conforme j& citado, dado o mapa de disparidade €
possivel calcular a profundidade de cada ponto através da linha base horizontal b e a
distancia focal f pela Equagéao 12, criando uma imagem em tons de cinza chamada
mapa de profundidade, onde o valor de intensidade de cada pixel € proporcional a
distancia (Figura 20). O mapa de disparidade pode ser convertido para uma nuvem
de pontos 3D representando a cena.

2.3 Funcao plenodptica e representacao da imagem

A funcao plenéptica (Equagédo 14) descreve a intensidade de cada raio de luz no
mundo como uma funcao do angulo visual, comprimento de onda, tempo e posicao do
observador (IKEUCHI, 2014).
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Imagem da direita Imagem da esquerda Mapa de profundidade

Figura 20 — O mapa de disparidade é obtido a partir da imagem esquerda (I) e da imagem
direita (I’), onde a correspondéncia estéreo é realizada para encontrar os pontos correspon-
dentes (px e p'z), localizados na mesma linha horizontal. O valor da disparidade d corresponde
a portanto a diferenca horizontal entre eles. Fonte: Shahnewaz; Pandey (2020)

P=P0,0,\1,V,,V,, Vz) (14)

Em uma camera fotografica convencional, se considerarmos o sensor de captura
como ponto de convergéncia dos raios luminosos (Figura 21), nem todos raios serao
observados. Mas ao contrario do que ocorre nesses sistemas usuais, a fun¢do ple-
néptica parametriza todos raios que chegam a todos pontos no espacgo. Desta forma,
a funcao plendptica descreve o comportamento de todos raios luminosos, mesmo 0s
que nao podem ser capturados por sistemas usuais.

-.-.. \‘"\k‘x\_ ,‘ .

-

i

E‘h
i o o

Figura 21 — A funcao plendptica representa toda a informagéo visual que chega a um ponto
do espaco em um determinado momento independente do observador. Na Figura temos dois
observadores que nao percebem os raios luminosos em cinza. Fonte: De autoria prépria.

Podemos representar um raio luminoso na forma de um vetor em um sistema de
coordenadas esféricas como na Figura 22. O ponto O representa o ponto de conver-
géncia (observador) e centro do sistema de coordenadas. Neste sistema se descreve
a direcdo ou angulo de visao através de duas coordenadas: # que representa a cola-
titude (angulo polar ou angulo zenital) e ¢ 0 azimute. Desta forma todos os raios que
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chegam em um ponto de vista sdo especificados como P(6,¢). Essa equagao ndo
leva em conta o comprimento de onda do raio luminoso (cor).

O sistema de coordenadas esféricas € uma forma simples de representar a esfera
completa de raios luminosos que chegam a um ponto no espaco (Figura 23a), mas
pode se optar por usar um sistema de coordenadas cartesianas, onde (z, y) represen-
tam as coordenadas espaciais de um plano imaginario da cena a uma distancia pré-
definida do ponto de observagéo como na Figura 23b (ADELSON; BERGEN, 1991).

Figura 22 — Sistema esférico de coordenadas - r representa o raio de luz incidente com as
coordenadas P(0, ¢). Fonte: De autoria propria.

Pix,y)
A
s rd’ // 3
(B)

Figura 23 — A fung&o plendptica pode parametrizar um raio de luz r através de coordenadas
esféricas (A) ou de coordenadas cartesianas(B), onde d representa a distdncia do observador
ao plano imaginario da imagem. Fonte: De autoria propria.

A funcéo plendptica com sistema de coordenadas cartesianas fica representada
na forma da Equacéao 15 .

P=Px,y,\t, Ve, V,, V2) (15)

Podemos representar uma cena ou ponto de vista conforme a Figura 24a, em tons
de cinza pelo conjunto de raios de luz que a compde pela funcdo P(0, ¢). Ao adicionar
0 parametro A\ que representa o comprimento de onda, cor, de cada raio de luz, pas-
samos a ter a fungdo P(6, ¢, \) que representa uma cena colorida a partir de um unico
ponto de vista conforme a Figura 24b.
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Pt Pio.g.h)

(A) ~ A B °

Figura 24 — (A) Cena representada pela totalidade de raios P(6, ¢) que sao capturadas em
um unico ponto de vista. (B) Informacao de comprimento de onda \ acrescentada. Fonte: De
autoria prépria.

O parametro ¢ representa 0 momento temporal da cena que esta sendo observada,
geralmente usado em videos para representar o momento temporal de captura de um
frame dentro de uma sequéncia um video. Ja os parametros V,,V,,V, representam
todos pontos de vista possiveis (Figura 25). Chegamos dessa forma ao Equacéao 15 .

Figura 25 — Os parametros V,,V,, V. que representam todos pontos de vista possiveis. Na
Figura sdo apresentados alguns pontos de vista na forma de cadmeras. Fonte: De autoria
propria.

2.3.1 Funcao plendptica 5D

A alta dimensionalidade proposta pela funcéo plenéptica da Equacao 14 é dificil de
gravar e manipular na pratica (WU et al., 2017). Mas pode-se simplificar essa funcéo
assumindo que a imagem € monocromatica e invariante no decorrer do tempo como
na Equacéao 16.

L(V,,V,, V., 0, 0) (16)

Nessa proposta, o comprimento de onda de cada raio de luz é gravado de forma
independente em canais de cores, € a sequéncia de tempo t é armazenada como
uma sequéncia de frames se for o caso de um video light field. Por fim se substitui
(Va, V,, V) por (z,y, 2) que indica a posi¢gdo do ponto de origem (observador) no es-
paco 3D. Com essas modificagdes se chega a descri¢cdo da fungéo plenoptica 5D na
forma representada na Equagéo 17.

L(z,y,2,0,9) (17)
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2.3.2 Light Field 4D

Levoy e Hanraham (LEVOY; HANRAHAN, 1996) e Gorler et al. (GORTLER et al.,
1996) fizeram uma nova simplificacdo na Equacao 17. Considerando que o campo
de luz (light field) esta sendo medido em um espaco livre, pode-se assumir que a
radidncia permanece constante ao longo da linha de propagacdo. Desta forma se
remove mais uma dimensao e se tem a representacdo chamada 4D light field.

Para se representar a 4D light field, a solu¢gdo mais comum € parametrizar 0s raios
de luz através da interseccgao interna entre dois planos colocados em posicdes de
forma arbitraria (WU et al., 2017). O sistema de coordenadas do primeiro plano &
representado pelos eixos (u,v) € do segundo plano por (s,t) conforme a Figura 26,
chegando assim a representacao de um raio de luz L em um sistema 4D light field
pelos pares de coordenadas L(u,wv,s,t), onde um raio de luz intercepta o primeiro
plano nas coordenadas (u,v) e 0 segundo plano nas coordenadas (z, y).

4 'odu,s,t)

Figura 26 — Sistemas de coordenadas em um sistema 4D light field. Fonte: De autoria propria.

2.4 Cameras LF

A estratégia de aquisicao de imagens LF pode variar entre esparsa ou densa
organizadas de forma estruturada ou nao estruturada, usando cadmeras comuns ou
desenvolvidas especificamente para a captura de light fields. O termo LF esparsa ou
SLF (do inglés sparse light field) é aplicado a grupamentos de cameras distintas e
individuais que realizam a aquisigcdo de imagens LF, tanto de forma estruturada ou
nao estruturada.

Em uma LF esparsa estruturada se conhece a posicdo de cada camera usada
na aquisicdo. A forma de disposicdo da cameras pode ser uma matriz, um vetor,
OuU mesmo uma Unica cadmera que se desloca em um sistema mecéanico capturando
poses em posicoes pré-determinadas (BROXTON et al., 2020). Na Figura 27a temos
uma LF esparsa composta por uma matriz de cameras 8x12 (WILBURN et al., 2005),
capaz de gerar videos e imagens. Na Figura 27b (FLYNN et al., 2019), a proposta é
usar 16 cameras GoPro® Hero4 dispostas em um plano variando os angulos de viséo
(cdmeras) usados na construcdo do LF dataset. Na Figura 27c¢ temos um array de 16
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GoPro® Hero4 que rotacionam sobre um eixo capturando as LF (OVERBECK et al.,
2018). A Figura 27d mostra um conjunto de 47 cAmeras Xiaomi® dispostas na parte
cbncava de disco parabdlico (BROXTON et al., 2019).

(d)

Figura 27 — Quatro sistemas de aquisi¢cao de light fields esparsas estruturadas.a (WILBURN
et al., 2005),b (FLYNN et al., 2019),c (OVERBECK et al., 2018),d (BROXTON et al., 2019)

Em uma LF esparsa nao-estruturada o conjunto de imagens é adquirido de forma
livre onde a imagem LF é construida através da triangulacdo das imagens (DAVIS;
LEVOY; DURAND, 2012). A Figura 28 mostra o processo. E feita a captura em varios
angulos, que irao formar um conjunto de pontos de vista de uma cena em comum. A
LF é construida pela integracao dessas perspectivas via algoritmos.

Figura 28 — Construcdo de uma LF esparsa nao-estruturada. Fonte: Davis; Levoy; Durand
(2012)

A abordagem LF densa ou DLF (do inglés Dense Light Field) utiliza um conjunto de
microlentes responsavel pela variagdo do ponto de vista, conforme sera apresentado
a segquir.

2.5 Cameras Dense Light Fields - DLF

Dense Light Fields (DLF) sdo cameras plendpticas compactas; elas usam uma
matriz de microlentes entre a lente principal e o sensor de imagem. As cameras DLF
sao geralmente divididas em duas categorias (ZHU et al., 2018):

» ULF Unfocused Light Field (desfocada) ou plenéptica 1.0;

* FLF Focused Light Field (focada) ou plendptica 2.0;
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Cada tipo sera descrito a seguir de forma mais detalhada.

2.5.1 Plenéptica 1.0 (Unfocused Light Field)

A UFL foi proposta pela primeira vez por (ADELSON; WANG, 1992) em 1992. Essa
configuracao de lentes para captura de LF foi aprimorada em 2006 (NG, 2006). Poste-
riormente, esse aprimoramento se tornou uma camera comercial produzida e vendida
pela empresa Lytro®?.

A Figura 29 mostra a configuracao basica de uma camera UFL (ZHU et al., 2018).
Pode-se observar o sensor de captura no plano focal localizado a uma distancia B
apds a matriz de microlentes. Essa matriz € chamada de MLA (do inglés microlens
array).

| MLA  Sensor

-~
.
-
~
)
-~
~
-
~
Objeto ~

Figura 29 — Camera plendptica 1.0. Fonte: Adaptado de Zhu et al. (2018)

A MLA é responsavel por mapear raios de luz de um mesmo local com diferentes
diregcbes para pixels vizinhos no sensor de captura (IKEUCHI, 2014). Dessa forma,
a imagem registrada é uma matriz de macropixels; onde cada macropixels contém o
conjunto de pixels vizinhos que armazenam informagdes de raios com determinado
conjunto de direcdes (IKEUCHI, 2014). Esse conjunto de macropixels € chamado de
microimagem. Na Figura 30 pode se observar uma fotografia light field bruta como é
capturada por uma DLF com destaque para as microimagens na regiao ampliada.

A partir das microimagens € possivel reconstruir as subaberturas (vistas). Na Fi-
gura 31a temos uma imagem LF bruta ja retificada, composta por um conjunto de
microimagens. Cada microimagem possui um grupamento de 3x3 pixels que repre-
sentam perspectivas diferentes do mesmo ponto do FoV, com trés vistas em des-
taque representadas por cores distintas na Figura 31a (azul, amarela e verde). Na
Figura 31b estao reconstruidas as subaberturas correspondentes a cada perspectiva,
processo que é feito associando cada pixel de uma microimagem a sua subabertura
na coordenada correspondente. Pode-se observar que a Figura 31 usa uma MLA 3x3
ja que gera microimagens desse mesmo tamanho. Ja as imagens resultantes de cada
plano (u,v) s&o matrizes 6x6.

2Essa empresa encerrou suas operagoes em 2018
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Figura 30 — Imagem bruta (raw image) de uma fotografia light field. A regido ampliada mostra
detalhes das micro imagens. Fonte: Hahne et al. (2016).
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Figura 31 — (a) imagem light field bruta composta por microimagens. (b) Subaberturas extrai-
das. Fonte: Hahne (2016).

2.5.2 Plenéptica 2.0 (Focused Light Field)

As cameras plendpticas 2.0 foram propostas por Lumsdaine e Georgiev (LUMS-
DAINE; GEORGIEV, 2009). Em termos gerais, uma cadmera FLF difere de uma ULF
na distancia do MLA ao sensor de captura e no ponto onde a imagem intermediaria é
projetada. Na Figura 32 sdo demostrados os dois tipos de configuragdées do conjunto
de lentes: Kleperiana e Galileana (ZHU et al., 2018).

Na configuracao Kepleriana o plano da imagem (imagem intermediaria) é projetado
em frente a MLA (LIU; JIN; DAI, 2017). Desta forma, as microlentes estdo focadas em
uma imagem intermediaria real (LUMSDAINE; GEORGIEV, 2009). Ja na configura-
cao Galileana, o plano da imagem € projetado atras do sensor, fazendo com que as
microlentes estejam focadas em uma imagem intermediaria virtual (LUMSDAINE; GE-
ORGIEV, 2009). As cameras produzidas pela empresa Raytrix®® usam esse tipo de

Shttps://raytrix.de
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Figura 32 — Camera plendptica 2.0. (a) Configuracao Kepleriana. (b) Configuracao Galileana .
Fonte: Adaptado de Zhu et al. (2018)

configuracao.

2.6 A camera Lytro lllum®

A camera DLF usada na obtencao das imagens do dataset construido para esse
trabalho e usada para os testes é a Lytro lllum®(Figura 33). Essa € uma camera
plendptica 1.0 densa do tipo SLR digital sem espelho que foi produzida pela empresa
Lytro®. A Lytro ILLUM® possui uma abertura constante de diafragma com f-stop igual
a f/2. Conforme a Tabela 2, a distancia focal varia de 30 a 250 mm, como a camera
possui um fator de corte (crop factor) de 3, 19, a faixa focal efetiva é de 9,5 — 77,8 mm.
Convém ressaltar que ao aumentar a distancia focal ocorre a compressao da faixa de
profundidade de campo- DoF como em qualquer outra camera.

Segundo (SCHAMBACH; PUENTE LEON, 2020), o sensor de captura possui reso-
lucdo total de 7728 x 5368 pixels, tendo 1, 4um de area ocupada por pixel com profun-
didade de 10 bits por pixel e fator gama de 0, 4. As microlentes sao dispostas em uma
grade hexagonal, sendo estimado o desvio padrao ocasionado por ruido em 0, 1% do
didmetro da microlente, ou seja, o = 0,0143 pixels. Como as microlentes possuem
didmetro aproximado de 20um e f-stop fixo igual a f/2, o comprimento focal ideal € de
40pm (SCHAMBACH; PUENTE LEON, 2020).

| i ' S ’

Ny &

Figura 33 — Camera Lytro Illlum usada nos experimentos e na constru¢do do dataset. Fonte:
De autoria prépria.

Cada microlente cobre em torno de 225 pixels no sensor de captura (15x15) (SILVA,
2016), mas séo geradas apenas 196 SAl's em vez de 225 (RANGAPPA et al., 2019).
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Tabela 2 — Especificagdes Técnicas da Lytro lllum: Lentes. Fonte: De autoria propria.
Lentes

Distancia Focal 9.5 —77.8 mm (equivalente a 30-250 mm)
Fator de Corte 3.19

Zoom 8.3x Optico

Abertura de lente  Constante /2.0

Macro Focus 0 mm a partir da frente da lente
Macro Ratio 1:3

Microlentes ~ 200.000 lentes hexagonais

Tabela 3 — Especificacdes Técnicas da Lytro lllum: Sensor de Imagem e caracteristicas de
captura. Fonte: De autoria prépria.

Sensor de Imagem e caracteristicas de captura

Tecnologia sensor CMOS

Image ratio w:h 3:2

Sensor size 1/2"(6.4 x 4.8 mm)
Resolugao da light field 40 Megaray

Resolucéo efetiva maxima ~ 4 Megapixels (2450x1634)
Resolugéo total do sensor ~ 40Megapixel (5300x7600 pixels)
Formato do sensor 1/1.2”

Area ativa 10.82 x7.52 mm

Faixa ISO 80-3200

Shutter speed minimo 32 segundos

Shutter speed maximo 1/4000 segundos

Disparo continuo 3.0 fps

Isso se deve ao fato de nem todos pixels possuirem informagéo viavel por ocuparem
posi¢des limitrofes da microlente, sendo descartados na geragdo das SAl’'s. Deste
conjunto de pixels desprezados, aproximadamente metade possuem informagao par-
cial e o restante pouca ou nenhuma informacao. Esse perda ocorre devido ao fené-
meno de vignetting da lente, onde o brilho ou saturagdo da imagem capturada é redu-
zido a medida que se aproxima da borda da microlente (ZHANG, 2021). Desta forma,
a microimagem na pratica € uma matriz de 14x14 pixels*.

A Tabela 3 apresenta algumas caracteristicas da camera. Nela se observa que
apesar de nao produzir video, a lllum pode realizar capturas sequenciais de 3 frames
por segundo. Outras informagdes Uteis sdo a resolugéao total, efetiva e de light field,
gue permitem dimensionar os datasets e a precisao intrinseca. A imagem de saida
bruta sem processamento é de 5368x7728 (RERABEK; EBRAHIMI, 2016; SCHAM-
BACH; PUENTE LEON, 2020). A resolucdo da imagem light field capturada é de 40
Megaray de resolugdo angular. Esse valor registra o0 numero de raios de luz captura-
dos pelo sensor. Considerando a resolugao total do sensor existem aproximadamente

“Esse valor é o usado pelo Lytro Desktop
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200.000 microlentes com uso efetivo (Equacao 18).

5300.7600

Microlentes = ——— = 205510
icrolentes 196
(18)
Microlentes = %75600 ~ 179022

O plano do sensor da camera fica localizado na posicéao indicada pelo simbolo ¢
conforme a Figura 34. Para que se possa inferir as distancias dos objetos capturados
€ necessario conhecer a distancia da lente até o sensor (Figura 35).

Figura 34 — O simbolo ¢ indica a posi¢cao do sensor CCD da camera. O plano do sensor esta
a aproximadamente 115 mm da borda da lente. Fonte: De autoria prépria.

A Figura 35 mostra de forma esquematica a incidéncia de dois raios luminosos em
duas microlentes distintas. Esse comportamento dos raios luminosos na aquisicdo das
imagens é usado na triangulagéo da imagem para o calculo do mapa de profundidade.

Figura 35 — O plano do sensor fica aproximadamente no local indicado na figura acima. Fonte:
De autoria propria.

2.6.1 Lytro Desktop

O software Lytro Desktop é uma aplicacao para manipulagéao e gerenciamento das
imagens adquiridas via camera Lytro lllum (formato LFR). Esse software permite gerar
todas 196 subaberturas de um arquivo LFR em duas resolugbes com 24 bits por pixel:
1620x1080 e 1080x720 no formato PNG. Além de criar e permitir manipular o mapa de
profundidade. Observa-se que essas resolugdes ultrapassam a capacidade maxima
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do sensor de captura de acordo com a Tabela 3, desta forma o software usa uma
técnica n4o informada de super-resolugédo para fazer o upscaling das imagens.

2.6.2 Lytro Power Tools

O Lytro Desktop € basicamente um editor de imagens, o que limita bastante seu
uso na pesquisa das imagens light fields capturadas. Visando ampliar a utilizagéo da
camera, a empresa Lytro criou o Lytro Power Tools tendo como publico alvo progra-
madores, desenvolvedores e pesquisadores, permitindo a realizacao de experiéncias
com os dados do light field.

O Lytro Power Tools é um conjunto de ferramentas em Python 2.7 para controle
das imagens, uso na web e construcao de aplicativos (LYTRO, 2015b). Nele existe um
mddulo que permite processar, importar, exportar e realizar operagdes de metadados
em arquivos LFR chamado Light Field Processing Tool. As operacdes de interesse
para essa proposta séo:

» Processar arquivos brutos (raw) de imagens light fields (.LFR);

» Produzir imagens de profundidade de campo (Extended Depth of Field - EDOF)
com tudo em foco (all in focus) em cinco formatos possiveis (jpeg, png, tiff, bmp,
exr), de resolucdo de 2022 x 1404 x 24 bbp, com variagdes no eixos (u,v) de
[—0.3464, —0.2000] até [0.3464, 0.2000];

» Gerar o mapa de profundidade em tons de cinza dos objetos de cena com reso-
lugdo de 541x326x8 bbp e formatos png, bmp ou dat;

» Gerar imagens focadas em diferentes planos de distancia;

» Gerar EDOF e imagens refocadas em diferentes valores de perspectiva (mu-
dancga do ponto de vista).

Cada imagem raw (.LFR) processado no formato .ESLF (external standardized
light field) possui 7574x5264 pixels. Esse modulo também permite gerar sequéncias
com mudancgas de perspectiva nas coordenada U (eixo horizontal) e V (eixo vertical).
O intervalo recomendado € de -0,5 a 0,5, mas sao aceitos valores na faixa de -1,0
a 1,0. Essa ferramenta também gera uma mapa de profundidade relativo, usando
uma técnica de alongamento de histograma no mapa de profundidade gerado. Isso
faz com que nao se possa usar o0 mapa de profundidade gerado diretamente como
ground truth.

2.6.3 Light Field Toolbox for Matlab

Light Field Toolbox for Matlab (LFT) (DANSEREAU, 2020) é um conjunto de ferra-
mentas para trabalhar com imageamento de light fields em MATLAB. Essa toolbox é
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usada na geracgéo dos datasets disponiveis no JPEG Pleno framework® de acordo
com o as condigdes de teste comum estabelecidas em (ISO; IEC; JTC, 2019). A LFT
representa as LF como uma pilha de imagens RGB de baixa resolugdo. As imagens
possuem resolucéo de 434x625, com 3 canais de cor RGB mais um canal de pondera-
cdo e 15x15 SAlI (RERABEK; EBRAHIMI, 2016).

As caracteristicas estabelecidas nesses datasets © séo (ISO; IEC; JTC, 2019):

* Aquisicao feita em camera Lytro lllum;
» Formato - imagens PPM (componentes de cores RGB, nao entrelagados);
e Conteudo - natural, ao ar livre;

* 15 x 15 SAIl, mas apenas as visualizacdes centrais 13 x 13 sdo usadas para
evitar o uso das visualizagOes escuras associadas ao vignetting;

» Resolucédo espacial - 625 x 434;
» Profundidade de bits - 10 bits;
* Mapa de profundidade para imagem de sub-abertura central.

Existe um problema em usar a LF Toolbox para estimar profundidade. As came-
ras Lytro sofrem distor¢coes duplas, na lente principal e nas microlentes. A Light
Field Toolbox lida apenas com a distorcdo da lente principal, desta forma, para se
fazer uma estimativa precisa da profundidade deve-se usar uma toolbox geométrica,
como a proposta em (BOK; JEON; KWEON, 2017) para uma estimativa precisa da
profundidade.

