EFEITO DA LIPOPROTEÍNA DE BAIXA DENSIDADE SOBRE A QUALIDADE DO SÊMEN CANINO SUBMETIDO A CRIOPRESERVAÇÃO

ANTONIO SERGIO VARELA JUNIOR

Dissertação apresentada à Universidade Federal de Pelotas, sob a orientação do Prof. João Carlos Deschamps como parte das exigências do Programa de Pós-Graduação em Veterinária, Área de Concentração: Reprodução Animal, para obtenção do título de Mestre em Ciências Veterinárias.

PELOTAS Rio Grande do Sul - Brasil Janeiro de 2005

EFEITO DA LIPOPROTEÍNA DE BAIXA DENSIDADE SOBRE A QUALIDADE DO SÊMEN CANINO SUBMETIDO A CRIOPRESERVAÇÃO

ANTONIO SERGIO VARELA JUNIOR

Dissertação apresentada à Universidade Federal de Pelotas, sob a orientação do Prof. João Carlos Deschamps como parte das exigências do Programa de Pós-Graduação em Veterinária, Área de Concentração: Reprodução Animal, para obtenção do título de Mestre em Ciências Veterinárias.

PELOTAS Rio Grande do Sul - Brasil Janeiro de 2005 Dados de catalogação na fonte: Ubirajara Buddin Cruz – CRB-10/901 Biblioteca de Ciência & Tecnologia - UFPel

V293e Varela Junior, Antonio Sergio

Efeito da lipoproteína de baixa densidade sobre a qualidade do sêmen canino submetido à criopreservação / Antonio Sergio Varela Junior ; orientador João Carlos Deschamps. – Pelotas, 2005. – 18f. : il. – Dissertação (Mestrado). Programa de Pós-Graduação em Veterinária. Área de Concentração: Reprodução animal. Faculdade de Veterinária. Universidade Federal de Pelotas. Pelotas, 2005.

1.Cães. 2.Sêmen. 3.LDL. 4.Refrigeração. 5.Congelamento. 6.Criopreservação I.Deschamps, João Carlos. II.Título.

CDD: 636.7

ANTONIO SERGIO VARELA JUNIOR

EFEITO DA LIPOPROTEÍNA DE BAIXA DENSIDADE SOBRE A QUALIDADE DO SÊMEN CANINO SUBMETIDO A CRIOPRESERVAÇÃO

Dissertação apresentada à Universidade Federal de Pelotas, sob a orientação do Prof. João Carlos Deschamps como parte das exigências do Programa de Pós-Graduação em Veterinária, Área de Concentração: Reprodução Animal, para obtenção do título de Mestre em Ciências Veterinárias.

Prof. Márcio Nunes Corrêa

Prof. Márcio Nunes Corrêa

Prof. Sandra Mara da Encarnação Fiala

Prof. João Carlos Deschamps
(Orientador)

ÍNDICE

	Pág
LISTA DE TABELAS	V
LISTA DE FIGURAS	V
SUMÁRIO	V
SUMMARY	X
1.INTRODUÇÃO GERAL	0
2.TRABALHO: EFEITO DA LIPOPROTEÍNA DE BAIXA DENSIDADE	
SOBRE A QUALIDADE DO SÊMEN CANINO SUBMETIDO À	
CRIOPRESERVAÇÃO	0
2.1. RESUMO	0
2.2. INTRODUÇÃO	0
2.3. MATERIAIS E MÉTODOS	(
2.3.1. Animais	0
2.3.2. Avaliação dos ejaculados	0
2.3.3. Purificação do LDL da gema de ovo	0
2.3.4. Diluentes	0
2.3.5. Processamento do sêmen	0
2.3.6. Análise estatística	0
2.4. RESULTADOS	C
2.4.1.Experimento-1 (Refrigeração espermática)	C
2.4.2.Experimento-2 (Congelamento espermático)	1
2.5. DISCUSSÃO	1
2.6. REFERÊNCIAS BIBLIOGRÁFICAS	1

AGRADECIMENTOS

Inicialmente gostaria de agradecer aos meus pais Antonio Sergio Varela e Elionet Freitas Câmara Varela e aos meus irmãos Samanta Varela e Saimon Varela pois a minha família sempre me deu suporte tanto amoroso como financeiro.

À Universidade Federal de Pelotas pela oportunidade de realizar o curso de Pós-Graduação.

Ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) pelo suporte financeiro ao projeto de pesquisa que resultou nessa dissertação.

Ao Professor João Carlos Deschamps pela amizade, orientação, confiança durante o curso e execução do trabalho.

Aos Professores Marcio Nunes Corrêa e Thomaz Lucia Junior pela coorientação e principalmente pela a amizade formada durante estes anos.

A todos os professores, funcionários e pós-graduandos do Centro de Biotecnologia e da Faculdade de Veterinária, pelo apoio, dedicação e paciência.

Aos laboratórios de Biologia Molecular, Imunologia Aplicada e Bacteriologia pelo empréstimo de materiais permanente e de consumo.

Aos amigos Marcus Alvarenga, Ligia Maria Piassi, Andréa Panzardi, Rafael da Rosa Ulguim, Carine Dahl Corcini, Carolina Gonçalves Serret, Ivan Bianchi, Eduardo Schimidt, pela amizade, carinho, incentivo e auxílio em todos os momentos.

E principalmente a todos os estagiários do grupo PIGPEL.

E a todos que direta ou indiretamente contribuíram de alguma forma para a realização deste trabalho.

