Universidade Federal de Pelotas

F	Faculdade de Arquitetura e Urbanismo
Programa	de Pós-Graduação em Arquitetura e Urbanismo

Dissertação de Mestrado

Padrões de traçado viário urbano e acessibilidade:

uma abordagem das relações com o sistema de circulação

Evaldo Tavares Krüger

Pelotas, junho de 2012.

Universidade Federal de Pelotas

Faculdade de Arquitetura e Urbanismo Programa de Pós-Graduação em Arquitetura

Título do trabalho:

Padrões de traçado viário urbano e acessibilidade: uma abordagem das relações com o sistema de circulação.

Autor:

Evaldo Tavares Krüger.

Dissertação de Mestrado apresentada ao PROGRAU - Programa de Pós-Graduação em Arquitetura e Urbanismo, Faculdade de Arquitetura e Urbanismo, Universidade Federal de Pelotas, como parte dos requisitos para obtenção do título de mestre.

Área de concentração:

Arquitetura, Patrimônio e Sistemas Urbanos.

Linha de pesquisa:

Sistemas Configuracionais Urbanos.

Orientador:

Professor Doutor Maurício Couto Polidori.

Comissão de avaliação:

Professor Doutor João Farias Rovati (PROPUR - UFRGS);
Professor Doutor Oberon da Silva Mello (PROPUR - UFRGS);
Professora Doutora Ana Paula Neto de Faria (PROGRAU - UFPel);
Professor Doutor Eduardo Grala da Cunha (PROGRAU - UFPel).

Dedicatória

Ao Lucas e a Márcia, fontes de energia e alegria inesgotáveis.

Agradecimentos

Em especial ao amigo Maurício Couto Polidori, orientador deste trabalho, pela dedicação, competência e positivismo de sempre.

Aos colegas do Laboratório de Urbanismo, professores e funcionários do PROGRAU, pelo suporte e apoio.

Resumo

KRÜGER, Evaldo Tavares Krüger. **Padrões de traçado viário urbano e acessibilidade:** uma abordagem das relações com o sistema de circulação. 2012. 160f. Dissertação (Mestrado) - Programa de Pós-Graduação em Arquitetura e Urbanismo. Universidade Federal de Pelotas, Pelotas.

Este trabalho consiste em estudo teórico na área do urbanismo, com tema dedicado às relações entre os padrões de traçados viários urbanos, a acessibilidade e o sistema de circulação. O assunto é abordado a partir da visão sistêmica da cidade e sob a ótica da morfologia urbana, utilizando instrumentos da análise configuracional e da modelagem urbana em ambiente computacional. Para atingir este fim, o trabalho está estruturado em quatro etapas. A primeira trata da seleção dos padrões de traçados viários a serem estudados (que resultou na classificação xadrez, radial, cluster e semi-retículo) e da construção dos elementos estruturantes do trabalho: os traçados viários analíticos (elaborados a partir de traçados viários de cidades teóricas e reais), o conceito e medida de acessibilidade e os parâmetros representantes do efeito do sistema de circulação. A segunda etapa apresenta o ambiente computacional para realização dos experimentos, os quais são desenvolvidos na terceira etapa, através da medição da acessibilidade dos traçados analíticos para os diferentes padrões de traçados viários, inicialmente sem influência do sistema de circulação e posteriormente considerando esta influência de dois modos: priorizando as áreas centrais e priorizando as áreas periféricas. A quarta etapa, por sua vez, apresenta a sistematização e análise dos resultados. Por fim, as conclusões destacam as semelhanças e diferenças entre os padrões de traçados viários, principalmente quanto à média de acessibilidade dos sistemas e quanto à dispersão da acessibilidade entre seus elementos: em relação à acessibilidade média dos sistemas, os padrões de traçados viários apresentam posições ordinais constantes para as simulações, sendo o cluster o menor valor, o xadrez e o radial com valores intermediários e o semi-retículo como o maior valor; em relação à dispersão dos índices de acessibilidade dos segmentos de vias, os padrões apresentam distinções entre a alternativa de circulação que prioriza a área e a alternativa que prioriza a periferia, destacando-se que a alternativa de circulação que prioriza a área central tende agregar maior valor às médias dos sistemas do que alternativa que prioriza a periferia, porém com maior diferenciação de acessibilidade entre a periferia e a área central.

Palavras-chave: morfologia urbana; traçados viários; sistema de circulação; acessibilidade urbana.

Abstract

KRÜGER, Evaldo Tavares Krüger. **Patterns of urban Road layout and accessibility**: An approach on the relationships with the circulation system. 2012. 160f. Dissertação (Mestrado) - Programa de Pós-Graduação em Arquitetura e Urbanismo. Universidade Federal de Pelotas, Pelotas.

This is a theoretical study in the urbanism area, referred to the relationships among patterns of urban road layouts, accessibility and circulation system. This issue is approached from the systemic perspective and under the morphology viewpoint of the city, using tools of configuration analysis and urban modeling in computational environment. To do so, this study is structured in four steps. The first one deals with the selection of road layout patterns to be studied (which resulted in the following classification: cluster, grid, radial and semilattice) and the construction of this study structuring elements: the analytical road layouts (elaborated from road layouts of theoretical and real cities) the concept and measurement of accessibility and the representative parameters of the circulation system effect. The second step presents the computational environment for the development of experiments which are developed in the third step through the accessibility measurement of analytical layouts for different patterns of road layouts, initially without the influence of circulation system and afterwards considering this influence in two ways: prioritizing central and peripheral areas. The fourth step, on one hand, presents the systematization and the analysis of the results. Finally, the conclusions highlight the similarities and the differences among the road layout patterns, specially concerning to systems average accessibility and accessibility dispersion between its elements: in relation to the systems average accessibility, the patterns of road layouts present constant ordinal positions for the simulations in which the cluster has the lowest value, the grid and the radial with intermediate values and the semilattice with the highest value; regarding to the dispersion of accessibility indexes of the road segments, the patterns present distinctions between the circulation alternative which makes the central area a priority and the alternative which makes the peripheral area a priority highlighting that the circulation alternative which favors the central area tends to add more value to the systems average than to the alternative which focuses on the peripheral area although with bigger accessibility differentiation between the peripheral and the central areas.

Key words: urban morphology; road layouts; circulation system; urban accessibility.

Lista de Figuras

Figura 3.1 - Diagrama do método.	33
Figura 3.2 – Avaliação referente ao grão do padrão	38
Figura 3.3 - Avaliação referente ao tamanho da rede do traçado viário	39
Figura 3.4 – Desenho ilustrativo da representação gráfica por classes	44
Figura 3.5– Representação da rede de grafos	48
Figura 4.1 – Representações lineares das famílias de cidades teóricas	56
Figura 4.2 – Representações lineares das famílias de cidades reais	57
Figura 4.3 - Representação gráfica dos padrões de traçados analíticos	60
Figura 4.4 – Gráfico com parâmetros de circulação	66
Figura 5.1 – XA1 – Simulação A1 para o traçado xadrez	74
Figura 5.2 – XA2 – Simulação A2 para o traçado xadrez	75
Figura 5.3 - XA3 - Simulação A3 para o traçado xadrez	76
Figura 5.4 - RA1 - Simulação A1 para o traçado radial	77
Figura 5.5 - RA2. Simulação A2 para o traçado radial	78
Figura 5.6 - RA3 - Simulação A3 para o traçado radial	79
Figura 5.7 - CA1 - Simulação A1 para o traçado cluster	80
Figura 5.8 - CA2 - Simulação A2 para o traçado cluster	81
Figura 5.9 - CA3 - Simulação A3 para o traçado cluster	82
Figura 5.10 - SRA1 – Simulação A1 para o traçado semi-retículo	83
Figura 5.11 - SRA2 – Simulação A2 para o traçado semi-retículo	84
Figura 5.12 – SRA3 - Simulação para o traçado semi-retículo	85
Figura 5.13 - Comparativo dos índices de acessibilidade entre os padrões de traçados	para
simulações A1	87
Figura 5.14 – Gráficos comparativos dos índices de acessibilidade entre os padrões	
traçados para as simulações A1, A2 e A3	88
Figura 5.15 - Distribuição da curva normal por padrão de traçado viário para simulaçõe	es A1,
A2 e A3	89
Figura 5.16 – Distribuição da curva norma para simulação A1, A2 e A3 por padrão	90
Figura 5.17-Intervalos dos índices de acessibilidades - percentual por classe	91
Figura 5.18 - Percentual de segmentos de vias (IDs) por classe	92

Lista de Tabelas

Tabela 4.1 - Dados sobre os representantes de famílias de cidades teóricas	58
Tabela 4.2 – Dados sobre os representantes de famílias de cidades reais	58
Tabela 4.3 - Dados sobre os tipos representantes de família	61
Tabela 4.4 – Parâmetros testados para o sistema de circulação	65
Tabela 4.5– Parâmetros simuladores do efeito do sistema de circulação	67
,	
Tabela 5.1 – Intervalos dos Índices de acessibilidades - percentual por classe	
Tabela 5.2 - Percentual de segmentos de vias (IDs) por classe	92
Lista de Equações	
	4.6
Equação 3.1– Distância topológica máxima	
Equação 3.2– Média aritmética	
	5 0
Equação 3.3– Amplitude	50
Equação 3.3– Amplitude Equação 3.4– Variância	
	50
Equação 3.4– Variância	50 51
Equação 3.4– Variância Equação 3.5- Coeficiente de variação Equação 3.6– Curva normal	50 51
Equação 3.4– Variância Equação 3.5- Coeficiente de variação Equação 3.6– Curva normal Equação 4.1– Medida de acessibilidade entre dois pontos	50 51 51
Equação 3.4– Variância Equação 3.5- Coeficiente de variação Equação 3.6– Curva normal Equação 4.1– Medida de acessibilidade entre dois pontos Equação 4.2– Medida de acessibilidade	50 51 51 62
Equação 3.4– Variância Equação 3.5- Coeficiente de variação Equação 3.6– Curva normal Equação 4.1– Medida de acessibilidade entre dois pontos	50 51 51 62

Sumário

Resu	umo	iv
Abst	ract	v
Lista	de Figuras	vi
Lista	de Tabelas	vii
Lista	a de Equações	vii
1	Introdução	1
1.1	Padrões de traçados viários, sistema de circulação e acessibilidade	1
1.2	Metodologia	3
1.3	Problema de pesquisa	5
1.4	Justificativa	6
1.5	Objeto e objetivos da pesquisa	7
1.6	Hipóteses	8
1.7	Estrutura da dissertação	9
2	Revisão Bibliográfica	11
2.1	Morfologia urbana, modelagem e tipologia	11
2.2	Acessibilidade	19
2.3	Sistema de circulação	26
3	Método e Ferramentas	31
3.1	Descrição do método	32
Etap	pa 1 - Elementos de entrada	34
Etap	pa 2 – Software: identificação e implementação	41
Etap	pa 3 - Desenvolvimento das simulações	41
Etap	pa 4 – Análise dos resultados	44
3.2	Ferramentas	45
4	Elementos de Entradas e Ambiente Computacional	54
4.1	Elementos de entrada	54
4.2	Ambiente computacional	67

5	Simulações	71
5.1	Desenvolvimento das simulações	71
5.2	Análise das simulações	86
6	Conclusões	98
6.1	Verificação da validade das hipóteses	99
6.2	Contribuições, limitações e continuidade	107
Refe	erências Bibliográficas	112
Apê	endice A - Índices de acessibilidade por simulação	115
Apê	ndice B - Normalização dos valores de acessibilidade	132

1 Introdução

Este trabalho situa-se na área de estudo do urbanismo, especificamente no campo da morfologia urbana, e tem como tema a abordagem as relações entre os padrões de traçados viários urbanos e a circulação das cidades a partir da análise da acessibilidade. Este capítulo apresenta o tema, o problema de pesquisa, a justificativa, a metodologia, os objetivos e hipóteses e a estrutura do trabalho.

As cidades, da sua origem à atualidade, têm gerado configurações, padrões de urbanizações diferentes, diferenças essas que se expressam também quanto aos traçados viários. No entanto, observa-se a repetição de alguns padrões em diferentes períodos históricos e posições geográficas, em culturas com estruturas sociais e economias diversas (Benevolo, 1982; Munford, 1998; Andros et al, 2009).

O organismo urbano, como qualquer outro, do átomo ao universo, é composto por elementos e conexões. A conexões entre as partes de um sistema são a garantia de sua estabilidade e existência (Batty, 2008; Capra, 1996). O foco deste trabalho está exatamente no estudo dos padrões de traçados viários e nas conexões entre as partes destes sistemas urbanos.

1.1 Padrões de traçados viários, sistema de circulação e acessibilidade

A constante expansão das cidades pode ser caracterizada por uma ordenação territorial que vem gerando espaços urbanos de grande estratificação social, econômica e ambiental. As dificuldades na gestão do crescimento urbano e a falta de instrumentos eficazes de planejamento, associados à crescente oferta e demanda de bens e serviços, têm colocado como ponto central, entre os problemas urbanos, as questões de circulação (<u>Vasconcelos, 2001</u>).

A necessidade de acesso das pessoas a atividades como lazer, trabalho, bens e serviços (transporte de pessoas) e o de abastecimento das atividades, como comércio e indústria (transporte de cargas), têm gerado aumento da demanda por viagens inter e intraurbanas. A conjunção de fatores como crescimento urbano e a dificuldade de gestão da circulação, quando confrontados com a crescente necessidade por deslocamentos, fazem da acessibilidade um componente fundamental para o equacionamento dos problemas urbanos.

Acessibilidade urbana tem sido foco, nas últimas décadas, em vários campos de estudos, e a sua compreensão é um importante avanço da pesquisa para o planejamento territorial (Batty, 2009, p. 191), embora ainda não exista uma delimitação única de seu conceito. Há muitas variantes sobre os fatores que condicionam ou determinam o conceito de acessibilidade, mas pode ser observada uma concordância entre os conceitos desenvolvidos por vários pesquisadores: a acessibilidade é uma combinação do sistema de circulação e dos padrões de uso do solo (Bhatet al, 2000; Geurs e Van Eck, 2001).

O conceito de acessibilidade é conhecido há bastante tempo, como é o caso do modelo proposto por Von Thunen (1826) para relacionar as áreas de produção agrícola com o comércio nas áreas urbanas, conhecida como a Teoria dos anéis concêntricos, mais tarde adotada por Burgess (1925) para modelo de evolução urbana (Torrens, 2000; Busai, 2003). A acessibilidade urbana tem sido estudada principalmente pelas áreas do transporte, da geografia e do urbanismo.

A acessibilidade em estudo neste trabalho trata das coisas materiais, especificamente das cargas e das pessoas, que exigem uma conexão material e meios de transportes para se deslocar, no caso o sistema viário e as modalidades de transportes. Assim, considera a separação espacial entre locais da cidade de forma métrica e delimita e atribuí a circulação urbana, entendida como o conjunto de infraestrutura viária e modalidades de transportes, a função de conexão entre as partes do sistema urbano.

1.2 Metodologia

Este trabalho trata de um estudo teórico e se propõe a investigar, do ponto de vista da acessibilidade, os diferentes traçados viários oriundos dos diversos padrões de urbanização. Para tanto, com o fim de obter resultados genéricos sobre o universo estudado, seu foco está direcionado para as informações que conferem caracteres comuns aos traçados (genotípicas), e minimizou as informações que conferem caracteres advindos do ambiente local (fenotípicas) (Hiller, 1984, pp. 42-45). Para Medeiros (2006, p. 501), Fenótipo e Genótipo, são termos emprestados das Ciências Biológicas e adotados pela sintaxe do espaço. Características genotípicas se referem àquelas intrínsecas a uma família de cidades, comuns a vários assentamentos; as fenotípicas, por sua vez, são as feições particulares, que distinguem um núcleo urbano de outro. Para atingir este fim, estão utilizados nos experimentos traçados viários construídos pelo autor, identificados no decorrer do trabalho como traçados viários analíticos e não traçados reais de cidades.

Neste trabalho, metodologia é entendida como a forma de abordagem científica com que está se propondo resolver o problema de pesquisa, diferentemente do método, que se propõe a descrever ordenadamente os procedimentos. Assim, como metodologia, o trabalho apresenta uma abordagem sistêmica do fenômeno urbano, sob a ótica da morfologia e utiliza de instrumentos da análise configuracional e modelagem urbana em ambiente computacional. Para tanto, considera-se que modelo deva ser entendido como em Echenique (1975, p. 13), ou seja, "não basta só conceber a cidade como sistema; é necessário, porém representá-la. Toda representação é um modelo e o objetivo deste é promover um quadro simplificado e inteligível da realidade, com o fim de compreendê-la melhor". Já sistema, como expresso em Bertalanffy (1968, p. 62), é "um conjunto de elementos ou partes interconectadas".

As ideias enunciadas pelos biólogos, durante a primeira metade do século XX, ajudaram a conceber um novo modo de pensar em termos de conexidade, de relações e de contexto - o pensamento sistêmico. De acordo com a visão sistêmica, as propriedades essenciais de um organismo são propriedades do todo, que nenhuma das partes possui. Elas surgem das interações e das relações entre as partes. Essas propriedades são destruídas quando o sistema é dissecado, física ou teoricamente, em elementos isolados. Embora possamos discernir e estudar partes individuais em qualquer sistema, elas não são isoladas e a natureza do todo é sempre diferente da mera soma de suas partes (Capra, 1996, pp. 47-48).

Na ciência do século XX, a perspectiva holística tornou-se conhecida como sistêmica e a maneira de pensar que ela implica passou a ser conhecida como pensamento sistêmico. Essa abordagem da ciência levanta uma importante questão: se tudo está conectado com tudo, como podemos esperar entender alguma coisa de tal complexidade? Uma vez que todos os fenômenos da natureza estão, em última análise, interconectados, para explicar qualquer um deles, precisamos entender todos os outros, o que é obviamente impossível. Capra (1996, p. 49) entende que a possibilidade de converter a abordagem sistêmica numa ciência vem da descoberta de que há conhecimento aproximado. Essa visão é de importância decisiva para toda a ciência moderna. O velho paradigma científico baseia-se na crença cartesiana da certeza do conhecimento; já no novo, é reconhecido que todas as concepções e todas as teorias científicas são limitadas e aproximadas. A ciência nunca pode fornecer uma compreensão completa e definitiva.

A abordagem proposta para o trabalho é o da apreciação da interação entre as partes. Objetivamente, consiste em investigar a cidade não como uma soma de objetos e formas, mas como um conjunto de elementos que se articulam e desta forma de articulação é possível extrair uma série de ponderações. Assim, mesmo quando o foco do estudo está sobre determinado elemento, também está sobre suas inter-relações com os demais elementos.

Dentro deste contexto é que se insere este trabalho, cujo objetivo é associar formas (padrões) de traçados viários urbanos e sistema de circulação a partir da análise da acessibilidade, buscando distinguir semelhanças e diferenças. Para isso, está proposto: a) identificar os principais padrões de traçados viários, desenvolver método para construção e efetuar a construção dos traçados viários analíticos para ambiente computacional; b) elaborar conceito e medida adequada ao seu objetivo, ou seja, capaz de avaliar os efeitos da interação entre acessibilidade, sistema de circulação e os padrões dos traçados viários; c) construir parâmetros para simular o efeito do sistema de circulação; d) desenvolver ambiente computacional para efetuar os experimentos; e) realizar simulações em ambiente computacional, que consistem na verificação da acessibilidade para os padrões de traçados viários selecionados; f) analisar comparativamente a acessibilidade entre os padrões de traçados viários. Estes itens estão desenvolvidos no Capítulo 3, que trata do método de pesquisa.

1.3 Problema de pesquisa

Como já destacado, as sociedades produzem cidades com diferentes padrões de urbanização, o que se expressa também quanto aos padrões de traçados viários, condicionadas por questões culturais, econômicas, sociais e ambientais. Entretanto, pode ser observado a repetição da utilização de padrões com grandes diferenças de localização geográficas e de tempo. Por exemplo, o padrão de traçado irregular, semi-retículo ou orgânico, das primeiras cidades produzidas há cinco, seis mil anos, foram repetidos em todos os períodos históricos, tanto no oriente como no ocidente, e ainda hoje são largamente utilizados, como nas favelas sul-americanas. O mesmo pode ser observado em relação ao padrão regular reticulado, em quadrículas, que tem sido utilizado continuamente desde sua origem há 4000 anos, na Grécia e na China, com variações, até a produção das cidades contemporâneas ou na expansão dessas em todos os continentes. Padrões de urbanização descritos como racionais, produzidos na era moderna, pós-revolução industrial, pós-motorização, repetem-se, por exemplo, das cidades jardins europeias a cidades como Brasília, ou na expansão urbana das cidades como Dubai.

No período histórico correspondente à urbanização, verifica-se uma grande evolução do sistema de circulação, tanto da infraestrutura viária como das modalidades de transportes. Da viela pré-histórica sem pavimento e de uso exclusivo do pedestre, das primeiras pavimentações das cidades gregas ou do uso de veículos de tração animal para as vias atuais, marcadas por modalidades e infraestrutura com desenvolvidas, como automotores, modalidades tecnologias sobre trilhos. pavimentos asfálticos e em concretos, constata-se grande diferenciação. Evolução que se expressa principalmente após a Revolução Industrial, com o advento da máquina.

Da abordagem nos parágrafos anteriores, surgem algumas questões relacionadas à acessibilidade urbana, tais como: os diferentes padrões de traçados viários têm comportamento semelhante ou distinto quanto à acessibilidade? A diferenciação da acessibilidade entre centro e periferia urbana é igual para padrões diferentes? Existe associação entre padrão de traçado e sua utilização? Determinado traçado viário é mais adequado a um ou alguns tipos de modalidades de transporte? De que forma sistemas de circulações são capazes de modificar a acessibilidade urbana? Diferenças no grão do padrão de desenho viário fazem variar a acessibilidade (exemplo: quadras grandes ou pequenas). Isto modifica a acessibilidade? São das diferenciações das formas dos traçados viários e das variações da qualificação do sistema de circulação, sob o foco da análise da acessibilidade, que emergem as perguntas de pesquisa do trabalho, subdivididas em duas e objetivamente descritas a seguir:

a. Como diferentes padrões de traçados viários urbanos modificam a acessibilidade?

Esta primeira questão visa equacionar se os diferentes padrões de traçados viários urbanos apresentam diferenciações quanto à acessibilidade, oriundas exclusivamente da forma do traçado viário.

b. Como alterações no sistema de circulação modificam a acessibilidade, em diferentes padrões de traçados viários urbanos?

A segunda questão visa equacionar se os diferentes padrões de traçados viários apresentam diferenciações quanto à acessibilidade quando submetidos aos efeitos do sistema de circulação.

1.4 Justificativa

Este trabalho se justifica por duas razões principais, sendo a primeira de interesse mais acadêmico e a segunda de ordem mais prática: a) produzir conhecimentos sobre relações entre diferentes traçados viários e acessibilidade; b) apoiar decisões em processos de planejamento urbano ou projetos de desenho urbano.

No caso das relações entre diferentes traçados viários e acessibilidade pretende contribuir para o entendimento sobre as diferenciações entre os padrões de traçados viários quanto à acessibilidade, buscando identificar e descrever a influência da forma sobre a acessibilidade.

No que concerne ao apoio às decisões o conhecimento sobre características dos traçados viários urbanos quanto à acessibilidade pode ser um instrumento auxiliar na decisão da utilização ou reutilização de determinada malha viária a partir do conhecimento da vocação de cada padrão, além de ser um elemento de apoio às decisões em novas urbanizações, em parcelamentos de solo, em planos de revitalização urbana, em planos de transporte, na definição de sistemas de trânsito, tanto pela iniciativa privada como pelos órgãos públicos.

1.5 Objeto e objetivos da pesquisa

Em função das características do trabalho e dos meios utilizados, o objeto de pesquisa está dividido em objeto-concreto e objeto-modelo. Os objetos-concretos são exemplares ou eventos reais, que podem ser observados, medidos e/ou documentados. Objeto-modelo é a representação do objeto-concreto. Para Bunge (1973), a base empírica de toda pesquisa é constituída por objetos ou eventos que estão no mundo e são distintos da sua representação sobre a mesa de trabalho do pesquisador. Assim, para este trabalho, são objetos-concretos: a) as formas de traçado viário urbano ou os padrões de traçados viários apresentados pelas cidades; e b) o sistema de circulação constituído de modalidades de transporte e da infraestrutura viária. Além disso, são objetos-modelos as representações, que são: a) os traçados viários analíticos; b) o conceito e medida de acessibilidade desenvolvido; e c) os parâmetros simuladores do efeito do sistema de circulação, simulados em ambiente computacional.

Assim, a seguir, estão descritos os **objetivos gerais** do trabalho:

- a. associar diferentes padrões de traçados viários urbanos à acessibilidade, buscando estabelecer semelhanças e diferenciações;
- b. verificar os efeitos do sistema de circulação na acessibilidade, para diferentes padrões de traçado viário urbano.

Os objetivos estabelecidos para o trabalho consistem em relacionar diferentes padrões de traçados viários a partir da analise da acessibilidade, com o fim de identificar diferenciações referentes à forma dos traçados. O primeiro objetivo visa estabelecer diferenciações considerando exclusivamente as características da forma dos traçados. O segundo busca estabelecer associações, considerando que o sistema de circulação modifica as relações espaciais dos traçados viários.

Ainda, são objetivos específicos do trabalho:

- a. Identificar as principais famílias de traçados viários- Como exposto na introdução, observa-se a repetição de determinados padrões, formas de traçados viários, em diferentes urbanizações. Diversos autores, como será visto na revisão bibliográfica, elaboraram classificações referentes à forma de cidade, nenhuma específica quanto ao padrão dos traçados. Este objetivo visa elaborar classificação para atender às necessidades do estudo.
- b. Implementar em software computacional a capacidade de simulação do efeito do sistema de circulação sobre a medida de acessibilidade- Este objetivo trata da construção de uma ferramenta que possibilitará o desenvolvimento do estudo, uma vez que, como já destacado, os experimentos ocorrem em meio digital. Tem este objetivo, além da finalidade descrita, o papel de contribuir com a tecnologia institucional local na produção de softwares.

1.6 Hipóteses

Para o desenvolvimento do trabalho, estão consideradas duas hipóteses, vinculadas às perguntas e aos objetivos da pesquisa:

Hipótese 1 -Diferentes padrões de traçado viário urbano implicam em acessibilidade também diferentes. Sendo assim essa hipótese sugere que a forma da cidade é fator decisivo na determinação da acessibilidade do conjunto e de cada trecho urbano, implicando em medir essa grandeza em diferentes alternativas de traçado e verificar as diferenças.

Hipótese 2 - Padrões de traçados viários urbanos apresentam diferenciações, quanto à acessibilidade, quando submetidos a sistemas de circulação semelhantes. A hipótese 2 considera que a utilização de um padrão de traçado viário está associada ao sistema de circulação quanto à disponibilidade das modalidades transportes e infraestrutura viária. Assim, esta hipótese possui uma postura afirmativa para a existência de diferenciações entre padrões de traçados viários quanto à acessibilidade, se estes possuírem sistemas de circulação semelhante.

1.7 Estrutura da dissertação

Com o fim de abordar o tema proposto e atingir os objetivos traçados, este trabalho está estruturado em seis capítulos:

Capítulo 1 - Introdução. Apresenta o tema, o problema de pesquisa, a justificativa, a metodologia da dissertação, os objetivos gerais e específicos, as hipóteses, além da presente estrutura do trabalho.

Capítulo 2 - Revisão Bibliográfica. É composta pela revisão sobre os elementos fundamentais e estruturantes do trabalho e está organizada em três partes: a primeira trata sobre morfologia dos traçados viários urbanos; a segunda revisa e classifica conceitos e medidas de acessibilidade urbana e por fim a terceira delimita e conceitua sistema de circulação para o trabalho.

Capítulo 3 - Método e Ferramentas. No método, estão descritos a lógica e os procedimentos para construção, desenvolvimento e análise dos experimentos, neste trabalho identificado como simulações e se constitui fundamentalmente de quatro etapas: a) da construção dos traçados analíticos representantes dos padrões de traçados estudados, da elaboração do conceito e medida de acessibilidade e da construção dos parâmetros simuladores do efeito do sistema de circulação; b) do desenvolvimento do ambiente computacional para realizar as simulações; c) do desenvolvimento dos experimentos e d) análise dos resultados. Nas ferramentas, estão descritos os elementos de apoio utilizados, que são: conhecimentos da matemática, como Teoria de grafos e análise estatística, definições de representações gráficas e a identificação infraestrutura computacional (softwares).

Capítulo 4 - Elementos de Entrada e Ambiente Computacional. Neste capítulo, estão construídos os elementos de suporte às simulações, que são os traçados viários analíticos, o conceito e medida de acessibilidade, os parâmetros simuladores do efeito do sistema de circulação e o ambiente computacional para a realização das simulações.

Capítulo 5 - Simulações. As simulações consistem no desenvolvimento dos experimentos, que se constituem da verificação da acessibilidade com e sem o efeito do sistema de circulação, em meio computacional, sobre os padrões de traçados viários estudados. E por fim, a sistematização e análise dos resultados.

Capítulo 6 - Conclusões - Na parte final do trabalho, estão apresentadas as conclusões e observações sobre os resultados alcançados, organizadas em dois grupos: a) verificação da validade das hipóteses; c) contribuição, limitações e continuidade.

2 Revisão Bibliográfica

Esta revisão pretende abordar as principais áreas de interesse do trabalho, a saber: a) morfologia urbana, modelagem e tipologia; b) acessibilidade- conceitos e classificação das medidas; c) sistema de circulação.

2.1 Morfologia urbana, modelagem e tipologia

Nesta seção, está apresentada a revisão bibliográfica sobre: a) conceito de morfologia urbana; b) conceito de tipo e tipologia; c) método de análise tipológica; d) conceito de modelagem e classificação de modelo; e) famílias de redes viárias; g) sucinta análise histórica da origem e evolução dos traçados viários urbanos.

A revisão sobre morfologia pretende situar conceitualmente a área científica à qual está vinculado o trabalho. Quanto aos conceitos de tipo, tipologia e o método de análise tipológica, têm como objetivo instrumentar a seleção e classificação dos traçados viários. Modelagem e classificação de modelo descrevem o principal instrumento de análise do trabalho e por fim a revisão histórica – que visa auxiliar na identificação das famílias de traçados viários urbanos.

2.1.1 Morfologia Urbana

O termo "morfologia" é utilizado para designar o estudo da configuração e da estrutura de um objeto. É a ciência que estuda as formas, interligando-as com os fenômenos que lhe deram origem (Lamas, 1993, p. 36). A morfologia urbana estuda essencialmente os aspectos exteriores do meio urbano e a suas relações recíprocas, definindo e explicando a paisagem urbana e a sua estrutura. Morfologia é a disciplina que estuda o objeto (a forma urbana) nas suas características exteriores, físicas e na sua evolução no tempo.

2.1.2 Tipo e tipologia

As noções de tipo e de tipologia formam uma importante ferramenta da análise urbana, bem como para diversas outras áreas de estudo. A seguir estão apresentadas definições que expressam o sentido utilizado neste trabalho.

O tipo está antes de tudo ligado à ideia de classificação. É um objeto exemplar que permite representar com economia uma vasta população. É um objeto abstrato, construído pela análise, que reúne as propriedades essenciais de uma categoria de objetos reais e permite explicá-las com economia (Panerai, 2006, p.110 e 127). O tipo é o conjunto de caracteres organizados em um todo, constituindo um instrumento de conhecimento por meio da "abstração racional" e permitindo distinguir categorias de objetos ou fatos (Robert, Dictionnaire de La langue française). Para Arís (1993) o termo tipo possui, numa linguagem não especializada, o significado que equivale, de forma geral, ao conjunto de propriedades que são comuns a certo número de indivíduos ou objetos. Neste sentido, tipo é sinônimo de classe, família, gênero.

A tipologia é uma operação abstrata, em que se apagam os caracteres particulares dos objetos para deles reterem-se apenas os traços genéricos nos quais se fundamenta uma taxonomia. Ela ultrapassa a simples classificação para propor, em uma visão universalista, uma articulação completa de um domínio do conhecimento (Panerai, 2006, p. 110).

É importante ressaltar que o conceito de tipologia que está utilizado no trabalho não é o conceito genérico, abrangente, normalmente abordado sobre tipologia urbana, em que é procurado incluir o maior número de elementos de composição da cidade possível, mas sim um conceito que se restringe a analisar as interações entre as partes da cidade, especificamente quanto à acessibilidade urbana. Assim, é uma tipologia das redes viárias, ou seja, é o estudo dos tipos de redes viárias urbanas.

2.1.3 Método de análise tipológica

Esta revisão tem como objetivo auxiliar na estruturação da criação de um método para classificar as redes viárias. Panerai (2006, pp. 127-135), com relação ao método da análise tipológica, distingue quatro fases: a definição da abrangência, a classificação prévia, a elaboração dos tipos e a tipologia.

- a. A abrangência define claramente, de antemão, o que será estudado. A definição da abrangência está vinculada às questões que se pretende responder.
- b. A classificação prévia consiste de Inventário, fase de observação dos objetos, em que procuramos descrevê-los para deixar claras as propriedades que os distinguem e estabelece critérios. A partir destes critérios, podemos fazer uma primeira classificação, isto é, agrupar em uma mesma família os objetos que ofereçam a mesma resposta a uma série de critérios. As famílias ainda não são tipos, essa classificação irá permitir a elaboração dos mesmos.

Definição de família- Família é uma unidade de taxonomia (um táxon) utilizada na classificação científica. Na biologia, o termo é utilizado para agrupar um conjunto de espécies que partilham um conjunto muito alargado de características morfológicas funcionais de mesma raiz (Disponível < http://www.vodooem beninbrazil.org/br/botanic/botanica.html>acesso em 23 dez 2011). O termo família tem sido utilizado por diversas áreas da ciência (ex. sociologia, matemática, gramática etc.) para classificar um conjunto de elementos que tenham caracteres em comum, que tenham a mesma descendência, linhagem, a mesma raiz. Neste trabalho, o termo está utilizado nesse sentido, para classificar os padrões de traçados viários urbanos. Assim, traçados viários de uma mesma família são aqueles que possuem um conjunto de caracteres morfológicos comuns e que possuem como origem uma mesma raiz.

- c. Elaboração dos tipos. O tipo constrói-se. Essa construção por abstração racional pode ser feita em duas etapas. Primeiramente, para cada família estudada, explicitando as propriedades dos objetos que a compõem. Em seguida, reunindo-se as propriedades em comum dos objetos de uma família para definir o tipo. Pode ser que um objeto real reúna as propriedades do tipo, neste caso, um exemplo-tipo.
- d. **Tipologia**. Os tipos isolados não são de grande interesse e só adquirem sentido quando inseridos em um sistema global. A tal sistema, o conjunto dos tipos e suas relações, denomina-se tipologia.

2.1.4 Modelagem e modelos

Modelos têm sido utilizados ao longo da história para representar fenômenos ambientais, por exemplo, os Sumérios – civilização mesopotâmica entre 5000 e 2000 a.C.- construíram um calendário, que é a base dos calendários atuais, a partir da observação da movimentação aparente dos astros, o que os permitia fazer previsões quanto ao tempo. Modelos são simplificações da realidade, abstrações teóricas querepresentam sistemasde tal forma que as características essenciais são identificadas e destacadas (Batty, 1976). Para Batty (2007), modelos em ciência são ponte entre a teoria e a realidade. Desta forma, eles permitem que conceitos e hipóteses sejam relacionados a fatos ou normas sobre o mundo real. Novaes (1981) define modelo como a representação de um sistema, a qual pode se dar através de várias linguagens: matemática, lógica, física, analógica, icônica, gráfica etc., segundo uma ou mais teorias. Um sistema, como já definido anteriormente, é um conjunto de partes ou subsistemas interconectados, apresentando interdependência entre os componentes e seus atributos (Bertalanffy, 1973; Chadwick, 1973). Por sua vez, a teoria pode ser definida como sendo um conjunto de ideias, postulados, relações causais etc., que formam um todo coerente, desenvolvido com o intuito de explicar um grupo de fatos ou fenômenos, estabelecendo leis fundamentais, relações sistemáticas e princípios gerais (Novaes, 1981).

Para Batty (1976), Modelagem Urbana é a atividade de definição, construção e aplicação de modelos para fins específicos, assim tem sido tradicionalmente no planejamento físico. Neste papel, os modelos atuam como um veículo para permitir a experimentação de uma teoria no sentido de predição, para melhorar a compreensão de situações no futuro ou no passado. Este papel da experimentação, geralmente, é feito através de um ambiente diferente das ciências de laboratório, onde a manipulação dos fenômenos é direta, neste contexto os modelos são invariavelmente implementados em ambientes computacionais que atuam como um substituto para o laboratório. Modelagens urbanas são, neste caso, simulações computacionais.

Os primeiros estudos com modelagem urbana aparecem nos Estados Unidos no final dos anos 1950, sob a forma de modelos de planejamento de transportes, devido ao grande crescimento de veículos automotores nas décadas de 1940 e 1950, o aparecimento de computadores e o surgimento do que se convencionou denominar "Revolução Quantitativa" nas Ciências Sociais (Sociologia, Geografia, Economia, Ciências Políticas, Planejamento Urbano) haviam reunido as premissas necessárias para experimentações nesse âmbito de pesquisa (Batty, 1976).

Assim, Modelagem Urbana é entendida como um processo, no qual uma teoria é transformada em um modelo matemático ou formal, a partir do qual é desenvolvido um software computacional capaz de reproduzi-la e, em seguida, o modelo é submetido com dados, de maneira que possa ser calibrado, os dados validados e verificados antes da sua utilizaçãona previsão (Batty, 2007).

Echenique (1974, p.20) classifica os modelos em três categorias, de acordo com os fatores: para que está sendo feito o modelo? De que é feito? E como é tratado o fator tempo?

Dentro da primeira categoria "Qual a finalidade do modelo?" distingue quatro tipos principais de modelos: o descritivo – em que a intenção principal é a compreensão da realidade, normalmente com a finalidade de estabelecer como acontece um fenômeno e a descrição das relações entre fatores relevantes; o preditivo - no qual a intenção principal é promover uma imagem futura do sistema; o exploratório – em que a intenção principal é descobrir por especulação, variando sistematicamente os parâmetros básicos usados no modelo descritivo, outras realidades que são logicamente possíveis; e o operacional ou de planejamento, que visa aperfeiçoar determinadas variáveis do sistema.

A segunda categoria "De que é feito o modelo?" relaciona-se com os meios eleitos para representar a realidade e pode ser classificado em físico e conceitual. No modelo físico, as características físicas da realidade são representadas por meio das mesmas ou similares características. No modelo conceitual, as características relevantes estão representadas por conceitos na forma de linguagem ou símbolos.

Como é tratado o fator tempo? A terceira categoria permite a distinção entre modelos estáticos e dinâmicos. Os estáticos são concebidos para representar determinado estado de um sistema em determinado tempo, seja no passado, presente ou futuro. Os dinâmicos são concebidos para representar o desenvolvimento ou a evolução de um sistema no tempo.

O modelo utilizado neste trabalho está classificado como descritivo e preditivo, uma vez que pretende conhecer a realidade ou estados futuros e passados de um sistema. Também se caracteriza como exploratório, por permitir estudos através da variação sistematicamente parâmetros, como conceitual, por utilizar-se de meio computacional para modelagem e como estático, por representar o estado de um sistema em determinado tempo.

2.1.5 Famílias de redes viárias

As cidades têm sido classificadas tipologicamente conforme a necessidade de análise, dando origem assim a diversas formas de classificação. Lamas (1993, p.134), referindo-se aos modos de crescimento urbano, afirma que, genericamente, observam-se dois processos fundamentais. O primeiro, segundo regras de espontaneidade, que se convencionou designar por "orgânico"; outro, segundo plano ou ideia previamente traçada, designado por "racional". Para Sola-Morales i Rubió (1997, p. 77), as tipologias urbanas históricas, conforme o enfoque, podem ser: funcionalistas- em que a classificação é feita pelos usos ou atividades dominantes (comerciais, administrativas, militares, universitárias, turísticas etc.); morfologistas - na qual a classificação pode ser feita por determinismo topográfico (cidades de montanha, litorâneas, portuárias, passagem e etc.); morfologia do plano - descrita através de suas características geométricas (cidades quadriculadas, radiais, lineares, concêntricas, policentricas e etc.); análise de redes - descrita através dos elementos morfológicos, malhas, nós, hierarquias, superfícies etc.; historicistas em que a classificação é feita a partir dos períodos da cultura clássica da história urbana (por exemplo, cidade antiga, romana, medieval, renascentista, industrial) ou da história das tipologias das edificações (por exemplo, casa gótica, casa capitalista, casa socialista), como o grupo de Veneza (Aymonino, Rossi e outros) classifica.

As redes viárias urbanas estão diretamente vinculadas à origem e ao desenvolvimento das cidades. Desta forma, a adoção de classificação similar à utilizada para as tipologias urbanas está adotada inicialmente para identificação das famílias de traçados viários neste trabalho.

2.1.6 Traçados viários: análise histórica

O objetivo desta análise é auxiliar na identificação das principais famílias de traçados viários e foi realizada de forma sucinta, por períodos históricos, da origem ou evolução das cidades, procurando identificar e agrupar por similaridade os diversos padrões de traçados, naquilo que possuem em comum. A revisão está desenvolvida utilizando-se como princípio a classificação previamente definida para os traçados viários na seção anterior (espontâneo e regular) e como subdivisão, a classificação baseada na morfologia de plano e análise de redes (Sola-Morales i Rubió, 1997), adequadas inicialmente aos objetivos do trabalho.

O desenvolvimento das primeiras civilizações urbanas, localizadas entre a Região Mediterrânea e o Golfo Pérsico entre os anos de 3500 a 1500 a.C. (Mesopotâmia, Egito, Grécia, Síria), apresentavam um padrão de traçado viário urbano irregular, livre, semi-retículo, servindo como exemplo as cidades de Arbela (Arbil), no Iraque, e Cádiz, na Espanha ou Istambul, Jerusalém, Jericó, embora estas não tenham preservado as características urbanas da época.

No primeiro milênio a.C., aparecem regras urbanísticas para a construção de cidades e o surgimento de novas cidades com padrões urbanos regulares, tanto no oriente (China, Índia, Indochina), como por exemplo, a cidade de Pequim ou cidades como Kyoto e Nara, fundadas no primeiro milênio d.C. (Benevolo, 1983, pp. 55-58), como no ocidente. Neste período, cidades Gregas e Romanas são fundadas, como as cidades de Mileto, Rhodes, Nápoles, Pompéia e Timgad (Benevolo, 1983, p. 113). Tanto as cidades orientais como as ocidentais são construídas a partir de regras urbanísticas próprias e reproduzem como base o padrão urbano regular em quadrícula.

A partir do século VII, com o declínio do império romano e a ascensão da civilização islâmica, várias cidades são fundadas ou adaptadas na região entre o Atlântico e a Índia com padrões das cidades muçulmanas, dentro de um padrão irregular, com ruas estreitas e labirínticas. No entanto, a construção de Bagdá, 762 d.C., apresenta uma forma circular, regular. Do século VIII ao XII, o Oriente Médio e a região do Mediterrâneo tornam-se o centro do comércio entre Europa, Ásia e África. Neste período, desenvolvem-se grandes cidades muçulmanas na região e assim são fundadas cidades na Europa, como Toledo, Granada, Córdoba, entre outras.

No período medieval, depois do ano 1000, com o desenvolvimento econômico da Europa e grande aumento da população, a cultura medieval tende a não estabelecer padrões formais e as cidades adaptam-se livremente (Lamas, 1993, p. 151). A formação da cidade medieval vai processar-se organicamente por desenvolvimento sobre as antigas estruturas romanas ou pela fundação de cidades novas, organizadas segundo um plano regulador. Neste período, também se produzem cidades francesas e inglesas com geometria regular, dentro do padrão xadrez.

No renascimento, tem início a expansão mundial da civilização europeia. As construções de cidades em colônias na América e Ásia são mais representativas do que no continente europeu. No século XVI, as cidades implantadas na América Central e Meridional utilizam o padrão tabuleiro, xadrez. As cidades coloniais americanas são as realizações urbanísticas mais importantes do século. O padrão em tabuleiro para traçar as cidades é aplicado pelos franceses e ingleses no século XVII e XVIII, na América Setentrional e Norte, como por exemplo, nas cidades de Filadélfia e Nova York (Benevolo, 1983; Mumford, 1998; Lamas, 1993).

Depois da metade do século XVIII, a Revolução Industrial na Inglaterra traz grande desenvolvimento à Europa e em todo mundo, com grande aumento da população urbana e geração de espaços urbanos caóticos. Na busca de soluções para o problema, geram-se uma série de propostas e alternativas teóricas e práticas. Entre elas, surgem propostas como a de Haussmann, para Paris, com grandes avenidas radiais sobre a cidade medieval. O padrão radial é utilizado em outras cidades no mesmo período, tanto para novas como na reestruturação de cidades existentes (Benevolo, 1983; Mumford, 1998; Lamas, 1993).

No Século XX, o movimento moderno traz a busca de um novo modelo de cidade, alternativo à cidade tradicional: a cidade racional, eficiente, lógica. Surge alternativa como a cidade jardim, de Howard, no início do século, com padrão radial e a partir da segunda década surgem princípios como propostos por Corbusier, grupo MARS, que resultam em padrões urbanos lineares/raiz, padrão bastante utilizado na expansão ou na produção de novas cidades como, por exemplo, Brasília e Chandigard. A cidade contemporânea não possui um padrão de traçado urbano novo, caracterizando-se pelo uso misto de padrões, normalmente acumulados em diferentes momentos históricos por interesse políticos, econômicos ou culturais (Benevolo, 1983; Mumford, 1998; Lamas, 1993).

A classificação de famílias proposta previamente, subdividindo os padrões de traçados viários em regulares e espontâneos, demonstrou-se satisfatória, conseguindo contemplar as diferenciações de padrões de traçados utilizados nos diferentes períodos históricos. Entre os regulares, destacam-se os traçados em quadrícula, radial e raiz (cluster).

2.2 Acessibilidade

Nesta seção, está apresentada a revisão sobre o conceito de acessibilidade, classificação e descrição de medidas de acessibilidade.

2.2.1 Conceito de acessibilidade

O conceito de acessibilidade não é recente. Em 1826, Von Thünen aborda aspectos relacionados a modelos teóricos de processos espaciais envolvendo acessibilidade. Desde então, o conceito de acessibilidade tem sido utilizado em diversos campos de estudo. O termo é frequentemente utilizado na geografia humana, em planejamento territorial e urbano e na área de transportes, sendo uma das medidas mais utilizadas para avaliar a qualidade do serviço. A acessibilidade é um conceito que se tornou fundamental para o planejamento físico territorial (Batty, 2009, p. 191).

O conceito de acessibilidade tem sido desenvolvido e expresso em indicadores mensuráveis, em paralelo com o conceito de mobilidade, sendo que esta tem seu foco na facilidade dos deslocamentos das modalidades de transporte, enquanto que a acessibilidade foca a interação dos sistemas de transportes e os padrões de uso da terra (Bhat et al., 2000). O primeiro trabalho significativo sobre acessibilidade, How Accessibility Shapes Land Use, é creditado a Hansen (1959).

As medidas de acessibilidade são capazes de avaliar os efeitos da interação entre infraestrutura de transporte e participação modal, por um lado, e da forma urbana e a distribuição espacial das atividades, por outro, sendo que algumas medidas também incluem outros determinantes, como os comportamentais. Litman (2003) aponta que o planejamento do tráfego e da mobilidade tem tradicionalmente se preocupado principalmente com a circulação de veículos automotores (tráfego) ou pessoas e bens em geral (mobilidade), enquanto a acessibilidade assume explicitamente a conexão entre uso do solo e transportes. Geurs e van Eck (2001, p.36) definem acessibilidade como "sistemas de transporte e uso do solo que permitem que pessoas ou mercadorias possam atingir destinos ou atividades por meio de um modo ou combinação de modos de transporte". Bhat et al. (2000, p.1) usam a seguinte definição: "A acessibilidade é uma medida da facilidade de um indivíduo para exercer um tipo de atividade desejada, em um local desejado, por um modo desejado e em um tempo desejado". Os autores citados fazem referência específica ao uso do solo, à infraestrutura viária e às modalidades de transporte em suas definições, caracterizando assim que a acessibilidade está intrinsecamente ligada ao sistema de transporte e aos padrões de urbanização.

Para Geurs e van Eck (2001), a compreensão da acessibilidade consiste em quatro componentes:

- a. o componente transporte, que está preocupado com medidas tais como percurso, custo, tempo, ou seja, o esforço do movimento no espaço;
- b. o componente uso do solo, que mede a distribuição espacial das atividades ou das oportunidades e contém uma avaliação da natureza competitiva de oferta e procura entre atividades ou destinos e os usuários potenciais;
- c. o componente temporal, que analisa as limitações de tempo, a experiência dos usuários para os seus padrões de atividade e a disponibilidade de atividades ou oportunidades de acordo com a época do dia, semana ou ano;
- d. o componente individual, que investiga as necessidades, habilidades e possibilidades dos usuários de transporte, portanto, leva em consideração fatores socioeconômicos e demográficos.

Assim, acessibilidade é um conceito de muitas interfaces, não existindo uma definição ou medida abrangente, universal, capaz de atender a todas as necessidades. Litman (2003, p. 32) afirma que "não há uma única maneira para medir a acessibilidade que seja simultaneamente conveniente e abrangente". No entanto, alguns pesquisadores têm proposto critérios básicos que devem ser apresentados por qualquer medida de acessibilidade como, por exemplo, o trabalho de Weibull (1976). Geurs e van Wee (2004, p. 130) produziram uma lista de recomendações que toda medida de acessibilidade deve conter, independentemente de sua perspectiva ou combinações de uso.

- a. A acessibilidade deve estar relacionada às alterações nas viagens e oportunidades, nas suas qualidades e impedimentos: se o nível de serviço (tempo de viagem, custo, esforço) de qualquer modo de transporte em uma área aumenta (ou diminui), a acessibilidade deve aumentar (ou diminuir) para qualquer atividade nessa área, ou a partir de qualquer ponto dentro desse domínio.
- b. A acessibilidade deve estar relacionada às mudanças no uso do solo: se o número de oportunidades aumenta (ou diminui) para uma atividade em qualquer lugar, a acessibilidade a essa atividade deve aumentar (ou diminuir) a partir de qualquer lugar.
- c. A acessibilidade deve estar relacionada a mudanças nas restrições sobre a demanda de atividades: se a demanda por oportunidades para uma atividade com certa capacidade de restrição aumentar (ou diminuir), a acessibilidade a esta atividade deve diminuir (ou aumentar).
- d. A acessibilidade deve estar relacionada às possibilidades e limitações pessoais: um aumento do número de oportunidades para uma atividade em qualquer local não deve alterar a acessibilidade a essa atividade para um indivíduo (ou grupo de indivíduos) incapaz de participar da referida atividade.
- e. A acessibilidade deve estar relacionada ao acesso das pessoas a viagens e oportunidades do uso do solo: as melhorias em um modo de transporte ou um aumento do número de oportunidades para uma atividade não deve alterar a acessibilidade a qualquer indivíduo (ou grupos de indivíduos) com as habilidades ou capacidades insuficientes (por exemplo, carteira de motorista ou nível de educação) para usar este modo ou participar da atividade.

Os conceitos aqui apresentados e normalmente utilizados na área de transporte ou na geografia normalmente têm seu foco na acessibilidade de um grupo específico de pessoas e/ou das cargas e em função de origem e destino, demanda e oferta ou usuários e oportunidades, o que leva a uma análise desagregada de acessibilidade.

Neste trabalho, como o objetivo é buscar a acessibilidade agregada, ou seja, a acessibilidade de uma localidade urbana em relação às demais, ela estudará as potencialidades de acesso residente em cada localidade em relação às demais localidades, uma vez que, para pessoas ou cargas deslocarem-se de um local para outro, pressupõe-se a existência de infraestrutura e modalidades capazes de realizar estes deslocamentos entre as localidades urbanas. Portanto, o conceito de acessibilidade utilizado neste trabalho será agregado por zona.

2.2.2 Indicadores de acessibilidade

Há uma variedade de abordagens metodológicas com o fim de sistematizar as medidas de acessibilidade, sendo que os trabalhos de Bhat et al. (2000) e Geurs e van Eck (2001) são particularmente relevantes para este fim. A classificação das medidas de acessibilidade em separação espacial, oportunidade cumulativa, interação espacial, espaço-tempo e de utilidade, a seguir apresentadas, têm como base os dois trabalhos.

Medida de separação espacial

O modelo de separação espacial descrito por <u>Bhat et al</u>.(2000) pode ser comparado à medida de infraestrutura de Geurs e van Eck (2001). Ela é uma medida que, em princípio, só usa a distância física da infraestrutura como elemento de entrada, portanto, adequada para a análise de estruturas em rede (Leake e Huzayyin, 1979). É uma medida fácil de entender e calcular, requerendo o mínimo de obtenção de dados de entrada. No entanto, não há referência a padrões de uso do solo, à distribuição espacial das oportunidades ou restrições na rede com relação à velocidade das viagens ou outras fontes de resistência. A crítica às medidas de separação espacial é que estas não levam em consideração aspectos como comportamento humano, opções de viagens, atração espacial das atividades e o valor da variável tempo para diferentes grupos de viagem (Baradaran e Ramjerdi, 2001).

No entanto, <u>Baradaran e Ramjerdi</u> (2001) afirmam que a separação entre as localidades não precisa ser medida somente pela distância geográfica, sendo que outras categorias de viagens como o custo ou impedimentos podem ser empregadas. Exemplos: incluir o tempo de viagem, custo do transporte, confiabilidade das viagens, frequência das viagens, ou uma combinação de características. Scheurer e Porta (2006) apontam que a análise da acessibilidade aos transportes públicos, em particular, não é bem servida por uma medida do custo de viagem quando avaliada com base na distância física, pois o tempo de viagem e o custo raramente são proporcionais à distância em redes de transportes, neste caso.

A medida de separação espacial é em última análise uma medida de acessibilidade de rede aplicada ao urbanismo. A medida de acessibilidade de rede é utilizada pela Teoria de grafos para o estudo de redes, conhecimento ligado à topologia, área da matemática. As redes podem ser ponderadas através da atribuição de pesos aos seus elementos (arestas e conexões), por exemplo, em função da distância, características do uso do solo, características das modalidades de transportes ou da infraestrutura.

Assim, a medida de separação não é apropriada para análises desagregadas, como as que estudam especificidades de uma modalidade de transporte com o fim de dimensionamento do serviço ou para medir acessibilidade de um grupo de consumidores em relação a um produto.

Medida de oportunidade cumulativa

A medida de contorno, na terminologia de Geurs e van Eck (2001), ou de oportunidade cumulativa, no modelo de <u>Bhat et al</u>. (2000), é a medida mais simples de acessibilidade, a qual leva em consideração tanto a distância como o objetivo de uma viagem. Ela define um limite de tempo de viagem ou distância e usa o número de atividades potencialmente possíveis de serem atingidas dentro deste limite como a acessibilidade para aquela unidade espacial. Muitas vezes, a variação do tempo ou aumento das distâncias é usada para criar um mapa isocrônico (Hanson, 1986). Essa abordagem incorpora padrões de uso da terra, bem como restrições de infraestrutura.

Versões mais complexas dessa medida começam a assemelhar-se às medidas do tipo gravitacionais, quando as atrações são ponderadas por um valor em relação ao transporte. Weibull (1976) atribui pesos às atrações do número de postos de trabalho em uma zona relacionado ao tempo de viagem e a propriedade de automóvel. Handy (1992) usa como peso uma função que considera o decréscimo da distância.

A principal crítica sobre a medida cumulativa de oportunidades é que ela não inclui variável comportamental e quanto às oportunidades, trata de forma igualitária as que estão perto e longe, não incluindo um fator ponderador em função da distância.

Medida de interação espacial (gravitacional)

O modelo gravitacional, na classificação de Bhat et al. (2000), é algo relacionado a medidas de acessibilidade potencial discutidas por Geurs e van Eck (2001). A medida gravitacional inclui um fator de atração, bem como um de separação. Enquanto a medida cumulativa de oportunidades considera as atrações e usa uma medida discreta para o tempo ou distância, as medidas gravitacionais utilizam uma medida contínua para reduzir as oportunidades, que vai aumentando com o tempo ou a distância da origem. A fórmula geral do modelo tem um fator de atração ponderado pelo tempo de viagem ou pela distância que aumenta de forma exponencial.

Diversos pesquisadores têm buscado a natureza adequada do fator de impedância para a equação de gravidade. Alguns defendem uma forma Gaussiana, na qual os valores seriam maiores quanto mais próximo das atrações e depois decresceriam com a distância ou tempo. Procurando uma forma e valor adequados para a impedância, muitos pesquisadores acham apropriado ter valores de parâmetro diferentes para diferentes tipos de atrações (Bhat et al., 2000).

Vários pesquisadores criticam as medidas de acessibilidade gravitacional por não refletirem adequadamente a acessibilidade. Uma das críticas é que muitas medidas atribuem o mesmo nível de acessibilidade a todos os indivíduos em uma zona (Benakiva, 1979). O modelo ainda trata todos os usuários dos transportes dentro da área de estudo de forma igual e despreza as variações nas preferências individuais em relação à conveniência de atividades (Baradaran e Ramjerdi, 2001). Mas isso ocorre com todas as medidas que agregam, a nível zonal. A crítica final é que a forma geral do modelo gravitacional implica um trade off entre a atração e a distância. Uma unidade de atração é igual a uma unidade de distância. No entanto, essa crítica é

específica para as formas simples de medir a gravidade e não é relevante para as formas gerais da medida (Bhat et al., 2000).

Medidas de espaço-tempo

Medidas de espaço-tempo são discutidas por Bhat et al. (2000) e Geurs e Van Eck (2001). Os indicadores espaços-temporais tomam como elemento central, na estimativa da acessibilidade, as limitações de tempo das pessoas consideradas na análise potenciais usuárias dos serviços (Hägerstrand, 1970). A razão para adotar esta abordagem é o entendimento de que os indivíduos têm períodos limitados para realizar atividades específicas (ex. acesso aos serviços). Assim, à medida que o tempo de viagem aumenta, o tempo para realizar as atividades diminui. Por sua vez, implementação destes projetos ou atividades enfrenta três restricões fundamentais: restrições de capacidade - relacionadas às limitações no desempenho humano (ex. as pessoas precisam de tempo para descansar, dormir ou comer) além das diferenças entre os indivíduos (ex. jovem, adulto e idoso); restrições de sincronização- são as necessidades das pessoas de estarem em um lugar específico num determinado momento (ex. no trabalho); e restrições de autoridade que são derivadas de força legal, que impedem o movimento ou atividades (ex. condições de acesso a serviços ou regras de conduta).

A principal crítica à abordagem espaço-temporal é que ela requer uma abordagem quase individualizada, tornando difícil a aplicação e análise a nível global (grupos, áreas dentro das cidades, cidades, regiões metropolitanas). Portanto, a maioria das análises empíricas com base nesta abordagem é ilustrativa e se limita a uma microescala para curto prazo e essencialmente individual (Bath et al., 2000).

Medidas de utilidade

A medida de utilidade é um método para estimar a acessibilidade, baseado no conceito de utilidade derivado da microeconomia. Este tipo de medida é baseado na utilidade percebida por um indivíduo para diferentes opções de viagem. Ou seja, a acessibilidade para uma pessoa é definida como o valor esperado de utilidade máxima entre todas as alternativas de destino para um grupo de opções. Os indicadores de utilidade têm gerado muito interesse na comunidade acadêmica, especialmente entre os especialistas em transporte (Bath et al., 2000).

A principal crítica a esse tipo de indicador é que nem todos os destinos estão disponíveis para todos os indivíduos, fator que normalmente não integra as restrições sobre a escolha dos destinos. Além disso, os resultados são obtidos a partir do comportamento observado dos usuários (que podem estar sujeitos a muitas limitações) e não refletem claramente os benefícios de aumentar as opções de destinos (Bath et al., 2000).

Considerações sobre as medidas de acessibilidade

As medidas de acessibilidade estão vinculadas a um conceito, a uma necessidade, a um problema, portanto devem ser construídas de acordo com essa necessidade, visando responder a este problema. Assim, não existe uma medida de acessibilidade universal e sim medidas personalizadas para cada caso. Dessa forma, determinadas medidas poderão não se enquadrar na classificação apresentada em função dos elementos utilizados para sua construção pertencerem a mais de uma classe ou não se enquadrarem em nenhuma.