2.6.4 Biblioteca Plenpy.

Este é uma biblioteca em Python para calibrar, processar e analisar imagens LF
(SCHAMBACH; PUENTE LEON, 2020). Por ser escrito em Python permite a cone-
xao direta com o OpenCV e outras toolboxes de processamento de imagens e de
aprendizado de maquina, o que torna um ferramenta versatil na proposta apresentada
(SCHAMBACH, 2021).

2.7 Consideracoes finais

Nesse capitulo foram introduzidos conceitos basicos de Optica e captura de ima-
gens em cameras digitais. Esses principios sdo importantes para o entendimento da

Shttps://jpeg.org/jpegpleno/
Shttps://jpeg.org/jpegpleno/plenodb.html
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formacéao e captura de retratos em dispositivos com sensores digitais e como modifi-
cagcdes em parametros, tais como profundidade de campo e abertura de diafragma,
influenciam o resultado final. Na sequéncia foram apresentados conceitos de ima-
gens estéreo, com o objetivo de caracterizar a constru¢cao de mapas de profundidade
e detalhar a triangulacao usada para o calculo de distancias em uma cena. Convém
destacar que a triangulagdo com apenas 2 vistas (estéreo) é a versao mais simples
quando se trata de célculo de distancias envolvendo n-vistas. Os conceitos de imagem
plendptica foram detalhados a partir do conhecimento previamente apresentado. Por
fim, foi introduzida a cdmera plendptica usada no projeto e junto suas caracteristicas
basicas. Os principais softwares usados também foram comentados nesse capitulo.
As informacdes desse capitulo sdo a base para o entendimento de como se da a
formacéo e a captura de uma imagem plendptica. Esse conhecimento é necessario
para justificar as escolhas tomadas no desenvolvimento do projeto. No préximo capi-
tulo serdo abordado conceitos béasicos de redes neurais e aprendizado de maquina.



3 REDES NEURAIS ARTIFICIAIS E PROBLEMAS DE RE-
GRESSAO

Em um problema de regressédo o objetivo € predizer o valor de uma ou mais va-
riaveis continuas ¢t dado um vetor de entrada D-dimensional com z valores (BISHOP,
2006). Esse é um problema caracteristico de aprendizado supervisionado, onde se
tem um conjunto de dados de treinamento compreendendo N observagoes z,,, sendo
n =1,..., N, com seus valores alvos correspondentes ¢,, 0 objetivo € predizer o valor
de ¢ para um valor x de entrada inédito (BISHOP, 2006). Existem varias técnicas para
analise de regressao: modelos lineares paramétricos, modelos nao lineares paramé-
tricos, métodos baseados em kernels, etc. Uma das principais abordagens usadas em
problemas de regressao sao redes neurais artificiais.

O termo Rede Neural Artificial ou apenas Rede Neural (RN) é utilizado para
classificar um subconjunto de algoritmos de aprendizado de maquina dentro da 1A
gue possuem uma abordagem livremente inspirada nas redes neurais bioldgicas. Por
livremente se entende que elas ndo possuem por objetivo simular ipsis litteris 0 com-
portamento biol6gico de uma rede neural, e desta forma, existe liberdade na selecéo e
na forma de uso das caracteristicas a serem implementadas. Esses algoritmos apre-
sentam grande variacdo em suas arquiteturas e aplicagdes, mas possuem elementos
em comum que recebem a mesma nomenclatura de seus analogos biolégicos.

Em termos mais gerais uma rede neural é composta por um conjunto de unidades
ou nodos que realizam processamento dos sinais entradas de forma paralela chama-
dos neurdnios artificiais ou simplesmente neurénios. Esses neur6nios possuem
entradas ponderadas de sinais, e se conectam entre si formando a rede neural propri-
amente dita. A forma como esses neurdnios sdo estruturados, o fluxo de informacéo,
como se da o aprendizado, as funcdes de transferéncia usadas, a quantidade de ca-
madas, as conexdes entre neurdnios e outras caracteristicas compde o que se chama
arquitetura da rede neural. A seguir serdo detalhados alguns conceitos basicos.
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3.1 Rede Neural Artificial

Uma rede neural artificial € um modelo nao-linear paramétrico, sendo que a ar-
quitetura mais bem sucedida no contexto de reconhecimento de padrdes € o feed-
forward ou perceptron multicamadas (BISHOP, 2006). Atualmente as redes neurais
de aprendizado profundo (DNN-Deep neural network) sao o estado da arte em termos
de desempenho quando sao usados grandes datasets no treinamento. As redes neu-
rais tradicionais podem ser classificadas de forma geral em trés arquiteturas (HAYKIN,
2009):

» Redes feedforward de camada Unica;
» Redes feedforward com multiplas camadas;

* Redes recorrentes.

As redes feedforward de camada Unica possuem uma camada de entrada ligada
diretamente aos neurdnios da camada de saida conforme a Figura 36a. Nessa rede
a propagacao é apenas adiante e apesar de possuir "duas"camadas, a camada de
entrada ndo é contabilizada como camada da rede neural por ndo realizar nenhuma
computagéo. Esse tipo de rede é um grafo aciclico direcionado com nés de entrada
e saida pré-estabelecidos (RUSSELL; NORVIG, 2020). O fluxo da informacéo se da
dos nds de entrada para saida, onde cada né computa suas entradas de acordo com
uma funcao (funcao de ativacao) e passa os resultados para sua saida.

As redes feedforward com multiplas camadas (do inglés multilayer feedforward
networks) se diferenciam das de uma unica camada, justamente por possuirem uma
ou mais camadas ocultas (Figura 36b). Essas camadas recebem este nome por
encontrarem-se entre a camada de entrada e a camada de saida conforme a Figura
36b. Por Ultimo, as redes recorrentes (do inglés recurrent networks') se diferenciam
das redes feedforward por apresentarem ao menos um /oop de realimentacéo, con-
forme a Figura 36c.

3.2 Funcoes de Ativacao

A escolha da fungéo de ativagdo ®(.) € um ponto critico no projeto de uma rede
neural (AGGARWAL, 2018), sendo seu principal objetivo introduzir ndo-linearidade na
saida de um neurénio e limitar a amplitude do sinal de saida de um neurénio (HAYKIN,
2009). Entre as caracteristicas de uma fungéo de ativagéo ®(.) pode se observar a
existéncia ou auséncia das seguintes caracteristicas (KOVACS, 2006):

* Monotonicidade - comportamento monotdnico sobre uma faixa dinamica;

"Nao confundir com recursive neural network que sdo uma rede de aprendizado profundo.
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Figura 36 — Arquiteturas tradicionais de redes neurais. Fonte: Haykin (2009)

+ Saturacao - saida saturada fora da faixa dinamica z.

Além dessas caracteristicas, a funcao de ativacao deve ser derivavel para que a
rede neural aprenda. Essa propriedade é necessaria para o calculo da derivada do
erro em relacao aos pesos em cada camada, da saida em direcao a entrada, de forma
a minimizar a funcdo de perda definida na camada de saida. Pelo mesmo motivo, é
importante que a fungédo de ativagio ndo desloque o gradiente para zero 2, pois isso
pode eliminar totalmente o valor de gradiente durante a retropropagacdo a medida
gue se avanca na direcdo das primeiras camadas. Outra caracteristica importante é
®(.) ser centrada no valor zero de forma a evitar que os gradientes mudem para uma
direcéo especifica.

As fungOes de ativagao utilizadas no desenvolvimento inicial das RN e considera-
das classicas sdo: de sinal, sigmoide e tangente hiperbdlica (Figura 37 b-d). Ja as
fungdes como a RelLU (Rectified Linear Unit) e Hard Tanh (Hard hyperbolic tangent)
37 e-f) dominam aplicagdes que usam aprendizado profundo. Na Figura 38 estao
representadas as derivadas das fungdes de ativacao citadas.

A funcéo de ativacado depende do tipo de aplicacdo e saida da rede ou neurénio.
Por exemplo, em um perceptron na camada de saida onde se faz uma rotulagem bina-
ria, 0 uso de uma fungao do tipo sigmaéide (Figura 37c) é a mais adequada. Se a saida
da rede for um valor real, a fungéo identidade ou fungéo linear (Figura 37a) pode ser
aplicada. Observa-se que a funcao identidade ndo fornece nenhuma nao linearidade,
e portanto serve como um mapeamento entre os valores de entrada e a saida &(.).
Pela Equacao 19 se observa que a mesma € monotdnica, mas nao saturada (KO-
VACS, 2006). A fungao linear também pode ser aplicada em saidas discretas quando
se necessita criar uma fungédo de perda suavizada na saida (AGGARWAL, 2018).

2Problema de desaparecimento de gradiente, do inglés:vanishing gradient problem



60

4

EE L B

| i
o "
o o

oy

5

4

o’

£ 0

i B T T R R

{a) [dentidade {b) Sinal () Sigmoide

{d) Tanh () Rell (£} Hard Tanh

TiE

Figura 37 — Funcobes de ativacdo. Fonte: Aggarwal (2018).
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Figura 38 — Derivadas das func¢des de ativacdo. Fonte: Aggarwal (2018).

O(x)=2x (19)

A funcéo sinal usada no modelo de McCulloch & Pitts (KOVACS, 2006), também
chamada de degrau (Equacgéao 20), ndo é monotdnica, apenas a saturacdo € mantida.
O principal problema dessa funcéo é o fato de nao ser derivavel no ponto onde = =
0 e sua derivada ser igual a zero para valores onde = # 0, o que impossibilita 0
aprendizado em redes multicamadas (Figura 38b).

0, sex <0
d(x) = (20)

1, sex >0
A fungao sigmoide da Equagédo 21 € uma das formas mais comuns de fungéao
de ativacdo usadas em redes neurais tradicionais (HAYKIN, 2009). Ela é continua e

portanto derivavel. Quando essa fungdo € usada em redes neurais com muitas ca-
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madas (redes de aprendizado profundo) apresenta o problema de desaparecimento
de gradiente (vanishing gradient problem), ou seja, em redes com muitas camadas o
valor de gradiente é zerado na retropropagacéo, impedindo o aprendizado. A funcéo
tangente hiperbdlica da Equacao 22, possui a vantagem, em relacédo a funcao sig-
moide, de apresentar valores negativos na saida. Infelizmente ela também apresenta
o problema de desaparecimento de gradiente, o que dificulta seu uso em redes de
aprendizado profundo.

O(x) = (21)

P(z) = m (22)

A funcao ReLU (do inglés rectified linear unit), € amplamente usada em camadas
escondidas de DNN, pois € de facil computacéo (baixa complexidade), nao satura e
nao causa o problema de desaparecimento de gradiente. Pela a Equacgéo 23 observa-
se que a funcao devolve zero para valores negativos e a identidade para valores posi-
tivos (®(z) = maxz(0, x)). Apesar de ndo ser derivavel para = = 0, pode-se escolher de
forma arbitraria um valor de 0 ou 1 nesse ponto. Ao substituir valores positivos pela
identidade e tornar qualquer valor negativo em zero, a RelLU evita o efeito em cascata
de um valor baixo puxar outras entradas também para baixo e acabar por zerar os
valores a medida que avanga na retropropagacao, causando o problema de despare-
cimento do gradiente. Um efeito colateral do uso dessa funcao é o problema da RelLU
morimbunda (do inglés Dying ReLU problem) que ocorre quando temos uma taxa de
aprendizado alta com muitos valores ao mesmo tempo negativos, isso faz com que o
RelLU torne todas suas entradas inativas reduzindo a capacidade de aprendizado da

rede.

0, sex<0
D(x) = (23)
x, sex >0

A funcao hard hyperbolic tangent (Equacgao 24) tem sido utilizada nas modernas
RN pelos mesmos motivos da ReLU.

-1, sex< -1
P(x)=qx, se -1<z<1 (24)
1, ser >1
Outra funcao de ativacao atualmente usada é a Softmax, também chamada de sof-

targmax ou fungcdo normalizada exponencial (do inglés normalized exponential func-
tion). Esta funcéo é geralmente usada na saida de um classificador para representar
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a distribuicao de probabilidade entre as classes (GOODFELLOW; BENGIO; COUR-
VILLE, 2016). Por exemplo, na Equacao 25 tem-se a funcdo Softmax &(z); sendo
aplicada sobre x, que é o vetor de saida da ultima camada, onde K € o0 numero de
classes e, portanto, = obrigatoriamente deve ter a mesma dimensao de K. Nessa
mesma equagao j representa a classe cuja probabilidade categorica se deseja calcu-
lar.

Ty

(&

O(z); = ———
Zj‘{:l eri

3.3 Redes feedforward com camada unica: O Perceptron

O Perceptron € uma rede neural artificial de camada unica com alimentagéo adi-
ante (feedforward) proposta por Frank Rosenblatt em 1958. O neurénio do Perceptron
€ composto por um combinador linear v associado a limitador abrupto ®(v) (fungéo de
ativagao sinal) que introduz nao linearidade em sua saida e funciona como um classifi-
cador linear (binario) (HAYKIN, 1998). Um nodo de entrada adicional chamado viés ou
bias b pode ser adicionado (Figura 39). O bias € um termo constante que nao depende
de qualquer valor de entrada e permite ajustar a saida aumentando ou diminuindo a
entrada da funcao de ativacao (HAYKIN, 2009) e dessa forma deslocar a saida y da
fungéo de ativagao para esquerda ou direita em relagao ao ponto de origem dos eixos
(0,0) adiantando ou atrasando o disparo de &(.).

bias e peso

mn
vetor de entrada combinador ;
V= E wixj +b
linear U . ?

XE—DO\W? y= O(v)

funcgéo de

e
® ativacao (D()
b ) vetor de pesos
\ w
Xn N

Figura 39 — Arquitetura basica de um Perceptron. Fonte: De autoria propria.

Pela Figura 39 observa-se que o combinador linear v recebe o vetor de entradas
X junto com seu vetor de pesos W, onde X = [z1,...,2,] € W = [wy, ..., w,], podendo
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OuU n&o possuir 0 bias b, e aplica uma soma ponderada sobre a entrada (Equacoes
26,27,28).

b= L (26)
v = Z w;x] = X (27)
j=1
o= wzj+b=XW" +b (28)

J=1
A saida y do perceptron (Equacao 29) gera uma etiqueta de classe binaria através
da aplicagdo da funcdo de ativagao sinal ®(.) (Equacao 20) sobre o valor agregado v.

y =(v) (29)

A maioria dos modelos basicos de aprendizado de maquina como regressao de
minimos quadrados com alvos numéricos, maquina de vetores de suporte, ou classi-
ficador de regressao logistica, podem ser facilmente representados nessa arquitetura
de rede neural simples através da escolha de diferentes fun¢des de ativagdo (AG-
GARWAL, 2018).

A principal limitacdo dessa rede é o fato do Perceptron ser incapaz de trabalhar
com classes de problemas ndo separaveis linearmente, pois como 0 mesmo é uma
combinagéo de discriminadores lineares, e toda combinagéo de discriminadores line-
ares pode ser substituida por uma Unica funcao discriminadora linear, é impossivel
resolver problemas ndo separaveis linearmente como o representado na Figura 40.

{a} Linearmente separavel {b) nio-linearmente separival

Figura 40 — Exemplo de dados com duas classes distintas. Em (a) os dados estéo distribuidos
de forma a serem linearmente separaveis, em (b) as classes sao linearmente inseparaveis.
Fonte: De autoria prépria.
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3.4 Redes feedforward com multiplas camadas: Multilayer Per-
ceptron

A incapacidade do Perceptron de camada Unica de separar/classificar classes nao-
linearmente separaveis (Figura 40) fez com que a area de redes neurais ficasse es-
tagnada com poucos investimentos na década de 70, apesar da pesquisa continuar
em alguns nichos académicos nessa época. A resposta para o problema do percep-
tron, entre outras contribui¢ces de vérios cientistas, foi o desenvolvimento do algoritmo
backpropagation relatado por Rumelhart, Hilton e Willians em 1986 3 (HAYKIN, 1998)
e permitiu o treinamento de redes perceptrons de multicamadas e a resolugao de pro-
blemas nao separaveis linearmente.

Uma rede perceptrons de multicamadas (PMC), ou em inglés multilayer percep-
trons (MLP), é a base do que chamamos de modelo de aprendizado profundo (do
inglés deep learning) (GOODFELLOW; BENGIO; COURVILLE, 2016).

Camada FPrimeira segunda Camada de
de entrada camada e=scondida camada escondida saida

Figura 41 — Perceptron Multicamada com duas camadas escondidas. Fonte: Haykin (2009).

O MLP, conforme se observa na Figura 41, é uma rede de tipo feedforward com-
posta por mais de um perceptron e com n camadas escondidas, cujo objetivo é aproxi-
mar alguma fungao f*. Em um classificador, isso significa termos uma saida y = f(z)
que mapeia uma entrada x em uma classe y. Esse tipo de rede define um mapea-
mento na forma y = f(x;6) onde 0 representa os valores dos parametros que preci-
sam ser aprendidos de forma que a saida y apresente a melhor aproximacgao a funcéo
f(z) (GOODFELLOW; BENGIO; COURVILLE, 2016). Na MLP o treinamento ¢é feito
de forma supervisionada através do algoritmo de retropropagacao de erro (em inglés
error backpropagation) (HAYKIN, 1998). Para que a rede possa aprender de forma
supervisionada, sdo apresentados para a rede os pares de vetores de entrada X e o
vetor de resposta desejada Y (alvo) e entdo é aplicado o algoritmo de aprendizagem
por correcao de erro. A ideia basica do treinamento supervisionado é modificar os pe-
sos das conexdes da rede de forma que a saida gerada para o vetor de entrada pela

30 algoritmo de backprogation foi proposto de forma independente em mais dois outros lugares.
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rede (valor real) seja 0 mais proximo possivel do vetor de saida apresentado (valor
desejado). Essa estrutura permite que a MLP aprenda e possa generalizar de forma
a apresentar saidas corretas para entradas nao treinadas.

O backpropagation possui basicamente dois passos através das camadas da rede:
um passo para frente, a propagacao, e um passo para tras, a retropropagacao. Na
propagacéo, ¢ apresentado na camada de entrada o padrao (vetor de entrada X) que
desejamos que a rede aprenda, sendo seu efeito de ativagdo propagado por toda a
rede, camada por camada, até gerar a ativacdo dos neurdnios na camada de saida.
Durante o passo de propagacéao, os pesos sinapticos da rede sao todos fixos (HAYKIN,
1998). Na retropropagacao os pesos sinapticos sao todos ajustados de acordo com
uma regra de correcdo de erro. Na camada de saida é calculado o sinal de erro que
€ a resposta real gerada pela rede subtraida da resposta desejada. Esse sinal de
erro é propagado em direcdo as camadas de entrada. Ao realizar a retropropagacéao
0S pesos sinapticos sao ajustados de modo que a resposta real da rede se mova na
direcdo da resposta desejada, reduzindo dessa forma o erro (descida de gradiente).

3.5 Redes neurais com aprendizado profundo

Conforme ja citado, algumas fungdes de ativagdo possuem o problema de desapa-
recimento de gradiente quando aplicadas a redes que usam métodos de aprendizado
baseado em gradientes. Algumas das principais solu¢des propostas para mitigar esse
problema foram (SCHMIDHUBER, 2015):

» Pré-treinamento ndo supervisionado de RNN (recurrent neural network) hierar-
quicas;

» Desenvolvimento de redes LSTM (/ong short-term memory), arquitetura nao afe-
tada pelo problema;

» Criacao e uso de hardware mais potente que o utilizado durante os anos 1990.
Mesmo em redes neurais tradicionais, isso permitiu aumentar a propagacao de
erros em mais algumas camadas dentro de um tempo razoavel de processa-
mento. Essa abordagem mitigou, mas nao resolveu o problema;

» Uso da otimizacado Hessian-free;

» Uso de outras funcgdes de ativagao como RelLU.

Essas solugdes permitiram varios avancos na area nos ultimos 20 anos. Atual-
mente temos uma grande variedade de arquiteturas e aplicagdes que exploram esses
desenvolvimentos. Nas proximas secdes sera apresentada a DNN relacionada com
essa proposta de tese: as convolutional neural networks (CNN).
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3.6 Filtragem espacial e filtros convolucionais

A convolucao é uma das técnicas de filtragem utilizada quando se trabalha com
imagens no dominio espacial. O objetivo de aplicar um filtro em uma imagem é des-
tacar ou atenuar certas caracteristicas de interesse. A ideia basica da convolugéo é
transformar uma imagem original em uma imagem destino, percorrendo todos pixels
da imagem original e aplicando sobre cada pixel alvo uma matriz de convolugao que
ird gerar um novo valor de acordo com o valor original do pixel e dos pixels em sua
vizinhanga. A matriz de convolugcéo é chamada de kernel ou mascara. As dimensodes
de um kernel e seus valores determinam o efeito de transformacéo do processo de
convolugao.
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Figura 42 — Convolucdo de um kernel de tamanho 3x3. Essa méscara € o filtro de Sobel G.,.
Fonte: De autoria prépria.

Na Figura 42 pode se observar o efeito de se usar um filtro de Sobel G, sobre os
dois primeiros pixels alcangaveis pelo kernel de tamanho 3x3. Os pixels ndo alcanga-
veis sao chamados de bordas e devem receber tratamento especial dependendo da
aplicacéo.

As técnicas de filtragem sdo usadas na extracao de caracteristicas, buscando re-
duzir a complexidade das imagens de entrada de uma rede neural tradicional. Em
redes neurais convolucionais é exatamente isso que a camada convolucional faz. Ela
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aprende kernels que destacam caracteristicas que melhor descrevem a imagem, com
a vantagem dos filtros aprendidos n&o terem necessariamente estrutura e valores de
kernels usuais de processamento de imagens.

3.7 Rede Neural Convolucional

As Redes Neurais Convolucionais (ConvNets ou CNNs) sao redes neurais artifici-
ais profundas que podem ser usadas para classificar imagens, agrupa-las por simila-
ridade e realizar reconhecimento de objetos como individuos e sinais de rua em uma
imagem.

Uma CNN (do inglés convolutional neural networks) pode ser descrita, de forma
sintetizada, como separada em dois mdodulos (Figura 43): um médulo para extracao
de caracteristicas e outro para classificacao.

O aprendizado dessa rede é do tipo supervisionado, onde sdo apresentadas as
entradas com as respectivas saidas desejadas. A CNN recebe o padrdo de entrada
do objeto a ser reconhecido. Esse padréao é submetido a uma camada de convolugao
que aprende quais filtros/kernels (matrizes de convolugao) devem ser usadas para
representar os dados de entrada, em outras palavras, aprende que padrdes espaciais
sao caracteristicos do objeto a ser classificado. Apds a etapa de convolucao segue-
se uma etapa de subamostragem, também chamada de pooling, em que se reduz a
dimensionalidade dos filtros da camada anterior. Esse processo continua até o fim
do modulo de extragao/aprendizado de caracteristicas. Por fim, os padrées espaciais
extraidos sdo apresentados a uma rede neural totalmente conectada, por exemplo,
uma rede MLP com algoritmo de aprendizado backpropagation.
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Figura 43 — CNN sendo usada para reconhecimento de digitos escritos a mao. A entrada é
uma imagem e a saida o digito identificado na faixa de 0 a 9. Fonte: De autoria prépria.