LISTA DE TABELAS

	Pág
TABELA 1: Motilidade espermática (%) do sêmen canino por tratamento e	
período de estocagem	10
TABELA 2: Médias da integridade de membrana do sêmen canino por	
tratamento e período de estocagem	10
TABELA 3: Médias de espermatozóides normais na morfologia do sêmen	
canino por tratamento e período de estocagem.	11
TABELA 4: Motilidade espermática no pré-congelamento (MotPre) e	
motilidade (MotDesc), percentagem de células morfologicamente normais	
(MorfDesc) e integridade de membrana (IMDesc) do sêmen descongelamento	13

LISTA DE FIGURAS

]
FIGURA 1. Média do tempo máximo de duração, em dias, em cada um dos	
tratamentos, no acondicionamento do sêmen a 5°C.	
FIGURA 2 - Regressão linear da Motilidade espermática para os tratamentos T1	
Tris-glicose 20%gema de ovo (Quadrado), T2-Tris-glicose 6% LDL	
(Triângulo), T3-Tris-glicose 8%LDL (Circulo) e T4-Tris-glicose 10% LDL	
(Losango) em função do tempo de acondicionamento do sêmen canino a 5°C	
FIGURA 3 - Regressão linear da Integridade de membrana para os tratamentos	
T1 Tris-glicose 20%gema de ovo (Quadrado), T2-Tris-glicose 6% LDL	
(Triângulo), T3-Tris-glicose 8%LDL (Circulo) e T4-Tris-glicose 10%LDL	
(Losango) em função do tempo de acondicionamento do sêmen canino a 5°C	

SUMÁRIO

VARELA JUNIOR, ANTONIO SERGIO, Universidade Federal de Pelotas, Pelotas, 2005. **Efeito da lipoproteína de baixa densidade sobre a qualidade do sêmen canino submetido à criopreservação.** Dissertação (Mestrado em Ciências Veterinárias – Reprodução Animal). Faculdade de Medicina Veterinária. Orientador: Deschamps, João Carlos.

A gema de ovo é um dos crioprotetores externos mais utilizados na preservação seminal, apresentando, como um dos constituintes na sua composição, lipoproteína de baixa densidade (LDL). A ação protetora à baixas temperaturas, exercida pela LDL, é atribuída à incorporação, na membrana celular, de seus fosfolipídios e colesterol, bem como através da associação da LDL com as proteínas do plasma seminal, evitando que estas seqüestrem fosfolipídio e colesterol da membrana espermática, aumentando a sua estabilidade e protegendo o espermatozóide do choque térmico. Entretanto, a gema também contém outras substâncias prejudiciais ao espermatozóide, as quais provocam, principalmente, a diminuição da motilidade e da quantidade de fosfolipídio e colesterol. O objetivo deste trabalho foi de verificar o efeito da adição de LDL, na composição de diluentes utilizados para congelamento e resfriamento a 5 °C do sêmen canino, sobre algumas características espermáticas. No experimento 1 (Exp.1) foram coletados 5 ejaculados de sêmen de 4 cães da raça Cocker Spaniel. Após a coleta, os ejaculados foram centrifugados e diluídos em: Tris-Glicose adicionado de 20% de gema de ovo (T1), e Tris-Glicose adicionado com 6% (T2), 8% (T3) e 10% (T4) de LDL. Após a diluição o sêmen foi mantido por 1 h a 20°C, sendo que após este período a temperatura foi reduzida gradualmente durante 2 h, até atingir 5°C. Foram avaliados a motilidade (MOT), a integridade de membrana (IM) e a morfologia (MORF) nas 24, 48, 72, e 96 h, bem como o tempo máximo de duração (TMD). No experimento 2 (Exp2) foram coletados ejaculados de 4 cães da raça Cocker Spaniel (3 repetições) e 2 cães da raça *Pastor Alemão* (4 repetições), executando os mesmos procedimentos realizados no experimento 1, após foi adicionado (v/v), a 5°C, os mesmos tratamentos adicionados de 10% de glicerol (concentração final de 5%) e posteriormente as palhetas foram congeladas a 5 cm do nitrogênio liquido. Após o descongelamento, foram avaliadas a motilidade (MOT), integridade de membrana (IM) e a morfologia espermática (MORF). No Exp.1, o TDM do T1 (152,6 h) foi menor (P < 0,01) que nos tratamentos T2 (204,4 h), T3 (212,1 h) e T4 (200,6h), entretanto, estes não diferiram (P > 0,05) entre si. A MOT e IM, no Exp.1 nas 24, 48, 72, e 96h e no Exp.2 após o descongelamento, nos tratamentos T2, T3 e T4 não diferiram (P > 0,05) entre si, mas foram superiores (P < 0,01) ao T1. Sendo que nas 96 h as MOT foram de 61,5% no T1, 70,5% no T2, 75,5% no T3 e 70% no T4 e as de IM foram 35,5% no T1, 45,3% no T2, 47% no T3 e 45,1% no T4. A MORF. não diferiu (P > 0,05) entre os tratamentos em todos os tempos avaliados em ambos os experimentos. Em conclusão, a substituição da gema de ovo por LDL, foi benéfica para a manutenção da qualidade espermática canina, quando preservado a temperatura de refrigeração a 5°C ou congelado.

SUMMARY

VARELA JUNIOR, ANTONIO SERGIO, Universidade Federal de Pelotas, Pelotas, 2005. **Effect of low-density lipoprotein on the quality of cryopreserved canine semen.** Dissertação (Mestrado em Ciências Veterinárias – Reprodução Animal). Faculdade de Medicina Veterinária. Orientador: Deschamps, João Carlos.

Egg yolk is one the most used external cryoprotectors for semen preservation. Its composition includes low-density lipoprotein (LDL). The LDL cryoprotecting action is attributed do the incorporation of phospolipids and cholesterol to the cell membrane, as well as to its association with proteins present in seminal plasma, preventing that they could take such substances from the cell membrane, making such membrane more stable and decreasing sperm sensitivity to cold shock. However, egg yolk also contains other substances detrimental to the sperm, which can lead to reduction in motility and in the phospolipids and cholesterol content. The objective of this study was to evaluate the effect of the replacement of egg yolk by LDL in extenders for canine semen frozen and cooled at 5 °C considering parameters of semen quality. In Experiment 1 (EXP1) 5 ejaculates were collected from 4 Cocker Spanil dogs and, after centrifugation, extended according to 4 treatments: Tris-Glucose plus 20% egg yolk (T1), Tris-Glucose plus 6% LDL (T2), Tris-Glucose plus 8% LDL, Tris-Glucose plus 10% LDL. After semen incubation at 20°C during 1 h, the temperature was gradually reduced during 2 h up to 5°C. Sperm motility (MOT), membrane integrity (MI) and morphology (MOR) were evaluated were evaluated at 24, 48, 72 and 96 h, along with the maximum survival time (MST). In Experiment 2 (EXP2), semen samples were collected from 4 Cocker Spanil (3 repetitions) and 2 German shepherd (4 repetitions), following the same procedures of EXP1. Subsequently, the same

treatments of EXP1 were applied at 5°C, with the inclusion of glycerol at 10% (final concentration equal to 5%) for freezing. Straws were thawed in liquid Nitrogen at 5 cm. After thawing, the same semen quality parameters were evaluated. In EXP1, MST was lower for T1 than for the other treatments (P < 0.01), but T2, T3 and T4 did not differ (P > 0.05). MOT and MI did not differ among T2, T3 and T4 at 24, 48, 72, and 96 h in EXP1 and after thawing in EXP2 (P > 0.05), but all those 3 treatments present superior results in comparison with T1 (P < 0.01), in both experiments. MORF did not differ among treatments in both EXP1 and EXP2 (P > 0.05). In conclusion, purified LDL can replace egg yolk in extenders for canine semen cooled at 5°C or frozen.