Entre as classes de medidas apresentadas, a medida de separação espacial é a que mais se aproxima das necessidades conceituais de acessibilidade que estão utilizadas no trabalho. Para tanto, ela foi adequada, agregando ao seu conceito original especificidades do trabalho.

2.3 Sistema de circulação

Este item visa estabelecer uma aproximação entre modelos de estrutura urbana e sistemas de circulação, com o fim de obter uma representação dos dois de forma integrada, dentro de um quadro de modelagem. Inicialmente, estão apresentadas uma descrição e uma classificação da estrutura das cidades; a seguir, descrevem-se os modelos clássicos de representação da estrutura e dinâmica urbana e os modelos de sistemas de circulação (por demanda e por oferta). Por fim, apresentase o modelo que unifica de forma conceitual a organização espacial da cidade e o sistema de circulação que está utilizado no trabalho.

Estrutura urbana e sistema de circulação

Vasconcelos (2001, pp. 33-35) descreve e classifica o ambiente construído das cidades em espaço de circulação, espaço de reprodução e espaço de produção. Esse tipo de análise baseia-se em uma distinção funcional, em que a estrutura de produção é a parte do espaço urbano na qual a maior parcela da produção ocorre: indústrias, comércios, serviços e instituições públicas. A estrutura de reprodução é a parte do espaço urbano em que ocorre a reprodução biológica, social e cultural das pessoas e classes sociais: a residência, a escola, locais de lazer e atividades políticas e sociais. A estrutura de circulação é parte do espaço urbano que permite a circulação física de pessoas e mercadorias: vias e espaços públicos, calçadas, ciclovias, faixas de circulação de veículos, vias férreas, terminais de passageiros e cargas. Ela é o suporte físico da circulação propriamente dita, seja pelo pedestre ou por meio de veículos (bicicleta, automóveis, ônibus, trens), que são os meios de circulação. A combinação entre estrutura e os meios de circulação constitui o sistema de circulação. A circulação liga fisicamente todas as atividades e ocorre dentro do ambiente físico no qual elas se processam. A combinação entre o sistema de circulação e o ambiente construído constitui o ambiente de circulação.

Modelos de estrutura urbana e transportes

Diversos esforços têm sido feito no sentido de criar um modelo para representar a estrutura e a dinâmica interna das cidades. Data do início do século XIX a Teoria dos anéis concêntricos, que está estritamente relacionada com o modelo que Von Thunen (1826) elaborou em função da localização da produção agrícola em relação ao centro de comércio. A cidade foi representada em escala regional como um ponto e associou os custos da produção agrícola em função da distância da zona de produção em relação ao centro. O conceito de anéis concêntricos, proposto pelo autor, é transformado por Burgess (1925) para expressar as diferenciações intraurbanas, mostrando uma série de regularidades a partir do centro. O modelo de zonas concêntricas é proposto quando o autor analisa o fenômeno da expansão urbana como processo. Neste sentido, cada anel seria produto de uma etapa de expansão, na qual a tendência de evolução espacial é a expansão de cada zona sobre o anel contíguo exterior, em um processo contínuo.

Outra forma de representar a estrutura urbana é o modelo em setores, realizado por Hoyt (1939), que ampliou o modelo de Burguess e no qual o uso do solo tende a organizar-se em setores. O desenvolvimento destes encontram-se ligados principalmente aos principais eixos de transportes, aspectos topográficos, paisagísticos ou centros comerciais, sendo que o principal elemento de estruturação urbana são as vias de comunicação direcional entre centro e periferia.

Uma terceira forma de representar a estrutura espacial urbana é a formulação do modelo dos núcleos múltiplos proposta por Harris e Ullman (1945) que, sem desconsiderar as abordagens anteriores, avança para uma situação de maior realismo. Este modelo baseia-se na premissa de que grandes cidades têm uma estrutura espacial que é predominantemente celular; é uma tendência as cidades desenvolverem-se com uma variedade de núcleos que servem de ponto focal para o crescimento de aglomerações (Torrens, 2001; Busai, 2003).

Pode ser entendido intuitivamente que modelos de uso do solo e de circulação urbana seriam componentes indissociáveis de um modelo que pretenda representar a estrutura e as dinâmicas urbanas, mas não é o que se verifica. O que se encontra são conjuntos de submodelos os quais representam vários subsistemas da cidade atrelados aos seus objetivos. Torrens (2001) destaca que, normalmente, modelos de uso do solo estão atrelados à localização das atividades, enquanto modelos de transporte são operacionais, visam a gestão do sistema de circulação. Segundo Bruton (1979) e Torrens (2001), a maneira tradicional de modelar o sistema de transporte em áreas urbanasé através de um processo de quatro estágios. Ele começa com a verificação da demanda de viagens, gerando uma estimativa da quantidade esperada pelo sistema. A segunda fase consiste na distribuição das viagens, na qual se alocam as viagens geradas em zonas de origem para os destinos na área urbana. A terceira fase corresponde à divisão modal. Aqui, as viagens são distribuídas para os vários modos de transporte. O processo de simulação de quatro estágios termina com a alocação de viagens que têm como finalidade estabelecer os volumes de tráfego que utilizam os diferentes trechos da rede. As simulações de transporte geralmente procedemsequencialmente nestas quatro etapas.

Modelos desta natureza têm seu foco a partir da demanda. Este modelo de planejamento do território, baseado na demanda, tem sido fortemente criticado. Para Herce (2009, p. 95), o território se organiza sobre as bases da estrutura de relação que lhe dão as suas redes. A constatação do importante papel que o desenvolvimento das redes de infraestruturas, fundamentalmente as de transporte, tem para a expansão da cidade, visando conseguir um plano de transporte urbano mais eficaz e sustentável, levou a um enfoque inverso, ou seja, baseado na oferta. O enfoque sobre a oferta supõe entender que a localização das atividades, o modo e a quantia e suas inter-relações no futuro dependem da forma e organização que possuem as redes de infraestrutura, porque delas dependerá o funcionamento do sitema (Herce, 2009, p. 97).

A representação dos dois sistemas, forma e circulação urbana, de maneira integrada dentro de um quadro de modelagem,tem sido dificultada por uma variedade de fatores, criando uma desconexão entre os dois, especialmente em termos de disponibilidade de dados e avaliação de cenários. Estruturas organizacionaismuitas vezes tratam do ordenamento do território separadamente do planejamento da circulação (Miller et al., 1998).

Para este trabalho, é fundamental a integração entre a forma urbana, a rede viária e o sistema de circulação. Assim, está adotado um modelo que unifica, de forma conceitual, a organização espacial da cidade e o sistema de circulação, no qual a diferenciação de facilidades urbanas expressa pelas cidades, entre centro e periferia, também se reflete no sistema de circulação. Desta forma, fica compreendido que as áreas centrais são mais bem dotadas de infraestrutra viária e de modalidades de transporte do que as areas periféricas.

Em virtude dos tamanhos dos traçados viários que estão utilizados no trabalho, que correspondem a pequenas formações urbanas, como pode ser observado no item 4.1.1, o modelo urbano clássico de anéis concêntricos é o que melhor representa as diferenciações espaciais urbanas, resultando assim, também para o sistema de circulação, um modelo de anéis concêntricos, em que a qualidade do sistema de circulação vai diminuindo gradativamente da área central para a periferia. Parâmetros para expressar esta condição estão desenvolvidos no Capítulo 4.

Neste capítulo, foi apresentada uma revisão bibliográfica sobre as principais áreas de interesse, sendo apresentados conceitos fundamentais e conteúdos que dão suporte ao desenvolvimento do trabalho. Assim, estão revisados os conteúdos sobre: a) morfologia urbana e modelagem, com o fim de abordar a metodologia científica com a qual o trabalho propõe-se equacionar o problema de pesquisa e tipo, tipologia, método de classificação tipológica, famílias de traçados viários e sintética revisão histórica sobre os padrões de traçados viários, informações que visam auxiliar na construção do método, especialmente para a classificação dos traçados viários e construção dos traçados analíticos; b) acessibilidade urbana - que procurou conceituar acessibilidade e classificar as medidas de acessibilidade; c) sistema de circulação - que visa delimitar um modelo capaz de representar, de forma integrada

A seguir, estão apresentados os procedimentos que nortearam o desenvolvimento do estudo: o método de pesquisa.

Método e Ferramentas

Para Bunge (1974), método é um procedimento regular, explícito e passível de ser repetido para conseguir algo material ou conceitual e método científico é um conjunto de procedimentos por meio dos quais são propostos problemas, elaboradas e testadas hipóteses.

Este capítulo descreve o método a partir do qual se desenvolvem as atividades empíricas do trabalho, além das principais ferramentas de apoio utilizadas. As atividades ocorrem essencialmente em meio computacional e estão estruturadas em quatro etapas:

Etapa 1 - elementos de entrada;

Etapa 2 - ambiente computacional;

Etapa 3 - desenvolvimento das simulações;

Etapa 4 - análise dos resultados das simulações.

Os elementos de entrada correspondem aos elementos estruturantes do trabalho e representam as áreas de abrangência do estudo, que são: os traçados viários urbanos, a acessibilidade em redes e o sistema de circulação. Estes elementos estão tratados em ambiente computacional, ambiente no qual ocorrem também as simulações de verificação das medidas de acessibilidade. Os dados de saídas, ou seja, as medidas de acessibilidades resultantes de cada padrão de traçado viário, receberam tratamento através de instrumentos estatísticos com o fim de sistematizar os dados e auxiliar a análise dos resultados das simulações, os quais estão apresentados por meio de instrumentos visuais (mapas e gráficos) e numéricos (tabelas, índices e relações).

são As ferramentas descritas instrumentos utilizados como apoio desenvolvimento do trabalho e consistem em: a) sucinta revisão de conceitos sobre elementos da Teoria de grafos, especificamente sobre acessibilidade em redes e da estatística e b) definição de <u>representação linear</u> e <u>mapa axial</u>, que são as formas principais de representação dos traçados viários e dos resultados das simulações.

A seguir estão descritas de forma concisa as quatro etapas do método, representadas na forma de diagrama e posteriormente detalhadas.

3.1 Descrição do método

Etapa 1 - Elementos de entrada

Os elementos de entrada consistem da construção: a) dos traçados viários analíticos representantes dos padrões de traçados viários urbanos selecionados para o trabalho; b) do conceito e medida de acessibilidade e c) dos parâmetros representantes do efeito do sistema de circulação.

Etapa 2 – Ambiente computacional

Esta etapa consiste: a) na identificação e seleção dos softwares utilizados no trabalho, em especial do software selecionado para realizar as simulações com os traçados viários a fim de verificar e representar as medidas de acessibilidade e b) na implementação da medida de acessibilidade e dos parâmetros simuladores do efeito do sistema de circulação sobre o software selecionado.

Etapa 3 – Desenvolvimento das simulações

Nesta etapa, estão descritos: a) os três tipos de simulações realizadas, identificadas como A1, A2 e A3, códigos correspondentes às três formas de medida de acessibilidade verificadas, posteriormente definidas e b) os instrumentos utilizados para representar os resultados das simulações.

Etapa 4 – Análise dos resultados

A análise dos resultados das simulações está estruturada em duas fases: a) elaboração de instrumentos auxiliares de análise(gráficos e tabelas) e b) análise comparativa dos resultados das simulações.

A seguir, está apresentado o diagrama do método ilustrando as etapas e atividades.

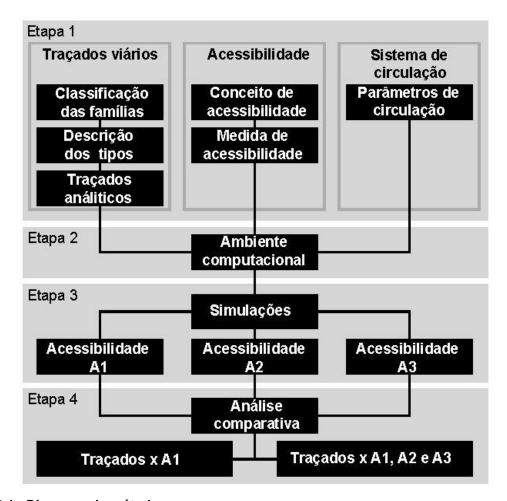


Figura 3.1 - Diagrama do método.

O diagrama ilustra as quatro etapas do método: a etapa 1 corresponde à construção dos elementos de entrada; a etapa 2refere-se ao desenvolvimento do ambiente computacional; a etapa 3 caracteriza as três simulações e a etapa 4 corresponde à análise dos resultados das simulações.

A seguir, estão detalhadas as etapas do método.

Etapa 1 - Elementos de entrada

3.1.1 Construção dos traçados viários analíticos

Neste item, estão selecionados os padrões de traçados viários urbanos estudados no trabalho e construídos os correspondentes traçados viários analíticos para cada padrão, através dos passos a seguir: a) identificação das famílias de traçados viários urbanos; b) descrição dos tipos e c) desenvolvimento dos traçados analíticos.

Para este trabalho, está definido como traçado viário analítico a representação linear de sistema viário urbano, não real, construído a partir de pressupostos descritos(neste caso, os pressupostos são os descritos nos tipos) associados à obtenção de um objetivo (a seguir descrito).

A construção de traçados analíticos tem como objetivo obter traçados viários representantes dos diferentes padrões de malhas viárias urbanas que resguardem os caracteres genéricos e intrínsecos de cada padrão, de modo que, ao mesmo tempo, possuam elementos em comum os quais possibilitem análises comparativas. No intuito de facilitar a compreensão do objetivo, cabe definir os termos genérico, gênero e intrínseco. Genérico está usado no sentido de geral, que tem caráter de generalidade. Gênero é entendido como a reunião de elementos que possuem caracteres comuns entre si ou conjunto de elementos que apresentem qualidades semelhantes. E intrínseco é empregado no sentido de essencial, inerente, próprio.

Está descartado o uso de traçados viários de cidades reais, como traçado analítico, por estes apresentarem propriedades em maior ou menor proporção de mais de um padrão, o que os descaracterizaria como elementos representantes de determinado padrão de tecido urbano.

Identificação das famílias de traçados viários urbanos

A identificação das famílias tem como objetivo criar uma classificação para os padrões de traçados viários urbanos e está desenvolvida em três fases: definição da abrangência, classificação prévia e classificação das famílias (Panerai, 2006, pp. 127-135).

- a. Definição da abrangência- estão delimitados como âmbitos a serem estudados os traçados viários de cidades reais e de cidades teóricas ou conceituais (exemplos resultantes de princípios urbanísticos de determinados momentos históricos) ou partes destas.
- b. Classificação prévia- como classificação inicial para os traçados viários urbanos, adotou-se classificação semelhante à morfologia do plano (identificada na revisão bibliográfica sobre famílias de redes viárias no item 2.1.5 e descrita no item 4.1.1 b do Capítulo 4).
- c. Classificação das famílias- de posse da classificação proposta, estabeleceu-se um paralelo coma revisão histórica a fim de identificar se a classificação é satisfatória. A classificação final dos padrões de traçados viários urbanos é apresentada no Capítulo 4, no item 4.1.1 c.

Cabe destacar que o método de classificação e a classificação sugerida restringemse às necessidades do trabalho, ou seja, identificar os principais padrões de traçados viários urbanos e descrever suas características com fim de construir os traçados analíticos, não sendo objetivo criar um método ou classificação universal.

Descrição dos tipos

Identificados e classificados os padrões de traçados viários, descreveram-se os tipos para cada família, os quais apresentam as características e propriedades comuns a todos os elementos de uma família. A partir dos tipos, pode-se identificar ou construir novos elementos de uma mesma família, sendo que, no caso deste trabalho, trata-se da construção dos traçados viários analíticos.

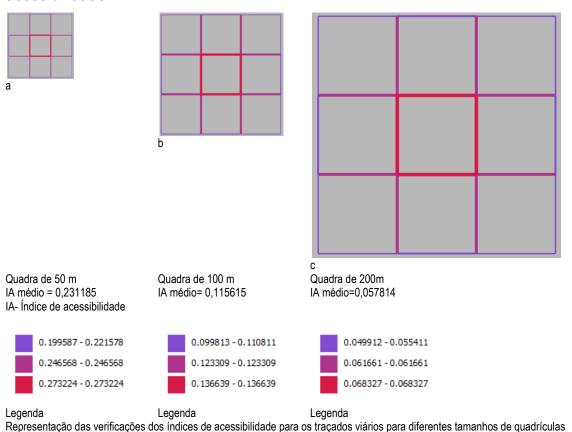
Para descrição dos tipos, tomou-se como base exemplos de cidades reais e cidades teóricas representantes de cada família de traçado viário, identificados no item 4.1.1 e caracterizados por representações lineares (Figura 4.1 e Figura 4.2) e dados referentes aos traçados viários (Tabela 4.1 e Tabela 4.2). Visando uniformizar e sistematizar a descrição dos tipos, utilizou-se os conceitos auxiliares a seguir descritos:

 Geometria do traçado- a geometria do traçado descreve as características da forma, visando identificar o padrão do traçado viário, por meio de elementos da geometria como ângulos, linhas, proporções, interseções e continuidades;

- b. Densidade viária- a densidade é expressa pelo coeficiente entre somatório dos comprimentos de todos os segmentos de vias de um traçado viário e a área urbana, em metros de via por metro quadrado de área (m/m²);
- c. Comprimento médio dos segmentos o comprimento médio corresponde à média aritmética entre todos os comprimentos de segmentos de vias de um malha viária, considerado segmento o trecho de via entre duas interseções ou entre uma interseção e o início ou o fim de uma via.

A descrição dos tipos está desenvolvida no item 4.1.1 do Capítulo 4.

Desenvolvimento dos traçados viários analíticos


Como o objetivo do trabalho é relacionar os padrões de traçados viários, é necessário que os traçados viários analíticos representantes de cada família possuam elementos comparáveis. Assim, para construção dos traçados viários analíticos, além da descrição dos tipos, tomaram-se como base os princípios construtivos similaridade do padrão, grão do padrão e igualdade de área, a seguir descritos.

- a. Similaridade do padrão- a similaridade da forma estabelece a identidade configuracional e tem como finalidade reproduzir o padrão do tecido viário, utilizando, para isso, os elementos descritos na geometria do traçado.
- b. Grão do padrão- o grão expressa a compatibilidade dimensional do padrão, reproduzida na construção do traçado analítico através da dimensão média dos segmentos e da densidade viária.
- A Figura 3.2 apresenta estudo a respeito da influência do grão sobre a acessibilidade, com o fim de demonstrar a importância do grão do padrão na construção dos traçados analíticos.
- c. **Igualdade de área-** os traçados analíticos estão desenvolvidos abrangendo áreas iguais a 1.000.000 m² (um milhão de metros quadrados) com o objetivo de estabelecer um elemento de comparação entre os padrões de urbanização. O valor resulta da aproximação das áreas dos planos para implantação de cidades espanholas na América Latina e de cidades medievais.

A Figura 3.3 apresenta estudo sobre a influência do tamanho do traçado viário sobre a acessibilidade, com o fim de demonstrar a importância da igualdade de área de urbanização como elemento de parametrização entre os traçados.

Os traçados viários analíticos estão desenvolvidos no item 4.1.1 do Capítulo 4. A seguir estão apresentadas as avaliações sobre a influência do grão e do tamanho dos traçados viários sobre a acessibilidade.

Avaliação da influência do grão do padrão dos traçados viários sobre a acessibilidade.

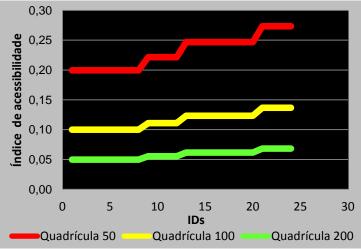
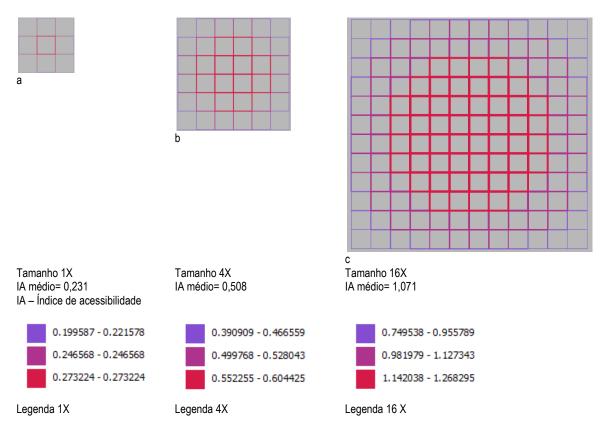



Gráfico comparativo dos índices de acessibilidade

Figura 3.2 – Avaliação referente ao grão do padrão

Interpretação - O estudo tem como objetivo verificar a influência do grão do padrão sobre a medida de acessibilidade. Para isso, estão construídos três traçados viários simplificados para um mesmo padrão, o Xadrez, com diferentes grãos, ou seja, quadras com diferentes dimensões, e as seguintes relações entre os grãos: o traçado "b" possui uma quadrícula quatro vezes maior que o "a" e o traçado "c" dezesseis vezes. Foi utilizado o índice médio de acessibilidade como instrumento de comparação, no qual se observa que existe uma relação direta entre o grão do traçado e a média do índice de acessibilidade, ou ainda, quanto maior a grão, para um mesmo padrão de traçado viário, maior o valor do índice médio de acessibilidade. A medida utilizada refere-se à acessibilidade geométrica de rede da Teoria de grafos. As simulações estão desenvolvidas no software Medidas Urbanas, apresentado no item 4.2.

Avaliação da influência do tamanho do traçado viário sobre a acessibilidade.

Representação das verificações dos índices de acessibilidade para os traçados viários para diferentes tamanhos da rede

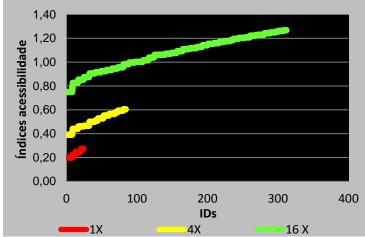


Gráfico dos índices de acessibilidade

Figura 3.3 - Avaliação referente ao tamanho da rede do traçado viário

Interpretação - O estudo tem como objetivo verificar a influência do tamanho do traçado viário sobre a medida de acessibilidade. Para isso, estão construídos três traçados viários simplificados para um mesmo padrão, o Xadrez, com mesmo grão, ou seja, quadras com mesmas dimensões, e as seguintes relações de tamanho: o traçado "b" quatro vezes maior que o "a" e o traçado "c" dezesseis vezes. Foi utilizado o índice médio de acessibilidade como instrumento de comparação, no qual se observa que existe uma relação direta entre o tamanho do traçado e a média do índice de acessibilidade, ou ainda, quanto maior o tamanho do traçado, para um mesmo padrão de traçado, maior o valor do índice médio de acessibilidade. Assim, por analogia, conclui-se que, para um mesmo padrão de traçado viário, o valor médio do índice de acessibilidade está diretamente relacionado ao tamanho da área urbanizada. A medida utilizada refere-se à acessibilidade geométrica de rede da Teoria de grafos. As simulações estão desenvolvidas no software Medidas Urbanas, apresentado no item 4.2.

3.1.2 Conceito e medida de acessibilidade

O conceito e a medida desenvolvida para este trabalho pode ser classificada como de separação espacial, uma vez que: a) interpreta a malha viária, por meio da Teoria de grafos, como rede; b) utiliza o conceito de menor caminho para estabelecer separação entre dois pontos; c) utiliza a distância como elemento principal para caracterizar a separação espacial entre os elementos urbanos e d) considerou o sistema de circulação como elemento redutor da separação espacial. Logo, também pode ser considerada uma medida de acessibilidade geométrica de rede adicionada de um coeficiente ponderador representante do efeito do sistema de circulação.

Este item visou caracterizar o conceito e medida de acessibilidade utilizada no trabalho, desenvolvida no item 4.1.2 do Capítulo 4.

3.1.3 Construção de parâmetros do sistema de circulação

O objetivo principal de criar parâmetros para o sistema de circulação é possibilitar a diferenciação da capacidade de transporte residente em cada via, para o conjunto de suas modalidades e infraestrutura, ou seja, é criar um valor relacional entre as vias que permita avaliar suas contribuições na conexão entre partes do sistema urbano.

Não é objetivo criar parâmetros realísticos, precisos, que expressem com absoluta fidelidade e globalidade a capacidade de transporte de cada via, mas sim criar parâmetros relacionais que expressem o que até mesmo o senso comum percebe: que existe diferença quanto à capacidade de transporte, por exemplo, entre um caminho de pedestre, uma ciclovia, uma pista exclusiva de ônibus ou uma linha de trem. Portanto, se existe diferenciação quanto à capacidade de conexão entre as vias, uma medida de acessibilidade relacionada com a qualidade do sistema de circulação deve levar em consideração esta diferenciação. Assim, se a capacidade de conexão das vias entre dois pontos urbanos aumenta ou diminui, a acessibilidade entre os dois pontos deve aumentar ou diminuir respectivamente.

O parâmetro desenvolvido, além de representar a diferenciação de conexão entre as vias, comporá junto com a medida de acessibilidade descrita no item anterior o conceito e medida de separação espacial de acessibilidade utilizada neste trabalho.

Este item visou caracterizar os parâmetros para simular o efeito do sistema de circulação, desenvolvidos no item <u>4.1.3</u> do Capítulo 4.

Esta etapa tem como objetivo descrever o método para elaboração dos elementos estruturantes do trabalho, descritos como elementos de entrada, ou seja, a construção dos traçados analíticos, do conceito e medida de acessibilidade e dos parâmetros simuladores do sistema de circulação. Os elementos de entrada estão desenvolvidos no Capítulo 4.

Etapa 2 – Software: identificação e implementação

Esta etapa consiste do desenvolvimento do meio computacional para realização das simulações e está estruturada em duas partes: a) identificação e seleção dos softwares que são utilizados no trabalho, em especial do software escolhido para realizar as simulações com os traçados viários (com o fim de verificar e representar as medidas de acessibilidade) e b) implementação da medida de acessibilidade e dos parâmetros simuladores do efeito do sistema de circulação sobre o software selecionado.

As ações previstas neste item estão desenvolvidas no item 4.2 do Capítulo 4.

Etapa 3 - Desenvolvimento das simulações

As simulações estão organizadas e desenvolvidas visando responder às perguntas de pesquisa: a)como diferentes padrões de traçados viários urbanos modificam a acessibilidade? e b) como alterações no sistema de circulação modificam a acessibilidade, em diferentes padrões de traçados viários urbanos? Para tanto, estão estruturadas na forma a seguir.

Considerações gerais:

- a. as simulações estão realizadas em meio computacional, descritas no item 4.2;
- b. as simulações estão realizadas por meio de traçados viários analíticos para os padrões de traçados selecionados para o estudo;
- c. a acessibilidade medida está representada através de dados tabulados, gráficos e por mapas axiais;

- d. as simulações realizadas estão identificadas através dos códigos A1, A2 e A3, que servirão como referência no decorrer do trabalho;
- e. a acessibilidade está medida individualmente para cada <u>segmento de via</u> (definição no item <u>3.2.3</u>) de um traçado viário;
- f. cada segmento de via está caracterizado por um número identificador (ID);
- g. o conceito e medida de acessibilidade utilizada estão apresentados no item 4.1.2.

3.1.4 Descrição das simulações

São apresentadas três simulações para cada padrão de traçado viário, a seguir descritas, sendo que as simulações A1 visam responder à primeira pergunta de pesquisa e as simulações A2 e A3 ao segundo questionamento.

- A1 Verificação da acessibilidade um. Essa verificação mede a acessibilidade geométrica de rede, que só considera a distância para caracterizar a separação espacial, com o intuito de estabelecer comparação entre os padrões de traçados viários sem a influência do sistema de circulação e servir posteriormente de referência para as simulações que levam em consideração este efeito.
- A2 Verificação da acessibilidade dois. Essa verificação mede a acessibilidade considerando o efeito do sistema de circulação e tem como objetivo reproduzir as características do sistema de circulação normalmente apresentado pelas cidades, nas quais as áreas centrais são dotadas de melhor sistema de circulação (quanto a modalidades e infraestrutura), qualidade que vai diminuindo gradativamente de forma concêntrica em direção à periferia.
- A3 Verificação da acessibilidade três. Essa verificação mede a acessibilidade considerando o efeito do sistema de circulação e tem como objetivo reproduzir as características inversas ao sistema de circulação normalmente apresentado pelas cidades. Assim, para essa verificação, as áreas periféricas são dotadas de melhor sistema de circulação (quanto a modalidades e infraestrutura), qualidade que vai diminuindo gradativamente de forma concêntrica em direção às vias centrais.

As simulações estão desenvolvidas no Item 5.1 do Capítulo 5.

3.1.5 Desenvolvimento e representação das verificações

As verificações das medidas de acessibilidade estão desenvolvidas por padrão de traçado viário e por simulação e representadas através de elementos visuais e numéricos a seguir descriminados: a) mapas axiais; b) gráficos de linha; c) dados tabulados apresentados nos Apêndice A - Índices de acessibilidade por simulação e Apêndice B - Normalização dos valores de acessibilidade; d) medidas estatísticasmédia, amplitude, variância, coeficiente de variação e curva normal (definições no item 3.2.2).

As simulações mediram um índice de acessibilidade para cada segmento de via(ID identificador). Com o propósito de melhorar a legibilidade e permitir as associações entre os resultados das simulações dos diferentes padrões, os segmentos de vias estão subdivididos em quatro classes, tomando como referência para tal o valor do índice de acessibilidade de cada um. Para a classificação, utilizou-se o método estatístico de otimização de Jenks, também chamado de Natural Breaks. O Natural Breaks é um método estatístico de classificação de dados concebido para determinar o melhor arranjo de valores em diferentes classes (Jenks, 1967).

Essa classificação está representada através de mapas axiais, em que os IDs pertencentes a cada classe estão identificados por cores e espessuras de linhas (Figura 3.4 - desenho ilustrativo), assim convencionado:

- a. classe um- com menores índices de acessibilidade, cor azul e linhas de menores espessuras;
- b. classe quatro- com os maiores índices de acessibilidade, cor vermelha e linhas de maiores espessuras;
- c. classes dois e três- com índices intermediários de acessibilidade, cores e espessuras de linhas intermediárias entre as utilizadas para classe um e quatro. Além das representações gráficas das classes, o mapa axial contém convenções

que associam as representações aos intervalos numéricos correspondentes à

variação dos índices de acessibilidade de cada classe.

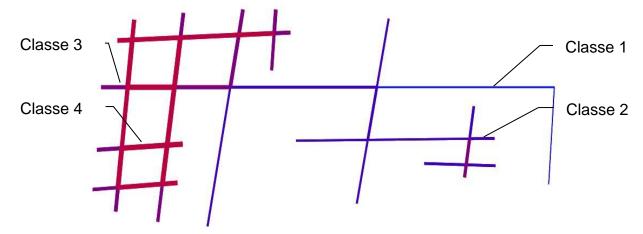


Figura 3.4 – Desenho ilustrativo da representação gráfica por classes.

Esta etapa visou descrever os três tipos de simulações realizadas, codificadas como A1, A2 e A3, e os instrumentos utilizados para representá-las. Estas simulações estão desenvolvidas por padrão de traçado no Capítulo 5.

Etapa 4 – Análise dos resultados

A análise dos resultados tem como objetivo sistematizar os dados de saídas das simulações. Para tanto, está estruturada em duas fases: a) desenvolvimento de instrumentos auxiliares de análise e b) análise propriamente dita dos resultados.

Instrumentos auxiliares de análise

Além das informações resultantes das verificações A1, A2 e A3, executadas para cada traçado (mapas axiais, tabelas com dados de acessibilidade, tabela com dados estatísticos- média aritmética, variância e coeficiente de variação e gráficos de linhas e da curva normal), são elaborados os seguintes instrumentos auxiliares:

- a. gráficos de linhas comparativos das verificações A1, A2 e A3 por traçado viário;
- b. curvas normais comparativas entre os diferentes traçados para verificações A1;
- c. curvas normais comparativas para verificações A1, A2 e A3 para cada traçado;
- d. gráfico e tabela comparativa da participação percentual dos índices de acessibilidade por classe para as verificações A1, A2 e A3;
- e. gráfico e tabela comparativa da participação percentual do número de IDs por classe para as verificações A1, A2 e A3.

Os instrumentos auxiliares estão desenvolvidos no item 5.2.1do Capítulo 5.

Análise dos resultados

A análise visa estabelecer associações entre as informações resultantes das simulações dos padrões de traçados viários com o objetivo de auxiliar a elaboração das conclusões. Assim, está estruturada em três momentos:

- a. comparação entre os padrões de traçados viários quanto às simulações A1;
- b. comparação entre simulações A1, A2 e A3 para cada padrão de traçado viário;
- c. comparação entre traçados viários considerando as simulações A1, A2 e A3.

A análise dos resultados está apresentada no item 5.2.2 do Capítulo 5.

3.2 **Ferramentas**

Para o desenvolvimento do trabalho, é necessário agregar conhecimentos da área da matemática e do desenho, aqui considerados como ferramentas de apoio, que se constituem especificamente de conhecimentos sobre: a) acessibilidade em redes-Teoria de grafos; b) elementos estatísticos e c) representação gráfica- mapas axiais.

3.2.1 Acessibilidade em redes: Teoria de grafos

A Teoria de grafos tem sido um importante instrumento para análise territorial, devido as suas inúmeras possibilidades de aplicações, sendo especialmente utilizada pela área da geografia, transporte e urbanismo (Sanches, 1984, p. 321). Para este trabalho, a revisão apresentada sobre a Teoria de grafos limitou-se aos objetivos, especificamente sobre acessibilidade de rede. Entretanto, para o desenvolvimento do software, descrito no item 4.2, foi necessário o aprofundamento do conhecimento sobre grafos e esteve a cargo de profissional da área de informática.

A Teoria de grafos provém da topologia, ramo da matemática que estuda a posição e as relações entre pontos, linhas e superfícies, sem levar em conta formas nem tamanho (Sanches, 1984, p. 322). A seguir, está apresentada a definição matemática de grafo, conceito e medidas de acessibilidade em um grafo, conceito e medidas de acessibilidade geométrica de rede e por fim considerações sobre representação de uma rede de grafos.

Definição matemática de grafo

Um grafo G é definido matematicamente como uma estrutura, ou par ordenado, de conjuntos finitos V e A, de tal forma que V é um conjunto discreto de elementos vdenominados vértices, e A é uma família cujos elementos a são definidos em função dos elementos v de V. Uma família A pode ser entendida como um conjunto de relações de adjacência ou relação binária entre pares de v e seus elementos são chamados em geral de ligações ou arestas.

Acessibilidade em um grafo

O estudo da posição relativa dos vértices e das relações de adjacência e incidência que se dão entre os mesmos denomina-se acessibilidade. E quanto à medição da acessibilidade, dados os vértices i e j de G, o número menor de arestas que os une denomina-se distância topológica (d).

Assim, define-se como Número Associado N do vértice i a distância topológica máxima existente entre o dito vértice e qualquer outro do grafo G considerado.

Equação 3.1- Distância topológica máxima

$$N_i = Max_{ij}d$$

Não obstante, uma medida mais completa de acessibilidade de um vértice i é o índice de Shimbel (IS), que se obtém somando a fila correspondente, na Matriz de Distâncias Topológicas (D) entre os vértices de G.

Equação 3.2- Acessibilidade topológica

$$IS_i = \sum_{j=1}^n d_{ij}$$

A **Acessibilidade Média** de $i(A_i)$ se define, então, como uma média aritmética com um grau de liberdade:

Equação 3.3 - Acessibilidade média topológica

$$A_i = \frac{\sum_{i=1}^n d_{ij}}{v - 1}$$

Acessibilidade geométrica da rede

A análise da acessibilidade pode ser verificada também substituindo-se as distâncias topológicas por outras formas de distâncias d que implicam a ponderação de arestas a partir de algum atributo dos tramos da rede, que podem simbolizar distância, tempo, custo do percurso ou outro tipo de atributo. No caso do atributo ser a distância caracteriza a acessibilidade geométrica de rede.

Assim, de maneira análoga às expressões anteriores, pode-se definir a Distância **Associada** (*Di*) para certo lugar *i* da rede:

Equação 3.4- Distância geométrica máxima

$$D_i = Max_{ij} \times d$$

Seu índice de Acessibilidade Geométrica (IDi):

Equação 3.5- Acessibilidade geométrica

$$ID_i = \sum_{j=1}^n d_{ij}$$

E seu índice de **Acessibilidade Geométrica Média** (*DR*):

Equação 3.6- Acessibilidade geométrica média

$$D_R = \frac{\sum_{i=1}^n \quad \sum_{j=1}^n \quad d_{ij}}{v}$$

Considerações sobre a representação da rede de grafos

A representação tradicional de uma rede de grafos considera os vértices como pontos de referência e as linhas, as arestas da malha, como conexões. Para este trabalho, como os "pontos" de interesse são as vias ou os segmentos de vias, os "vértices" são considerados como pontos localizados no centro dos segmentos de vias, com o fim de representar um ponto médio desse segmento. As conexões são linhas que seguem o caminhamento do sistema viário e unem dois centros de segmentos de vias. Assim, conforme ilustra o exemplo da figura 3.5 apresentado na próxima página, as construções das redes partem do traçado dos eixos de vias

(desenho **b**) de uma malha viária (desenho **a**). Em seguida, posicionam-se os "vértices" nos centros dos segmentos (desenho c – vértices r1, r2, r3 e r4) e se estabelecem as conexões com os centros próximos seguindo o caminhamento da malha viária, considerando para tal a distância entre os pontos (desenho d - as conexões, por exemplo, entre os "vértices" r1, r2 e r5 são estabelecidas pelos caminhamentos a1, a2 e a3), uma vez que a rede visa verificar medidas geométricas. Do ponto de vista matemático, o resultado da rede é convencional e sua representação é expressa conforme o desenho e, em que as conexões "as" seriam ponderadas pelas distâncias reais. No entanto, essa representação não resguarda associação dos resultados e das conexões com o desenho da malha viária original. Assim, a representação adotada para este trabalho não é a representação convencional da rede de grafos e sim uma representação que associa os resultados e conexões à rede viária, na qual os valores das medidas da rede serão expressos de forma escalar pela espessura dos segmentos de vias e por variação de cores (exemplo desenho f). Convenções e formas de representação utilizadas no trabalho estão descritas no item 3.1.5.

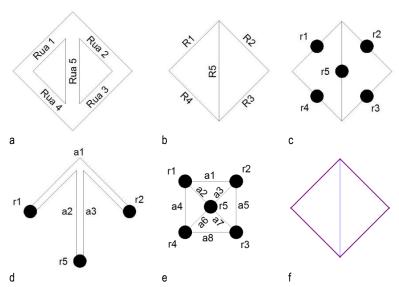


Figura 3.5- Representação da rede de grafos

3.2.2 Elementos estatísticos

As medidas estatísticas selecionadas visaram compor uma cesta de medidas capaz de analisar e correlacionar os dados sobre acessibilidade resultante das simulações.

As medidas estão selecionadas em função das características das séries de dados, que apresentam tamanhos diferentes (quanto ao número de elementos) e dados com mesma unidade (índice de acessibilidade). Entre as medidas definidas para caracterizar os dados, destacam-se as medidas de localização, nomeadamente as que localizam o centro da amostra e as medidas de dispersão, que visam expressar a variabilidade ou a dispersão presentes em um conjunto de dados. As medidas estatísticas ainda podem ser consideradas absolutas ou relativas. As absolutas são as que estão relacionadas a uma origem e a uma escala, e as relativas quando são expressas por uma relação entre elementos, por exemplo, uma taxa ou percentual. Assim, a cesta de medidas procurou conter as diferentes formas de medidas estatísticas, a seguir listadas:

- a. média aritmética- medida absoluta de localização;
- b. variância e amplitude- medidas absolutas de dispersão, sendo a variância uma medida relativa à média:
- c. coeficiente de variação e curva normal- medidas de dispersão relativa, sendo a curva normal uma representação gráfica.

Média aritmética

Dentre os termos estatísticos mais usados, pode ser destacada a média aritmética. A média é considerada uma medida de tendência central, pois focaliza o valor médio dentre os maiores e menores. A efetuação do cálculo da média aritmética $\bar{\mathbf{x}}$ é obtida dividindo a soma total dos valores de uma série de elementos de uma amostra pelo número de elementos.

Equação 3.2- Média aritmética

$$\overline{x} = \frac{S}{n}$$

Representa-se por S a soma dos elementos e n o número de elementos.

Amplitude

A amplitude A é considerada uma medida de dispersão e é definida como sendo a diferença entre o maior e o menor valor das observações.

Equação 3.3- Amplitude

$$A = x_{n:n} - x_{1:n}$$

Representa-se por $x_{1:n}$ e $x_{n:n}$, respectivamente, o menor e o maior valor de uma amostra $(x_1, x_2, ..., x_n)$, para uma amostra ordenada. A amplitude é uma medida de dispersão não relacionada à média.

Variância

A variância é uma medida de dispersão que define a média como medida de referência para fazer esta avaliação. Assim, a variância é uma medida que avalia o quanto os dados estão dispersos em relação à média aritmética, ou seja, o quanto os dados estão afastados da média. Define-se a variância σ^2 como sendo a medida que se obtém somando os quadrados dos desvios das observações da amostra, relativamente a sua média e dividindo pelo número de observações da amostra, menos um.

Equação 3.4- Variância

$$\sigma^2 = \frac{\sum_{i=1}^n (x_1 - \overline{x})}{(n-1)}$$

Representamos por $(x_1, x_2, ..., x_n)$ os valores de uma amostra, n o número de elementos da série de dados e x a média dos elementos.

Coeficiente de variação

O coeficiente de variação CV é uma medida de dispersão relativa que se presta para a comparação de distribuições diferentes. É instrumento estatístico utilizado guando se deseja comparar a variação de conjuntos de observações que diferem na média ou são medidos em grandezas diferentes (unidades de medição diferentes). O coeficiente de variação é o desvio padrão expresso como uma taxa ou porcentagem da média, além de ser uma medida relativa de variabilidade. É independente da unidade de medida utilizada, sendo que a unidade dos dados observados pode ser diferente, porém seu valor não será alterado e é assim definido:

Equação 3.5- Coeficiente de variação

$$CV = \frac{\sigma}{\overline{x}}$$

Nesta equação, σ é o desvio padrão dos dados da série e \overline{x} a émédia dos dados da série. O Coeficiente de Variação pode também ser multiplicado por 100, passando a ser expresso como percentagem.

Curva normal

A curva normal é uma medida de disperção relativa que permite a comparação gráfica de séries de dados de diferentes tamanhos. A curva normal é contruída apartir de uma função de probabilidade de uma distribuição normal a partir dos dados média e desvio padrão, sendo assim definida:

Equação 3.6- Curva normal

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\left(-\frac{(x-m)^2}{2\sigma^2}\right)}, -\infty < x < \infty, \sigma > 0$$

Na equação, σ^2 é o desvio padrão, σ a variância e $\it X$ a média e $\it m$ a distribuição padrão.

Uma Curva Normal apresenta como características: a) a distribuição normal é completamente determinada por dois parâmetros- média e desvio padrão da série de dados; b) a distribuição é simétrica em relação à média; c) os valores de média, moda e mediana são iguais e d) a área total sob a curva é igual a 1, ou 100%, com exatos 50% distribuídos à esquerda da média e 50% à sua direita.

Os conceitos sobre os elementos estatísticos obtidos dos sites webestão disponíveis em:m:m:<a hre

http://www.datalyzer.com.br/site/suporte/administrador/info/arquivos/info66/66.html > e<http://www.alea.pt/html/nocoes/html/cap4 2 1.html.> Acesso em 12 dez. 2011.

3.2.3 Representação gráfica: mapas axiais

A seguir, estão apresentadas as definições de mapa axial e representação linear, que são as formas gráficas utilizadas para representar as redes viárias utilizadas no trabalho.

Representação linear

A representação linear de um traçado viário é obtida traçando-se sobre a malha viária, a partir de base cartográfica, linhas sobre os eixos das vias, resultando em um conjunto de linhas e conexões (interseção de duas linhas). A lógica construtiva desta representação pode variar em função do objetivo a que se destina ou da fundamentação teórica. Após o processamento destes segmentos de retas e/ou curvas, o objetivo é gerar uma matriz de interseções, a partir da qual são calculados, por aplicativos computacionais especialmente programados para este fim, valores representativos de suas inter-relações axiais, resultando em um mapa axial.

Mapa axial de acessibilidade

Mapa axial de acessibilidade é a forma de representação configuracional que revela a acessibilidade do traçado viário por meio de uma escala cromática, de cores ou tons de cinza e de espessuras de linhas. Essa acessibilidade corresponde aos elementos utilizados para construção do seu conceito e medida, podendo contemplar diferentes variáveis, por exemplo (ser topológica ou geométrica, incluir atratividades do uso do solo, influência do sistema de circulação, elementos comportamentais dos usuários, resistência a movimentos etc.): por isso, um mapa acessibilidade ilustra uma conceituação de movimento e necessariamente o movimento real.

As representações lineares para este trabalho estão construídas em ambiente computacional, através do software AutoCad 2010, sendo que cada via, em sua construção, pode ser composta por um ou vários segmentos de via. Um segmento de via consiste em uma parte da via delimitada por duas interseções com outras vias ou uma interseção e o final ou início da via. Cada segmento, ao ser construído, recebe automaticamente um número identificador, ID, código ao qual o software vinculará os atributos daquele segmento. Definições adaptadas com base em Medeiros (2006, pp. 506 e 509)

Este capítulo descreve o método em quatro etapas: a primeira desenvolve classificação tipológica visando a seleção dos padrões de traçados viários a serem estudados e a elaboração dos elementos de entrada; a segunda trata do desenvolvimento do ambiente computacional; a terceira estrutura as simulações (A1, A2 e A3) e as formas de representação; e a quarta estabelece a sistematização dos dados de saídas com o fim de auxiliar na análise resultados. Junto ao método, estão desenvolvidos dois estudos que o subsidiam: a influência do grão e do tamanho do traçado sobre a acessibilidade. No final do capítulo, estão apresentadas ferramentas da matemática e do desenho que dão suporte ao desenvolvimento do trabalho.

Uma vez descritas as etapas do método e as ferramentas de apoio, os próximos dois capítulos desenvolvem a parte empírica do trabalho. O Capítulo 4 contém as etapas um e dois e o Capítulo 5 as etapas três e quatro do método.

4 Elementos de Entradas e Ambiente Computacional

Neste capítulo, estão construídos os instrumentos para o desenvolvimento dos experimentos, ou seja, os elementos de entrada correspondente à etapa 1 do método, que são: os traçados analíticos, o conceito e medida de acessibilidade e os parâmetros simuladores do efeito do sistema de circulação, desenvolvimento do ambiente computacional correspondente à etapa 2.

4.1 Elementos de entrada

4.1.1 Traçados viários analíticos

Os traçados viários analíticos estão construídos a partir do método descrito no item 3.1.1, que consiste: a) na identificação das famílias de traçados viários urbanos; b) na descrição dos tipos e c) na construção dos traçados analíticos.

Identificação das famílias de traçados viários

Com o objetivo de elaborar uma classificação para os padrões de traçados viários, foi elaborada a identificação e categorização das principais famílias de traçados a partir dos seguintes passos: definição da abrangência, classificação prévia e classificação das famílias.

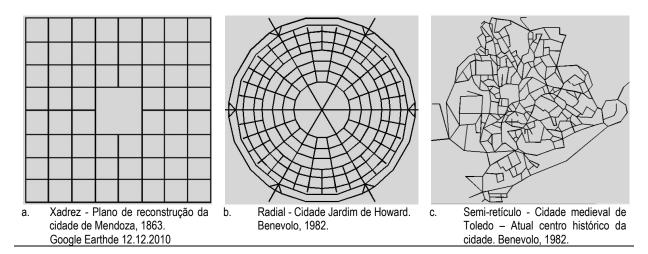
a. **Definição da abrangência**— Estabeleceram-se como âmbitos a serem estudados os traçados viários de cidades reais e de cidades teóricas ou conceituais (exemplos resultantes de princípios urbanísticos de determinados momentos históricos). A análise limitou-se aos padrões de traçados viários urbanos, não sendo objeto de estudo os demais elementos morfológicos da cidade. A adoção da utilização de cidades teóricas ou conceituais, implantadas ou não, tem como objetivo agregar caracteres de gênero aos traçados analíticos, além de reduzir a influência de características mistas das cidades reais.

b. Classificação prévia- Para classificação prévia dos principais traçados, foi tomada como base a classificação morfologia do plano, identificada na revisão bibliográfica sobre famílias de redes viárias (item 2.1.5), resultando na seguinte classificação inicial para os traçados viários: xadrez, radial, cluster e semi-retículo (antes identificado como espontâneo).

A nomenclatura adotada foi de escolha do autor deste estudo, uma vez que se encontram na literatura diversas possibilidades para se expressar o mesmo padrão de traçado viário.

c. Classificação das famílias - De posse da classificação prévia e da revisão histórica, procurou-se identificar se a categorização sugerida abrangia os principais padrões de traçados produzidos pelas cidades. A classificação inicial mostrou-se satisfatória, permitindo a identificação dos diferentes padrões de malhas viárias. Assim, para este trabalho, os padrões de traçados viários urbanos estão classificados em xadrez, radial, cluster e semi-retículo.

Descrição dos tipos

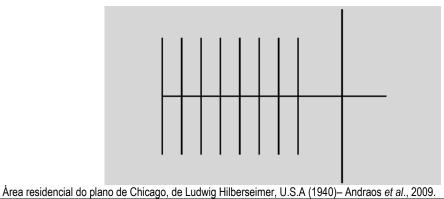

Uma vez definida a classificação, para a descrição dos tipos selecionaram-se exemplares de traçados viários de cidades reais e teóricas, representantes de cada classe de padrão. Para cada exemplar, foi construída uma representação linear (Figura 4.1 e Figura 4.2), da qual extraíram-se dados sobre características dos traçados, apresentados na Tabela 4.1 e na Tabela 4.2. As representações lineares foram construídas no software AutoCAD MAP 2010, na escala 1:1 metro, sendo os arquivos salvos na extensão DXF. Os dados apresentados em tabelas foram obtidos através do software Urban Metrics2012. A seguir, são identificadas as cidades selecionadas como exemplares.

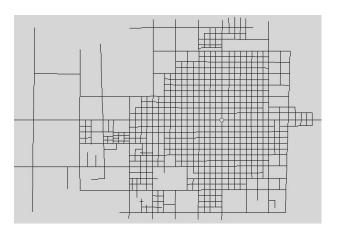
Identificação das cidades teóricas

Como representantes de cidades teóricas, por padrão de traçado viário, estão adotados os exemplares:

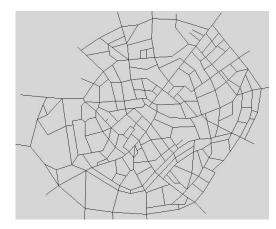
- a) xadrez- plano de reconstrução da cidade de Mendoza (1863), Argentina;
- **b)** radial- proposta cidade Jardim do Howard (1902);
- c) semi-retículo- cidade muçulmana, atual área histórica de Toledo, Espanha (século VII).
- d) cluster- área residencial do plano de Chicago, EUA, de Ludwig Hilberseimer, (1940);

Representações lineares das cidades teóricas

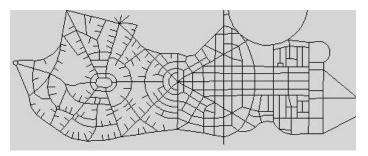


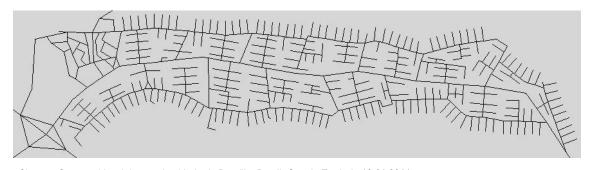

Figura 4.1 – Representações lineares das famílias de cidades teóricas As imagens das representações lineares apresentadas não resguardam escala.

Identificação das cidades reais.


Como representantes de cidades reais, estão adotados os exemplares:

- a) xadrez- cidade de Balcarce, Argentina;
- b) semi-retículo- cidade medieval (planta do século III), atual área histórica de Milão, Itália.
- c) radial- plano da cidade Goiânia (1933), Brasil;
- d) cluster- setor residencial norte da Cidade de Brasília (1959), Brasil;


Representações lineares das cidades reais.


Xadrez - Cidade de Balcarce, Argentina. Google Earth de 12.12.2010.

Semi-retículo - Cidade medieval de Milão, Itália, planta do século III. Benévolo, 1982.

Radial - Plano da Cidade de Goiânia, Brasil,1933

Cluster - Setor residencial norte da cidade de Brasília, Brasil. Google Earth de 10.01.2011

Figura 4.2 - Representações lineares das famílias de cidades reais

As imagens das representações lineares apresentadas não resguardam escala.

Dados gerais sobre as cidades teóricas e reais.

Com o intuito de auxiliar na descrição dos tipos, estão sistematizados, em forma de tabela, dados com características dos traçados viários referentes à superfície, número de segmentos de vias (IDs), comprimento total da malha viária e dados sobre o número de conexões dos segmentos de vias.

Tabela 4.1 - Dados sobre os representantes de famílias de cidades teóricas

Dados gerais dos traçados de cidades teóricas							
Descriminação	Xadrez	Radial	Cluster	Semi-retículo			
Superfície (m²)	1.000.000	1.309.338	457785	1.000.000			
Total do nº de IDs	140	402	27	578			
Densidade viária (m/m²)	0,0175	0,0267	0,0119	0,0298			
Dimensão total da malha (m) Média dos seguimentos de vias Mínimo Máximo	17.493,60	34.999,19	5.479,62	29.871,76			
	124,95	87,06	202,95	51,77			
	117,78	35	80,00	0,73			
	132,67	226	357,70	375,70			
Total de conexões Média de conexões Mínimo Máximo	728	2166	102	2418,00			
	5,20	5,39	3,78	4,19			
	3	2	2	1			
	6	8	6	8			

Os dados foram obtidos a partir das representações lineares dos traçados viários processados por meio do software Urban Metrics 2012.

Tabela 4.2 - Dados sobre os representantes de famílias de cidades reais

Dados gerais dos traçados de cidade reais							
Descriminação	Xadrez	Radial	Cluster	Semi-retículo			
Superfície (m²)	11.085.165	4.712.961	13.330.905	2.757.781			
Total do nº de IDs	1334	683	699	471			
Densidade viária (m/m²)	0,0148	0,0159	0,0088	0,0170			
Dimensão total da malha (m) Média dos segmentos de vias Mínimo Máximo	164.419,24	75.230,43	117.899,57	47.011,77			
	118,46	110,15	168,67	99,81			
	10,50	1,30	13,08	3,17			
	1.334,86	616,00	809,64	344,71			
Total de conexões	7.724	3.108	2.384	2.120			
Média de conexões	5,56	4,55	3,41	4,50			
Mínimo	1	2	1	1			
Máximo	9	9	7	8			

Os dados foram obtidos a partir das representações lineares dos traçados viários processados por meio do software Urban Metrics 2012.

Descrição dos tipos

Os tipos estão descritos com base nos dados extraídos de exemplos de traçados viários de cidades reais e teóricas, selecionadas como representantes de cada família e estão caracterizados através das descrições a seguir apresentadas.

- a. Xadrez- descrição típica: malha regular em grelha; vias dispostas de forma paralela e ortogonal com ângulos iguais a 90º, ou próximo, marcadas pela continuidade; quarteirões quadrados, cujas quadras possuem dimensões variadas.
- b. Radial- descrição típica: malha regular; padrão de malha em teia de aranha, composta por linhas retas divergentes a partir de um centro e vias concêntricas; vias divergentes compostas de linhas retas apresentando continuidade, nem sempre partindo do centro e vias concêntricas dispostas com regularidade; quarteirões com forma trapezoidal e triângulo com lados de dimensões bastante variáveis.
- c. Cluster- descrição típica: malha regular, padrão raiz ou árvore; a partir de uma via principal derivam vias que forma o cluster; vias em linhas retas, ou curvas, exibindo continuidade; apresentam "quadras" com tamanhos variados.
- d. Semi-retículo- descrição típica: malha irregular; vias constituem-se de linhas quebradas, cujos ângulos e segmentos possuem dimensões variadas entre segmentos; vias apresentando continuidade; "quarteirões" com forma e tamanho irregular.

Traçados analíticos

Traçado analítico, para este trabalho, é a representação linear do sistema viário de uma configuração urbana, não real, construída a partir das características do tipo descrito para cada classe de traçado de vias. A construção de traçados analíticos tem como objetivo obter traçados viários para os diferentes padrões de tecidos urbanos, que resguardem os caracteres genéricos e intrínsecos de cada padrão, mas ao mesmo tempo possuam elementos comuns que possibilitem análises comparativas.

Os tracados analíticos estão construídos a partir dos critérios descritos no método, que são similaridade do padrão, grão do padrão e igualdade de área. Na similaridade, observaram-se as características relacionais das formas, tais como regularidade, ângulos, proporção e relações de conexão. Para estabelecer o grão, foi mantido o ordenamento dos dados de densidade viária e média dos segmentos de vias dos traçados reais e teóricos. Em relação à igualdade de área, como destacado no método, foi adotado um espaço de urbanização igual para todos os traçados.

Dados referentes aos traçados analíticos e as imagens das representações lineares resultantes estão apresentadas na Figura 4.3 e Tabela 4.3. A representação linear da cidade de Toledo, utilizada como exemplar de cidade teórica, foi adotada como traçado analítico para o padrão semi-retículo, em função de entender-se que um exemplo-tipo representaria melhor as características da classe do que um traçado elaborado pelo autor. Os desenhos dos traçados viários foram desenvolvidos em ambiente computacional, utilizando o software AutoCAD MAP 2010, na escala 1:1 metro, e estão representados através de linhas dos eixos das vias, sendo os arquivos salvos em DXF.

Imagens dos traçados analíticos

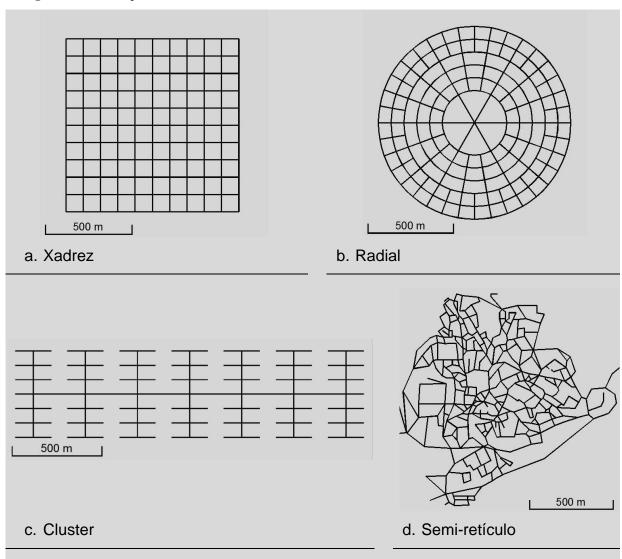


Figura 4.3 - Representação gráfica dos padrões de traçados analíticos Observações: as representações gráficas estão em mesma escala.

Tabela 4.3 - Dados sobre os tipos representantes de família

Dados gerais dos traçados viários analíticos							
Descriminação	Xadrez	Radial	Cluster 1.000.000 134 0,0137	Semi-retículo			
Superfície (m²)	1.000.000	1.000.000		1.000.000			
Total número de IDs	220	294		578			
Coef m/m²	0,0220	0,0247		0,0298			
Dimensão total malha (m) Média Mínimo Máximo	22.004,04	24.754,96	13.701,67	29.871,76			
	100,02	84,20	102,25	51,77			
	100,02	65,72	79,01	0,73			
	100,02	189,21	290,02	375,70			
Total de conexões Média Mínimo Máximo	1196,00	1578,00	504	2418,00			
	5,44	5,37	3,76	4,19			
	3,00	4,00	2,00	1,00			
	6,00	8,00	6,00	8,00			

Os dados apresentados conferem aos traçados analíticos a mesma ordenação apresentada pelos traçados viários de cidades reais e teóricas quanto à densidade viária, expressa pelo coeficiente m/m², e pelo comprimento médio dos segmentos de vias. Ordenações: a) quanto à densidade viária - cluster, xadrez, radial, semi-retículo e b) quanto à média dos segmentos - semi-retículo, radial xadrez e cluster.