A camada convolucional, conforme ja citado, é responsavel pelo aprendizado
dos filtros independentes que irdo representar as caracteristicas do objeto de entrada.
Para que a camada de convolucao funcione corretamente é necessario determinar
como se da o deslocamento do kernel do filtro a ser aprendido, em outras palavras,
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qual sera o tamanho da passada do kernel, ou em inglés stride. Também é neces-
sario determinar qual sera o tratamento das bordas da imagem. A técnica de preen-
chimento, chamada em inglés de padding, é a normalmente usada. Essa técnica,
acrescenta bordas a imagem de entrada visando manter coerente a saida da convo-
lucdo. Essa duas técnicas, stride e padding, determinam o tamanho da camada de
saida.

Cada filtro aplicado gera uma imagem chamada mapa de caracteristicas. Na Fi-
gura 43 foram aplicados, na primeira camada de convolugéo C', quatro kernels 5x5 que
geraram quatro (4) mapas de caracteristicas 28x28. Observa-se entdo que a profundi-
dade da camada de convolucao indica quantos filtros sdo aprendidos na respectiva
camada (ex. 28x28x4).

Apos a camada de convolucéo segue-se geralmente uma camada de subamostra-
gem (pooling). O objetivo € diminuir a dimensionalidade buscando reduzir o numero
de parametros e custo computacional. Esse processo abrevia o tempo de treinamento
e controla o overfitting. As técnicas mais usadas sdo o max pooling que pega o va-
lor mais alto de uma janela do kernel aplicado. Por exemplo, na Figura 43, na saida
resultante do pooling foram gerados quatro mapas de caracteristicas com dimensoes
reduzidas para 14x14.

Outra técnica importante aplicada é o dropout, ou abandono de neurénios. O ob-
jetivo do dropout é simplificar a rede neural removendo conexdes que nao contribuem
para o aprendizado. Por fim a normalizacao em lote ou batchnorm faz a regulariza-
cao através da estandardizacdo e normalizagcédo de valores para evitar o overfitting e
fixar os valores da rede dentro de uma faixa especifica. As funcdes de ativacdo mais
usadas sdo as RelLU e a softmax.

Existem inumeras variagdes da CNN como: R-CNN (Region Based Convolutional
Neural Networks), Fast R-CNN, Faster R-CNN, U-Net, etc.

3.8 Autoencoders e Redes Neurais artificiais U-shaped

Esta secao trata de um grupo de arquiteturas de redes neurais convolucionais nas
quais a principal caracteristica € apresentar na saida de cada grupamento de convo-
lucdes uma reducdo nas dimensdes em relacao a resolucédo de entrada (enconder) e
depois reconstruir o sinal original seguindo o processo inverso (decoder).

3.8.1 Autoencoder

Autoencoders (AE) sao redes neurais treinadas para gerar em sua saida uma co6-
pia da entrada (GOODFELLOW; BENGIO; COURVILLE, 2016). A ideia basica é usar
redes de convolugéo para aprender filtros que capturem a representagéo da entrada a
cada camada, reduzindo as dimensdes de entrada, e dessa forma chegar a um con-
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junto de atributos relevantes chamado de espaco de caracteristicas latentes, que
serd usado para reconstruir a imagem original. Apesar do propésito primario de um
autoencoder ser a reconstrucao de sua entrada, uma vez que os atributos da imagem
de entrada sao aprendidos, pode-se manipular essa informagao na reconstrucéo do
sinal, de forma a recuperar apenas caracteristicas especificas (MICHELUCCI, 2022).
Essa propriedade seletiva permite o uso de autoencoders em aplicagdes de segmen-
tagao, filtragem e restauragao, por exemplo.

Conforme se observa na Figura 44, a estrutura basica de um autoencoder é for-
mada por trés componentes basicos: (i) entrada/codificador e; (ii) espaco de repre-
sentacao latente h, que codifica as caracteristicas latentes; e, (iii) saida/decodificador
d (YALCIN, 2021).

encoder decoder

A A N NN NN

Figura 44 — Componentes bésicos de um autoencoder: encoder (codificador), espago de re-
presentacao latente, e decoder (decodificador). Fonte: De autoria propria.

As camadas de entrada mais o espaco latente formam a etapa de codificacao e,
cuja saida h (espacgo de representacdo latente) é a funcao de codificagéo h = e(x),
aplicada ao dado de entrada x. Ja o espacgo latente » mais as camadas de saida
formam a etapa de decodificacdo d, que reconstrdi o sinal de entrada x, gerando a
imagem reconstruida de saida r, através de uma funcdo r = d(h). Autoencoders
funcionam como gargalos em que a dimensionalidade dos dados é reduzida a cada
etapa e o numero de filtros para extracao de caracteristicas sofre um aumento, até a
geragao do espacgo de representagao latente. Na etapa de decodificacdo o processo
se inverte culminando na imagem reconstruida (Figura 45).

3.8.2 U-Net

A rede U-Net proposta em (RONNEBERGER; FISCHER; BROX, 2015) para seg-
mentacdo semantica também usa a estrutura de gargalo para reducao de dimensio-
nalidade e extracédo de caracteristicas. Essa rede usa o conceito de skip connections,
que transportam a saida de uma etapa de contracao para a etapa de expansao, o que
permite recuperar a informacao espacial original na reconstrugéo do sinal de entrada.

A rede U-Net, conforme a Figura 46, possui uma etapa de contragdo e uma etapa
de expansao. No artigo original (RONNEBERGER; FISCHER; BROX, 2015), na etapa
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Figura 45 — Estrutura simplificada de um autoencoder e suas relagdes entre a dimensionali-
dade de entrada/saida e o numero de camadas convolucionais. Fonte: De autoria propria.

codificado

de contracdo sédo aplicadas duas convolugdes 3x3 sem preenchimento (unpadded)
seguidas da fungéo de ativacdo RelLU e uma operagao de max pooling 2x2 com stride
2, que reduz para a metade a dimensao da imagem no downsampling. Para cada
passo de downsampling o numero de filtros de caracteristicas € dobrado. Na etapa
de expansao é realizado a convolucao transposta transposed convolution do mapa de
caracteristicas de saida de cada nivel. No nivel imediatamente superior sdo conca-
tenados a saida da convolugao transposta com o mapa de caracteristicas (skip con-
nections) oriundo da etapa de contracdo pertencente ao mesmo nivel. Como o mapa
de caracteristicas da etapa de contracao nao possui dimensées maiores que 0 mapa
de caracteristicas da etapa de expanséo, em virtude de ndo usar o preenchimento
(padding), é necessario recortar (cropping) o mesmo para ajusta-lo antes de realizar
a concatenacao. A esse processo se segue duas convolugdes 3x3 seguidas por uma
camada RelLU. Ao final é usada uma camada com convolucdo 1x1 para mapear o vetor
de caracteristicas com 64 componentes para o numero desejado de classes (no artigo
original a rede era usada para segmentacdao semantica).
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Figura 46 — Estrutura basica de um U-Net. Fonte: Adaptado de Ronneberger; Fischer; Brox
(2015)
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3.8.3 SegNet

A SegNet (BADRINARAYANAN; KENDALL; CIPOLLA, 2017) é uma deep fully con-
volutional neural network architecture para segmentacéao semantica por pixel. A Seg-
Net se diferencia da U-Net na forma como faz o upsamples. Nesse processo, no lugar
de usar convolugao transposta, o decodificador utiliza indices de agrupamento (poo-
ling indices) computados durante o processo de maxpooling na etapa de codificagdo
e os utiliza para realizar um upsampling nao linear, tornando desnecessario que o
decoder aprenda esses filtros.

Pela Figura 47 observa-se que o decodificador faz upsample de sua entrada
usando os indices de poolling transferidos da etapa de codificagdo para produzir os
chamados mapas de recursos esparsos. Em seguida, ele realiza a convolugao com
um banco de filtros treinavel para densificar o mapa de recursos. Os mapas de recur-
sos de saida do decodificador final passam por uma fungéo de ativagdo softmax.

Entrada Convolutional Encoder-Decoder

T

Imagem RGB I Cony + Batch Nomalisation + RelU Segmentacao
I rociing I Upsampling Softmax

Figura 47 — Estrutura basica da SegNet. Fonte: Badrinarayanan; Kendall; Cipolla (2017)

3.8.4 LinkNet

A LinkNet (CHAURASIA; CULURCIELLO, 2017) é também uma arquitetura u-
shaped, em formato de U, como a U-Net. Sua principal diferenca esta nas skip connec-
tions. A Figura 48 mostra um comparativo entre ambas. Enquanto a U-Net concatena
a saida de cada bloco do encoder a entrada equivalente do bloco de decodificacao, na
LinkNet a saida de cada bloco de codificagao, ao invés de ser concatenada, é somada
a entrada do bloco de decodificacéo.

(@) | (b)
Figura 48 — (a) Arquitetura da U-Net , (b)Arquitetura da LinkNet. Fonte: lakubovskii (2019).
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A Figura 49 apresenta a arquitetura completa da LinkNet (CHAURASIA; CULUR-

CIELLO, 2017). Essa estrutura permite o aprendizado sem aumento significativo no
namero de parametros.
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Figura 49 — Estrutura basica da LinkNet. (a) Arquitetura da LinkNet, (b) M6dulos convolucionais
no encoder-block, (¢) Médulos convolucionais no decoder-block. Fonte: Chaurasia; Culurciello
(2017).

3.9 Consideracoes finais

Nesse Capitulo foram apresentadas as definicoes basicas de redes neurais arti-
ficiais. Nas primeiras se¢bes foram introduzidos o funcionamento de uma rede neu-
ral tradicional, as principais arquiteturas e problemas relacionados. Na sequéncia o
processo de filtragem espacial usando kernels foi discutido brevemente. A partir do
conhecimento previamente apresentado foi construida a nogcao de funcionamento de
uma rede neural convolucional e de redes u-shaped. Esses conceitos sdo necessarios
para o entendimento do trabalho que sera detalhado nos préximos capitulos.



4 TRABALHOS RELACIONADOS E APLICACOES COMER-
CIAIS

De forma a justificar a existéncia desse trabalho, € importante precisar a teoria e
tecnologia light field como uma area emergente. Para tal propdsito, torna-se impor-
tante demonstrar o interesse tanto da industria quanto da academia no tema. Neste
capitulo, primeiramente sao relacionados artigos no dominio de concentracao da tese,
partindo dos trabalhos mais abrangentes até chegar no assunto especifico da tese.
Por fim, apresenta-se uma sinopse do mercado comercial no setor de dispositivos
light field.

4.1 Trabalhos relacionados

O problema de correspondéncia estéreo continua em aberto na visdo computacio-
nal apesar de solucdes eficientes terem sido propostas. Alguns dos maiores desafios
enfrentados sao: (i) oclusao total do objeto em uma das vistas, essa situacao im-
possibilita encontrar a disparidade nessa regido oclusa, uma vez que essa informacao
esta ausente; (ii) tratamento de regioes homogéneas ou com textura repetitiva,
nesse contexto existe problemas em encontrar os pontos homaologos nas vistas, uma
vez que as caracteristicas dos pontos em questédo, ou sdo iguais, ou sao ciclicas, cri-
ando impasses no calculo de disparidades usado para a construcao dos mapas de
profundidade; e, (iii) distorcoes Opticas e ruidos intrinsecos ao equipamento de
captura, que também podem gerar impasses e dificuldades na localizagdo de ponto
homdlogos entre as vistas, por exemplo, as cameras Lytro sofrem distor¢des tanto na
lente principal quanto nas microlentes, o que pode provocar problemas na etapa de
retificacdo das vistas.

Para o calculo de distancias, em sistemas estéreos ou com n-vistas, sdo usadas
duas ou mais imagens com variagdes na perspectiva, de forma que se possa deduzir
as informacgdes de profundidade a partir das disparidades do mesmo ponto espacial
nas n-vistas. Uma aplicacdo com crescente demanda € o uso de visdo estéreo em
carros autbnomos (KEMSARAM; DAS; DUBBELMAN, 2020) e em sistemas robaéticos.
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Céameras do tipo LF também possuem aplicagcbes em areas com demanda de infor-
magdes espaciais como: robdtica (Z.ZHOU; CHEN; O.C.JENKINS, 2019)(Z.ZHOU,;
SUl; C.JENKINS, 2018), imagens médicas (DE FARIA et al., 2019), carros autbno-
mos (BAJPAYEE; TECHET; SINGH, 2018), etc. Por exemplo, no artigo (Z.ZHOU; SUI,
C.JENKINS, 2018) é proposto um método que permite um brago robético pegar um
objeto localizado atras de um obstaculo translucido usando imagens plendpticas de
uma camera Lytro. Em (DE FARIA et al., 2019) é proposto um dataset contendo 250
imagens LF de lesbGes cutaneas classificadas em oito categorias clinicas. Esse tipo
de dataset permite desenvolvimento de novas técnicas e algoritmos em estudos der-
matoldgicos. Outro exemplo é o uso de sistemas de imageamento LF em carros aut6-
nomos, como em (BAJPAYEE; TECHET; SINGH, 2018), onde é proposto um método
capaz de suportar qualquer matriz de multiplas cameras formando uma SLF. Esse tipo
de sistema de visdo pode substituir ou ser usado em conjunto com sensores LIDAR,
radar, sonar e etc.

As principais abordagens atuais com deep learning para extragcdo de mapas de
profundidade utilizam rede neural convolucional (CNN) em diferentes combinacdes e
arquiteturas. As propostas de extracdo de mapas de profundidade usando aprendi-
zado de maquina podem ser divididas por tipo entrada: uma entrada simples, com
apenas um fluxo; ou n-entradas, com varios fluxos tratados inicialmente de forma
independente. De uma perspectiva abrangente, ambas as abordagens tém uma uni-
dade dedicada para extragao de recursos e uma unidade para construgcao de mapas
de profundidade. A principal diferenca € a forma como a entrada € processada.

A estimativa de profundidade com base em imagens LF sucede a tradicional cor-
respondéncia estéreo binocular e profundidade de imagens monoculares (HAN et al.,
2021). A criagdo de mapas de profundidade a partir de imagens LF avancou de forma
significativa, mas ainda existe problemas em balancear o tempo de processamento
com a precisao da estimativa da profundidade. Como a base do processo é a
geometria das LF, essa area se mostra um campo de exploragdo promissor para a
aplicacéo de algoritmos de aprendizado profundo (HAN et al., 2021).

4.1.1 Calculo de profundidade e distancias

Os métodos para estimar a profundidade e as distancias em uma imagem podem
ser divididos em trés classes de acordo com sua abordagem (WU et al., 2017): (i)
baseados em correspondéncia de valores das subaberturas da imagem LF de
entrada; (ii) baseados em geometria epipolar; (iii) baseados em aprendizado de
maquina. O tipo de entrada também influencia na complexidade dos métodos usados.
Como esse trabalho utiliza apenas imagens, os tipos de entradas podem ser divididos
em duas classes basicas: par de imagens (imagem estéreo); e, imagens com n-
vistas. Na ultima categoria se encaixam os formatos light field ja citados (esparsa,
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densa, focada, desfocada, etc). A seguir serdo detalhados alguns trabalhos relacio-
nados por categoria, com especial énfase nos métodos baseados em aprendizado de
maquina.

4.1.1.1 Baseados em correspondéncia de valores entre subaberturas

Em uma LF densa, cada par de subabertura possui uma linha base muito es-
treita’ (WU et al., 2017), fazendo com que a faixa de disparidade entre as imagens
de subaberturas também seja muito pequena. Outro problema é que o deslocamento
de um ponto espacial entre as projegdes nas SAl's pode ser causado por uma inter-
polacdo com borramento, e ndo necessariamente por uma real disparidade. Isso leva
a baixo desempenho em cameras DLF de abordagens baseadas em correspondén-
cia, sendo improvavel o uso de pares de subaberturas para buscar correspondéncias
estéreo em virtude de a linha base ser estreita (WU et al., 2017). A alternativa € néao
usar correspondéncia estéreo, mas de aplicar restricdes que favorecam o uso de toda
a informacao gerada pelas LF e use todas as subaberturas para estimar um mapa de
profundidade inicial (WU et al., 2017).

Em (WANG; EFROS; RAMAMOORTHI, 2015) essa técnica é usada para criar um
mapa de profundidade inicial. Os autores propéem um modelo de oclusao para light fi-
eld com base na formacao da imagem fisica. Como existe variacdo do ponto de vista,
alguns blocos da imagem se mantém consistentes, enquanto regides com oclusdes
nao se mantém. Uma vez identificadas essas regides, pode-se tratar cada caso sepa-
radamente. Desta forma, a técnica serve para informar locais de oclusdao modeladas
explicitamente usando orientacdo da borda para dividir com uma linha reta o bloco
angular em duas regides iguais. Apods identificar as regides inconsistentes 0 mapa de
profundidade é refinado através de outras técnicas (Figura 50). O método melhorou
os resultados de profundidade para situa¢des de oclusao Unica em linha, mas uma
linha reta nao é suficiente para lidar com situacoes de oclusdes multiplas (Al; XIANG;
YU, 2019).

(a) (b} (c) (d)
Figura 50 — (a) imagem colorida. (b) Mapa de profundidade inicial. (c) Mapa de deteccao para
pontos ocluidos em outras visualizagdes (regides claras). (d) mapa de profundidade refinado.
Fonte: Ai; Xiang; Yu (2019).

Em (YU et al., 2013) é explorada a propria estrutura geométrica das linhas 3D
no espaco dos raios luminosos para melhorar a triangulagdo com light field e fazer

"Na camera Lytro é menor que 1 pixel



76

a correspondéncia estéreo, conforme a Figura 51. O problema da triangulacao visa
preencher o espacgo de raios de luz de forma continua e n&o sobreposta ancoradas em
alguns raios de luz usados como referéncias. No artigo é demostrado que o espaco
de light field é altamente bilinear, entao, visto que a triangulacao feita diretamente no
espaco bilinear leva a grandes erros, o artigo propde mapear os subespacos bilineares
para linhas delimitadas e aplicar a triangulagao restrita de Delaunay para encontrar 0s
pixels com correspondéncias nas subaberturas.

Figura 51 — Estruturas de raios bilineares. (a) Um linha de segmento 3D [ mapeia para um
subespaco bilinear em uma LF; (b) [ mapeia para uma curva em um corte diagonal; (c) O
volume é criado através da triangulagao usando forga bruta. Fonte: Yu et al. (2013).

Em (ZHOU; SUI; JENKINS, 2018) é utilizado o0 método de monte carlo para achar
a localizacdo de um objeto que se encontra atras de um obstaculo translucido. Con-
forme a Figura 52, a camera Lytro instalada no efetor final de um brago robético cap-
tura sequéncias de imagens LF. Para cada light field, as imagens das subaberturas
séo extraidas (vista central em vermelho na Figura 52 ). O volume de probabilidade
de profundidade (DLV 2) é calculado como uma matriz 3D com probabilidades de pro-
fundidade ao longo de certos pixels (i, j) localizados em uma profundidade d. O DLV
€ um comparador de semelhanca de cor e gradiente entre a vista central e outras ima-
gens de subaberturas. Assumindo uma geometria conhecida e regido de interesse, a
posicao do objeto com 6-DOF (seis graus de liberdade) é estimada através da locali-
zacao por filtro de particulas ou MCL (do inglés Monte Carlo Location) sobre o volume
de probabilidade DLV.

4.1.1.2 Baseados em geometria epipolar

A geometria epipolar é usada em imagens estéreo na reconstru¢cdo de cenas a
partir de duas perspectivas diferentes (WU et al., 2017). Com o advento das cameras
ligh field densas a EPI (do inglés Epipolar-Plane Image) ou imagem do plano epipolar
pbdde ser criada diretamente das imagens LF, visto que as inclinagcbes das linhas sao
indicativas das profundidades dos diferentes objetos (WU et al., 2017). Devido a essa
caracteristica das LF, grande parte das técnicas que calculam o mapa de profundi-
dade tendo como estrutura base a EPl acabam usando essas inclinagdes e propondo
variagdes nesse tipo de abordagem (WU et al., 2017). Em (KIM et al., 2013) é feita a
reconstrucdo de cenas de ambientes complexos e detalhados a partir de EPIs de alta

2depth likelihood volume
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Figura 52 — Pipeline da técnica PMCL. Fonte: Zhou; Sui; Jenkins (2018)

resolucao angular, através das informacdes de profundidade 3D para todos os pontos
visiveis da cena. Nesse artigo, € aplicada uma medida de confiangca no espaco EPI
para calcular a confiabilidade da profundidade estimada (WU et al., 2017).

4.1.1.3 Baseados em aprendizado de maquina

Nos ultimos anos houve um aumento no uso de técnicas de aprendizado de ma-
quina na area de LF, justamente pelas vantagens que existem em relacao as técnicas
anteriores citadas que demandam um alto consumo de computagéo devido a quanti-
dade de parametros que envolvem uma simples imagem LF. As principais abordagens
usam redes CNN em variadas combinacdes e arquiteturas. A seguir sdo destacados
alguns artigos.

Em (ZHOU; CHEN; JENKINS, 2020), os autores apresentam um algoritmo com
dois estagios para estimativa de pose de objetos transparentes usando uma camera
LF e renderizacao fotorrealistica. Na Figura 53 pode se observar os dois estagios.
O primeiro estagio recebe como entrada imagens LF e fornece como saida a seg-
mentacdo do material transllcido e o centro estimado do objeto. Os resultados da
segmentacao sao apresentados para uma rede de detecgao que rotula o objeto. No
segundo estagio, para cada centro estimado, é prevista sua probabilidade através da
estimativa de profundidade local calculada a partir do volume de probabilidade de
profundidade. Nesse estagio uma otimizacao de particulas é iniciada com base nas
estimativas de rede e profundidade, que convergem para as poses finais 6D (ZHOU;
CHEN; JENKINS, 2020).

Muitas propostas atuais envolvem redes siamesas. Uma rede siamesa (do inglés
siamese networks) consiste de duas ou mais sub-redes neurais idénticas com os mes-
mos parametros conforme a Figura 54. Nesse tipo de rede séo fornecidas duas ou
mais imagens e através do acréscimo de uma etapa de integracdo, os valores de
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Figura 53 — Sistema LIT - Light-field Inference of Transparency (ZHOU; CHEN; JENKINS,
2020). Fonte: Zhou; Chen; Jenkins (2020)

saida das redes sdo comparados visando verificar a similaridade das imagens de en-
trada. Desta forma, a saida da rede n&o € a probabilidade de predicdo de cada classe
como em CNNs tradicionais, mais sim a distancia entre as imagens. Essa caracteris-
tica permite apenas calcular o grau de similaridade entre as imagens avaliadas como
no caso da rede SigNet para verificagdo de assinatura (DEY et al., 2017).