INTRODUÇÃO GERAL

As taxas de prenhes e de parto em cães são geralmente baixas quando se utiliza inseminação artificial com sêmen resfriado e, principalmente, com sêmen congelado (Linde-Forsberg, 1993). Isto ocorre em razão de que as células espermáticas, durante o processamento, sofrem alterações em diversos componentes celulares (acrossoma, núcleo, mitocôndria, axonema e membrana plasmática), reduzindo, assim, a qualidade do ejaculado quando comparado ao sêmen fresco (Amirat et al., 2004; Watson, 2000). Consequentemente, protocolos de resfriamento e/ou congelamento, através da utilização de diluentes, previnem a lesão de membrana e a formação de gelo intracelular. No entanto, devido ao processamento, o choque térmico é um dos principais fatores que podem inviabilizar o sêmen, causando alterações na estrutura e funcionalidade da membrana plasmática (Conacannon & Batista, 1989), o que leva a prejuízos para a motilidade e morfologia espermática (Holt, 2000). Com o objetivo de proteger a célula, adiciona-se aos diluentes, a gema de ovo. Esta possui na sua constituição, a lipoproteína de baixa densidade (LDL) a qual protege o espermatozóide basicamente através de dois mecanismos. Um dos mecanismos é a associação do LDL a membrana protegendo o espermatozóide (Bergeron et al., 2004; Watson, 1981). Além disto, comprovou-se que a LDL promove a entrada de fosfolipídio e colesterol para a membrana e, também, previne a saída de fosfolipídio e colesterol da membrana espermática, formando um complexo com as proteínas do plasma seminal (Bergeron et al., 2004; Manjunath et al., 2002). Desta forma, impede que as proteínas do plasma seminal fiquem disponíveis para atuarem na membrana espermática, evitando assim o efluxo de fosfolipídios (Thérien et al., 1999; Bergeron et al. 2004) e colesterol (Bergeron et al. 2004), conferindo a célula espermática maior resistência ao choque térmico. Entretanto, a gema de ovo, contém grânulos que dificultam a respiração do espermatozóide (Tosic & Walton, 1946) e diminuem a motilidade espermática (Pace & Graham, 1974), outra desvantagem da utilização da gema de ovo é que a mesma pode carrear microorganismos patogênicos, sendo assim, um risco de contaminação.(Bosseau *et al.* 1998) Constatou-se também que quando a gema do ovo foi separada em frações de lipoproteína de baixa densidade (LDL) e de alta densidade (HDL) e, comparada ambas a frações com a gema integral, a LDL obteve melhores resultados, entretanto, a LDL não havia sido purificada (Pace & Graham, 1974; Watson & Martin, 1975).

Embora tenha sido comprovada, nas espécies bovina (Amirat *et al.* 2004; Moussa *et al.* 2002), ovina (Quinn *et al.* 1980), suína (Demaniowicz & Strzezek, 1996),), a ação crioprotetora da LDL purificada da gema de ovo, não foi verificada no sêmen da espécie canina. Portanto, em decorrência da necessidade de formular um diluente que proteja melhor a célula espermática canina, durante os processamentos de preservação ao frio, foram realizados dois experimentos, com o objetivo de verificar o efeito da adição de LDL purificado, em substituição a gema de ovo integral, na composição de diluentes, utilizados para acondicionar sêmen canino refrigerado a 5 °C e, também, congelado, sobre as características espermáticas de integridade de membrana, motilidade, morfologia espermática e tempo de acondicionamento.

EFEITO DA LIPOPROTEÍNA DE BAIXA DENSIDADE SOBRE A QUALIDADE DO SÊMEN CANINO SUBMETIDO A CRIOPRESERVAÇÃO

(Trabalho nas normas da revista Theriogenology)

DA LIPOPROTEÍNA DE BAIXA DENSIDADE SOBRE A QUALIDADE DO SÊMEN CANINO SUBMETIDO A CRIOPRESERVAÇÃO

Antonio Sergio Varela Junior, Rafael da Rosa Ulguim, Carine Dahl Corcini, Marcus Vinicius Figueira de Alvarenga, Ivan Bianchi, Carolina Gonçalves Serret, Marcio Nunes Corrêa, Thomaz Lucia Jr., João Carlos Deschamps

Laboratório de Reprodução Animal, Centro de biotecnologia, Faculdade de Veterinária Campus Universitário s/n – Caixa Postal 354 – CEP 96010-900 Universidade Federal de Pelotas, Pelotas/RS.

Resumo

Em função da ação da lipoproteína de baixa densidade (LDL) presente em sua constituição, a gema de ovo é o crioprotetor externo mais utilizado na preservação seminal, ainda que também contenha outras substâncias prejudiciais ao espermatozóide. O objetivo deste estudo foi verificar o efeito da substituição de gema de ovo integral por diferentes concentrações de LDL em diluentes, sobre algumas características de qualidade de sêmen canino resfriado a 5°C e congelado. No experimento 1 (EXP1) cada ejaculado foi centrifugado e diluído em quatro tratamentos: Tris-Glicose com 20% de gema; 6; 8; e 10% de LDL (T1, T2, T3 e T4, respectivamente), permanecendo por 1 h a 20°C, sendo, posteriormente, resfriado por 2 h a 5°C, para avaliação das características espermáticas a cada 24 h. No experimento 2 (EXP2) foram executados os mesmos procedimentos do EXP1, sendo que foram adicionados 1/1 (v/v), aos mesmos tratamentos (T1, T2, T3 e T4), 10% de glicerol (5% de concentração final), com congelamento das amostras em palhetas de 0,5 mL, a 5 cm do nitrogênio líquido. Foram coletados 20 ejaculados caninos em cada experimento Avaliou-se a motilidade (MOT), integridade de membrana (IM) e morfologia