4.1.2 Conceito e medida de acessibilidade

O objetivo do trabalho é correlacionar padrões de traçados viários, a partir da compreensão sistêmica da cidade, entendendo-se que o sistema de circulação, conjunto de modalidades de transportes e infraestrutura, é o responsável pelas conexões entre as partes do sistema urbano, as diversas áreas urbanas, utilizandose para tanto, como instrumento de análise, a acessibilidade urbana. Desta forma, a medida de acessibilidade utilizada é agregada, com capacidade de expressar um índice global para o sistema. Ao mesmo tempo, é simples de ser avaliada, pois utiliza poucos dados de entrada, considerando que se tratam de traçados analíticos construídos, portanto não possuindo informações complexas das características das modalidades de transportes e da infraestrutura.

Assim, a medida de acessibilidade construída e utilizada nas simulações assemelhase às de separação espacial, em que a malha viária é interpretada como uma rede, sob a ótica da Teoria de grafos, e utiliza como informações primárias: a) a distância como elemento natural de separação espacial e b) um elemento ponderador para simulador o efeito do sistema de circulação, sendo, portanto, uma medida de acessibilidade geométrica de rede.

Entretanto, na construção desta medida, o sistema de circulação não foi entendido como uma impedância- elemento redutor de atratividade entre oferta e demanda-

como na maioria dos estudos sobre acessibilidade que utilizam medidas gravitacionais e sim como um elemento que qualifica as conexões da rede, portanto foi entendido como um elemento redutor da separação espacial. Assim, vias melhor qualificadas, em termos de modalidades de transportes e infraestrutura viária, são ligações mais eficientes, portanto melhoram a conexão entre as partes do sistema, enquanto que vias menos qualificadas, naturalmente relativas ao mesmo sistema urbano, são conexões menos eficientes. Assim, o modelo do sistema de circulação foi interpretado como uma rede na qual as conexões possuem diferentes graus de eficiência em função da qualidade da infraestrutura viária e da disponibilidade de modalidades.

Para tanto, o modelo de verificação da acessibilidade geométrica foi concebido como de diferenciação espacial, baseado em conectividades e distâncias entre espaços urbanos, podendo ser definido pelos seguintes enunciados:

a. Medida de acessibilidade entre dois pontos do sistema

Equação 4.1- Medida de acessibilidade entre dois pontos

$$A_{Ii} = [min]d_{pq}^{-1}$$

Aqui, a acessibilidade da entidade i na interação I é igual ao inverso da mínima distância entre as entidades p e q, sendo AIi a acessibilidade da entidade i na interação I e $[min]d_{pq}^{-1}$ a mínima distância entre as entidades p e q.

Em termos simples, significa que o índice de acessibilidade entre dois pontos da malha é medido pelo menor percurso existente entre estes pontos. Percurso este ponderado pelo coeficiente em função do inverso da distância. Como exemplos, têm-se as seguintes situações: I) se a distância mínima entre dois pontos p e q é igual a 1 (um) metro, o índice de acessibilidade entre os dois pontos será igual ao inverso da distância, ou seja, um; II) se a distância mínima entre dois pontos $p \in q$ é igual a 100 (cem) metros, o índice de acessibilidade entre os dois pontos será igual ao inverso da distância, ou seja, 1/100 ou 0,01.

b. Medida de acessibilidade

Equação 4.2- Medida de acessibilidade

$$A_{Ai} = \sum_{i=1}^{ij} A_{Ii}$$

Nesta representação, a acessibilidade da entidade i é igual ao somatório das acessibilidades da entidade i em todas as interações I, de i a j, sendo o primeiro i igual a 1, A_{Ai} a acessibilidade da entidade i e A_{Ii} a acessibilidade da entidade i na interação I. Em termos simples significa que o índice de acessibilidade de um ponto da rede é o somatório dos índices de acessibilidade deste ponto a todos os outros da rede.

Conforme exposto, a medida de acessibilidade utilizada é um somatório de índices de acessibilidades ponderados pelo inverso da distância, sendo assim uma medida que leva em consideração a forma da rede e a distância. Portanto, pode ser entendida como uma medida de acessibilidade geométrica de rede da Teoria de grafos, bem como uma medida de separação espacial ou mesmo uma medida gravitacional, considerando a classificação apresentada na revisão bibliográfica, uma vez que o índice de acessibilidade é ponderado pela distância, ou seja, quanto maior a distância entre um ponto em relação a outro, menor será seu índice de acessibilidade.

Como a medida de acessibilidade desenvolvida para o trabalho pretendeu considerar o efeito do sistema de circulação sobre a acessibilidade, foi adicionado sobre a medida um segundo coeficiente de ponderação que expressa esse efeito, para este trabalho denominado parâmetro " \mathcal{C} ", desenvolvido no próximo item.

4.1.3 Parâmetro do sistema de circulação

O objetivo principal de elaborar um parâmetro para representar o efeito do sistema de circulação é criar um valor relacional que expresse a diferenciação da capacidade de conexão das vias entre as partes do sistema urbano. Por ser este trabalho um estudo teórico, que utiliza traçados viários construídos, adotou-se a opção pelo desenvolvimento de parâmetros que simulem a influência do sistema de circulação através de lógica matemática. Justifica-se a escolha por eles possuírem neutralidade quanto à origem e permitirem alterações graduais necessárias à modelagem, em detrimento da utilização de dados reais extraídos de cidades, também em função da inexistência de dados em publicações, além da dificuldade e complexidade operacional e metodológica para obtenção de dados em campo.

Assim, para reproduzir o efeito do sistema de circulação sobre a medida de acessibilidade, foram consideradas as premissas nas quais o efeito do sistema de circulação pode ser nulo, inexistente, ou máximo, conforme especificado a seguir.

- a. O efeito é **nulo** quando dois pontos quaisquer de um traçado viário urbano, sob efeito do otimizador do sistema de circulação, terão sua separação espacial expressa pela distância real entre os dois pontos. Por exemplo, se um ponto A está distante 100 metros do ponto B e o efeito do sistema de circulação é nulo, a distância entre os pontos A e B permanecerá igual a 100 metros. O parâmetro que representa o efeito do sistema de circulação nulo deve ser igual a 1,00, ou seja, não modifica a distância.
- b. O efeito é **máximo** quando dois pontos quaisquer de um traçado viário, sob efeito otimizador do sistema de circulação, terão sua separação espacial tendendo para zero. Por exemplo, se um ponto A está distante 100 metros do ponto B e o efeito do sistema de circulação é máximo, a distância entre os pontos A e B tenderá para zero. O parâmetro que representa o efeito do sistema de circulação máximo é um valor próximo de zero que, para fim prático, será admitido como zero.

Considerando-se as duas premissas, foram obtidos para o resultado da medida de acessibilidade valores extremos nos quais, para a condição de efeito nulo, com índice igual a 1,00, há igualdade na medida de acessibilidade geométrica e para o efeito máximo, com parâmetro tendendo a zero, a medida de acessibilidade aproxima-se de valor positivo infinito. Como o objetivo dos parâmetros do efeito do sistema de circulação é demonstrar o comportamento dos traçados viários quanto à acessibilidade, foram testados valores experimentais, entre zero e um.

Conforme estabelecido na metodologia, os índices de acessibilidade estão calculados para os elementos componentes dos traçados viários, os segmentos de vias (IDs), sendo estes subdivididos em quatro classes em função dos valores dos

índices de acessibilidades, sem considerar o efeito do sistema de circulação. A partir disso, foram geradas a classe um (para o conjunto de elementos de menores valores), a classe quatro (para o conjunto de elementos de maiores valores) e as classes dois e três (para os valores intermediários de acessibilidade). Desta forma, foram desenvolvidos quatro parâmetros para simular o efeito do sistema de circulação, um para cada classe, identificados como c1, c2, c3 e c4.

Com o intuito de ajustar um valor relacional entre as vias da classe quatro e da classe um, foram feitos testes experimentais. Para tanto, definiu-se como base para classe um o parâmetro de valor um, que representa o efeito nulo, e para classe quatro, valores entre um efeito nulo e cem mil vezes (um valor expressivamente maior, visando representar o efeito máximo). Para as classes intermediárias dois e três, estão calculados valores com base em uma distribuição linear, entre os valores utilizados para classe um e o valor um (parâmetro base para classe quatro).

Para os experimentos, foram testados os valores relacionais 1, 2, 5, 10, 100, 1.000, 10.000 e 100.000. Os valores resultantes para C1, C2, C3, e C4 estão apresentados na Tabela 4.4 e Figura 4.4.

N°	Relação <i>X</i>	Parâmetro <i>c</i> por classe									
ordem	Notagao 21	Classe 4- C4	Classe 3- C3	Classe2- C2	Classe1- C1						
1	1	1(efeito nulo)	1	1	1						
2	2	0,5	0,666666667	0,833333333	1						
3	5	0,2	0,466666667	0,733333333	1						
4	10	0,1	0,4	0,7	1						
5	100	0,01	0,34	0,67	1						
6	1.000	0,001	0,334	0,667	1						
7	10.000	0,0001	0,3334	0,6667	1						
8	100.000	0,00001	0,33334	0,66667	1						
9	χ→∞	c → 0(efeito máximo)	0,333333333	0,66666666	1						

A relação X representa o número de vezes que a capacidade de conexão de uma via pertencente à classe quatro é maior do que de uma via pertencente à classe um. O parâmetro "C" expressa o efeito do sistema de circulação, tomando como referência X, sendo c1 (parâmetros correspondentes a classe um) o valor relativizado de X com base em 1,00 (parâmetro correspondente à classe quatro). Os valores para C2 e C3 estão calculados com base em uma distribuição linear, entre os valores utilizados para classe um e o valor um (parâmetro base para classe quatro).

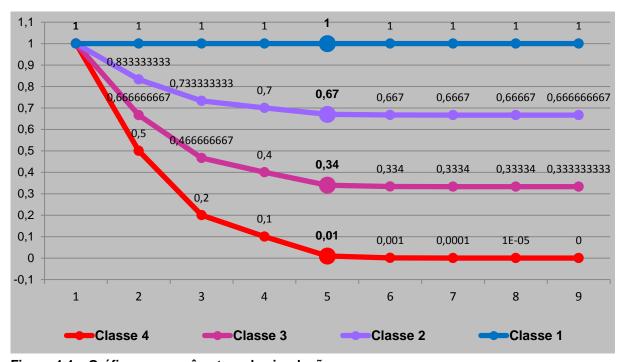


Figura 4.4 – Gráfico com parâmetros de circulação A Figura 4.4 é a representação gráfica das relações e valores apresentados na Tabela 4.4. O gráfico apresenta no eixo x os valores experimentais para relação x e no eixo y os valores de c para as classes 1, 2, 3, e 4.

A relação X representa o número de vezes que a capacidade de conexão, por exemplo, de uma via pertencente à classe 4, é maior do que de uma via pertencente à classe 1. O parâmetro **c** expressa essa relação, tomando como referência X, sendo C4 (parâmetro correspondente à classe 4) o valor relativizado de X com base em 1,00 (parâmetro correspondente à classe 1).

Equação 4.3- Parâmetro C: relação entre classes

$$C4 = \frac{C1}{x}$$

Analisando os dados da tabela 4.4, observa-se que os valores testados para X, entre um e dez (n° de ordem de 1 a 4), apresentam variações representativas entre eles para os parâmetros de uma mesma classe, especialmente para os valores das classes 2 e 3, superiores ou próximos a cinco por cento, enquanto que os valores entre 100 e o efeito máximo (nº de ordem de 5 a 9) apresentam pequenas variações para os valores de mesma classe. Assim, para o desenvolvimento do trabalho, foi adotado o valor 100 para a relação X, por representar o experimento para o parâmetro C a partir do qual existe estabilidade dos resultados, apresentando pequena variação percentual entre os parâmetros de mesma classe (valores menores do que um por cento).

Desta forma, os parâmetros utilizados no trabalho para representarem a diferenciação da capacidade de conexão das vias relativo ao efeito do sistema de circulação estão apresentados, por classe, na tabela abaixo.

Tabela 4.5- Parâmetros simuladores do efeito do sistema de circulação

Classe	Parâmetro c
<i>C1</i>	1,00
<i>C2</i>	0,67
<i>C3</i>	0,34
<i>C4</i>	0,01

Assim, para as simulações realizadas no trabalho, os segmentos de vias (IDs) pertencentes às classes 1, 2, 3 e 4 estão respectivamente ponderados pelos parâmetros *C1*, *C2*, *C3* e *C4*.

Nesta primeira parte do capítulo, foram apresentados os elementos estruturantes do trabalho ou elementos de entrada descritos na etapa 1 do método, que são o desenvolvimento: a) dos traçados analíticos para os padrões de malha viária xadrez, radial, cluster e semi-retículo; b) do conceito e medida de acessibilidade e c) dos parâmetros de circulação. Todos estes elementos foram implementados em ambiente computacional, a seguir apresentado, visando à realização das simulações.

4.2 Ambiente computacional

O ambiente computacional consiste na descrição do conjunto de softwares utilizados para o desenvolvimento das simulações, em especial do software dedicado a realizar as verificações das medidas de acessibilidade e de representá-las graficamente. Entre as principais características necessárias para seleção, deve consistir em um software de análise espacial baseado na Teoria de grafos, ser livre e possuir plataforma aberta, a fim de permitir as adequações específicas para o desenvolvimento do trabalho, além de conter necessariamente as seguintes capacidades:

- a. permitir a construção ou importação de redes construídas em softwares de desenho, como AutoCAD, uma vez que as malhas possuem precisão dimensional;
- b. verificar medida de acessibilidade geométrica;
- c. gerar representação gráfica das medidas de acessibilidade sobre as redes, ou seja, associar as medidas ao segmentos de vias e exportar os resultados em formato de imagem;
- d. exportar banco de dados com as medidas de acessibilidade para softwares de processamento de dados e geração de gráficos;
- e. permitir adequações especificas do trabalho, como o agrupamento em classes dos segmentos de vias e a introdução dos parâmetros simuladores do efeito do sistema de circulação.

Atualmente, existem diversos softwares capazes de efetuar medidas acessibilidade de uma rede e de representá-las graficamente, alguns nacionais, entre eles o Medidas Urbanas. Optou-se pelo software Medidas Urbanas por atender às especificidades do trabalho e se tratar de software produzido pelo Laboratório de Urbanismo (LabUrb) da Faculdade de Arquitetura e Urbanismo da Universidade Federal de Pelotas, o que facilitou a introdução das adequações necessárias.

O Medidas Urbanas trata-se de um software computacional de análise espacial baseado em modelos configuracionais urbanos de base morfológica. O software foi desenvolvido no ano de 1994, pelos professores Maurício Couto Polidori e Romulo Krafta, em uma parceria da Faculdade de Arquitetura e Urbanismo da Universidade Federal de Pelotas com o Programa de Pós-Graduação em Planejamento Urbano da Universidade Federal do Rio Grande do Sul (PROPUR/UFRGS), com apoio da FAPERGS.

O software Medidas Urbanas opera como um sistema de informações geográficas simplificado, trabalhando simultaneamente com dois tipos de informações: dados espaciais, em ambiente vetorial e dados tabulares, contendo bancos de dados sobre o ambiente em estudo. Os dados espaciais representam o sistema de espaços interconectados da cidade, normalmente referindo-se às ruas urbanas. Já os dados tabulares especificam geométrica e topologicamente as informações espaciais, bem como conferem ao espaço atributos qualitativos e quantitativos. Uma vez disponíveis estes dados, o programa permite a aplicação dos modelos de Acessibilidade, Centralidade e Desempenho.

Devido à defasagem da plataforma do Medidas Urbanas, o que gerava incompatibilidade com outros sistemas operacionais atuais, houve a necessidade de adequações visando o desenvolvimento do trabalho. Assim, paralelamente e este trabalho, está sendo desenvolvida nova versão para o software, o Urban Metrics 2012, com o intuito de: a) gerar versões para sistemas operacionais como Linux, Windows e MAC; b) gerar compatibilidade com plataformas atuais de softwares de desenho, de banco de dados, de planilhas de cálculos, de SIG e editores de imagens; c) incorporar habilidades específicas para o desenvolvimento deste trabalho, descritas a seguir; d) incorporar inovações.

Este trabalho de reestruturação do software, além do autor desta dissertação, conta com a participação dos acadêmicos Bruno Stone e Érico Alves Grehs e dos professores Anderson Ferrugem e Mariltom Sanchotene de Aguiar, da Faculdade de Engenharia de Computação, sob a coordenação do professor Maurício Couto Polidori, da Faculdade de Arquitetura Urbanismo.

Além da reestruturação da plataforma, de nova interface gráfica, especificamente para elaboração deste trabalho, adicionou-se um módulo para simular o efeito do sistema de circulação sobre o cálculo do índice de acessibilidade, através do qual é possível qualificar as vias individualmente ou por classe por meio da introdução de parâmetros experimentais (caso específico utilizado no trabalho) ou a partir da descriminação de parâmetros representantes das modalidades de transporte e da infraestrutura residentes nas vias (em desenvolvimento). O módulo de transporte apresenta como característica ser totalmente editável, no qual todos os dados de entrada referentes às modalidades de transporte e de infraestrutura, como a qualificação destes, podem ser acrescidos, reduzidos ou substituídos a partir da demanda de cada trabalho. O software Urban Metrics 2012 encontra-se disponível no sítio http://www.ufpel.edu.br/faurb/laburb/produto/urban-metrics-2012/297.

Além do Urban Metrics 2012, foram utilizados como apoio os softwares AutoCAD Map 2010, para construção das representações lineares; Photoshop, para edição de imagens; Excel 2007, para geração de gráficos e tabelas; e Word 2007, para geração deste relatório, além das ferramentas da WEB Google e Google Earth.

Neste capítulo, foram construídos os traçados analíticos representantes das famílias de traçados viários, os parâmetros simuladores do efeito do sistema de circulação, o conceito e medida de acessibilidade e por último o ambiente computacional.

Uma vez construído o ambiente computacional capaz de realizar os experimentos e apresentados os elementos de entrada, no próximo capítulo são desenvolvidas as simulações.

5 Simulações

Este capítulo apresentada as simulações e a análise dos resultados dos experimentos, atividades correspondentes às etapas 3 e 4 do método. As simulações consistem na verificação da acessibilidade dos traçados viários analíticos para os padrões xadrez, radial, cluster e semi-retículo, desenvolvidos no capítulo anterior.

5.1 Desenvolvimento das simulações

As simulações têm como objetivo responder as perguntas de pesquisa e verificar a validade das hipóteses. Para tanto, estão estruturadas em duas fases: a primeira verifica medidas de acessibilidades levando em consideração somente a distância como elemento de separação espacial; a segunda verifica medidas de acessibilidades considerando o efeito do sistema de circulação. Visando ressaltar as diferenciações entre os traçados, estão simuladas duas alternativas antagônicas de sistema de circulação. Assim, estão estabelecidas três verificações do índice de acessibilidade, descriminadas a seguir:

A1 - verificação da acessibilidade um. Este conjunto de experimentos visa verificar a acessibilidade, sem influência do sistema de circulação, com o objetivo de estabelecer associações exclusivamente referentes à forma dos traçados viários e servir posteriormente como referência para as simulações que consideraram a influência do sistema de circulação. Os experimentos estão apresentados na Figura 5.1, Figura 5.4, Figura 5.7 e Figura 5.10;

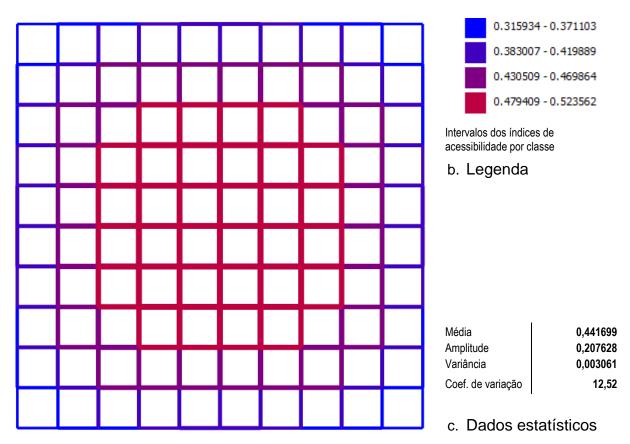
A2 - verificação da acessibilidade dois. Este conjunto de experimentos mede a acessibilidade considerando o efeito do sistema de circulação e tem como objetivo reproduzir as características do sistema de circulação normalmente apresentado pelas cidades, nas quais as áreas centrais são dotadas de melhor sistema de circulação, qualidade que vai diminuindo gradativamente e de forma concêntrica em direção à periferia. Para reproduzir este efeito, estão aplicados os parâmetros simuladores do sistema de circulação desenvolvidos anteriormente e apresentados na Tabela 4.5, que são para classe 1 -1,00; classe 2 - 0,67; classe 3 - 0,34 e classe 4 - 0,01. As simulações estão apresentadas na Figura 5.2, Figura 5.5, Figura 5.8 e Figura 5.11.

A3 - verificação da acessibilidade três. Este conjunto de experimentos mediu a acessibilidade considerando o efeito do sistema de circulação e tem como objetivo reproduzir as características inversas ao sistema de circulação normalmente apresentado pelas cidades. Assim, para essa verificação, as vias da periferia estão dotadas de melhor sistema de circulação, qualidade que vai diminuindo gradativamente e de forma concêntrica em direção à área central. Para reproduzir este efeito, estão aplicados os parâmetros simuladores do sistema de circulação, desenvolvidos anteriormente, na ordem inversa aos apresentados na Tabela 4.5, ou seja, para classe 1 - 0,01; classe 2 - 0,34; classe 3 - 0,67 e classe 4 - 1,00. As simulações estão apresentadas na Figura 5.3, Figura 5.6, Figura 5.9 e Figura 5.12.

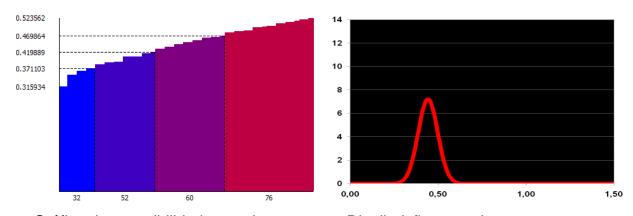
Considerações gerais sobre as simulações

Os experimentos estão desenvolvidos em meio computacional através do software Urban Metrics 2012, sendo realizadas as verificações A1, A2 e A3 para os traçados analíticos dos padrões xadrez, radial, cluster e semi-retículo e identificadas através dos códigos XA1, XA2, XA3; RA1, RA2, RA3; CA1, CA2, CA3 e SRA1, SRA2, SRA3, respectivamente, e apresentadas nas Figura 5.1 a Figura 5.12.

As simulações estão representadas por meio de:


a. mapas axiais – os mapas axiais apresentam os segmentos de vias subdivididos em quatro classes em função de suas medidas de acessibilidades. Para classificação, é utilizado o método estatístico Natural Breaks. Os segmentos de vias estão identificados por cores e espessura de linhas em função da classe a que assim convencionado: classe um- com menores índices acessibilidades, cor azul e linhas com menores espessuras; classe quatro - com maiores índices de acessibilidades, cor vermelha e linhas com maiores espessuras e

classe dois e três- com índices intermediários, cores e espessuras de linhas intermediárias entre as utilizadas para classe um e quatro;

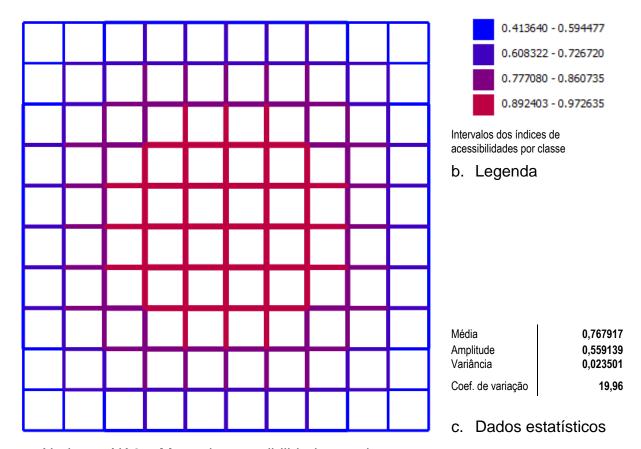

- b. dados tabulados- as medidas de acessibilidade estão verificadas individualmente por IDs (segmentos de vias) e estão tabuladas por tipo de verificação (A1, A2 e A3) e por padrão de traçado viário. As planilhas estão apresentadas no Apêndice A -Índices de acessibilidade por simulação. Na página inicial, encontram-se as medidas estatísticas média, amplitude, variância e coeficiente de variação;
- c. tabela resumo com dados estatísticos- apresenta valores para média, amplitude, variância e coeficiente de variação:
- d. gráficos de linhas, apresentando a distribuição das medidas de acessibilidade subdivididas por classe e
- e. gráficos da curva normal, correspondentes à distribuição dos índices de acessibilidades.

O conjunto de informações contidas em cada verificação visa permitir identificar: a) visualmente de forma simplificada, por meio dos mapas axiais, a distribuição espacial da acessibilidade, a partir da posição dos segmentos de vias, agrupados por classe, sobre a malha viária; b) a participação do número de segmentos de vias e a variação dos valores dos índices de acessibilidade por classe e para o conjunto por meio dos gráficos de linhas; c) um valor representativo da acessibilidade para cada traçado, expresso pela média; d) um valor representativo da diferenciação da acessibilidade entre os segmentos de vias componentes de cada traçado, ou seja, da dispersão dos valores dos índices de acessibilidades dos elementos, feito por meio dos dados de amplitude e coeficiente de variação (CV), considerando a amplitude um valor absoluto e o CV um valor relativo à média do conjunto de dados; e) de forma normalizada e visual, através das curvas normais, os dados estatísticos média do sistema e a dispersão dos índices de acessibilidade dos segmentos de vias.

A seguir, estão apresentadas as simulações A1, A2 e A3 para os padrões de traçados analíticos xadrez, radial, cluster e semi-retículo, nesta ordem.

a. Xadrez – XA1 – Mapa de acessibilidade por classe.

d. Gráfico de acessibilidade por classe


Eixo dos x: número de IDs por classe Eixo dos y: índices de acessibilidades

e. Distribuição normal

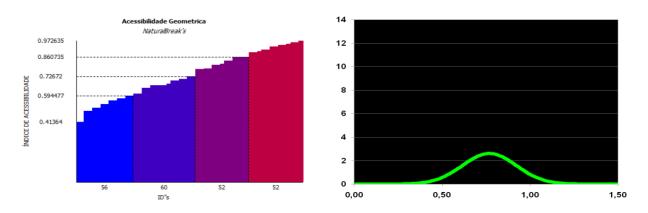
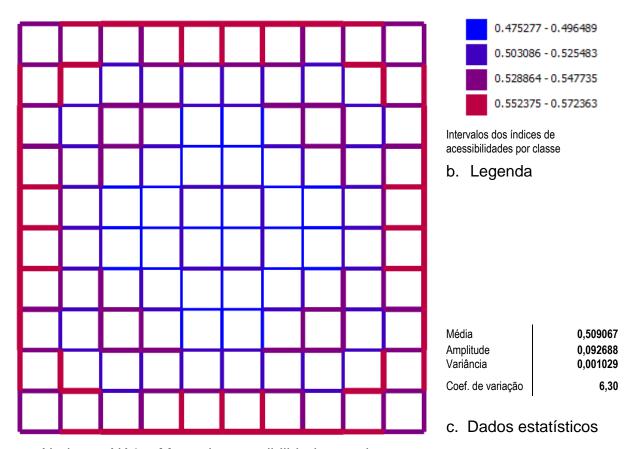

Eixo X: índices de acessibilidades

Figura 5.1 - XA1 - Simulação A1 para o traçado xadrez

Interpretação - A verificação da acessibilidade XA1, sem efeito do sistema de circulação, apresenta na figura a o mapa axial da simulação, no qual pode ser observada a distribuição espacial da acessibilidade, separada por classes, em que se identifica a concentração dos elementos de maior acessibilidade na área central; distribuição crescente do número de IDs da classe 1 para classe 4 (Fig. d); média de acessibilidade para o sistema de 0,44 (Fig. c) e a dispersão dos índices de acessibilidade através da amplitude, variância e coeficiente de variação (Fig. c). A média e a dispersão podem ser observados graficamente na curva normal (Fig. e).

a. Xadrez - XA2 - Mapa de acessibilidade por classe

d. Gráfico de acessibilidade por classe


Eixo dos x: número de IDs por classe Eixo dos y: índices de acessibilidades

e. Distribuição normal

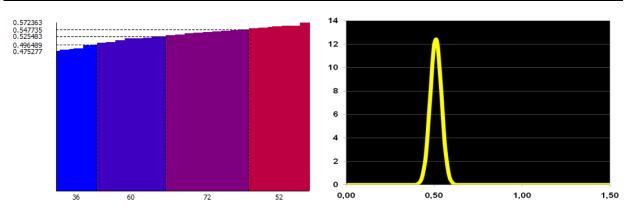
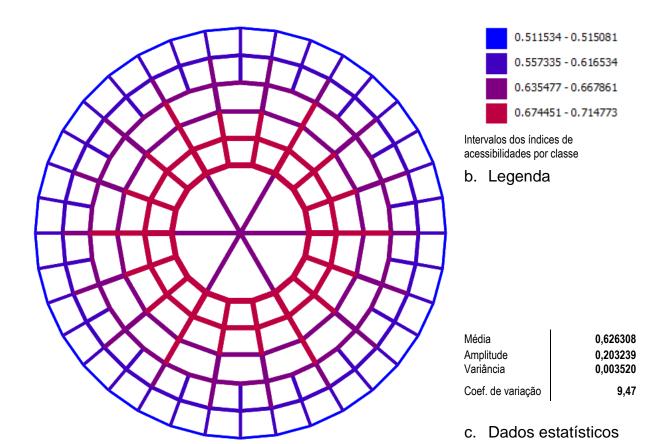

Eixo X: índices de acessibilidades

Figura 5.2 – XA2 – Simulação A2 para o traçado xadrez

Interpretação - A verificação da acessibilidade XA2, sob efeito do sistema de circulação, apresenta na figura a o mapa axial, no qual pode ser observada a distribuição espacial da acessibilidade, separada por classes, em que se identifica a concentração dos elementos de maior acessibilidade na área central e, quando relacionada com a simulação XA1, observa-se redução do número de vias pertencentes às classes 4 e 3 e ampliação nas classes 1 e 2 (Fig. a e d); ampliação da média do sistema e dos índices de acessibilidades para todas as classes com percentual crescente da classe 1 para classe 4 (Fig. b, c e e) e aumento da amplitude, ou seja, aumento da dispersão dos dados (Fig. b, c e e). Assim, nota-se que houve concentração da acessibilidade nas classes 3 e 4, principalmente na classe 4 e aumento da diferenciação entre as classes, expresso na amplitude, na curva normal (Fig. e) e pelo aumento do percentual do CV de 12,52 para 19,96 (Fig. c).

Xadrez - XA3 - Mapa de acessibilidade por classe


d. Gráfico de acessibilidade por classe

e. Distribuição normal Eixo X: índices de acessibilidades

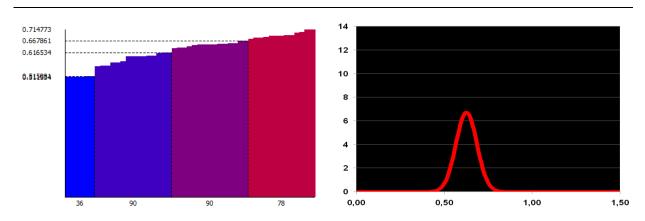
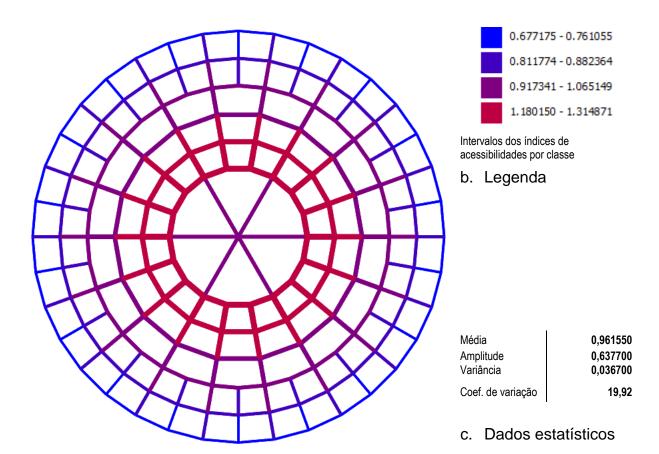

Eixo dos x: número de IDs por classe Eixo dos v: índices de acessibilidades

Figura 5.3 - XA3 - Simulação A3 para o traçado xadrez

Interpretação - A verificação da acessibilidade XA3, sob efeito do sistema de circulação, apresenta na figura a o mapa axial, no qual pode ser observada a distribuição espacial da acessibilidade, separada por classes, em que se identifica a concentração dos elementos de maior acessibilidade na área periférica e, quando relacionada com a simulação XA1, observa-se redução do número de vias pertencentes à classe 4 e ampliação das classes 1, 2 e 3 (Fig. a e d); ampliação da média do sistema e dos índices de acessibilidade para todas as classes e redução da amplitude, ou seja, diminuição da dispersão dos dados (Fig. b, c e e). Assim, observa-se que houve apropriação da acessibilidade do sistema pelas vias periféricas com redução da diferenciação entre as classes, expresso na amplitude, curva normal (Fig. e) e pelo redução do CV de 12,52 para 6,30 (Fig. c).

a. Radial - RA1 - Mapa de acessibilidade por classe

d. Gráfico de acessibilidade por classe


Eixo dos x: número de IDs por classe Eixo dos v: índices de acessibilidades

e. Distribuição normal

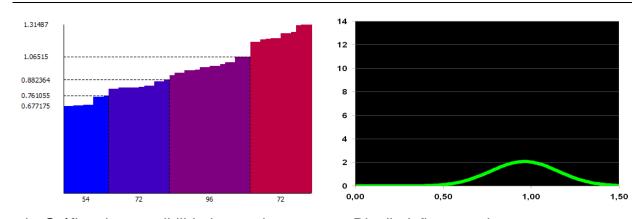
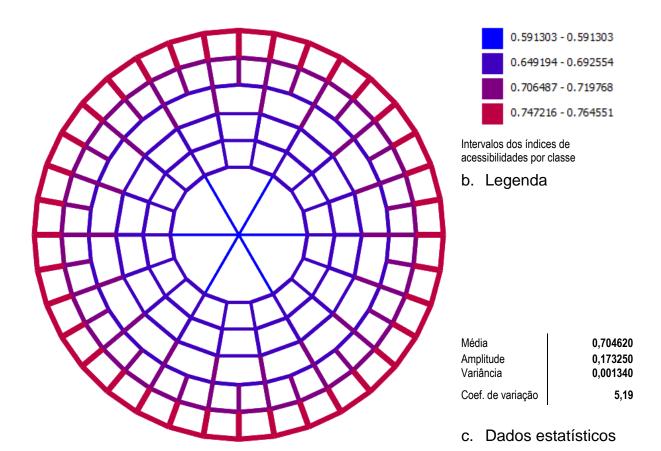

Eixo X: índices de acessibilidades

Figura 5.4 - RA1 - Simulação A1 para o traçado radial

Interpretação - A verificação da acessibilidade RA1, sem efeito do sistema de circulação, apresenta na figura a o mapa axial, em que pode ser observada a distribuição espacial da acessibilidade, separada por classes, em que se identifica a concentração dos elementos de maior acessibilidade na área central; distribuição do número de IDs maiores nas classes 3 e 4 (Fig. d); média de acessibilidade para o sistema de 0, 62 (Fig. c) e a dispersão dos índices através da amplitude, variância e coeficiente de variação (Fig. c). A média e a dispersão podem ser observados graficamente na curva normal (Fig. e).

a. Radial - RA2 - Mapa de acessibilidade por classe

d. Gráfico de acessibilidade por classe


Eixo dos x: número de IDs por classe Eixo dos v: índices de acessibilidades

e. Distribuição normal

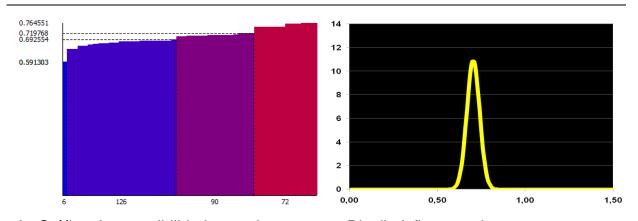

Eixo X: índices de acessibilidades

Figura 5.5 - RA2. Simulação A2 para o traçado radial

Interpretação - A verificação da acessibilidade RA2, sob efeito do sistema de circulação, apresenta na figura a o mapa axial, no qual pode ser observada a distribuição espacial da acessibilidade, separada por classes, em que se identifica a concentração dos elementos de maior acessibilidade na área central e, quando relacionada com a simulação RA1, observa-se redução do número de vias pertencentes às classes 4 e 2 e ampliação nas classes 1 e 3 (Fig. a e d); ampliação da média do sistema e dos índices de acessibilidade para todas as classes e aumento da amplitude, ou seja, aumento da dispersão dos dados (Fig. b, c e e). Assim, observa-se que houve concentração da acessibilidade nas classes 3 e 4, principalmente na classe 4, e aumento da diferenciação entre as classes, expresso na amplitude, curva normal (Fig. e) e pelo aumento do percentual do CV de 9,47 para 19,92 (Fig. c).

a. Radial - RA3 - Mapa de acessibilidade por classe

d. Gráfico de acessibilidade por classe

Eixo dos x: número de IDs por classe Eixo dos y: índices de acessibilidades

e. Distribuição normal

Eixo X: índices de acessibilidades

Figura 5.6 - RA3 - Simulação A3 para o traçado radial

Interpretação - A verificação da acessibilidade RA3, sob efeito do sistema de circulação, apresenta na figura a o mapa axial, no qual pode ser observada a distribuição espacial da acessibilidade, separada por classes, em que se identifica a concentração dos elementos de maior acessibilidade na área periférica e, quando relacionada com a simulação RA1, observa-se redução expressiva do número de vias pertencentes à classe 1, pequena redução da classe 4, ampliação da classe 2 e igualdade para classe 3 (Fig. a e d); ampliação da média do sistema e dos índices de acessibilidade para todas as classes e redução da amplitude, ou seja, diminuição da dispersão dos dados (Fig. b, c e e). Desta forma, observa-se que houve apropriação da acessibilidade do sistema pelas vias periféricas com redução da diferenciação entre as classes, expresso na amplitude e curva normal (Fig. e) e pela redução do percentual do CV de 9,47 para 5,19 (Fig. **c**).

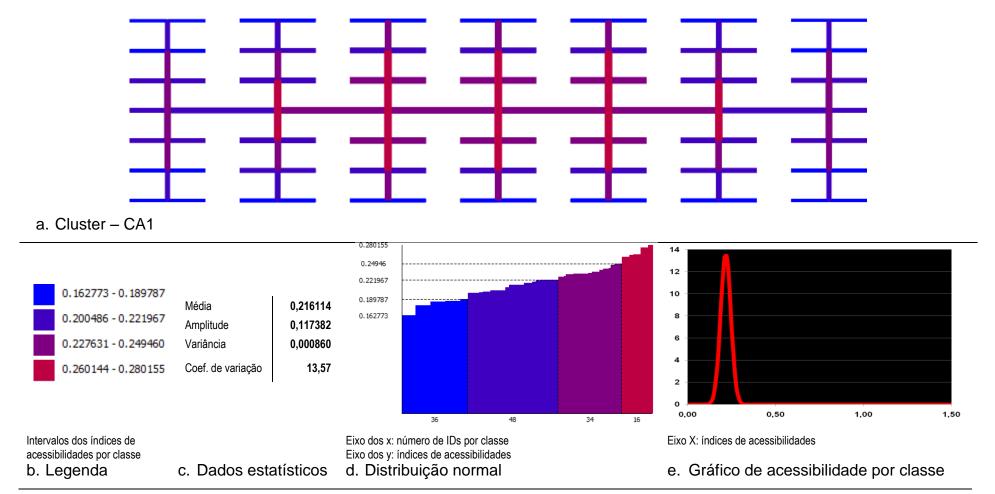


Figura 5.7 - CA1 - Simulação A1 para o traçado cluster

Interpretação - A verificação da acessibilidade CA1, sem efeito do sistema de circulação, apresenta na figura a o mapa axial, no qual pode ser observada a distribuição espacial da acessibilidade, separada por classes, em que se identifica a concentração dos elementos de maior acessibilidade na área central; maior número de IDs nas classes 1 e 2 do que nas classes 3 e 4 (fig. d); média de acessibilidade para o sistema de 0,22 (Fig. c) e dispersão dos índices de acessibilidades em relação à média de 13,57 (CV – Coeficiente de variação) (Fig. c). A média e o CV podem ser observados graficamente na curva normal (Fig. e).

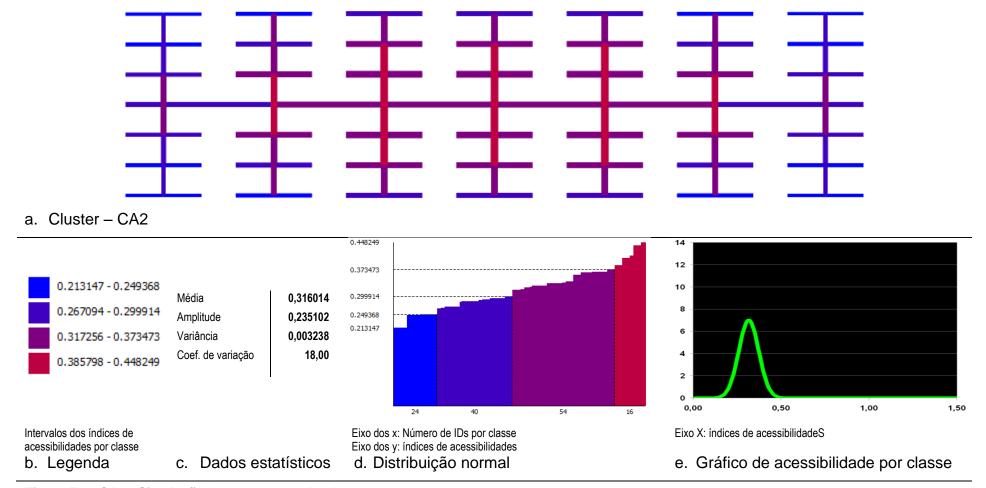


Figura 5.8 - CA2 - Simulação A2 para o traçado cluster

Interpretação - A verificação da acessibilidade CA2, sob efeito do sistema de circulação, apresenta na figura **a** o mapa axial, no qual pode ser observada a distribuição espacial da acessibilidade, separada por classes, em que se identifica a concentração dos elementos de maior acessibilidade na área central e, quando relacionada com a simulação CA1, observa-se redução da soma do número de vias pertencentes às classes 1 e 2 e ampliação nas classes 3 e 4 (Fig. **a** e **d**); ampliação da média do sistema e dos índices de acessibilidades para todas as classes e aumento da amplitude, ou seja, aumento da dispersão dos dados (Fig. **b**, **c** e **e**). Assim se observa que houve concentração da acessibilidade nas classes 3 e 4, e aumento da diferenciação entre as classes, expresso na amplitude e curva normal (Fig. **e**) e pelo aumento do percentual do CV de 13,57 para 18,00(Fig. **c**).

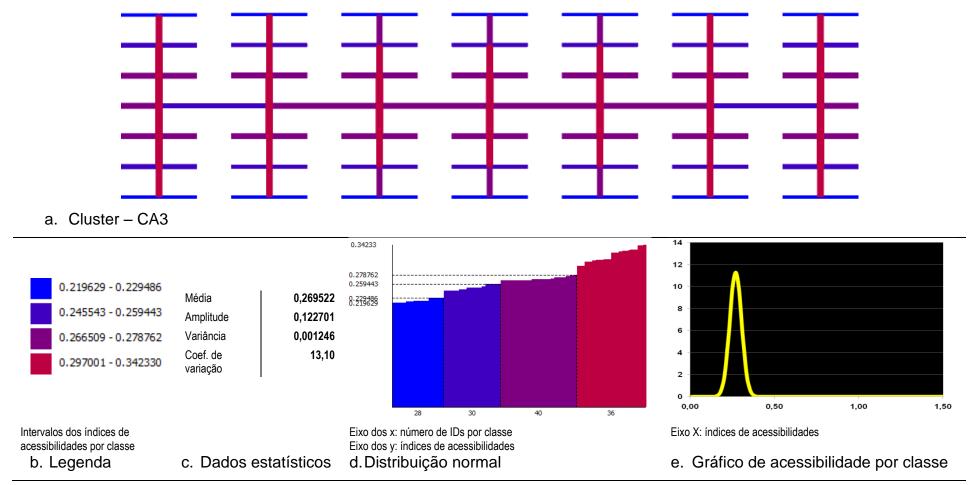
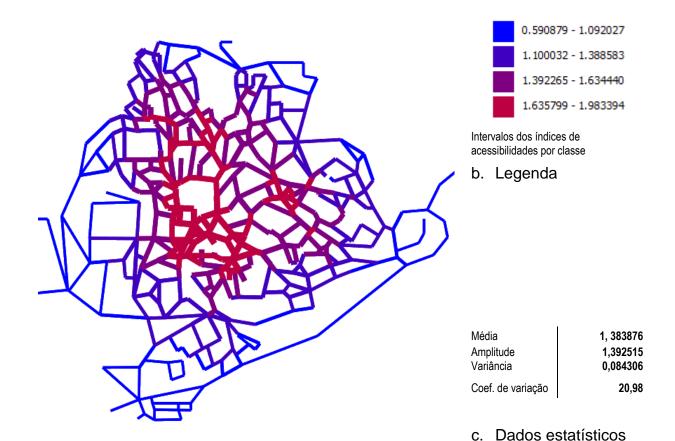
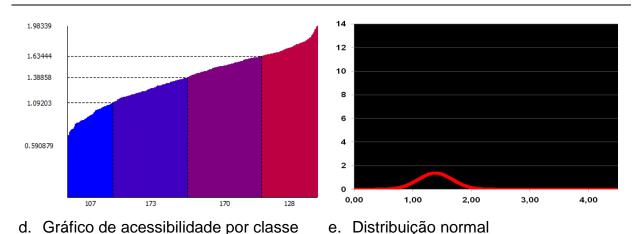
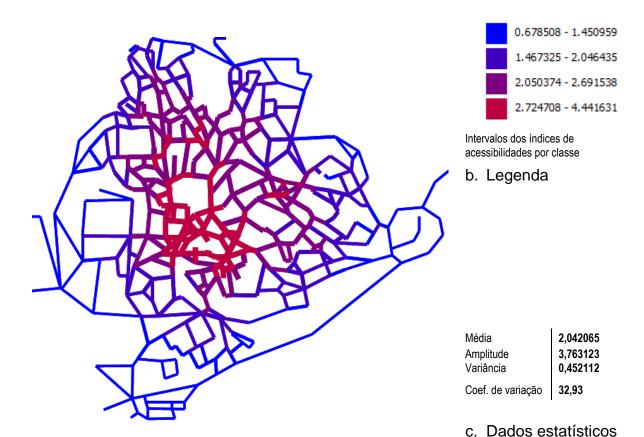




Figura 5.9 - CA3 - Simulação A3 para o traçado cluster.

Interpretação - A verificação da acessibilidade CA3, sob efeito do sistema de circulação, apresenta na figura a o mapa axial, no qual pode ser observada a distribuição espacial da acessibilidade, separada por classes, em que se identifica a concentração dos elementos de maior acessibilidade na área central e, quando relacionada com a simulação CA1, observa-se a redução do número de vias pertencentes às classes 1 e 2 e ampliação nas classes 3 e 4 (Fig. a e d); ampliação da média do sistema e dos índices de acessibilidades para todas as classes e pequena redução da amplitude, ou seja, pequena redução da dispersão dos dados (Fig. b, c e e). Assim, observa-se que houve apropriação da acessibilidade do sistema pelas classes menores, com redução da diferenciação entre as classes, expresso na amplitude, curva normal (Fig. e) e pelo aumento do percentual do CV de 13,57 para 13,10 (Fig. c).

a. Semi-retículo – SRA1 – Mapa de acessibilidade por classe

d. Gráfico de acessibilidade por classe


Eixo dos x: número de IDs por classe

Eixo X: índices de acessibilidades

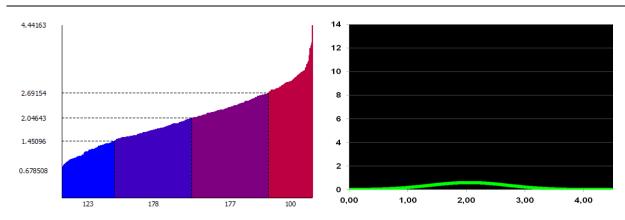
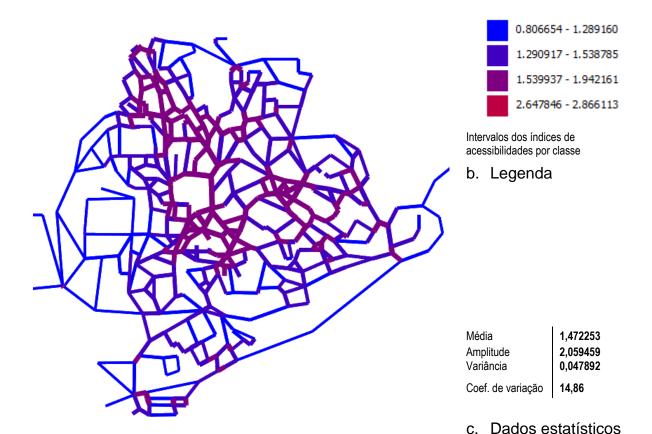

Eixo dos y: índices de acessibilidades

Figura 5.10 - SRA1 - Simulação A1 para o traçado semi-retículo

Interpretação - A verificação da acessibilidade SRA1, sem efeito do sistema de circulação, apresenta na figura a o mapa axial da simulação, no qual pode ser observada a distribuição espacial da acessibilidade, separada por classes, em que se observa a concentração dos elementos de maior acessibilidade na área central; maior número de IDs nas classe 3 e 4 (Fig. d); média de acessibilidade para o sistema de 1,38 (Fig. c) e dispersão dos índices de acessibilidades em relação à média de 20,98 (CV - Coeficiente de variação) (Fig. c). A média e o CV podem ser observados graficamente na curva normal (Fig. e). Destaca-se como peculiaridade do padrão a grande dispersão entre os elementos de menores e maiores índices de acessibilidades, demonstrado pela declividade inicial e final da curva (Fig. d).

a. Semi-retículo - SRA2 - Mapa de acessibilidade por classe

d. Gráfico de acessibilidade por classe


Eixo dos x: número de IDs por classe Eixo dos y: índices de acessibilidades

e. Distribuição normal

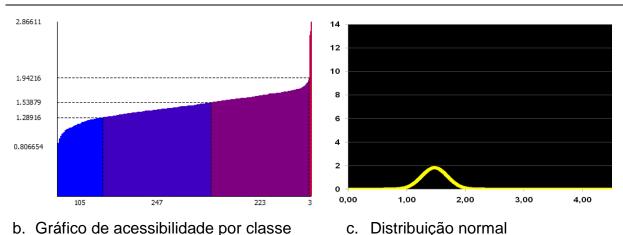

Eixo X: índices de acessibilidades

Figura 5.11 - SRA2 - Simulação A2 para o traçado semi-retículo.

Interpretação - A verificação da acessibilidade SRA2, sob efeito do sistema de circulação, apresenta na figura a o mapa axial, no qual pode ser observada a distribuição espacial da acessibilidade, separada por classes, em que se identifica a concentração dos elementos de maior acessibilidade na área central e, quando relacionada com a simulação SRA1, observa-se a redução do número de vias pertencentes à classe 4 e ampliação nas classes 1,2 e 3 (Fig. a e d); ampliação da média do sistema e dos índices de acessibilidade para todas as classes, com percentual crescente da classe 1 para classe 4 (Fig. b, c e e) e aumento da amplitude, ou seja, aumento da dispersão dos dados (Fig. b, c e e). Assim, observa-se que houve concentração da acessibilidade nas classes 3 e 4, principalmente na classe 4, e aumento da diferenciação entre as classes, expresso na curva normal (Fig. e) e pelo aumento do percentual do CV de 20,98 para 32,93 (Fig. c). Destaca-se como peculiaridade do padrão a grande dispersão entre os elementos de maiores índices de acessibilidade, demonstrado pela declividade final da curva (Fig. d).

a. Semi-retículo- SRA3 - Mapa de acessibilidade por classe

b. Gráfico de acessibilidade por classe

Eixo X: índices de acessibilidades

Eixo dos x: número de IDs por classe Eixo dos y: índices de acessibilidades

Figura 5.12 - SRA3 - Simulação para o traçado semi-retículo

Interpretação - A verificação da acessibilidade SRA3, sob efeito do sistema de circulação, apresenta na figura a o mapa axial, no qual pode ser observada a distribuição espacial da acessibilidade, separada por classes, em que se identifica a concentração dos elementos de maior acessibilidade na área central e, quando relacionada com a simulação SRA1, observa-se expressiva redução do número de vias pertencentes à classe 4 e ampliação nas classes 1,2 e 3 (Fig. a e d); ampliação da média do sistema e dos índices de acessibilidade para todas as classes, com percentual crescente da classe 1 para a classe 4 (Fig. b, c e e) e redução da amplitude, ou seja, redução da dispersão dos dados (Fig. b, c e e). Assim, observa-se que houve concentração da acessibilidade nas classes 3 e 4, principalmente na classe 4, e redução da diferenciação entre as classes, expresso na curva normal (Fig. e) e pelo diminuição do percentual do CV de 20,98 para 14,86 (Fig. c). Destaca-se como peculiaridade do padrão a grande dispersão entre os elementos de maiores índices de acessibilidade, demonstrado pela declividade final da curva (Fig. d).

5.2 Análise das simulações

A análise das simulações consiste na sistematização e organização dos dados resultantes dos experimentos, com o fim de auxiliar a elaboração das conclusões. Para tanto, está estruturada em dois momentos: a) por meio da construção de instrumentos auxiliares de análise e b) pela sistematização das principais informações dos dados estatísticos.

5.2.1 Instrumentos auxiliares para análise

Além das informações que compõem a representação das simulações, estão desenvolvidos os seguintes instrumentos auxiliares para análise dos dados:

- a. figura comparativa dos índices de acessibilidades, com gráficos de linhas, das verificações A1, por traçado viário (Figura 5.13);
- b. figura comparativa dos índices de acessibilidades, com gráficos de linhas, das verificações A1, A2 e A3, por traçado viário (Figura 5.14);
- c. gráfico e tabela comparativa da participação percentual dos intervalos dos índices de acessibilidades, por classe, para as verificações A1, A2 e A3 (Figura 5.17 e <u>Tabela 5.1</u>);
- d. gráfico e tabela comparativa da participação percentual do número de segmentos de vias (IDs), por classe, para as verificações A1, A2 e A3 (Figura 5.18 e Tabela 5.2);
- e. curvas normais comparativas para verificações A1, A2 e A3, para cada traçado. (Figura 5.15);
- f. curvas normais comparativas entre os diferentes traçados para verificações A1, A2 e A3 (Figura 5.16).

Observação: as curvas normais apresentam os resultados dos diferentes traçados viários estudados de forma parametrizada, permitindo assim a visualização comparativa de amostras com conjunto de dados de diferentes tamanhos.

Os instrumentos desenvolvidos estão a seguir apresentados.

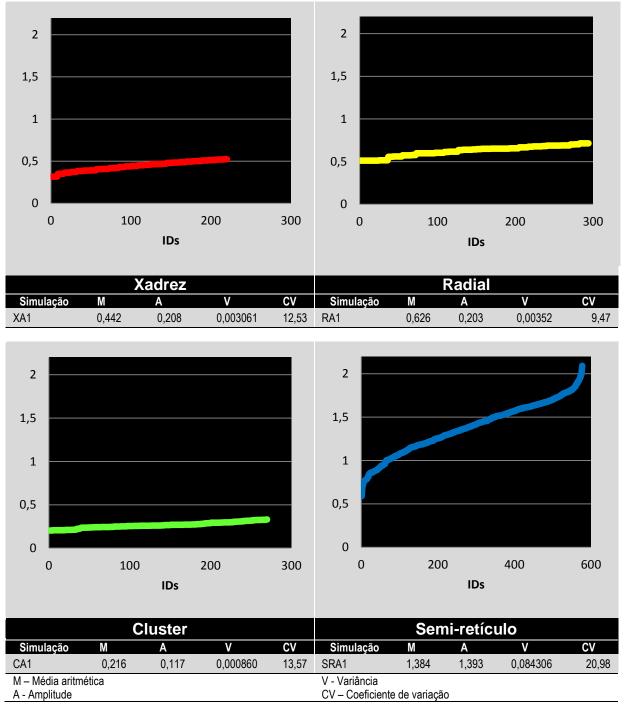


Figura 5.13 - Comparativo dos índices de acessibilidade entre os padrões de traçados para simulações A1

Os gráficos apresentam no eixo X o número de IDs e no Y valores para o índice de acessibilidade.

Interpretação - A figura 5.13 apresenta gráficos com as curvas dos índices de acessibilidades por padrão de traçado viário e dados estatísticos resultantes das simulações A1. De posse destas informações, observa-se que quanto à média e dispersão, o traçado cluster apresentou os menores valores, o traçado semi-retículo os maiores valores e os traçados xadrez e radial valores semelhantes e intermediários. A dispersão está expressa pela Amplitude e CV e visualmente através dos gráficos. Como peculiaridade, o traçado semiretículo destaca uma grande dispersão entre os elementos de menores e maiores índices de acessibilidades, demonstrado pela declividade inicial e final da curva, entretanto o traçado em cluster apresenta uma regularidade no acréscimo dos índices de acessibilidade, demonstrado pela curva que se aproxima de uma reta inclinada.

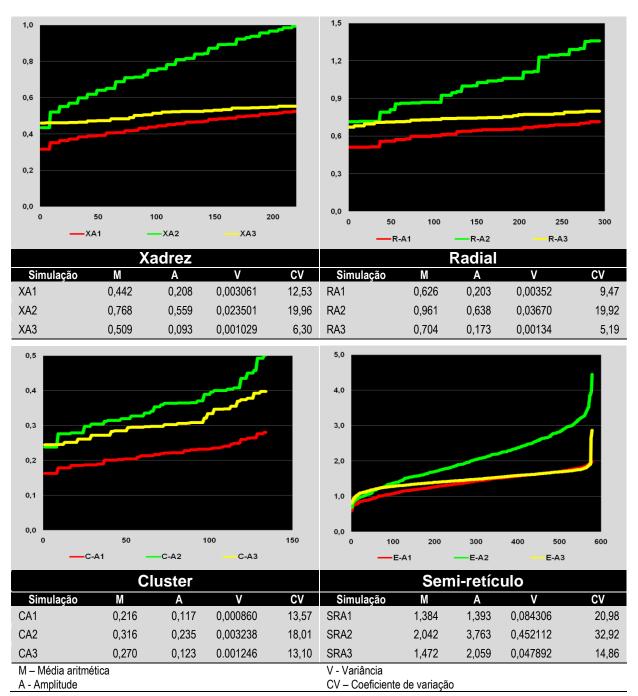


Figura 5.14 – Gráficos comparativos dos índices de acessibilidade entre os padrões traçados para as simulações A1, A2 e A3

Os gráficos apresentam no eixo X o número de IDs e no Y valores para o índice de acessibilidade.

Interpretação - Considerando-se os dados e gráficos das simulações, observa-se que: a) os traçados xadrez e radial apresentaram semelhanças para as três simulações, com pequena diferenciação referente à média. Aumentaram a diferenciação entre seus elementos para simulação A2 e reduziram substancialmente essa diferenciação para simulação A3, observações que estão expressas pela Amplitude e pelo CV. Como característica particular, o traçado xadrez apresentou a maior redução da diferenciação, para simulação A3, entre os tracados; b) o tracado cluster manteve a menor média de acessibilidade

, com relação aos outros traçados, para as três simulações. A simulação A2 apresentou pequeno aumento da dispersão e a simulação A3 não apresentou praticamente alteração. Como particularidade, o padrão apresenta distribuição uniforme dos índices de acessibilidades para as três simulações, característica expressa pela linearidade das três curvas que se assemelham a uma reta; c) o tracado semiretículo manteve a maior média para as três simulações. Quanto à dispersão entre os elementos, apresenta, para a simulação A2 um aumento significativo e para a simulação A3, menor aumento. Como característica particular, o traçado semi-retículo apresentou concentração de poucos elementos com grandes índices de acessibilidades, demonstrado graficamente pela forte inclinação no final da curva, para as simulações A2 e A3.