Figura 54 — Rede siamesa SigNet usada para comparacao entre duas assinaturas de entrada.
Fonte: Dey et al. (2017).

Em (ZBONTAR; LECUN, 2016) e (LUO; SCHWING; URTASUN, 2016) é proposto
0 uso de uma rede siamesa para computar o mapa de disparidade entre duas ima-
gens capturadas de forma estéreo. Para evitar apresentar na saida apenas o grau de
similaridade entre duas imagens, foi modificada a abordagem original. Conforme a
Figura 55, a imagem da esquerda é dividida em K blocos de tamanho nxn. A ideia
basica é descobrir o valor da disparidade para cada pixel dos K blocos da imagem da
esquerda. Dado que as imagens estéo retificadas, o deslocamento é feito horizontal-
mente entre a imagem direita e a esquerda. Uma vez estabelecidos os K blocos da
imagem esquerda, repete-se o processo dividindo a imagem da direita também em K
blocos de tamanho nxn ao longo da mesma linha usada para a criagdo dos blocos da
imagem da esquerda, isso faz com que a disparidade maxima de cada pixel seja igual
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a K (disparidade < K). A imagem direita € apresentada para sua CNN, gerando uma
representacdo que pode ser associada a cada bloco da imagem. O mesmo ocorre
para cada bloco da imagem esquerda. Por fim, cada representacao produzida a partir
da imagem esquerda é passada ao longo do volume gerado da imagem direita (con-
voluido) criando uma matriz nxn para cada K bloco. Desta forma é produzida uma
saida Kxnxn, onde para cada pixel da imagem da esquerda é calculado uma pon-
tuacao para as disparidades associadas, que é usada para se encontrar o valor de
disparidade mais provavel. Em (ZBONTAR; LECUN, 2016) é proposta uma rede se-
melhante, onde o treinamento da CNN é feita através de pares de pequenos blocos
com disparidade conhecida. Na Figura 56 se observa o mapa de disparidade gerado
por essa rede.

Righy I

Figura 55 — Rede siamesa para calculo de disparidade entre duas imagens apresentada em
(LUO; SCHWING; URTASUN, 2016). Fonte: Luo; Schwing; Urtasun (2016)
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Figura 56 — Mgpa de disparidade gerada pela rede CNN proposta em (ZBONTAR; LECUN,
2016). Fonte: Zbontar; Lecun (2016)

(SHI; JIANG; GUILLEMOT, 2019) propde um framework para estimar a profundi-
dade da cena baseado em aprendizado supervisionado, onde a entrada € um sub-
conjunto flexivel de vistas que compde uma light field. Nessa proposta é construido
o mapa de disparidade para todas subaberturas da LF. O uso de subconjuntos de
aberturas da LF tem como objetivo aumentar a acuracia e limitar a complexidade
computacional. As estimativas de disparidade iniciais sdo computadas entre pares
de subaberturas alinhadas usando a arquitetura FlowNet 2.0 (ILG et al., 2017). O



80

FlowNet 2.0 € basicamente um optical flow com aprendizado de maquina profundo,
gue estima a disparidade em LF densos e esparsos. Essas disparidades sdo usadas
para remodelar um conjunto flexivel de subaberturas referenciais gerando um ponto
de vista destino. A fusédo das estimativas iniciais de disparidade, na forma do vence-
dor leva tudo, permite ter uma maior acuracia em regiées com ocluséo e ao longo dos
contornos.

A Figura 57 mostra um exemplo com uma LF 5x5. A imagem alvo L, (em azul), € a
vista para a qual se busca estimar a disparidade. Os retdngulos amarelo e vermelho
séo respectivamente visualizagdes estéreo horizontais e verticais (L,). A imagem L,
e as imagens L, sdo usadas para calcular os mapas de disparidade preliminares d;
usando o modelo FlowNet 2.0. Vistas ancora ou referenciais L, (retangulos azuis
escuros) podem ser compostas por qualquer subconjunto de subaberturas, a excecao
de L; que sado usadas para estimar o erro de distorcdo (warping error) para a fuséo
das estimativas iniciais. Uma rede de aprendizado residual multiescalar corrige os
artefatos presentes na fusao e suaviza o mapa de disparidade final em uma ultima
etapa de refinamento.

rot(Lg) rotLy)

Zn

Figura 57 — Viséao geral do framework proposto sobre a arquitetura FlowNet 2.0. Fonte: Shi;
Jiang; Guillemot (2019)

O artigo (GUO; WEN; HAN, 2020) apresenta uma proposta diferente, com foco no
reconhecimento e segmentacao de objetos baseado em seus materiais/texturas. Na
abordagem, conforme se observa na Figura 58, é feito o desacoplamento de infor-
magcdes angulares e espaciais estabelecendo correspondéncias no dominio angular,
sendo depois empregada a regularizagao para se ter invariancia rotacional. A rede
recebe como entradas subaberturas espacgadas selecionadas de acordo com os des-
locamentos estimados de cada subimagem através da transformada de Fourier.

Em (HEBER; YU; POCK, 2017) é usada uma rede do tipo U-Net para extrair a
informacao geométrica de uma LF esparsa, conforme a Figura 59. A rede proposta
recebe como entrada uma imagem LF capturada na forma esparsa e usa camadas
convolucionais 3D que permitem propagar a informagéo espacial bidimensional junto
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Figura 58 — Framework proposto em (GUO; WEN; HAN, 2020). Fonte: Guo; Wen; Han (2020)

com uma dimenséao direcional. Cada nivel possui quatro camada convolucionais se-
guidas por uma camada RelLU. As camadas convolucionais realizam convolugdes 3D
com nucleos de tamanho 3 x 3 x 3 (HEBER; YU; POCK, 2017).

Figura 59 — Rede U-Net proposta em (HEBER; YU; POCK, 2017). Fonte: Heber; Yu; Pock
(2017)

Em (SHIN et al., 2018) é apresentada a rede EPINET, que possui uma arquitetura
chamada pelos autores de multifluxo que lembra as redes siamesas, pois usa redes
neurais em paralelo que compartilham a mesma estrutura, mas que possuem valores
diferentes de pesos. Cada conjunto de subaberturas na mesma direcdo angular repre-
senta um "fluxo": horizontal, vertical, diagonal esquerda e diagonal direita. Portanto,
cada imagem LF é dividida nesses conjuntos de subaberturas e apresentadas como
uma pilha de imagens para sua respectiva rede neural conforme a Figura 60.

Essa separagao das subaberturas faz com que as redes neurais produzam filtros
representativos restritos ao seu tipo de fluxo (SHIN et al., 2018). Cada rede é com-
posta por trés camadas de FCN (do inglés fully convolutional network): Conv-RelLU-
Conv-BN-ReLU responsaveis por medir a disparidade por pixel em uma regido/camilho
local. Os autores usam um kernel 2x2 com passo 1 para medir pequenas disparidades
(4 pixels). Isso é necessario devido a linha base ser estreita em imagens LF produzi-
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Figura 60 — EPINET. Fonte: Shin et al. (2018)

das por cameras densas conforme ja citado. As saidas das quatro redes de multifluxo
sao concatenadas e apresentadas como entrada para um rede com oito blocos convo-
lucionais. Os sete primeiros blocos sao idénticos aos usados nos blocos multifluxos,
apenas o ultimo bloco responsavel por inferir os valores de disparidade apresenta uma
configuracao distinta (Conv-ReLU-Conv).

O framework com aprendizado ndo-supervisionado proposto em (LIN et al., 2022),
utiliza uma estratégia mista com aprendizado de maquina e técnicas usuais de pro-
cessamento de imagem. Essa abordagem utiliza uma técnica de aprendizado apro-
ximado, que gera funcdes de perda diferencidveis, combinada com restrigbes ge-
ralmente aplicadas em imagens LF para reducao de complexidade. Primeiramente
€ estimado o mapa de profundidade através de uma rede com aprendizado nao-
supervisionado, e depois é projetada a perda de consisténcia espaco-angular adap-
tativa combinada com as versdes diferenciaveis das restricdes usuais. A Figura 61
mostra a estrutura completa.
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Figura 61 — Arquitetura proposta em (LIN et al., 2022). Fonte: Lin et al. (2022)

Em (KHAN; KIM; TOMPKIN, 2021), os autores estimam o mapa de profundidade
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utilizando um conjunto esparso de bordas de profundidade e gradientes. A abordagem
deduz que as arestas verdadeiramente profundas sdo mais sensiveis as restricées lo-
cais do que bordas compostas por textura e, portanto, podem ser diferenciadas de
forma confiavel por meio de um processo de difusao bidirecional. Primeiro o sistema
usa o plano epipolar para estimar a disparidade de subpixel em um conjunto esparso
de pixels. Para encontrar pontos esparsos de forma eficiente, é feito um refinamento
baseado na entropia da estimativa da linha de um conjunto limitado de bancos de
filtros orientados. Em seguida, para estimar a direcao de difusao a partir dos pon-
tos esparsos, é aplicado o método de difusdo bidirecional. Isso resolve o problema
de ambiguidade que pode surgir ao tentar encontrar a superficie a qual a borda ob-
servada pertence, separando de forma confiavel bordas com profundidade de bordas
pertencentes a texturas (KHAN; KIM; TOMPKIN, 2021).

Em (LI et al., 2021), é apresentada uma estrutura de aprendizado auto-
supervisionado para a construcao do mapa de profundidade. Esse sistema usa como
entrada uma pilha de EPI. A rede estima a mudancga de disparidade de EPI por meio
da refocalizagdo. Para reduzir a sensibilidade do EPI ao ruido, o artigo prop6e um
novo modo de entrada chamado EPI-Stack, que empilha EPIs. A Figura 62 apresenta
a estrutura geral proposta.
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Figura 62 — Estrutura proposta em (LI et al., 2021). Fonte: Li et al. (2021)

4.1.2 Resumo comparativo e Desafios de Pesquisa

Esse trabalho encontrou varios desafios por ser uma area onde ainda estao se
criando os padrbes a respeito da forma de captura e representacdo. Por exemplo,
tipos diferentes de sistemas podem capturar uma LF se concentrando em aspectos
distintos como: resolucéao espacial, densidade angular e FoV, ja os dados adquiri-



84

dos na captura podem ser representados em formatos como: Lenslet, 4D Multiview,
4D volumétrico, Geometry-Assisted, modelo MPI (Multi-Plane Image) e modelo MSI
(Multi-Sphere Image). Essa falta de padronizacéo leva a alguns lapsos de informa-
cao como é o caso das especificagdes técnicas da camera Lytro lllum. Em diferentes
artigos se encontra variagdes no tamanho maximo do sensor de captura e do tama-
nho maximo de uma subabertura sem upscaling. A compreensdo do comportamento
optico de uma DLF também representa um desafio, dado o nimero de microlentes e
distor¢cOes apresentadas por seu diminuto tamanho.

Nas técnicas citadas para o calculo de profundidade e distancias entre objetos,
pela Tabela 4, se nota uma maior concentragdo de abordagens baseadas em apren-
dizado de maquina a partir do final da década de 2010. Essa correlagdo nao surpre-
ende, pois ambas as técnicas tiveram seu desenvolvimento justamente durante esse
periodo. Mas o motivo real que leva o aprendizado profundo ser uma boa estra-
tégia de abordagem para o problema de calculo de distancias é a complexidade
de se trabalhar com imagens LF somada a incerteza associada as caracteristi-
cas internas das cameras DLF. Todas técnicas citadas, com aprendizado profundo,
permitem a criacdo de mapas de profundidade, variando o tempo de treinamento e
precisdo da rede neural. O principal problema abordado por essa tese é o balance-
amento entre acuracia e tempo de execucao, pois a maioria dos trabalhos nao se
preocupa com o tempo de execucgao.

4.2 Aplicacoes comerciais, mercado e empresas afins

O mercado de light field tem crescido com o surgimento tanto de dispositivos de
captura como de dispositivos de apresentacdo de imagens e videos light field. Isso se
deve a demanda cada vez maior para representar e apresentar informacao tridimen-
sional, através de dispositivos robustos e de facil uso. Dentro desse escopo, 0 uso
de imagens plendpticas tem se apresentado como uma abordagem promissora com
solugbes comerciais ja em uso, conforme sera apresentado no decorrer dessa segao.

Pode se apontar o surgimento do mercado de light field com a criagao dos primei-
ros dispositivos comerciais entre 2010 e 2011. Em 2010, a empresa Raytrix GmbH
anunciou a producao e comercializacao da primeira camera plenoptica 2.0. Em 2011
foi a vez da empresa Lytro, Inc. langar uma nova camera, com o diferencial de ser do
tipo plenéptica 1.0. Enquanto a Lytro investiu no mercado fotografico e de videos, a
Raytrix investiu em mercados especificos como o de microscopia, inspe¢ao industrial
e pesquisa cientifica. O ponto de maior convergéncia entre ambas empresas foi o
setor de sistemas imersivos.

A empresa Lytro encerrou suas atividades em margco de 2018, apds sete anos
tentando propor um novo paradigma no centenario mercado fotografico. Mas apesar
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Tabela 4 — Resumo comparativo entre os algoritmos citados. . Fonte: De autoria propria.

Categoria | Abordagem | Caracteristica [ Entrada [ Saida
Baseado em . . = . .
P (WANG; EFROS; RAMAMOORTHI, | Modelo de ocluséo para LF LF 1.0 mapa de disparidade
correspondéncia 2015)
Estéreo
(YU et al., 2013) Estrutura geométrica LF esparsa | mapa de disparidade
LF 1.0

Estrutura geométrica

(ZHOU; SUI; JENKINS, 2018) Monte Carlo Localization LF 1.0 posicao estimada
S;SE‘;?O em (KIM et al., 2013) Reconstrug¢ao da cena LF1.0 mapa de disparidade
Baseaqo em (ZBONTAR; LECUN, 2016) CNN (Siamesa) Estéreo mapa de disparidade
aprendizado
(LUO; SCHWING; URTASUN, 2016) | CNN (Siamesa) Estéreo mapa de disparidade
. . CNN com . )
(ZHOU; CHEN; JENKINS, 2020) Filtro de particulas LF 1.0 posi¢cao estimada
(HEBER; YU; POCK, 2017) CNN (U-Net) LF esparsa | mapa de disparidade
CNN (EPINET) . .
(SHIN et al., 2018) Multifluxo LF 1.0 mapa de disparidade
. . CNN (Autoencoder) LF1.0 ) .
(SHI; JIANG; GUILLEMOT, 2019) FlowNet 2.0 LF esparsa mapa de disparidade

CNN (Multifluxo) segmentagao por

(GUO; WEN; HAN, 2020) Transformada de Fourier LF1.0 tipo de material
(LIN et al., 2022) ﬁﬁigggézozde? nao-supervisionado LF 1.0 mapa de disparidade
(Ll et al., 2021) o Stack LF 1.0 mapa de disparidade

desse revés, novas empresas estao surgindo e tradicionais empresas também inves-
tem em pesquisa na area. Pode-se dizer que um dos principais focos sdo sistemas
com realidade aumentada e realidade mista, hologramas e sistemas imersivos em
geral.

4.2.1 Aplicacoes

Uma aplicacao tipica do uso de processamento de imagens e visdo computacional
em plantas industriais é a inspecao doptica automatica. Tipicamente sao dispositivos
para inspecao da qualidade de uma superficie, medi¢des e verificagdo de integridade
de estruturas. Entre as principais vantagens do uso de cameras DLF em sistemas de
inspecao esta a visualizacao espacial-3D do objeto e 0 uso de apenas um dispositivo
de captura, ao contrario de sistemas de captura estéreo ou baseados em laser. Essas
qualidades também séo convenientes em dispositivos de imagem usados no calculo
da velocidade de particulas (particle image velocimetry). Esses sistemas medem a
velocidade de fluidos ou do ar.

Inspecao industrial, microscopia, exames de diagndstico por imagens sao
algumas das areas beneficiadas com o uso de tecnologia LF. Para exemplificar pode-
se citar a microscopia 3D, que tem tanto aplicagées industriais como laboratoriais,
onde o uso de sistemas LF permite realizar afericdes do tamanho de células, identificar
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conexoes eletrénicas e detectar falhas em estruturas mecéanicas de forma mais precisa
e ampla.

O desenvolvimento de telas baseadas em light field permitird o uso de 3D em
televisores, celulares e tablets sem a necessidade de aparatos adicionais como 6culos
e outros acessérios. A simples mudancga de posicionamento permite ao usuério a
sensacao de um novo ponto de vista por estar observando um conjunto diferente de
raios de luz, desta forma, os displays LF podem finalmente ampliar o uso do 3D no
cotidiano. Dentro da mesma linha de pesquisa, éculos de imersao baseados nessa
tecnologia devem ampliar o uso de 3D em plantas industriais e jogos imersivos, ou
qualquer sistema que use realidade virtual ou realidade aumentada.

O uso de cameras plenopticas em robética e veiculos autbnomos também pos-
sui amplo apelo. Uma unica camera DLF pode capturar dados 2D e 3D, calcular a
profundidade e medir a distancia dos elementos na cena a partir desses dados. Ou-
tras areas de aplicacdo que podem ser citadas sdo: modelagem, escaneamento e
renderizagcado 3D de objetos, reconstrucao de imagens e animagao.

4.2.2 Empresas do setor

Apesar da empresa Lytro® encerrar suas atividades em 2018, varias cameras
ainda estéo disponiveis para compra. Uma das grandes vantagens das cameras Lytro
S&80 0 seu prego, visto elas terem sido desenvolvidas para ocupar um nicho no mer-
cado fotografico. A empresa desenvolveu duas cameras portateis: A cdmera Lytro®
de primeira geracéo e a cAmera Lytro lllum®. A empresa também tentou se inserir no
mercado de realidade virtual com a caAmera Lytro Immerge®, cAmera de captura para
gravacao de volumes com 360 graus de cobertura e 6DoF (seis graus de liberdade).
Outro dispositivo da empresa foi a Lytro Cinema Camera®, cAmera de captura de
video e de uso cinematografico.

A empresa Raytrix, pioneira no mercado de cameras light field, continua ativa,
desenvolvendo novos produtos e criando parcerias com laboratérios académicos de
pesquisa. A empresa possui varias cameras do tipo plenéptica 2.0, tanto de captura
de imagem quanto video, além de softwares e suportes especificos para uso em sis-
temas de inspecao, microscopia, reconhecimento de faces, robds cirargicos, scanners
dentais, medi¢ces de volume e outras aplicacdes semelhantes. Em virtude de seu
uso especifico, as cAmeras da Raytrix possuem precos elevados, de ordem superior a
€5.000, o que impede o0 seu uso de forma mais ampla.

Outras empresas possuem investimentos na area de LF. A empresa Google Inc.,
possui varias iniciativas no setor, como o langamento no servico Steam® de um apli-
cativo baseado em imagens LF*, onde prometia uma experiéncia em realidade virtual

Sweb.archive.org/web/20110627085842/http: //www.lytro.com/
4store.steampowered.com/app/771310/Welcome_to_Light_Fields
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com reflexos, profundidade e translucidez do mundo real. Para a captura dessas ima-
gens a empresa desenvolveu um sistema de aquisi¢ao, processamento e renderizacao
Light Field (OVERBECK et al., 2018). A empresa também desenvolveu uma aborda-
gem com aprendizado profundo para sintetizar cenas LF usando varias imagens com
multiplanos (FLYNN et al., 2019) e propds um array de cameras de baixo custo para
captura de videos panoramicos de LF (BROXTON et al., 2019). Em maio de 2021, a
Google apresentou o projeto Starline, um sistema de video conferéncia onde as pes-
soas ficam posicionadas em frente a um monitor LF de 65 polegadas e possuem a
sensacao de volume 3D na imagem projetada (Figura 63) .

Figura 63 — Protétipo apresentado do projeto Skyle. Fonte: Google

Empresas tradicionais com Apple Inc. e LG Corporation também apresentam
interesse no setor. Em 2018, a LG Corporation patenteou um telefone celular com 16
cameras (KIM et al., 2018). Em 2020, foi publicada pelo US Patent & Trademark Office
o pedido de patente da Apple Inc.> de um sistema de cAmera panoramica light field
para iDevices e HMD que criara cenas imersivas com 6 graus de liberdade, através da
captura convencional de fotos e da criagao, via software, de imagens light field.

No desenvolvimento de hardware de captura com custos mais acessiveis pode-se
destacar as empresas: K|Lens, Doitplenoptic e Wooptix. A empresa K|Lens de-
senvolveu um conjunto de lentes de captura de light field para uso em cameras DSLR
padrao, gerando varias imagens com diferentes exposigcdes em um unico disparo. Ja a
Doitplenoptic patenteou um dispositivo chamado Doit 3D Micro que permite transfor-
mar qualquer microscopio 6ptico em um microscopio 3D ou 4D. A empresa Wooptix
possui uma proposta diferenciada em seu dispositivo de captura de light field. Em vez
de usar um sistema com vérias lentes em um array, ou um conjunto de lentes, como
a proposta da K|Lens, ela utiliza uma unica lente com foco variavel.

Em termos de dispositivos para apresentacao de imagens e videos light field, pode-
se destacar as empresas: Avegant, Leia inc e Light Field Lab. A empresa Light Field

Shttps://www.patentlyapple.com/patently-apple/2020/04/apple-invents-a-light-field-panorama-
camera-system-for-idevices-hmd-that-will-create-immersive-scenes-with-6-degrees-of-fre.html
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Lab apresentou em 2021 a tecnologia Solidlight holograms, uma tela que permite visu-
alizar hologramas 3D de forma realista. A empresa Leia inc estd produzindo o tablet
Lume Pad que permitem a experiéncia 3D sem necessidade de 6culos. J4 a Aven-
gant vai no sentido oposto, na construcao de dispositivos compactos que possam ser
acoplados em éculos e permitir imersao e realidade aumentada.

Na Tabela 5 temos uma amostra do setor e das empresas envolvidas.

Tabela 5 — Empresas que trabalham com tecnologias Light Fields. Fonte: De autoria propria.

Empresa | Produtos e protdtipos | Homepage
Apple Patente de um sistema panora- | www.apple.com
mico de captura de imagens
Avegant Dispositivos para sistemas | wuw.avegant.com/light-field
imersivos
Doitplenoptic Microscopia www.doitplenoptic.com
Google Cémeras esparsas, monitores e | https://
sistemas de realidade aumen- | augmentedperception.github.
tada e virtual io/deepviewvideo/
K|Lens Conjunto de lentes para uso em | www.k-lens.de
cameras DSLR padréao
Leia inc Tablet (Lume Pad) com tela 3D | www.leiainc.com
light field
Light Field Lab | Monitores e ecossistemas www.lightfieldlab.com
Raytrix Cémeras para aplicagées pro- | www.raytrix.de
fissionais e pesquisa
Wooptix Céamera de captura com uma | www.wooptix.com
unica lente variavel

4.2.3 Investimentos e desenvolvimento de padroes

O desenvolvimento recente de novas tecnologias light field também foi impulsio-
nado por projetos como o SAUCE®. Esse projeto teve como objetivo produzir, testar
e demonstrar um conjunto de ferramentas e técnicas profissionais visando reduzir os
custos na producao de conteudo digital em industrias criativas. Um do principais topi-
cos abordados foi referente a possibilidades e desafios de integrar captura e proces-
samento de LF em produgdes de midia (TROTTNOW et al., 2019). O projeto SAUCE
durou trés anos (de janeiro de 2018 até dezembro de 2020) e envolveu laboratérios e
pesquisadores das seguintes entidades: Universitat Pompeu Fabra, Foundry, DNEG,
Brno University of Technology, Filmakademie Baden-Wirttemberg, Saarland Univer-
sity, Trinity College Dublin, Disney Research.