(MORF) para os 2 experimentos, e ainda o Tempo até motilidade mínima de 50% (TM50), somente no EXP1. O TM50 no T1=152,6h foi menor (P < 0,01) que nos tratamentos T2 = 204,4 h, T3 = 212,1 h e T4 = 200,6 h, mas não diferiu entre estes tratamentos (P > 0,05). A MOT e IM as 24, 48, 72 e 96 h (EXP1) e após o descongelamento (EXP2) não diferiu entre T2, T3 e T4 (P > 0,05), porém a MOT nestes tratamentos foi superior a T1 (P < 0,01). Sendo a MOT no descongelamento de 55,0%, 66,5%, 70,0%, e 67,5, e nas 96h de refrigeramento foram de 61,5%, 70,5%, 75,5% e 70,0% para o T1, T2, T3 e T4 respectivamente. A MORF não diferiu (P > 0,05) entre os tratamentos, em nenhum período, em ambos os experimentos. Pode-se concluir que a substituição da gema de ovo por LDL foi benéfica para a manutenção da qualidade do sêmen canino preservado a temperatura de refrigeração a 5°C e congelado.

Palavras chaves: LDL, refrigeração, congelamento, crioprotetor, sêmen, cão.

1. Introdução

Durante as últimas décadas, a utilização de sêmen refrigerado e criopreservado de cães vem sendo incrementada. Entretanto, o processo de criopreservação pode provocar o choque térmico, acarretando diversas alterações em componentes das células espermáticas (acrossoma, núcleo, mitocôndria, axonema e membrana plasmática), reduzindo assim a qualidade e a viabilidade espermática, em comparação com o sêmen fresco [1, 2]. . Isto ocorre em função de alterações na estrutura e funcionalidade celular [3], que podem levar a prejuízos na motilidade e morfologia espermáticas [4].

Em função destes problemas, os protocolos de resfriamento e/ou congelamento, utilizam diluentes com crioprotetores que visam prevenir lesões na membrana celular e a formação de gelo intracelular. Um dos crioprotetores externos mais utilizados em diluentes é a gema de ovo [5], em razão de possuir em sua constituição a lipoproteína de baixa densidade (LDL). Um dos possíveis mecanismos de proteção atribuído à LDL seria a sua associação com a membrana espermática do espermatozóide [6, 7]. Foulkes [8], e Graham & Foot [9] sugerem que a LDL pode-se aderir à membrana da célula espermática durante o processo de preservação espermática. Segundo Anton *et al.* [10], o LDL forma uma película interfacial entre ácidos graxos e a água. Além disto, Bergerom *et al.* [6] descrevem que a LDL promove a entrada de fosfolipídios e colesterol para a membrana dos espermatozóides e também previne a saída de fosfolipídios e colesterol da membrana

espermática [6], formando um complexo com as proteínas do plasma seminal [6, 11], de modo que estas não fiquem disponíveis para atuarem na membrana. Desta forma, confere a célula espermática uma maior resistência ao choque térmico. Entretanto, a gema de ovo utilizada na composição de diversos diluentes contém outras substâncias que dificultam a respiração celular [13] e diminuem a motilidade espermática [14], além de constituir um potencial risco de contaminação com microorganismos [15].

Embora tenha sido comprovada, em outras espécies [1, 16-18], a ação crioprotetora da LDL purificada da gema de ovo, não foi avaliada no sêmen da espécie canina. O objetivo deste estudo foi de verificar o efeito da adição de LDL purificada na composição de diluentes, em substituição a gema de ovo integral, sobre características de qualidade de sêmen canino refrigerado a 5°C e congelado.

2. Materiais e métodos

Foram realizados dois experimentos. No experimento 1 (EXP1) foi avaliado o efeito da substituição, no diluente Tris-glicose, da gema de ovo por LDL. Foram avaliados 4 tratamentos: um controle com gema de ovo a 20% (T1) [19] e 3 tratamentos na qual esta foi substituída por LDL: a 6% (T2); 8% (T3); e 10% (T4) (peso/volume), com acondicionamento do sêmen a 5°C. No experimento 2 (EXP2), os mesmos tratamentos, com adição de glicerol a 5%, foram testados para sêmen congelado.

2.1. Animais

No EXP1, foram utilizados 4 cães da raça *Cocker Spaniel*, pertencentes de um criador local, sendo realizadas 5 coletas (repetições) para cada um, totalizando 20 ejaculados coletados. No EXP2, foram utilizados 4 cães da raça *Cocker Spaniel* (3 coletas em cada), pertencentes a um criador local, e 2 cães da raça *Pastor Alemão* (4 coletas em cada), pertencentes à brigada militar, totalizando 20 ejaculados coletados. Os ejaculados usados no experimento tinham motilidade ≥ 80%. As coletas foram feitas através de manipulação digital [20], em tubos cônicos estéreis de 50 mL, sendo utilizada somente a segunda fração, rica em espermatozóides.

2.3. Avaliação dos ejaculados

As avaliações de motilidade (percentagem de células móveis) e morfologia espermática foram feitas logo após a coleta do sêmen, em ambos os experimentos. No EXP1, motilidade e morfologia espermáticas e integridade de membrana foram avaliadas nas 24, 48, 72, e 96 h, bem como foi determinado o Tempo até motilidade mínima de 50% (TM50), definido como sendo o número de horas em que o sêmen permanecia com motilidade superior a 50% [19]. No EXP2 a motilidade e morfologia espemáticas foram avaliadas, após a centrifugação, antes do congelamento e após o descongelamento, enquanto a integridade de membrana foi avaliada após o descongelamento.

As avaliações de motilidade foram feitas através de microscopia óptica (aumento de 200x, com contraste de fases), utilizando aproximadamente 10µl de sêmen em lâmina sob lamínula, ambas pré-aquecidas a 37°C [20].

A morfologia espermática foi avaliada utilizando microscópio óptico (aumento de 1000x), através de contagem de 100 células, em lâmina úmida corada com eosina e classificada como espermatozóide normal ou espermatozóide com anormalidade de cabeça, acrossoma ou cauda.