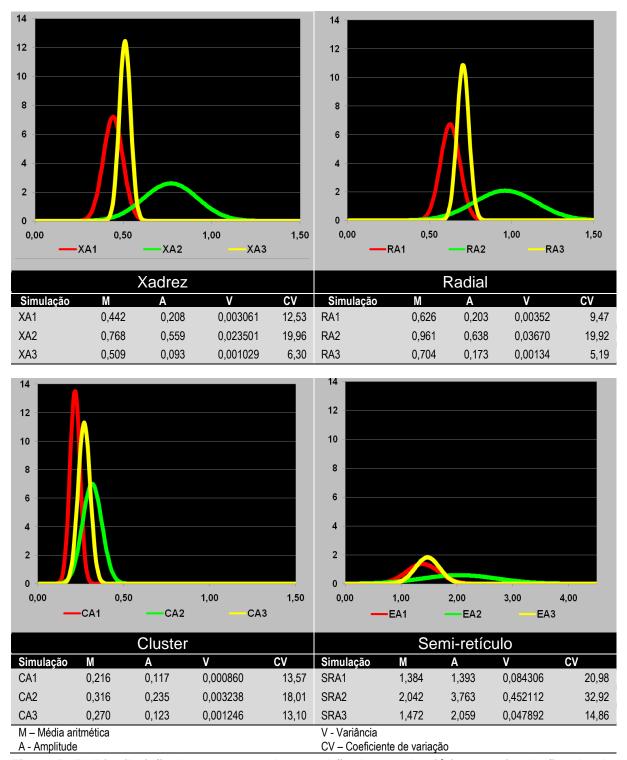
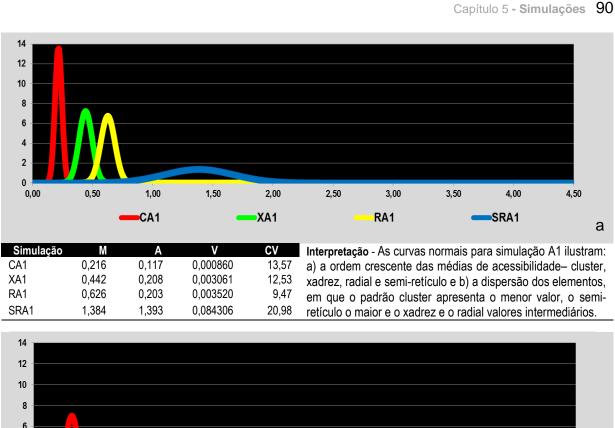
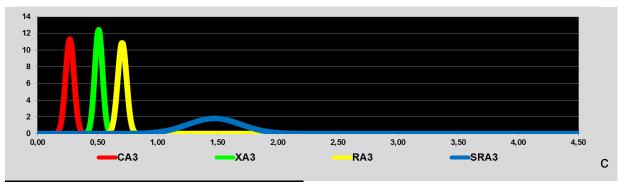



Figura 5.15 - Distribuição da curva normal por padrão de traçado viário para simulações A1, A2 e A3

As curvas normais apresentam, no eixo X, valores referentes aos índices de acessibilidades.


Interpretação - A figura 5.15 apresenta a distribuição normalizada dos índices de acessibilidade das simulações A1, A2 e A3 para os padrões de traçados viários xadrez, radial, cluster e semi-retículo. As curvas normais ilustram: a) variações das médias- nas quais podese observar o aumento das médias para as simulações A2 e A3 em relação à simulação A1, com a particularidade para a simulação A2, que apresentou médias superiores à simulação A3, para todos os padrões de traçados; b) variações da dispersão- nas quais pode-se observar o aumento da dispersão para simulações A2 e a redução da dispersão dos elementos para simulações A3, com exceção do padrão cluster, que apresenta pequeno aumento da dispersão (amplitude).

6 4 2		<u>~</u>							
0,00	0,50	1,00	1,50	2,00	2,50	3,00	3,50	4,00	4,50
	— C	A2	— XA	12	RA	2	SRA	12	b
Simulação	M	Α	٧	CV	Interpretação	o - As curvas	normais pa	ra simulação	A2 ilustram
CA2	0,316	0,235	0,003238	18,01				•	mentos com
XA2	0,768	0,559	0,023501	19,96					ordem das
RA2	0,961	0,638	0,036700	19,92	médias.	3		3	

32,92

médias.

Simulação	M	Α	V	CV
CA3	0,270	0,123	0,001246	13,10
XA3	0,509	0,093	0,001029	6,30
RA3	0,704	0,173	0,001340	5,19
SRA3	1,472	2,059	0,047892	14,86

3,763

0,452112

SRA2

2,042

Interpretação - As curvas normais para simulação A3 ilustram: a) o aumento das médias e a redução da dispersão dos elementos com relação à simulação A1; b) a redução das médias e da dispersão com relação à simulação A2; c) a manutenção da ordem média.

Figura 5.16 – Distribuição da curva norma para simulação A1, A2 e A3 por padrão

A figura 5.16 apresenta a distribuição normalizada dos índices de acessibilidades para os padrões de traçados viários xadrez, radial, cluster e semi-retículo por simulação: o gráfico a para simulação A1, o gráfico b para simulação A2 e o gráfico c para simulação A3.

Os gráficos e tabelas a seguir apresentam de forma relativa, em percentual, a participação do número de elementos (IDs) (Figura 5.17 e Tabela 5.1) e os intervalos dos índices de acessibilidade (Figura 5.18 e Tabela 5.2) por classe, para as simulações A1, A2 e A3 para os padrões de traçados viários xadrez, radial, cluster e semi-retículo, identificados pela letras X, R, C e SR. Os gráficos e tabelas permitem a observação da participação percentual: a) entre classes de uma mesma simulação; b) entre classes de simulações diferentes para um mesmo traçado; c) entre classes de uma mesma simulação e traçados diferentes e d) entre classes para simulações diferentes e padrões diferentes.

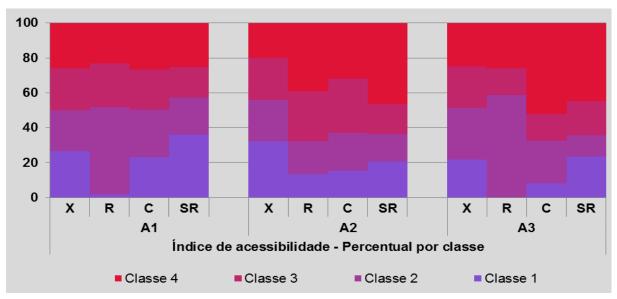


Figura 5.17-Intervalos dos índices de acessibilidades - percentual por classe.

Tabela 5.1 - Intervalos dos Índices de acessibilidades - percentual por classe.

Índice de acessibilidade - Percentual por classe														
Classe			A2					A3						
	Х	R	С	SR		Х	R	С	SR		Х	R	С	SR
4	25,86	23,08	26,50	25,07	2	20,04	39,18	31,91	46,55		24,74	25,86	52,03	44,88
3	24,07	25,25	23,08	17,60	2	23,97	28,68	31,11	17,15		23,71	15,52	15,45	19,57
2	23,50	49,92	27,35	21,34	2	23,79	18,97	21,66	15,80		29,90	58,62	24,39	12,14
1	26,57	1,75	23,08	35,99	(32,20	13,17	15,32	20,50		21,65	0,00	8,13	23,41

A Tabela 5.1 e a Figura 5.17 apresentam dados relativos aos intervalos dos valores dos índices de acessibilidades por classe e caracterizam a dispersão dos dados nas classes, ou seja, quanto maior o percentual da classe maior a dispersão entre seus elementos. De posse das informações, pode-se destacar: a) para o padrão xadrez, a

regularidade na distribuição percentual entre as classes para as três simulações; b) para o padrão radial, o grande percentual da classe 2 e pequeno percentual da classe 1 nas simulações A1 e A3; c) para o padrão cluster, o aumento crescente do percentual da classe 4 e a redução crescente da classe 1 nas simulações A2 e A3 e para o padrão semi-retículo, o grande aumento da participação da classe 4 na simulações A2 e A3. Entre simulações pode-se destacar o aumento da dispersão da classe 4 nas simulações A2 e A3 (aumento da mancha vermelha).

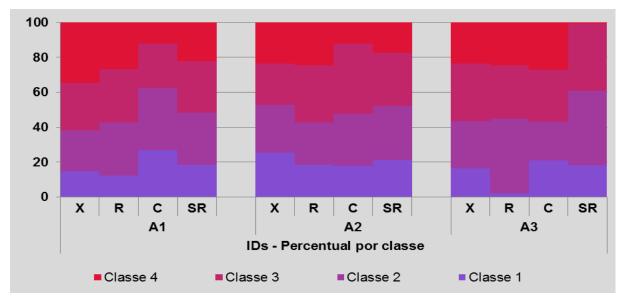


Figura 5.18 - Percentual de segmentos de vias (IDs) por classe

Tabela 5.2 - Percentual de segmentos de vias (IDs) por classe

IDs - Percentual por classe															
Classe	A1					A2					A3				
Ciasse	Χ	R	С	SR		Χ	R	С	SR		Х	R	С	SR	
4	34,55	26,53	11,94	22,15		23,64	24,49	11,94	17,30		23,64	24,49	26,87	0,52	
3	27,27	30,61	25,37	29,41		23,64	32,65	40,30	30,62		32,73	30,61	29,85	38,58	
2	23,64	30,61	35,82	29,93		27,27	24,49	29,85	30,80		27,27	42,86	22,39	42,73	
1	14,55	12,24	26,87	18,51		25,45	18,37	17,91	21,28		16,36	2,04	20,90	18,17	

A Tabela 5.2 e a Figura 5.18 apresentam dados relativos ao percentual do número de IDs pertencentes por classe, por simulação e por padrão de traçado viário. De posse das informações, pode-se destacar: a) para a simulação A1, o maior percentual da classe 1 e 2 para o padrão cluster, que somados apresentam

percentual maior do que 50%; b) para simulação A2, a regularidade das classes entre padrões, em que se observa horizontalidade as manchas das classes e c) para simulação A3, o pequeno percentual da classe 1 do padrão radial e o pequeno percentual da classe 4 do padrão semi-retículo.

5.2.2 Análise dos resultados

A análise consiste na sistematização dos dados estatísticos (médias dos sistemas e dispersão dos índices de acessibilidade dos segmentos de vias, expressa pela amplitude e coeficiente de variação) e da distribuição espacial da acessibilidade (descrita pelos mapas axiais). Para tanto, está estruturada em quatro grupos: simulações A1; simulações A2; simulações A3 e análise geral.

- a. Simulações A1. Verificação que não considera a influência do sistema de circulação sobre acessibilidade.
- a.1. Para as simulações A1, os padrões de traçados viários apresentaram as seguinte ordem para os valores da média e dispersão:
- ordenação da média- semi-retículo (1,384), radial (0,626), xadrez (0,442) e cluster (0,216);
- ordenação da amplitude (diferencial entre o maior e menor valor)- semi-retículo (1,393), xadrez e radial (0,208 e 0,203) e cluster (0,117);
- ordenação do coeficiente de variação- semi-retículo (20,98), cluster (13,57), xadrez (12,53) e radial (9,47).
- a.2. Quanto à distribuição espacial da acessibilidade, destaca-se que todos os padrões de traçados apresentaram concentração dos segmentos de vias com maiores índices nas área centrais e menores índices nas área periféricas.

A distribuição espacial dos segmentos e as ordenações das médias, amplitudes e coeficientes de variação, referentes às simulações A1, podem ser observadas na <u>Figura 5.1; Figura 5.4; Figura 5.7</u> e <u>Figura 5.10</u>.

- b. Simulações A2. Análise dos resultados para as verificações que consideram a influência do sistema de circulação sobre a medida de acessibilidade, em que a área central é dotada de melhor sistema de circulação do que a periférica.
- b.1. Para as simulações A2, os padrões de traçados viários apresentaram as seguintes ordenações para os valores da média e dispersão:
- ordenação da média- semi-retículo (2,042), radial (0,962), xadrez (0,768) e cluster (0,316). Destaca-se que houve aumento das médias para todos os padrões relativamente às médias das simulações A1, sendo que o padrão xadrez apresentou menor percentual de variação de aumento (22,39 %), enquanto que as tipologias radial, linear e semi-retículo variaram: 46,16 %; 41,88 % e 42,47 %, respectivamente (veja <u>Figura 5.13</u> a <u>Figura 5.16</u>);
- ordenação da amplitude
 – semi-retículo (3,763), radial (0,638), xadrez (0,559) e cluster (0,235);
- ordenação do coeficiente de variação- semi-retículo (32,92), xadrez (19,96), radial (19,92) e cluster (18,01).
- b.2. Quanto à distribuição espacial da acessibilidade, como na simulação A1, todos os padrões de traçados mantiveram a concentração dos segmentos de vias com maiores índices de acessibilidades (classe 4) na área central e com menores índices (classe 1) na área periférica. Pode-se destacar como diferenciação da simulação A1 uma maior concentração da acessibilidade na área central, ou seja, um menor números de segmentos de vias pertencem à classe 4, mas com índices de acessibilidades maiores.

A distribuição espacial dos segmentos e as ordenações das médias, amplitudes e coeficientes de variação, referentes às simulações A2, podem ser observadas na Figura 5.2; Figura 5.5; Figura 5.8 e Figura 5.11.

c. Simulações A3. Análise dos resultados para as verificações que consideram a influência do sistema de circulação sobre a medida de acessibilidade, em que a área periférica é dotada de melhor sistema de circulação do que a central.

- c.1 Para as simulações A3, os padrões de traçados viários apresentaram as seguintes ordenações para os valores da média e dispersão:
- ordenação da média semi-retículo (1,472), radial (0,705), xadrez (0,509) e cluster (0,270). Destaca-se o aumento nas médias dos índices de acessibilidades para todos os padrões, ainda que menores que os apresentados nas simulações A2;
- ordenação da amplitude- semi-retículo (2,059), radial (0,173), cluster (0,123) e Xadrez (0,093);
- ordenação do coeficiente de variação- semi-retículo (14,86), cluster (13,10), xadrez e (6,30) e radial (5,19).
- c.2. Quanto à distribuição espacial da acessibilidade, distintamente das simulações A1 e A2, a simulação A3 apresentou diferenciação entre os padrões. O padrão cluster manteve a concentração dos segmentos de vias com maiores índices de acessibilidades (classe 4) na área central e com menores índices (classe 1) na área periférica, ainda que com uma distribuição menos concentrada. O padrão semiretículo apresentou reduzido percentual de segmentos de vias na classe 4 (0,52%), sendo estes localizados em zona intermediária entre a área central e a periférica, mas manteve a concentração na área central por meio da manutenção da classe 3. Já os padrões xadrez e radial apresentaram os segmentos de vias com maiores índices de acessibilidades localizados na área periférica e os de menores índices na área central.

A distribuição espacial dos segmentos e as ordenações das médias, amplitudes e coeficientes de variação, referentes às simulações A3, podem ser observadas na Figura 5.3- xadrez; Figura 5.6- radial; Figura 5.9- cluster e Figura 5.12- semiretículo).

d. Análise geral. Esta análise relaciona as simulações A1, A2 e A3 aos padrões de traçados viários, o que permite destacar as observações a seguir:

d.1. Quanto à média dos sistemas.

Os padrões de traçados mantiveram a mesma ordenação entre as médias para as três simulações (A1, A2 e A3), de maior para menor: semi-retículo, radial, xadrez e cluster.

No que tange as verificações que consideram melhoria no sistema de circulação (A2 e A3), identifica-se que as simulações A2 (que implementam melhoria nas classes com maiores índices de acessibilidade), trazem maiores acréscimos às médias dos sistemas do que as simulações A3 (que implementam melhoria nas classes de menores índices de acessibilidade).

d.2. Quanto à dispersão dos índices de acessibilidades.

O padrão semi-retículo apresenta a maior amplitude para as três simulações entre os padrões, enquanto que os padrões xadrez e radial tendem para valores intermediários; já o cluster apresenta os menores valores.

As simulações A3 apresentaram redução da amplitude para todos os padrões em relação às simulações A2, ou seja, a implementação de melhorias nos sistemas de circulação nas classes com menores índices de acessibilidade trazem maior equidade aos sistemas, reduzindo a dispersão dos índices de acessibilidades dos segmentos de vias, o que pode ser observado nas Figura 5.13 a Figura 5.16.

As simulações A3, quando relacionadas às simulações A1, apresentam redução da amplitude para o padrão xadrez e radial (0,208 para 0,093 e 0,203 para 0,173 respectivamente), semelhança para o cluster (0,117 para 0,123) e aumento para o semi-retículo (1,393 para 2,059) (veja Figura 5.13 a Figura 5.16).

As simulações A2 apresentaram aumento da amplitude em relação às simulações A1 e A3, ou seja, a implementação de melhorias nos sistemas de circulação nas classes com maiores índices de acessibilidades trazem maior desigualdade ao sistema, aumentando a dispersão dos índices de acessibilidades (veja Figura 5.13 a Figura 5.16).

d.3. Quanto à distribuição espacial da acessibilidade.

As simulações A1, que não consideram o sistema de circulação e as simulações A2, que otimizam o sistema de circulação na área central, como característica geral, concentram os segmentos de vias com maiores índices de acessibilidades (classe 4) nas áreas centrais e os menores nas áreas periféricas (classe1).

As simulações A2 apresentam, para todos os padrões de traçados, maior concentração da acessibilidade na área central do que as simulações A1, ou seja, apresenta um menor número de segmentos de vias pertencentes à classe 4, mas com maiores valores para os índices de acessibilidades.

As simulações A3, como já ressaltado anteriormente no item c.2., apresentaram diferenciação quanto à distribuição espacial entre os padrões e com relação às simulações A1 e A2. Diferentemente das simulações A1 e A2, nas quais os segmentos de vias com maiores índices de acessibilidade localizaram-se nas áreas centrais, na simulação A3 os padrões apresentaram a seguinte distribuição: o cluster manteve a tendência de localizar os segmentos de maiores índices na área central; o semi-retículo concentrou os segmentos de maiores índices em área intermediária entre o centro e a periferia; o xadrez e o radial concentraram os segmentos com maiores índices de acessibilidade na área periférica e os de menores índices na área central.

A distribuição espacial dos segmentos e as ordenações das médias, amplitudes e coeficientes de variação, referentes às simulações A1, A2 e A3, podem ser observadas na Figura 5.1 a Figura 5.12.

Este capítulo apresentou as simulações que verificaram acessibilidades para os padrões de traçados viários xadrez, radial, cluster e semi-retículo e, na sua parte final, sistematizou os resultados dos experimentos visando auxiliar a elaboração das conclusões, que serão expostas na próxima seção.

6 Conclusões

Este trabalho propôs-se a buscar associações, diferenças e semelhanças entre os padrões de traçados viários urbanos tendo como base a análise da acessibilidade, medida a partir da forma da cidade e considerando efeitos do sistema de circulação. Na introdução, está delimitado o tema, caracterizado o problema de pesquisa, estabelecidos os objetivos principais e as hipóteses que norteiam o desenvolvimento da pesquisa; nos capítulos seguintes, estão desenvolvidos o método e a parte empírica. Nesta parte final do trabalho, estão apresentadas as conclusões e observações sobre os resultados alcançados, organizadas em três grupos: a) verificação da validade das hipóteses; b) observações e associações sobre os resultados; c) contribuição, limitações e continuidades.

As conclusões estão elaboradas considerando os resultados e análise dos dados das simulações (chamadas de A1, A2 e A3), a partir da observação do conjunto de informações estatísticas, visuais e de dados tabulados. As diferenciações e semelhanças entre os padrões estão descritas a partir da observação: a) das médias de acessibilidades do sistemas; b) da dispersão dos dados, que estão caracterizados pela amplitude, variância e coeficiente de variação; c) pelas visualizações dos mapas axiais, que permitem a associação da distribuição espacial dos segmentos de vias e seus índices de acessibilidades; d) pelos gráficos comparativos da distribuição dos índices de acessibilidades; e) pelos gráficos comparativos das curvas normais; e) pelos gráficos comparativos dos percentuais por classe para intervalos de IDs e de índices de acessibilidades por classe. Informações estas apresentadas no capítulo anterior.

Verificação da validade das hipóteses 6.1

No Capítulo 1, estão enunciadas as perguntas que nortearam o trabalho, que são:

- a. Como diferentes padrões de traçado urbano modificam a acessibilidade, considerando a forma do sistema viário?
- b. Como alterações no sistema de circulação modificam a acessibilidade, em diferentes padrões de traçado urbano?

Para essas perguntas, foram elaboradas duas hipóteses, retomadas agora para terem suas validades verificadas, de posse dos resultados das simulações.

6.1.1 Quanto à hipótese 1

O conjunto de experimentos que verificou a acessibilidade para os padrões de traçados viários, sem influência do sistema de circulação, chamado de simulações A1, está estruturado visando verificar a hipótese um - Diferentes padrões de traçado viário urbano implicam em acessibilidade também diferentes - , que responde inicialmente à primeira pergunta. Os resultados das simulações A1, considerando as delimitações do método, indicam como tendência o seguinte:

- a. Quanto à distribuição espacial da acessibilidade, como característica geral, todos os padrões apresentaram concentração dos segmentos de vias com maiores índices de acessibilidade em áreas centrais e os com menores índices nas áreas periféricas, característica graficamente expressa nos mapas axiais, como pode ser observado nas Figura 5.1, Figura 5.4, Figura 5.7 e Figura 5.10. Essa tendência, matematicamente esperada, assemelha-se aos resultados obtidos por estudos que usam medidas de acessibilidade topológica, como por exemplo, os trabalhos que se utilizam de instrumentos da sintaxe espacial ou simplesmente da medida topológica de acessibilidade de rede da Teoria de grafos. Entretanto, os padrões de traçados urbanos, dentro desta característica geral, apresentam distinções, descritas nos próximos parágrafos.
- b. O padrão de traçado semi-retículo tem como tendência apresentar média de acessibilidade do sistema superior à média dos demais padrões e uma maior dispersão dos índices de acessibilidades (veja Figura 5.13). Como particularidade, o padrão apresenta concentração dos índices de acessibilidades mais altos e mais

baixos sobre poucos segmentos de vias, característica expressa por grande declividade inicial e final da curva de acessibilidade, concentração que também pode ser observada a partir da associação da variação percentual do número de segmentos de vias e do intervalo dos índices de acessibilidades por classe. Esses resultados estão mostrados anteriormente nas Figura 5.10d, Figura 5.13, Figura 5.17 e Figura 5.18.

- c. O padrão cluster tem como tendência apresentar média de acessibilidade do sistema inferior à média dos demais padrões e uma menor dispersão dos segmentos de vias quanto aos seus índices de acessibilidade. Como característica particular, apresenta uma variação regular do acréscimo de acessibilidade entre os segmentos de vias, característica expressa visualmente pela curva de acessibilidade, que se assemelha a uma reta. Esses resultados estão mostrados nas Figura 5.7 e Figura <u>5.13</u>.
- d. O padrão xadrez e o radial têm como tendência apresentarem média de acessibilidade dos sistemas com valores semelhantes, inferiores ao do padrão semiretículo e superiores ao do cluster. Cabe destacar, como observação, que a diferença na média apresentada nas simulações pelos dois traçados possivelmente deva-se, em parte, pelo padrão radial apresentar o tamanho médio dos segmentos menor que o padrão xadrez. No que tange à dispersão da acessibilidade dos segmentos de vias, os traçados apresentam amplitudes semelhantes e intermediárias entre os padrões, mas como particularidade, considerando a dispersão relativa (representada pelo CV), o padrão radial apresenta a menor dispersão entre todos os padrões. Esses resultados podem ser observados nas Figura 5.1, Figura 5.4, Figura 5.13 e Figura 5.15.
- e. Relação entre a média e o grão da malha: observa-se uma relação inversa entre a média de acessibilidade dos sistemas e o tamanho do grão da malha viária. Quanto menor o grão, maior a média de acessibilidade do sistema. No caso dos padrões estudados, o semi-retículo, o xadrez, o radial e o cluster apresentaram uma ordem de grandeza inversa para valores da média de acessibilidade e o tamanho do grão da malha, neste estudo representado pelo comprimento médio dos segmentos de vias e a densidade viária. Em primeira análise, pode parecer ser o grão o único responsável pelas diferenciações das médias. No entanto, em análise mais

criteriosa, essa responsabilidade também pode ser atribuída ao maior ou menor número de alternativas de menores caminhos que cada malha oferece, como pode ser observado no caso dos padrões semi-retículo e cluster, nos quais o padrão semiretículo oferece maiores possibilidades de menor caminho entre quaisquer dois pontos, enquanto que o padrão cluster oferece menores alternativas de caminhos. Essas são características próprias da geometria da forma, o que leva o padrão semiretículo a obter menores caminhos entre os pontos da malha e, consequentemente, a uma maior acessibilidade. Embora esse trabalho não tenha como objetivo distinguir a influência do grão e da forma sobre a média das acessibilidades dos traçados, os resultados apontam para o grão do tecido urbano como uma característica determinante da acessibilidade de um padrão de urbanização.

Conclusivamente, quanto à verificação da validade da hipótese 1, após serem descritas as diferenciações destacadas nos experimentos entre os padrões de traçados viários urbanos, a partir dos instrumentos de análises, podem ser distinguidos os padrões semi-retículo e cluster por terem apresentado características diferentes e extremas entre os padrões. A distinção também pode ser atribuída aos padrões xadrez e radial, por apresentarem características semelhantes e intermediárias em relação aos outros padrões, o que confirma a hipótese de que os traçados viários possuem diferenças próprias as suas formas, que os diferenciam quanto à acessibilidade. Esses resultados podem ser observados nas Figura 5.1, Figura 5.4, Figura 5.7, Figura 5.10, Figura 5.13 e Figura 5.16a, no item 5.2.2a do Capítulo 5 e nos itens a, b, c, d, e anteriores, desta conclusão.

6.1.2 Quanto à hipótese 2

As simulações A2 e A3, conjunto de experimentos que verificam a acessibilidade para os traçados viários considerando a influência do sistema de circulação a partir de duas alternativas antagônicas (descritas no Capítulo 3 – metodologia e na parte inicial do Capítulo 5- Simulações), foram estruturadas visando verificar a hipótese dois - Padrões de traçados viários urbanos apresentam diferenciações quanto à acessibilidade, quando submetidos a sistemas de circulação semelhantes que inicialmente responde à segunda pergunta. As conclusões estão descritas em dois momentos: primeiro para as simulações A2 e a seguir para as simulações A3.

Simulações A2

Os resultados das simulações A2 (XA2, RA2, CA2 e SRA2), que mediram a acessibilidade com o objetivo de reproduzir as características do sistema de circulação normalmente apresentado pelas cidades, onde as áreas centrais são dotadas de melhor sistema de circulação em se comparando com a periferia, indicam como tendência:

- f. Quanto à distribuição espacial como na simulação A1, todos os traçados apresentaram concentração dos segmentos de vias com maiores índices de acessibilidade nas áreas centrais e os com menores índices nas áreas periféricas, característica expressa nos mapas axiais (veja Figura 5.2a, Figura 5.5a, Figura 5.8a, Figura 5.11a).
- g. Quanto à média eà dispersão como característica geral, todos os traçados apresentaram aumento da média de acessibilidade do sistema e aumento da dispersão dos elementos em relação à simulação A1, caracterizando o aumento da diferenciação ao acesso a facilidades urbanas, entre áreas centrais e periferia (veja Figura 5.2c, Figura 5.5c, Figura 5.8c, Figura 5.11c).
- h. O padrão semi-retículo manteve a tendência em apresentar média de acessibilidade do sistema superior à média dos demais padrões e uma maior dispersão dos índices de acessibilidades (veja Figura 5.14). Como particularidade, o padrão apresenta uma concentração de acessibilidade em poucos segmentos de vias da área central, superior à verificada na simulação A1, característica expressa visualmente pela declividade final da curva de acessibilidade (veja Figura 5.11d). Cabe destacar que, mesmo com o aumento da média de acessibilidade do sistema, os segmentos de vias de menor acessibilidade obtiveram um ganho pequeno, demonstrando que o padrão de traçado urbano semi-retículo parece ter a característica de concentrar ganho de acessibilidade do sistema em elementos da área central (veja Figura 5.14).
- i. O padrão cluster manteve a tendência em apresentar média de acessibilidade do sistema inferior à média dos demais padrões e uma menor dispersão dos segmentos de vias quanto aos seus índices de acessibilidade (veja Figura 5.14). Como característica particular, conforme verificação A1, apresenta uma variação

regular do acréscimo de acessibilidade entre os segmentos de vias, expresso visualmente pela curva de acessibilidade que se assemelha a uma reta (veja Figura 5.8 e Figura 5.14). Cabe destacar que o ganho de acessibilidade do sistema, ainda que concentrado sobre vias da área central, apresenta uma distribuição uniforme com ganho de todos os elementos do sistema.

j. O padrões xadrez e radial mantiveram a tendência em apresentar média de acessibilidade do sistema com valores intermediários ao padrão semi-retículo e superiores ao cluster. Cabe destacar um maior aumento no valor da média do padrão radial, em termos absolutos, numérico, do que no padrão xadrez, ressaltando que o aumento, se considerado de forma relativa, foi similar, o que confirma a semelhança entre os padrões. No que tange à dispersão da acessibilidade dos segmentos de vias, os traçados apresentaram semelhança e posição intermediária entre os demais padrões (veja Figura 5.14 e Figura 5.16).

Conclusivamente, quanto à verificação da validade da hipótese 2, após serem descritas as diferenciações destacadas nos experimentos, pode ser observado que os padrões mantiveram, para suas principais características, semelhança às apresentadas na simulação A1, que não levou em consideração o efeito do sistema de circulação, com a distinção de maior concentração da acessibilidade nos segmentos de vias da área central e uma maior dispersão dos índices de acessibilidades, resultados destacados nos itens anteriores. Como característica particular, o padrão semi-retículo demonstrou ser o mais concentrador do ganho de acessibilidade nas vias da área central; como consequência, apresenta a maior dispersão dos índices de acessibilidade, enquanto que o padrão cluster aparece como o menos concentrador e apresenta a menor dispersão. Já os padrões xadrez e radial apresentam características semelhantes entre eles e intermediárias em relação aos outros padrões. Assim, as diferenciações ressaltadas nas conclusões validam a hipótese de que os padrões possuem diferenciações próprias a sua forma quanto à análise da acessibilidade, quando submetidos a sistemas de circulação semelhantes. Esses resultados podem ser observados nas Figura 5.2, Figura 5.5, Figura 5.8, Figura 5.11, Figura 5.14 e Figura 5.16a, no item 5.2.2b do Capítulo 5 e nos itens f, g, h, i, j anteriores, desta conclusão.

Simulações A3

Os resultados das simulações A3 (XA3, RA3, CA3 e SRA3), que mediram a acessibilidade com objetivo de reproduzir as características inversas ao sistema de circulação normalmente apresentado pelas cidades, onde as áreas periféricas são dotadas de melhor sistema de circulação do que a área central, indicam como tendência:

- k. Quanto à distribuição espacial, diferentemente das verificações A1 e A2, em que todos os traçados concentraram os segmentos de vias com maiores índices de acessibilidade nas áreas centrais e os com menores índices nas áreas periféricas, a simulação A3, na qual a qualificação do sistema de circulação privilegiou as áreas periféricas, os padrões apresentaram diferenciações quanto à distribuição da acessibilidade. O padrão cluster manteve a tendência de localizar os segmentos de maiores índices na área central, enquanto que o padrão semi-retículo concentrou os segmentos de maiores índices em área intermediária entre o centro e a periferia; já o padrão xadrez e o radial concentraram os segmentos com maiores índices de acessibilidade na área periférica e os de menores índices na área central (veja <u>Figura 5.4, Figura 5.8</u> e <u>Figura 5.12</u>).
- I. Quanto à **média e dispersão**, como característica geral, todos os traçados apresentaram aumento da média de acessibilidade do sistema e redução da dispersão dos elementos em relação à simulação A1 (veja Figura 5.14 e Figura 5.15), caracterizando a redução da diferenciação ao acesso às facilidades urbanas entre áreas centrais e periferia. Entretanto, os padrões, dentro das características gerais descritas neste parágrafo e no anterior, apresentam distinções especificadas a seguir:
- m. O padrão semi-retículo tende a apresentar média de acessibilidade do sistema superior à média dos demais padrões, mas inferior à média apresentada na simulação A2; maior dispersão dos índices de acessibilidades dos segmentos de vias entre os padrões, mas com redução da dispersão em relação às apresentadas nas simulações A2 (veja Figura 5.14 e Figura 5.16c). Como particularidade, o padrão apresenta uma superconcentração de acessibilidade em pouquíssimos segmentos de vias, superior à verificada na simulação A1 e A2, característica expressa visualmente pela declividade final da curva de acessibilidade. Mas, diferentemente

das simulações A1 e A2, os segmentos possuem posicionamento intermediário entre a área central e a periférica (veja Figura 5.12a e b).

- n. O padrão cluster tende a apresentar média de acessibilidade do sistema inferior a dos demais padrões e à apresentada na simulação A2. Quanto à dispersão dos índices de acessibilidade, possui uma posição intermediária entre os demais padrões, mantendo valores semelhantes ao da simulação A1, demonstrando, assim, resistência à redução da diferenciação de acessibilidade centro/periferia por meio da melhoria do sistema de circulação na área periférica (veja Figura 5.3, Figura 5.7, Figura 5.11, Figura 5.11e, Figura 5.16). Como característica particular, como na verificação A1, apresenta uma variação regular do acréscimo de acessibilidade entre os segmentos de vias, expresso visualmente pela curva de acessibilidade que se assemelha a uma reta.
- o. Os padrões xadrez e radial tendem a apresentar médias de acessibilidade semelhantes e intermediárias entre o padrão semi-retículo, de média mais alta, e o cluster, de média mais baixa. No que tange à dispersão da acessibilidade dos segmentos de vias, os padrões apresentam valores semelhantes e menores do que os demais padrões, aproximando os valores extremos à média, demonstrando estes baixa resistência à redução da diferenciação de acessibilidade centro/periferia por meio da melhoria do sistema de circulação na área periférica (veja Figura 5.14 e Figura 5.16).

Conclusivamente, quanto à verificação da validade da hipótese 2, após serem descritas as diferenciações destacadas nos experimentos, pode ser observado que os padrões mantiveram quanto à média de acessibilidade do sistema a mesma ordenação apresentada nas simulações A1 e A2. Entretanto, no que concerne à dispersão dos elementos, destaca-se que o padrão xadrez e o radial apresentaram redução importante entre os valores extremos. Quanto à distribuição espacial da acessibilidade, observa-se que no padrão xadrez e no radial houve a migração dos elementos com maiores índices para a periferia, enquanto que no padrão cluster mantiveram-se na área central. Já no padrão semi-retículo, concentram-se em região intermediária entre centro e periferia. Assim, as diferenciações ressaltadas nas conclusões validam a hipótese de que os traçados viários possuem diferenciações próprias aos padrões, quanto à análise da acessibilidade, quando submetidos a sistemas de circulação semelhantes.

6.1.3 Considerações gerais sobre as simulações A2 e A3

- p. Quanto à alternativa de circulação que prioriza a área central (A2) esta alternativa caracteriza-se por agregar maior valor às médias de acessibilidade dos sistemas se comparada àquela que prioriza a periferia, porém aumenta a diferenciação de acessibilidade entre a periferia e a área central (veja Figura 5.14 e Figura 5.15).
- q. Quanto à alternativa de circulação que prioriza a área periférica (A3) esta alternativa caracteriza-se por agregar menor valor à média de acessibilidade dos sistemas, porém reduzindo a diferenciação da acessibilidade entre a periferia e a área central (veja <u>Figura 5.14</u> e <u>Figura 5.15</u>).
- r. Quanto à posição ordinal das médias em relação à média dos sistemas, os padrões estudados apresentam posições ordinais constantes para as três simulações, sendo o cluster o menor valor, o xadrez e o radial com valores intermediários e o semi-retículo como o maior valor (veja Figura 5.14 e Figura 5.15).
- s. Quanto à posição ordinal da dispersão No que tange à dispersão dos índices de acessibilidade dos segmentos de vias, os padrões estudados apresentam, para as simulações A1 e A2, posições ordinais iguais, sendo o cluster com o menor valor, o xadrez e o radial com valores intermediários e o semi-retículo como maior valor, enquanto que na simulação A3 apresenta-se a ordem xadrez e radial com menor valor, o cluster com posição intermediária e o semi-retículo com maior valor.
- t. Resistência à modificação na circulação- cabe destacar a diferenciação entre os traçados viários quanto ao que está chamado de resistência à modificação na circulação, que representa o quanto determinado traçado apresenta de alteração nos resultados da acessibilidade após modificações no sistema de circulação. No caso deste trabalho, isso é verificado entre as simulações A1, A2 e A3, em especial entre as simulações A2 e A3, que são alternativas de circulação antagônicas. Ressalta-se que esta observação está fundamentada qualitativamente na análise da

distribuição espacial dos segmentos de vias nos mapas axiais. A seguir estão apontadas as diferenciações entre os padrões de traçados viários.

Quanto aos experimentos que otimizaram o sistema de circulação na área central, simulação A2 (XA2, RA2, CA2 e SRA2), pode ser observada uma concentração da acessibilidade em um menor número de vias da área central com relação às simulações A1, mas não houve uma modificação de posicionamento da região de concentração dos segmentos de maiores índices, pelo menos na análise visual (veja Figura 5.1, 5.2, 5.4, 5.5, 5.7, 5.8, 5.10 e 5.11). Entretanto, já nos experimentos que otimizaram a área periférica, simulações A3 (XA3, RA3, CA3 e SRA3), observam-se importantes distinções entre os traçados, descritos nos itens k, l, m, n, o deste subcapítulo. De posse dessas observações, pode-se dizer que para a alternativa que otimiza a área periférica, o traçado radial e o xadrez apresentam menor resistência às modificações, ou seja, atendem mais facilmente à intenção do experimento com a migração dos índices de maior acessibilidade para os segmentos da periferia (veja Figura 5.3 e Figura 5.6), enquanto que o cluster e o semi-retículo apresentam maior resistência à intenção do experimento e mantêm os segmentos de vias com índices de acessibilidade maiores na área central ou próxima desta (veja Figura 5.9 e Figura 5.12).

6.2 Contribuições, limitações e continuidade

Esta parte final das conclusões sistematiza contribuições para a área de estudo, lista as principais limitações enfrentadas no decorrer da pesquisa e indica possibilidades de continuidades, as quais estão descritas a seguir.

Estudos da cidade a partir da forma, morfologia, ou pelo menos assim grafado, datam do início do século XX, não se tratando, portanto de algo novo. Entretanto, não existe um número expressivo de trabalhos nesta área, assim como não se trata de um tema corrente no meio acadêmico da arquitetura e urbanismo, em especial sobre a morfologia dos traçados viários. Quanto ao estudo da acessibilidade, ainda que frequente na área de transporte e mobilidade, na geografia e mesmo na área do urbanismo, normalmente possui seu foco voltado para estudos desagregados, relativamente à cidade. Desagregados, neste caso, significa estudos dedicados a especificidades da acessibilidade ou da cidade, não gerando uma abordagem global sobre o sistema urbano.

Este trabalho tem como objetivo estudar os padrões de traçados viários urbanos a partir da análise da acessibilidade, utilizando o efeito do sistema de circulação como elemento modificador da acessibilidade, com o fim de ressaltar as semelhanças e distinções. Assim, a principal contribuição e também a principal dificuldade do trabalho advém da escolha do tema e dos objetivos em função do pequeno número de estudos que abordem a acessibilidade e a forma urbana, ou seja, por meio da ótica da morfologia, e mais restritos ainda são estudos com abordagem na acessibilidade geométrica.

Assim, destacam-se como contribuições principais:

- a) o resultado principal do trabalho- a abordagem do estudo dos padrões de traçados viários e suas distinções e similaridades quanto à acessibilidade;
- b) o estudo da acessibilidade geométrica- poucos trabalhos, no campo da morfologia, utilizam medidas que consideram a distância como fator central da acessibilidade;
- c) o **desenvolvimento do instrumento de modelagem** (software)- a atualização da plataforma do Medidas Urbanas e a implementação do módulo específico para estudos que considerem a circulação urbana e a medida de acessibilidade geométrica.

Apresenta-se ainda, como resultados secundários:

- i. o método de construção de traçados analíticos;
- ii. o desenvolvimento do parâmetro simulador do efeito do sistema de circulação;
- iii. o método de cálculo e representação da acessibilidade geométrica, apresentados respectivamente nos itens 4.1.2 e 3.1.5.

É importante destacar o recurso da modelagem em ambiente computacional como instrumento de estudo no urbanismo, ferramenta fundamental de análise deste trabalho, que permitiu elaborar conclusões quantitativas e qualitativas sobre as diferenciações dos padrões de traçados viários quanto à acessibilidade, o que leva a um tratamento do tema estudado diferente do que ele recebe correntemente no meio profissional, com discursos nem sempre fundamentados.

Expostas de forma genérica as limitações e contribuições do trabalho, a seguir estão sugeridas possibilidades de continuidade em duas frentes: instrumento de modelagem e de conteúdo.

- a. **Instrumento de modelagem-** O desenvolvimento de trabalhos como este exige a ampliação, adaptação ou mesmo o desenvolvimento da ferramenta computacional (software), esforço simultâneo aos objetivos da pesquisa. Como destacado no corpo do trabalho, em paralelo está atualizada a plataforma do software Medidas Urbanas e implementada a capacidade de simulação do sistema de circulação. Neste caminho, restam possibilidades concretas de continuidades para melhorar as habilidades do software, como:
- a1. melhorar a interface com outras plataformas- poderiam ser utilizados recursos semelhantes aos da internet, o que ampliaria a possibilidade de utilização; também poderiam ser utilizados recursos de geoprocessamento, que permitiriam a integração de bancos de dados; de desenho, que possibilitaria a incorporação de maiores atributo de desenho; de processadores de texto e planilhas de cálculo, que ampliaria a capacidade de análise de resultados e geração de relatórios;
- a2. desenvolver o módulo de circulação urbana- atualmente, o módulo simulador do efeito de circulação permite a atribuição de valores teóricos por segmento de via (IDs) ou por conjunto de vias (por classe). Este módulo permite ainda atribuição de valores por elementos componentes da infraestrutura (qualificação, composição das vias e equipamentos urbanos) e da capacidade de transporte por modalidade residente na via. Tanto os elementos de infraestrutura como as modalidades são totalmente editáveis, permitindo а adição ou subtração de elementos. Objetivamente, como continuidade cabe o desenvolvimento de parâmetros a serem atribuídos aos componentes da infraestrutura e para as modalidades de transportes, o que permitiria estudos temáticos por elementos.
- b. Possibilidades de conteúdo- Poderia ser desenvolvida a habilidade de o software permitir o estudo da acessibilidade de elementos ou conjunto de elementos

da infraestrutura e/ou modalidades de transporte abre um leque de possibilidades de estudos temáticos práticos ou teóricos com a circulação urbana.

A seguir estão, reunidas reflexões realizadas pelo autor durante a realização do trabalho e que não foram aprofundadas e demonstradas neste trabalho, assumindo o viés de discussão. São as seguintes:

- a. Os traçados semi-retículos, que apresentam padrão de traçado viário com grão pequeno e grande número de alternativas de trajetos (como por exemplo, as favelas ou as cidades muçulmanas) ou mesmo o traçado xadrez, com quadras pequenas (como das cidades gregas e romanas ou loteamentos chamados de populares no Brasil), como demonstrado neste estudo, possuem uma média de acessibilidade mais influenciada pela forma que no caso dos outros padrões de traçado viário. Sendo assim, poderia ser levantado como hipótese que o uso desses padrões pode estar associado a sistemas economicamente pobres e com baixo domínio tecnológico, a modais de transporte poucos desenvolvidos tecnologicamente e de baixo custo de aquisição, como o pedestre, a bicicleta, os veículos de tração animal e a infraestruturas viárias de baixa qualidade.
- b. Os traçados em clusters, que apresentam padrão de traçado viário com grão grande e pequeno número de alternativas de trajetos (como por exemplo, Brasília, cidades jardins) ou mesmo o traçado xadrez, com quadras grandes, como algumas cidades norte americanas, possuem uma média de acessibilidade oriunda da forma mais baixa que outros padrões. O uso destes padrões pode estar associado a sistemas econômicos mais ricos e tecnologicamente mais desenvolvidos, ao uso de modais portadores de maior tecnologia, como trens urbanos, sistema de transporte por ônibus ou automóvel, e à infraestrutura viária de boa qualidade.
- c. Desta forma, observa-se que organizações sociais as quais apresentem tecnologias mais
- d. rudimentares, onde predominam modais de transportes como o pedestre, a bicicleta ou de tração animal, podem tender a apresentar traçados de maior acessibilidade, ou seja, com menor grão, maiores alternativas de trajetos e maior densidade viária. Sistemas desta natureza parecem tender para padrões como o semi-retículo e o xadrez de quadras pequenas.

e. O uso de diferentes alternativas de traçados pode estar associado à evolução da infraestrutura viária e das modalidades de transportes. As cidades, até a invenção da tração mecânica, apresentavam traçados com maior média de acessibilidade, pequeno grão, maior número de alternativas de trajetos, além de grande densidade viária. As cidades pós-motorização passaram a apresentar com baixa média de acessibilidade, grão grande, baixa densidade viária, ou seja, a baixa acessibilidade do traçado é compensada por sistemas de circulação de maior tecnologia e melhor infraestrutura viária.

Considerando o que foi destacado, pode ser assumido que a acessibilidade oriunda da forma está diretamente associada ao grão e ao número de alternativas de conexões em uma malha viária de um padrão de urbanização. Além disso, o uso de um padrão de traçado viário pode estar associado à infraestrutura e tecnologia de transporte disponível em uma organização social.

Para finalizar, estão apresentadas as referências bibliográficas e dois apêndices que trazem dados tabulados dos índices de acessibilidades gerados nas simulações e suas normalizações.

Referências Bibliográficas

ALLEN W.B.; LIU D.;SCOTT SINGER S. Accessibility Measures of U.S. Metropolitan Areas. Department of Public Policy and Management, The Wharton School, University of Pennsylvania, PA 19104 6372. Pennsylvania, USA, 1992.

ANDROS, A.; WOOD, D.; VOBIS,Y.; ALEXANDER, M.; ZAIC, H.; ESPARZA, J.; MENKE, A.; DUFAUX,S.; ANDERSEN, J. L.; MAYMIND, A. BONING,W. **49 Cities workac**. Ed. Storefront for Art and Architecture. New York, USA, 2009.

ANTP. **Transporte humano – cidades com qualidade de vida**. Coordenadores: Ailton Brasiliense Pires, Eduardo Alcântara Vasconcelos, Ayrton Camargo e Silva. Ed. ANTP. São Paulo, 1997.

ARÍS, C. M. Las Variaciones de La identidad: Ensaio sobre El Tipo em Arquitectura. Ediciones del Serbal. Barcelona, Espanha, 1993.

BARADARAN, S.; RAMJERDI, F. Performance of accessibility measures in Europe. **Journal of Transportation and Statistics**. September/December. Washington, USA, 2001.

BATTY, M. **Urban Modelling: Algorithms, Calibrations, Predictions**.: Cambridge University Press, 381p. Cambridge, UK,1976.

_____, M. **Model cities**. Centre for Advanced Spatial Analysis, University College London. London, UK, 2007.

______, M. Cities as Complex Systems: Scaling, Interactions, Networks, Dynamics and Urban Morphologies. Centre for Advanced Spatial Analysis, University College London, London, UK, 2008.

_____, M. Accessibility: in search of a unified theory. (Editorial) Environment and Planning B: Planning and Design, volume 36, pp. 191- 194. London, UK, 2009.

BRUTON, M. J., Introduction to Transportation Planning. Hutchinson & Co Ldt. London, England, 1979.

BEN-AKIVA, M.; LERMAN, S. Disaggregate Travel and Mobility Choice Models and Measures of Accessibility Behavioral Travel Modeling. Eds. Rensher, D. and Stopher, P., pp. 654-679. London, UK,1979.

BENEVOLO L. Diseño de La Ciudad. Editora Gustavo Gili S/A. Barcelona, Espanha, 1982.

BERTALANFFY, L. V. **Teoria Geral dos Sistemas**. (tradução Francisco M. Guimarães), Editora Vozes. Petrópolis, 1973.

BHAT C.; HANDY S.; KOCKELMAN K.. MAHMASSANI H.; K, CHEN Q.; WESTON L. **Urban Accessibility Index: Literature Review**. Center for Transportation Research. The University of Texas at Austin. Austin, USA, 2000.

BHAT C.; HANDY S.; KOCKELMAN K.; MAHMASSANI H.; K, CHEN, Q.; WESTON, L. **Accessibility Measures: Formulation Considerations and Current Applications**. Center for transportation Research. The University of Texas at Austin. Austin, USA, 2000.

BRUTON, M. J. Introdução ao Planejamento dos Transportes. 3ª Edição. Editora da Universidade de São Paulo. São Paulo, 1979.

BUCKLEY, W. **A sociologia e a moderna teoria dos sistemas**. (tradução O.M. Cajado) 2º Ed. Cultrix, São Paulo,1976.

BUNGE, M. (1973), Teoria e Realidade. Editora perspectiva S.A. São Paulo, 1974.

BURGESS, E.W. The Growth of the city: an introduction to a research project. In: R. E. Park, E.W. Burgess & R.D. McKenzie(Ed) **The City**, pp. 47-62. University of Chicago Press. Chicago, USA, 1925.

BUSAI, G. D. Mapas Sociales Urbanos. 1º Ed. Lugar Editorial S.A. Buenos Aires, Argentina, 2003.

CAPRA, F. **A Teia da Vida – uma nova compreensão científica dos sistemas vivos**. Trad. Newton Roberval Eichemberg. Ed. Cultrix. São Paulo, 1996.

CHADWICK, G. F. **Uma Vision Sistemica Del Planeamiento**. Editorial Gustavo Gili, 283p. Barcelona, Espanha, 1973.

DAVIDSON, K.B. Accessibility in Transport/land- use Modelling and Assessment. **Env. and Planning A**. V9, h.12, pp. 1401-1416. London, UK, 1977.

DAVIDSON, K.B. Accessibility and Isolation in Transportation Network Evaluation. Paper presented a 7th Word conference on transport research. The University of New South Wales. Sidney, Austrália, 1991.

ECHENIQUE, M. Modelos Matemáticos de La e Estructura Urbana: aplicaciones em América Latina. Ediciones S.I.A.P. Buenos Aires, Argentina, 1975.

GEURS, K. T.; VAN ECK, J. R. **Accessibility measures: Review and applications**. (National Institute of Public Health and the Environment, RIVM)-Urban Research Centre. Utrecht University. Bilthoven/Utrecht, Netherlands, 2001.

GEURS, K. T.; VAN WEE, B. Accessibility evaluation of land use and transport strategies: Review and research directions. **Journal of Transport Geography**, 12, pp.127–140.Ed. Elsevier. London, UK, 2004.

HAGERSTRAND, T. What about People in Regional Science?, Papers of the **Regional Science Association**, 14, pp. 7-21, 1970.

HANDY, S. Regional versus local accessibility: variations in suburban form and the effects on nonwork travel. **Unpublished dissertation**, University of California at Berkeley, Berkeley, USA, 1992.

HANSON, S. Dimensions of the Urban Transportation Problem, **The Geography of Urban Transportation**, ed. Hanson, S., The Guilford Press, pp. 3-23, New York, USA, 1986.

HANSEN, W.G. How Accessibility Shapes Land Use, **Journal of the American Planning Association**, Volume 25, Issue 2, pp. 73–76, USA, 1959.

HARRIS, C. D.ULLMAN, E. L. The nature of cities. **The Annals of the American Academy of Political and Sciences**. 242 (1) pp. 7-17. USA,1945.

HERCE VALLEJO, M. Sobre la Movilidad em La Ciudad: propuestas para recuperar um derecho ciudadano. Editora Reverté, Barcelona, Espanha, 2009.

HILLER, B; HANSON, J. **The social logic of space**. Cambridge University Press. Cambridge, UK, 1984.

HOYT, H. The Structure and Grow of Residential Neighborhoods in American Cities. Federal Housing Administration. Washington, USA, 1939.

INGRAM, D.R. The Concept of Accessibility: A search for an operational form. **Regional Studies**, Volume 5, Issue 2 July 1971, pp. 101–107. Pergamon Press. Oxford, UK, 1971.

JENKS, GEORGE F. "The Data Model Concept in Statistical Mapping", International Yearbook of Cartography 7: pp.186-190, USA, 1967.

LAMAS, J. M. R. G. **Morfologia urbana e desenho da cidade**. sl: Fundação Calouste Gulbenkian, , Lisboa, Portugal, 1993.

LEAKE, G. R.; HUZAYYIN, A. S. Accessibility measures and their suitability for use in trip generation models. **Traffic Engineering and Control**, 20(12), pp. 566–572, London, UK,1979.

LITMAN, T. Measuring transportation: Traffic, mobility and accessibility. **ITE Journal**, 73(10), pp. 28–32. Washington, USA, 2003.

MEDEIROS, V. A. S. **Urbis Brasiliae ou sobre Cidades do Brasil: inserindo assentamentos urbanos do país em investigações configuracionais comparativas.** Tese de doutoramento. Faculdade de Arquitetura e Urbanismo da Universidade de Brasília. Brasília, 2006.

MILLER, E.J., KRIGER, D. S., and HUNT, J.D. Integrated Urban Models for Simulation of Transit and Land-Use Policies. TCRP, Project H-12. Washington, USA, 1998.

MITCHELL R. B.; RAPKIN C. **Urban Traffic: A Function of Land Use**. Columbia University Press. New York, USA, 1954.

MUMFORD, L. A cidade na história: suas origens, transformações e perspectivas. Martis Fontes Editora. São Paulo, 1998.

NOVAES, A. G. **Modelos em Planejamento Urbano, Regional e de Transportes**. Editora Edgard Blücher, 290p. São Paulo, 1981.

PANERAI, P. Análise urbana. Editora universidade de Brasília. Brasília, 2006.

SANCHES, D.C. **Teoria de grafos aplicada a redes naturales y antrópicas**. Sistemas Ambientales Complejos: Herramientas de Análisis Espaciales, Cap 13, pp.321-345. Buenos Aires, Argentina 1998.

SANCHES, D.C. La teoria de grafos y sus aplicaciones a los sistemas de transportes. Cátedra de Análisis Matemático I, Departamento de Geografia, UBA. Buenos Aires, Argentina, 1984.

SCHEURER, J.; PORTA, S. Centrality and connectivity in public transport networks and their significance for transport sustainability in cities. **World Planning Schools Congress**. Cidade do Mexico, Mexico, 2006.

SOLÁ-MORALES I RUBIÓ, M. **Las Formas de Crescimento Urbano**. Edicions de La Universitat Politécnica de Catalunya, SL. Barcelona, Espanha, 1997.

TORRENS, P.M. **How Land-Use-Transportation models Work**. Centre for Advanced Spatial Analysis – University College London, London, UK, 2000.

VASCONCELOS, E. A. **Transporte urbano, espaço e equidade: análise das políticas públicas**. Ed. Annablume, São Paulo, 2001.

VON THUNEN, J. P. **Der isolierte Staat in Beziehung auf Land wirtschaft und Nationalokonomie**. Ed. Verlag. Berlin, Alemanha, (1826 - 1990).

WEIBULL, J. W. An Axiomatic Approach to the Measurement of Accessibility. **Regional Science and Urban Economics**, 6, pp. 357-379. Ed. Elsevier. London, UK, 1976.

Apêndice A - Índices de acessibilidade por simulação

O apêndice A contém os resultados numéricos das verificações dos índices de acessibilidades por IDs (segmentos de vias) para os padrões de traçados viários estudados- xadrez, radial, cluster e semi-retículo- para as simulações A1, A2 e A3. Os dados estão tabulados por padrão de traçado viário, por simulação e ordenados de forma crescente em função dos índices de acessibilidades. A baixo, na tabelaA.1, estão apresentados os dados estatísticos: média aritmética, amplitude, variância e coeficiente de variação referente aos elementos de cada simulação.