Outra agao importante para a industria é a criagdo do JPEG Pleno’ pelo comité
JPEG (Joint Photographic Experts Group) que tem uma longa tradicdo na criacao de

Shttps://www.sauceproject.eu/Technology/Light-Fields
"https://jpeg.org/jpegpleno/
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www.avegant.com/light-field
www.doitplenoptic.com
https://augmentedperception.github.io/deepviewvideo/
https://augmentedperception.github.io/deepviewvideo/
https://augmentedperception.github.io/deepviewvideo/
www.k-lens.de
www.leiainc.com
www.lightfieldlab.com
www.raytrix.de
www.wooptix.com
https://www.sauceproject.eu/Technology/Light-Fields
https://jpeg.org/jpegpleno/
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padroes de codificacdo de imagens estaticas. JPEG é um grupo de trabalho conjunto
da International Standardization Organization (ISO) e da International Electrotechnical
Commission (IEC). O objetivo do nucleo JPEG Pleno € fornecer uma estrutura pa-
drdo para representar novas modalidades de imageamento, como light field, nuvem
de pontos e imagens holograficas. O framework JPEG Pleno busca integrar todas
as ferramentas necessarias em um unico sistema para representar a mesma reali-
dade visual, considerando diferentes modalidades, requisitos e funcionalidades. Em
agosto de 2022, grupo do JPEG Pleno organizou o 1st JPEG Pleno Workshop on
Learning-Based Light Field Coding Proceedings.

Desta forma, a area de light field possui um potencial que tem sido capturado por
varias empresas da area tecnoldgica, mas por ser um tecnologia comercial nova, ainda
depende da criacao de padrdes, métodos de transmissdo e compactacgao.

4.3 Consideracoes finais

Esse capitulo apresentou o crescente uso de tecnologias baseadas em light field,
com a descrigcao de diversos dispositivos desenvolvidos ou em fase de testes para uso
comercial. Foram citados também os esfor¢os na criagdo de padrbes por parte do co-
mité JPEG (Joint Photographic Experts Group), responsavel pela criagdo de padrbes
de codificacao de imagens. Na secao de trabalhos relacionados foram apresentadas
técnicas que constroem os mapas de profundidade que séo necessarios para o calculo
de distancias, ao mesmo tempo que se enfatizou a falta de estudos mais consistentes
gue reunam informacao visual com informagdes numéricas conhecidas e gerem na
saida uma imagem com dados de distancia entre os objetos na cena e o observador
(cdmera) de forma pléstica.



5 MATERIAIS E METODOS DE PESQUISA

Conforme citado nos capitulo prévios, essa tese busca apresentar técnicas que
melhorem o balanceamento entre acuracia e tempo de execucao na criacao de
mapas de profundidades a partir de imagens DLF. De todas as técnicas citadas, as que
usam estratégias com aprendizado profundo s&o as que possuem maior plasticidade,
podendo variar o tempo de processamento e a precisdo da rede neural de acordo com
a arquitetura apresentada. Desta forma, o aprendizado profundo é uma boa estratégia
de abordagem para o problema apresentado devido sua flexibilidade em relagdo a
mudanca de parametros de entrada, o que se apresenta como vantajoso considerando
a complexidade de se trabalhar com imagens LF. Com base nessa observacao, essa
tese usa conhecimentos de aprendizado de maquina, optica e light field para propor
modelos de redes neurais profundas capazes de inferir o mapa de profundidade a
partir de imagens LF densa. Por possuir um escopo amplo, o0 método de abordagem
foi guiado pelos seguintes objetivos gerais:

» Propor e avaliar solugdes para extragdo de mapas de profundidade baseadas
em deep learning;

« Filtrar estratégias mais apropriadas ao problema proposto;
* Investigar as redes neurais mais propicias para o uso no problema de pesquisa;
Partindo dos objetivos gerais, se estabeleceu os seguintes objetivos especificos:

» Determinar o dataset a ser aplicado no treinamento;

» Selecionar as ferramentas mais adequadas;

Definir o pipeline de aprendizado de maquina para o estudo e desenvolvimento
das redes neurais;

 Projetar e desenvolver as arquiteturas de redes neurais voltadas a geragcédo dos
mapas de profundidade a partir de imagens ligth field densa.
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5.1 Projeto do Pipeline de aprendizado

Uma pipeline de aprendizado de maquina é uma estrutura que esquematiza o fluxo
de trabalho e as etapas envolvidas na construgdo de modelos de aprendizado de ma-
quina. Essa estrutura representa todos os passos necessarios, desde a extracao de
dados, pré-processamento, treinamento, avaliacdo e desenvolvimento propriamente
dito. Pipelines ndo sao fluxos unidirecionais. Eles sao ciclicos por natureza e permitem
interagdes para melhorar as pontuac¢des dos algoritmos de aprendizado de maquina e
tornar o modelo escalonavel, conforme se observa na Figura 64.

Ingestao Validacao Pré-processamento Tremamento
dos dados dos dados dos dados do mudela

Ajuste

do modelo

Feedback Desenvolviment Validac3o Analise
‘[ dao modelo F— de Madelo H do modelo H do modelo
Figura 64 — Pipeline genérico de um sistema de aprendizado de maquina. Fonte: Adaptado de
Hapke; Nelson (2020).

O projeto apresentado nessa tese envolve dois ciclos com um total de seis tarefas
bésicas:

+ Definicdo de dados e dataset:

— Definir o problema e preparar a abordagem a ser seguida;

— Sumarizar e entender os dados a serem usados no projeto;

* Implementagao e testes:

Definir e implementar os algoritmos;

Processar e avaliar os dados;

Avaliar os algoritmos;

Melhorar os resultados.

Na primeira etapa do trabalho, definir o problema e preparar a abordagem a
ser seguida, se estabeleceu o tema e o contexto de aplicacdo através do levanta-
mento bibliografico inicial. Com base nas abordagens utilizadas em diversos artigos
foi determinado o formato de arquivo a ser usado no dataset e na saida do sistema.

O passo para sumarizar e entender os dados a serem usados ho projeto envol-
veu trés etapas béasicas parcialmente independentes: (i) estudo da camera de captura;
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(i) idealizacao e construcdo do dataset real; (iii) selecdo do dataset sintético. Essas
etapas sao detalhadas na se¢ao 5.2. Por fim, as etapas associadas a implementacao
e testes € abordada no Capitulo 6 que descreve o trabalho propriamente dito.

5.2 Especificacao do dataset

A escolha do dataset para treinamento € uma etapa basica. Existem datasets
LF sintéticos e datasets LF de imagens reais. Os datasets LF de imagens reais sdo
feitos com cameras comerciais e/ou protétipos. Os principais problemas encontrados
ao se trabalhar com os datasets LF de imagens reais sao: o ruido, a retificacao das
imagens, problemas nas anotacdes e descricbes das disparidades e principalmente o
método usado para extrair o mapa de profundidade que sera utilizado como ground
truth na etapa de treinamento. Por exemplo, o software proprietario da Lytro Illum gera
mapas de profundidade e aplica um algoritmo de alongamento de histograma para
realcar as diferencas entre as disparidades encontradas. Esse método € interessante
quando se trabalha apenas com questdes estéticas do tratamento da imagem, mas
como ele altera as relagdes de disparidade no mapa de profundidade, néo é util no
processamento de informacdes de distancia da imagem.

A estratégia usada nesse trabalho foi usar datasets sintéticos na etapa de treina-
mento, pois esses dados possuem precisao no ground truth e no controle nas carac-
teristicas intrinsecas e extrinsecas da camera. Para potenciais testes do sistema, foi
gerado um dataset LF de imagens reais proprio com uma camera LF densa, a Lytro
lllum ®, em um ambiente controlado.

5.2.1 Dataset sintético

O dataset sintético utilizado € o proposto em (WANG et al., 2016)'. Esse conjunto
de imagens foi construido para ser usado com o 4D Light Field Benchmark, que foi
elaborado para avaliar o desempenho de algoritmos na estimativa de profundidade em
cenas lambertianas (WANG et al., 2016).

O 4D Light Field Benchmark apresenta um total de vinte oito cenas, sendo quatro
cenas estratificadas, quatro cenas para teste, quatro cenas para treinamento (Figura
65) e dezesseis cenas adicionais (Figura 66). Segundo (WANG et al., 2016), todas
as cameras virtuais estao deslocadas em relacdo a um plano de foco, mantendo os
eixos épticos paralelos, o que faz a disparidade zero nao corresponder a profundidade
infinita. Para cada cena séo fornecidos:

» Imagens light field com 3 canais de cor e 256 niveis de intensidadede (8
bits) por canal, resolugdo angular de 9x9 e resolugdo espacial de 512x512
(9x9x512x512x3), armazenadas como imagens individuais no formato PNG;

"https://lightfield-analysis.uni-konstanz.de/


https://lightfield-analysis.uni-konstanz.de/
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* Arquivos de configuragdo com informacdes da camera e da faixa de disparidade
da cena;

» Para cada vista central (menos para as quatro cenas de teste):

— Mapas de profundidade e disparidade com resolugdo de 512x512 e
5120x5120 no formato PFM;

— Mascaras de avaliagdo com resolugao de 512x512 e 5120x5120 no formato
PNG.

Estratificada Teste Treinamento
Vista Central Ground Truth Vista Central Ground Truth Vista Central Ground Truth

5
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Figura 65 — Dataset sintético do 4D Light Field Benchmark. Fonte: Wang et al. (2016).

Todas cenas foram criadas no software Blender?. Nas cenas estratificadas foram
usadas o renderizador interno do software, e nas cenas fotorrealistas o renderizador
Cycles (WANG et al., 2016).

5.2.2 Dataset de cenas reais

Para esse trabalho foi construido um dataset de imagens LF, onde os objetos estao
em posicoes e distancias conhecidas. O primeiro passo estabeleceu o dataset minimo
para a geracdo de dados. Foi necessario um ambiente controlado, com as configu-
racdes da camera em parametros fixos e com marcagdes visuais das distancias de
cada objeto ao plano de captura. As configuracdes estabelecidas foram baseadas em
principios épticos previamente calculados e averiguadas em experimentos de campo.

’https://www.blender.org/
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Antinous, Range: [-3.3, 2.8] Boardgames, Range: [-1.8,1.6] Tower, Range: [-3.6,3.5] Pillows, Range: [-1.7, 1. B]

3

Greek, Range: [-3.5,3.11] Vinyl, Range: [-1.6,1.2] Rosemary, Range: [-1.8, 1.8]

Medieval2, Range: [-1.7,2.0] Tomb, Ranqe -1 5 1.9]

Kitchen, Range: [-1.6,1.8]

Pens, Range: [-1.7,2.0] Town, Range: |- 1616]

Museum, Range: [-1.5,1.3] Table, Range: [-2.0,1.6]

Figura 66 — Dataset sintético adicional do 4D Light Field Benchmark. Fonte: Wang et al. (2016).

Para cada imagem LF é gerado um mapa de profundidade para servir como ground
truth e os parametros da camera sao armazenados em dois arquivos JSON.

5.2.2.1 Céamera Lytro lllum®

A etapa de estudo da camera de captura (camera Lytro lllum®) foi basilar para o
projeto. Uma vez que nao existem datasets com imagens reais com as caracteristi-
cas necessarias para o trabalho proposto, foi essencial o completo entendimento dos
arquivos gerados pelo equipamento disponibilizado para essa tarefa.

A camera Lytro lllum® gera, a cada captura, um arquivo LFR (Light Field Raw)
que contém: a imagem bruta capturada pelo sensor (Figura 30); metadados com a
configuragdo do dispositivo no momento da captura; os nimeros seriais do sensor e
da camera; e, uma miniatura, no formato JPG, da vista central (SILVA, 2016).

Para extrair as informagdes de configuragdo da camera foi usada a ferramenta
Lytro Power Tool®, escrita em cédigo aberto na linguagem Python 2.7, que gera um
arquivo JSON (Figura 67). Levando em conta a facilidade de manipulagéo, se optou
extrair cada SAI como uma imagem PNG independente. Essa extragdo pode ser feita
através do software comercial da propria camera (Lytro Desktop®) , das bibliotecas
Plenpy (python) 2 e Light Field Toolbox (Matlab)*, da toolbox Lytro Power Tool®, ou do
software PlenoptiCam®.

Shttps://iiit-public.gitlab.io/plenpy/
“https://dgd.vision/Tools/LFToolbox/
Shttp://www.plenoptic.info/pages/software.html
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"picture": {
"dcfDirectory”: "100PHOTO",
"dcfFile": "IMG_1147",
"totalFrames":

"o sureCompensation”: 0.0,
"curtainTriggerSync": "front",
"zoomMode": "auto"
"mode": "unknown
"afAssistMode": "auto"

} r

"focus": {
i ol s S |

Figura 67 — Fragmento do arquivo JSON gerado pela ferramenta Lytro Power Tool®. Fonte: De
autoria prépria.

5.2.2.2 Meétodo de construgcdo do dataset

As imagens sdo adquiridas por uma camera Lytro lllum com o sensor de captura a
uma distancia de 600mm do plano onde se encontra os objetos, conforme a figura 68.
Observa-se que os objetos sao dispostos a cada 100mm, somando um total de 500mm
entre o inicio do plano e o fim. Desta forma, ao adicionar a distancia da camera, os
objetos se encontram em uma faixa de 600mm até um total de 1200mm do sensor
de captura. Nao existe um limite em relacéo a quantidade de objetos a uma mesma
distancia do sensor. O critério usado foi manter uma quantidade que permita visualizar
todos objetos na cena conforme se vé na Figura 69b, visto que o objetivo do dataset
€ extrair a informacéao de distancia. O plano usado também possui marcacgdes laterais
de 100mm conforme se observa na Figura 69a.

Figura 68 — Esquema usado na captura das imagens. Fonte: De autoria propria.
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(a) Plano usado (b) Disposi¢ao dos objetos
Figura 69 — Processo de captura. Fonte: De autoria prépria.

Na Figura 70 é possivel visualizar uma amostra do dataset processado pela fer-
ramenta Lytro Power Tools®. A Figura 70a apresenta todos objetos focados. Essa
imagem € gerada através da juncao das imagens LF capturadas. J4 o mapa de pro-
fundidade da imagem € mostrado na Figura 70b. Pode-se notar que com as caracteris-
ticas Opticas escolhidas 0 mapa gerado possui uma separagao visivel a cada 100mm.
Isso é possivel em virtude do comprimento focal ser de 48mm &, o que faz, para as
caracteristicas da camera e distancia do objeto que esta no centro do tabuleiro, haver
uma regido focavel, tanto a frente do objeto quanto atras, de aproximadamente 10 cm.

(a) Imagem focada (b) Mapa de profundidade
Figura 70 — Exemplo de imagem do dataset. Fonte: De autoria propria.

Pode-se fazer uma analogia entre o DoF de uma camera convencional e a forma
como a camera Lytro captura uma imagem LF. No DoF existe regides nitidas (focadas)
em frente e atras do ponto focal; na Lytro temos uma subfaixa refocavel em frente
e atras do ponto focal. A Figura 71 mostra essa organizacao, onde a faixa refocavel
abrange todos os pontos que podem assumir foco relativamente nitido depois que
a foto é capturada (LYTRO, 2015a). Cada subfaixa refocavel oferece um espectro
de nitidez relativa, que depende da profundidade em que a imagem é refocada. Na
Figura 71, quanto mais brilhante for o tom da faixa azul ou laranja, mais nitidos seréo
os objetos localizados na distancia associada (LYTRO, 2015a). A faixa mais brilhante
dentro de cada subfaixa refocavel é seu pico - onde 0s objetos serdo mais nitidos na
refocalizacdo (LYTRO, 2015a).

615mm considerando o crop de 3.19
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1 - Faixa refocavel
2 - Pico proximo
3 - Pice distante
} | } | | | J | | 4-Faixa refocavel da regido proxima

Orsiny 200mm 400m &00rmm BO0mm 1000mm  4200mm 1400mm S - Faixa refocavel da regido distante

Figura 71 — Faixa refocavel com lente ajustada para distancia focal de 50 mm (equivalente a 35
mm) e foco dptico em aproximadamente 42cm. As distancias fisicas da camera sdo mostradas
em cinza. Fonte: Lytro (2015a).

Para garantir imagens com boas caracteristicas de refocagem, o focus bracketing
foi ajustado para 5 disparos com 10 depth steps. O focus bracketing faz com que a céa-
mera tire uma série de fotos cada vez que o obturador é pressionado, incrementando o
foco de acordo com os depth steps. Isso significa que o intervalo de refocagem € modi-
ficado, criando mais chances de capturar uma imagem com maiores possibilidades de
refocagem (LYTRO, 2015a). Na Figura 73 € possivel ver o efeito desse ajuste. Nesse
exemplo foram feitos trés disparos com um depth step (DS). No primeiro disparo a
captura é feita com a configuragcéo de foco original (Figura 73a). No segundo disparo
€ realizado um depth step de —1 que comprime a faixa refocavel (Figura 73b). Por fim,
no terceiro disparo é realizado um depth step de +1 (em relagao ao foco original), que
aumenta a faixa refocavel (Figura 73c).

P Sl 3ol B LI Sul I Sl B Sl B S N7 L

LI LS Rl B Ll S el B ] Sl B Ll B ]

i
LI ki
i

(b) Subaberturas de uma imagem do da-
(a) Configuragédo da camera taset

Figura 72 — Configuracao da camera e SAls geradas. Fonte: De autoria prépria.

Segundo (GEORGIEV et al., 2013), a ferramenta Lytro Desktop consegue aumen-



(a) Faixa refocavel original (b) Faixa refocavel com -1 DS (c) Faixa refocavel com +1 DS
Figura 73 — Faixa refocavel com focus bracketing definido para 3 fotos e 1 passo de profundi-
dade. Fonte: (LYTRO, 2015a).

tar a resolucdo de saida usando de forma simultdnea as configuragdes Kleperiana e
Galileana (Figura 32). Conforme a Figura 74, a lente principal cria uma imagem em
foco em frente das microlentes, e uma imagem virtual focada atras das microlentes
(GEORGIEV et al., 2013), ambas visualizadas pelo sensor. A corregdo ou mistura
apropriada de tais microimagens produz as imagens com resolu¢cdo mais alta obser-
vadas na renderizacao final.
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'Figura 74 — Captura de imagem Galileana (esquerda) e Kepleriana (direita) em uma camera
plenoptica 1.0. A &rea sombreada representa a area de boa focagem das microlentes. Fonte:
Georgiev et al. (2013).

Como esse método usado para fazer o upscale da imagem e a forma de combi-
nacao entre as projecoes sao algoritmos nao acessiveis ao usuario das ferramentas
Lytro Desktop® e Lytro Power Tool ®, se optou por usar ferramentas que extraiam dire-
tamente as vistas.

Com base nessas consideracdes foi criado um dataset com 81 poses, com dois
formatos de saida e duas resolucdes para as vistas (SAl), conforme a Tabela 6. Para
extrair as SAl’'s foram usados os softwares Light Field Toolbox e PlenoptiCam. Ja
o0 método usado para gerar o ground truth depth map foi o proposto em (JEON et al.,
2015), com implementagao para MatLab® ”

A saida com a resolucdo 1 é gerada pela Light Field Toolbox e a resolucao 2
pela PlenoptiCam. A resolucao de 625x434 sem upscaling € usada na maioria dos
datasets consultados. Sao adicionados ao dataset dois arquivos JSON. Um gerado
pela ferramente Lytro Power Tools, mantido caso algum pesquisador queira acessar

Disponivel em https://github.com/Vincentqyw/Depth-Estimation-Light-Field/tree/
master/LF
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Tabela 6 — Dataset proposto - ver Apéndice B. Fonte: De autoria propria.

Dataset

Imagens LF 81 poses

SAl 9x9 e 7X7

Resolucao 1 625x434

Resolugéo 2 620x430

Abertura de lente Constante - /2.0

All in focus 2022x1494 formato tiff

detalhes padrao da captura, e o outro € uma versao simplificada, com dados 6pticos
relevantes para o calculo de distancias absolutas. Nesse arquivo, estdo a informa-
cbes de ISO, abertura da camera, distancia focal, tempo de exposi¢ao, velocidade do
obturador. Podem ser adicionados futuramente outros parédmetros, caso se provem
necessarios.

5.3 Ferramentas

Para implementagédo do projeto, foi selecionada a linguagem Python (versao 3.x)
e o framework Tensorflow (versao 2.6.0), que é uma plataforma end-to-end e open
source para aprendizado de maquina. O Tensorflow vem com uma API de alto ni-
vel chamada tf.keras que permite criar e treinar modelos de aprendizado profundo. A
juncéo da linguagem Python e o framework Tensorflow, permitem a flexibilidade ne-
cessaria para a prototipagem rapida e integragdo com outras bibliotecas.

Para essa tomada de decisdo foram estudadas as ferramentas descritas abaixo.

» Para uso com Python:

Plenpy - https://gitlab.com/iiit-public/plenpy.

Plenopticam - http://www.plenoptic.info/pages/software.html.

Lytro Power Tools - http://lightfield-forum.com/lytro/lytro-archive/

Plenoptic 2.0 Toolbox - https://github.com/freerafiki/
PlenopticToolbox2.0

* Para uso com MATLAB:

— Light Field Toolbox for MATLAB - https://dgd.vision/Tools/LFToolbox/).

— FDL toolbox - https://github.com/LEPENDUM/FDL-Toolbox.

5.4 Conclusao

Esse capitulo apresentou a abordagem usada no desenvolvimento do projeto, bem
como a selecao de ferramentas. O capitulo sumarizou as estratégias para construgcéo


https://gitlab.com/iiit-public/plenpy
http://www.plenoptic.info/pages/software.html
http://lightfield-forum.com/lytro/lytro-archive/
https://github.com/freerafiki/PlenopticToolbox2.0
https://github.com/freerafiki/PlenopticToolbox2.0
https://dgd.vision/Tools/LFToolbox/
https://github.com/LEPENDUM/FDL-Toolbox
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do dataset real e escolha do dataset sintético. Por fim, apresentou o pipeline utilizado
e sua abordagem.