A integridade de membrana foi realizada através de choque hiposmótico (CHIPO), com uso de uma solução a base de 50% de citrato de sódio e 50% de frutose, ambas, em água destilada, sendo misturadas em partes iguais e diluídas com água até se obter uma solução hiposmótica de 75 mOsm/L. Na avaliação do CHIPO, recolhia-se uma alíquota de 100 µl de sêmen que foi adicionado a 900 µl da solução hiposmótica, sendo homogeneizada e incubada em banho-maria durante 15 minutos à 37°C. Depois da incubação, uma amostra foi depositada na câmara de *Neubauer*, sendo contadas 100 células em microscópio óptico com contraste de fases (aumento de 200 x), registrando os espermatozóides que se apresentavam normais e espermatozóides com enrolamento ou dobra da cauda. Para se determinar um grupo controle para esta avaliação, um procedimento idêntico era realizado com uma solução isosmótica (300 mOsm/L) ao sêmen diluído. Portanto, o valor que foi utilizado para análise do CHIPO, corresponde à diferença entre o número de espermatozóides com caudas enroladas, observadas no teste realizado com a solução hiposmótica e isosmótica [21].

2.4. Purificação do LDL da gema de ovo

Os ovos de galinha provenientes da granja da Universidade Federal de Pelotas, foram quebrados manualmente e as gemas foram separadas das claras. Cada gema foi colocada sobre um papel filtro para remoção da chalaça e traços de clara aderida a membrana vitelínica. Esta foi rompida e a gema colocada em um Becker resfriado em gelo. Separouse a fração plasmática da gema, segundo método descrito por McBee e Cotterill [22], com a gema de ovo sendo diluída duas vezes com solução salina isotônica (0,17 M NaCl) e misturada por 1 h. Após, a gema foi centrifugada por 45 minutos à 4°C por 10.000 x g e o sobrenadante centrifugado novamente para remover completamente os grânulos.

O plasma da gema do ovo, foi extraída através da técnica descrita por Moussa *et al*[17], sendo o mesmo misturado com o sulfato de amônia à 40% por 1 h. O pH foi fixado e mantido a 8,7 e a temperatura à 4°C, em seguida foi centrifugado a 10.000 x g por 45 min à 4°C, sendo o sobrenadante final rico em LDL, coletado para ser dialisado por um período mínimo de 8 h com água destilada, para eliminação do sulfato de amônia. Após a diálise, o LDL foi centrifugado a 10.000 x g por 45 min e o sobrenadante residual, rico em LDL foi coletado.

2.5. Diluentes

O diluente Tris-glicose foi formulado com 3,025 g de Tris hidroximetil aminometano, 1,7 g de ácido cítrico, 1,25 g de glicose, 100 mg de benzilpenicilina, 100 mg de sulfato de dihidroestreptomicina para 100 mL de água destilada [19]. Nos tratamentos, foram adicionados ao diluente Tris-glicose 40% de gema de ovo e, 12%, 16% e 20% de LDL (T1, T2, T3 e T4, respectivamente). O pH de todos os diluentes foi ajustado em 6,85 [19].

2.6. Processamento do sêmen

No EXP1, o sêmen foi diluído 1/5 (v/v) com diluente Tris-Glicose a 37°C, e, em seguida, centrifugado a 800 x g por 5 m. O sobrenadante foi descartado e o *pellet* foi ressuspenso em Tris-glucose, sendo dividido em 4 partes iguais, que foram alocadas aos diferentes tratamentos em 1/1 (v/v). Os Tratamentos T1, T2, T3 e T4 alcançaram concentrações finais de 20% de gema de ovo, 6%, 8% e 10% de LDL, respectivamente. O sêmen já diluído, em cada tratamento, foi submerso em 200 mL de água isotérmica, com o

intuito de prevenir o choque térmico, em virtude das altas variações de temperatura [23]. Durante o experimento, o sêmen permaneceu a 20°C por 1 h, sendo após submetido a um resfriamento por duas h, até chegar a 5°C. Esse período foi considerado como 0 h.

No EXP2 o sêmen após sofrer o mesmo processamento do EXP1, foi rediluido 1/1 (v/v) nos tratamentos: Tris-glicose com 20% de gema de ovo (T1); Tris-glicose com 6% de LDL (T2); Tris-glicose com 8% de LDL (T3); e Tris-glicose com 10% de LDL T4. Cada tratamento recebeu inclusão de 10% de glicerol, ficando ao final o tratamento 1 (T1) com 20% de gema de ovo e 5% de glicerol, e os tratamentos T2, T3 e T4 com 6%, 8%, e 10% de LDL, respectivamente, e todos os tratamentos contendo 5% de glicerol ao final. O sêmen permaneceu em contato com o glicerol por 10 m, sendo envasado em palhetas de 0,5 mL. As palhetas foram expostas ao vapor de N₂, permanecendo a 5 cm do LN₂ por 10 m e após eram submersas no LN₂.

O descongelamento foi feito 7 após o congelamento. O descongelamento ocorreu a 70°C por 8 s. A amostra descongelada foi diluída em 1mL de Tris-glicose a 37°C.

2.7. Análise estatística

Os dados foram analisados utilizando o programa *Statistix*® [24]. Como variáveis dependentes foram consideradas: motilidade (MOT) e morfologia (MORF) espermáticas; integridade de membrana (IM); e Tempo até motilidade mínima de 50% (TM50). Os efeitos dos tratamentos e das coletas foram comparados com análise de variância com medidas repetidas, com o efeito individual de cada macho doador de sêmen incluído dentro do efeito dos tratamentos. A comparação entre as médias foi feita através do teste LSD.

Adicionalmente, foram gerados modelos de regressão linear para as avaliações de MOT e IM em função do tempo de acondicionamento do sêmen.

3. Resultados

3.1. Experimento 1

A MOT no sêmen a fresco foi de $94,2\% \pm 6,2$. A MOT, após passar pela curva de resfriamento (0 h), não diferiu (P > 0,05) entre os tratamentos (Tab. 1).

Após o sêmen permanecer acondicionado à 5°C por 24, 48, 72 e 96 h, a MOT no T1 foi inferior (P < 0,01) em relação ao T2, T3 e T4. Entretanto, a MOT não diferiu (P > 0,05) entre os tratamentos que incluíam LDL (Tab. 1).