Tabela A.1 - Dados estatísticos por padrão de traçado viário

	XADREZ				RADIAL		
Dados estatísticos	XA1	XA2	XA3	Dados estatísticos	RA1	RA2	RA3
Coeficiente de variação	12,52670	19,96315	6,30224	Coeficiente de variação	9,47243	19,22235	4,34590
Variância	0,00306	0,02350	0,00103	Variância	0,00352	0,03748	0,00105
Amplitude	0,20763	0,55914	0,09269	Amplitude	0,20324	0,64440	0,12592
Média	0,44170	0,76792	0,50907	Média	0,62631	1,00711	0,74498

	CLUSTE	R		5	SEMI-RETÍCU	JLO	
Dados estatísticos	CA1	CA2	CA3	Dados estatísticos	SRA1	SRA2	SRA3
Coeficiente de variação	13,57502	17,83666	14,10250	Coeficiente de variação	20,98125	32,92708	14,86442
Variância	0,00086	0,00388	0,00184	Variância	0,08431	0,45211	0,04789
Amplitude	0,11738	0,26361	0,15225	Amplitude	1,39252	3,76312	2,05946
Média	0,21608	0,34915	0,30441	Média	1,38388	2,04206	1,47225

			XAD	OREZ		
Nº	ID	XA1	ID	XA2	ID	XA3
1	1	0,315934	1	0,435212	84	0,460147
2	2	0,315934	2	0,435212	102	0,460147
3	29	0,315934	29	0,435212	108	0,460147
4	31	0,315934	31	0,435212	147	0,460147
5	200	0,315934	200	0,435212	81	0,461079
6	201	0,315934	201	0,435212	82	0,461079
7	219	0,315934	219	0,435212	86	0,461079
8	220	0,315934	220	0,435212	87	0,461079
9	5	0,350838	5	0,520705	123	0,461079
10	26	0,350838	26	0,520705	129	0,461079
11	32	0,350838	32	0,520705	145	0,461079
12	52	0,350838	52	0,520705	149	0,461079
13	179	0,350838	179	0,520705	63	0,4614
14	199	0,350838	199	0,520705	100	0,4614
15	203	0,350838	203	0,520705	110	0,4614
16	217	0,350838	217	0,520705	168	0,4614
17		0,364219	3	0,551233	61 65	0,461517
18	4	0,364219	4	0,551233	65 70	0,461517
19	28	0,364219	28	0,551233	79	0,461517
20	30	0,364219	30	0,551233	89	0,461517
21	180	0,364219	180	0,551233	121	0,461517
22	198	0,364219	198	0,551233	131	0,461517
23	202	0,364219	202	0,551233	166	0,461517
24	218	0,364219	218	0,551233	170	0,461517
25	8	0,371103	8	0,569548	58	0,462592
26	23	0,371103	23	0,569548	59	0,462592
27	53	0,371103	53	0,569548	67	0,462592
28	73	0,371103	73	0,569548	68	0,462592
29	158	0,371103	158	0,569548	142	0,462592
30	178	0,371103	178	0,569548	152	0,462592
31	205	0,371103	205	0,569548	164	0,462592
32	215	0,371103	215	0,569548	172	0,462592
33	11	0,383007	11	0,599002		0,465564
34	20	0,383007	20	0,599002	64	0,465564
35	74	0,383007	74	0,599002	101	0,465564
36	94	0,383007	94	0,599002	109	0,465564
37	137	0,383007	137	0,599002	122	0,465564
38	157	0,383007	157	0,599002	130	0,465564
39	207	0,383007	207	0,599002	146	0,465564
40	213	0,383007	213	0,599002	148	0,465564
41	14	0,38859	14	0,618159	40	0,472188
42	17	0,38859	17	0,618159	44	0,472188
43	95	0,38859	95	0,618159	77	0,472188
44	115	0,38859	115	0,618159	91	0,472188
45	116	0,38859	116	0,618159	119	0,472188
46	136	0,38859	136	0,618159	133	0,472188
47	209	0,38859	209	0,618159	187	0,472188

			XAD	REZ		
0	ID	XA1	ID	XA2	ID	XA3
95	48	0,437495	48	0,750437	150	0,505302
96	49	0,437495	49	0,750437	151	0,505302
97	161	0,437495	161	0,750437	15	0,514298
98	175	0,437495	175	0,750437	18	0,514298
99	183	0,437495	183	0,750437	97	0,514298
100	195	0,437495	195	0,750437	113	0,514298
101	12	0,444551	12	0,758902	118	0,514298
102	21	0,444551	21	0,758902	134	0,514298
103	76	0,444551	76	0,758902	188	0,514298
104	92	0,444551	92	0,758902	190	0,514298
105	139	0,444551	139	0,758902	1	0,519908
106	155	0,444551	155	0,758902	2	0,519908
107	186	0.444551	186	0,758902	29	0,519908
108	192	0,444551	192	0,758902	31	0,519908
109	15	0,451098	15	0,782186	200	0,519908
110	18	0,451098	18	0,782186	201	0,519908
111	97	0,451098	97	0,782186	219	0,519908
112	113	0,451098	113	0,782186	220	0,519908
113	118	0,451098	118	0,782186	13	0,52258
114	134	0,451098	134	0,782186	19	0,52258
115	188	0,451098	188	0,782186	75	0,52258
116	190	0,451098	190	0,782186	93	0,52258
117	38	0,456298	38	0,809966	117	0,52258
118	46	0,456298	46	0,809966	135	0,52258
	56		56		208	0,52258
119		0,456298		0,809966		
120	70	0,456298	70	0,809966	212	0,52258
121	140	0,456298	140	0,809966	37	0,523674
122	154	0,456298	154	0,809966	47	0,523674
123	185	0,456298	185	0,809966	57	0,523674
124	193	0,456298	193	0,809966	69	0,523674
125	37	0,464006	37	0,816856	162	0,523674
126	47	0,464006	47	0,816856	163	0,523674
127	57			0,816856		0,523674
128	69	0,464006	69	0,816856		0,523674
129	162	0,464006	162	0,816856	16	0,523992
130	163	0,464006	163	0,816856	96	0,523992
131	173	0,464006	173	0,816856	114	0,523992
132	174	,	174			0,523992
133	40	0,466579	40	0,839356	12	0,524765
134	44	0,466579	44	0,839356	21	0,524765
135	77	0,466579	77	0,839356	76	0,524765
136	91	0,466579	91	0,839356	92	0,524765
137	119	0,466579	119	0,839356	139	0,524765
138	133	0,466579	133	0,839356	155	0,524765
139	187	0,466579	187	0,839356	186	0,524765
140	191	0,466579	191	0,839356		0,524765
141		0,469864		0,843187		0,526521
	12	0,100001	12	0,010101		0,020021

			XAD	REZ		
Nº	ID	XA1	ID	XA2	ID	XA3
189	62	0,508063	62	0,956764	6	0,545259
190	64	0,508063	64	0,956764	27	0,545259
191	101	0,508063	101	0,956764	34	0,545259
192	109	0,508063	109	0,956764	50	0,545259
193	122	0,508063	122	0,956764	181	0,545259
194	130	0,508063	130	0,956764	182	0,545259
195	146	0,508063	146	0,956764	196	0,545259
196	148	0,508063	148	0,956764	197	0,545259
197	81	0,512018	81	0,966444	3	0,547242
198	82	0,512018	82	0,966444	4	0,547242
199	86	0,512018	86	0,966444	28	0,547242
200	87	0,512018	87	0,966444	30	0,547242
201	123	0,512018	123	0,966444	180	0,547242
202	129	0,512018	129	0,966444	198	0,547242
203	145	0,512018	145	0,966444	202	0,547242
204	149	0,512018	149	0,966444	218	0,547242
205	84	0,5157	84	0,975272	14	0,552803
206	102	0,5157	102	0,975272	17	0,552803
207	108	0,5157	108	0,975272	95	0,552803
208	147	0,5157	147	0,975272	115	0,552803
209	83	0,519809	83	0,985472	116	0,552803
210	85	0,519809	85	0,985472	136	0,552803
211	103	0,519809	103	0,985472	209	0,552803
212	107	0,519809	107	0,985472	211	0,552803
213	124	0,519809	124	0,985472	11	0,552835
214	125	0,519809	125	0,985472	20	0,552835
215	127	0,519809	127	0,985472	74	0,552835
216	128	0,519809	128	0,985472	94	0,552835
217	104	0,523562	104	0,994351	137	0,552835
218	105	0,523562	105	0,994351	157	0,552835
219	106	0,523562	106	0,994351	207	0,552835
220	126	0,523562	126	0,994351	213	0,552835

			RA	DIAL		
Nº	ID	RA1	ID	RA2	ID	RA3
1	149	0,511534	141	0,677175	44	0,591303
2	157	0,511534	143	0,677175	54	0,591303
3	164	0,511534	170	0,677175	77	0,591303
4	165	0,511534	183	0,677175	82	0,591303
5	179	0,511534	191	0,677175	87	0,591303
6	186	0,511534	192	0,677175	92	0,591303
7	206	0,511534	201	0,677175	19	0,649194
8	207	0,511534	213	0,677175	23	0,649194
9	214	0,511534	229	0,677175	27	0,649194
10	223	0,511534	244	0,677175	31	0,649194
11	265	0,511534	254	0,677175	36	0,649194
12	267	0,511534	288	0,677175	40	0,649194
13	141	0,511566	149	0,680309	46	0,649194
14	143	0,511566	157	0,680309	50	0,649194
15	170	0,511566	164	0,680309	55	0,649194
16	183	0,511566	165	0,680309	59	0,649194
17	191	0,511566	179	0,680309	63	0,649194
18	192	0,511566	186	0,680309	67	0,649194
19	201	0,511566	206	0,680309	134	0,661641
20	213	0,511566	207	0,680309	137	0,661641
21	229	0,511566	214	0,680309	205	0,661641
22	244	0,511566	223	0,680309	211	0,661641
23	254	0,511566	265	0,680309	230	0,661641
24	288	0,511566	267	0,680309	281	0,661641
25	147	0,515081	147	0,68733	133	0,664241
26	150	0,515081	150	0,68733	136	0,664241
27	153	0,515081	153	0,68733	222	0,664241
28	154	0,515081	154	0,68733	243	0,664241
29	156	0,515081	156	0,68733	263	0,664241
30	180	0,515081	180	0,68733	264	0,664241
31	187	0,515081	187	0,68733	71	0,667777
32	231	0,515081	231	0,68733	73	0,667777
33		0,515081	232	0,68733	78	0,667777
34		0,515081	266	0,68733	83	0,667777
35	275	0,515081	275	0,68733	88	0,667777
36	276	0,515081	276	0,68733	93	0,667777
37	99	0,557335	97	0,751313	135	0,670139
38	104	0,557335	98	0,751313	138	0,670139
39	108	0,557335	100	0,751313	218	0,670139
40	111	0,557335	101	0,751313	219	0,670139
41	112	•		0,751313	250	0,670139
42		0,557335		0,751313	272	0,670139
43	97	0,560747	105		196	0,673945
44	98	0,560747	106		212	0,673945
45	100	0,560747	107	,	220	0,673945
46	101	0,560747	109	0,751313	221	0,673945
47	102	0,560747	110	0,751313	226	0,673945

95 255 0.598843 5 0.82707 181 0.685726 142 62 0.638574 62 0.939576 245 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.9				RAD	IAL						RAD	DIAL		
88 68 0.508843 6 0.82707 122 0.685726 143 66 0.633574 66 0.939576 255 0.9 99 142 0.603038 140 0.837937 235 0.685726 114 70 0.638574 139 0.95893 146 99 169 0.603038 169 0.837937 235 0.685726 147 81 0.643924 113 0.958933 163 01 174 0.603038 177 0.837937 229 0.685726 147 81 0.643924 110 0.95893 163 0 02 177 0.603038 177 0.837937 129 0.685859 150 96 0.643924 202 0.95893 168 0 03 0.603038 230 0.837937 121 0.685859 152 133 0.464944 236 0.95893 246 0 05 209 0.603038 237	Nº	ID	RA1	ID	RA2	ID	RA3	N°	ID	RA1	ID	RA2	ID	RA
88 68 0.508843 6 0.82707 122 0.685726 143 66 0.633574 66 0.939576 255 0.9 99 142 0.603038 140 0.837937 235 0.685726 114 70 0.638574 139 0.95893 146 99 169 0.603038 169 0.837937 235 0.685726 147 81 0.643924 113 0.958933 163 01 174 0.603038 177 0.837937 229 0.685726 147 81 0.643924 110 0.95893 163 0 02 177 0.603038 177 0.837937 129 0.685859 150 96 0.643924 202 0.95893 168 0 03 0.603038 230 0.837937 121 0.685859 152 133 0.464944 236 0.95893 246 0 05 209 0.603038 237	95	255	0,598843	5	0,82707	181	0,685726	142	62	0,638574	62	0,939576	245	0,706
98	96		0,598843	6		182		143	66	0,638574	66	0,939576	255	0,70
99 169 0,603038 169 0,837937 238 0,685726 146 76 0,643924 144 0,95893 152 0,0 174 0,603038 174 0,837937 259 0,885726 147 81 0,643924 151 0,56893 163 0,0 175 0,603038 177 0,837937 260 0,685726 148 86 0,643924 202 0,55833 163 0,0 177 0,603038 177 0,837937 139 0,685859 150 96 0,643924 202 0,55893 168 0,0 185 0,603038 193 0,837937 139 0,685859 150 96 0,643924 202 0,55893 178 0,0 185 0,603038 209 0,837937 144 0,685859 151 135 0,646944 234 0,56833 246 0,0 185 0,603038 239 0,837937 160 0,685859 151 135 0,646944 234 0,56833 246 0,0 185 0,603038 237 0,837937 160 0,685859 153 218 0,46944 234 0,56833 246 0,0 185 0,603038 270 0,837937 202 0,685859 153 218 0,46944 239 0,55893 247 0,0 185 0,603038 270 0,837937 202 0,685859 154 219 0,646944 256 0,95893 248 0,0 185 0,61652 116 0,688907 216 0,685859 155 250 0,46944 258 0,95893 248 0,0 185 0,61652 119 0,868907 234 0,685859 155 250 0,46944 258 0,95893 248 0,0 185 0,61252 120 0,868907 234 0,685859 158 249 0,561665 35 0,960627 140 0,0 185 0,61252 120 0,868907 234 0,685859 158 148 0,611665 76 0,960627 149 0,0 185 160 0,61252 122 0,868907 256 0,685859 158 148 0,611665 76 0,960627 149 0,0 185 160 0,616534 120 0,868907 256 0,686245 169 130 0,611665 148 0,979949 208 0,0 185 175 0,616534 120 0,868907 175 0,686245 165 238 0,611665 148 0,979949 208 0,0 185 185 185 0,616534 130 0,868907 176 0,686245 167 260 0,616655 181 0,979949 237 0,0 185 185 185 0,616534 131 0,868907 176 0,686245 167 260 0,616655 181 0,979949 270 0,0 185 185 185 185 185 0,616655 185 0,979949 185 0,0 0	97	140	0,603038	140	0,837937	217	0,685726	144	70	0,638574	70	0,939576	269	0,70
00 172 0,603038 172 0,837937 259 0,685726 147 81 0,643924 151 0,95893 163 0,01 174 0,603038 177 0,837937 260 0,685726 148 86 0,643924 160 0,95893 168 0,03 02 177 0,603038 177 0,837937 129 0,686859 150 96 0,643924 202 0,95893 178 0,00 0,00 0,00 0,00 0,00 0,00 0,000 0,00	98	142	0,603038	142	0,837937	235	0,685726	145	35	0,643924	139	0,95893	146	0,70
00 172 0,603038 172 0,837937 259 0,685726 147 81 0,643924 151 0,95893 163 0,01 174 0,603038 177 0,837937 260 0,685726 148 86 0,643924 160 0,95893 168 0,03 02 177 0,603038 177 0,837937 129 0,686859 150 96 0,643924 202 0,95893 178 0,00 0,00 0,00 0,00 0,00 0,00 0,000 0,00	99	169		169		238		146	76				152	0,70
01 11 174 0,603038 174 0,837937 260 0,685726 148 86 0,643924 160 0,95893 167 0,033038 137 0,837937 278 0,6858726 149 91 0,643924 202 0,95893 168 0,031 30 0,63038 208 0,837937 139 0,668589 151 135 0,646944 216 0,95893 178 0,060308 209 0,837937 161 0,688589 151 135 0,646944 224 0,95893 226 0,0 0 203 0,837937 160 0,6885899 152 138 0,646944 239 0,95893 226 0,688937 203 0,6885899 155 250 0,646944 256 0,95893 228 0,88893 284 0,0 17 0,61252 116 0,688907 230 0,688589 155 250 0,646944 259 0,95893 284 0,0 11 11 11	100	172		172		259		147	81		151		163	0,70
02 177 0,603038 177 0,837937 278 0,685726 149 91 0,643924 202 0,95893 168 0,03 193 0,603038 208 0,837937 139 0,685859 150 96 0,643924 203 0,95893 178 0,05 05 209 0,603038 209 0,837937 161 0,685859 152 138 0,646944 224 0,95893 246 0,0 06 233 0,630388 237 0,837937 160 0,685859 152 138 0,646944 226 0,95893 268 0,0 07 237 0,6303088 270 0,837937 203 0,685859 155 250 0,646944 226 0,95893 268 0,0 19 115 0,61252 116 0,868907 221 0,688859 156 272 0,846944 279 0,95893 284 0,0 11 118 0,612	101	174		174		260		148	86		160		167	0,70
03 193 0,603038 193 0,837937 139 0,685859 150 96 0,643924 203 0,95893 178 0,04 04 206 0,603038 209 0,837937 144 0,685859 152 138 0,646944 234 0,95893 194 0,06 05 209 0,630338 233 0,837937 151 0,685859 152 218 0,646944 234 0,95893 247 0,00 07 237 0,603038 237 0,837937 202 0,685859 156 250 0,646944 258 0,95893 227 0,769393 224 0,685895 156 272 0,64944 258 0,95893 227 0,769393 227 0,61652 116 0,868907 234 0,685859 156 272 0,64944 259 0,95893 227 0,769394 229 0,685859 150 265 0,665659 159 0,651665 30 0,	102	177	0,603038	177	0,837937	278	0,685726	149	91	0,643924	202	0,95893	168	0,70
05 209 0,603038 209 0,837937 151 0,685859 152 138 0,646944 234 0,95893 246 0,0 06 233 0,630388 233 0,837937 160 0,685859 153 218 0,646944 239 0,95893 247 0,0 08 270 0,630388 237 0,837937 203 0,685859 155 250 0,646944 258 0,95893 227 09 115 0,61252 116 0,868907 234 0,685859 156 272 0,646944 279 0,95893 224 0,61252 120 0,868907 239 0,685859 157 145 0,651665 76 0,960627 142 0,1 142 0,1 0,61252 122 0,868907 259 0,685859 159 159 0,651665 76 0,960627 172 0,4 142 0,4 0,661653 10,960627 172 0,661653 160 <td>103</td> <td>193</td> <td>0,603038</td> <td>193</td> <td>0,837937</td> <td>139</td> <td>0,685859</td> <td>150</td> <td>96</td> <td>0,643924</td> <td>203</td> <td></td> <td>178</td> <td>0,70</td>	103	193	0,603038	193	0,837937	139	0,685859	150	96	0,643924	203		178	0,70
06 233 0,603038 233 0,837937 160 0,685859 153 218 0,646944 239 0,95893 247 7 07 237 0,603038 237 0,837937 202 0,686859 154 219 0,646944 256 0,95893 227 7 09 115 0,61252 116 0,868907 216 0,685859 156 222 0,646944 229 0,95893 228 0,08162 110 117 0,61252 119 0,868907 234 0,685859 158 148 0,651665 35 0,960627 142 0,6 148 130 0,61252 122 0,868907 239 0,685859 160 166 0,651665 36 0,960627 142 0,0 142 0,0 153 0,61653 169 0,960627 172 0,616534 126 0,868907 279 0,685859 161 181 0,651665 80 0,960627 172	104	208	0,603038	208	0,837937	144	0,685859	151	135	0,646944	216	0,95893	194	0,70
07 237 0,603038 237 0,837937 202 0,685859 154 219 0,646944 256 0,95893 268 0,08 270 0,603038 270 0,837937 203 0,685859 155 250 0,646944 258 0,95893 277 0,09 115 0,61252 116 0,868907 216 0,685859 156 272 0,646944 279 0,95893 227 0,0 110 117 0,61252 119 0,868907 239 0,685859 158 148 0,651665 35 0,960627 140 0,0 111 118 0,61252 122 0,868907 256 0,685859 159 159 159 0,551665 81 0,960627 172 0,0 142 0,0 0,66634 160 0,66634 160 0,66634 160 0,66634 160 0,66634 120 0,668907 171 0,686245 162 182 0,651665 96 0,960627 <	105			209		151			138		234		246	0,70
07 237 0,603038 237 0,837937 202 0,685859 154 219 0,646944 256 0,95893 268 0,08 270 0,603038 270 0,837937 203 0,685859 155 250 0,646944 258 0,95893 277 0,09 115 0,61252 116 0,868907 216 0,685859 156 272 0,646944 279 0,95893 227 0,0 110 117 0,61252 119 0,868907 239 0,685859 158 148 0,651665 35 0,960627 140 0,0 111 118 0,61252 122 0,868907 256 0,685859 159 159 159 0,551665 81 0,960627 172 0,0 142 0,0 0,66634 160 0,66634 160 0,66634 160 0,66634 160 0,66634 120 0,668907 171 0,686245 162 182 0,651665 96 0,960627 <	106	233		233		160		153	218		239	0,95893	247	0,70
08 270 0,603038 270 0,837937 203 0,685859 155 250 0,646944 258 0,95893 277 0,09 08 15 0,61252 116 0,868907 216 0,685859 156 272 0,646944 279 0,98893 284 0,0 10 117 0,61252 119 0,868907 234 0,685859 158 148 0,651665 35 0,960627 142 0,0 11 118 0,61252 120 0,868907 258 0,685859 159 159 0,651665 86 0,960627 172 0,66565 160 0,66665 86 0,960627 172 0,66565 91 0,960627 172 0,665654 160 0,666534 126 0,868907 279 0,685859 161 181 0,651665 96 0,960627 177 0,666534 128 0,668907 155 0,686245 162 182 0,651665 14	107	237				202		154	219		256	0,95893	268	0,70
10 117 0,61252 119 0,686907 234 0,685859 157 145 0,651665 35 0,960627 140 0,0 11 118 0,61252 120 0,686807 239 0,685859 158 148 0,651665 76 0,960627 142 0,0 13 125 0,61252 122 0,686807 258 0,685859 160 166 0,651665 86 0,960627 172 0,0 14 130 0,61252 123 0,686907 279 0,685859 161 181 0,651665 86 0,960627 177 0,6 15 116 0,616534 126 0,686907 155 0,686245 162 182 0,651665 418 0,979949 193 0,0 16 119 0,616534 128 0,868907 171 0,686245 163 217 0,651665 145 0,979949 208 0,0 18 122 0,616534 131 0,868907 176 0,686245 165 238	80	270	0,603038	270	0,837937	203	0,685859	155	250	0,646944	258	0,95893	277	0,70
11 118 0,61252 120 0,868907 239 0,685859 158 148 0,651665 76 0,960627 142 0 12 121 0,61252 122 0,868907 256 0,685859 159 159 0,651665 81 0,960627 169 0 13 125 0,61252 123 0,868907 279 0,685859 160 166 0,651665 86 0,960627 174 0 15 116 0,616534 126 0,868907 155 0,685245 162 182 0,651665 96 0,960627 177 0 16 119 0,616534 128 0,868907 171 0,686245 163 217 0,651665 145 0,979949 208 0 18 122 0,616534 128 0,868907 175 0,686245 166 235 0,651665 148 0,979949 208 0 19 123 0,616534 131 0,868907 175 0,686245 167 260	109	115	0,61252	116	0,868907	216	0,685859	156	272	0,646944	279	0,95893	284	0,70
12 121 0,61252 122 0,868907 256 0,685859 159 159 0,651665 81 0,960627 169 0, 13 125 0,61252 123 0,868907 258 0,685859 160 166 0,651665 86 0,960627 172 0, 15 116 0,61252 124 0,868907 155 0,686245 162 182 0,651665 96 0,960627 177 0, 15 116 0,616534 126 0,868907 155 0,686245 162 182 0,651665 145 0,979949 193 0, 16 119 0,616534 128 0,868907 175 0,686245 165 238 0,651665 148 0,979949 208 0, 18 122 0,616534 131 0,868907 176 0,686245 166 259 0,651665 159 0,979949 233 0, 19 123 0,616534 132 0,868907 176 0,686245 167 260 <td>110</td> <td>117</td> <td>0,61252</td> <td>119</td> <td>0,868907</td> <td>234</td> <td>0,685859</td> <td>157</td> <td>145</td> <td>0,651665</td> <td>35</td> <td>0,960627</td> <td>140</td> <td>0,70</td>	110	117	0,61252	119	0,868907	234	0,685859	157	145	0,651665	35	0,960627	140	0,70
13 125 0,61252 123 0,868907 258 0,685859 160 166 0,651665 86 0,960627 172 0,14 14 130 0,61252 124 0,868907 279 0,685859 161 181 0,651665 91 0,960627 174 0,0 15 116 0,616534 126 0,868907 155 0,686245 162 182 0,651665 96 0,960627 177 0,0 17 120 0,616534 128 0,868907 171 0,686245 163 217 0,651665 148 0,979949 208 0,0 19 123 0,616534 129 0,868907 175 0,686245 165 238 0,651665 148 0,979949 208 0,0 19 123 0,616534 131 0,868907 176 0,686245 166 259 0,651665 148 0,979949 237 0,0 119 123 0,616534 132 0,882364 290 0,686245 167 260 <t< td=""><td>111</td><td>118</td><td>0,61252</td><td>120</td><td>0,868907</td><td>239</td><td>0,685859</td><td>158</td><td>148</td><td>0,651665</td><td>76</td><td>0,960627</td><td>142</td><td>0,70</td></t<>	111	118	0,61252	120	0,868907	239	0,685859	158	148	0,651665	76	0,960627	142	0,70
14 130 0,61252 124 0,868907 279 0,685859 161 181 0,651665 91 0,960627 174 0,15 15 116 0,616534 126 0,868907 155 0,686245 162 182 0,651665 96 0,960627 177 0,0 16 119 0,616534 127 0,868907 161 0,686245 163 217 0,651665 148 0,979949 208 0,0 18 122 0,616534 129 0,868907 175 0,686245 165 238 0,651665 148 0,979949 208 0,0 18 122 0,616534 131 0,868907 175 0,686245 166 259 0,651665 169 0,979949 203 0,0 20 124 0,616534 115 0,882364 199 0,686245 166 259 0,651665 182 0,979949 270 0,0 21 126 0,616534 117 0,882364 225 0,686245 169 <	112	121	0,61252	122	0,868907	256	0,685859	159	159	0,651665	81	0,960627	169	0,70
15 116 0,616534 126 0,868907 155 0,686245 162 182 0,651665 96 0,960627 177 0,16 119 0,616534 127 0,868907 161 0,686245 163 217 0,651665 145 0,979949 193 0,17 17 120 0,616534 128 0,868907 175 0,686245 166 238 0,651665 148 0,979949 208 0,0 18 122 0,616534 131 0,868907 176 0,686245 166 259 0,651665 166 0,979949 233 0,0 156 0,616534 131 0,868907 184 0,686245 166 259 0,651665 166 0,979949 233 0,0 115 0,868245 167 260 0,651665 181 0,979949 270 0,0 211 0,616534 117 0,882364 210 0,686245 168 278 0,651605 182	113	125	0,61252	123	0,868907	258	0,685859	160	166	0,651665	86	0,960627	172	0,70
16 119 0,616534 127 0,868907 161 0,686245 163 217 0,651665 145 0,979949 193 0,17 17 120 0,616534 128 0,868907 171 0,686245 164 235 0,651665 148 0,979949 208 0,18 18 122 0,616534 129 0,868907 176 0,686245 166 259 0,651665 160 0,979949 233 0,016534 131 0,868907 176 0,686245 166 259 0,651665 166 0,979949 233 0,016534 132 0,868907 184 0,686245 167 260 0,651665 181 0,979949 237 0,01616534 115 0,882364 219 0,686245 168 278 0,651665 182 0,979949 277 0,272 127 0,616534 115 0,882364 210 0,686245 169 139 0,651708 235 0,979949 1	14	130	0,61252	124	0,868907	279	0,685859	161	181	0,651665	91	0,960627	174	0,70
17 120 0,616534 128 0,868907 171 0,686245 164 235 0,651665 148 0,979949 208 0,18 18 122 0,616534 129 0,868907 175 0,686245 165 238 0,651665 159 0,979949 209 0,019 19 123 0,616534 131 0,868907 176 0,686245 166 259 0,651665 160 0,979949 233 0,016534 132 0,868907 184 0,686245 167 260 0,651665 181 0,979949 237 0,016534 115 0,882364 199 0,686245 168 278 0,651665 182 0,979949 270 0,016534 117 0,882364 225 0,686245 169 139 0,651708 237 0,979949 115 0,016534 121 0,882364 225 0,686245 170 144 0,651708 238 0,979949 118 0,066534 <td< td=""><td>115</td><td>116</td><td>0,616534</td><td>126</td><td>0,868907</td><td>155</td><td>0,686245</td><td>162</td><td>182</td><td>0,651665</td><td>96</td><td>0,960627</td><td>177</td><td>0,70</td></td<>	115	116	0,616534	126	0,868907	155	0,686245	162	182	0,651665	96	0,960627	177	0,70
18 122 0,616534 129 0,868907 175 0,686245 165 238 0,651665 159 0,979949 209 0, 19 123 0,616534 131 0,868907 176 0,686245 166 259 0,651665 166 0,979949 233 0, 20 124 0,616534 132 0,868907 184 0,686245 167 260 0,651665 181 0,979949 237 0, 21 126 0,616534 115 0,882364 199 0,686245 168 278 0,651665 182 0,979949 270 0, 22 127 0,616534 118 0,882364 225 0,686245 169 139 0,651708 217 0,979949 115 0, 23 128 0,616534 118 0,882364 225 0,686245 170 144 0,651708 235 0,979949 117 0, 24 129 0,616534 121 0,882364 271 0,686245 171 1	16	119	0,616534	127	0,868907	161	0,686245	163	217	0,651665	145	0,979949	193	0,70
19 123 0,616534 131 0,868907 176 0,686245 166 259 0,651665 166 0,979949 233 0, 20 124 0,616534 132 0,868907 184 0,686245 167 260 0,651665 181 0,979949 237 0, 21 126 0,616534 115 0,882364 199 0,686245 168 278 0,651665 182 0,979949 270 0, 22 127 0,616534 118 0,882364 225 0,686245 170 144 0,651708 235 0,979949 115 0, 24 129 0,616534 118 0,882364 257 0,686245 171 151 0,651708 238 0,979949 117 0, 25 131 0,616534 125 0,882364 257 0,686245 172 160 0,651708 239 0,979949 118 0, 26 132 0,616534 130 0,882364 289 0,686245 173 2	117	120	0,616534	128	0,868907	171	0,686245	164	235	0,651665	148	0,979949	208	0,70
20 124 0,616534 132 0,868907 184 0,686245 167 260 0,651665 181 0,979949 237 0, 21 126 0,616534 115 0,882364 199 0,686245 168 278 0,651665 182 0,979949 270 0, 22 127 0,616534 117 0,882364 210 0,686245 169 139 0,651708 217 0,979949 115 0, 24 129 0,616534 121 0,882364 257 0,686245 171 151 0,651708 238 0,979949 117 0, 24 129 0,616534 121 0,882364 257 0,686245 171 151 0,651708 238 0,979949 118 0, 25 131 0,616534 130 0,882364 289 0,686245 172 160 0,651708 259 0,979949 125 0, 26 132 0,616534 130 0,882364 289 0,686245 173 2	118	122	0,616534	129	0,868907	175	0,686245	165	238	0,651665	159	0,979949	209	0,70
21 126 0,616534 115 0,882364 199 0,686245 168 278 0,651665 182 0,979949 270 0, 22 127 0,616534 117 0,882364 210 0,686245 169 139 0,651708 217 0,979949 115 0, 23 128 0,616534 118 0,882364 225 0,686245 170 144 0,651708 238 0,979949 117 0, 24 129 0,616534 121 0,882364 257 0,686245 171 151 0,651708 238 0,979949 118 0, 25 131 0,616534 125 0,882364 289 0,686245 173 202 0,651708 259 0,979949 125 0, 26 132 0,616534 130 0,882364 289 0,686245 173 202 0,651708 259 0,979949 125 0, 27 44 0,635477 44 0,917341 72 0,692554 175 216<	119	123	0,616534	131	0,868907	176	0,686245	166	259	0,651665	166	0,979949	233	0,70
22 127 0,616534 117 0,882364 210 0,686245 169 139 0,651708 217 0,979949 115 0,23 128 0,616534 118 0,882364 225 0,686245 170 144 0,651708 235 0,979949 117 0,24 129 0,616534 121 0,882364 257 0,686245 171 151 0,651708 238 0,979949 118 0,25 131 0,616534 125 0,882364 271 0,686245 172 160 0,651708 259 0,979949 121 0,25 131 0,616534 130 0,882364 289 0,686245 173 202 0,651708 260 0,979949 125 0,26 127 44 0,635477 44 0,917341 72 0,692554 174 203 0,651708 155 0,99092 116 0,29 77 0,635477 77 0,917341 74 0,692554 176 234 0,651708 <td>120</td> <td>124</td> <td>0,616534</td> <td>132</td> <td>0,868907</td> <td>184</td> <td>0,686245</td> <td>167</td> <td>260</td> <td>0,651665</td> <td>181</td> <td>0,979949</td> <td>237</td> <td>0,70</td>	120	124	0,616534	132	0,868907	184	0,686245	167	260	0,651665	181	0,979949	237	0,70
23 128 0,616534 118 0,882364 225 0,686245 170 144 0,651708 235 0,979949 117 0,04 24 129 0,616534 121 0,882364 257 0,686245 171 151 0,651708 238 0,979949 118 0,04 25 131 0,616534 125 0,882364 271 0,686245 172 160 0,651708 259 0,979949 121 0,04 26 132 0,616534 130 0,882364 289 0,686245 173 202 0,651708 260 0,979949 125 0,07 27 44 0,635477 44 0,917341 72 0,692554 174 203 0,651708 278 0,99092 116 0,09 29 77 0,635477 77 0,917341 79 0,692554 176 234 0,651708 161 0,99092 120 0,0 31 87 0,635477 87 0,917341 84 0,692554 177 2	121	126	0,616534	115	0,882364	199	0,686245	168	278	0,651665	182	0,979949	270	0,70
24 129 0,616534 121 0,882364 257 0,686245 171 151 0,651708 238 0,979949 118 0,25 131 0,616534 125 0,882364 271 0,686245 172 160 0,651708 259 0,979949 121 0,26 132 0,616534 130 0,882364 289 0,686245 173 202 0,651708 260 0,979949 125 0,27 44 0,635477 44 0,917341 72 0,692554 174 203 0,651708 278 0,979949 130 0,29 77 0,635477 54 0,917341 74 0,692554 175 216 0,651708 155 0,99092 116 0,29 77 0,635477 77 0,917341 79 0,692554 176 234 0,651708 151 0,99092 120 0,31 87 0,635477 82 0,917341 84 0,692554 177 239 0,651708 171 0,99092 122 0,31 87 0,635477 87 0,917341 <t< td=""><td>122</td><td>127</td><td>0,616534</td><td>117</td><td>0,882364</td><td>210</td><td>0,686245</td><td>169</td><td>139</td><td>0,651708</td><td>217</td><td>0,979949</td><td>115</td><td>0,71</td></t<>	122	127	0,616534	117	0,882364	210	0,686245	169	139	0,651708	217	0,979949	115	0,71
25 131 0,616534 125 0,882364 271 0,686245 172 160 0,651708 259 0,979949 121 0,26 132 0,616534 130 0,882364 289 0,686245 173 202 0,651708 260 0,979949 125 0,27 44 0,635477 44 0,917341 72 0,692554 174 203 0,651708 278 0,979949 125 0,28 54 0,635477 54 0,917341 74 0,692554 175 216 0,651708 155 0,99092 116 0,29 77 0,635477 77 0,917341 79 0,692554 176 234 0,651708 161 0,99092 119 0,30 82 0,635477 82 0,917341 84 0,692554 177 239 0,651708 171 0,99092 120 0,31 87 0,635477 87 0,917341 84 0,692554 178 256 0,651708 175 0,99092 122 0,33 22 0,638574 22 0,939576 158 0,	123	128	0,616534	118	0,882364	225	0,686245	170	144	0,651708	235	0,979949	117	0,71
26 132 0,616534 130 0,882364 289 0,686245 173 202 0,651708 260 0,979949 125 0,27 44 0,635477 44 0,917341 72 0,692554 174 203 0,651708 278 0,979949 130 0,28 54 0,635477 54 0,917341 74 0,692554 175 216 0,651708 155 0,99092 116 0,29 77 0,635477 77 0,917341 79 0,692554 176 234 0,651708 161 0,99092 119 0,30 82 0,635477 82 0,917341 84 0,692554 177 239 0,651708 171 0,99092 120 0,31 87 0,635477 87 0,917341 89 0,692554 178 256 0,651708 175 0,99092 122 0,33 22 0,638574 22 0,939576 158 0,706487 180 279 0,651708 184 0,99092 124 0,34 26 0,638574 26 0,939576 </td <td>124</td> <td>129</td> <td>0,616534</td> <td>121</td> <td>0,882364</td> <td>257</td> <td>0,686245</td> <td>171</td> <td>151</td> <td>0,651708</td> <td>238</td> <td>0,979949</td> <td>118</td> <td>0,71</td>	124	129	0,616534	121	0,882364	257	0,686245	171	151	0,651708	238	0,979949	118	0,71
27 44 0,635477 44 0,917341 72 0,692554 174 203 0,651708 278 0,979949 130 0,28 28 54 0,635477 54 0,917341 74 0,692554 175 216 0,651708 155 0,99092 116 0,9092 119 0,930 0,917341 79 0,692554 176 234 0,651708 161 0,99092 120 0,930 0,917341 84 0,692554 177 239 0,651708 171 0,99092 120 0,931 0,932 92 0,635477 87 0,917341 89 0,692554 178 256 0,651708 175 0,99092 122 0,932 0,92 0,635477 92 0,917341 94 0,692554 179 258 0,651708 176 0,99092 122 0,333 22 0,638574 22 0,939576 158 0,706487 180 279 0,651708 184 0,99092 124 0,34 26 0,638574 26 0,939576 162 0,706487 <td< td=""><td>125</td><td>131</td><td>0,616534</td><td>125</td><td>0,882364</td><td>271</td><td>0,686245</td><td>172</td><td>160</td><td>0,651708</td><td>259</td><td>0,979949</td><td>121</td><td>0,71</td></td<>	125	131	0,616534	125	0,882364	271	0,686245	172	160	0,651708	259	0,979949	121	0,71
28 54 0,635477 54 0,917341 74 0,692554 175 216 0,651708 155 0,99092 116 0, 29 77 0,635477 77 0,917341 79 0,692554 176 234 0,651708 161 0,99092 119 0, 30 82 0,635477 82 0,917341 84 0,692554 177 239 0,651708 171 0,99092 120 0, 31 87 0,635477 87 0,917341 89 0,692554 178 256 0,651708 175 0,99092 122 0, 32 92 0,635477 92 0,917341 94 0,692554 179 258 0,651708 176 0,99092 123 0, 33 22 0,638574 22 0,939576 158 0,706487 180 279 0,651708 184 0,99092 124 0, 34 26 0,638574 26 0,939576 162 0,706487 181 204 0,65245	126	132	0,616534	130	0,882364	289	0,686245	173	202	0,651708	260	0,979949	125	0,71
29 77 0,635477 77 0,917341 79 0,692554 176 234 0,651708 161 0,99092 119 0,30 30 82 0,635477 82 0,917341 84 0,692554 177 239 0,651708 171 0,99092 120 0,31 31 87 0,635477 87 0,917341 89 0,692554 178 256 0,651708 175 0,99092 122 0,32 32 92 0,635477 92 0,917341 94 0,692554 179 258 0,651708 176 0,99092 123 0,33 32 92 0,638574 22 0,939576 158 0,706487 180 279 0,651708 184 0,99092 124 0,34 26 0,638574 26 0,939576 162 0,706487 181 204 0,652459 199 0,99092 126 0,35 36 34 0,638574 34 0,939576 185 0,706487 183 248 0,652459 <td>127</td> <td>44</td> <td>0,635477</td> <td>44</td> <td>0,917341</td> <td>72</td> <td>0,692554</td> <td>174</td> <td>203</td> <td>0,651708</td> <td>278</td> <td>0,979949</td> <td>130</td> <td>0,71</td>	127	44	0,635477	44	0,917341	72	0,692554	174	203	0,651708	278	0,979949	130	0,71
30 82 0,635477 82 0,917341 84 0,692554 177 239 0,651708 171 0,99092 120 0,31 87 0,635477 87 0,917341 89 0,692554 178 256 0,651708 175 0,99092 122 0,32 92 0,635477 92 0,917341 94 0,692554 179 258 0,651708 176 0,99092 123 0,33 22 0,638574 22 0,939576 158 0,706487 180 279 0,651708 184 0,99092 124 0,34 26 0,638574 26 0,939576 162 0,706487 181 204 0,652459 199 0,99092 126 0,35 30 0,638574 30 0,939576 173 0,706487 182 240 0,652459 210 0,99092 127 0,36 34 0,638574 34 0,939576 185 0,706487 183 248 0,652459 225 0,99092 128 0,37 39 0,638574 34 0,939576 188 0,70648	128	54	0,635477	54	0,917341	74	0,692554	175	216	0,651708	155	0,99092	116	0,71
31 87 0,635477 87 0,917341 89 0,692554 178 256 0,651708 175 0,99092 122 0,32 92 0,635477 92 0,917341 94 0,692554 179 258 0,651708 176 0,99092 123 0,33 22 0,638574 22 0,939576 158 0,706487 180 279 0,651708 184 0,99092 124 0,34 26 0,638574 26 0,939576 162 0,706487 181 204 0,652459 199 0,99092 126 0,35 30 0,638574 30 0,939576 173 0,706487 182 240 0,652459 210 0,99092 127 0,36 34 0,638574 34 0,939576 185 0,706487 183 248 0,652459 210 0,99092 128 0,37 39 0,638574 39 0,939576 185 0,706487 184 249 0,652459 257 0,99092 129 0,38 43 0,638574 43 0,939576 195 0,7064	129	77	0,635477	77	0,917341	79	0,692554	176	234	0,651708	161	0,99092	119	0,710
32 92 0,635477 92 0,917341 94 0,692554 179 258 0,651708 176 0,99092 123 0,33 33 22 0,638574 22 0,939576 158 0,706487 180 279 0,651708 184 0,99092 124 0,34 34 26 0,638574 26 0,939576 162 0,706487 181 204 0,652459 199 0,99092 126 0,35 35 30 0,638574 30 0,939576 173 0,706487 182 240 0,652459 210 0,99092 127 0,36 36 34 0,638574 34 0,939576 185 0,706487 183 248 0,652459 225 0,99092 128 0,37 37 39 0,638574 39 0,939576 188 0,706487 184 249 0,652459 257 0,99092 129 0,38 38 43 0,638574 43 0,939576 195 0,706487 185 251	130	82	0,635477	82	0,917341	84	0,692554	177	239	0,651708	171	0,99092	120	0,71
33 22 0,638574 22 0,939576 158 0,706487 180 279 0,651708 184 0,99092 124 0,34 34 26 0,638574 26 0,939576 162 0,706487 181 204 0,652459 199 0,99092 126 0,35 35 30 0,638574 30 0,939576 173 0,706487 182 240 0,652459 210 0,99092 127 0,36 36 34 0,638574 34 0,939576 185 0,706487 183 248 0,652459 225 0,99092 128 0,37 37 39 0,638574 39 0,939576 188 0,706487 184 249 0,652459 257 0,99092 129 0,38 43 0,638574 43 0,939576 195 0,706487 185 251 0,652459 271 0,99092 131 0,39 49 0,638574 49 0,939576 198 0,706487 186 252 0,652459 28	131	87	0,635477	87	0,917341	89	0,692554	178	256	0,651708	175	0,99092	122	0,71
34 26 0,638574 26 0,939576 162 0,706487 181 204 0,652459 199 0,99092 126 0,335 35 30 0,638574 30 0,939576 173 0,706487 182 240 0,652459 210 0,99092 127 0,36 36 34 0,638574 34 0,939576 185 0,706487 183 248 0,652459 225 0,99092 128 0,38 37 39 0,638574 39 0,939576 188 0,706487 184 249 0,652459 257 0,99092 129 0,38 38 43 0,638574 43 0,939576 195 0,706487 185 251 0,652459 271 0,99092 131 0,39 39 49 0,638574 49 0,939576 198 0,706487 186 252 0,652459 289 0,99092 132 0,40 40 53 0,638574 53 0,939576 215 0,706487 187 261	132	92	0,635477	92	0,917341	94	0,692554	179	258	0,651708	176	0,99092	123	0,71
35 30 0,638574 30 0,939576 173 0,706487 182 240 0,652459 210 0,99092 127 0,36 36 34 0,638574 34 0,939576 185 0,706487 183 248 0,652459 225 0,99092 128 0,37 39 0,638574 39 0,939576 188 0,706487 184 249 0,652459 257 0,99092 129 0,38 43 0,638574 43 0,939576 195 0,706487 185 251 0,652459 271 0,99092 131 0,39 49 0,638574 49 0,939576 198 0,706487 186 252 0,652459 289 0,99092 132 0,40 53 0,638574 53 0,939576 215 0,706487 187 261 0,652459 135 1,006806 21 0,06566 21 0,06566 21 0,06566 21 0,06566 21 0,06566 21 0,06566 21 0,06566 21 0,06566 21 0,06566 21	133	22	0,638574	22	0,939576	158	0,706487	180	279	0,651708	184	0,99092	124	0,71
36 34 0,638574 34 0,939576 185 0,706487 183 248 0,652459 225 0,99092 128 0,37 37 39 0,638574 39 0,939576 188 0,706487 184 249 0,652459 257 0,99092 129 0,38 38 43 0,638574 43 0,939576 195 0,706487 185 251 0,652459 271 0,99092 131 0,39 49 0,638574 49 0,939576 198 0,706487 186 252 0,652459 289 0,99092 132 0,40 53 0,638574 53 0,939576 215 0,706487 187 261 0,652459 135 1,006806 21 0,06566 21 0,06566 21 0,06566 21 0,06566 21 0,06566 21 0,06566 21 0,06566 21 0,06566 21 0,06566 21 0,06566 21 0,06566 21 0,06566 21 0,06566 21 0,06566 21	134	26	0,638574	26	0,939576	162	0,706487	181	204	0,652459	199	0,99092	126	0,71
37 39 0,638574 39 0,939576 188 0,706487 184 249 0,652459 257 0,99092 129 0,38 38 43 0,638574 43 0,939576 195 0,706487 185 251 0,652459 271 0,99092 131 0,39 49 0,638574 49 0,939576 198 0,706487 186 252 0,652459 289 0,99092 132 0,40 40 53 0,638574 53 0,939576 215 0,706487 187 261 0,652459 135 1,006806 21 0,652459	135	30		30	0,939576	173	0,706487	182	240	0,652459	210	0,99092	127	0,71
38 43 0,638574 43 0,939576 195 0,706487 185 251 0,652459 271 0,99092 131 0,39 39 49 0,638574 49 0,939576 198 0,706487 186 252 0,652459 289 0,99092 132 0,40 40 53 0,638574 53 0,939576 215 0,706487 187 261 0,652459 135 1,006806 21 0,652459	36	34	0,638574	34	0,939576	185	0,706487	183	248	0,652459	225	0,99092	128	0,71
38 43 0,638574 43 0,939576 195 0,706487 185 251 0,652459 271 0,99092 131 0, 39 49 0,638574 49 0,939576 198 0,706487 186 252 0,652459 289 0,99092 132 0, 40 53 0,638574 53 0,939576 215 0,706487 187 261 0,652459 135 1,006806 21 0,	137	39	0,638574	39	0,939576	188	0,706487	184	249	0,652459	257	0,99092	129	0,71
40 53 0,638574 53 0,939576 215 0,706487 187 261 0,652459 135 1,006806 21 0,	138	43	0,638574	43	0,939576	195	0,706487	185	251	0,652459	271	0,99092	131	0,71
	139	49	0,638574	49	0,939576	198	0,706487	186	252	0,652459	289	0,99092	132	0,71
41 58 0,638574 58 0,939576 224 0,706487 188 285 0.652459 138 1.006806 25 0.	140	53	0,638574	53	0,939576	215	0,706487	187	261	0,652459	135	1,006806	21	0,71
	141	58	0,638574	58	0,939576	224	0,706487	188	285	0,652459	138	1,006806	25	0,71

			RAD	IAL						RAD	DIAL		
Nº	ID	RA1	ID	RA2	ID	RA3	N°	ID	RA1	ID	RA2	ID	RA3
189	286	0,652459	218	1,006806	29	0,711231	236		0,683087	74	1,198909	150	0,747228
190	290	0,652459	219	1,006806	33	0,711231	237	205	0,683087	79	1,198909	153	0,747228
191	291	0,652459	250	1,006806	38	0,711231	238	211	0,683087	84	1,198909	154	0,747228
192	292	0,652459	272	1,006806	42	0,711231	239	230	0,683087	89	1,198909	156	0,747228
193	155	0,656829	204	1,019436	48	0,711231	240	281	0,683087	94	1,198909	180	0,747228
194	161	0,656829	240	1,019436	52	0,711231	241	72	0,688087	134	1,204094	187	0,747228
195	171	0,656829	248	1,019436	57	0,711231	242	74	0,688087	137	1,204094	231	0,747228
196	175	0,656829	249	1,019436	61	0,711231	243	79	0,688087	205	1,204094	232	0,747228
197	176	0,656829	251	1,019436	65	0,711231	244	84	0,688087	211	1,204094	266	0,747228
198	184	0,656829	252	1,019436	69	0,711231	245	89	0,688087	230	1,204094	275	0,747228
199	199	0,656829	261	1,019436	45	0,713243	246	94	0,688087	281	1,204094	276	0,747228
200	210	0,656829	285	1,019436	75	0,713243	247	19	0,688812	196	1,206659	149	0,7473
201	225	0,656829	286	1,019436	80	0,713243	248	23	0,688812	212	1,206659	157	0,7473
202	257	0,656829	290	1,019436	85	0,713243	249	27	0,688812	220	1,206659	164	0,7473
203	271	0,656829	291	1,019436	90	0,713243	250	31	0,688812	221	1,206659	165	0,7473
204	289	0,656829	292	1,019436	95	0,713243	251	36	0,688812	226	1,206659	179	0,7473
205	21	0,667861	21	1,061306	22	0,719336	252	40	0,688812	227	1,206659	186	0,7473
206	25	0,667861	25	1,061306	26	0,719336	253	46	0,688812	236	1,206659	206	0,7473
207	29	0,667861	29	1,061306	30	0,719336	254	50	0,688812	241	1,206659	207	0,7473
208	33	0,667861	33	1,061306	34	0,719336	255	55	0,688812	262	1,206659	214	0,7473
209	38	0,667861	38	1,061306	39	0,719336	256	59	0,688812	273	1,206659	223	0,7473
210	42	0,667861	42	1,061306	43	0,719336	257	63	0,688812	280	1,206659	265	0,7473
211	48	0,667861	48	1,061306	49	0,719336	258	67	0,688812	287	1,206659	267	0,7473
212	52	0,667861	52	1,061306	53	0,719336	259	196	0,690363	19	1,248877	7	0,762407
213	57	0,667861	57	1,061306	58	0,719336	260	212	0,690363	23	1,248877	8	0,762407
214	61	0,667861	61	1,061306	62	0,719336	261	220	0,690363	27	1,248877	9	0,762407
215	65	0,667861	65	1,061306	66	0,719336	262		0,690363	31	1,248877	10	0,762407
216	69	0,667861	69	1,061306	70	0,719336	263		0,690363	36	1,248877	11	0,762407
217	45	0,674451	45	1,065149	35	0,719768	264	227	0,690363	40	1,248877	12	0,762407
218	75	0,674451	75	1,065149	76	0,719768	265		0,690363	46	1,248877	13	0,762407
219	80	0,674451	80	1,065149	81	0,719768	266		0,690363	50	1,248877	14	0,762407
220	85	0,674451	85	1,065149	86	0,719768	267		0,690363	55	1,248877	15	0,762407
221	90	0,674451	90	1,065149		0,719768	268		0,690363	59		16	0,762407
222	95	0,674451	95	1,065149	96	0,719768	269		0,690363	63	1,248877	17	0,762407
223	20	0,679608	20	1,18015	141	0,747216	270		0,690363	67	1,248877	18	0,762407
224	24	0,679608	24	1,18015	143	0,747216	271	71	0,70074	71	1,256646	1	0,762972
225	28	0,679608	28	1,18015	170	0,747216	272		0,70074	73	1,256646	2	0,762972
226	32	0,679608	32	1,18015	183	0,747216	273		0,70074	78	1,256646	3	0,762972
227	37	0,679608	37	1,18015	191	0,747216	274		0,70074	83	1,256646	4	0,762972
228	41	0,679608	41	1,18015	192	0,747216	275		0,70074	88	1,256646	5	0,762972
229	47	0,679608	47	1,18015	201	0,747216	276		0,70074	93	1,256646	6	0,762972
230	51	0,679608	51	1,18015	213	0,747216	277		0,704112	133	1,311437	99	0,764198
231	56	0,679608	56	1,18015	229	0,747216	278		0,704112	136	1,311437	104	0,764198
232	60	0,679608	60	1,18015	244	0,747216	279		0,704112	222	1,311437	108	0,764198
233	64	0,679608	64	1,18015	254	0,747216	280		0,704112	243	1,311437	111	0,764198
234	68	0,679608	68	1,18015	288	0,747216	281		0,704112	263	1,311437	112	0,764198
235	134	0,683087	72	1,198909	147	0,747228	282	264	0,704112	264	1,311437	114	0,764198

			RAD	IAL		
Nº	ID	RA1	ID	RA2	ID	RA3
283	189	0,714773	189	1,314871	97	0,764551
284	190	0,714773	190	1,314871	98	0,764551
285	197	0,714773	197	1,314871	100	0,764551
286	200	0,714773	200	1,314871	101	0,764551
287	228	0,714773	228	1,314871	102	0,764551
288	242	0,714773	242	1,314871	103	0,764551
289	253	0,714773	253	1,314871	105	0,764551
290	274	0,714773	274	1,314871	106	0,764551
291	282	0,714773	282	1,314871	107	0,764551
292	283	0,714773	283	1,314871	109	0,764551
293	293	0,714773	293	1,314871	110	0,764551
294	294	0,714773	294	1,314871	113	0,764551