6 TRABALHO DESENVOLVIDO

Existem duas abordagens tradicionais para o calculo de profundidade: através da
triangulacao geométrica entre vistas diferentes; e através da variacao focal. A tri-
angulacao geométrica em light field é feita através de uma adaptagdo do esquema
de triangulagédo convencional estéreo. Para isso € necessério resolver o problema de
correspondéncia entre pontos das vistas, encontrar as disparidades entre as subaber-
turas e criar o mapa de profundidade. Uma vez feitos esses passos, € necessario
calcular as distancias absolutas através da relacao entre as disparidades em pixels
na imagem e as caracteristicas intrinsecas da cdmera. Na variacao focal a aborda-
gem empregada utiliza a refocalizagdo. Essa técnica também possui como entrada
as imagens de subaberturas LF. Encontra-se a regido em foco em cada uma das su-
baberturas e através do uso das caracteristicas especificas da camera, definida pela
matriz intrinseca, junto com informagdes da distancia focal e dimensdes do sensor,
acha-se a distancia dos objetos. Na Figura 75, observa-se os varios planos « refoca-
lizados, dados pela equagéo o« = F'/F, onde F é a distancia entre a lente principal e
o array de microlentes, e F’ é a distancia entre a lente principal e o plano « onde a
regido de interesse se encontra focalizada.

Um ponto critico nessas abordagens é o balanceamento entre acuracia e tempo
de processamento na criacao de mapas de profundidades. Isso ocorre pela de-

Planos de refocagem .
5 MLA plano Plano da
5 Lente principal

w

(a) Diregéo dos raios de luz em relagao ao foco (b) Refocagem

Figura 75 — Esquema ilustrativo do refoco em uma LF. Raios vindos do ponto P da cena
possuem a mesma radiagao e convergem no ponto refocado P/,. Fonte Zhou et al. (2019)
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manda de calculos envolvidos. Em geral sdo necessarios avaliar n-variaveis, atualizar
seus valores e fazer novos célculos a cada mudanca de algum parametro. Uma alter-
nativa é usar abordagens com aprendizado profundo, que possuem maior plasticidade,
podendo variar o tempo de processamento e a precisdo da rede neural de acordo com
a arquitetura apresentada. Nos sistemas baseados em aprendizado de maquina e
redes neurais convolucionais ocorre uma resposta direta a modificacdo dindmica dos
parametros devido ao processo de aprendizado das relagdes entre entrada e saida.

O modelo de aprendizado de maquina usado como base nessa proposta € a rede
EPINET (SHIN et al., 2018), chamada pelos autores de arquitetura de multifluxo.
Apesar do artigo original dessa arquitura ser de 2018, ela continua como referéncia na
area. Conforme observa-se na Figura 76, o desempenho dessa arquitetura (Epinet-
fcn9x9) continua proximo de algoritmos mais novos. Nesse grafico temos a compara-
cao da rede EPINET com dois algoritmos que estao entre os melhores desempenhos
na pagina de benchmark 4D Light Field Dataset: (i) AttMLFNet (CHEN; ZHANG; LIN,
2021); (ii) CAPNet (LIU et al., 2020). Convém ressaltar que ambos métodos fazem a
separacao das vistas da imagem LF igual a EPINET.

MAE
Flaneas

BadPix({0.03)

35.86 AtIMLFNet
-+ CAPNet
Epinet-fcn9x9

MAE
Contin

BadPix(0.07)

Surfaces

Fina .
s MSE
Thinning

Runtirme

Fine
Fattening (log10)

Bumpinass
Discontinuities Cantin
Surfaces

Bumpiness

Planes
Figura 76 — Comparagéao da rede EPINET com outros algoritmos. Fonte: Gerado em 4D Light
Field Dataset, 2022. Disponivel em: <https://lightfield-analysis.uni-konstanz.de/>.
Acesso em: 24 de novembro de 2022.

A disposicao da rede EPINET lembra as redes siamesas, pois usa redes neurais


https://lightfield-analysis.uni-konstanz.de/
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em paralelo que compartilham a mesma estrutura. Apesar da semelhanca, nao se
pode classificar a EPINET como uma rede siamesa, pois a mesma apresenta valores
diferentes de pesos entre as ramificacées de entrada.

Esse trabalho fez um estudo da arquitetura de multifluxo da EPINET e propde
duas arquiteturas derivadas para extrair as informagdes de profundidade a partir de
imagens plenopticas: a EPINET-FAST e a U-EPINET. O objetivo é apresentar métodos
que possam ser utilizados por pesquisadores que pretendem usar imagens light field
em aplicacoes de tempo real ou proximas do tempo real, como € caso da robética
mével e carros autbnomos. Nas proximas secdes serdo descritos os formatos de
entrada usados e as arquiteturas criadas.

6.1 Dados de entrada

Como dados de entrada para treinamento se optou por dados sintéticos, uma vez
qgue os dados reais gerados possuem necessidade de ajustes manuais no ground
truth devido ao ruido e as distor¢des duplas da camera Lytro (na lente principal e nas
microlentes), além da adequacao aos parametros da cdmera no momento da captura
(foco, zoom, DoF, etc.). Como esse ajuste ndo € o foco principal dessa tese, se optou
por usar o dataset real apenas nas etapas de testes, e futuramente viabilizar o uso
do mesmo na etapa de treinamento.

As imagens light field sintéticas usadas no treinamento e teste advém do dataset
HCI da Heidelberg University' (WANG et al., 2016). Esse dataset fornece imagens
light field de 8 bits com resolugdes de (9x9x512x512x3), ou seja, resolucdo angular
de 9x9 (81 vistas), com resolucao espacial de 512x512 e trés canais de cor. Estas
light field estao disponiveis como uma sequéncia de 81 imagens no formato PNG que
devem ser organizadas em uma matriz 9x9 conforme a Figura 78. Além disso, para
cada imagem plendptica sao fornecidos os parametros da camera de captura e o mapa
de profundidade em formato PFM com resolugao de 5120x5120.

Cada vista apresenta variacées na localizacdo de um mesmo pixel em relacao
a vista central, conforme a Figura 77. Essas variacOes representam a disparidade
entre os pixels que pertencem a uma mesma regido. A partir de um conjunto de vistas
(pilha de vistas) € possivel montar um mapa de disparidade, que pode ser usado para
calcular o mapa de profundidade a partir das caracteristicas intrinsecas da camera.

Para cada imagem light field s&o criados volumes usando a totalidade das vistas,
ou selecionando, de acordo com algum critério prévio, apenas um subconjunto des-
tas. A EPINET usa quatro subconjuntos de 9 vistas, conforme a Figura 78. Cada
agrupamento é construido de acordo com quatro critérios:

» Diagonal principal - passa pela vista central (vista 40) com inclinacao de 45°%;

"http://hci-lightfield.iwr.uni-heidelberg.de/


http://hci-lightfield.iwr.uni-heidelberg.de/
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éms!/\ op ey|id

Figura 77 — Exemplo de disparidade entre as vistas. Os eixos vermelhos marcam um pixel na
vista central. Na vista mais a esquerda se nota, pela linha vertical roxa, que 0 mesmo pixel
sofreu um deslocamento horizontal para a direita da vista central. Ja na vista mais a direita,
0 mesmo ponto na cena sofreu um deslocamento horizontal para a esquerda em relagéo a
vista central. Essas diferencas em relagéo a vista central € chamada de disparidade. A juncao
dessas diferentes perspectivas formam o chamado volume/pilha de vistas. Fonte: De autoria
propria.

» Diagonal secundaria - passa pela vista central (vista 40) com inclinagao de 135¢
» Eixo de 90° - passa pela vista central;

» Eixo de 0°- passa pela vista central.

EEEEEEELE
BECECHEES

Figura 78 — Geracao dos volumes de entrada baseados na disposicao das vistas capturadas.
Fonte: De autoria prépria.
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Para gerar esses dados sao usadas 16 imagens para treinamento (grupo chamado
additional) e 8 LF para teste. Sao criados os quatro volumes de vistas para cada LF
de acordo com os critérios citados (Figura 78).

Compete ressaltar que as imagens sao convertidas para tons de cinza usando
valores ponderados para cada canal, onde: canal R igual a 0,299; canal G igual a
0,587; canal B igual a 0, 114.

6.1.1 Data augmentation

Um dos principais problemas de usar imagens light field no treinamento de redes
neurais € a baixa disponibilidade de imagens com caracteristicas semelhantes em ter-
mos de luminosidade e a0 mesmo tempo com alta variabilidade de objetos, materiais e
distancias entre objetos. Outro problema é a qualidade ou precisao dos mapas de dis-
paridade disponiveis nestes datasets. Por exemplo, os que sdo extraidos via softwa-
res como o Lytro Desktop ® ndo podem ser diretamente usados como ground truth
uma vez que geram mapas de profundidade relativos, onde se aplica alongamento
de histograma e outras transformacgdes, fazendo com que se perca as informacdes
necessarias para a construcao de um mapa de profundidade absoluto. Para resolver
esse problema é necessario fazer um remapeamento entre o ground truth gerado e o
ground truth real 2. Por sua vez, extrair geometricamente o ground truth de imagens
reais pode gerar ruido em virtude de caracteristicas da camera e do sistema optico.
Desta forma, acaba-se ficando limitado a um pequeno conjunto de imagens LF sintéti-
cas que conseguem atender as demandas necessarias. Mas quando se trabalha com
redes neurais convolucionais é necessario usar uma grande quantidade de dados para
gue a rede neural consiga generalizar. Essa limitacdo de imagens torna necessario
aumentar a quantidade de dados mantendo as relacdes geométricas entre as imagens
de subaberturas (vistas) e ao mesmo tempo contornar o problema de overfitting que
pode acontecer se apenas apresentarmos o mesmo conjunto de imagens de forma
reiterada.

A estratégia para aumentar a quantidade de dados (data augmentation em inglés)
neste trabalho foi retirada de (SHIN et al., 2018), que consiste nas técnicas de :

» Deslocar a vista central através de translacao;
* Rotacionar as imagens LF em 90°, 180°e 270°;
» Reescalar o tamanho das imagens;

» Espelhar a imagem - flipping.

2|sso s6 é possivel se as informagdes de distancias estiverem disponiveis, como no caso do dataset
gerado para essa tese.
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6.1.2 Deslocar a vista central

Cada volume construido captura variagdes epipolares em uma das quatro direges.
Conforme se observa na Figura 80, cada um desses volumes é associado a uma
entrada distinta. Uma estratégia simples para aumentar a quantidade de dados é
mudar a subabertura usada como referencial e construir novos volumes baseados
nessa nova vista central conforme se observa na Figura 79.

Matriz de Deslocamento da MNova matriz de vistas
vistas vista central (-1,-1) apos translagéao
_ (10 S S 9 04 5 05 a1 08 10 W0 03 T B 06 I
I vista cental RE10 Wi 1 1 6 16 ] 1510 ¥ 12 914 6 1 e [orfo
B vistas 0° e 50° XS 1) 20 P 22 ) 24 P 1 120 21 98 R A Bl 170k e}118kd 135 4151 6]
27]28]20k [ A= 13334135 R 27 25 2930 31 32 33 THEE S o NN FTS) IS TS 20 21 22 7 P Pl
. Vistas 45° e 135° 363738304041 424344 : .—‘/\, 35 272829303132 3334
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Figura 80 — Cada volume construido é associado a uma entrada. Fonte: De autoria prépria.

6.1.3 Rotacao das imagens LF

Essa técnica é largamente utilizada para o aumento de dados de entrada. Imagens
LF possuem uma particularidade - precisam manter as relagdes de disparidade. De
acordo com (SHIN et al., 2018), pixels na direcdo horizontal estao fortemente relacio-
nados entre si nos volumes de vistas horizontais. Ao rotacionar a imagem, de forma
a manter a informagao epipolar, esses pixels passam a representar variagdes no sen-
tido de variagéo vertical, desta forma, a rotagdo do volume muda a entrada associada
ao volume criado. Na Figura 80, o volume € associado a entrada horizontal, apos a
rotacdo esse conjunto de vistas passa a ser associado a entrada vertical (Figura 81).
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A mesma légica é aplicada as demais entradas e volumes.
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Figura 81 — Mudancga da entrada associada ao conjunto de imagens apos rotagao. Fonte: De
autoria prépria.

6.1.4 Redimensionar o tamanho das imagens

Ao se redimensionar as imagens os valores de diparidades precisam ser ajustados
de forma apropriada. A abordagem novamente é a usada em (SHIN et al., 2018),
onde, tanto as dimensdes da imagem, quanto os valores de disparidade sao ajustados
multiplicados por um fator de 1/N, onde N assume os valores de 1, 2, 3 ou 4.

6.1.5 Espelhamento da imagem - flipping

O espelhamento ndo apresenta os mesmos problemas associados a rotagdo. O
unico cuidado a ser observado no espelhamento € a inversdo do sinal de disparidade.

6.2 Modelos propostos

Nos ultimos anos houve um aumento no uso de técnicas de deep learning na area
de LF, justamente pelas vantagens que existem em relacdo as técnicas geométricas
tradicionais que demandam um alto consumo de computagao devido a quantidade de
dados que envolvem uma simples imagem light field. As principais abordagens atuais
usam redes neurais convolucionais com variadas combinagdes e arquiteturas.

Nessa secao sao apresentados os modelos propostos. O trabalho é constituido por
duas abordagens: (i) modelos derivados diretamente da abordagem EPINET - cha-
mados de EPINET-FAST; (ii) modelos multifluxo com redes em formato u (u-shaped
neural networks) - chamados U-EPINET.
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6.2.1 EPINET-FAST

A arquitetura EPINET-FAST é uma versédo simplificada da rede EPINET (SHIN
et al., 2018), buscando maior velocidade de processamento na etapa de extracao de
mapas de profundidade. Sua abordagem basica é composta de duas redes idénticas
com trés blocos FCN (fully convolutional networks). Cada bloco possui trés sequéncias
iguais de camadas fully convolutional com a seguinte sequéncia: Conv-ReLU-Conv-
BN-ReLU. Foi usado um kernel 2x2 com stride 1. O kernel e o stride apresentam
essas dimens0es reduzidas para medir as pequenas disparidades apresentadas. Isso
€ necessario devido a linha base ser estreita em imagens LF produzidas por cameras
densas (x4 pixels), conforme ja citado. As saidas das duas redes de multifluxo sao
concatenadas, criando um novo volume de dados com o dobro do tamanho de cada
saida individual, e apresentadas como entrada para uma rede com oito blocos convo-
lucionais. Os sete primeiros blocos sdo idénticos aos usados nos blocos multifluxos,
apenas o ultimo bloco, responsavel por inferir os valores de disparidade, apresenta
uma configuracgdo distinta (Conv-ReLU-Conv). A Figura 82 apresenta a rede EPINET-

Anguias direct Comwvolutional Biock @ Concatenation
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H T viulv u | Last Convolutional Black

| i\\ Kemel 22 wih stige =1
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Convolutional Block Comvolutional | Block

Figura 82 — EPINET-FAST. Fonte: De autoria prépria.

Para cada light field sdo criados dois volumes usando apenas as vistas que se
encontram na diagonal principal e secundaria, ou seja, subaberturas que variam em
um eixo de inclinacdo de 45° e de 135° criando dois volumes distintos por diagonal
conforme mostrado na Figura 83. Essa é uma simplificacdo da estrutura usada na
EPINET (SHIN et al., 2018), que usa além das diagonais o eixo horizontal e o eixo
vertical tendo como origem a vista central. A estratégia para aumentar a quantidade
de dados consiste em deslocar a vista central e pegar novas diagonais, usar rotacao
de imagem em todas vistas, fazer mudanca de escala e flipping.

Para a geracédo do mapa de disparidade foram construidas a EPINET original (EPI-
NET_TF_20) e trés variacoes da EPINET-FAST basica (Figura 82). Todas foram im-
plementadas no Tensorflow 2.4 usando a API funcional com Python 3.8. As variagdes
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Figura 83 — Geracdo do volume de entrada baseado na disposi¢ao das vistas capturadas.
Fonte: De autoria prépria.

Tabela 7 — Efeito do numero de pontos de vista no desempenho (SHIN et al., 2018).

1- stream  2-stream  4- stream

Input views
MSE 2.165 1.729

Bad pixel ratio
(<0.07px) 7.61 5,94 3,87

da EPINET-FAST basica sao as seguintes:

« EPINET-FAST-D Possui a estrutura apresentada na Figura 82.

» EPINET-FAST_0_90 - Possui a estrutura apresentada na Figura 82, mas recebe
com entrada as subaberturas localizadas a 0° e 90° a partir da vista central.

« EPINET-FAST_45_135 - Possui a estrutura apresentada na Figura 82, mas com
modificagdo na quantidade de filtros aplicados nos oito blocos finais. Nessa
implementacdo sdo usados 210 filtros.

 EPINET-FAST_45 135 F - Semelhante a anterior. A Unica diferenca € o fato
da imagem de saida passar por uma abertura e um fechamento morfolégico
para tentar eliminar potenciais distor¢cdes. O elemento estruturante de ambas
operacdes é em forma de cruz com raio igual a 1.

Convém ressaltar que a estrutura semelhante a EPINET-FAST_0_90 ja havia sido
explorada no artigo original ((SHIN et al., 2018)) e que ja havia sido detectado a inefi-
ciéncia de se usar apenas dois volumes com entrada as subaberturas localizadas a 0°
e 90° a partir da vista central. A Tabela 7 (SHIN et al., 2018) apresenta os resultados
encontrados pelos autores.
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6.2.1.1 EPINET-FAST com alteracao no backbone

Uma das formas de melhorar os indicadores de desempenho tanto da EPINET
quanto da EPINET-FAST, em termos de qualidade do mapa de disparidade gerado,
€ aumentando o numero de blocos convolucionais para a extracao da informacao de
profundidade. Essa estratégia pode implicar em aumento no tempo de processamento
e gerar o problema de desaparecimento de gradiente (vanishing gradient).

Em relacdo ao desaparecimento de gradiente, uma forma usual de evita-lo é
usando como backbone (estrutura base) a rede ResNet (do inglés Residual Networks)
no modelo de arquitetura proposto. A ResNet usa o conceito de conexdes residuais
(shotcuts), que existem dentro dos chamados médulos e/ou blocos residuais. Um
mddulo/bloco residual representa uma sequéncia de convolugdes, operagdes de nor-
malizagéo e ativagdes RelLU que culminam com uma conexao residual (KROHN; BEY-
LEVELD; BASSENS, 2020). Exemplos de blocos basicos de uma ResNet sdo apre-
sentados na Figura 84.

Figura 84 — Blocos de construcdo da ResNet. A esquerda o bloco de construgdo original pro-
posto em (HE et al., 2016). A direita a variante mais comum que usa um gargalo (bottleneck)
para reduzir o numero de canais antes da convolugao. As conexdes diretas (shotcuts) permi-
tem evitar o desaparecimento de gradiente durante o treinamento. Fonte: Szeliski (2022).

A ResNet impede a perda de gradiente através do uso dos shotcuts entre os blocos.
Os shotcuts somam a entrada de cada conjunto de blocos convolucionais com sua
saida. Isso proporciona a recuperacao da informacéao de gradiente, permitindo redes
mais profundas.

Para a proposta foram criados blocos residuais ajustados aos problemas de restri-
cbes impostas pela base estreita entre SAl's e para gerar dados com bom desempe-
nho na geracao dos mapas de profundidade, com tempos de processamento préximos
aos encontrados na EPINET-FAST original.

As variagbes com backbone ResNet da EPINET-FAST s&o as seguintes:

« EPINET-RES_1_3 2 RelLU - EPINET com bloco residual da Figura 85c e estru-
tura apresentada na Figura 86. Essa abordagem foi criada para fins de compa-
racao entre os testes.

« FAST-RES_1_3 2 RelLU - EPINET-FAST com bloco residual da Figura 85c e
estrutura apresentada na Figura 87.
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Figura 85 — Blocos residuais basicos usados no trabalho. Na Figura (a) o segundo estagio
apresenta convolugao com kernel 2x2. Na Figura (b) o segundo estagio apresenta convolugao
com kernel 3x3. A Figura (c) apresenta o bloco bésico modificado, e a Figura (d) apresenta o
mesmo bloco de (b) adicionado de uma saida ReLU. Fonte: De autoria prépria.

« FAST-RES_1_3_1_RelLU - EPINET-FAST com bloco residual da Figura 85d e

estrutura apresentada na Figura 87.
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6.2.2 U-EPINET

A U-Net é uma arquitetura desenvolvida para segmentacao de imagens biomédicas
(KROHN; BEYLEVELD; BASSENS, 2020), mas que também é usada para a geragao
de mapas de profundidade a partir de imagens monoculares (CANTRELL; MILLER;
MORATO, 2020), e de imagens estéreo (RENTERIA-VIDALES et al., 2020). No caso
de imagens LF, Heber (HEBER; YU; POCK, 2017) propbe usar a U-Net para extra-
cao de mapas de profundidade utilizando como entrada um Unico volume RGB EPI e
fornecendo na saida um volume de disparidades.

Essa tese propde uma arquitetura chamada U-EPINET, que é a fusdo entre a en-
trada multifluxo da EPINET com a estrutura da U-Net. O resultado é uma rede que
apresenta a extracao de caracteristicas multifluxo na etapa de codificacdo e usa ape-
nas uma saida na etapa de decodificacdo. Apesar da U-EPINET ser inspirada na
arquitetura apresentada em (HEBER; YU; POCK, 2017), sua entrada de dados € a
saida diferem substancialmente desse artigo. Na U-EPINET as entradas sao volumes
de SAl's e a saida é diretamente o mapa de disparidade. A Figura 88 apresenta o
modelo geral simplificado dessa fusdo de arquiteturas. Nessa figura é possivel obser-
var o gargalho crescente e a forma como sdo concatenadas as saidas multifluxos. A
seguir sdo detalhados os modelos e estratégias usadas.
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Figura 88 — Estrutura u-shaped genérica simplificada da U-EPINET. Fonte: De autoria propria.
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6.2.2.1 U-EPINET Universal

A U-EPINET Universal é a estrutura referencial usada como base para a cons-
trucdo dos demais modelos. Essa abordagem apresenta uma fusdo simples entre as
arquiteturas U-Net e EPINET. A Figura 89 apresenta a U-EPINET Universal de forma
detalhada. Nessa rede as entradas sdo os mesmos quatro volumes de entrada da
EPINET (SHIN et al., 2018) e cada nivel € composto por dois blocos com cama-
das convolucionais, tal como na U-Net original (RONNEBERGER; FISCHER; BROX,
2015). Convém ressaltar que cada bloco convolucional é composto por uma camada
convolucional (Conv-Relu) com kernel 3x3. Em estudos preliminares se constatou
que dependendo do tamanho do kernel e stride usado na etapa de upsampling podem
ocorrer padrdes do tipo checkerboard artifacts 2. Na U-Net ndo é aplicado o padding a
cada bloco, o que resulta em imagens com dimensdes menores nas saidas. A fim de
manter padronizado as saidas/entradas nas etapas de enconder/decoder e como o
uso de preenchimento nao trouxe nenhum énus detectado, para fins de simplicidade,
se manteve o padding na U-EPINET.