Tabela 1: Motilidade espermática (%) do sêmen canino resfriado a 5°C, por tratamento e período de estocagem. (incluir os erros-padrão das médias)

Tratamentos	0 h	24 h	48 h	72 h	96 h
T1	87.0 ^a	79.0^{a}	73.7 ^a	68.2ª	61.5 ^a
T2	86.5 ^a	83.5 ^b	83.0^{b}	76.5 ^b	70.5 ^b
Т3	88.5 ^a	86.5 ^b	83.5 ^b	81.5 ^b	75.5 ^b
T4	87.0^{a}	83.5 ^b	81.7 ^b	76.5 ^b	70.0^{b}

^{a, b} Letras diferentes, na mesma coluna, representam diferença (P < 0,01).

A IM foi menor no T1 (P < 0.01) quando comparada aos T2, T3 e T4, ás 24, 48, 72 e 96 h (Tab. 2), mas T2, T3 e T4 não diferiram entre si (P > 0.05).

Tabela 2: Integridade de membrana do sêmen canino resfriado a 5°C, por tratamento e período de estocagem (incluir os erros-padrão das médias)

Tratamentos	24 h	48 h	72 h	96 h
T1	46.2 ^a	43.9 ^a	42.7 ^a	35.0 ^a
T2	62.6 ^b	57.0 ^b	54.2 ^b	45.3 ^b
Т3	59.1 ^b	55.0 ^b	54.0 ^b	47.0^{b}
T4	57.3 ^b	54.0 ^b	49.4 ^b	45.1 ^b

^{a b}Letras diferentes, na mesma coluna, representam diferença (P < 0,01).

As médias do TM50 (Fig. 1) dos tratamentos T2, T3 e T4 foram de 204,4 h (8,5 d), 212,1 h (8,8 d) e 200,6 h (8,3 d), respectivamente, não diferindo entre si (P > 0,05). Entretanto, estas médias foram superiores (P < 0,01) ao valor observado para T1 (152,6 h/6,4 d).

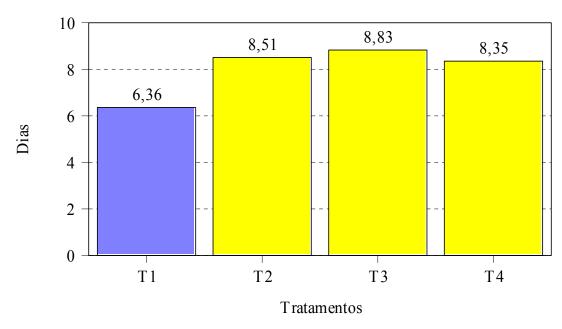


Figura 1. Tempo até motilidade mínima de 50% do sêmen canino resfriado a 5°C. Barras com cores diferentes indicam diferença significativa entre os tratamentos (P < 0.01).

A percentagem de MORF normal não diferiu (P > 0.05) entre os tratamentos, em cada um dos períodos de avaliação (Tab. 3).

Tabela 3: Percentual de morfologia espermática normal em sêmen canino resfriado a 5°C, por tratamento e período de estocagem. (incluir os erros-padrão das médias)

Tratamentos	24 h	48 h	72 h	96 h
T1	87.0	85.7	84.6	83.4
T2	87.3	85.9	85.0	83.3
T3	88.8	87.9	86.7	85.3
T4	87.7	86.6	86.2	84.1

Não houve diferença nos valores na mesma coluna (P> 0,05).

Através da regressão linear, observou-se que a MOT diminuiu no decorrer do tempo, em todos os tratamentos. Entretanto, no T1 a queda da motilidade foi mais acentuada em relação aos demais tratamentos (Fig. 2). Estes resultados demonstram que, á medida que aumenta o tempo de acondicionamento do sêmen a 5 o.C, a motilidade no T1 decresce mais intensamente do que nos tratamentos com LDL, de modo que, após 96 h, a motilidade do T1 se encontra 15 pontos percentuais abaixo da motilidade do T4, que seria o tratamento com motilidade inferior entre os que incluem LDL.

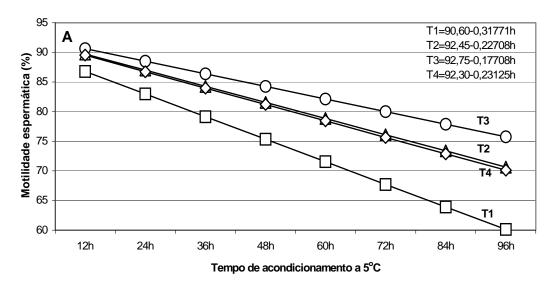


FIGURA 2 - Regressão linear da motilidade espermática de sêmen canino resfriado a 5°C, por tratamento, em função do tempo de acondicionamento.

T1 (Quadrado),
$$R^2 = 0.55$$
; T2 (Triângulo), $R^2 = 0.46$, T3 (Círculo), $R^2 = 0.39$; T4 (Losango), $R^2 = 0.49$

Já para a variável IM, o T1 nas 12 h preservou aproximadamente 50% de células integras o que somente ocorreu com os tratamentos com LDL as 84 h (Fig. 3). Estes resultados indicam que o efeito crioprotetor dos tratamentos com LDL sobre a integridade de membrana é constante desde o início do acondicionamento do sêmen.

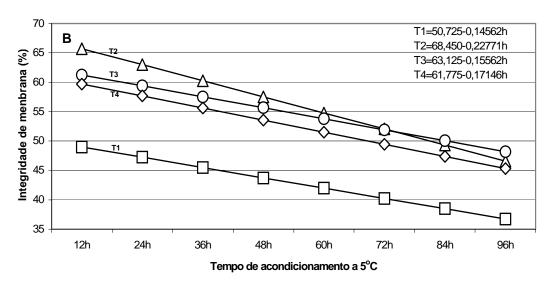


FIGURA 3 - Regressão linear da integridade de membrana de sêmen canino resfriado a 5°C, por tratamento, em função do tempo de acondicionamento.

T1 (Quadrado), $R^2 = 0.12$; T2 (Triângulo), $R^2 = 0.23$, T3 (Círculo), $R^2 = 0.12$; T4 (Losango), $R^2 = 0.12$

3.2. Experimento-2

A MOT no sêmen a fresco foi de 87,5%. Entre os tratamentos, a MOT não diferiu (P > 0,05), após ter sido adicionado o diluente com o glicerol (Tab. 4). Após o descongelamento a MOT e a IM foram superiores (P < 0,01) nos tratamentos com LDL, em comparação com o tratamento utilizando gema de ovo (T1). Porém, não foi observada diferença (P > 0,05) entre os tratamentos que utilizaram LDL (Tab. 4). A percentagem de células morfologicamente normais, após o sêmen ser descongelado, não diferiu (P > 0,05) entre os tratamentos.