1 13 0,162773 13 0,213147 6 0,219629 48 116 0,202703 97 0,288918 94 2 16 0,162773 16 0,213147 30 0,219629 49 19 0,204669 3 0,290431 100 3 37 0,162773 40 0,213147 30 0,219629 50 22 0,204669 77 0,209431 12 5 65 0,162612 85 0,213147 33 0,219629 51 43 0,204669 75 0,209431 12 5 65 0,162612 85 0,213191 55 0,219635 52 46 0,204669 75 0,209431 15 6 0,162518 62 0,213323 78 0,219635 53 67 0,204685 19 0,294432 36 7 62 0,162518 65 0,162618 65 0,213323 78 0,219635 55 91 0,204685 22 0,294432 36 7 62 0,179049 20 0,248806 37 0,221825 55 91 0,204685 43 0,294432 84 91 0,179049 44 0,248806 52 0,221825 55 91 0,204685 46 0,294432 87 11 44 0,179049 44 0,248806 52 0,221825 55 98 0,210057 70 0,29445 64 11 44 0,179049 47 0,248806 52 0,221825 55 95 0,201832 91 0,294432 87 11 44 0,179049 44 0,248806 52 0,221825 55 95 0,201832 91 0,29445 44 13 68 0,179062 92 0,24882 40 0,223652 60 8 0,213929 91 0,29445 44 13 68 0,179062 92 0,24882 40 0,223652 60 8 0,213929 91 0,29445 44 13 68 0,179062 92 0,24882 40 0,223652 61 29 0,213929 12 0,299469 28 15 92 0,179062 92 0,24882 40 0,223652 61 29 0,213929 12 0,299469 31 69 50 0,179062 92 0,24882 40 0,223652 62 32 0,213929 13 0,299469 31 69 50 0,179062 92 0,24882 47 0,223652 62 32 0,213929 13 0,299469 31 69 50 0,179062 92 0,24882 47 0,223652 62 32 0,213929 13 0,299469 31 69 50 0,179062 92 0,24882 47 0,223652 62 32 0,213935 117 0,299914 56 68 0,18581 30 0,249116 93 0,223651 66 80 0,213935 129 0,317256 76 19 0,018084 84 0,249187 16 0,223657 66 80 0,213935 129 0,317256 76 19 0,018084 84 0,249187 16 0,223657 69 51 0,216758 110 0,317274 18 2 0,249116 93 0,223657 69 51 0,216758 110 0,317274 18 0,23957 130 0,18581 36 0,249116 93 0,223657 69 51 0,216758 110 0,317274 18 0,23957 130 0,18581 36 0,249186 37 0,229267 70 74 0,216758 110 0,317274 18 0,23957 130 0,18581 36 0,249186 37 0,229367 70 74 0,216758 110 0,339591 30 30 1,85818 36 0,249186 37 0,229367 70 74 0,216758 110 0,339591 30 30 1,85878 80 0,249186 37 0,249561 80 0,249567 71 100 0,219158 107 0,339591 30 30 1,85978 80 0,245561 80 0,245551 80 0,221957 80 0,33353				CLUS	STER		
2 16 0.162773 16 0.213147 9 0.219629 49 19 0.204669 3 0.290431 100 3 37 0.152773 37 0.213147 30 0.219629 50 22 0.204669 27 0.290431 97 5 85 0.162812 85 0.213191 55 0.219635 53 67 0.204665 19 0.290431 15 6 88 0.162812 88 0.213323 78 0.219635 53 67 0.204685 19 0.294432 36 7 62 0.162918 65 0.213323 81 0.219635 55 91 0.204685 22 0.294432 84 8 0.179049 23 0.248806 27 0.221825 56 94 0.204685 46 0.294432 87 11 4 0.179049 47 0.248806 52 0.221825 59 9	Nº	ID	CA1	ID	CA2	ID	CA3
3 37 0,162773 37 0,213147 30 0,219629 50 22 0,204669 27 0,290431 12 4 40 0,162773 40 0,213147 33 0,219629 51 43 0,204669 52 0,290431 12 6 88 0,162812 86 0,213191 58 0,219635 53 67 0,204685 19 0,294432 36 7 62 0,162918 62 0,213323 78 0,219635 54 70 0,204685 22 0,294432 38 9 20 0,179049 23 0,248806 27 0,221825 55 91 0,20844 64 0,29445 61 11 4 0,179049 47 0,248806 75 0,221825 57 99 0,20844 64 0,29445 61 12 4 70,179049 47 0,248806 75 0,221825 59 5	1	13	0,162773	13	0,213147	6	0,219629
44 40 0,162773 40 0,213147 33 0,219629 51 43 0,204669 52 0,290431 12 5 85 0,162812 88 0,213191 55 0,219635 52 46 0,204685 19 0,294432 36 7 62 0,162918 65 0,213323 78 0,219635 54 70 0,204685 22 0,294432 39 8 65 0,162918 65 0,213323 81 0,219635 55 91 0,204685 42 0,294432 84 90 20 0,179049 23 0,248806 27 0,221825 56 94 0,204685 46 0,29445 61 10 23 1,779049 47 0,248806 52 0,221825 58 98 0,210067 70 0,29445 64 11 4 0,179062 94 0,24882 20 0,223652 61 <t< td=""><td>2</td><td>16</td><td>0,162773</td><td>16</td><td>0,213147</td><td>9</td><td>0,219629</td></t<>	2	16	0,162773	16	0,213147	9	0,219629
5 85 0,162812 85 0,213191 55 0,219635 52 46 0,204669 75 0,290431 15 6 88 0,162812 88 0,213191 58 0,219635 53 67 0,204685 19 0,294432 39 8 65 0,162918 65 0,213323 78 0,219635 55 91 0,204685 42 0,294432 39 8 65 0,162918 65 0,213323 78 0,219635 55 91 0,204685 48 0,294432 84 9 20 0,179049 23 0,248806 27 0,221825 56 94 0,204685 46 0,29445 64 11 4 0,179049 47 0,248806 75 0,221825 58 98 0,210929 91 0,29445 64 12 0,179062 68 0,24882 23 0,223652 61 29	3	37	0,162773	37	0,213147	30	0,219629
6 88 0,162812 88 0,213191 58 0,219635 53 67 0,204685 19 0,294432 39 7 62 0,162918 65 0,213323 78 0,219635 55 91 0,204685 43 0,294432 38 9 20 0,179049 20 0,248806 27 0,221825 56 94 0,204685 46 0,294432 87 10 23 0,179049 23 0,248806 52 0,221825 58 98 0,2100667 70 0,29445 61 11 44 0,179062 44 0,248806 52 0,221825 59 5 0,213929 91 0,29445 61 13 68 0,179062 71 0,24882 20 0,223652 61 29 0,213929 91 0,29445 7 14 71 0,179062 95 0,24882 24 0,223651 63	4	40	0,162773	40	0,213147	33	0,219629
7 62 0,162918 62 0,213323 78 0,219635 54 70 0,204685 22 0,294432 84 8 65 0,162918 65 0,213323 81 0,219635 55 91 0,204685 43 0,294432 84 91 23 0,179049 23 0,248806 27 0,221825 55 99 0,209844 67 0,29445 61 11 44 0,179049 44 0,248806 52 0,221825 58 98 0,210067 70 0,29445 64 12 47 0,179049 47 0,24880 75 0,221825 59 5 0,219329 94 0,29445 7 14 71 1,179062 78 0,24882 20 2,023652 61 29 0,213929 19 0,29445 4 15 92 0,179062 95 0,24882 47 0,223652 63 54<	5	85	0,162812	85	0,213191	55	0,219635
8 65 0,162918 65 0,213323 81 0,219635 55 91 0,204685 43 0,294432 84 9 20 0,179049 23 0,248806 3 0,221825 56 94 0,204685 46 0,294432 87 111 44 0,179049 44 0,248806 52 0,221825 58 88 0,210067 70 0,29445 64 12 47 0,179049 47 0,248806 75 0,221825 59 5 0,213929 91 0,29445 7 14 71 0,179062 68 0,24882 23 0,223652 61 8 0,213929 91 0,29445 7 15 95 0,179062 95 0,24882 24 0,223652 63 54 0,213935 111 0,299469 28 16 95 0,179062 95 0,24882 47 0,223671 65 77	6	88	0,162812	88	0,213191	58	0,219635
9 20 0,179049 20 0,248806 3 0,221825 56 94 0,204685 46 0,294432 87 10 23 0,179049 23 0,248806 27 0,221825 58 98 0,201067 70 0,29445 61 11 44 0,179049 47 0,248806 52 0,221825 59 5 0,213929 94 0,29445 4 13 68 0,179062 68 0,24882 20 0,223652 60 8 0,213929 94 0,29445 7 14 71 0,179062 92 0,24882 47 0,223652 63 54 0,213939 13 0,299469 31 16 95 0,179062 95 0,24882 47 0,223652 63 54 0,213935 111 0,2994969 31 17 12 0,185981 13 0,249116 91 0,223671 65 7	7	62	0,162918	62	0,213323	78	0,219635
10	8	65	0,162918	65	0,213323	81	0,219635
11	9	20	0,179049	20	0,248806	3	0,221825
12 47 0,179049 47 0,248806 75 0,221825 59 5 0,213929 91 0,29445 7 13 68 0,179062 68 0,24882 20 0,223652 60 8 0,213929 94 0,29469 28 14 71 0,179062 71 0,24882 44 0,223652 62 32 0,213929 132 0,299469 28 16 95 0,179062 95 0,24882 44 0,223652 63 54 0,213935 111 0,2999469 31 16 95 0,179062 95 0,24882 44 0,223671 64 57 0,213935 117 0,299914 56 18 15 0,185981 13 0,249116 95 0,223671 66 57 0,216758 118 0,317276 79 20 39 0,185981 39 0,249186 71 0,229267 67	10	23	0,179049	23	0,248806	27	0,221825
13 68 0,179062 68 0,24882 20 0,223652 60 8 0,213929 94 0,29445 7 14 71 0,179062 71 0,24882 23 0,223652 61 29 0,213929 126 0,299469 31 15 92 0,179062 92 0,24882 47 0,223652 63 54 0,213935 111 0,299597 53 17 12 0,185981 15 0,249116 68 0,223671 64 57 0,213935 117 0,299597 53 18 15 0,185981 35 0,249116 95 0,223671 66 80 0,213935 123 0,317256 76 19 36 0,185981 39 0,249116 95 0,223671 67 2 0,216758 108 0,317274 21 21 84 0,18604 84 0,249187 13 0,229267 68	11	44	0,179049	44	0,248806	52	0,221825
14 71 0,179062 71 0,24882 23 0,223652 61 29 0,213929 126 0,299469 31 15 92 0,179062 95 0,24882 44 0,223652 62 32 0,213935 117 0,2999169 31 16 95 0,179062 95 0,24882 47 0,223661 63 54 0,213935 117 0,299914 56 18 15 0,185981 15 0,249116 71 0,223671 66 80 0,213935 129 0,317256 79 20 39 0,185981 36 0,249116 95 0,223671 67 2 0,216758 108 0,317274 18 21 84 0,18604 87 0,249187 13 0,229267 68 26 0,216758 105 0,316676 42 22 87 0,18604 87 0,249187 13 0,229267 70	12	47	0,179049	47	0,248806	75	0,221825
15 92 0,179062 92 0,24882 44 0,223652 62 32 0,213929 132 0,299469 31 16 95 0,179062 95 0,24882 47 0,223652 63 54 0,213935 111 0,299597 53 17 12 0,185981 15 0,249116 68 0,223671 65 77 0,213935 123 0,317256 79 19 36 0,185981 13 0,249116 95 0,223671 66 80 0,213935 129 0,317256 79 20 39 0,185981 39 0,249116 95 0,223671 67 2 0,216758 108 0,317274 18 21 84 0,18604 87 0,249187 13 0,229267 69 51 0,216758 10 0,318692 45 22 87 0,18604 87 0,249368 37 0,229267 70	13	68	0,179062	68	0,24882	20	0,223652
15 92 0,179062 92 0,24882 44 0,223652 62 32 0,213929 132 0,299469 31 16 95 0,179062 95 0,24882 47 0,223652 63 54 0,213935 111 0,299597 53 17 12 0,185981 15 0,249116 68 0,223671 65 77 0,213935 123 0,317256 79 19 36 0,185981 13 0,249116 95 0,223671 66 80 0,213935 129 0,317256 79 20 39 0,185981 39 0,249116 95 0,223671 67 2 0,216758 108 0,317274 18 21 84 0,18604 87 0,249187 13 0,229267 68 26 0,216758 10 0,318666 42 22 87 0,18604 87 0,249368 37 0,229267 70	14	71	0,179062	71	0,24882	23	0,223652
16 95 0,179062 95 0,24882 47 0,223652 63 54 0,213935 111 0,299974 56 17 12 0,185981 12 0,249116 68 0,223671 64 57 0,213935 117 0,299914 56 18 15 0,185981 15 0,249116 71 0,223671 66 80 0,213935 129 0,317256 76 19 36 0,185981 39 0,249116 95 0,223671 67 2 0,216758 108 0,317274 18 21 84 0,18604 84 0,249187 16 0,229267 68 26 0,216758 105 0,318676 42 22 87 0,18604 87 0,249187 16 0,229267 70 74 0,216758 105 0,318666 42 23 61 0,186183 61 0,249368 37 0,229267 71		92	•	92		44	
18 15 0,185981 15 0,249116 71 0,223671 65 77 0,213935 123 0,317256 76 19 36 0,185981 36 0,249116 92 0,223671 66 80 0,213935 129 0,317256 79 20 39 0,185981 39 0,249116 95 0,223671 67 2 0,216758 108 0,317274 18 21 84 0,18604 84 0,249187 13 0,229267 69 51 0,216758 114 0,317274 21 22 87 0,18604 87 0,249368 37 0,229267 70 74 0,216758 107 0,318692 45 24 64 0,186183 64 0,249368 40 0,229267 71 100 0,219188 17 0,324191 66 25 6 0,187257 131 0,267094 85 0,229328 72	16	95	0,179062	95	0,24882	47	0,223652
19 36 0,185981 36 0,249116 92 0,223671 66 80 0,213935 129 0,317256 79 20 39 0,185981 39 0,249116 95 0,223671 67 2 0,216758 108 0,317274 18 21 84 0,18604 84 0,249187 13 0,229267 68 26 0,216758 114 0,317274 21 22 87 0,18604 87 0,249187 16 0,229267 70 74 0,216758 107 0,318692 45 42 64 0,186183 64 0,249368 40 0,229267 71 100 0,219158 17 0,324191 66 25 6 0,187257 125 0,267094 85 0,229328 72 97 0,219247 41 0,324191 69 27 30 0,187257 110 0,267171 62 0,229486 75	17	12	0,185981	12	0,249116	68	0,223671
20 39 0,185981 39 0,249116 95 0,223671 67 2 0,216758 108 0,317274 18 21 84 0,18604 84 0,249187 13 0,229267 68 26 0,216758 114 0,317274 21 22 87 0,18604 87 0,249187 16 0,229267 70 74 0,216758 105 0,318676 42 23 61 0,186183 61 0,249368 40 0,229267 71 100 0,219158 17 0,324191 66 24 64 0,186257 125 0,267094 85 0,229328 72 97 0,219247 41 0,324169 90 26 9 0,187257 110 0,267171 62 0,229486 74 129 0,221509 89 0,324469 90 27 30 0,187262 11 0,267364 65 0,229486 75	18	15	0,185981	15	0,249116	71	0,223671
21 84 0,18604 84 0,249187 13 0,229267 68 26 0,216758 114 0,317274 21 22 87 0,18604 87 0,249187 16 0,229267 69 51 0,216758 105 0,318676 42 23 61 0,186183 61 0,249368 40 0,229267 70 74 0,216758 107 0,318692 45 24 64 0,186183 64 0,249368 40 0,229267 71 100 0,219158 17 0,324191 66 25 6 0,187257 125 0,267094 88 0,229328 72 97 0,219247 41 0,324191 69 26 9 0,187257 131 0,267094 88 0,2293486 74 129 0,221509 89 0,324469 90 27 30 0,187257 116 0,267364 65 0,229486 75 <td>19</td> <td>36</td> <td>0,185981</td> <td>36</td> <td>0,249116</td> <td>92</td> <td>0,223671</td>	19	36	0,185981	36	0,249116	92	0,223671
22 87 0,18604 87 0,249187 16 0,229267 69 51 0,216758 105 0,318676 42 23 61 0,186183 61 0,249368 37 0,229267 70 74 0,216758 107 0,318692 45 24 64 0,186183 64 0,249368 40 0,229267 71 100 0,219158 17 0,324191 66 25 6 0,187257 125 0,267094 85 0,229328 72 97 0,219247 41 0,324191 69 26 9 0,187257 110 0,267171 62 0,229486 74 129 0,221509 118 0,325264 93 28 33 0,187267 116 0,267364 65 0,229486 75 108 0,221526 18 0,329913 1 29 55 0,187262 11 0,271402 29 0,245543 77 <td>20</td> <td>39</td> <td>0,185981</td> <td>39</td> <td>0,249116</td> <td>95</td> <td>0,223671</td>	20	39	0,185981	39	0,249116	95	0,223671
23 61 0,186183 61 0,249368 37 0,229267 70 74 0,216758 107 0,318692 45 24 64 0,186183 64 0,249368 40 0,229267 71 100 0,219158 17 0,324191 66 25 6 0,187257 125 0,267094 85 0,229328 72 97 0,219247 41 0,324191 69 26 9 0,187257 131 0,267094 88 0,229328 73 123 0,221509 89 0,324469 90 27 30 0,187257 110 0,267171 62 0,229486 75 108 0,221526 18 0,329913 1 29 55 0,187262 11 0,271402 8 0,245543 76 114 0,221945 42 0,329913 73 31 78 0,187262 35 0,271402 29 0,245543 78	21	84	0,18604	84	0,249187	13	0,229267
24 64 0,186183 64 0,249368 40 0,229267 71 100 0,219158 17 0,324191 66 25 6 0,187257 125 0,267094 85 0,229328 72 97 0,219247 41 0,324169 90 26 9 0,187257 110 0,267171 62 0,229486 74 129 0,221509 18 0,325264 93 28 33 0,187257 116 0,267364 65 0,229486 75 108 0,221526 18 0,329913 1 29 55 0,187262 11 0,271402 5 0,245543 76 114 0,221945 42 0,329913 50 31 78 0,187262 14 0,271402 29 0,245543 77 18 0,221945 42 0,329913 73 32 81 0,187262 38 0,271402 29 0,245543 79	22	87	0,18604	87	0,249187	16	0,229267
25 6 0,187257 125 0,267094 85 0,229328 72 97 0,219247 41 0,324191 69 26 9 0,187257 131 0,267094 88 0,229328 73 123 0,221509 89 0,324469 90 27 30 0,187257 110 0,267171 62 0,229486 74 129 0,221509 118 0,325264 93 28 33 0,187257 116 0,267364 65 0,229486 75 108 0,221526 18 0,329913 1 29 55 0,187262 14 0,271402 8 0,245543 77 18 0,221945 42 0,329913 50 31 78 0,187262 35 0,271402 29 0,245543 77 18 0,221945 45 0,329913 73 32 81 0,187262 38 0,271518 54 0,245551 80	23	61	0,186183	61	0,249368	37	0,229267
26 9 0,187257 131 0,267094 88 0,229328 73 123 0,221509 89 0,324469 90 27 30 0,187257 110 0,267171 62 0,229486 74 129 0,221509 118 0,325264 93 28 33 0,187257 116 0,267364 65 0,229486 75 108 0,221526 18 0,329913 1 29 55 0,187262 11 0,271402 5 0,245543 76 114 0,221945 42 0,329913 50 30 58 0,187262 14 0,271402 29 0,245543 78 21 0,221945 42 0,329913 73 31 78 0,187262 38 0,271402 29 0,245543 78 21 0,221945 45 0,329936 11 32 81 0,187262 38 0,271402 32 0,245551 80 <td>24</td> <td>64</td> <td>0,186183</td> <td>64</td> <td>0,249368</td> <td>40</td> <td>0,229267</td>	24	64	0,186183	64	0,249368	40	0,229267
27 30 0,187257 110 0,267171 62 0,229486 74 129 0,221509 118 0,325264 93 28 33 0,187257 116 0,267364 65 0,229486 75 108 0,221526 18 0,329913 1 29 55 0,187262 11 0,271402 8 0,245543 76 114 0,221945 42 0,329913 50 31 78 0,187262 14 0,271402 29 0,245543 77 18 0,221945 42 0,329913 73 32 81 0,187262 35 0,271402 29 0,245543 79 42 0,221945 66 0,329936 11 33 3 0,189787 83 0,271518 54 0,245551 80 45 0,221945 66 0,329936 14 34 27 0,189787 86 0,271796 77 0,245551 81	25	6	0,187257	125	0,267094	85	0,229328
28 33 0,187257 116 0,267364 65 0,229486 75 108 0,221526 18 0,329913 25 29 55 0,187262 11 0,271402 5 0,245543 76 114 0,221945 42 0,329913 25 30 58 0,187262 14 0,271402 29 0,245543 77 18 0,221945 42 0,329913 73 31 78 0,187262 35 0,271402 29 0,245543 78 21 0,221945 45 0,329936 11 32 81 0,187262 38 0,271518 54 0,245551 80 45 0,221945 66 0,329936 11 33 3 0,189787 83 0,271518 57 0,245551 81 66 0,221967 90 0,329936 35 35 52 0,189787 60 0,271796 77 0,245551 82	26	9	0,187257	131	0,267094	88	0,229328
29 55 0,187262 11 0,271402 5 0,245543 76 114 0,221945 42 0,329913 25 30 58 0,187262 14 0,271402 8 0,245543 77 18 0,221945 42 0,329913 50 31 78 0,187262 35 0,271402 29 0,245543 78 21 0,221945 45 0,329936 11 32 81 0,187262 38 0,271402 32 0,2455543 79 42 0,221945 66 0,329936 11 33 3 0,189787 83 0,271518 54 0,245551 80 45 0,221967 90 0,329936 14 34 27 0,189787 60 0,271796 77 0,245551 81 66 0,221967 90 0,329936 38 36 75 0,189787 63 0,271796 70 0,245551 83	27	30	0,187257	110	0,267171	62	0,229486
30 58 0,187262 14 0,271402 8 0,245543 77 18 0,221945 42 0,329913 50 31 78 0,187262 35 0,271402 29 0,245543 78 21 0,221945 45 0,329936 11 32 81 0,187262 38 0,271518 54 0,245551 80 45 0,221945 66 0,329936 14 33 3 0,189787 83 0,271518 57 0,245551 80 45 0,221967 90 0,329936 35 34 27 0,189787 86 0,271796 77 0,245551 81 66 0,221967 90 0,329936 38 35 52 0,189787 63 0,271796 77 0,245551 82 69 0,221967 93 0,332936 38 36 75 0,189787 63 0,271796 80 0,247857 84	28	33	0,187257	116	0,267364	65	0,229486
31 78 0,187262 35 0,271402 29 0,245543 78 21 0,221945 45 0,329936 11 32 81 0,187262 38 0,271402 32 0,245543 79 42 0,221945 66 0,329936 11 33 3 0,189787 83 0,271518 54 0,245551 80 45 0,221967 90 0,329936 14 34 27 0,189787 86 0,271796 77 0,245551 81 66 0,221967 90 0,329936 38 35 52 0,189787 60 0,271796 77 0,245551 82 69 0,221967 90 0,335379 83 36 75 0,189787 63 0,271796 80 0,247857 84 93 0,221967 5 0,335379 83 37 11 0,200486 99 0,285302 26 0,247857 85	29	55	0,187262	11	0,271402	5	0,245543
32 81 0,187262 38 0,271402 32 0,245543 79 42 0,221945 66 0,329936 11 33 3 0,189787 83 0,271518 54 0,245551 80 45 0,221945 69 0,329936 14 34 27 0,189787 86 0,271518 57 0,245551 81 66 0,221967 90 0,329936 35 35 52 0,189787 60 0,271796 77 0,245551 82 69 0,221967 93 0,329936 38 36 75 0,189787 63 0,271796 80 0,245551 83 90 0,221967 5 0,335379 83 37 11 0,200486 99 0,285302 2 0,247857 84 93 0,221967 8 0,335379 86 38 14 0,200486 9 0,285302 51 0,247857 85 126 0,227631 32 0,335379 63 40 38 0,	30	58	0,187262	14	0,271402	8	0,245543
33 3 0,189787 83 0,271518 54 0,245551 80 45 0,221945 69 0,329936 14 34 27 0,189787 86 0,271518 57 0,245551 81 66 0,221967 90 0,329936 35 35 52 0,189787 60 0,271796 77 0,245551 82 69 0,221967 93 0,329936 38 36 75 0,189787 63 0,271796 80 0,245551 83 90 0,221967 5 0,335379 83 37 11 0,200486 99 0,285082 2 0,247857 84 93 0,221967 8 0,335379 86 38 14 0,200486 6 0,285302 26 0,247857 85 126 0,227631 29 0,335379 60 39 35 0,200486 9 0,285302 51 0,247857 86 132 0,227631 32 0,335379 63 40 38 0,200486 30 0,285302 74 0,247857 87 111 0,227739 54 0,335385 127 41 83 0,200587 33 0,285302 74 0,247857 87 111 0,227739 54 0,335385 127 41 83 0,200587 55 0,285308 22 0,25103 88 117 0,228007 57 0,335385 133 42 86 0,200587 55 0,285308 22 0,25103 89 127 0,230915 77 0,335385 112 43 60 0,200827 58 0,285308 43 0,25103 90 133 0,230915 80 0,335385 119 44 63 0,200827 78 0,285308 46 0,25103 91 112 0,230921 104 0,336975 105 45 125 0,20249 81 0,285308 67 0,251054 92 119 0,230921 106 0,336979 107 46 131 0,20249 98 0,285314 70 0,251054 93 4 0,232475 2 0,341384 49	31	78	0,187262	35	0,271402	29	0,245543
34 27 0,189787 86 0,271518 57 0,245551 81 66 0,221967 90 0,329936 35 35 52 0,189787 60 0,271796 77 0,245551 82 69 0,221967 93 0,329936 38 36 75 0,189787 63 0,271796 80 0,245551 83 90 0,221967 5 0,335379 83 37 11 0,200486 99 0,285082 2 0,247857 84 93 0,221967 8 0,335379 86 38 14 0,200486 6 0,285302 26 0,247857 85 126 0,227631 29 0,335379 60 39 35 0,200486 9 0,285302 51 0,247857 86 132 0,227631 32 0,335385 127 41 83 0,200486 30 0,285302 74 0,247857 87 111 0,227739 54 0,335385 127 41 83 <t< td=""><td>32</td><td>81</td><td>0,187262</td><td>38</td><td>0,271402</td><td>32</td><td>0,245543</td></t<>	32	81	0,187262	38	0,271402	32	0,245543
35 52 0,189787 60 0,271796 77 0,245551 82 69 0,221967 93 0,329936 38 36 75 0,189787 63 0,271796 80 0,245551 83 90 0,221967 5 0,335379 83 37 11 0,200486 99 0,285082 2 0,247857 84 93 0,221967 8 0,335379 86 38 14 0,200486 6 0,285302 26 0,247857 85 126 0,227631 29 0,335379 60 39 35 0,200486 9 0,285302 51 0,247857 86 132 0,227631 32 0,335379 63 40 38 0,200486 9 0,285302 74 0,247857 87 111 0,227739 54 0,335385 127 41 83 0,200587 33 0,285302 19 0,25103 88 117 0,228007 57 0,335385 133 42 86 <td< td=""><td>33</td><td>3</td><td>0,189787</td><td>83</td><td>0,271518</td><td>54</td><td>0,245551</td></td<>	33	3	0,189787	83	0,271518	54	0,245551
36 75 0,189787 63 0,271796 80 0,245551 83 90 0,221967 5 0,335379 83 37 11 0,200486 99 0,285082 2 0,247857 84 93 0,221967 8 0,335379 86 38 14 0,200486 6 0,285302 26 0,247857 85 126 0,227631 29 0,335379 60 39 35 0,200486 9 0,285302 51 0,247857 86 132 0,227631 32 0,335379 63 40 38 0,200486 9 0,285302 74 0,247857 87 111 0,227739 54 0,335385 127 41 83 0,200587 33 0,285302 19 0,25103 88 117 0,228007 57 0,335385 127 41 83 0,200587 55 0,285308 22 0,25103 89 127 0,230915 77 0,335385 112 43 60 <t< td=""><td>34</td><td>27</td><td>0,189787</td><td>86</td><td>0,271518</td><td>57</td><td>0,245551</td></t<>	34	27	0,189787	86	0,271518	57	0,245551
37 11 0,200486 99 0,285082 2 0,247857 84 93 0,221967 8 0,335379 86 38 14 0,200486 6 0,285302 26 0,247857 85 126 0,227631 29 0,335379 60 39 35 0,200486 9 0,285302 51 0,247857 86 132 0,227631 32 0,335379 63 40 38 0,200486 30 0,285302 74 0,247857 87 111 0,227739 54 0,335385 127 41 83 0,200587 33 0,285302 19 0,25103 88 117 0,228007 57 0,335385 133 42 86 0,200587 55 0,285308 22 0,25103 89 127 0,230915 77 0,335385 112 43 60 0,200827 58 0,285308 43 0,25103 90 133 0,230915 80 0,335385 119 44 63	35	52	0,189787	60	0,271796	77	0,245551
38 14 0,200486 6 0,285302 26 0,247857 85 126 0,227631 29 0,335379 60 39 35 0,200486 9 0,285302 51 0,247857 86 132 0,227631 32 0,335379 63 40 38 0,200486 30 0,285302 74 0,247857 87 111 0,227739 54 0,335385 127 41 83 0,200587 33 0,285302 19 0,25103 88 117 0,228007 57 0,335385 133 42 86 0,200587 55 0,285308 22 0,25103 89 127 0,230915 77 0,335385 112 43 60 0,200827 58 0,285308 43 0,25103 90 133 0,230915 80 0,335385 119 44 63 0,200827 78 0,285308 46 0,25103 91 112 0,230921 104 0,336975 105 45 125	36	75	0,189787	63	0,271796	80	0,245551
39 35 0,200486 9 0,285302 51 0,247857 86 132 0,227631 32 0,335379 63 40 38 0,200486 30 0,285302 74 0,247857 87 111 0,227739 54 0,335385 127 41 83 0,200587 33 0,285302 19 0,25103 88 117 0,228007 57 0,335385 133 42 86 0,200587 55 0,285308 22 0,25103 89 127 0,230915 77 0,335385 112 43 60 0,200827 58 0,285308 43 0,25103 90 133 0,230915 80 0,335385 119 44 63 0,200827 78 0,285308 46 0,25103 91 112 0,230921 104 0,336975 105 45 125 0,20249 81 0,285308 67 0,251054 92 119 0,230921 106 0,336979 107 46 131 <td>37</td> <td>11</td> <td>0,200486</td> <td>99</td> <td>0,285082</td> <td>2</td> <td>0,247857</td>	37	11	0,200486	99	0,285082	2	0,247857
40 38 0,200486 30 0,285302 74 0,247857 87 111 0,227739 54 0,335385 127 41 83 0,200587 33 0,285302 19 0,25103 88 117 0,228007 57 0,335385 133 42 86 0,200587 55 0,285308 22 0,25103 89 127 0,230915 77 0,335385 112 43 60 0,200827 58 0,285308 43 0,25103 90 133 0,230915 80 0,335385 119 44 63 0,200827 78 0,285308 46 0,25103 91 112 0,230921 104 0,336975 105 45 125 0,20249 81 0,285308 67 0,251054 92 119 0,230921 106 0,336979 107 46 131 0,20249 98 0,285314 70 0,251054 93 4 0,232475 2 0,341384 49	38	14	0,200486	6	0,285302	26	0,247857
41 83 0,200587 33 0,285302 19 0,25103 88 117 0,228007 57 0,335385 133 42 86 0,200587 55 0,285308 22 0,25103 89 127 0,230915 77 0,335385 112 43 60 0,200827 58 0,285308 43 0,25103 90 133 0,230915 80 0,335385 119 44 63 0,200827 78 0,285308 46 0,25103 91 112 0,230921 104 0,336975 105 45 125 0,20249 81 0,285308 67 0,251054 92 119 0,230921 106 0,336979 107 46 131 0,20249 98 0,285314 70 0,251054 93 4 0,232475 2 0,341384 49	39	35	0,200486	9	0,285302	51	0,247857
42 86 0,200587 55 0,285308 22 0,25103 89 127 0,230915 77 0,335385 112 43 60 0,200827 58 0,285308 43 0,25103 90 133 0,230915 80 0,335385 119 44 63 0,200827 78 0,285308 46 0,25103 91 112 0,230921 104 0,336975 105 45 125 0,20249 81 0,285308 67 0,251054 92 119 0,230921 106 0,336979 107 46 131 0,20249 98 0,285314 70 0,251054 93 4 0,232475 2 0,341384 49	40	38	0,200486	30	0,285302	74	0,247857
43 60 0,200827 58 0,285308 43 0,25103 90 133 0,230915 80 0,335385 119 44 63 0,200827 78 0,285308 46 0,25103 91 112 0,230921 104 0,336975 105 45 125 0,20249 81 0,285308 67 0,251054 92 119 0,230921 106 0,336979 107 46 131 0,20249 98 0,285314 70 0,251054 93 4 0,232475 2 0,341384 49	41	83	0,200587	33	0,285302	19	0,25103
44 63 0,200827 78 0,285308 46 0,25103 91 112 0,230921 104 0,336975 105 45 125 0,20249 81 0,285308 67 0,251054 92 119 0,230921 106 0,336979 107 46 131 0,20249 98 0,285314 70 0,251054 93 4 0,232475 2 0,341384 49	42	86	0,200587	55	0,285308	22	0,25103
44 63 0,200827 78 0,285308 46 0,25103 91 112 0,230921 104 0,336975 105 45 125 0,20249 81 0,285308 67 0,251054 92 119 0,230921 106 0,336979 107 46 131 0,20249 98 0,285314 70 0,251054 93 4 0,232475 2 0,341384 49	43	60	0,200827	58	0,285308	43	0,25103
45 125 0,20249 81 0,285308 67 0,251054 92 119 0,230921 106 0,336979 107 46 131 0,20249 98 0,285314 70 0,251054 93 4 0,232475 2 0,341384 49	44	63	0,200827	78		46	0,25103
	45	125	0,20249	81	0,285308	67	0,251054
47 110 0,202552 100 0,28884 91 0,251054 94 7 0,232475 26 0,341384 101	46	131	0,20249	98	0,285314	70	0,251054
	47	110	0,202552	100	0,28884	91	0,251054

			CLUS	STER		
Nº	ID	CA1	ID	CA2	ID	CA3
95	28	0,232475	51	0,341384	104	0,277157
96	31	0,232475	74	0,341384	106	0,277164
97	53	0,232482	127	0,358958	99	0,278445
98	56	0,232482	133	0,358958	98	0,278762
99	76	0,232482	112	0,358965	123	0,297001
100	79	0,232482	119	0,358965	129	0,297001
101	49	0,233784	49	0,365155	108	0,297027
102	101	0,233784	101	0,365155	114	0,297027
103	1	0,235658	124	0,366117	128	0,306718
104	25	0,235658	130	0,366117	134	0,306718
105	50	0,235658	109	0,366141	113	0,306728
106	73	0,235658	115	0,366141	120	0,306728
107	105	0,238581	4	0,36662	103	0,309128
108	107	0,2386	7	0,36662	122	0,309128
109	17	0,240802	28	0,36662	124	0,310834
110	41	0,240802	31	0,36662	130	0,310834
111	89	0,241058	53	0,366628	109	0,31087
112	118	0,241397	56	0,366628	115	0,31087
113	104	0,246759	76	0,366628	125	0,311627
114	106	0,246763	79	0,366628	131	0,311627
115	124	0,249437	1	0,373473	110	0,311724
116	130	0,249437	25	0,373473	116	0,311945
117	109	0,24946	50	0,373473	10	0,325671
118	115	0,24946	73	0,373473	34	0,325671
119	128	0,260144	24	0,385798	59	0,325685
120	134	0,260144	48	0,385798	82	0,325685
121	113	0,260151	72	0,385828	102	0,328009
122	120	0,260151	96	0,385828	121	0,328009
123	103	0,263376	128	0,405155	126	0,329932
124	122	0,263376	134	0,405155	132	0,329932
125	24	0,264197	113	0,405164	111	0,330088
126	48	0,264197	120	0,405164	117	0,330447
127	72	0,264228	103	0,412251	24	0,331612
128	96	0,264228	122	0,412251	48	0,331612
129	10	0,276488	10	0,439998	72	0,331668
130	34	0,276488	34	0,439998	96	0,331668
131	59	0,276497	59	0,440007	17	0,340994
132	82	0,276497	82	0,440007	41	0,340994
133	102	0,280155	102	0,448249	89	0,341367
134	121	0,280155	121	0,448249	118	0,34233

		9	SEMI-RI	ETÍCULO		
Ν°	ID		ID		ID	SDA2
	ID 158	SRA1	עו 158	SRA2 0,678508	ID 305	SRA3 0,806654
1		0,590879				
2	188	0,63548	188	0,718345	158	0,851488
3	260	0,711984	260	0,790052	234	0,86284
4	159	0,713413	257	0,81851	159	0,872444
5	257	0,737984	159	0,835859	188	0,909728
6	189	0,749475	295	0,856499	260	0,93892
7	258	0,757016	189	0,857751	306	0,940092
8	182	0,765469	258	0,863048	295	0,941647
9	256	0,77642	182	0,876692	233	0,982495
10	295	0,777307	256	0,88677	186	0,98631
11	86	0,780549	86	0,888385	231	1,004687
12	157	0,781362	179	0,897406	157	1,016532
13	170	0,784547	170	0,914341	227	1,028555
14	186	0,785194	157	0,924113	182	1,028838
15	171	0,797378	171	0,930447	213	1,030005
16	179	0,804053	180	0,934695	294	1,041713
17	180	0,815273	186	0,948166	208	1,048894
18	286	0,819912	286	0,959073	498	1,073499
19	297	0,844814	269	0,966738	189	1,078884
20	87	0,84718	183	0,968461	228	1,079255
21	169	0,852205	87	0,969518	170	1,090967
22	183	0,852958	272	0,979307	28	1,092875
23	259	0,861552	178	0,982375	181	1,095526
24	178	0,86261	267	0,989882	171	1,096345
25	269	0,862613	297	0,992843	286	1,099357
26	181	0,863341	259	0,997381	297	1,102659
27	172	0,863798	265	0,997747	216	1,10446
28	204	0,864686	169	1,001301	263	1,108797
29	272	0,870596	204	1,006681	293	1,115236
30	231	0,878558	525	1,010287	499	1,117373
31	294	0,881024	172	1,015367	225	1,118501
32	296	0,883508	181	1,021206	214	1,119882
33	265	0,883862	176	1,021973	156	1,120623
34	234	0,885496	266	1,036926	224	1,128883
35	267	0,887088	175	1,040365	24	1,128985
36	176	0,888208	177	1,043797	521	1,130296
37	271	0,890783	270	1,046861	526	1,144126
38	525	0,892088	268	1,049064	209	1,146624
39	24	0,892234	296	1,056781	258	1,1496
40	175	0,893742	231	1,059041	180	1,151246
41	233	0,894632	228	1,060791	169	1,151513
42	526	0,902838	271	1,061867	257	1,155738
43	305	0,90533	294	1,065217	256	1,156267
44	270	0,905905	174	1,066683	307	1,15718
45	266	0,90961	287	1,067619	495	1,163005
46 47	177	0,915883	526	1,069757	117	1,17562
47	214	0,91697	524	1,094299	114	1,179306

		s	EMI-RE	TÍCULO					S	EMI-RE	TÍCULO		
Nº	ID	SRA1	ID	SRA2	ID	SRA3	N°	ID	SRA1	ID	SRA2	ID	SRA3
95	403	1,061866	203	1,349106	272	1,27839	142	546	1,172735	577	1,544851	128	1,334384
96	162	1,063809	562	1,352989	280	1,27881	143	333	1,173713	78	1,545788	278	1,335252
97	185	1,067767	277	1,355873	562	1,279107	144	275	1,174381	208	1,546733	328	1,335567
98	562	1,067865	185	1,360114	269	1,279676	145	202	1,175415	396	1,547168	43	1,336037
99	5	1,069339	552	1,369419	365	1,281598	146	82	1,180657	230	1,547748	29	1,336487
100	498	1,075188	81	1,376908	274	1,283717	147	510	1,183212	378	1,552908	82	1,336941
101	290	1,076324	229	1,37975	130	1,284526	148	140	1,183435	551	1,554645	81	1,337518
102	203	1,081617	232	1,382786	238	1,284688	149	250	1,183935	210	1,560435	341	1,33934
103	499	1,086989	237	1,385604	78	1,28517	150	280	1,184933	387	1,562438	401	1,339453
104	165	1,087519	405	1,385681	273	1,286578	151	94	1,187152	254	1,566129	21	1,341893
105	95	1,088989	5	1,388566	123	1,28916	152	577	1,188116	331	1,566759	575	1,345496
106	552	1,091392	279	1,389848	574	1,290917	153	190	1,189252	275	1,567606	285	1,345773
107	282	1,092027	225	1,390755	320	1,293663	154	246	1,189875	564	1,569024	143	1,346128
108	81	1,100032	282	1,396105	35	1,295926	155	397	1,19164	333	1,569248	508	1,348995
109	279	1,1007	293	1,39676	380	1,296926	156	78	1,191857	243	1,569925	542	1,3507
110	215	1,104884	401	1,398023	271	1,29728	157	396	1,192911	408	1,57253	364	1,351023
111	163	1,106697	95	1,399705	564	1,297973	158	551	1,198408	211	1,574524	80	1,35175
112	168	1,10671	165	1,400287	200	1,298681	159	264	1,199974	222	1,576821	201	1,353711
113	245	1,109778	291	1,407101	333	1,300481	160	332	1,200375	382	1,577232	90	1,353733
114	1	1,110876	215	1,407731	292	1,301645	161	408	1,200717	504	1,580402	144	1,356406
115	291	1,112315	168	1,421902	389	1,30179	162	331	1,201766	94	1,580979	245	1,357664
116	192	1,11832	90	1,428994	215	1,301812	163	28	1,203098	140	1,582008	262	1,357866
117	401	1,127473	163	1,429888	523	1,303497	164	91	1,203573	23	1,586516	25	1,358539
118	208	1,128745	192	1,438039	349	1,303567	165	382	1,207574	547	1,591568	30	1,35868
119	161	1,130317	161	1,443167	140	1,30433	166	3	1,210011	546	1,594559	165	1,358976
120	230	1,131903	406	1,443764	235	1,304615	167	14	1,210182	28	1,59905	126	1,359945
121	79	1,13652	1	1,445575	504	1,305455	168	221	1,210392	3	1,600978	513	1,360917
122	237	1,1416	499	1,445764	236	1,305614	169	15	1,210846	264	1,601638	490	1,363824
123	405	1,143397	79	1,450959	382	1,306904	170	223	1,211017	221	1,602138	491	1,364477
124	22	1,146913	246	1,467325	308	1,307372	171	254	1,215918	550	1,602602	381	1,36526
125	292	1,148594	202	1,469244	36	1,308876	172	329	1,216427	194	1,60533	116	1,366193
126	406	1,150751	397	1,475061	95	1,310616	173	128	1,218673	332	1,606059	335	1,367739
127		1,153971	281	1,498462	378	1,312032			1,222606	91	1,611504		1,367789
128	90	1,154089	510	1,501182		1,313106			1,222941	255	1,61974		1,368415
129	211	1,156253	575	1,50438		1,313304	176		1,223463	98	1,628716		1,368491
130		1,156833	383	1,507812		1,313393	177		1,224253	14	1,630249		1,369169
131	210	1,15784	276	1,512943	127	1,317199	178	23	1,225329	306	1,630274	88	1,369441
132		1,158245	82	1,513748	185	1,319733	179	308	1,226948	128	1,637128	243	1,370032
133	281	1,158341	250	1,518027	94	1,322158	180	21	1,227356	329	1,640291	488	1,373636
134	547		292	1,520448	89	1,322243	181	380	1,228282	2	1,640734	32	1,374251
135	575	1,162412	200	1,520898	507	1,32263	182	98	1,228558	226	1,641172	14	1,375139
136		1,162919	190	1,521547	330	1,324443	183	194	1,231824	389	1,647062	327	1,376738
137		1,163294	22	1,528925	1	1,325547	184	123	1,233958	515	1,650253	494	1,37817
138		1,163834	164	1,53296	500	1,326788	185	2	1,23841	123	1,650623	325	1,378323
139	118	1,164321	273	1,54086	87	1,327486	186	519	1,243139	15	1,659569	96	1,37927
140	200	1,165574	280	1,543581	578	1,327539	187	500	1,24382	519	1,670505	23	1,379649
141	222	1,171606	118	1,544042	246	1,329981	188	274	1,245043	509	1,675356	122	1,380022

		S	EMI-RE	TÍCULO		
0	ID	SRA1	ID	SRA2	ID	SRA3
89	255	1,247044	394	1,676768	129	1,380664
0	515	1,248931	407	1,6779	249	1,380738
191	328	1,252517	223	1,678323	347	1,381117
192		1,252913	308	1,678573	198	1,381293
193		1,25655	236	1,683107	15	1,382377
194	198	1,257969	511	1,683914	329	1,383786
195	212	1,258206	553	1,686618	552	1,384741
196	240	1,261803	129	1,687448	548	1,388369
197		1,261856	400	1,689964	366	1,390311
		•				•
198		1,262503	21	1,690042	489	1,394776
199	121	1,263096	274	1,695767	290	1,396015
200	496	1,263548	496	1,699402	291	1,396276
201	334	1,268551	198	1,702716	400	1,397098
202		1,271231	554	1,711628	223	1,397946
203	387	1,27157	130	1,712711	183	1,398826
204	122	1,272225	217	1,713487	383	1,399466
205	407	1,275611	240	1,714504	390	1,40012
206	554	1,276977	578	1,720074	248	1,40119
207	325	1,280437	380	1,720141	37	1,401281
208	239	1,283439	330	1,722157	167	1,401688
209	495	1,287462	574	1,722585	58	1,40205
210		1,287634	239	1,727424	332	1,402378
211	114	1,287854	500	1,732299	310	1,402767
212	7	1,288212	195	1,744472	428	1,403356
213		1,288497	328	1,746107	31	1,403924
214				•		
		1,292898	514	1,746221	115	1,405207
215	365	1,293077	247	1,746396	191	1,406325
216	400	1,293333	122	1,750942	111	1,406384
217		1,293391	242	1,757462	441	1,406631
218	514	1,297347	219	1,75839	261	1,411517
219	389	1,299197	83	1,758554	543	1,411556
220	548	1,300518	27	1,759499	342	1,411576
221	394	1,303559	201	1,760482	516	1,41413
222	217	1,304797	390	1,773774	266	1,414815
223		1,305934	7	1,776692	69	1,415268
224		1,306385	388	1,778033	97	1,415698
225		1,307955	548	1,779685		1,416003
226		1,308506	121	1,782195		1,416038
227		1,311326	93	1,783784		1,416175
228	160	1,313427	549	1,785779	493	1,416773
229		1,31568	13	1,788859	302	1,418515
230		1,31684	334	1,789621	55	1,419451
231	130	1,317752	85	1,790705		1,419919
232		1,317875	212	1,793835		1,421217
233	520	1,318108	513	1,795133	92	1,423721
234	340	1,318164	325	1,79776	265	1,423983
	0-10					

		SI	EMI-RE	TÍCULO					S	EMI-RE	TÍCULO		
Nº	ID	SRA1	ID	SRA2	ID	SRA3	N°	ID	SRA1	ID	SRA2	ID	SRA
283	364	1,400838	29	1,966373	427	1,469924	330	120	1,476519	342	2,137896	190	1,515
84	543	1,400932	77	1,969394	354	1,471461	331	384	1,476722	529	2,138705	577	1,517
35	19	1,402991	444	1,986595	368	1,47154	332	538	1,479022	364	2,139024	312	1,517
36	318	1,406621	97	1,995088	220	1,471804	333	544	1,480984	538	2,144696	395	1,518
37	409	1,408221	142	2,00121	275	1,472754	334	414	1,482816	463	2,146851	393	1,520
38	445	1,408499	385	2,002906	33	1,473239	335	536	1,489922	541	2,15948	410	1,520
39	393	1,410901	327	2,004736	162	1,474848	336	36	1,495077	141	2,170611	277	1,520
90	386	1,412462	64	2,008669	241	1,474935	337	447	1,495696	451	2,175035	475	1,52
91	444	1,412512	399	2,012014	39	1,476911	338	529	1,496105	426	2,175546	363	1,522
92	248	1,41398	8	2,014412	505	1,477905	339	537	1,497426	113	2,179202	252	1,522
93	366	1,415284	543	2,019332	318	1,478087	340	416	1,498224	126	2,180048	119	1,524
)4	116	1,419496	446	2,020492	244	1,478105	341	197	1,49864	335	2,183018	568	1,525
95	249	1,424457	398	2,025877	56	1,478282	342	6	1,499716	58	2,183269	203	1,526
96	63	1,424881	517	2,031916	406	1,479724	343	398	1,500667	544	2,185996	511	1,527
7	563	1,425786	125	2,034944	573	1,483406	344	451	1,501061	442	2,186859	8	1,528
8	508	1,426707	384	2,036122	340	1,483493	345	10	1,504256	490	2,188603	166	1,529
9	119	1,429692	437	2,040375	514	1,483949	346	346	1,50523	105	2,188636	77	1,52
00	11	1,432341	531	2,045572	506	1,484429	347	428	1,50583	116	2,192335	19	1,529
)1	528	1,434975	63	2,046435	438	1,485384	348	442	1,506087	559	2,193511	358	1,531
2	319	1,436156	350	2,050374	196	1,485535	349	541	1,506379	450	2,195186	84	1,531
3	196	1,43719	503	2,053625	168	1,486297	350	413	1,507193	348	2,195433	512	1,535
)4	348	1,437239	361	2,055536	202	1,486962	351	478	1,508366	104	2,195545	407	1,536
)5	57	1,437376	536	2,0597	356	1,487207		426	1,511652	39	2,201449	50	1,538
16	349	1,437654	4	2,062022	221	1,487556		207	1,513154	60	2,204922	20	1,539
)7	18	1,437674	318	2,066726	313	1,488073	354	494	1,513463	197	2,211936	250	1,54
8(342	1,44028	381	2,069659	6	1,488203	355	391	1,514424	532	2,212045	536	1,54
9	335	1,440996	119	2,069722	239	1,488353	356	437	1,514869	428	2,215095	299	1,543
10	126	1,445439	252	2,071869	402	1,488508	357	493	1,517093	10	2,226127	362	1,543
11	531	1,449411	365	2,072112	336	1,489787	358	490	1,517134	69	2,226557	373	1,544
2	77	1,450471	57	2,074507	46	1,489979	359	344	1,51759	349	2,226856	287	1,545
3	4	1,451469	35	2,078097	520	1,490027	360	392	1,51868	507	2,237628	351	1,545
14	517	1,451572	566	2,084452	267	1,492209	361	55	1,518702	448	2,239883	469	1,546
5	43	1,453243	518	2,086108	17	1,492381	362	69	1,520019	36	2,247771	199	1,546
		1,454087		2,093096		1,495277			1,520461	56	2,248067		1,547
7		1,456193	304	2,094328		1,496739		491	1,521088		2,248711		1,547
8		1,456327	366	2,096147		1,498112		56	1,52391	43	2,249393		1,548
19	518	1,457035	424	2,096977	357	1,503368		427	1,525298	347	2,257921	326	1,553
20	443	1,457252	447	2,097818	72	1,505059		573	1,526843	539	2,258449	563	1,553
21	8	1,457404	319	2,099149	359	1,505326		361	1,527029	76	2,258474	553	1,554
22	141	1,457655	391	2,10623	276	1,505427		345	1,529827	454	2,258501	550	1,55
23	58	1,458867	392	2,109141	404	1,507673		438	1,530307	501	2,25989	419	1,557
4	446	1,462891	453	2,115221	360	1,509955			1,533168	427	2,260328	206	1,560
25		1,466843	62	2,117006	311	1,509987			1,533807		2,262814	554	1,562
26		1,469587	144	2,117000		1,510917			1,5334365	6	2,26323	149	1,562
27	30	1,473989		2,127598		1,512737		39	1,535497	55	2,264162	247	1,563
28	304	1,474508	30	2,127330		1,513224		46	1,535648		2,279854	289	1,56
29		1,476113		2,136284		1,514959			1,537492		2,281815	85	1,56
ن۔	- 50	1,7/0113	520	2,130204	147	1,014303	310	JJZ	1,001432	410	۵,201013	00	1,500

		SI	EMI-RE	TÍCULO					S	EMI-RE	TÍCULO		
Nº	ID	SRA1	ID	SRA2	ID	SRA3	Nº	ID	SRA1	ID	SRA2	ID	SRA3
377	453	1,541615	50	2,283734	59	1,566895	424	336	1,609239	422	2,476025	83	1,607798
378	138	1,541698	120	2,288709	371	1,568588	425	452	1,609547	573	2,479494	480	1,609577
379	448	1,542986	494	2,290832	444	1,570168	426	484	1,611039	53	2,48012	456	1,610024
380	539	1,546505	251	2,291792	425	1,57076	427	320	1,611536	54	2,4825	187	1,610766
381	449	1,548253	449	2,292717	101	1,571055	428	143	1,611662	363	2,484155	11	1,61198
382	62	1,548455	567	2,294228	457	1,571117	429	65	1,612236	473	2,484879	463	1,612795
383	104	1,54884	493	2,30166	372	1,571539	430	75	1,612816	345	2,488928	530	1,613201
384	363	1,549153	469	2,310906	541	1,571658	431	567	1,612879	339	2,489545	559	1,614772
385	501	1,549669	468	2,316495	102	1,571863	432	470	1,615251	472	2,491181	411	1,61548
386	31	1,554143	411	2,319217	557	1,575644	433	506	1,615301	72	2,495947	195	1,616028
387	50	1,554264	478	2,320845	53	1,576842	434	425	1,617792	115	2,497945	473	1,616301
388	558	1,555862	438	2,328741	458	1,57811	435	154	1,618957	459	2,503203	135	1,617368
389	534	1,558364	9	2,330968	40	1,579747	436	38	1,619152	59	2,514206	137	1,617726
390	469	1,559932	207	2,331187	279	1,580074	437	454	1,619797	470	2,519199	482	1,618206
391	489	1,560702	534	2,3338	455	1,580091	438	360	1,620177	475	2,52891	472	1,619577
392	462	1,561021	558	2,340255	388	1,580113	439	488	1,620262	412	2,537217	448	1,62065
393	101	1,561292	452	2,343714	399	1,580115	440	354	1,620524	432	2,538688	153	1,62149
394	32	1,563781	568	2,346854	567	1,583986	441	419	1,621496	356	2,543059	62	1,621604
395	253	1,565169	65	2,347306	110	1,585812	442	54	1,622214	143	2,549413	531	1,62424
396	559	1,56548	346	2,354638	468	1,5866	443	440	1,623624	455	2,550232	431	1,62446
397	37	1,567006	429	2,361679	384	1,586941	444	464	1,624704	359	2,553677	352	1,625913
398	368	1,567189	415	2,362167	63	1,588178		422	1,629085	38	2,553696	76	1,628039
399	115	1,56899	464	2,371075	148	1,588409	446	572	1,631077	48	2,568428	254	1,628422
400	102	1,569585	533	2,373165	367	1,588908	447	61	1,631836	433	2,573232	558	1,633038
401	362	1,570294	138	2,373967	470	1,590061	448	67	1,632198	32	2,577462	429	1,633623
402	566	1,574674	439	2,377332	12	1,59192	449	475	1,633524	320	2,579116	549	1,633942
403	468	1,574695	344	2,381045	447	1,59202	450	356	1,63444	425	2,580326	449	1,634411
404	502	1,575088	47	2,381561	108	1,592081	451	53	1,635799	460	2,582733	54	1,6386
405	111	1,575389	491	2,385437	47	1,593344	452	48	1,636859	465	2,610083	100	1,640495
406	47	1,576516	206	2,392235	146	1,59393	453	49	1,638458	482	2,611054	155	1,641098
407	339	1,580825	368	2,395622	451	1,59538	454	492	1,638598	419	2,611078	322	1,641823
408		1,583618		2,406944	255	1,598015	455	359	1,640514		2,611887	391	1,642589
409		1,589028		2,407579	13	1,598717			1,641528		2,617312		1,642848
410	533	1,590191		2,412443	136	1,599061	457	70	1,643552	458	2,629819	566	1,645606
411	72	1,592931	557	2,418948	283	1,600439	458	357	1,644449	354	2,631172	442	1,646578
412	355	1,594024	31	2,4199	70	1,600713	459	467	1,644642	61	2,637025	486	1,646625
413	60	1,595255	46	2,424813	445	1,602085	460	455	1,64509	355	2,638162	408	1,646831
414	568	1,595356	37	2,426362	337	1,602214	461	560	1,648045	457	2,639359	104	1,647728
415	9	1,596364	67	2,432012	570	1,602364		110	1,649705	111	2,639968	369	1,647955
416	206	1,596485	484	2,434487	298	1,603349		423	1,654412	430	2,642868	105	1,648631
417	66	1,597993	103	2,4362	460	1,604799		251	1,654927	434	2,649628	73	1,649312
418	411	1,602658	431	2,440825	48	1,605013		471	1,654945	502	2,650356	124	1,649631
419	76	1,602665	102	2,445072	484	1,605506	466	52	1,655211	34	2,652862	60	1,65145
420	59	1,603438	75	2,446121	538	1,605765	467	433	1,655486	49	2,653607	253	1,653118
421	472	1,603704	253	2,440121	145	1,606194		458	1,656287	556	2,653736	477	1,653437
422	557	1,604461	560	2,457637	314	1,606439		302	1,65655	33	2,659177	439	1,658611
		1,605771		2,470749	139	1,607686	409		1,656715	70	2,659221		1,658809