6.2.2.2 U-EPINET Modelo ingénuo

Os modelos U-EPINET_MODEL-A0 (Apéndice A.0.1) e U-EPINET_MODEL-A1
(Apéndice A.0.2) sdo modelos ditos ingénuos por reproduzirem a abordagem da U-
EPINET Universal. Conforme observa-se na Figura 90, o modelo U-EPINET-MODEL-
A0 possui apenas um bloco (Conv-BN-ReLU-Conv-BN-ReLU) por nivel, tanto na
etapa de encoder como na de decoder. Na etapa de encoder € feita uma cdpia por
nivel do bloco convolucional de saida de cada ramo multifluxo. Essas copias sédo
concatenadas entre si gerando um bloco convolucional quatro vezes maior, que €
usado como entrada das skip-connections. Em cada ramo multifluxo, no enconder,
0s blocos passam por um processo de reducdo de dimensionalidade/downsampling
através do uso da operagao de max pooling para dados espaciais 2D * com kernel
de tamanho 2x2. Esse processo faz com que as dimensdes sejam reduzidas pela
metade mantendo o mesmo numero de filtros convolucionais. Na etapa de decoder o
aumento de dimensionalidade/upsampling é feito através da convolucao transposta
bidimensional ® com kernel 4x4 e passo/stride igual a 2 para dobrar as dimensdes,
mantendo o numero de filtros convolucionais e evitando checkerboard artifacts.

Na etapa de enconder sdo usadas as seguintes quantidades de filtros/camadas
convolucionais por nivel em ordem crescente: 16, 32, 64, 128 e 256. Ja na etapa de
decoder, os filtros por nivel em ordem decrescente sao: 128, 64, 32 e 16.

O modelo U-EPINET-MODEL-A1 (Figura 91) possui a mesma configuracdo na

33540 padrées que lembram tabuleiros de xadrez
4MaxPool2D
SConv2DTranspose
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etapa de encoder da rede U-EPINET-MODEL-AO. Seu diferencial € na etapa de de-
coder, onde o0 numero de caracteristicas/filtros por bloco foi modificado buscando ba-
lancear o numero de filtros oriundos das skip-connections com a quantidade de filtros
usados nos blocos convolucionais. Desta forma, as convolugdes por nivel em ordem
decrescente na etapa de decoder sao: 512, 256, 128 e 64.

6.2.2.3 U-EPINET Modelo LinkNet

A U-EPINET Modelo LinkNet utiliza a mesma estratégia da LinkNet (CHAURASIA;
CULURCIELLO, 2017) nas skip-connections. Na U-Net para se recuperar a informa-
cao espacial associada a cada filtro na etapa de decodificacdo, concatena-se a saida
de cada nivel de codificacao (antes do downsample) com a entrada do primeiro bloco
convolucional no nivel equivalente de decodificacdo. Em uma U-EPINET com modelo
ingénuo, as saidas dos quatro fluxos sdo concatenadas entre si e depois anexadas
a entrada do nivel de decodificacdo. Essa estratégia dificultou o aprendizado e nao
trouxe ganhos em termos de velocidade. A estratégia da LinkNet € somar a saida
do enconder com a entrada equivalente no decoder, assim a informagéo espacial €
recuperada e o processamento torna-se muito mais rapido. Na U-EPINET Modelo
LinkNet se adotou uma estratégia mista, as saidas das etapas sdo somadas € o re-
sultante dessa soma é concatenado com a entrada do primeiro bloco convolucional
do decoder. Desta forma, se recupera a informacao espacial e se simplifica os fil-
tros resultantes que armazenam as disparidades. Foram criadas duas arquiteturas
U-EPINET Modelo LinkNet: Arquitetura U-EPINET MODEL_B1 (Apéndice A.0.3 ) e
Arquitetura U-EPINET MODEL_B2 (Apéndice A.0.4).

As arquiteturas U-EPINET MODEL_B1 (Figura 92) e U-EPINET MODEL_B2 (Fi-
gura 93) , apresentam um bloco convolucional simplificado (Conv-ReLU). Para down-
sampling as redes utilizam max pooling com kernel 2x2, e para upsampling usam
camadas de convolucao transposta bidimensional com kernel 8x8 e stride igual a 2
6. Na etapa de enconder séo usadas as seguintes camadas convolucionais por nivel
em ordem crescente: 64, 128, 256 e 512; e na etapa de decoder, em ordem decres-
cente: 512, 256, 128 e 64. O Unico diferencial entre ambos modelos é a ultima camada
convolucional antes do mapa de disparidade ser gerado. Na U-EPINET MODEL_B1
esse bloco é (Conv-SoftMax) e na U-EPINET MODEL_B2 o bloco permanece como
(Conv-RelLU)

8Para evitar checkerboard artifacts o tamanho do kernel deve ser divisivel pelo stride
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6.2.2.4 U-EPINET Modelo com skip-connections convoluidas

Esse modelo utiliza convolugdes para agrupar as saidas de cada ramo dos multiflu-
xos de entrada. Antes de concatenar com a entrada do decoder, as saidas do encoder,
por nivel, sdo concatenadas entre si e passam por uma camada de convolucao para
gerar um filtro, conforme o destaque na Figura 94. Isso faz com que seja passada uma
combinacédo de filtros do encoder com o mesmo tamanho da entrada do decoder. A
inspiracao para essa abordagem é a propriedade associativa da convolucao (Equacéao
30). Ao invés de apenas somar as convolugoes, pode-se gerar uma Unica saida que
agrupe as entradas e mantenha a informacao espacial. Ao se aplicar a estratégia de
aprendizado na skip-conection, se permite que a convolugcédo associada a combinacao
de filtros seja inferida. Essa metodologia permite aprender também convolugdes néao
lineares.

(fxh)xg=fx(hx*g) (30)

U-EPINET
MODEL B2

Skip connection

* Maxpool, B2

ConvZDTranspose
4x4 - siride 2

- -p@ Concatenation

Encodes Block Decoder Block

]

Figura 94 — Skip-connections convoluidas. Fonte: De autoria prépria.

Comnw 3x3

| RelU

Copy

O modelo usado € o mesmo U-EPINET MODEL_B2, com o uso de skip-
connections com convolugdes.

6.3 Conclusao

Esse capitulo apresentou duas novas abordagens para a geragdo de mapas de
profundidade a partir de imagens LF. A primeira abordagem explora a poda de fluxos
de entrada na EPINET (SHIN et al., 2018) e propde solucdes a partir de modificacdes
nas camadas convolucionais e filtragens morfoldgicas. Ja a segunda abordagem é
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totalmente nova, apresentando solugdes hibridas entre a entrada multifluxo, redes U-
Net e LinkNet. No proximo capitulo sdo avaliados os desempenhos dessas redes em
relacdo a EPINET.



7 RESULTADOS EXPERIMENTAIS

Nessa etapa, a partir da idealizagcdo e modelagem propostas no capitulo anterior,
foram construidas as redes neurais e realizados os testes de desempenho.

7.1 Plataforma dos experimentos

Os experimentos foram realizados em um Intel®Core™ i9-9900KF CPU
@3.60GHz x 16, com uma placa de video Nvidia Titan V, rodando no sistema operaci-
onal Ubuntu 20.04.4 LTS-64 bits. Os experimentos sdo avaliados usando a ferramenta
padrdao para LF, o 4D Light Field Benchmark. Esse modelo pode ser rodado local-
mente, ou os dados podem ser enviados para o site '. Optou-se por rodar localmente
devido ao tempo de resposta do site. O benchmark tem como entrada imagens LF
padrdo do 4D Light Field Dataset, com tamanho de 512x512x9x9.

7.2 4D Light Field Benchmark Dataset

O dataset se concentra em cinco problemas/desafios que imagens LF apresentam:
(i) limites de ocluséo; (ii) estruturas finas; (iii) baixa textura; (iv) superficies lisas; e (v)
ruido da camera. As cenas fornecidas sao renderizadas sinteticamente em virtude da
imprecisdo na acuracia que ocorre ao se usar imagens reais para gerar o ground truth.
Segundo os autores (WANG et al., 2016), para criar um ground truth mais acurado em
uma imagem real, seria necessario o uso de algoritmos de visdo computacional para
realizar esse processamento, 0 que néo € o foco do benchmark.

A cenas geradas sdo divididas em cenas estratificadas 2 e fotorrealisticas 2. As
cenas estratificadas sdo imagens simples dedicadas a apenas um grupo limitado dos
problemas citados, permitindo desacoplar a analise de desempenho para cada pro-
blema individualmente (WANG et al., 2016). As cenas estratificadas sao:

"https://lightfield-analysis.uni-konstanz.de/benchmark/table?column-type=images&
metric=badpix_0070

2Em inglés stratified scenes

SEm inglés fotorealistic scenes


https://lightfield-analysis.uni-konstanz.de/benchmark/table?column-type=images&metric=badpix_0070
https://lightfield-analysis.uni-konstanz.de/benchmark/table?column-type=images&metric=badpix_0070
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» Backgammon - Cena projetada para avaliar a interacao entre estruturas finas,
limites de ocluséo e diferencas de disparidade;

» Dots - Cena projetada para avaliar o efeito do ruido da cAmera na reconstrucao
de objetos com tamanhos variados;

» Pyramids - Cena projetada para avaliar o desempenho do algoritmo entre ima-
gens com geometria convexa versus geometria concava, e geometria arredon-
dada versus geometria planar;

« Stripes - Cena projetada para avaliar a influéncia da textura e contraste nos limi-
tes de oclusao.

O segundo conjunto de imagens é composto por cenas sintéticas fotorrealisticas
visando emular situa¢des complexas do mundo real. Esse tipo de imagem contém de-
safios potencialmente significativos em combinagdes espaciais dos objetos na cena.
Cenas fotorrealisticas permitem avaliacdo de desempenho em estruturas finas, areas
de oclusdo complexas, superficies planas inclinadas e superficies ndo planas conti-
nuas (WANG et al., 2016).

7.3 Meétricas usadas

O conjunto de métricas usadas no 4D Light Field Benchmark (WANG et al., 2016)
esta dividido em trés abordagens: (i) métricas de avaliacdo geral - aplicavel a todas
as cenas; (ii) métricas para cenas estratificadas; e (iii) métricas para cenas fotorrea-
listicas. As métricas usam o mapa de disparidade estimado pelo algoritmo chamado
de d ou algo, o mapa de disparidade real gt (do inglés ground-truth) e a mascara de
avaliacao M, que sera associada a uma caracteristica especifica.

7.3.1 Métricas de avaliacao geral

O MSE ¢ erro médio quadratico sobre todos os pixels em relacdo a mascara de
avaliagdo M multiplicado por 100 (Equagéo 31).

> (d(z) — gt(z))?

MSE,, = M Wi % 100. (31)

Ja o BadPix(t) fornece a porcentagem de pixels discrepantes dentro da mascara
M com valores maior que um limiar/threshold t, conforme a Equacgé&o 32. Podemos
interpretar de forma simplificada como abs(gt —algo) > t para uma mascara especifica.
Os valores default usados no benchmark para t sdo: 0.01, 0.03, 0.07.

e Mo () — gt(a))| > 3]

BadPixM(t) ‘./\/l|

(32)
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A métrica Q25 apresenta o 25° percentil dos erros de disparidade. Ou seja, 0 erro
maximo de disparidade absoluta dos melhores 25% pixels multiplicado por 100. Por
fim, a métrica Runtime é o tempo de execucdo em segundos;

7.3.2 Métricas para cenas fotorrealisticas

Em imagens fotorrealisticas as métricas avaliam condigdes relacionadas a aspec-
tos gerais dos mapas de disparidade gerados.

Para medir o desempenho do algoritmo em superficies planas e/ou em regides
de curvas suaves se usa uma métrica chamada Bumpiness , ou ondulagao em por-
tugués (Equacao 33). Essa medida estima a suavidade associada, mas nao mede
desorientacao ou deslocamento na LF (WANG et al., 2016).

5> min(0.05, || Hy(x)l|)
zeM
M

A ondulacdo pode ser aplicada em planos irregulares (bumpiness planes) onde
retorna a média da norma de Frobenius(F') da matriz Hessiana (H) de (gt — algo) em
regides planas, multiplicada por 100; e também pode ser aplicada em superficies com
continuidades irregulares (bumpiness planes), onde retorna a média da norma de
Frobenius da matriz Hessiana de (gt — algo) em regides ndo planas lisas, multiplicada
por 100 (WANG et al., 2016).

O desbaste fino (fine thinning) retorna a porcentagem de pixels em torno de es-
truturas finas com (gt — algo) > 0,15. O célculo do fine thinning é feito pela Equagao
34, onde M é a mascara para pixel de estruturas finas. Ja o engrossamento fino
(fine fattening) retorna a porcentagem de pixels em torno de estruturas finas com
(gt — algo) < —0,15. A Equacdo 35 realiza o calculo do fine fattening, onde M é a
mascara para pixels em torno de estruturas finas.

Bumpiness = x 100. (33)

Thinning ;) = {reM: gt‘(:r/\/?|— dx) > t}l (34)

Fattening ) = {zreM: gt‘%)[ d(z) < t}’

As outras métricas associadas a imagens fotorrealisticas sao:

» Descontinuidades - Discontinuities, porcentagem de pixels nas regiées de des-
continuidade com abs(gt — algo) > 0,07,

» Erro angular mediano de superficies hormais em regioes planas - median
angular error planes ou MAE Planes;

 Erro angular mediano de superficies normais em regioes lisas e nao planas
- median angular error continuities surfaces ou MAE Continuities Surfaces.
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7.3.3 Métricas para cenas estratificadas

Conforme dito anteriormente, as cenas estratificadas possuem caracteristicas se-
lecionadas para explorar problemas especificos associados as imagens LF. A seguir
sdo detalhadas as métricas por cena.

A cena Backgammon é idealizada para avaliar a interacdo de estruturas finas,
limites de ocluséo e diferencas de disparidade. Para esse fim, a cena calcula o es-
pessamento de primeiro plano pela métrica Foreground Fattening que é definido nas
bordas de oclusdo em uma mascara M que sb possui os pixels de fundo conforme a
Equacgéo 36, onde h é a soma do plano de fundo BG com o primeiro plano F'G dividido
por 2 (Equacao 37). Assim essa métrica retorna a porcentagem de pixels em torno de
estruturas finas cuja estimativa de disparidade esta mais préxima do primeiro plano do
qgue do plano de fundo.

{z € M :d(z) > h}]
M| '

FG_Fattening = (36)
BG+ FG
=—
O processo para calcular o afinamento do primeiro plano pela métrica Foreground
Fitting segue um raciocinio semelhante onde é calculada a porcentagem de pixels em
estruturas finas cuja estimativa de disparidade estd mais préxima do plano de fundo
do que do primeiro plano (Equacao 38).

h (37)

H{x € M :d(z) < h}|
M| ’
Conforme dito anteriormente, a cena Pyramids € usada para avaliar o desempe-
nho em imagens LF entre estruturas com geometria convexa versus geometria con-
cava; e entre geometria arredondada versus geometria planar. Para esse objetivo se
usa a equacao de ondulacdo (Equagédo 33) com uma mascara M adequada. Assim
ela calcula a ondulagéao paralela (métrica Bumpiness Parallel) que retorna a média
da norma de Frobenius da matriz Hessiana de (gt — algo) em uma dada regido plana
M; e a ondulagéo inclinada (métrica Bumpiness Slanted) que calcula a média da
norma de Frobenius da matriz hessiana de (gt — algo) em uma dada regido plana M.
A cena Stripes avalia a influéncia da textura e do contraste nos limites com oclu-
séo, para isso ela usa o Badpix com mascaras M para cada tipo de situagéo, tendo
o valor do threshold t igual a 0,07. As métricas implementadas sao:

FG_Fitting = (38)

» Bright Stripes - listras claras, porcentagem de pixels na mascara M sendo
abs(gt — algo) > 0,07;

» Dark Stripes - listras escuras, porcentagem de pixels na mascara M sendo
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abs(gt — algo) > 0,07;

» Low Texture - baixa textura, porcentagem de pixels na mascara M sendo
abs(gt — algo) > 0,07

Ja a cena Dots estuda o efeito do ruido da camera na reconstrucao de objetos
de tamanhos variados. Para gerar uma aproximacao do ruido térmico e do ruido de
disparo de uma camera LF foi adicionado ruido Gaussiano com varia¢des lineares
crescentes entre 0,0 e 0, 2, seguindo a ordem de disposi¢céo dos objetos na linha prin-
cipal (WANG et al., 2016). A quantificagdo da robustez contra ruido € calculada pelo
MSE aplicado ao plano de fundo (WANG et al., 2016). Para mensurar a sensibilidade
em pequenas geometrias é calculada a porcentagem de pontos detectados, onde um
ponto conta como detectado se a maioria de suas estimativas de disparidade local for
distinguivel do plano de fundo por estar com um escore maior que 50% em relacao ao
ponto real indicado no ground truth, dado o BadPix(t) com threshold t de 0, 4.

7.4 Implementacao e testes

Nessa secdo sao apresentados os cenarios explorados, testes realizados e de-
sempenho apresentado.

7.4.1 Estudo preliminar e adequacao dos codigos

A primeira etapa consiste em transp6r a rede EPINET (SHIN et al., 2018)* para os
mesmos parametros usados nesse trabalho, afim de avaliar o tempo de execucédo. O
cédigo original usa a API sequencial do Tensorflow com Keras (que nao é integrado a
essa API) e Python 2.x. O primeiro passo foi atualizar o codigo para a versao Python
3.7 e Tensorflow 2.4, que possui a API Keras integrada, de forma a trabalhar com am-
bientes com maxima similaridade. Cabe ressaltar que o tempo de execucgéao varia de
acordo com o hardware usado, por isso a importancia de garantir o mesmo ambiente
para fins de comparacdo. O préximo passo foi comparar os resultados que rodaram
localmente com os que foram disponibilizado no site do 4D Light Field Benchmark.

As configuragdes sdo as seguintes:

* 4D Light Field Benchmark

— EPINETFCN: EPINET usando as entradas 0°, 90°, 45°, 135°;
— EPINETFCN9x9: modelo que usa todos os pontos de vista 9x9.

* Benchmark local

— EPINET_TF_20: Atualizacao da EPINETFCN rodando localmente.
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Median scores for scenes:
Boxes, Dino, Cotton, Sideboard

Bumpiness Planes —— EPINET_TF_20
EPINETFCN9X9
—— EPINETFCN
Bumpiness Contin. Surfaces !_,..--“‘“A MSE
0.

//*;czfr

0.49

0.41

MAE Planes BadPix({0.07)

3.9

MAE Contin. Surfac Q25

Discontinuities Fine Thinning

Fine Fattening
Figura 95 — Métricas de comparacao entre as arquiteturas EPINET. Fonte: De autoria propria,
gerado no software 4D Light Field Benchmark.

Conforme se observa na Figura 95, o comportamento para as cenas foi bastante
proximo ao apresentado pelo site de benchmark, inclusive com desempenho melhor
em alguns critérios. Sendo os trés principais: MSE, MAE Planes e MAE Contin surfa-
ces préximos do publicado. Na Figura 96 se observa que diferengas entre o apresen-
tado no dataset e o obtido, permite usar a rede EPINET_TF_20 para fins de compara-
cao.

7.4.2 EPINET-FAST: primeiro cenario

Para a geracdo do mapa de disparidade foram construidas trés variacées da
EPINET-FAST (Figura 82). Para esse cenario se fez variagdes tanto na qualidade de
entradas (volumes usados) quanto na quantidades de filtros utilizados nas camadas
convolucionais, a fim de comparacao entre os desempenhos.

As variacdes da EPINET-FAST sé&o as seguintes:

» EPINET-FAST-D Possui a estrutura apresentada na Figura 82.

« EPINET-FAST_0_90 - Possui a estrutura apresentada na Figura 82, mas recebe
com entrada as subaberturas localizadas a 0° e 90° a partir da vista central.

« EPINET-FAST_45_135 - Possui a estrutura apresentada na Figura 82, mas com

“disponibilizada em https://github.com/chshini0/epinet


https://github.com/chshin10/epinet
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EPINETFCN EPINETFCN9X9 EPINET_TF_20

Figura 96 — Comparacao entre os algoritmos EPINET. A primeira coluna ilustra os mapas
de disparidade dos algoritmos. A segunda coluna representa a diferenca de disparidade em
relacdo ao ground truth. As areas brancas representam estimativas altamente precisas, es-
timativas muito préximas nas areas azuis e muito distantes nas areas vermelhas. A terceira
coluna apresentam o comportamento dos algoritmos em relacdo ao desempenho mediano.
Amarelo representa desempenho médio, verde acima da média e vermelho abaixo da média.
Fonte: De autoria prépria, gerado no software 4D Light Field Benchmark.

modificacdo na quantidade de filtros aplicados nos oito blocos finais. Nessa
implementacéo sdo usados 210 filtros por bloco.

« EPINET-FAST_45_135_F - Semelhante a anterior. A Unica diferenca € o fato da
imagem de saida passar por uma abertura e um fechamento morfolégico para
tentar eliminar potenciais distor¢des.

Observa-se na Figura 97 que as redes propostas apresentarem desempenho me-
nor que a (EPINET_TF_20) em termos de MSE. O pior desempenho fica com EPINET-
FAST_0_90, enquanto as outras estratégias com apenas os fluxos das vistas a 45° e
135° podem se aproximar bastante do desempenho da EPINET_TF_20.

A Figura 98 mostra que o erro médio quadratico depende muito das caracteris-
ticas da imagem. Cenas como a Boxes, que possui muita informacao horizontal e
vertical, apresentam um bom desempenho do algoritmo EPINET-FAST_0_90. Apesar
desse desempenho especifico, percebe-se que o algoritmo EPINET-FAST-D também
se aproxima bastante em termos de MSE. Isso sugere que os fluxos das diagonais
mantém informacao vertical e horizontal.

Pela tabela 8 percebe-se que o tempo de processamento da EPINET ¢é alto para
uso em tempo real. Por outro lado, as podas de fluxos de entrada reduziram em média
o tempo de processamento em = 1/3. Esse ganho de velocidade somado a pequena
queda de desempenho em outras métricas pode justificar a poda de duas ramificacdes
de entrada. Importante ressaltar que o tipo de imagem LF impacta diretamente no de-
sempenho. Por exemplo, o erro quadratico médio (MSE) da EPINET_45 135 F é de
0,24 para a cena Cotton (Figura 98), que € menor que da EPINET_TF_20 que pos-
sui 0,28. Mas para a segunda imagem (Boxes), o MSE da EPINET-FAST 45 135 F
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Figura 97 — Métricas de comparacao entre as arquiteturas propostas. Fonte: De autoria pro-

pria, gerado no software 4D Light Field Benchmark.

passa para 9,71 e o MSE da EPINET_TF_20 se torna o menor entre todos algoritmos
avaliados, com o valor de 6, 39.

Tabela 8 — Comparagao entre os tempos de processamento da EPINET (SHIN et al., 2018) e
a FAST-EPINET em segundos.