TABELA 4: Motilidade espermática pré-congelamento e motilidade (MOT), percentagem de células morfologicamente normais (MORF) e integridade de membrana espermática (IM) do sêmen após o descongelamento. (incluir os erros-padrão das médias)

TD 4	Pré-congelamento	Descongelamento			
Tratamentos —	MOT	MOT	MORF	IM	
T1	80,0 ^a	55,0 a	71,1 ^a	19,9 ^a	
Т2	80,5 ^a	66,5 ^b	70,1 ^a	38,2 ^b	
Т3	81,0°	70,0 ^b	72,6 ^a	42,4 ^b	
T4	81,5 ^a	67,5 ^b	70,0°a	39,4 ^b	

Letras diferentes, na mesma coluna, representam diferença (P < 0,01).

4. Discussão

Os resultados obtidos no presente trabalho demonstram que o LDL é mais eficiente como crioprotetor do que a gema de ovo, na composição dos diluentes Tris-glucose utilizados para diluição de sêmen canino, tanto para preservar o sêmen a 5°C, bem como no congelamento. Os tratamentos com LDL apresentaram MOT e IM superiores ao tratamento com gema de ovo. Entretanto, não observou-se efeito das concentrações de LDL. Este resultado sugere que mesmo o menor nível de LDL utilizado neste experimento (6%), é capaz de proteger à célula espermática das injúrias a baixas temperaturas.

O modelo de regressão linear usado na avaliação da IM ressalta os efeitos crioprotetores da LDL, em qualquer dos tratamentos, já após 12 h de acondicionamento, o que se mantém até 96 h. É importante ressaltar que, após 84 h, a IM dos tratamentos com LDL seriam similares a IM do T1 as 12 h. Desta forma fica evidente a superioridade do LDL na proteção à membrana da célula espermática. No que diz respeito à motilidade, os tratamentos com LDL também demonstraram ser capazes de reduzir os efeitos negativos do tempo de acondicionamento. Porém, a diferença em relação ao T1, aparentemente, foi menos característica no início do acondicionamento, tornando-se mais evidente após 48 h. Portanto, o efeito crioprotetor da LDL se manifesta inicialmente sobre a IM e, posteriormente, também sobre a motilidade. Os coeficientes de determinação relativamente baixos para os modelos de regressão linear para motilidade para os tratamentos com LDL, em relação ao T1, indicam que existe um maior percentual de variação na motilidade explicado somente pelo tempo de acondicionamento. Isto pode ser atribuído ao efeito crioprotetor do LDL nestes tratamentos, o que minimiza o impacto do efeito do tempo. Nos modelos para IM, os coeficientes foram reduzidos, em todos os modelos, indicando que outros fatores não avaliados podem influenciar esta resposta.

Como demonstrado por outros autores [1,6,11,17,25,26], a fração LDL da gema de ovo é a responsável pelo efeito protetor exercido sobre as células espermáticas submetidas ao congelamento ou a refrigeração. Um filme protetor, formado ao redor da membrana plasmática da célula espermática, seria o responsável pelo efeito crioprotetor. Este efeito tem sido atribuído aos fosfolipídios [18] ou as apoproteinas [17] presentes na LDL. Bergeron et al. [6] demonstraram que a LDL diminui a ligação das proteínas do plasma seminal (BSP) ao espermatozóide, prevenindo o efluxo de fosfolipídios e colesterol da membrana plasmática. As BSP, que entram em contato com a célula espermática durante a ejaculação, següestram os fosfolipídios [6,12] e o colesterol [6] da membrana celular, tornando-a mais suscetível ao choque térmico, provavelmente pela alteração na relação colesterol/fosfolipídio. Além disso, a associação entre as BSP e o espermatozóide é dependente do tempo de exposição e da temperatura a qual a célula espermática é submetida [11]. A LDL também promove a entrada de fosfolipídios e colesterol para a membrana espermática [6], conferindo uma maior resistência contra o choque térmico. Além disso, a LDL, nas suas propriedades físicas e estruturais, possui alta solubilidade, bom poder emulsificante e boa estabilidade, não demonstrando alterar sua estrutura, em temperaturas extremas (-80°C á 75°C)[10]. Estas propriedades também podem contribuir

para aumentar a proteção às células espermáticas, quando submetidas aos processos de resfriamento e congelamento.

Outro fator responsável pelo efeito crioprotetor observado seria a remoção das substâncias prejudiciais que fazem parte da composição da gema de ovo, dentre elas: grânulos, minerais e a fração de lipoproteína de alta densidade, sendo que esta última potencializa a ação das proteínas do plasma seminal no efluxo de fosfolipídio e colesterol da membrana espermática [12]. Tais substâncias podem dificultar a respiração celular [13] e diminuir a motilidade espermática [14].

A MOT e a IM, em ambos os experimentos, foram superiores nos tratamentos que utilizaram LDL em relação ao que utilizou gema de ovo, sendo o TM50 superior nestes tratamentos, demonstrando assim, que quando se almeja preservar o sêmen por períodos prolongados o melhor é utilizar a lipoproteína purificada. Resultados que relatam efeitos positivos da substituição de gema de ovo por LDL em diluente usados na criopreservação de sêmen também foram relatados para sêmen das espécies bovina [17], suína [16] e ovina [27]. A MOT após o descongelamento observada no tratamento controle (55%), situa-se muito próxima a MOT observada nos experimentos de Yldiz, *et al.* [28] e Peña & Lindeforsberg [29] (47,9% e 60%, respectivamente) os quais também utilizaram o diluente Trisglucose. Entretanto, estes estudos utilizaram protocolos de congelamento diferente do utilizado no presente trabalho. Deve-se ressaltar que as médias para a MOT com sêmen congelado em T2, T3 e T4, (66,5%, 70% e 67,5%, respectivamente), ainda que não tenham diferido entre si, são numericamente superiores aos encontrados por Yldiz, et al. [28] que utilizou o mesmo diluente com diferentes açucares, demonstrando o incremento,. atribuído ao LDL, na proteção aos espermatozóides.