1			SEM	II-RE	TÍCULO						S	EMI-RE	TÍCULO		
1 439 1,659352 436 2,660374 519 1,659209 518 565 1,734779 570 2,955173 501 2 3 45 1,663245 572 2,67014 75 1,660066 519 3,09 1,735604 51 2,962139 49 4 535 1,663501 336 2,673063 374 1,662195 521 421 1,739132 134 2,974533 461 5 103 1,665625 480 2,676921 45 1,662329 522 150 1,74448 150 2,975303 485 6 457 1,665776 561 2,690551 52 1,668015 523 71 1,748455 321 2,977741 532 7 429 1,666362 506 2,690551 52 1,668015 524 137 1,751657 108 2,978977 300 8 482 1,666816 535 2,691538 99 1,666701 525 136 1,754702 146 2,981849 397 0 420 1,669333 487 2,735241 452 1,667641 527 135 1,755698 100 2,995291 397 1 34 1,671027 492 2,736328 464 1,674429 528 68 1,760308 435 2,998446 41 2 326 1,671415 310 2,74773 42 1,676682 529 153 1,769979 367 2,996009 405 3 45 1,67344 471 2,74943 38 1,677464	lº 1[D S	SRA1	ID	SRA2	ID	SRA3		Nº	ID				ID	5
2 31 1,663018 423 2,664657 571 1,660066 500 73 1,735064 51 2,962139 49 3 459 1,663245 326 2,673033 344 1,662195 521 421 1,739132 134 2,974333 461 5 103 1,665625 480 2,676921 45 1,662195 522 150 1,744488 150 2,975303 485 6 457 1,6663765 501 2,69045 9 1,663155 523 71 1,744845 22 2,977741 532 8 482 1,666816 535 2,891538 99 1,664701 525 136 1,754666 372 2,980027 300 9 40 1,668363 387 2,735228 464 1,674429 528 68 1,765098 100 2,995291 375 1 3.4 1,671027 492 2,736328 464 1,6765692 </td <td></td> <td>1,7</td>															1,7
3 459 1,663245 572 2,670114 75 1,661066 520 73 1,737066 145 2,971453 421 4 535 1,663201 374 1,662195 521 421 1,739132 134 2,974353 461 5 103 1,666526 480 2,676921 45 1,662329 521 150 1,74448 50 2,978737 430 6 457 1,666361 560 2,690551 52 1,666401 524 137 1,751657 102 2,978737 430 8 401 1,666816 535 2,691538 99 1,664701 525 136 1,75402 16 2,980207 300 9 40 1,666826 52 2,724708 333 1,667401 522 135 1,75598 102 2,998246 41 1 3,41 1,671027 492 2,73524 452 1,667438 452 1,777048 <td></td> <td></td> <td></td> <td>423</td> <td></td> <td></td> <td></td> <td>5</td> <td>19</td> <td>309</td> <td></td> <td>51</td> <td></td> <td>49</td> <td>1,7</td>				423				5	19	309		51		49	1,7
4 535 1,663501 336 2,673063 374 1,662195 521 421 1,739132 134 2,974353 461 5 103 1,665676 561 2,69045 9 1,663155 522 171 1,748455 321 2,977417 532 7 429 1,666362 506 2,690551 52 1,664015 524 137 1,751657 108 2,978977 430 8 42 1,666861 535 2,691538 99 1,666801 525 136 1,756666 372 2,980027 300 9 40 1,668935 487 2,735241 452 1,667641 527 135 1,75698 100 2,995446 41 2 326 1,671416 310 2,747473 42 1,676829 529 153 1,76999 367 2,996009 405 1 34 1,671416 79 7,74767 416 1,67429					•	75					•	145		421	1,7
5 103 1,665625 480 2,676921 45 1,662329 522 150 1,74448 150 2,975303 485 67 429 1,666825 50e 2,69045 9 1,663155 523 371 1,744485 321 2,977741 532 8 482 1,666816 535 2,691538 99 1,664701 525 136 1,754666 372 2,980027 300 9 40 1,668652 52 2,724708 353 1,666691 526 149 1,754702 146 2,981849 397 1 34 1,671027 492 2,736328 464 1,674429 528 68 1,760309 405 2,995291 375 3 45 1,674434 471 2,749573 38 1,677464 530 352 1,770127 68 2,998746 541 4 480 1,6743488 402 2,770316 479 1,6787375<						374				421		134		461	1,7
6 457 1,665776 561 2,69045 9 1,663155 523 71 1,748455 321 2,978977 430 7 429 1,666862 505 2,690551 52 1,664701 525 136 1,754666 372 2,980277 300 9 40 1,666852 52 2,724708 353 1,666891 526 149 1,754702 146 2,981449 397 0 420 1,669353 487 2,735241 452 1,667641 527 135 1,756308 435 2,995446 41 1 3,66 1,671415 310 2,744773 42 1,676393 487 2,7437473 42 1,676393 487 2,98746 440 1,674396 456 2,770498 515 1,68016 532 377 1,77207 309 3,09234 429 4,480 1,674298 356 2,773527 457 1,680474 533															1,7
7 429 1,666362 506 2,690551 52 1,664015 524 137 1,751657 108 2,978977 430 8 482 1,666816 535 2,691538 99 1,664701 525 136 1,7546666 372 2,980027 300 9 40 1,668525 52 2,724708 353 1,666891 526 149 1,754702 146 2,981849 397 0 420 1,669353 487 2,735241 452 1,667641 527 135 1,756988 100 2,995446 41 2 326 1,671416 10 2,747473 42 1,676429 528 68 1,760008 435 2,996009 405 4 480 1,674388 40 2,770316 479 1,678737 531 132 1,77027 309 3,019322 529 4 480 1,674388 40 2,770376 465 1,68016 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>71</td> <td></td> <td></td> <td></td> <td>532</td> <td>1,7</td>										71				532	1,7
8 482 1,666816 535 2,691538 99 1,664701 525 136 1,754702 146 2,980027 300 9 40 1,66852 52 2,724708 353 1,666891 526 149 1,754702 146 2,981849 397 1 34 1,671027 492 2,736328 464 1,674429 528 68 1,760000 435 2,996446 41 2 326 1,671415 310 2,747473 42 1,676582 529 153 1,769979 367 2,996409 405 3 455 1,673438 471 2,749573 38 1,677464 530 352 1,770206 41 3,002138 466 5 412 1,674396 456 2,770318 479 1,678047 533 481 1,77207 309 3,019922 529 4 421 1,674396 456 2,770387 465 1,680244 </td <td></td> <td></td> <td></td> <td>506</td> <td></td> <td>52</td> <td></td> <td></td> <td></td> <td>137</td> <td></td> <td></td> <td></td> <td></td> <td>1</td>				506		52				137					1
9 40 1,66852 52 2,724708 353 1,666891 526 149 1,754702 146 2,981849 375 0 420 1,669353 487 2,735241 452 1,676429 528 68 1,756998 100 2,995099 375 2 266 1,671415 310 2,744737 32 1,676582 529 153 1,769979 367 2,996009 405 3 465 1,674388 40 2,770316 479 1,678396 460 2,770498 515 1,68016 532 377 1,77207 309 3,022195 107 4 461 1,674399 352 2,777367 465 1,680423 534 12 1,77424 555 3,04324 4 76 1,680433	78 48	82 1,6				99							2,980027		1,7
0 420 1,669353 487 2,735241 452 1,667641 527 135 1,755598 100 2,995291 375 1 34 1,671027 492 2,736328 464 1,674429 528 68 1,760308 435 2,996446 41 3 465 1,673444 471 2,749573 38 1,677464 530 352 1,770127 68 2,998746 540 4 480 1,674388 40 2,770316 479 1,678737 531 132 1,77202 68 2,998746 540 4 480 1,674729 266 2,770398 515 1,68016 532 377 1,77207 309 3,019922 529 4 450 1,674729 266 2,773527 67 1,68044 533 481 1,77207 309 3,019922 529 4 1,674729 2,726 66 1,6808293 535 314	79 40					353		5	26		1,754702	146		397	1,7
1 34 1,671027 492 2,736328 464 1,674429 528 68 1,760308 435 2,995446 41 2 326 1,671415 310 2,747473 42 1,67682 529 153 1,769979 367 2,996009 405 3 465 1,673488 40 2,770316 479 1,678737 531 132 1,772026 41 3,002138 466 5 412 1,674396 456 2,770498 515 1,68016 532 377 1,77207 309 3,002138 466 6 471 2,674396 456 2,773527 67 1,680474 533 481 1,777307 409 3,002138 460 6 1,679363 357 2,777367 465 1,680823 533 411 1,774242 555 3,04324 421 9 4 1,680537 66 2,781487 10 1,682788 537 146 1,777913 139 3,071819 4 1 570				487						135	1,755598			375	1,7
2 326 1,671415 310 2,747473 42 1,676582 529 153 1,769979 367 2,996009 405 3 465 1,673448 471 2,749573 38 1,677464 530 352 1,771027 68 2,998746 540 4 480 1,674396 456 2,770498 515 1,68016 532 377 1,77207 309 3,019922 529 6 487 1,674729 326 2,77357 67 1,680474 533 481 1,7739 418 3,023195 107 7 456 1,679863 357 2,777367 465 1,68023 534 124 1,774424 555 3,04324 323 8 432 1,680221 371 2,7784187 10 1,68277 536 108 1,776345 315 3,050201 454 1 757 1,681738 110 2,785341 44 1,68278				492								435		41	1,7
3 465 1,67344 471 2,749573 38 1,677464 530 352 1,770127 68 2,998746 540 4 480 1,674388 40 2,770316 479 1,678737 531 132 1,772026 41 3,002138 466 5 412 1,674396 456 2,7703527 67 1,68016 532 377 1,774244 555 3,04324 323 6 487 1,674729 326 2,773527 67 1,680623 534 124 1,774424 555 3,04324 323 8 432 1,680637 66 2,781487 10 1,68277 556 108 1,776345 315 3,050201 454 1 570 1,683784 420 2,785341 441 1,684878 537 146 1,779132 312 3,082346 459 2 358 1,685842 477 2,785354 569 1,684585 <td></td> <td></td> <td></td> <td>310</td> <td></td> <td>42</td> <td>1,676582</td> <td></td> <td></td> <td>153</td> <td></td> <td>367</td> <td></td> <td>405</td> <td>1,7</td>				310		42	1,676582			153		367		405	1,7
4 480 1,674388 40 2,770316 479 1,678737 531 132 1,772026 41 3,002138 466 5 412 1,674396 456 2,770498 515 1,68016 532 377 1,77207 309 3,019922 529 6 487 1,674729 326 2,773527 476 1,680474 533 481 1,7739 418 3,023939 323 8 432 1,680221 371 2,77854 453 1,680293 535 313 1,775327 314 3,046059 412 9 74 1,680537 66 2,781487 10 1,682788 537 146 1,77791 139 3,071819 4 1 570 1,683784 420 2,785344 44 1,684878 538 100 1,779132 312 3,082346 459 2 358 1,6858142 477 2,785344 44 2,785344 34 </td <td></td> <td></td> <td></td> <td>471</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>68</td> <td></td> <td></td> <td>1,7</td>				471								68			1,7
5 412 1,674396 456 2,770498 515 1,68016 532 377 1,77207 309 3,019922 529 6 487 1,674729 326 2,773527 67 1,680474 533 481 1,773424 555 3,04324 323 8 432 1,680221 371 2,77844 453 1,680293 535 108 1,775327 314 3,046059 412 9 74 1,680537 66 2,781487 10 1,68277 536 108 1,776345 315 3,050201 454 1 570 1,683788 402 2,785341 44 1,684876 538 100 1,779132 312 3,082366 459 2 358 1,685842 477 2,785354 569 1,684585 540 301 1,783033 377 3,103667 51 4 45 1,6893194 33 2,865605 400 1,685837 <td></td> <td></td> <td></td> <td>40</td> <td></td> <td>479</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>466</td> <td>1,7</td>				40		479								466	1,7
6 487 1,674729 326 2,773527 67 1,680474 533 481 1,7739 418 3,023195 107 7 456 1,680823 534 124 1,774424 555 3,04324 323 8 432 1,680221 371 2,77894 453 1,682293 535 313 1,775327 314 3,046059 412 9 74 1,6805376 66 2,781487 10 1,68277 536 108 1,776345 315 3,040059 412 9 74 1,681738 110 2,785129 66 1,682788 537 146 1,77791 139 3,071819 4 1 570 1,683784 420 2,785341 44 1,684487 538 100 1,779132 312 3,082364 459 2 358 1,685842 477 2,785354 669 1,684565 540 301 1,783033 377					-		•								1,7
7 456 1,679863 357 2,777367 465 1,680823 534 124 1,774424 555 3,04324 323 8 432 1,680221 371 2,77894 453 1,682293 535 313 1,775327 314 3,046059 412 9 74 1,680537 66 2,781487 10 1,682778 536 108 1,776345 315 3,08201 454 1 570 1,683784 420 2,785341 44 1,684487 538 100 1,779132 312 3,082346 459 2 358 1,685842 477 2,785354 569 1,6845816 539 311 1,779919 479 3,082605 109 3 477 1,68936 44 2,795722 392 1,685983 541 321 1,785157 301 3,105411 376 4 45 1,689451 302 2,804619 134 1,686379	36 48	87 1,6	674729	326	2,773527					481	1,7739	418			1,7
8 432 1,680221 371 2,77894 453 1,682293 535 313 1,775327 314 3,046059 412 9 74 1,680537 66 2,781487 10 1,68277 536 108 1,776345 315 3,050201 454 0 479 1,681738 110 2,785141 44 1,684487 537 146 1,777911 139 3,071819 4 1 570 1,683784 420 2,785341 44 1,684487 538 100 1,779132 312 3,082346 459 2 358 1,685842 477 2,785345 569 1,684585 540 301 1,783033 377 3,103687 51 4 45 1,689366 44 2,795722 392 1,685983 541 321 1,785157 301 3,105411 376 5 44 1,689451 302 2,804619 134 1,686379 542 418 1,785432 153 3,115783 537 6 <td>37 45</td> <td></td> <td></td> <td></td> <td></td> <td>465</td> <td></td> <td>5</td> <td>34</td> <td>124</td> <td></td> <td></td> <td>3,04324</td> <td></td> <td>1,7</td>	37 45					465		5	34	124			3,04324		1,7
9 74 1,680537 66 2,781487 10 1,68277 536 108 1,776345 315 3,050201 454 0 479 1,681738 110 2,785129 66 1,682788 537 146 1,77791 139 3,071819 4 1 570 1,683784 420 2,785341 44 1,684487 538 100 1,779132 312 3,082346 459 2 358 1,685842 477 2,785354 569 1,684516 539 311 1,779699 479 3,082605 109 3 477 1,689239 358 2,795494 3 1,684585 540 301 1,783303 377 3,103687 51 4 4 5 1,68936 44 2,795722 392 1,685983 541 321 1,785157 301 3,105411 376 5 44 1,683194 373 2,805605 420 1,686469 543 476 1,789532 137 3,120609 518 7 99 1,695982 99 2,806391 324 1,687915 544 435 1,795432 476 3,150609 443 8 436 1,696154 45 2,815555 177 1,688907 545 376 1,795478 154 3,154896 303 9 351 1,701428 42 2,818412 2 1,69047 546 369 1,796183 569 3,161369 436 10 556 1,702918 360 2,820746 150 1,69183 547 145 1,798151 148 3,167042 432 1 310 1,703909 461 2,821904 61 1,692171 548 353 1,798455 571 3,189255 440 2 461 1,704564 136 2,82752 65 1,693126 549 312 1,801603 352 3,194814 534 3 434 1,706007 466 2,852243 74 1,693732 550 299 1,80303 313 3,202987 446 4 561 1,711159 74 2,856992 112 1,694513 553 314 1,815681 124 3,223722 528 7 483 1,718731 351 2,861829 560 1,696135 554 571 1,816524 353 3,236508 370 8 367 1,721393 337 2,891755 476 1,69892 555 139 1,823972 376 3,239458 174 9 372 1,721755 106 2,897967 133 1,694502 555 139 1,823972 376 3,239458 174 9 372 1,721755 106 2,897967 133 1,694502 555 139 1,823972 376 3,239458 174 9 372 1,721755 106 2,897967 133 1,694502 555 139 1,823972 376 3,239458 174 9 373 1,726685 147 2,901181 533 1,700488 558 374 1,816634 324 3,282596 315 5555 1,730263 73 2,9319 268 1,709079 562 112 1,85063 486 3,340527 474 4 41 1,730101 483 2,924601 483 1,709079 562 112 1,85063 486 3,340527 474 4 54 1,731359 135 2,945134 281 1,709684 563 324 1,855429 322 3,349528 423 4 54 1,731359 135 2,945134 281 1,709684 563 324 1,855429 322 3,349528 423 4 54 1,731359 135 2,945134 281 1,709684 563 324 1,855429 322 3,349528 423 4 54 1,731359 135 2,945134 281 1,709684 563 324 1,855429 322 3,349528 423 4 54 1,	38 43			371		453	1,682293	5	35	313					1,7
0 479 1,681738 110 2,785129 66 1,682788 537 146 1,77791 139 3,071819 4 1 570 1,683784 420 2,785341 44 1,684487 538 100 1,779132 312 3,082346 459 2 358 1,685842 477 2,785354 569 1,684516 539 311 1,779699 479 3,082605 109 3 477 1,68936 44 2,795722 392 1,686379 542 418 1,785157 301 3,105411 376 4 4,689451 302 2,804619 134 1,686379 542 418 1,785432 153 3,115783 537 6 431 1,693194 373 2,805605 420 1,686469 543 476 1,786322 153 3,115783 537 7 99 1,69582 99 2,806391 324 1,687915 544<				66	2,781487						1,776345	315			1,7
1 570 1,683784 420 2,785341 44 1,684487 538 100 1,779132 312 3,082346 459 2 358 1,685842 477 2,785354 569 1,684516 539 311 1,779699 479 3,082605 109 3 477 1,689239 358 2,795494 3 1,684585 540 301 1,783303 377 3,103687 51 4 45 1,689361 44 2,795722 392 1,685983 541 321 1,785157 301 3,105411 376 5 44 1,689451 302 2,804619 134 1,686379 542 418 1,785432 153 3,115783 537 6 431 1,693194 373 2,805605 420 1,686469 543 476 1,789632 137 3,120609 518 7 99 1,695982 99 2,806391 324 1,687915 544 435 1,795432 476 3,154896 303 8				110		66				146				4	1,7
2 358 1,685842 477 2,785354 569 1,684516 539 311 1,779699 479 3,082605 109 3 477 1,689239 358 2,795494 3 1,684585 540 301 1,785157 301 3,103687 51 4 45 1,68936 44 2,795722 392 1,685983 541 321 1,785157 301 3,105411 376 5 44 1,689451 302 2,804619 134 1,686379 542 418 1,785432 153 3,115783 537 6 431 1,693194 373 2,805605 420 1,686469 543 476 1,789632 137 3,120609 518 7 99 1,69582 99 2,806391 324 1,687915 544 435 1,795432 476 3,150609 443 8 436 1,696154 45 2,818412 2 1,69047				420	•	44	•						•	459	1,7
3 477 1,689239 358 2,795494 3 1,68585 540 301 1,783303 377 3,103687 51 4 45 1,68936 44 2,795722 392 1,685983 541 321 1,785157 301 3,105411 376 5 44 1,689451 302 2,804619 134 1,686379 542 418 1,785432 153 3,115783 537 6 431 1,693194 373 2,805605 420 1,686469 543 476 1,789632 137 3,120609 518 7 99 1,695982 99 2,806391 324 1,687915 544 435 1,795432 476 3,150609 443 8 436 1,696154 45 2,815555 177 1,688907 545 376 1,795478 154 3,154896 303 9 351 1,701428 42 2,818412 2 1,69047 546 369 1,796183 569 3,161369 436 0						569								109	1,7
4 45 1,68936 44 2,795722 392 1,685983 541 321 1,785157 301 3,105411 376 5 44 1,689451 302 2,804619 134 1,686379 542 418 1,785432 153 3,115783 537 6 431 1,693194 373 2,805605 420 1,686469 543 476 1,789632 137 3,120609 518 7 99 1,695982 99 2,806391 324 1,687915 544 435 1,795432 476 3,150609 443 8 436 1,696154 45 2,815555 177 1,688907 545 376 1,795478 154 3,154896 303 9 351 1,701428 42 2,818412 2 1,69047 546 369 1,796183 569 3,161369 436 0 556 1,702918 360 2,82752 65 1,693126 <td></td> <td>1,7</td>															1,7
5 44 1,689451 302 2,804619 134 1,686379 542 418 1,785432 153 3,115783 537 6 431 1,693194 373 2,805605 420 1,686469 543 476 1,789632 137 3,120609 518 7 99 1,695982 99 2,806391 324 1,687915 544 435 1,795432 476 3,150609 443 8 436 1,696154 45 2,815555 177 1,688907 545 376 1,795478 154 3,154896 303 9 351 1,701428 42 2,818412 2 1,69047 546 369 1,796183 569 3,161369 436 0 556 1,702918 360 2,820746 150 1,69183 547 145 1,798151 148 3,167042 432 1 310 1,703909 461 2,821904 61 1,692171<															1,7
6 431 1,693194 373 2,805605 420 1,686469 543 476 1,789632 137 3,120609 518 7 99 1,695982 99 2,806391 324 1,687915 544 435 1,795432 476 3,150609 443 8 436 1,696154 45 2,815555 177 1,688907 545 376 1,795478 154 3,154896 303 9 351 1,701428 42 2,818412 2 1,69047 546 369 1,796183 569 3,161369 436 0 556 1,702918 360 2,820746 150 1,69183 547 145 1,798151 148 3,167042 432 1 310 1,703909 461 2,821904 61 1,692171 548 353 1,798945 571 3,189255 440 2 461 1,704564 136 2,82752 65 1,693126 549 312 1,801603 352 3,194814 534 3 </td <td></td> <td>,</td> <td></td> <td>1,7</td>		,													1,7
7 99 1,695982 99 2,806391 324 1,687915 544 435 1,795432 476 3,150609 443 8 436 1,696154 45 2,815555 177 1,688907 545 376 1,795478 154 3,154896 303 9 351 1,701428 42 2,818412 2 1,69047 546 369 1,796183 569 3,161369 436 0 556 1,702918 360 2,820746 150 1,69183 547 145 1,798151 148 3,167042 432 1 310 1,703909 461 2,821904 61 1,692171 548 353 1,798945 571 3,188255 440 2 461 1,704564 136 2,82752 65 1,693126 549 312 1,801603 352 3,194814 534 3 434 1,706007 466 2,852243 74 1,693732 <td></td> <td>,</td> <td></td> <td>1,7</td>		,													1,7
8 436 1,696154 45 2,815555 177 1,688907 545 376 1,795478 154 3,154896 303 9 351 1,701428 42 2,818412 2 1,69047 546 369 1,796183 569 3,161369 436 0 556 1,702918 360 2,820746 150 1,69183 547 145 1,798151 148 3,167042 432 1 310 1,703909 461 2,821904 61 1,692171 548 353 1,798945 571 3,189255 440 2 461 1,704564 136 2,82752 65 1,693126 549 312 1,801603 352 3,194814 534 3 434 1,706007 466 2,852243 74 1,693732 550 299 1,80303 313 3,202987 446 4 561 1,711159 74 2,856992 112 1,694111 551 315 1,805155 374 3,204275 71 5 <td></td> <td>1,7</td>															1,7
9 351 1,701428		,													1,7
0 556 1,702918 360 2,820746 150 1,69183 547 145 1,798151 148 3,167042 432 1 310 1,703909 461 2,821904 61 1,692171 548 353 1,798945 571 3,189255 440 2 461 1,704564 136 2,82752 65 1,693126 549 312 1,801603 352 3,194814 534 3 434 1,706007 466 2,852243 74 1,693732 550 299 1,80303 313 3,202987 446 4 561 1,711159 74 2,856992 112 1,694111 551 315 1,805155 374 3,204275 71 5 42 1,711362 565 2,85939 103 1,694502 552 134 1,811611 152 3,217157 481 6 466 1,713899 71 2,861829 560 1,696135 554 571 1,816524 353 3,239458 174 8 </td <td></td> <td>1,7</td>															1,7
1 310 1,703909 461 2,821904 61 1,692171 548 353 1,798945 571 3,189255 440 2 461 1,704564 136 2,82752 65 1,693126 549 312 1,801603 352 3,194814 534 3 434 1,706007 466 2,852243 74 1,693732 550 299 1,80303 313 3,202987 446 4 561 1,711159 74 2,856992 112 1,694111 551 315 1,805155 374 3,204275 71 5 42 1,711362 565 2,85939 103 1,694502 552 134 1,811611 152 3,217157 481 6 466 1,713899 71 2,861474 471 1,694513 553 314 1,815681 124 3,223722 528 7 483 1,718731 351 2,861829 560 1,696135 554 571 1,816524 353 3,239458 174 9<													•		1,7
2 461 1,704564 136 2,82752 65 1,693126 549 312 1,801603 352 3,194814 534 3 434 1,706007 466 2,852243 74 1,693732 550 299 1,80303 313 3,202987 446 4 561 1,711159 74 2,856992 112 1,694111 551 315 1,805155 374 3,204275 71 5 42 1,711362 565 2,85939 103 1,694502 552 134 1,811611 152 3,217157 481 6 466 1,713899 71 2,861474 471 1,694513 553 314 1,815681 124 3,223722 528 7 483 1,718731 351 2,861829 560 1,696135 554 571 1,816524 353 3,239458 174 8 367 1,721755 106 2,897967 133 1,699392 555 139 1,823972 376 3,239458 174 9															1,7
3 434 1,706007 466 2,852243 74 1,693732 550 299 1,80303 313 3,202987 446 4 561 1,711159 74 2,856992 112 1,694111 551 315 1,805155 374 3,204275 71 5 42 1,711362 565 2,85939 103 1,694502 552 134 1,811611 152 3,217157 481 6 466 1,713899 71 2,861474 471 1,694513 553 314 1,815681 124 3,223722 528 7 483 1,718731 351 2,861829 560 1,696135 554 571 1,816524 353 3,236508 370 8 367 1,721393 337 2,891755 476 1,69892 555 139 1,823972 376 3,239458 174 9 372 1,721755 106 2,897967 133 1,699392 556 486 1,824178 107 3,242028 418						_					•				1,7
4 561 1,711159 74 2,856992 112 1,694111 551 315 1,805155 374 3,204275 71 5 42 1,711362 565 2,85939 103 1,694502 552 134 1,811611 152 3,217157 481 6 466 1,713899 71 2,861474 471 1,694513 553 314 1,815681 124 3,223722 528 7 483 1,718731 351 2,861829 560 1,696135 554 571 1,816524 353 3,236508 370 8 367 1,721393 337 2,891755 476 1,69892 555 139 1,823972 376 3,239458 174 9 372 1,721755 106 2,897967 133 1,699392 556 486 1,824178 107 3,242028 418 0 474 1,725308 149 2,90037 467 1,699939 557 569 1,8315 311 3,249766 409 1															1,7
5 42 1,711362 565 2,85939 103 1,694502 552 134 1,811611 152 3,217157 481 6 466 1,713899 71 2,861474 471 1,694513 553 314 1,815681 124 3,223722 528 7 483 1,718731 351 2,861829 560 1,696135 554 571 1,816524 353 3,236508 370 8 367 1,721393 337 2,891755 476 1,69892 555 139 1,823972 376 3,239458 174 9 372 1,721755 106 2,897967 133 1,699392 556 486 1,824178 107 3,242028 418 0 474 1,725308 149 2,90037 467 1,699939 557 569 1,8315 311 3,249766 409 1 337 1,726685 147 2,901181 533 1,7004															1,7
6 466 1,713899 71 2,861474 471 1,694513 553 314 1,815681 124 3,223722 528 7 483 1,718731 351 2,861829 560 1,696135 554 571 1,816524 353 3,236508 370 8 367 1,721393 337 2,891755 476 1,69892 555 139 1,823972 376 3,239458 174 9 372 1,721755 106 2,897967 133 1,699392 556 486 1,824178 107 3,242028 418 0 474 1,725308 149 2,90037 467 1,699939 557 569 1,8315 311 3,249766 409 1 337 1,726685 147 2,901181 533 1,700488 558 374 1,832566 369 3,261094 434 2 147 1,727308 474 2,917283 251 1,703746 560 485 1,844384 299 3,279096 317 <															1,7
7 483 1,718731 351 2,861829 560 1,696135 554 571 1,816524 353 3,236508 370 8 367 1,721393 337 2,891755 476 1,69892 555 139 1,823972 376 3,239458 174 9 372 1,721755 106 2,897967 133 1,699392 556 486 1,824178 107 3,242028 418 0 474 1,725308 149 2,90037 467 1,699939 557 569 1,8315 311 3,249766 409 1 337 1,726685 147 2,901181 533 1,700488 558 374 1,832566 369 3,261094 434 2 147 1,727206 421 2,912684 377 1,702233 559 148 1,832916 112 3,273167 132 3 51 1,72738 474 2,917283 251 1,703746 560 485 1,844384 299 3,279096 317 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1,7</td></t<>															1,7
8 367 1,721393 337 2,891755 476 1,69892 555 139 1,823972 376 3,239458 174 9 372 1,721755 106 2,897967 133 1,699392 556 486 1,824178 107 3,242028 418 0 474 1,725308 149 2,90037 467 1,699939 557 569 1,8315 311 3,249766 409 1 337 1,726685 147 2,901181 533 1,700488 558 374 1,832566 369 3,261094 434 2 147 1,727206 421 2,912684 377 1,702233 559 148 1,832916 112 3,273167 132 3 51 1,727338 474 2,917283 251 1,703746 560 485 1,844384 299 3,279096 317 4 41 1,730101 483 2,924601 483 1,709079 562 112 1,85063 486 3,340527 474 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1,7</td></td<>															1,7
9 372 1,721755 106 2,897967 133 1,699392 556 486 1,824178 107 3,242028 418 0 474 1,725308 149 2,90037 467 1,699939 557 569 1,8315 311 3,249766 409 1 337 1,726685 147 2,901181 533 1,700488 558 374 1,832566 369 3,261094 434 2 147 1,727206 421 2,912684 377 1,702233 559 148 1,832916 112 3,273167 132 3 51 1,727338 474 2,917283 251 1,703746 560 485 1,844384 299 3,279096 317 4 41 1,730101 483 2,924601 483 1,704241 561 375 1,8464 324 3,282596 315 555 1,730263 73 2,9319 268 1,709079 562 112 1,85063 486 3,340527 474 6 373 1,731359 135 2,945134 281 1,709684 563 324 1,855429 322 3,349528 423															1,7
0 474 1,725308 149 2,90037 467 1,699939 557 569 1,8315 311 3,249766 409 1 337 1,726685 147 2,901181 533 1,700488 558 374 1,832566 369 3,261094 434 2 147 1,727206 421 2,912684 377 1,702233 559 148 1,832916 112 3,273167 132 3 51 1,727338 474 2,917283 251 1,703746 560 485 1,844384 299 3,279096 317 4 41 1,730101 483 2,924601 483 1,704241 561 375 1,8464 324 3,282596 315 5 555 1,730263 73 2,9319 268 1,709079 562 112 1,85063 486 3,340527 474 6 373 1,731359 135 2,945134 281 1,709684 563 324 1,855429 322 3,349528 423															1,7
1 337 1,726685 147 2,901181 533 1,700488 558 374 1,832566 369 3,261094 434 2 147 1,727206 421 2,912684 377 1,702233 559 148 1,832916 112 3,273167 132 3 51 1,727338 474 2,917283 251 1,703746 560 485 1,844384 299 3,279096 317 4 41 1,730101 483 2,924601 483 1,704241 561 375 1,8464 324 3,282596 315 5 555 1,730263 73 2,9319 268 1,709079 562 112 1,85063 486 3,340527 474 6 373 1,731359 135 2,945134 281 1,709684 563 324 1,855429 322 3,349528 423															1,7
2 147 1,727206 421 2,912684 377 1,702233 559 148 1,832916 112 3,273167 132 3 51 1,727338 474 2,917283 251 1,703746 560 485 1,844384 299 3,279096 317 4 41 1,730101 483 2,924601 483 1,704241 561 375 1,8464 324 3,282596 315 5 555 1,730263 73 2,9319 268 1,709079 562 112 1,85063 486 3,340527 474 6 373 1,731359 135 2,945134 281 1,709684 563 324 1,855429 322 3,349528 423															1,7
3 51 1,727338 474 2,917283 251 1,703746 560 485 1,844384 299 3,279096 317 4 41 1,730101 483 2,924601 483 1,704241 561 375 1,8464 324 3,282596 315 5 555 1,730263 73 2,9319 268 1,709079 562 112 1,85063 486 3,340527 474 6 373 1,731359 135 2,945134 281 1,709684 563 324 1,855429 322 3,349528 423															1,7
4 41 1,730101 483 2,924601 483 1,704241 561 375 1,8464 324 3,282596 315 5 555 1,730263 73 2,9319 268 1,709079 562 112 1,85063 486 3,340527 474 6 373 1,731359 135 2,945134 281 1,709684 563 324 1,855429 322 3,349528 423															1,
5 555 1,730263 73 2,9319 268 1,709079 562 112 1,85063 486 3,340527 474 6 373 1,731359 135 2,945134 281 1,709684 563 324 1,855429 322 3,349528 423															1,8
6 373 1,731359 135 2,945134 281 1,709684 563 324 1,855429 322 3,349528 423															1,8
															1,8
/ 5/ /5/4/ 15/ / ዓፋ/// 15 / /ከዓ - ከሰፈ ገካ/ አካካፈጽሩ ፈጽካ ሩናክናንዛጽ //ሩና					2,947771		1,711269						3,363298	433	1,8

		SI	EMI-RE	TÍCULO		
Nº	ID	SRA1	ID	SRA2	ID	SRA3
565	417	1,868374	155	3,399439	561	1,813223
566	298	1,872989	375	3,432586	539	1,824946
567	109	1,881562	109	3,444497	417	1,837358
568	107	1,889782	298	3,483681	68	1,85506
569	155	1,903804	481	3,510832	556	1,85775
570	322	1,905141	133	3,519733	403	1,863652
571	370	1,915273	370	3,671926	316	1,87697
572	133	1,928788	323	3,690278	435	1,89215
573	300	1,936735	151	3,849735	535	1,901177
574	316	1,947059	417	3,85204	555	1,908147
575	151	1,950487	316	3,92004	565	1,942161
576	323	1,952172	317	3,925026	396	2,647846
577	303	1,97382	300	3,983531	296	2,709638
578	317	1,983394	303	4,441631	232	2,866113

Apêndice B - Normalização dos valores de acessibilidade

O Apêndice B contém as normalizações dos índices de acessibilidades para os padrões de traçados viários estudados - xadrez, radial, cluster e semi-retículo – para as simulações A1, A2 e A3. As curvas normais utilizadas nas simulações e na análise dos resultados são representações gráficas dos dados aqui desenvolvidos. Os dados estão gerados a partir da equação descrita abaixo e tabulados por padrão de traçados viário e por simulação nas páginas a seguir.

Equação B.1- Curva normal

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{\left(-\frac{(M-d)^2}{2\sigma^2}\right)}, -\infty < M < \infty, \sigma > 0$$

Onde σ é a variância, M a média e d a distribuição padrão.

	Х	(ADREZ	
d	XA1	XA2	XA3
0,01	4,35706E-13	1,28118E-05	3,54423E-52
0,01	4,35700E-13 1,75593E-12	1,76501E-05	4,30683E-50
0,02	6,84911E-12	2,42124E-05	4,74899E-48
0,03	2,58568E-11	3,30734E-05	4,75172E-46
0,05	9,4478E-11	4,49855E-05	4,31427E-44
0,03	3,34118E-10	6,09282E-05	3,55443E-42
	1,14362E-09	8,21706E-05	2,6573E-40
0,07			
0,08	3,78862E-09	0,000110348	1,80267E-38
0,09	1,21477E-08	0,00014756	1,10968E-36
0,10	3,7698E-08	0,000196482	6,19853E-35
0,11	1,13229E-07	0,000260512	3,14184E-33
0,12	3,29163E-07	0,000343942	1,44506E-31
0,13	9,26144E-07	0,000452164	6,0311E-30
0,14	2,52209E-06	0,000591913	2,28409E-28
0,15	6,64746E-06	0,000771563	7,84937E-27
0,16	1,69577E-05	0,001001469	2,44773E-25
0,17	4,18687E-05	0,001294361	6,92628E-24
0,18	0,000100052	0,00166581	1,77845E-22
0,19	0,000231409	0,002134753	4,14373E-21
0,20	0,000518019	0,002724091	8,76087E-20
0,21	0,001122343	0,003461367	1,68077E-18
0,22	0,002353529	0,004379513	2,92603E-17
0,23	0,004776696	0,005517672	4,62226E-16
0,24	0,009383174	0,006922102	6,62577E-15
0,25	0,017839636	0,008647133	8,61836E-14
0,26	0,032827381	0,010756186	1,01723E-12
0,27	0,058465615	0,013322829	1,08949E-11
0,28	0,100781046	0,016431857	1,05884E-10
0,20	0,168140078	0,010431037	9,33783E-10
0,30	0,2715049	0,024678745	7,47254E-09
0,31	0,424324536	0,030051718	5,42621E-08
0,32	0,641848698	0,036439094	3,57546E-07
0,33	0,939682696	0,04399647	2,13783E-06
0,34	1,331508184	0,052895671	1,1599E-05
0,35	1,826082929	0,063324888	5,71053E-05
0,36	2,423880465	0,075488493	0,000255116
0,37	3,113980913	0,089606414	0,001034205
0,38	3,871994571	0,105913045	0,003804357
0,39	4,659803239	0,124655611	0,012698801
0,40	5,427682859	0,146091929	0,038463677
0,41	6,118928723	0,170487535	0,10571716
0,42	6,676523324	0,198112126	0,26366155
0,43	7,05081618	0,229235303	0,596698205
0,44	7,206799837	0,264121626	1,225375754
0,45	7,129508208	0,303024986	2,283444468
0,46	6,826384278	0,346182361	3,861163976
0,47	6,326098315	0,393807015	5,924513003
0,48	5,674076509	0,446081258	8,248855359
0,49	4,925705966	0,503148895	10,42176653
0,50	4,138622603	0,56510752	11,94801093
0,51	3,365559035	0,632000858	12,4295814
0,01	5,555555555	0,00200000	12,7200017

	Х	ADREZ	
d	XA1	XA2	XA3
1,03	2,03838E-24	0,603530863	6,98788E-57
1,04	2,93515E-25	0,538695035	4,21946E-59
1,05	4,09063E-26	0,478782733	2,31193E-61
1,06	5,51777E-27	0,423726868	1,14948E-63
1,07	7,20364E-28	0,373409655	5,18599E-66
1,08	9,10236E-29	0,327670317	2,1231E-68
1,09	1,11319E-29	0,286312742	7,88706E-71
1,10	1,31765E-30	0,249112929	2,65868E-73
1,11	1,50954E-31	0,215826057	8,13251E-76
1,12	1,67379E-32	0,186193066	2,2573E-78
1,13	1,79628E-33	0,159946649	5,6854E-81
1,14	1,86578E-34	0,136816604	1,29939E-83
1,15	1,87569E-35	0,116534491	2,69478E-86
1,16	1,82505E-36	0,098837597	5,07124E-89
1,17	1,71871E-37	0,083472206	8,65989E-92
1,18	1,56656E-38	0,070196203	1,34189E-94
1,19	1,38198E-39	0,058781054	1,88681E-97
1,20	1,17998E-40	0,049013208	2,4074E-100
1,21	9,7512E-42	0,040694987	2,7872E-103
1,22	7,79932E-43	0,033645014	2,9282E-106
1,23	6,03767E-44	0,027698262	2,7915E-109
1,24	4,52372E-45	0,022705776	2,4148E-112
1,25	3,28047E-46	0,01853413	1,8955E-115
1,26	2,30246E-47	0,015064686	1,3502E-118
1,27	1,56409E-48	0,012192702	8,7268E-122
1,28	1,02836E-49	0,009826342	5,1183E-125
1,29	6,54395E-51	0,007885619	2,724E-128
1,30	4,03043E-52	0,006301323	1,3155E-131
1,31	2,40257E-53	0,005013946	5,7647E-135
1,32	1,38617E-54	0,003972644	2,2923E-138
1,33	7,74049E-56	0,003134235	8,2714E-142
1,34	4,18346E-57	0,003134233	2,7082E-145
	4,10340E-37 2,18835E-58		
1,35		0,001926157	8,0465E-149
1,36	1,10793E-59	0,001500375	2,1693E-152
1,37	5,42902E-61	0,00116375	5,3071E-156
1,38	2,57481E-62	0,000898818	1,1781E-159
1,39	1,1819E-63	0,000691251	2,3732E-163
1,40	5,2509E-65	0,000529361	4,338E-167
1,41	2,25787E-66	0,000403664	7,1952E-171
1,42	9,39677E-68	0,000306507	1,083E-174
1,43	3,78506E-69	0,000231746	1,479E-178
1,44	1,47564E-70	0,000174476	1,833E-182
1,45	5,56803E-72	0,000130802	2,0613E-186
1,46	2,03347E-73	9,7643E-05	2,1034E-190
1,47	7,18765E-75	7,25807E-05	1,9477E-194
1,48	2,45896E-76	5,37222E-05	1,6365E-198
1,49	8,14196E-78	3,95948E-05	1,2478E-202
1,50	2,60928E-79	2,90586E-05	8,6328E-207
1,51	8,09332E-81	2,12355E-05	5,4197E-211
1,52	2,42967E-82	1,54526E-05	3,0875E-215
1,53	7,05961E-84	1,11968E-05	1,596E-219
•			