Algoritmo | EPINET_TF_20 | EPINET_0_90 H | EPINET_45_135 \ EPINET_45_135_F \ EPINET-FAST-D
Cena MSE runtime | MSE runtime | MSE runtime MSE runtime MSE runtime
Boxes 6,3893 | 13,5446 | 6,79043 | 4,72332 | 9,4500 | 7,8325 9,7144 | 6,1787 8,8249 | 4,7120
Cotton 0,2798 | 0,3290 | 0,36449 | 0,10658 | 0,3567 | 0,1763 0,2435 | 0,1516 0,2855 | 0,1070
Dino 0,3146 | 0,3281 | 3,30862 | 0,10541 | 0,2561 | 0,1758 0,6051 | 0,1557 1,7363 | 0,1024
Sideboard | 0,7453 | 0,3246 | 0,90149 | 0,10585 | 0,9417 | 0,1797 0,9741 | 0,1523 0,9354 | 0,1096

A Figura 99 mostra a comparacao entre os algoritmos citados. Pode-se perceber o
desempenho proximo nos mapas de disparidades gerados.

7.4.3 EPINET-FAST: segundo cenario

Esse cenario explora o desempenho da EPINET-FAST com backbone ResNet. As
variagdes criadas sdo as seguintes:

« EPINET-RES_1_3 2 RelLU - EPINET com bloco residual da Figura 85c e estru-

tura apresentada na Figura 86. Essa abordagem foi criada para fins de compa-
racao entre os testes.

« FAST-RES_1_3 2 RelLU - EPINET-FAST com bloco residual da Figura 85c e

estrutura apresentada na Figura 87.
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Figura 98 — Comparagcao do MSE entre as arquiteturas usando as cenas: Cotton, Boxes,
Dino. Fonte: De autoria propria, gerado no software 4D Light Field Benchmark.

« FAST-RES_1_3 1_RelLU - EPINET-FAST com bloco residual da Figura 85d e

estrutura apresentada na Figura 87.

A Figura 100 mostra o impacto nas métricas no uso do backbone ResNet.

7.4.4 Discussao sobre os resultados

Em ambos cenarios se fez variagdes tanto na qualidade de entradas (volumes usa-
dos), quanto nas quantidades de filtros utilizados nas camadas convolucionais. Foram
realizados os seguintes estudos de amplitude em relagdo a rede EPINET: variagéo
do numero de redes convolucionais, troca do backbone para ResNet e alteracdo do
nuamero de entradas. Se constatou que os elementos que causam mais impacto na
velocidade de processamento, uma vez a rede treinada, € a quantidade de cama-
das convolucionais e o nimero de filtros associados a cada camada. Ao se reduzir o
nuamero de entradas para apenas dois fluxos, se tem um ganho de velocidade de apro-
ximadamente 3 vezes, sendo que o problema de degradacédo na qualidade do mapa



133

DispMap GT-Algo DispMap

MedianDiff GT-Algo

MedianDiff DispMap GT-Algo MedianDiff

(=1
2 : o
Ll . .
" Tl A A 0.00
& = _
g —-0.05
& 1 —0.10
a =k i
s i 0050
@ T L 0.025
el | o - 0.000
LZ—J e - —0.025
= Z B _p.0s50
B ;
[} .
" 2 : 0.10
Q‘ 2 i._ = A ; 0.05

| L ., -0.00
F 7 vid —0.10
E(
1 0.050
n 2
s Ly
g, . -0.000
= g —0.025
w )
z /B 5050
3 ;
el 0.10
5, 0.05
ot 0.00
el
w
=
z
w

Figura 99 — Métricas de comparagao entre os algoritmos EPINET-FAST. Fonte: De autoria
propria, gerado no software 4D Light Field Benchmark.

de disparidade de saida pode ser tratado com acréscimos de mais camadas ou filtros
convolucionais, ou com tratamento na saida com filtros tradicionais.

O uso do backbone ResNet apresentou melhoras de desempenho em relagéao a
EPINET-FAST do primeiro cenario, conforme se observa pela Figura 101. O tempo de
runtime € ligeiramente maior, mas em termos de MSE a melhora é significativa. Isso
indica que a estrategia de shotcuts da ResNet permitem alcangar um desempenho
melhor que a EPINET-FAST do primeiro cenario e manter o tempo de execugéo em
um patamar proximo.

7.5 U-EPINET

A U-EPINET é uma fusdo entre a entrada multifluxo da EPINET com a estrutura
de uma U-NET. Dessa forma, ela € uma rede que realiza a extracao de caracteristicas
multifluxo na etapa de codificagdo e usa apenas uma saida na etapa de decodificacao.
Nessa sec¢ao € apresentado o estudo realizado com a U-EPINET

7.5.1 U-EPINET-MODEL-A

Os modelos A séo baseados na estrutura geral apresentada na Figura 89. Sendo
sua principal caracteristica usar skip-connections baseadas na concatenagao entre
entrada e saida. Os modelos usados estdo descritos detalhadamente no Apéndice A.

Os dois modelos avaliados nessa se¢ao séo:

» A0 descricao no Apéndice A - secao A.0.1;

» A1 descricao no Apéndice A - secao A.0.2.
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Figura 100 — Métricas de comparacao entre as arquiteturas com backbone ResNet e a EPI-
NET original (EPINET_TF_20). Fonte: De autoria propria, gerado no software 4D Light Field
Benchmark.

A Figura 102 mostra que apesar da rede apresentar um desempenho em termos
de velocidade o mais rapido que o modelo EPINET-FAST, o mesmo nao ocorre com
outros parametros. A tabela 9 demonstra a discrepancia entre MSE e tempo de exe-
cucado. As modificagdes de balanceamento impostas no MODEL_A1 se mostrou efe-
tivo, mas nao o suficiente para se aproximar da EPINET-FAST. Essa arquitetura perde
muita definicdo em virtude do formato de concatenacéo dos filtros da etapa de codi-
ficacdo com a entrada da etapa de decodificacdo. O que aparenta causar a perda
de detalhes. Mesmo assim o balanceamento das skip connections causou melhora
no desempenho das redes. Para fins comparativos, a Figura 103 demonstra que 0s
mapas de disparidade possuem pouca precisao, mas que existe potencial de melhora
ao se trabalhar na questao de balanceamento e composigéo dos filtros.

7.5.2 U-EPINET-MODEL-B

Esses modelos trabalham a questdo das skip connections de forma hibrida. As
saidas de cada fluxo sdo somadas e depois concatenadas a entrada do decodificador
no nivel correspondente.

Os dois modelos avaliados nessa se¢ao sao:

» B1 descricdao no Apéndice A - secéo A.0.3;
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Figura 101 — Métricas de comparacao entre as arquiteturas com melhores resultados. Fonte:
De autoria prépria, gerado no software 4D Light Field Benchmark.

» B2 descricdo no Apéndice A - secdo A.0.4.

A Figura 104 mostra o grafico comparativo entre os modelos. Convém ressaltar
que os valores ruins nas métricas objetivas, ocorre em virtude do ruido gerado na
etapa de decodificacdo. Apesar desses valores desfavoraveis, o modelo MODEL_B1
possui potencial para resolver a questao ruido.
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Figura 102 — Comparagéao entre saida e valores obtidos com MODEL_AO e MODEL_A1. Fonte:
De autoria prépria, gerado no software 4D Light Field Benchmark.

7.5.3 Discussao sobre os resultados

Essa secao mostrou que a U-EPINET MODEL B possui potencial para resolver o
problema de tempo de processamento. Na Figura 105 observa-se que a qualidade do
mapa de disparidade € proxima da EPINET e da EPINET-FAST. O motivo das métricas
se apresentarem desfavoraveis ao modelo é o ruido gerado na forma de tratamento
das skip connections. O ajuste correto desse parametro deve melhorar a relacao de
ruido e elevar a qualidade do modelo.

7.6 Conclusao

Este capitulo apresentou dois modelos distintos para a geragcao de mapas de dis-
paridade, ambos possuem potencial para aplicagdes que buscam balancear o tempo
de processamento versus a qualidade do mapa. Um dos grandes potenciais € 0 mo-
delo MODEL_B1 que possui uma boa granularidade no mapa de disparidade, devendo
ser tratada a questao ruido para que o mesmo melhore seu desempenho nas métricas
quantitativas.
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Tabela 9 — Comparagéao entre os tempos de processamento da MODEL_AO e MODEL_A1 em
segundos.

Algoritmo MODEL A0 MODEL A1

Cena MSE runtime | MSE runtime
backgammon | 50,4538 | 0,0453 | 28,1674 | 0,0767
boxes 59,0208 | 2,3012 | 15,2162 | 3,2076
cotton 33,3946 | 0,0488 | 5,9795 | 0,0801
dino 14,8461 | 0,0500 | 3,1895 | 0,0719
dots 20,9963 | 0,0446 | 31,2299 | 0,0703
pyramids 6,6916 | 0,0442 | 1,2494 | 0,0720
sideboard 32,1372 | 0,0459 | 11,8280 | 0,0764
stripes 59,3751 | 0,0444 | 17,6984 | 0,0681

DispMap GT-AID . Med1nDiff DispMap GT-AIg;c MedianDIff DispMap GT-Algo MedianDiff

MODEL_AO EPINET-FAST-D EPINET_TF_20

Fonte: De autoria prépria, gerado no software 4D Light Field Benchmark.
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Figura 104 — Comparacao entre saida e valores obtidos em MODEL_B1 e MODEL_B2. Fonte:
De autoria prépria, gerado no software 4D Light Field Benchmark.
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8 CONCLUSAO

A éarea de Light Field se encontra em franca expansdo e aberta em varios seto-
res de desenvolvimento e pesquisa. Existem muitos trabalhos que se concentram no
estudo de formas de representagao, codificacdo e transmissdo. Essa tese abordou o
problema relacionado a extragéo de informacgéo 3D, através da construcdo de mapas
de profundidade, inferidas de imagens LF. Os procedimentos aqui expostos esperam
simplificar o uso de informacdes 3D embutidas em imagens light field, permitindo aos
pesquisadores desenvolverem estudos sem a necessidade de acessar e trabalhar di-
retamente na geometria éptica envolvida na geragéo das vistas, assim como ocorre
hoje em imagens monoculares e estéreos, onde pesquisadores de processamento de
imagens e visdo computacional podem abstrair as informagdes do hardware usado na
captura e operar diretamente nas imagens.

O trabalho se concentrou em trés abordagens complementares:

» Estudo e construcao de um dataset de imagens reais usando a camera Lytro
llum®;

» Criacdo da EPINET-FAST, baseada no estudo e modificacdo da rede EPINET,
rede de referéncia na area de LF para extracdo de mapas de profundidade;

» Proposta da U-EPINET, rede u-shaped com entrada multifluxo para extracéo de
mapas de profundidade.

A etapa de construcdo do dataset evidenciou algumas limitagbes do hardware
usado para aquisi¢cdo de imagens. Um do maiores limitantes é o efeito caixa-preta’,
onde se tem acesso aos dados de entrada e aos dados de saida, mas se desconhece
o funcionamento do processamento envolvido. Isso € bastante evidente nos mapas de
profundidade fornecidos pelos softwares da extinta empresa Lytro ®, que fornece ape-
nas mapas de profundidade relativos entre os objetos para fins de re-focagem. Esse
processamento aparenta aplicar uma espécie de alargamento de contraste no mapa
profundidade gerado, além de outros processamentos citados ao longo do texto, o que

black-box effect
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dificulta a extracao de informacao de distancias absolutas. Mas apesar desses entra-
ves, esse trabalho encontrou caracteristicas de abertura, valores de ISO e velocidade
do obturador que permitem a geracao de mapas de profundidades bem definidos atra-
vés de métodos geométricos externos aos softwares fornecidos com o hardware. A
construcao desse dataset com distancias absolutas bem definidas, somadas a
definicao desses parametros contribuem para projetos vindouros que trabalhem
com dados reais.

Ja a proposta da EPINET-FAST demonstra que subabertures images com varia-
cbes nos eixos de 45° e 135°fornecem maior diversidade de informacdes angulares do
que o uso de imagens apenas nos eixos vertical e horizontal. Isso pode ser explicado
pelo fato que os eixos a 0°e 90° em relacdo a vista central, apresentam maiores con-
centracao de disparidades apenas mesmo sentido do eixo. Por exemplo, vistas que
estdo no eixo horizontal tende a apresentar maior concentracdo de disparidades no
eixo horizontal, e poucas no sentido vertical, e vistas que estdo no eixo vertical (90°)
tendem a apresentar maior concentragao de disparidades no eixo vertical, e poucas
no sentido horizontal. Isso se da exatamente pela variagdo angular capturada por es-
sas pilhas de vistas. O trabalho demostra que se pode abrir mao desses dois fluxos
de entradas para se conseguir maior velocidade de processamento. Isso pode gerar
degradacbes no mapa de profundidade, que podem ser corrigidas através de pro-
cessamento de imagens ordinarios como filtragens, operagdes morfologicas, Markov
Random Field, etc. ou com o uso de mais camadas convolucionais. O problema de
usar mais camadas convolucionais é o tempo de processamento voltar a se aproximar
da rede EPINET original. Desta forma, deve-se procurar um balanceamento entre o
objetivo a ser alcancado e a velocidade de processamento necessaria ao se usar essa
arquitetura. Com o uso do backbone ResNet, esse balanceamento foi encontrado e
indica uma possibilidade de exploragado em estudos futuros.

Por fim, foi apresentada a rede U-EPINET, que usa o0 mesmo conceito de quatro
entradas multifluxo, mas com uma estrutura em formato de U (u-shaped). Essa abor-
dagem se mostra bastante promissora, pois o proprio formato de construgéo da rede
apresenta um processamento mais rapido sem a necessidade de acréscimo de muitas
camadas convolucionais. Uma das contribuicées dessa abordagem é o uso de skip-
conections no formato usado pela rede LinkNet e ndo a proposta de concatenacao de
camadas conforme o usado na rede U-Net. Essa rede apresentou bom desempenho
em algumas métricas em relagdo a EPINET, mas com o tempo de processamento
menor que a da EPINET-FAST. O trabalho mostra que n&o € interessante usar todos
niveis da U-Net original, pois se perde muitos detalhes, ao mesmo tempo é importante
testar variagdes nos parametros utilizados para uma melhor eficiéncia na construcao
do mapa de profundidade. Outra inovagéo foi 0 uso de skip-connections convoluidas
para buscar a correta forma de agregar a saida de cada ramo da entrada multifluxo.
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A abordagem U-EPINET se mostra bem promissora, e com varios aspectos a serem
explorados.

Desta forma, pode-se concluir que a tese apresenta dois caminhos a serem
seguidos, com especial destaque para a U-EPINET e para a EPINET-FAST com
backbone ResNet, que possuem muitos aspectos a serem explorados e potencial
de uso em tempo real. Para fins de estudo, o cddigo usado esta disponivel em
https://github.com/MFerrugem/.

8.1 Trabalhos futuros

Uma das limitagdes desse trabalho e de outras propostas é o uso das mesmas
SAl’s, independente das cenas avaliadas. Em outros trabalhos sdo usadas outras
SAl’'s na construcao do volume de entrada, mas que se mantém fixas independente
da cena capturada. Um ponto a ser explorado € a construcao de um algoritmo
para a selecao dinamica das vistas que use informagdes angulares na construgao
do volume de entrada, pois cada cena capturada possui caracteristicas Unicas que
impactam de formas diversas na disparidade, e dessa forma nao € interessante usar
sempre as mesmas vistas.

Outro ponto a ser explorado € a busca de uma configuracao de hiperparametros
visando otimizar o funcionamento da U-EPINET. Variagcées na quantidade e nas
dimensdes dos filtros convolucionais, e o uso de dropout e batch normalization ainda
estdo em aberto no uso da U-EPINET.

Por fim, pode-se sugerir a construcao de um U-EPINET 3D, onde as SAl’s sao
tratadas como volumes 3D em vez de sequéncias de vistas.

Ainda existe muita coisa a ser feita, mas permitir o facil manuseio de imagens LF
passa por mais propostas como aqui apresentada. Apesar de nao propdr uma solucao
definitiva para o problema de extracdo de profundidade em LFs, essa tese apresenta
para solugdes potenciais bem estabelecidas e aponta para novos trabalhos a serem
desenvolvidos.


https://github.com/MFerrugem/
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APENDICE A — Modelos U-EPINET

Modelos desenvolvidos a partir da estrutura genérica apresentada na figura 89.
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A.0.1 U-EPINET-MODEL-AO

A tabela 10 apresenta os hiper-parametros da rede. A figura 106 apresenta exem-
plos da saida gerada versus o ground-truth. A arquitetura da rede é demostrada deta-
Ihadamente na figura 90.

Tabela 10 — Tabela de dados do MODEL_AO.
Caracteristicas gerais

Otimizador Algoritmo Adam
Learning rate 0,0001
Skip-connections Concatenadas

Quantidade de Filtros no
bloco convolucional de saida
Bloco de Convolugao

1

Convolugao Filtros 3x3

Passo (stride) 1x1

Normaliza¢do Batch normalization
Funcéo de ativagao RelLU

Encoder

Quantidade de blocos 5
de convolugao

Método de downsample MaxPool2D de tamanho 2x2
Padding same

Quantidade de filtros em cada bloco
convolucional de acordo com o nivel crescente
Decoder

Quantidade de filtros em cada bloco
convolucional de acordo com o nivel decrescente

16,32,64,128,256

128,64,32,16

Camada de convolugao transposta (Conv2DTranspose),
com filtro de tamanho 4x4, passo (stride)=2
Padding same

Método de upsample

Figura 106 — MODEL_AO: Comparacao entre saida e valores obtidos. Acima estdo o ground-
truth e abaixo os depth maps gerados pela arquitetura. Fonte: De autoria prépria
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A.0.2 U-EPINET-MODEL-A1

U-EPINET baseada no Modelo anterior (MODEL-AQ), com variagdo na quantidade
de filtros nos blocos do encoder de forma a balancear valores advindos da skip-
connection com o valor up sampled. A tabela 11 apresenta os hiper-parametros da
rede. A figura 107 apresenta exemplos da saida gerada versus o ground-truth. A
arquitetura da rede € demostrada detalhadamente na figura 91.

Tabela 11 — Tabela de dados do MODEL_A1.
Caracteristicas gerais

Otimizador Algoritmo Adam
Learning rate 0,0001
Skip-connections Concatenadas

Quantidade de Filtros no
bloco convolucional de saida
Bloco de Convolugao

1

Convolugéao Filtros 3x3

Passo (stride) 1x1

Normalizacao Batch normalization

Funcao de ativagao RelLU

Encoder

Quantidade de blocos 5
de convolugéo

Método de downsample MaxPool2D de tamanho 2x2

Padding same
Quantidade de filtros em cada bloco
convolucional de acordo com o nivel crescente
Decoder

Quantidade de filtros em cada bloco
convolucional de acordo com o nivel decrescente

16,32,64,128,256

512,256,128,64

Camada de convolugao transposta (Conv2DTranspose),
com filtro de tamanho 4x4, passo (stride)=2
Padding same

Método de upsample

Figura 107 — MODEL_A1: Comparagao entre saida e valores obtidos. Acima estdo o ground-
truth e abaixo os depth maps gerados pela arquitetura. Fonte: De autoria propria
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A.0.3 U-EPINET-MODEL-B1

Esse modelo é possui skip-connections somadas em vez de concatenadas. A ta-
bela 12 apresenta os hiper-parametros da rede. A figura 108 apresenta exemplos da
saida gerada versus o ground-truth. A arquitetura da rede € demostrada detalhada-
mente na figura 92.

Tabela 12 — Tabela de dados do MODEL_B1.
Caracteristicas gerais

Otimizador Algoritmo Adam
Learning rate 0,0001
Skip-connections Somadas

Quantidade de Filtros no
bloco convolucional de saida
Bloco de Convolugéao

1

Convolugao Filtros 3x3
Passo (stride) 1x1
Normalizac¢édo N&o utilizado
Funcao de ativacao RelLU/Softmax
Encoder

Quantidade de blocos
de convolugao
Método de downsample MaxPool2D de tamanho 2x2
Padding same

Quantidade de filtros em cada bloco
convolucional de acordo com o nivel crescente
Decoder

Quantidade de filtros em cada bloco
convolucional de acordo com o nivel decrescente

2

64,128,256,512

512,256,128,64

Camada de convolugao transposta (Conv2DTranspose),
com filtro de tamanho 8x8, passo (stride)=2
Padding same

Método de upsample

Figura 108 — Arquitetura U-EPINET MODEL_B1: Comparagéo entre saida e valores obtidos.
Acima estdo o ground-truth e abaixo os depth maps gerados pela arquitetura. Fonte: De
autoria prépria
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A.0.4 U-EPINET-MODEL-B2

Esse modelo é possui skip-connections somadas em vez de concatenadas. A ta-
bela 13 apresenta os hiper-parametros da rede. A Figura 109 apresenta exemplos da
saida gerada versus o ground-truth. A arquitetura da rede € demostrada detalhada-
mente na figura 93.

Tabela 13 — Tabela de dados do MODEL_B2.
Caracteristicas gerais

Otimizador Algoritmo Adam
Learning rate 0,0001
Skip-connections Somadas

Quantidade de Filtros no
bloco convolucional de saida
Bloco de Convolugéao

1

Convolugao Filtros 3x3
Passo (stride) 1x1
Normalizac¢édo N&o utilizado
Funcéo de ativacao RelLU
Encoder

Quantidade de blocos
de convolugao
Método de downsample MaxPool2D de tamanho 2x2
Padding same

Quantidade de filtros em cada bloco
convolucional de acordo com o nivel crescente
Decoder

Quantidade de filtros em cada bloco
convolucional de acordo com o nivel decrescente

2

64,128,256,512

512,256,128,64

Camada de convolugao transposta (Conv2DTranspose),
com filtro de tamanho 8x8, passo (stride)=2
Padding same

Método de upsample

Figura 109 — MODEL_B2: Comparacéao entre saida e valores obtidos. Acima e-s-to 0 ground-
truth e abaixo os depth maps gerados pela arquitetura. Fonte: De autoria prépria.
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APENDICE B — Dataset Lytro

Para garantir encontrar imagens com boas caracteristicas de refocagem, o focus
bracketing foi ajustado para 5 disparos com 10 de depth steps. O focus bracketing faz
com que a camera tire uma série de fotos cada vez que o obturador é pressionado,
incrementando o foco de acordo com os depth steps. Isso faz com que cenas iguais
possuam variagao no depth steps. 1sso ocorre com as primeiras cenas da figura 110,
apesar de capturarem a mesma imagem, cada captura possui incremento em seu
depth steps em relagao a anterior.

* ISO - 80;
» Velocidade do obturador - 1/100;

« Distancia focal - 48 mm, equivalente a 15 mm devido ao fator de corte (crop)
igual a 3, 19.
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Figura 110 — Primeira parte do dataset gerado. Fonte: De autoria prépria.
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Figura 111 — Segunda parte do dataset gerado. Fonte: De autoria prépria.
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Figura 112 — Terceira parte do dataset gerado. Fonte: De autoria propria.
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Figura 113 — Quarta parte do dataset gerado. Fonte: De autoria proépria.
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Figura 114 — Quinta parte do dataset gerado. Fonte: De autoria prépria.

Figura 115 — Sexta parte do dataset gerado. Fonte: De autoria prépria.
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