Concluindo, a utilização da LDL purificada em substituição a gema integral, na composição dos diluentes utilizados para acondicionar o sêmen canino a 5°C ou congelado, proporcionou uma maior percentagem de células espermáticas móveis e íntegras. Além disso, não observou-se alteração na percentagem de células morfologicamente normais verificando-se, porém, um aumento do Tempo até motilidade mínima de 50% quando o sêmen foi refrigerado. Portanto, a utilização da LDL purificada na composição do diluente Tris-Glicose, foi benéfica para a qualidade do sêmen canino submetido a criopreservação.

Referêcias

- [1] Amirat L; Tainturier D; Jeanneau L; Thorin C; Gerard O; Courtens JL; Anton M. Bull semen in vitro fertility after cryopreservation using egg yolk LDL: a comparison with Optidyl, a commercial egg yolk extender. Theriogenology 2004;61:895-907.
- [2] Watson PF. The causes of reduced fertility with cryopreserved semen. Anim Reprod Sci 2000;60 61:481 492.
- [3] Conacannon PW; Batista M. Canine semen freezing and artificial insemination. In:Veterinary Terapy; 10. Philadelphia W. B. 1989;1247-1259.
- [4] Holt WV. Fundamental aspects of sperm cryobiology: the importance of species and individual differences. Theriogenology 2000;53:47-58.
- [5] England GC. Cryopreservation of dog semen: a review. J. Reprod. Fertil. Suppl 1993;47;247-255.
- [6] Bergeron A; Crête MH; Brindle Y; Manjunath P. Low-density lipoprotein fraction from hen's egg yolk decreases the binding of the major protein of bovine seminal plasma to sperm and prevents lipid efflux from the sperm membrane. Biol Reprod 2004;70:708-717.
- [7] Watson PF. The roles of lipid and protein in the protection of ram spermatozoa at 5 degrees C by egg-yolk lipoprotein. J Reprod Fertil 1981;62:483-492
- [8] Foulkes JA. The separation of lipoproteins from egg yolk and their effect on the motility and integrity of bovine spermatozoa. J. Reprod Fertil 1977;49:277-284.
- [9] Grahm JK; Foote RH. Effect of several lipids fatty acyl chain length and degree of unsaturation on the motility of bull spermatozoa after cold shock and freezing. Crybiology 1987;24:42-52.
- [10] Anton M; Martinet V; Dalgalarrondo M; Beaumal V; David-Briand E; Rabesona H. Chemical and structural characterization of low-density lipoproteins purified from hen egg yolk. Food Chemistry 2003;83:175-183.
- [11] Majunath P; Nauc V; Bergeron A; Menard M. Major Proteins of bovine seminal plasma bind to the low-density lipoprotein fraction of hen's egg yolk. Biol Reprod 2002;67:1250-1258.
- [12] Thérien I; Moreau R; Manjunath P. Bovine seminal plasma phopholipid-binding Proteins stimulate phospholipid efflux from epididymal sperm. 1999;61:590-598.
- [13] Tosic, P.H.; Walton, A. Effects of egg yolk and its contituents on the respiration and fertilizing capacity of spermatozoa. J Agric Sci 1946;37:69-76.

- [14] Pace MM; Graham EF. Components in egg yolk which protect bovine spermatozoa during freezing. J Anim Sci 1974;39:1144-1149.
- [15] Bosseau S; Brillard JP; Marquant-le guienne B; Guérin B; Camus A; Lechat M. Comparison of bacteriological qualities of various egg yolk sources and the in vitro and in vivo fertilizing potential of bovine semen frozen in egg yolk or lecithin based diluents. Theriogenology 1998;50:699-706.
- [16] Demaniowicz W; Strzezek J. The effect of lipoprotein fraction from egg yolk on some of the biological properties of boar spermatozoa during storage of the semen in liquid state. Reprod Dom Anim 1996;31:279-280.
- [17] Moussa M; Marinet V; Trimeche A; Tainturier D; Anton M. Low density lipoproteins extracted from hen egg yolk by an easy method: cryoprotective effect on frozenthawed bull semen. Theriogenology 2002;57;1695-1706.
- [18] Quinn PJ; Chow PYW. Evidence that phospholipids protects spermatozoa from cold shock at a plasma membrane site. J Reprod Fertil 1980. v.60 p.403-407.
- [19] Iguer-ouada M, Vestegen Long-term preservation of chilled canine semen: Effect of commercial and laboratory prepared extenders. Theriogenology 2001;55:671-684.
- [20] Christiansen IJ. 1986. Reprodução no cão e no gato. Ed. Manole, São Paulo-SP,
- [21] Kumi-Diaka J. Subjecting canine semen to the hypo-osmotic test. Theriogenology. 1993;39:1279-1289
- [22] Mcbee L; Cotterill 0. Ion exchange chromatography and electrophoresis of egg yolk. J Food Sci 1979;44: 656-660.
- [23] Linde-Forsberg C; Forsberg M. Results of 527 controlled artificial inseminations in dogs. J Reprod Fertil Suppl 1993;47:313-323
- [24] STATISTIX®. Statistix® 8 Analytical Software. User's manual. Tallahassee. FL. 2003. 396 p.
- [25] Leeuw FE; Leeuw AM; Den Daas JHG; Colenbrander B; Verkleu AJ. Effects of various cryoprotective agents and membrane-stabilizing compounds on bull sperm membrane integrity after cooling and freezing. Cryobiology 1993;30:32-44.
- [26] Trimeche A, Anton M, Renard P, Gandemer G, Tainturier D. Quail egg Yolk: a novel cryoprotectant for the freeze preservation of poitou jackass sperm. Cryobilogy 1997;34:385-393. [27] Watson PF; Martin IC. The influence of some fractions of egg yolk on the survival of ram spermatozoa at 5 degrees C. J Biol Sci 1975;28:145-152

- [28] Yildiz C;. Kaya A; Aksoy M; Tekeli T. Influence of sugar supplementation of the extender on motility, viability and acrosomal integrity of dog spermatozoa during freezing. Theriogenology.2000;54:579-585.
- [29] Peña A; Linde-Forsberg C. Effects of Equex, one- or two-step dilution, and two freezing and thawing rates on post-thaw survival of dog spermatozoa. Theriogenology 2000;54;859-875.