XA1		x	(ADREZ	
2.4474E-183 1,68801E-15 0 2,56 0 5,50865E-30 1,259E-185 9,76169E-16 0 2,57 0 2,66278E-30 3,0219E-190 3,22314E-16 0 2,59 0 5,4824E-31 1,4096E-192 1,84028E-16 0 2,60 0 2,51950E-31 1,04096E-192 1,84028E-16 0 2,60 0 2,51950E-31 1,0409E-192 1,84028E-16 0 2,61 0 1,15303E-31 2,7809E-197 5,92313E-17 0 2,62 0 5,25414E-32 1,761E-199 3,33897E-17 0 2,63 0 2,3840SE-32 4,8142E-202 1,87424E-17 0 2,63 0 2,3840SE-32 4,8142E-202 1,87424E-17 0 2,66 0 0 2,17105E-33 2,7142E-209 3,23131E-18 0 2,66 0 2,17105E-33 2,7142E-209 3,23131E-18 0 2,66 0 2,17105E-33 2,7142E-209 3,23131E-18 0 2,66 0 2,17105E-33 3,741E-219 2,9213E-19 0 2,70 0 8,38054E-38 1,1405E-216 5,36166E-19 0 2,70 0 8,38054E-38 3,741E-219 2,9213E-19 0 2,70 0 8,38054E-38 3,7141E-219 2,9213E-19 0 2,70 0 8,38054E-38 1,1707E-221 1,58491E-19 0 2,70 0 8,38054E-38 3,7141E-219 2,9213E-19 0 2,71 0 3,67358E-35 1,1664E-226 4,60596E-20 0 2,74 0 3,02058E-36 3,0137E-229 2,46721E-20 0 2,73 0 6,97941E-37 1,0546E-226 3,0137E-229 2,46721E-20 0 2,76 0 5,59415E-37 2,2315E-34 6,98929E-21 0 2,77 0 2,39153E-37 1,45E-239 1,94656E-21 0 2,79 0 4,31537E-38 8,2676E-245 5,32981E-22 0 2,88 0 1,33313E-39 8,8107E-253 3,7964E-23 0 2,86 0 9,41888E-41 1,3078E-265 3,7964E-23 0 2,86 0 9,41888E-41 0 2,80 0 1,82144E-38 8,2676E-245 5,32981E-22 0 2,88 0 0 6,3954E-24 0 2,80 0 1,82144E-38 8,2676E-245 5,32981E-22 0 2,88 0 0 6,3954E-24 0 2,80 0 1,82144E-38 8,2676E-245 5,32981E-22 0 2,88 0 0 6,3954E-24 0 2,80 0 1,82144E-38 8,2676E-245 5,32981E-22 0 2,88 0 0 6,3954E-24 0 2,80 0 1,82144E-38 8,2676E-245 5,32981E-22 0 2,88 0 0 6,3954E-24 0 2,80 0 6,3954E-24 0 2,80 0 6,3954E-24 0 2,80 0 6,3954E-24 0 2,80 0 6,3954E-24 0 2,90 0 0 2,5686E-24 0 2,90	d			XA3
1,2592E-185	,05			
6,2701E-188	2,06			
3.0219E-190 3.22314E-16 0 2.59 0 5.4824E-31 1.4096E-192 1.04627E-16 0 2.60 0 2.51959E-31 2.7809E-197 5.92313E-17 0 2.62 0 5.26414E-32 1.1761E-199 3.33897E-17 0 2.63 0 2.38405E-32 1.8742E-201 1.87424E-17 0 2.64 0 1.07716E-32 4.8142E-202 1.87424E-17 0 2.64 0 1.07716E-32 4.8142E-202 1.87424E-17 0 2.66 0 2.17105E-33 2.7414E-209 3.23131E-18 0 2.66 0 2.17105E-33 2.7414E-209 3.23131E-18 0 2.66 0 2.17105E-33 2.7414E-209 3.23131E-18 0 2.66 0 3.430197E-34 3.3394E-214 9.7988E-19 0 2.68 0 1.9028E-34 1.1405E-216 5.36165E-19 0 2.70 0 8.38054E-38 3.7414E-219 2.9213E-19 0 2.71 0 3.67538E-35 3.7414E-219 2.9213E-19 0 2.71 0 3.67538E-35 3.7515E-224 8.56223E-20 0 2.73 0 6.97941E-36 1.0546E-226 4.60596E-20 0 2.74 0 3.02208E-33 3.0137E-229 2.46721E-20 0 2.75 0 1.303E-36 8.3357E-232 1.31596E-20 0 2.76 0 5.59415E-37 2.2315E-234 6.98929E-21 0 2.77 0 2.39153E-37 5.782E-237 3.9663E-21 0 2.77 0 2.39153E-37 5.782E-237 3.79664E-23 0 2.78 0 1.81357E-38 3.5194E-242 1.02074E-21 0 2.77 0 2.39153E-37 3.5194E-242 1.02074E-21 0 2.78 0 1.81357E-38 3.6194E-242 1.02074E-21 0 2.80 0 1.82144E-38 8.2676E-245 5.32981E-22 0 2.81 0 7.65538E-39 3.8107E-259 3.79684E-23 0 2.88 0 1.3357E-38 3.8107E-250 3.79634E-23 0 2.86 0 9.41885E-41 3.0795E-261 9.8786E-27 0 2.99 0 6.39504E-44 3.0305E-262 1.0506E-26 0 2.96 0 1.33515E-39 4.1367E-250 1.43471E-22 0 2.88 0 1.57426E-44 1.3079E-261 9.8784E-24 0 2.89 0 9.41885E-41 3.0795E-261 9.8784E-24 0 2.99 0 0 2.5686E-42 3.060E-266 1.6703E-27 0 2.99 0 6.63967E-44 2.366E-266 2.52677E-24 0 2.99 0 6.63967E-44 2.366E-269 2.96 0 2.99 0 1.06892E-44 4.175E-289 3.81804E-26 0 2.99 0 1.06892E-44 4.175E-289 3.81804E-26 0 2.99 0 1.06892E-44 4.175E-289 3.18160E-26 0 2.99 0 1.06892E-44 4.175E-289 3.18160E-26 0 2.99 0 1.06892E-44 4.175E-299 1.1630E-27 0 2.99 0 6.63967E-44 4.175E-299 2.1630E-29 0 2.99 0 6.63967E-44 4.175E-299 2.1630E-29 0 2.99 0 1.9068E-45 4.175E-299 1.1630E-29 0 2.99 0 1.9068E-45 4.175E-299 1.1630E-29 0 2.90 0 2.5686E-44 4.175E-299 2.1630E-29 0 2.90 0 2.5686E-44 4.175E-299 2.1630E-29 0 3.00 0 2.9068E-45 4.175E-299 0 3.00 0 2.9	2,07			
1,4096E-192 1,84028E-16 0 2,60 0 2,51959E-31 6,3641E-195 1,04627E-16 0 2,61 0 1,15303E-31 2,7809E-197 5,92313E-17 0 2,62 0 5,25414E-32 1,1761E-199 3,33897E-17 0 2,63 0 2,38405E-32 4,8142E-202 1,87424E-17 0 2,64 0 1,07716E-32 4,8142E-202 1,87424E-17 0 2,65 0 4,84619E-33 7,3135E-207 5,83054E-18 0 2,66 0 2,17105E-33 2,7142E-209 3,23131E-18 0 2,67 0 9,64485E-34 9,7493E-212 1,7832E-18 0 2,68 0 4,30197E-34 3,3894E-214 9,7988E-19 0 2,69 0 1,9028E-34 1,1405E-216 5,36165E-19 0 2,70 0 8,38054E-35 3,7141E-219 2,9213E-19 0 2,71 0 3,67538E-35 3,7141E-219 2,9213E-19 0 2,71 0 3,67538E-35 1,1707E-221 1,58491E-19 0 2,72 0 1,60503E-33 3,5715E-224 8,56223E-20 0 2,73 0 6,97941E-36 1,0546E-226 4,60596E-20 0 2,74 0 3,02208E-36 3,0137E-229 2,46721E-20 0 2,75 0 1,303E-36 8,3357E-322 1,31596E-20 0 2,76 0 5,59415E-37 1,45E-239 1,94656E-21 0 2,79 0 4,31537E-38 3,5194E-242 1,02074E-21 0 2,79 0 4,31537E-38 1,8795E-247 2,77116E-22 0 2,80 0 1,82144E-38 8,2676E-245 5,32981E-22 0 2,79 0 4,31537E-38 1,8795E-247 2,77116E-22 0 2,80 0 1,82144E-38 8,2676E-245 5,32981E-22 0 2,83 0 1,3351E-38 8,2676E-245 5,32981E-22 0 2,83 0 1,3351E-38 8,2676E-245 5,32981E-22 0 2,83 0 1,3515E-38 4,6995E-26 0 2,84 0 5,54026E-40 1,8676E-26 1,8676E-26 5,36981E-27 0 2,89 0 6,3957E-28 1,8796E-247 2,77116E-22 0 2,89 0 6,9590E-24 0 2,79 0 4,31537E-38 3,1596E-26 1 2,79 0 4,31537E-38 3,1596E-26 1 2,79 0 4,31537E-38 3,1596E-247 2,77116E-22 0 2,89 0 6,3950E-24 1,3079E-263 3,006E-25 0 2,91 0 1,04192E-42 1,1513E-274 3,16606E-25 0 2,91 0 1,04192E-42 1,1513E-274 3,16606E-25 0 2,99 0 6,3950E-24 1,1513E-274 3,16606E-25 0 2,99 0 6,3950E-24 0 2,99 0 6,39	2,08			
6,3641E-195	2,09			
2,7809E-197 5,92313E-17 0 2,62 0 5,25414E-32 1,1761E-199 3,33897E-17 0 2,63 0 2,38405E-32 4,8142E-202 1,87424E-17 0 2,64 0 1,07716E-32 1,9073E-204 1,04759E-17 0 2,65 0 4,84619E-33 7,3135E-207 5,83054E-18 0 2,66 0 2,17105E-33 7,3135E-207 5,83054E-18 0 2,66 0 2,17105E-33 2,7142E-209 3,23131E-18 0 2,67 0 9,68465E-34 9,7493E-212 1,7832E-18 0 2,68 0 4,30197E-34 3,3894E-214 9,7898E-19 0 2,69 0 1,9028E-34 1,1405E-216 5,36165E-19 0 2,70 0 8,38054E-35 3,7141E-219 2,9213E-19 0 2,70 0 8,38054E-35 3,7141E-219 2,9213E-19 0 2,71 0 3,67538E-35 1,1707E-221 1,58491E-19 0 2,72 0 1,60503E-35 3,5715E-224 8,56223E-20 0 2,73 0 6,97941E-30 1,0546E-226 4,60596E-20 0 2,73 0 6,97941E-30 2,215E-234 6,9899E-21 0 2,76 0 5,59415E-37 5,782E-237 3,69637E-21 0 2,77 0 2,39153E-37 1,45E-239 1,94656E-21 0 2,77 0 2,39153E-37 1,45E-239 1,94656E-21 0 2,77 0 2,39153E-37 1,45E-239 1,94656E-21 0 2,79 0 4,31537E-38 1,8798E-247 2,77116E-22 0 2,80 0 1,82144E-38 8,2676E-245 5,32981E-22 0 2,81 0 7,65538E-39 1,8798E-247 2,77116E-22 0 2,81 0 7,65538E-39 1,8798E-247 2,77116E-22 0 2,82 0 3,20383E-39 1,8798E-247 2,77116E-22 0 2,82 0 3,20383E-39 1,8798E-247 2,77116E-22 0 2,82 0 3,20383E-39 1,8798E-247 2,77116E-22 0 2,81 0 7,65538E-39 1,8798E-247 2,77116E-22 0 2,82 0 3,20383E-39 1,8798E-247 2,77116E-22 0 2,82 0 0 1,82144E-38 8,2676E-255 3,79864E-23 0 2,86 0 9,41888E-41 6,9979E-261 9,87084E-24 0 2,89 0 6,3957E-24 1,8978E-269 1,44371E-22 0 2,89 0 6,3957E-24 1,1513E-274 3,16606E-25 0 2,99 0 0 2,5868E-42 3,266E-266 2,52677E-24 0 2,89 0 6,3950H-42 4,1424E-269 1,26979E-24 0 2,99 0 0 2,5868E-42 3,266E-266 2,52677E-24 0 2,99 0 0 2,5868E-42 3,266E-266 2,52677E-24 0 2,99 0 0 2,5868E-42 3,266E-266 2,52677E-24 0 2,99 0 0 2,5868E-42 3,1668E-25 0 2,91 0 1,04192E-42 1,1513E-274 3,16606E-25 0 2,99 0 0 1,92618E-47 1,128E-299 1,4321E-27 0 2,99 0 0 1,926618E-47 1,128E-299 1,4321E-27 0 2,99 0 0 1,926618E-47	2,10			
1,1761E-199 3,33897E-17 0 2,63 0 2,38405E-32 4,8142E-202 1,8742E-17 0 2,64 0 1,07716E-32 1,9073E-204 1,04759E-17 0 2,65 0 4,84619E-33 7,3135E-207 5,83054E-18 0 2,66 0 2,17105E-33 2,7142E-209 3,23131E-18 0 2,67 0 9,68485E-34 9,7493E-212 1,7832E-18 0 2,68 0 4,30197E-34 3,3894E-214 9,7988E-19 0 2,69 0 1,9028E-34 1,1405E-216 5,36165E-19 0 2,70 0 8,38054E-35 3,7141E-219 2,9213E-19 0 2,71 0 3,67538E-35 1,1707E-221 1,58491E-19 0 2,71 0 3,67538E-35 1,1707E-221 1,58491E-19 0 2,72 0 1,60503E-35 3,5715E-224 8,6623E-20 0 2,73 0 6,97941E-36 1,0546E-226 4,60596E-20 0 2,74 0 3,02208E-36 8,3357E-232 1,31596E-20 0 2,75 0 1,303E-36 8,3357E-232 1,31596E-20 0 2,76 0 5,59415E-37 2,2315E-234 6,98929E-21 0 2,77 0 2,39153E-37 1,45E-239 1,94656E-21 0 2,79 0 4,31537E-33 3,5194E-242 1,02074E-21 0 2,80 0 1,82144E-38 8,2676E-245 5,32981E-22 0 2,81 0 7,65538E-39 1,8798E-247 2,77116E-22 0 2,83 0 1,33513E-39 8,8107E-250 1,43471E-22 0 2,83 0 1,33513E-39 8,8107E-250 1,43471E-22 0 2,83 0 1,33533E-39 8,8107E-253 7,39634E-23 0 2,85 0 2,28923E-40 1,3079E-263 5,0067E-24 0 2,89 0 6,3990E-24 1,1513E-274 3,16606E-25 0 2,91 0 1,04192E-42 1,1513E-274 3,16606E-25 0 2,91 0 1,04192E-42 1,1513E-274 3,16606E-25 0 2,92 0 4,1788E-34 1,1513E-274 3,16606E-25 0 2,93 0 1,6689E-43 1,1513E-274 3,16606E-25 0 2,94 0 6,63677E-44 1,152E-283 3,81804E-26 0 2,95 0 1,0566E-44 1,152E-283 3,81804E-26 0 2,96 0 1,0566E-44 1,152E-284 2,4432E-27 0 2,99 0 6,19257E-46 1,1528E-294	2,10	•	•	
4,8142E-202 1,87424E-17 0 2,64 0 1,07716E-32 1,9073E-204 1,04759E-17 0 2,65 0 4,84619E-33 7,3135E-207 5,83054E-18 0 2,66 0 2,1716E-32 2,7142E-209 3,23131E-18 0 2,66 0 2,67 0 9,68485E-34 9,7493E-212 1,7832E-18 0 2,68 0 4,30197E-34 3,3894E-214 9,7988E-19 0 2,69 0 1,9028E-34 1,1405E-216 5,36165E-19 0 2,70 0 8,38054E-35 1,1707E-221 1,58491E-19 0 2,71 0 3,67538E-35 1,1707E-221 1,58491E-19 0 2,72 0 1,60503E-35 3,5714E-224 8,56223E-20 0 2,73 0 6,97941E-36 3,0137E-229 2,46721E-20 0 2,76 0 1,3303E-36 8,3357E-232 1,31596E-20 0 2,76 0 1,3303E-36 8,3357E-232 1,31596E-20 0 2,76 0 5,59415E-37 2,2315E-234 6,98929E-21 0 2,77 0 2,39153E-37 1,45E-239 1,94656E-21 0 2,79 0 1,82144E-38 8,2676E-245 5,32981E-22 0 2,82 0 2,83 0 1,82144E-38 8,2676E-245 5,32981E-22 0 2,86 0 1,8214E-38 8,8107E-253 7,39634E-23 0 2,86 0 1,8214E-38 8,8107E-253 7,39634E-23 0 2,86 0 2,88 0 1,33513E-39 8,8107E-253 7,39634E-23 0 2,86 0 9,4188E-41 1,3078E-263 1,9408E-23 0 2,86 0 9,4188E-41 1,3078E-263 1,9408E-23 0 2,88 0 1,3513E-39 8,8107E-253 7,39634E-23 0 2,86 0 9,4188E-41 1,3079E-263 5,0067E-24 0 2,89 0 6,3950E-42 1,1513E-274 3,16606E-25 0 2,99 0 0 2,5668E-42 1,3079E-263 5,0067E-24 0 2,89 0 6,3950E-42 1,1513E-274 3,16606E-25 0 2,99 0 0 2,5668E-42 1,1513E-277 1,57087E-25 0 2,99 0 1,0067E-24 0 2,89 0 6,3950E-42 1,1513E-274 3,16606E-25 0 2,99 0 0 2,5668E-42 1,1513E-274 3,16006E-25 0 2,99 0 0 2,5668E-42 1,1513E-274 3,16006E-25 0 2,99 0 0 2,5688E-42 1,1513E-274 3,16006E-25 0 2,99 0 0 2,5688E-42 1,1513E-274 3,16006E-25 0 2,99 0 0 2,5688E-42 1,1513E-274 1,1513E-277 0 2,303E-39 0 1,6689E-43 1,8275E-277 1,57087E-25 0 2,99 0 0 1,03025E-44 1,1425E-299 1,24321E-27 0 2,99 0 0 1,03025E-44 1,1425E-299 1,03127E-27 0 2,99 0 0 1,03025E-44 1,1425E-299 1,0	2,11	•	•	
1,9073E-204 1,04759E-17 0 2,65 0 4,84619E-33 7,3135E-207 5,83054E-18 0 2,66 0 2,17105E-33 2,7142E-209 3,23131E-18 0 2,67 0 9,68485E-34 9,7493E-212 1,7832E-18 0 2,69 0 1,9028E-34 1,1405E-216 5,36165E-19 0 2,70 0 8,38054E-35 3,7141E-219 2,9213E-19 0 2,71 0 3,67538E-35 1,1707E-221 1,58491E-19 0 2,72 0 1,60503E-35 3,5715E-224 8,56223E-20 0 2,73 0 6,97941E-36 3,03757E-229 2,46721E-20 0 2,74 0 3,02208E-36 3,0137E-229 2,46721E-20 0 2,76 0 1,303E-36 8,3357E-232 1,31596E-20 0 2,76 0 5,59415E-37 5,782E-237 3,69637E-21 0 2,77 0 2,39153E-37 5,782E-237 3,69637E-21 0 2,78 0 1,01805E-37 1,45E-239 1,94656E-21 0 2,78 0 1,01805E-37 1,45E-239 1,94656E-21 0 2,78 0 1,81544E-38 8,2676E-245 5,32981E-22 0 2,80 0 1,82144E-38 8,1676E-250 1,43471E-22 0 2,80 0 0,808E-247 2,77116E-22 0 2,80 0 0,808E-24 1,3676E-250 1,43471E-22 0 2,80 0 0,808E-24 1,3676E-250 1,368E-23 0 2,85 0 2,9488E-24 0 2,80 0 0,808E-24 1,3676E-250 1,43471E-22 0 2,80 0 0,808E-24 1,3676E-250 1,43471E-22 0 2,80 0 0,808E-24 1,3676E-250 1,43471E-22 0 2,80 0 0,808E-24 1,3666E-26 1,9668E-25 1,9408E-23 0 2,85 0 2,9488E-24 1,3676E-250 1,43471E-22 0 2,80 0 0,808E-24 1,3676E-250 1,43471E-22 0 2,80 0 0,968E-24 1,3676E-250 1,2686E-26 1,26976E-24 0 2,90 0 0,2686E-24 1,3666E-26 1,26976E-24 0 2,90 0 0,2686E-24 1,3666E-26 1,26976E-24 0 2,90 0 0,2686E-24	2,12			
7,3135E-207 5,83054E-18 0 2,66 0 2,17105E-33 2,7142E-209 3,23131E-18 0 2,67 0 9,68485E-34 9,793E-212 1,7832E-18 0 2,68 0 4,30197E-34 3,3894E-214 9,7988E-19 0 2,69 0 1,9028E-34 1,1405E-216 5,36165E-19 0 2,70 0 8,38054E-35 3,7141E-219 2,9213E-19 0 2,71 0 3,67538E-35 1,1707E-221 1,58491E-19 0 2,72 0 1,60503E-35 1,1707E-224 8,56223E-20 0 2,73 0 6,97941E-36 3,5715E-224 8,56223E-20 0 2,73 0 6,97941E-36 3,0137E-229 2,46721E-20 0 2,76 0 1,303E-36 8,3357E-222 1,31596E-20 0 2,75 0 1,303E-36 8,3357E-222 1,31596E-20 0 2,76 0 5,59415E-37 2,2315E-234 6,98929E-21 0 2,77 0 2,39153E-37 1,45E-239 1,94656E-21 0 2,77 0 2,39153E-37 1,45E-239 1,94656E-21 0 2,79 0 4,31537E-38 3,5194E-242 1,02074E-21 0 2,80 0 1,82144E-38 8,2676E-245 5,32981E-22 0 2,81 0 7,65538E-34 8,2676E-245 5,32981E-22 0 2,81 0 7,65538E-34 8,2676E-245 5,32981E-22 0 2,83 0 1,33513E-39 8,8107E-253 7,39634E-23 0 2,86 0 9,41888E-24 1,3079E-261 9,87848E-24 0 2,86 0 9,41888E-24 1,3079E-261 9,87848E-24 0 2,86 0 9,41888E-24 1,3079E-263 5,0067E-24 0 2,88 0 1,57426E-41 2,366E-266 2,52677E-24 0 2,89 0 6,3950E-24 1,1513E-274 3,16606E-25 0 2,99 0 9,41888E-34 0 2,686 0 9,41888E-34 0,566E-25 0 2,99 0 0 0,256E-44 1,1513E-274 3,16606E-25 0 0,296 0 0,296 0 1,03625E-44 1,1513E-274 3,16606E-25 0 0,296 0 0,296 0 0,296 0 0,296E-44 1,1513E-274 3,16606E-25 0 0,296 0 0,296 0 0,296 0 0,296E-44 1,1513E-274 3,16606E-25 0 0,296 0 0,296 0 0,296 0 0,296E-44 1,1513E-274 3,16606E-25 0 0,296 0 0,296 0 0,296 0 0,296E-44 1,1525E-294 2,14321E-27 0 2,99 0 0,29661E-47 1,1513E-274 3,16606E-25 0 0,296 0 0,296 0 0,296E-44 0,296 0 0,296E-44 0,296 0 0,296 0 0,296E-44 0,296E-44 0,296E-44 0,296 0 0,296E-44 0,296E-44 0,296E-44 0,296E-44 0,296E-44 0,296E-44 0	2,13 2,14			
2,7142E-209				
9,7493E-212 1,7832E-18 0 2,68 0 4,30197E-34 3,3894E-214 9,7988E-19 0 2,69 0 1,9028E-34 1,1405E-216 5,36165E-19 0 2,70 0 8,38054E-35 3,7141E-219 2,9213E-19 0 2,71 0 3,67538E-35 3,7141E-219 1,58491E-19 0 2,72 0 1,60503E-35 3,5715E-224 8,56223E-20 0 2,73 0 6,97941E-36 1,0546E-226 4,60596E-20 0 2,74 0 3,02208E-36 3,0137E-229 2,46721E-20 0 2,75 0 1,303E-36 8,3357E-323 1,31596E-20 0 2,76 0 5,59415E-37 2,2316E-234 6,98929E-21 0 2,77 0 2,39153E-37 5,782E-237 3,69637E-21 0 2,78 0 1,01805E-37 1,45E-239 1,94656E-21 0 2,79 0 4,31537E-38 3,5194E-242 1,02074E-21 0 2,80 0 1,82144E-38 8,2676E-245 5,32981E-22 0 2,81 0 7,65538E-38 1,8798E-247 2,77116E-22 0 2,82 0 3,20383E-39 4,1367E-250 1,43471E-22 0 2,83 0 1,33513E-39 8,8107E-253 7,39634E-23 0 2,84 0 5,54026E-40 1,8163E-255 3,79684E-23 0 2,86 0 9,41888E-41 6,9979E-261 9,87848E-24 0 2,87 0 3,8589E-41 1,3079E-263 5,0067E-24 0 2,89 0 6,39504E-42 4,1424E-269 1,26979E-24 0 2,88 0 1,57426E-41 2,366E-266 2,52677E-24 0 2,89 0 6,39504E-42 4,1424E-269 1,26979E-24 0 2,89 0 6,39504E-42 4,1424E-269 1,26979E-25 0 2,91 0 1,04192E-42 1,1513E-274 3,16606E-25 0 2,91 0 1,04192E-42 1,1513E-274 3,16606E-25 0 2,91 0 1,04192E-42 4,1474E-289 9,1239E-27 0 2,99 0 6,1950E-44 4,1752E-283 3,81804E-26 0 2,95 0 2,62806E-44 6,009E-286 1,87033E-26 0 2,96 0 1,303C5E-44 4,1752E-283 3,81804E-26 0 2,95 0 2,62806E-44 6,009E-286 1,87033E-26 0 2,99 0 6,19257E-46 8,3697E-297 1,03217E-27 0 2,99 0 6,19257E-46 8,3697E-297 1,03217E-27 0 2,99 0 6,1925FE-46 8,3697E-297 1,03217E-27 0 2,99 0 6,1925FE-46 1,8597E-297 1,03217E-27 0 2,99 0 6,1925FE-46 0 5,32126E-29 0 3,04 0 5,59268E-42 0 5,52677E-29 0 3,06 0 1,97144E-48	2,15			
3,3894E-214 9,7988E-19 0 2,69 0 1,9028E-34 1,1405E-216 5,36165E-19 0 2,70 0 8,38054E-35 3,7141E-219 2,9213E-19 0 2,71 0 3,67538E-35 1,1707E-221 1,58491E-19 0 2,72 0 1,60503E-35 3,5715E-224 8,56223E-20 0 2,73 0 6,97941E-36 1,0546E-226 4,60596E-20 0 2,74 0 3,02208E-36 3,0137E-229 2,46721E-20 0 2,75 0 1,303E-36 8,3357E-223 1,31596E-20 0 2,76 0 5,59415E-37 2,2315E-234 6,98929E-21 0 2,77 0 2,39153E-37 2,7315E-234 6,98929E-21 0 2,77 0 2,39153E-37 1,45E-239 1,94656E-21 0 2,78 0 1,1805E-37 1,45E-239 1,94656E-21 0 2,79 0 4,31537E-38 3,5194E-242 1,02074E-21 0 2,80 0 1,82144E-38 8,2676E-245 5,32981E-22 0 2,81 0 7,65538E-39 1,8798E-247 2,77116E-22 0 2,82 0 3,20383E-39 4,1367E-250 1,43471E-22 0 2,83 0 1,33513E-39 8,8107E-253 7,39634E-23 0 2,84 0 5,54026E-40 1,8163E-255 3,79684E-23 0 2,86 0 9,41888E-41 1,3079E-263 5,0067E-24 0 2,87 0 3,8589E-41 1,3079E-263 5,0067E-24 0 2,89 0 6,39504E-42 4,1424E-269 1,26979E-24 0 2,89 0 6,39504E-42 4,1424E-269 1,26979E-24 0 2,89 0 6,39504E-42 1,3079E-263 5,0067E-24 0 2,89 0 6,39504E-42 4,1424E-269 1,26979E-24 0 2,90 0 2,5868E-42 7,0196E-272 6,35403E-25 0 2,91 0 1,04192E-42 1,1513E-274 3,16606E-25 0 2,92 0 4,17884E-43 1,8275E-277 1,57087E-25 0 2,93 0 1,6699E-34 1,8275E-277 1,57087E-25 0 2,99 0 6,39504E-42 4,1752E-283 3,81804E-26 0 2,95 0 2,96 0 1,03625E-44 8,3703E-289 9,12323E-27 0 2,97 0 4,0668E-45 6,009E-286 1,87033E-26 0 2,99 0 6,19257E-46 4,1752E-283 3,81804E-26 0 2,95 0 2,62806E-44 6,009E-286 1,87033E-27 0 2,99 0 6,19257E-46 1,8597E-297 1,03217E-27 0 2,99 0 6,19257E-46 0 5,50877E-29 0 3,00 0 2,40054E-4	2,16			
1,1405E-216 5,36165E-19 0 2,70 0 8,38054E-35 3,7141E-219 2,9213E-19 0 2,71 0 3,67538E-35 1,1707E-221 1,58491E-19 0 2,72 0 1,60503E-35 3,5715E-224 8,56223E-20 0 2,73 0 6,97941E-36 3,0137E-229 2,46721E-20 0 2,74 0 3,02208E-36 3,0137E-229 2,46721E-20 0 2,75 0 1,303E-36 8,3357E-232 1,31596E-20 0 2,76 0 5,59415E-37 2,2315E-234 6,98929E-21 0 2,77 0 2,39153E-37 5,782E-237 3,69637E-21 0 2,78 0 1,01805E-37 1,45E-239 1,94656E-21 0 2,79 0 4,31537E-38 3,5194E-242 1,02074E-21 0 2,80 0 1,82144E-38 8,2676E-245 5,32981E-22 0 2,81 0 7,65538E-39 1,8798E-247 2,77116E-22 0 2,82 0 3,20383E-39 4,1367E-250 1,43471E-22 0 2,83 0 1,33513E-39 8,8107E-253 7,39634E-23 0 2,84 0 5,54026E-40 1,8163E-255 3,79684E-23 0 2,84 0 5,54026E-41 1,3079E-261 9,87848E-24 0 2,87 0 3,85889E-41 1,3079E-263 5,0067E-24 0 2,89 0 6,39504E-42 4,1424E-269 1,26979E-24 0 2,89 0 6,39504E-42 1,1513E-274 3,16606E-25 0 2,91 0 1,04192E-42 1,1513E-274 3,16606E-25 0 2,92 0 4,1784E-48 4,1725E-291 4,43129E-26 0 2,99 0 1,6689E-43 1,8265E-291 4,3169E-25 0 2,99 0 6,35604E-42 4,1424E-269 1,26979E-24 0 2,90 0 2,5868E-49 1,5708E-25 0 2,91 0 1,04192E-42 1,1513E-274 3,16606E-25 0 2,92 0 4,1784E-48 4,1725E-283 3,81804E-26 0 2,95 0 2,62806E-44 4,1725E-294 2,14321E-27 0 2,99 0 6,1925F-46 6,009E-284 1,1265E-291 4,43129E-27 0 2,98 0 1,5906E-45 1,1265E-291 4,43129E-27 0 2,99 0 6,1925F-46 6,009E-286 1,8703E-26 0 2,99 0 1,03625E-44 4,1725E-294 2,14321E-27 0 2,99 0 6,1925F-46 6,009E-286 1,8703E-26 0 2,99 0 1,03625E-44 4,1725E-294 2,14321E-27 0 2,99 0 6,1925F-46 1,8597E-297 1,03217E-27 0 2,99 0 6,1925F-46 2,2732E-300 4,94981E-28 0 3,01 0 9,26618E-47 0,550E-306 1,12388E-28 0 3,00 0 0 2,40054E-46 2,2732E-300 4,94981E-28 0 3,01 0 9,26618E-47 0,550E-306 1,12388E-28 0 3,00 0 3,56159E-47 0,550E-306 1,12388E-28 0 3,00 0 0 3,56159E-47 0 3,0	2,17	•	•	
3,7141E-219	2,18			
1,1707E-221 1,58491E-19 0 2,72 0 1,60503E-35 3,5715E-224 8,56223E-20 0 2,73 0 6,97941E-36 1,0546E-226 4,60596E-20 0 2,74 0 3,02208E-36 3,0137E-229 2,46721E-20 0 2,75 0 1,303-68 8,3357E-232 1,31596E-20 0 2,76 0 5,59415E-37 2,2315E-234 6,98929E-21 0 2,77 0 2,39153E-37 5,782E-237 3,69637E-21 0 2,78 0 1,01805E-37 1,45E-239 1,94656E-21 0 2,79 0 4,31537E-38 3,5194E-242 1,02074E-21 0 2,80 0 1,82144E-38 8,2676E-245 5,32981E-22 0 2,81 0 7,65538E-39 1,8798E-247 2,77116E-22 0 2,82 0 3,20383E-39 4,1367E-255 1,43471E-22 0 2,83 0 1,33513E-39 8,8107E-253 7,39634E-23 0 2,84 0 5,54026E-40 1,8163E-255 3,79684E-23 0 2,85 0 2,28923E-40 3,6239E-261 1,9408E-23 0 2,86 0 9,41888E-41 1,3079E-261 9,87848E-24 0 2,87 0 3,85889E-41 1,3079E-263 5,0067E-24 0 2,89 0 6,3950E-44 2,366E-266 2,52677E-24 0 2,89 0 6,3950E-44 2,41424E-269 1,26979E-24 0 2,90 0 2,5868E-42 1,1513E-274 3,16606E-25 0 2,91 0 1,04192E-42 1,1513E-274 3,16606E-25 0 2,92 0 4,17884E-43 1,8275E-277 1,57087E-25 0 2,93 0 1,6689E-43 1,8275E-277 1,57087E-25 0 2,93 0 1,6689E-43 1,8275E-277 1,57087E-25 0 2,99 0 6,19525E-44 6,009E-286 1,87033E-26 0 2,95 0 2,62806E-44 6,009E-286 1,87033E-26 0 2,95 0 2,62806E-45 1,1285E-291 4,43129E-27 0 2,99 0 6,19525F-46 8,3703E-289 9,1233E-27 0 2,99 0 6,19525F-46 1,8597E-297 1,03217E-27 0 2,99 0 6,19525F-46 2,2732E-300 4,94981E-28 0 3,01 0 9,26618E-47 2,6894E-303 2,3636E-28 0 3,01 0 9,26618E-47 2,6894E-303 2,3636E-28 0 3,01 0 9,26618E-47 2,6894E-303 2,3636E-28 0 3,00 0 2,40054E-46 0 5,32126E-29 0 3,04 0 5,195E-48 0 5,32126E-29 0	2,19			
3,5715E-224 8,56223E-20 0 2,73 0 6,97941E-36 1,0546E-226 4,60596E-20 0 2,74 0 3,02208E-36 3,0137E-229 2,46721E-20 0 2,75 0 1,303E-36 8,3357E-232 1,31596E-20 0 2,76 0 5,59415E-37 2,2315E-234 6,98929E-21 0 2,77 0 2,39153E-37 5,782E-237 3,69637E-21 0 2,78 0 1,01805E-37 1,45E-239 1,94656E-21 0 2,79 0 4,31537E-38 3,5194E-242 1,02074E-21 0 2,80 0 1,82144E-38 8,2676E-245 5,32981E-22 0 2,81 0 7,65538E-39 1,8798E-247 2,77116E-22 0 2,82 0 3,20383E-39 4,1367E-250 1,43471E-22 0 2,83 0 1,33513E-39 8,8107E-253 7,39634E-23 0 2,84 0 5,54026E-40 1,8163E-255 3,79684E-23 0 2,85 0 2,2892E-30 3,6239E-258 1,9408E-23 0 2,86 0 9,41888E-41 6,9979E-261 9,87848E-24 0 2,87 0 3,85889E-41 1,3079E-263 5,0067E-24 0 2,89 0 6,39504E-42 4,1424E-269 1,26979E-24 0 2,90 0 2,5868E-42 7,0196E-272 6,35403E-25 0 2,91 0 1,04192E-42 1,1513E-274 3,16606E-25 0 2,91 0 1,04192E-42 1,1513E-274 3,16606E-25 0 2,91 0 1,04192E-42 1,1513E-274 3,16606E-25 0 2,92 0 4,17884E-43 1,8275E-287 1,57087E-25 0 2,93 0 1,6689E-43 1,8275E-289 9,12323E-27 0 2,98 0 1,59068E-46 8,3703E-289 9,12323E-27 0 2,98 0 1,59068E-45 1,1285E-291 4,43129E-27 0 2,98 0 1,59068E-45 1,1285E-291 4,43129E-27 0 2,99 0 6,19257E-46 1,8597E-297 1,03217E-27 0 2,99 0 6,19257E-46 1,8597E-299 0 3,04 0 5,195E-48 0 5,32126E-29 0 3,04 0 5,195E-48	2,20			
1,0546E-226 4,60596E-20 0 2,74 0 3,02208E-36 3,0137E-229 2,46721E-20 0 2,75 0 1,303E-36 8,3357E-232 1,31596E-20 0 2,76 0 5,59415E-37 2,2315E-234 6,98929E-21 0 2,77 0 2,39153E-37 5,782E-237 3,69637E-21 0 2,78 0 1,01805E-37 1,45E-239 1,94656E-21 0 2,79 0 4,31537E-38 3,5194E-242 1,02074E-21 0 2,80 0 1,82144E-38 8,2676E-245 5,32981E-22 0 2,81 0 7,65538E-39 1,8798E-247 2,77116E-22 0 2,82 0 3,20383E-39 4,1367E-250 1,43471E-22 0 2,83 0 1,33513E-39 8,8107E-253 7,39634E-23 0 2,84 0 5,54026E-40 1,8163E-255 3,79684E-23 0 2,85 0 2,2892E-40 3,6239E-258 1,9408E-23 0 2,86 0 9,41888E-41 6,9979E-261 9,87848E-24 0 2,87 0 3,85889E-41 1,3079E-263 5,0067E-24 0 2,89 0 6,39504E-42 4,1424E-269 1,26979E-24 0 2,90 0 2,5868E-42 7,0196E-272 6,35403E-25 0 2,91 0 1,04192E-42 1,1513E-274 3,16606E-25 0 2,92 0 4,17884E-43 1,8275E-277 1,57087E-25 0 2,93 0 1,6689E-43 1,8275E-280 7,76095E-26 0 2,99 0 6,39504E-42 8,3703E-289 9,12323E-27 0 2,98 0 1,5068E-45 1,1285E-291 4,43129E-27 0 2,98 0 1,5068E-45 1,1285E-291 4,43129E-27 0 2,98 0 1,5068E-45 1,1285E-291 1,03217E-27 0 2,99 0 6,19257E-46 1,8597E-297 1,03217E-27 0 3,00 0 2,40054E-42 2,6894E-303 2,36362E-28 0 3,01 0 9,26618E-47 2,6894E-303 2,36362E-28 0 3,00 0 1,66313E-47 3,0795E-306 1,12388E-28 0 3,01 0 9,26618E-47 2,6894E-303 2,36362E-28 0 3,02 0 3,65159E-47 0 5,32126E-29 0 3,04 0 5,195E-48 0 2,50877E-29 0 3,05 0 1,97144E-48	2,21			0
3,0137E-229 2,46721E-20 0 2,75 0 1,303E-36 8,3357E-232 1,31596E-20 0 2,76 0 5,59415E-37 2,2315E-234 6,98929E-21 0 2,77 0 2,39153E-37 5,782E-237 3,69637E-21 0 2,78 0 1,01805E-37 1,45E-239 1,94656E-21 0 2,79 0 4,31537E-38 3,5194E-242 1,02074E-21 0 2,80 0 1,82144E-38 8,2676E-245 5,32981E-22 0 2,81 0 7,65538E-39 1,8798E-247 2,77116E-22 0 2,82 0 3,20383E-39 4,1367E-250 1,43471E-22 0 2,83 0 1,33513E-39 8,8107E-253 7,39634E-23 0 2,84 0 5,54026E-40 1,8163E-255 3,79684E-23 0 2,84 0 5,54026E-40 1,8163E-255 3,79684E-23 0 2,85 0 2,28923E-40 3,6239E-261 9,87848E-24 0 2,87 0 3,85889E-41 1,3079E-263 5,0067E-24 0 2,88 0 1,57426E-41 2,366E-266 2,52677E-24 0 2,89 0 6,39504E-42 4,1424E-269 1,26979E-24 0 2,90 0 2,5868E-42 7,0196E-272 6,35403E-25 0 2,91 0 1,04192E-42 1,1513E-274 1,6606E-25 0 2,91 0 1,04192E-42 1,1613E-274 3,16606E-25 0 2,93 0 1,66889E-43 1,8275E-277 1,57087E-25 0 2,93 0 1,6688E-43 2,8078E-280 7,76095E-26 0 2,94 0 6,63677E-44 4,1752E-283 3,81804E-26 0 2,95 0 2,62806E-44 6,009E-286 1,87033E-26 0 2,96 0 1,03625E-44 8,3703E-289 9,12323E-27 0 2,97 0 4,06864E-45 1,1285E-291 4,43129E-27 0 2,98 0 1,59068E-45 1,1285E-291 4,43129E-27 0 2,99 0 6,19257E-46 1,8597E-297 1,03217E-27 0 3,00 0 2,40054E-42 2,6894E-303 2,36362E-28 0 3,02 0 3,56159E-47 2,6894E-303 2,36362E-28 0 3,02 0 3,56159E-47 2,6894E-303 2,36362E-28 0 3,02 0 3,56159E-47 2,6894E-303 2,36362E-28 0 3,02 0 3,65159E-47 2,6894E-303 2,36362E-29 0 3,04 0 5,195E-48 0 5,32126E-29 0 3,04 0 5,195E-48	2,22			0
8,3357E-232 1,31596E-20 0 2,76 0 5,59415E-37 2,2315E-234 6,98929E-21 0 2,77 0 2,39153E-37 5,782E-237 3,69637E-21 0 2,78 0 1,01805E-37 1,45E-239 1,94656E-21 0 2,79 0 4,31537E-38 3,5194E-242 1,02074E-21 0 2,80 0 1,82144E-38 8,2676E-245 5,32981E-22 0 2,81 0 7,65538E-39 1,8798E-247 2,77116E-22 0 2,82 0 3,20383E-39 4,1367E-250 1,43471E-22 0 2,83 0 1,33513E-39 8,8107E-253 7,39634E-23 0 2,84 0 5,54026E-40 1,8163E-255 3,79684E-23 0 2,85 0 2,28923E-40 3,6239E-258 1,9408E-23 0 2,85 0 2,28923E-40 3,6239E-261 9,87848E-24 0 2,87 0 3,85889E-41 1,3079E-263 5,0067E-24 0 2,88 0 1,57426E-41 2,366E-266 2,52677E-24 0 2,89 0 6,39504E-42 4,1424E-269 1,26979E-24 0 2,90 0 2,5868E-42 7,0196E-272 6,35403E-25 0 2,91 0 1,04128E-42 1,1613E-274 3,16606E-25 0 2,91 0 1,04128E-42 1,1613E-277 1,57087E-25 0 2,93 0 1,6689E-43 1,8275E-277 1,57087E-25 0 2,93 0 1,6689E-43 1,8275E-277 1,57087E-25 0 2,93 0 1,6689E-43 1,8275E-277 1,57087E-25 0 2,93 0 1,6689E-43 1,1286E-281 4,43129E-27 0 2,98 0 1,59068E-45 1,1285E-291 4,43129E-27 0 2,98 0 1,59068E-45 1,1285E-291 4,43129E-27 0 2,98 0 1,59068E-45 1,1286E-291 1,03217E-27 0 2,99 0 6,19257E-46 1,8597E-297 1,03217E-27 0 2,99 0 6,19257E-46 1,8597E-297 1,03217E-27 0 2,99 0 6,19257E-46 1,8597E-297 1,03217E-27 0 3,00 0 2,40054E-46 2,2689E-303 2,36362E-28 0 3,02 0 3,56159E-47 3,0795E-306 1,1238E-28 0 3,03 0 1,36313E-47 0 5,32126E-29 0 3,04 0 5,195E-48 0 2,50877E-29 0 3,05 0 1,97144E-48	2,23	1,0546E-226		0
2,2315E-234 6,98929E-21 0 2,77 0 2,39153E-37 5,782E-237 3,69637E-21 0 2,78 0 1,01805E-37 1,45E-239 1,94656E-21 0 2,79 0 4,31537E-38 3,5194E-242 1,02074E-21 0 2,80 0 1,82144E-38 8,2676E-245 5,32981E-22 0 2,81 0 7,65538E-39 1,8798E-247 2,77116E-22 0 2,82 0 3,20383E-39 4,1367E-250 1,43471E-22 0 2,83 0 1,33513E-39 8,8107E-253 7,39634E-23 0 2,84 0 5,54026E-40 1,8163E-255 3,79684E-23 0 2,85 0 2,28923E-40 1,8163E-255 1,9408E-23 0 2,86 0 9,41888E-41 6,9979E-261 9,87848E-24 0 2,87 0 3,85889E-41 1,3079E-263 5,0067E-24 0 2,88 0 1,57426E-41 2,366E-266 2,52677E-24 0 2,89 0 6,39504E-42 4,1424E-269 1,26979E-24 0 2,89 0 6,39504E-42 4,1424E-269 1,26979E-24 0 2,90 0 2,5868E-42 7,0196E-272 6,35403E-25 0 2,91 0 1,04192E-42 1,1513E-274 3,16606E-25 0 2,92 0 4,17884E-43 1,8275E-277 1,57087E-25 0 2,93 0 1,6689E-43 2,8078E-280 7,76095E-26 0 2,94 0 6,63677E-44 4,1752E-283 3,81804E-26 0 2,95 0 2,62806E-44 6,009E-286 1,87033E-26 0 2,96 0 1,03625E-44 8,3703E-289 9,12323E-27 0 2,97 0 4,06864E-45 1,1285E-291 4,43129E-27 0 2,98 0 1,59068E-45 1,4725E-294 2,14321E-27 0 2,99 0 6,1297E-44 2,2639E-300 4,94981E-28 0 3,01 0 9,26618E-47 2,6894E-303 2,36362E-28 0 3,02 0 3,56159E-47 3,0795E-306 1,12388E-28 0 3,03 0 1,36313E-47 0 5,32126E-29 0 3,04 0 5,195E-48 0 2,5087FE-29 0 3,05 0 1,97144E-48	2,24	3,0137E-229	2,46721E-20	0
5,782E-237 3,69637E-21 0 2,78 0 1,01805E-37 1,45E-239 1,94656E-21 0 2,79 0 4,31537E-38 3,5194E-242 1,02074E-21 0 2,80 0 1,82144E-38 8,2676E-245 5,32981E-22 0 2,81 0 7,65538E-39 1,8798E-247 2,77116E-22 0 2,82 0 3,20383E-39 4,1367E-250 1,43471E-22 0 2,83 0 1,33513E-39 8,8107E-253 7,39634E-23 0 2,84 0 5,54026E-40 1,8163E-255 3,79684E-23 0 2,85 0 2,28923E-40 3,6239E-258 1,9408E-23 0 2,86 0 9,41888E-41 6,9979E-261 9,87848E-24 0 2,87 0 3,85889E-41 1,3079E-263 5,0607E-24 0 2,88 0 1,57426E-41 2,366E-266 2,52677E-24 0 2,89 0 6,39504E-42 4,1424E-269 1,26979E-24 0 2,90 0 2,5868E-42 7,0196E-272	2,25	8,3357E-232	1,31596E-20	0
1,45E-239 1,94656E-21 0 2,79 0 4,31537E-38 3,5194E-242 1,02074E-21 0 2,80 0 1,82144E-38 8,2676E-245 5,32981E-22 0 2,81 0 7,65538E-39 1,8798E-247 2,77116E-22 0 2,82 0 3,20383E-39 4,1367E-250 1,43471E-22 0 2,83 0 1,33513E-39 8,8107E-253 7,39634E-23 0 2,84 0 5,54026E-40 1,8163E-255 3,79684E-23 0 2,85 0 2,28923E-40 3,6239E-258 1,9408E-23 0 2,86 0 9,41888E-41 6,9979E-261 9,87848E-24 0 2,87 0 3,85889E-41 1,3079E-263 5,0067E-24 0 2,88 0 1,57426E-41 2,366E-266 2,52677E-24 0 2,89 0 6,39504E-42 4,1424E-269 1,26979E-24 0 2,90 0 2,5868E-42 7,0196E-272 6,35403E-25 0 2,91 0 1,04192E-42 1,1513E-274	,26	2,2315E-234	6,98929E-21	0
3,5194E-242 1,02074E-21 0 2,80 0 1,82144E-38 8,2676E-245 5,32981E-22 0 2,81 0 7,65538E-39 1,8798E-247 2,77116E-22 0 2,82 0 3,20383E-39 4,1367E-250 1,43471E-22 0 2,83 0 1,33513E-39 8,8107E-253 7,39634E-23 0 2,84 0 5,54026E-40 1,8163E-255 3,79684E-23 0 2,85 0 2,28923E-40 3,6239E-258 1,9408E-23 0 2,86 0 9,41888E-41 6,9979E-261 9,87848E-24 0 2,87 0 3,85889E-41 1,3079E-263 5,0067E-24 0 2,88 0 1,57426E-41 2,366E-266 2,52677E-24 0 2,89 0 6,39504E-42 4,1424E-269 1,26979E-24 0 2,90 0 2,5868E-42 7,0196E-272 6,35403E-25 0 2,91 0 1,04192E-43 1,8275E-277 1,57087E-25 0 2,93 0 1,6689E-43 2,8078E-280 7,76095E-26 0 2,94 0 6,63677E-44 4,1752E-283 3,81804E-26 0 2,95 0 2,62806E-44 8,3703E-289 9,12323E-27 0 2,97 0 4,6864E-45 1,1285E-291 4,43129E-27 0 2,98 0 1,59068E-45 1,1285E-291 1,03217E-27 0 2,98 0 1,59068E-45 1,4725E-294 2,14321E-27 0 2,99 0 6,19257E-46 2,2732E-300 4,94981E-28 0 3,01 0 9,26618E-47 2,6894E-303 2,36362E-28 0 3,02 0 3,56159E-47 3,0795E-306 1,12388E-28 0 3,03 0 1,36313E-47 0 5,32126E-29 0 3,04 0 5,195E-48 3,0795E-306 1,12388E-28 0 3,03 0 1,36313E-47 0 5,32126E-29 0 3,04 0 5,195E-48	,27	5,782E-237	3,69637E-21	0
8,2676E-245 5,32981E-22 0 2,81 0 7,65538E-39 1,8798E-247 2,77116E-22 0 2,82 0 3,20383E-39 4,1367E-250 1,43471E-22 0 2,83 0 1,33513E-39 8,8107E-253 7,39634E-23 0 2,84 0 5,54026E-40 1,8163E-255 3,79684E-23 0 2,85 0 2,28923E-40 3,6239E-258 1,9408E-23 0 2,86 0 9,41888E-41 6,9979E-261 9,87848E-24 0 2,87 0 3,85889E-41 1,3079E-263 5,0067E-24 0 2,88 0 1,57426E-41 2,366E-266 2,52677E-24 0 2,89 0 6,39504E-42 4,1424E-269 1,26979E-24 0 2,90 0 2,5868E-42 7,0196E-272 6,35403E-25 0 2,91 0 1,04192E-42 1,1513E-274 3,16606E-25 0 2,92 0 4,17884E-43 1,8275E-277 1,57087E-25 0 2,93 0 1,6689E-43 2,8078E-280	,28	1,45E-239	1,94656E-21	0
1,8798E-247 2,77116E-22 0 2,82 0 3,20383E-39 4,1367E-250 1,43471E-22 0 2,83 0 1,33513E-39 8,8107E-253 7,39634E-23 0 2,84 0 5,54026E-40 1,8163E-255 3,79684E-23 0 2,85 0 2,28923E-40 3,6239E-258 1,9408E-23 0 2,86 0 9,41888E-41 6,9979E-261 9,87848E-24 0 2,87 0 3,85889E-41 1,3079E-263 5,0067E-24 0 2,88 0 1,57426E-41 2,366E-266 2,52677E-24 0 2,89 0 6,39504E-42 4,1424E-269 1,26979E-24 0 2,90 0 2,5868E-42 7,0196E-272 6,35403E-25 0 2,91 0 1,04192E-42 1,1513E-274 3,16606E-25 0 2,92 0 4,17884E-43 1,8275E-277 1,57087E-25 0 2,93 0 1,6689E-43 2,8078E-280 7,76095E-26 0 2,94 0 6,63677E-44 4,1752E-283	,29	3,5194E-242	1,02074E-21	0
1,8798E-247 2,77116E-22 0 2,82 0 3,20383E-39 4,1367E-250 1,43471E-22 0 2,83 0 1,33513E-39 8,8107E-253 7,39634E-23 0 2,84 0 5,54026E-40 1,8163E-255 3,79684E-23 0 2,85 0 2,28923E-40 3,6239E-258 1,9408E-23 0 2,86 0 9,41888E-41 6,9979E-261 9,87848E-24 0 2,87 0 3,85889E-41 1,3079E-263 5,0067E-24 0 2,88 0 1,57426E-41 2,366E-266 2,52677E-24 0 2,89 0 6,39504E-42 4,1424E-269 1,26979E-24 0 2,90 0 2,5868E-42 7,0196E-272 6,35403E-25 0 2,91 0 1,04192E-42 1,1513E-274 3,16606E-25 0 2,92 0 4,17884E-43 1,8275E-277 1,57087E-25 0 2,93 0 1,6689E-43 2,8078E-280 7,76095E-26 0 2,94 0 6,63677E-44 4,1752E-283	,30	8,2676E-245	5,32981E-22	0
4,1367E-250 1,43471E-22 0 2,83 0 1,33513E-39 8,8107E-253 7,39634E-23 0 2,84 0 5,54026E-40 1,8163E-255 3,79684E-23 0 2,85 0 2,28923E-40 3,6239E-258 1,9408E-23 0 2,86 0 9,41888E-41 6,9979E-261 9,87848E-24 0 2,87 0 3,85889E-41 1,3079E-263 5,0067E-24 0 2,88 0 1,57426E-41 2,366E-266 2,52677E-24 0 2,89 0 6,39504E-42 4,1424E-269 1,26979E-24 0 2,90 0 2,5868E-42 7,0196E-272 6,35403E-25 0 2,91 0 1,04192E-42 1,1513E-274 3,16606E-25 0 2,92 0 4,17884E-43 1,8275E-277 1,57087E-25 0 2,93 0 1,6689E-43 2,8078E-280 7,76095E-26 0 2,94 0 6,63677E-44 4,1752E-283 3,81804E-26 0 2,95 0 2,62806E-44 6,009E-286	2,31	1,8798E-247	2,77116E-22	0
8,8107E-253 7,39634E-23 0 2,84 0 5,54026E-40 1,8163E-255 3,79684E-23 0 2,85 0 2,28923E-40 3,6239E-258 1,9408E-23 0 2,86 0 9,41888E-41 6,9979E-261 9,87848E-24 0 2,87 0 3,85889E-41 1,3079E-263 5,0067E-24 0 2,88 0 1,57426E-41 2,366E-266 2,52677E-24 0 2,89 0 6,39504E-42 4,1424E-269 1,26979E-24 0 2,90 0 2,5868E-42 7,0196E-272 6,35403E-25 0 2,91 0 1,04192E-42 1,1513E-274 3,16606E-25 0 2,92 0 4,17884E-43 1,8275E-277 1,57087E-25 0 2,93 0 1,6689E-43 2,8078E-280 7,76095E-26 0 2,94 0 6,63677E-44 4,1752E-283 3,81804E-26 0 2,95 0 2,62806E-44 6,009E-286 1,87033E-27 0 2,97 0 4,06864E-45 1,1285E-291	2,32			0
1,8163E-255 3,79684E-23 0 2,85 0 2,28923E-40 3,6239E-258 1,9408E-23 0 2,86 0 9,41888E-41 6,9979E-261 9,87848E-24 0 2,87 0 3,85889E-41 1,3079E-263 5,0067E-24 0 2,88 0 1,57426E-41 2,366E-266 2,52677E-24 0 2,89 0 6,39504E-42 4,1424E-269 1,26979E-24 0 2,90 0 2,5868E-42 7,0196E-272 6,35403E-25 0 2,91 0 1,04192E-42 1,1513E-274 3,16606E-25 0 2,92 0 4,17884E-43 1,8275E-277 1,57087E-25 0 2,93 0 1,6689E-43 2,8078E-280 7,76095E-26 0 2,94 0 6,63677E-44 4,1752E-283 3,81804E-26 0 2,95 0 2,62806E-44 6,009E-286 1,87033E-26 0 2,96 0 1,03625E-44 8,3703E-289 9,12323E-27 0 2,98 0 1,59068E-45 1,4725E-294	,33		7,39634E-23	0
3,6239E-258 1,9408E-23 0 2,86 0 9,41888E-41 6,9979E-261 9,87848E-24 0 2,87 0 3,85889E-41 1,3079E-263 5,0067E-24 0 2,88 0 1,57426E-41 2,366E-266 2,52677E-24 0 2,89 0 6,39504E-42 4,1424E-269 1,26979E-24 0 2,90 0 2,5868E-42 7,0196E-272 6,35403E-25 0 2,91 0 1,04192E-42 1,1513E-274 3,16606E-25 0 2,92 0 4,17884E-43 1,8275E-277 1,57087E-25 0 2,93 0 1,6689E-43 2,8078E-280 7,76095E-26 0 2,94 0 6,63677E-44 4,1752E-283 3,81804E-26 0 2,95 0 2,62806E-44 6,009E-286 1,87033E-26 0 2,96 0 1,03625E-44 8,3703E-289 9,12323E-27 0 2,97 0 4,06864E-45 1,4725E-294 2,14321E-27 0 2,98 0 1,59068E-45 1,8597E-297	,34			
6,9979E-261 9,87848E-24 0 2,87 0 3,85889E-41 1,3079E-263 5,0067E-24 0 2,88 0 1,57426E-41 2,366E-266 2,52677E-24 0 2,89 0 6,39504E-42 4,1424E-269 1,26979E-24 0 2,90 0 2,5868E-42 7,0196E-272 6,35403E-25 0 2,91 0 1,04192E-42 1,1513E-274 3,16606E-25 0 2,92 0 4,17884E-43 1,8275E-277 1,57087E-25 0 2,93 0 1,6689E-43 2,8078E-280 7,76095E-26 0 2,94 0 6,63677E-44 4,1752E-283 3,81804E-26 0 2,95 0 2,62806E-44 6,009E-286 1,87033E-26 0 2,96 0 1,03625E-44 8,3703E-289 9,12323E-27 0 2,97 0 4,06864E-45 1,4725E-294 2,14321E-27 0 2,98 0 1,59068E-45 1,4725E-294 2,14321E-27 0 2,99 0 6,19257E-46 1,8597E-297	,35			0
1,3079E-263 5,0067E-24 0 2,88 0 1,57426E-41 2,366E-266 2,52677E-24 0 2,89 0 6,39504E-42 4,1424E-269 1,26979E-24 0 2,90 0 2,5868E-42 7,0196E-272 6,35403E-25 0 2,91 0 1,04192E-42 1,1513E-274 3,16606E-25 0 2,92 0 4,17884E-43 1,8275E-277 1,57087E-25 0 2,93 0 1,6689E-43 2,8078E-280 7,76095E-26 0 2,94 0 6,63677E-44 4,1752E-283 3,81804E-26 0 2,95 0 2,62806E-44 6,009E-286 1,87033E-26 0 2,96 0 1,03625E-44 8,3703E-289 9,12323E-27 0 2,97 0 4,06864E-45 1,1285E-291 4,43129E-27 0 2,98 0 1,59068E-45 1,4725E-294 2,14321E-27 0 2,99 0 6,19257E-46 1,8597E-297 1,03217E-27 0 3,00 0 2,40054E-46 2,2732E-300	,36	•	•	
2,366E-266 2,52677E-24 0 2,89 0 6,39504E-42 4,1424E-269 1,26979E-24 0 2,90 0 2,5868E-42 7,0196E-272 6,35403E-25 0 2,91 0 1,04192E-42 1,1513E-274 3,16606E-25 0 2,92 0 4,17884E-43 1,8275E-277 1,57087E-25 0 2,93 0 1,6689E-43 2,8078E-280 7,76095E-26 0 2,94 0 6,63677E-44 4,1752E-283 3,81804E-26 0 2,95 0 2,62806E-44 6,009E-286 1,87033E-26 0 2,96 0 1,03625E-44 8,3703E-289 9,12323E-27 0 2,97 0 4,06864E-45 1,1285E-291 4,43129E-27 0 2,98 0 1,59068E-45 1,4725E-294 2,14321E-27 0 2,99 0 6,19257E-46 1,8597E-297 1,03217E-27 0 3,00 0 2,40054E-46 2,2732E-300 4,94981E-28 0 3,01 0 9,26618E-47 2,6894E-303	,37			
4,1424E-269 1,26979E-24 0 2,90 0 2,5868E-42 7,0196E-272 6,35403E-25 0 2,91 0 1,04192E-42 1,1513E-274 3,16606E-25 0 2,92 0 4,17884E-43 1,8275E-277 1,57087E-25 0 2,93 0 1,6689E-43 2,8078E-280 7,76095E-26 0 2,94 0 6,63677E-44 4,1752E-283 3,81804E-26 0 2,95 0 2,62806E-44 6,009E-286 1,87033E-26 0 2,96 0 1,03625E-44 8,3703E-289 9,12323E-27 0 2,97 0 4,06864E-45 1,1285E-291 4,43129E-27 0 2,98 0 1,59068E-45 1,4725E-294 2,14321E-27 0 2,99 0 6,19257E-46 1,8597E-297 1,03217E-27 0 3,00 0 2,40054E-46 2,2732E-300 4,94981E-28 0 3,01 0 9,26618E-47 2,6894E-303 2,36362E-28 0 3,02 0 3,56159E-47 3,0795E-306	,38			
7,0196E-272 6,35403E-25 0 2,91 0 1,04192E-42 1,1513E-274 3,16606E-25 0 2,92 0 4,17884E-43 1,8275E-277 1,57087E-25 0 2,93 0 1,6689E-43 2,8078E-280 7,76095E-26 0 2,94 0 6,63677E-44 4,1752E-283 3,81804E-26 0 2,95 0 2,62806E-44 6,009E-286 1,87033E-26 0 2,96 0 1,03625E-44 8,3703E-289 9,12323E-27 0 2,97 0 4,06864E-45 1,1285E-291 4,43129E-27 0 2,98 0 1,59068E-45 1,4725E-294 2,14321E-27 0 2,99 0 6,19257E-46 1,8597E-297 1,03217E-27 0 3,00 0 2,40054E-46 2,2732E-300 4,94981E-28 0 3,01 0 9,26618E-47 2,6894E-303 2,36362E-28 0 3,02 0 3,56159E-47 3,0795E-306 1,12388E-28 0 3,04 0 5,195E-48 0	,39			
1,1513E-274 3,16606E-25 0 2,92 0 4,17884E-43 1,8275E-277 1,57087E-25 0 2,93 0 1,6689E-43 2,8078E-280 7,76095E-26 0 2,94 0 6,63677E-44 4,1752E-283 3,81804E-26 0 2,95 0 2,62806E-44 6,009E-286 1,87033E-26 0 2,96 0 1,03625E-44 8,3703E-289 9,12323E-27 0 2,97 0 4,06864E-45 1,1285E-291 4,43129E-27 0 2,98 0 1,59068E-45 1,4725E-294 2,14321E-27 0 2,99 0 6,19257E-46 1,8597E-297 1,03217E-27 0 3,00 0 2,40054E-46 2,2732E-300 4,94981E-28 0 3,01 0 9,26618E-47 2,6894E-303 2,36362E-28 0 3,02 0 3,56159E-47 3,0795E-306 1,12388E-28 0 3,04 0 5,195E-48 0 2,50877E-29 0 3,05 0 1,97144E-48	,40			
1,8275E-277 1,57087E-25 0 2,93 0 1,6689E-43 2,8078E-280 7,76095E-26 0 2,94 0 6,63677E-44 4,1752E-283 3,81804E-26 0 2,95 0 2,62806E-44 6,009E-286 1,87033E-26 0 2,96 0 1,03625E-44 8,3703E-289 9,12323E-27 0 2,97 0 4,06864E-45 1,1285E-291 4,43129E-27 0 2,98 0 1,59068E-45 1,4725E-294 2,14321E-27 0 2,99 0 6,19257E-46 1,8597E-297 1,03217E-27 0 3,00 0 2,40054E-46 2,2732E-300 4,94981E-28 0 3,01 0 9,26618E-47 2,6894E-303 2,36362E-28 0 3,02 0 3,56159E-47 3,0795E-306 1,12388E-28 0 3,03 0 1,36313E-47 0 5,32126E-29 0 3,04 0 5,195E-48 0 2,50877E-29 0 3,05 0 1,97144E-48	, 4 0			
2,8078E-280 7,76095E-26 0 2,94 0 6,63677E-44 4,1752E-283 3,81804E-26 0 2,95 0 2,62806E-44 6,009E-286 1,87033E-26 0 2,96 0 1,03625E-44 8,3703E-289 9,12323E-27 0 2,97 0 4,06864E-45 1,1285E-291 4,43129E-27 0 2,98 0 1,59068E-45 1,4725E-294 2,14321E-27 0 2,99 0 6,19257E-46 1,8597E-297 1,03217E-27 0 3,00 0 2,40054E-46 2,2732E-300 4,94981E-28 0 3,01 0 9,26618E-47 2,6894E-303 2,36362E-28 0 3,02 0 3,56159E-47 3,0795E-306 1,12388E-28 0 3,03 0 1,36313E-47 0 5,32126E-29 0 3,04 0 5,195E-48 0 2,50877E-29 0 3,05 0 1,97144E-48	, 4 1 ,42			
4,1752E-283 3,81804E-26 0 2,95 0 2,62806E-44 6,009E-286 1,87033E-26 0 2,96 0 1,03625E-44 8,3703E-289 9,12323E-27 0 2,97 0 4,06864E-45 1,1285E-291 4,43129E-27 0 2,98 0 1,59068E-45 1,4725E-294 2,14321E-27 0 2,99 0 6,19257E-46 1,8597E-297 1,03217E-27 0 3,00 0 2,40054E-46 2,2732E-300 4,94981E-28 0 3,01 0 9,26618E-47 2,6894E-303 2,36362E-28 0 3,02 0 3,56159E-47 3,0795E-306 1,12388E-28 0 3,03 0 1,36313E-47 0 5,32126E-29 0 3,04 0 5,195E-48 0 2,50877E-29 0 3,05 0 1,97144E-48	., 4 2 2,43			
6,009E-286 1,87033E-26 0 2,96 0 1,03625E-44 8,3703E-289 9,12323E-27 0 2,97 0 4,06864E-45 1,1285E-291 4,43129E-27 0 2,98 0 1,59068E-45 1,4725E-294 2,14321E-27 0 2,99 0 6,19257E-46 1,8597E-297 1,03217E-27 0 3,00 0 2,40054E-46 2,2732E-300 4,94981E-28 0 3,01 0 9,26618E-47 2,6894E-303 2,36362E-28 0 3,02 0 3,56159E-47 3,0795E-306 1,12388E-28 0 3,03 0 1,36313E-47 0 5,32126E-29 0 3,04 0 5,195E-48 0 2,50877E-29 0 3,05 0 1,97144E-48	.,43 !,44			
8,3703E-289 9,12323E-27 0 2,97 0 4,06864E-45 1,1285E-291 4,43129E-27 0 2,98 0 1,59068E-45 1,4725E-294 2,14321E-27 0 2,99 0 6,19257E-46 1,8597E-297 1,03217E-27 0 3,00 0 2,40054E-46 2,2732E-300 4,94981E-28 0 3,01 0 9,26618E-47 2,6894E-303 2,36362E-28 0 3,02 0 3,56159E-47 3,0795E-306 1,12388E-28 0 3,03 0 1,36313E-47 0 5,32126E-29 0 3,04 0 5,195E-48 0 2,50877E-29 0 3,05 0 1,97144E-48				
1,1285E-291 4,43129E-27 0 2,98 0 1,59068E-45 1,4725E-294 2,14321E-27 0 2,99 0 6,19257E-46 1,8597E-297 1,03217E-27 0 3,00 0 2,40054E-46 2,2732E-300 4,94981E-28 0 3,01 0 9,26618E-47 2,6894E-303 2,36362E-28 0 3,02 0 3,56159E-47 3,0795E-306 1,12388E-28 0 3,03 0 1,36313E-47 0 5,32126E-29 0 3,04 0 5,195E-48 0 2,50877E-29 0 3,05 0 1,97144E-48	2,45			
1,4725E-294 2,14321E-27 0 2,99 0 6,19257E-46 1,8597E-297 1,03217E-27 0 3,00 0 2,40054E-46 2,2732E-300 4,94981E-28 0 3,01 0 9,26618E-47 2,6894E-303 2,36362E-28 0 3,02 0 3,56159E-47 3,0795E-306 1,12388E-28 0 3,03 0 1,36313E-47 0 5,32126E-29 0 3,04 0 5,195E-48 0 2,50877E-29 0 3,05 0 1,97144E-48	2,46			
1,8597E-297 1,03217E-27 0 3,00 0 2,40054E-46 2,2732E-300 4,94981E-28 0 3,01 0 9,26618E-47 2,6894E-303 2,36362E-28 0 3,02 0 3,56159E-47 3,0795E-306 1,12388E-28 0 3,03 0 1,36313E-47 0 5,32126E-29 0 3,04 0 5,195E-48 0 2,50877E-29 0 3,05 0 1,97144E-48	,47			
2,2732E-300 4,94981E-28 0 3,01 0 9,26618E-47 2,6894E-303 2,36362E-28 0 3,02 0 3,56159E-47 3,0795E-306 1,12388E-28 0 3,03 0 1,36313E-47 0 5,32126E-29 0 3,04 0 5,195E-48 0 2,50877E-29 0 3,05 0 1,97144E-48	,48			
2,6894E-303 2,36362E-28 0 3,02 0 3,56159E-47 3,0795E-306 1,12388E-28 0 3,03 0 1,36313E-47 0 5,32126E-29 0 3,04 0 5,195E-48 0 2,50877E-29 0 3,05 0 1,97144E-48	,49			
3,0795E-306 1,12388E-28 0 3,03 0 1,36313E-47 0 5,32126E-29 0 3,04 0 5,195E-48 0 2,50877E-29 0 3,05 0 1,97144E-48	,50			
0 5,32126E-29 0 3,04 0 5,195E-48 0 2,50877E-29 0 3,05 0 1,97144E-48	,51			0
0 2,50877E-29 0 3,05 0 1,97144E-48	2,52	3,0795E-306		0
	2,53	0		0
0 1,17776E-29 0 3,06 0 7,44964E-49	2,54	0	2,50877E-29	0
	2,55	0	1,17776E-29	0

		XADREZ)	ADREZ	
d	XA1	XA2	XA3	d	XA1	XA2	XA3
3,07	(0	3,58	0	2,22774E-73	70.10
3,08	(0	3,59	0	6,7185E-74	
3,09	(•	0	3,60	0	2,01759E-74	
3,10	(0	3,61	0	6,03315E-75	
3,11	(0	3,62	0	1,79642E-75	
3,12	(0	3,63	0	5,32628E-76	
3,13	(0	3,64	0	1,5725E-76	
3,14) 2,65715E-52	0	3,65	0	4,62287E-77	
3,14	(0	3,66	0	1,35327E-77	
3,16	(0	3,67	0	3,94464E-78	
						3,94404E-76 1,14494E-78	
3,17	(0	3,68	0		
3,18	(•	0	3,69	0	3,30911E-79	
3,19	(,	0	3,70	0	9,52339E-80	
3,20	(0	3,71	0	2,72913E-80	
3,21	(,-	0	3,72	0	7,78768E-81	
3,22		7,21813E-56	0	3,73	0	2,21281E-81	
3,23	(,	0	3,74	0	6,26083E-82	
3,24		8,8807E-57	0	3,75	0	1,76389E-82	
3,25	(,	0	3,76	0	4,9484E-83	
3,26	(•	0	3,77	0	1,38232E-83	
3,27	(•	0	3,78	0	3,84507E-84	
3,28	(,	0	3,79	0	1,06501E-84	
3,29	(,	0	3,80	0	2,93733E-85	
3,30	() 1,49336E-59	0	3,81	0	8,06688E-86	
3,31	(-,	0	3,82	0	2,20602E-86	
3,32	(•	0	3,83	0	6,00712E-87	
3,33	() 5,78194E-61	0	3,84	0	1,62882E-87	
3,34	() 1,93946E-61	0	3,85	0	4,39779E-88	
3,35	(6,47799E-62	0	3,86	0	1,18235E-88	
3,36	() 2,15453E-62	0	3,87	0	3,16527E-89	
3,37	(7,13535E-63	0	3,88	0	8,43777E-90	
3,38	(2,35305E-63	0	3,89	0	2,23973E-90	
3,39	(7,72677E-64	0	3,90	0	5,91993E-91	
3,40	(2,52649E-64	0	3,91	0	1,55808E-91	
3,41	(8,22601E-65	0	3,92	0	4,08332E-92	
3,42	(2,66694E-65	0	3,93	0	1,06559E-92	
3,43	(8,60971E-66	0	3,94	0	2,76897E-93	
3,44	(2,76768E-66	0	3,95	0	7,16471E-94	
3,45	(8,85922E-67	0	3,96	0	1,846E-94	
3,46	() 2,82376E-67	0	3,97	0	4,73604E-95	
3,47	(0	3,98	0	1,20991E-95	
3,48	(0	3,99	0	3,0778E-96	
3,49	(0	4,00	0	7,79617E-97	
3,50	(0	4,01	0	1,96641E-97	
3,51	(0	4,02	0	4,93877E-98	
3,52	(0	4,03	0	1,23514E-98	
3,53	(0	4,04	0	3,0758E-99	
3,54	(0	4,05	0	7,6272E-100	
3,55	(0	4,06	0	1,8833E-100	
3,56	(0	4,07	0	4,6304E-101	
	,	, _, r 1021 L-12	U	7,01	U	1,000 TE 101	

XADREZ								
d	XA1	XA2	XA3					
4,09	0	2,7637E-102	0					
4,10	0	6,7088E-103	0					
4,10	0	1,6217E-103	0					
4,11	0	3,9032E-104	0					
4,13	0	9,355E-105	0					
4,14	0	2,2326E-105	0					
4,14	0	5,3056E-106	0					
4,15	0	1,2555E-106	0					
4,10 4,17	0	2,9582E-107	0					
4,18	0	6,9407E-108	0					
4,10	0	1,6216E-108	0					
4,19	0	3,7724E-109	0					
4,20	0	8,7387E-110	0					
	0							
4,22 4,23		2,0157E-110	0					
	0	4,6299E-111	0					
4,24	0	1,0589E-111	0					
4,25	0	2,4116E-112	0					
4,26 4,27	0	5,4688E-113	0					
,	0	1,2349E-113	0					
4,28	0	2,7767E-114	0					
4,29	0	6,2171E-115	0					
4,30	0	1,3861E-115	0					
4,31	0	3,0771E-116	0					
4,32	0	6,8021E-117	0					
4,33	0	1,4973E-117	0					
4,34	0	3,2818E-118	0					
4,35	0	7,1626E-119	0					
4,36	0	1,5566E-119	0					
4,37	0	3,3686E-120	0					
4,38	0	7,2588E-121	0					
4,39	0	1,5575E-121	0					
4,40	0	3,3278E-122	0					
4,41	0	7,08E-123	0					
4,42	0	1,4999E-123	0					
4,43	0	3,164E-124	0					
4,44	0	6,646E-125	0					
4,45	0	1,3901E-125	0					
4,46	0	2,8952E-126	0					
4,47	0	6,0043E-127	0					
4,48	0	1,2399E-127	0					
4,49	0	2,5497E-128	0					
4,50	0	5,2207E-129	0					
4,51	0	1,0644E-129	0					
4,52	0	2,1611E-130	0					
4,53	0	4,3689E-131	0					
4,54	0	8,7946E-132	0					
4,55	0	1,7629E-132	0					
4,56	0	3,5186E-133	0					
4,57	0	6,9932E-134	0					
4,58	0	1,384E-134	0					
4,59	0	2,7274E-135	0					

XADREZ									
d	XA1		XA2	XA3					
4,60		0	5,3519E-136		0				
4,61		0	1,0457E-136		0				
4,62		0	2,0346E-137		0				
4,63		0	3,9419E-138		0				
4,64		0	7,6045E-139		0				
4,65		0	1,4608E-139		0				
4,66		0	2,7943E-140		0				
4,67		0	5,3222E-141		0				
4,68		0	1,0094E-141		0				
4,69		0	1,9063E-142		0				
4,70		0	3,585E-143		0				
4,71		0	6,713E-144		0				
4,72		0	1,2517E-144		0				
4,73		0	2,324E-145		0				
4,74		0	4,2967E-146		0				
4,75		0	7,9099E-147		0				
4,76		0	1,45E-147		0				
4,77		0	2,6467E-148		0				
4,78		0	4,8107E-149		0				
4,79		0	8,7068E-150		0				
4,80		0	1,5691E-150		0				
4,81		0	2,8159E-151		0				
4,82		0	5,0318E-152		0				
4,83		0	8,9532E-153		0				
4,84		0	1,5863E-153		0				
4,85		0	2,7987E-154		0				
4,86		0	4,9166E-155		0				
4,87		0	8,6007E-156		0				
4,88		0	1,4981E-156		0				
4,89		0	2,5985E-157		0				
4,90		0	4,4879E-158		0				
4,91		0	7,7182E-159		0				
4,92		0	1,3217E-159		0				
4,93		0	2,2538E-160		0				
4,94		0	3,8269E-161		0				
4,95		0	6,4704E-162		0				
4,96		0	1,0893E-162		0				
4,97		0	1,8262E-163		0				
4,98		0	3,0485E-164		0				
4,99		0	5,0674E-165		0				
5,00		0	8,3873E-166		0				

	R	RADIAL				ı	RADIAL	
d	RA1	RA2	RA3		d	RA1	RA2	RA3
0,01	2,47402E-23	9,14522E-06	4,49411E-78		0,44	0,048546338	0,051182909	4,58986E-11
0,01	1,4051E-22	1,1836E-05	7,82185E-76		0,45	0,081259727	0,058918524	3,20145E-10
0,02	7,75657E-22	1,52769E-05	1,26324E-73		0,46	0,132207194	0,067638718	2,07207E-09
0,03	4,16192E-21	1,96644E-05	1,89308E-71		0,47	0,209071898	0,077438245	1,24443E-08
0,05	2,17059E-20	2,52431E-05	2,63245E-69		0,48	0,321363893	0,088416285	6,93495E-08
0,06	1,10033E-19	3,23162E-05	3,39674E-67		0,49	0,480130553	0,100675929	3,58614E-07
0,00	5,42165E-19	4,12587E-05	4,06699E-65		0,50	0,69724025	0,114323536	1,72075E-06
0,08	2,59656E-18	5,25325E-05	4,51848E-63		0,51	0,984161569	0,129467952	7,66161E-06
0,08	1,20873E-17	6,67047E-05	4,65822E-61		0,52	1,350240713	0,146219578	3,16541E-05
0,10	5,46911E-17	8,44698E-05	4,45612E-59		0,53	1,800598318	0,164689306	0,000121353
0,10	2,40529E-16	0,000106675	3,95552E-57		0,54	2,333905814	0,184987293	0,000431694
0,12	1,0282E-15	0,000100073	3,25805E-55		0,55	2,940428723	0,207221597	0,001424994
0,12	4,27218E-15	0,000154331	2,49013E-53		0,56	3,600798603	0,231496676	0,00436474
0,13	1,72537E-14	0,000100747	1,76601E-51		0,57	4,285957411	0,257911748	0,012405456
0,15	6,77292E-14	0,000211372	1,76001E-31		0,58	4,958584465	0,28655904	0,032717183
0,16	2,58423E-13	0,000204044	7,09686E-48		0,59	5,576072662	0,31752193	0,08006597
0,17	9,58398E-13	0,000320343	4,02129E-46		0,60	6,094807285	0,350873008	0,181814666
0,17	3,45479E-12	0,000506361	2,11433E-44		0,61	6,475187911	0,386672082	0,383105805
0,19	1,21048E-11	0,000625684	1,03155E-42		0,62	6,686604234	0,424964153	0,749061421
0,20	4,12246E-11	0,000771022	4,66999E-41		0,63	6,71150173	0,465777388	1,359017365
0,21	1,36463E-10	0,000947533	1,96178E-39		0,64	6,547788435	0,509121137	2,287923293
0,22	4,39071E-10	0,000347086	7,64706E-38		0,65	6,209125174	0,554984019	3,574100756
0,23	1,37314E-09	0,001419385	2,76597E-36		0,66	5,723043362	0,603332125	5,180849792
0,24	4,17404E-09	0,001730127	9,28342E-35		0,67	5,127250102	0,654107375	6,968576763
0,25	1,23327E-08	0,002103161	2,8912E-33		0,68	4,46480826	0,707226075	8,69753237
0,26	3,54178E-08	0,002549667	8,35521E-32		0,69	3,77904417	0,762577709	10,07295507
0,27	9,88655E-08	0,003082557	2,2405E-30		0,70	3,109008918	0,820024015	10,82496792
0,28	2,68243E-07	0,003716682	5,57497E-29	(0,71	2,48612415	0,879398375	10,79456677
0,29	7,07415E-07	0,004469062	1,28721E-27	(0,72	1,932344259	0,940505564	9,988325671
0,30	1,81335E-06	0,005359126	2,7578E-26	(0,73	1,459845969	1,003121879	8,576084451
0,31	4,51802E-06	0,006408968	5,48259E-25	(0,74	1,071989208	1,066995676	6,832730348
0,32	1,09415E-05	0,007643616	1,01139E-23	(0,75	0,765128953	1,131848342	5,051360831
0,33	2,57552E-05	0,009091307	1,73125E-22	(0,76	0,530810743	1,197375705	3,465224536
0,34	5,8927E-05	0,010783763	2,74985E-21	(0,77	0,357936194	1,263249885	2,205785347
0,35	0,000131046	0,012756484	4,05293E-20	(0,78	0,234602358	1,329121601	1,302878723
0,36	0,000283267	0,015049022	5,54289E-19	(0,79	0,149458278	1,394622886	0,714091089
0,37	0,000595152	0,017705255	7,03418E-18	(0,80	0,092548294	1,459370229	0,363171796
0,38	0,001215405	0,020773645	8,28322E-17	(0,81	0,055702888	1,522968077	0,171387637
0,39	0,002412541	0,024307476	9,05094E-16	(0,82	0,03258726	1,58501268	0,075050873
0,40	0,004654675	0,028365056	9,17692E-15	(0,83	0,018530145	1,64509622	0,03049586
0,41	0,008729008	0,033009887	8,63394E-14	(0,84	0,010241667	1,702811173	0,011498333
0,42	0,015911138	0,038310785	7,53755E-13	(0,85	0,005502035	1,757754834	0,004022887
0,43	0,028190218	0,044341941	6,10605E-12	(0,86	0,002873008	1,809533942	0,001306019

	R	RADIAL				RADIAL	
d	RA1	RA2	RA3	d	RA1	RA2	RA3
0,87	0,00145818	1,857769332	0,000393432	1,30	6,70452E-28	0,437315173	2,83046E-57
0,88	0,00071936	1,902100536	0,000333432	1,31	9,74808E-29	0,398245625	3,17079E-59
0,89	0,00071330	1,942190251	2,85258E-05	1,32	1,37763E-29	0,361679676	3,29601E-61
0,90	0,000344333	1,977728602	6,86571E-06	1,33	1,89236E-30	0,327577315	3,17919E-63
0,91	7,28311E-05	2,008437133	1,53335E-06	1,34	2,52661E-31	0,295883097	2,84548E-65
0,92	3,20698E-05	2,034072428	3,17765E-07	1,35	3,27894E-32	0,266528169	2,36321E-67
0,93	1,37257E-05	2,05442933	6,11055E-08	1,36	4,13608E-33	0,239432278	1,8212E-69
0,94	5,70999E-06	2,069343672	1,09034E-08	1,37	5,07114E-34	0,214505733	1,30233E-71
0,95	2,30885E-06	2,078694481	1,80532E-09	1,38	6,04343E-35	0,191651284	8,64162E-74
0,96	9,07441E-07	2,082405613	2,77367E-10	1,39	7,00038E-36	0,170765913	5,32081E-76
0,90	3,46658E-07	2,080446785	3,95426E-11	1,40	7,88172E-37	0,170703913	3,03997E-78
0,98	1,2872E-07	2,072833984	5,23098E-12	1,41	8,62543E-38	0,131742309	1,61164E-80
0,99	4,64568E-08	2,059629255	6,42111E-13	1,41	9,17491E-39	0,118841816	7,92826E-83
1,00	1,62973E-08	2,039029255	7,31386E-14	1,42	9,486E-40	0,110041010	3,61906E-85
1,00	5,55701E-09	2,016916805	7,73021E-15	1,44	9,53292E-41	0,092065685	1,53293E-87
1,01	1,84174E-09	1,987752852	7,73021E-13 7,58133E-16	1,44	9,3117E-42	0,080702498	6,02501E-90
1,02	5,93302E-10	1,957732032	6,89935E-17	1,46	8,84084E-43	0,070549314	2,19736E-92
1,03	1,85774E-10	1,914965948	5,82612E-18	1,40	8,15865E-44	0,070543514	7,43628E-95
1,04	5,65398E-11	1,871911557	4,5652E-19	1,47	7,3182E-45	0,001303001	2,33517E-97
1,05	1,67257E-11	1,824845993	3,31932E-20	1,49	6,38044E-46	0,046367104	6,8044E-100
1,00	4,80923E-12	1,774123032	2,23948E-21	1,50	5,40703E-47	0,040094267	1,8398E-102
1,08	1,34409E-12	1,720116544	1,40202E-22	1,51	4,45376E-48	0,040034207	4,6159E-105
1,09	3,65124E-13	1,663215925	8,14461E-24	1,52	3,56579E-49	0,029735603	1,0746E-107
1,10	9,64083E-14	1,603821457	4,39031E-25	1,53	2,77489E-50	0,02550345	2,3215E-110
1,11	2,47428E-14	1,542339663	2,19598E-26	1,54	2,09893E-51	0,021814121	4,6535E-113
1,12	6,17227E-15	1,479178746	1,01923E-27	1,55	1,54315E-52	0,018607719	8,6557E-116
1,13	1,49658E-15	1,414744166	4,38958E-29	1,56	1,10276E-53	0,015829427	1,4939E-118
1,14	3,5271E-16	1,349434436	1,75422E-30	1,57	7,65976E-55	0,013429315	2,3926E-121
1,15	8,07972E-17	1,283637182	6,50508E-32	1,58	5,17142E-56	0,011362114	3,5557E-124
1,16	1,79902E-17	1,21772553	2,23836E-33	1,59	3,39363E-57	0,009586963	4,9033E-127
1,17	3,89345E-18	1,152054851	7,1469E-35	1,60	2,16462E-58	0,00806714	6,2742E-130
1,18	8,19021E-19	1,086959908	2,11745E-36	1,61	1,34202E-59	0,006769783	7,4496E-133
1,19	1,67462E-19	1,022752424	5,82128E-38	1,62	8,08715E-61	0,005665608	8,2077E-136
1,20	3,32812E-20	0,959719088	1,48502E-39	1,63	4,7369E-62	0,004728626	8,391E-139
1,21	6,42898E-21	0,898120005	3,51524E-41	1,64	2,69683E-63	0,003935863	7,9601E-142
1,22	1,20711E-21	0,838187599	7,72122E-43	1,65	1,49236E-64	0,003267094	7,007E-145
1,23	2,20298E-22	0,780125933	1,57372E-44	1,66	8,02702E-66	0,00270458	5,7234E-148
1,24	3,90783E-23	0,724110461	2,97629E-46	1,67	4,19659E-67	0,002232825	4,338E-151
1,25	6,73787E-24	0,670288165	5,22316E-48	1,68	2,13255E-68	0,001838342	3,0509E-154
1,26	1,1292E-24	0,618778057	8,50551E-50	1,69	1,05333E-69	0,001509435	1,991E-157
1,27	1,83941E-25	0,569672008	1,28522E-51	1,70	5,05693E-71	0,001236002	1,2057E-160
1,28	2,91237E-26	0,523035876	1,80202E-53	1,71	2,35979E-72	0,001009347	6,7748E-164
1,29	4,48205E-27	0,478910877	2,34452E-55	1,72	1,07033E-73	0,000822013	3,5324E-167

	R	RADIAL				RADIAL	
d	RA1	RA2	RA3	d	RA1	RA2	RA3
1,73	4,71874E-75	0,000667626	1,7091E-170	2,16	5,0838E-145	6,6101E-09	0
1,74	2,02206E-76	0,00054076	7,6727E-174	2,17	6,4205E-147	4,76205E-09	0
1,75	8,42214E-78	0,00043681	3,1963E-177	2,18	7,8816E-149	3,42134E-09	0
1,76	3,40967E-79	0,000351882	1,2356E-180	2,19	9,4042E-151	2,45141E-09	0
1,77	1,34172E-80	0,000282695	4,4318E-184	2,20	1,0907E-152	1,75167E-09	0
1,78	5,13184E-82	0,000226494	1,4751E-187	2,21	1,2295E-154	1,24826E-09	0
1,79	1,90786E-83	0,000180971	4,5556E-191	2,22	1,3471E-156	8,87102E-10	0
1,80	6,89411E-85	0,000144205	1,3056E-194	2,23	1,4347E-158	6,28723E-10	0
1,81	2,42143E-86	0,000114596	3,4718E-198	2,24	1,4851E-160	4,44387E-10	0
1,82	8,2666E-88	9,08182E-05	8,5667E-202	2,25	1,4943E-162	3,13243E-10	0
1,83	2,7431E-89	7,17784E-05	1,9615E-205	2,26	1,4614E-164	2,202E-10	0
1,84	8,84746E-91	5,65759E-05	4,1674E-209	2,27	1,3892E-166	1,54372E-10	0
1,85	2,77367E-92	4,44719E-05	8,216E-213	2,28	1,2835E-168	1,07929E-10	0
1,86	8,45188E-94	3,48623E-05	1,503E-216	2,29	1,1527E-170	7,52529E-11	0
1,87	2,5033E-95	2,72548E-05	2,5513E-220	2,30	1,0062E-172	5,23269E-11	0
1,88	7,20663E-97	2,12494E-05	4,0187E-224	2,31	8,5376E-175	3,62864E-11	0
1,89	2,01657E-98	1,65222E-05	5,8737E-228	2,32	7,041E-177	2,50945E-11	0
1,90	5,4847E-100	1,28117E-05	7,9661E-232	2,33	5,6441E-179	1,73074E-11	0
1,91	1,45E-101	9,90739E-06	1,0025E-235	2,34	4,3975E-181	1,19042E-11	0
1,92	3,7258E-103	7,64064E-06	1,1707E-239	2,35	3,3303E-183	8,16555E-12	0
1,93	9,3056E-105	5,87647E-06	1,2685E-243	2,36	2,4515E-185	5,58582E-12	0
1,94	2,2591E-106	4,50734E-06	1,2755E-247	2,37	1,754E-187	3,81071E-12	0
1,95	5,3306E-108	3,44779E-06	1,19E-251	2,38	1,2198E-189	2,59263E-12	0
1,96	1,2226E-109	2,63013E-06	1,0303E-255	2,39	8,2455E-192	1,75911E-12	0
1,97	2,7255E-111	2,00093E-06	8,2764E-260	2,40	5,4175E-194	1,19031E-12	0
1,98	5,9058E-113	1,5181E-06	6,1695E-264	2,41	3,4597E-196	8,03241E-13	0
1,99	1,2438E-114	1,14865E-06	4,2674E-268	2,42	2,1476E-198	5,40565E-13	0
2,00	2,5463E-116	8,66746E-07	2,739E-272	2,43	1,2957E-200	3,62799E-13	0
2,01	5,0667E-118	6,52247E-07	1,6312E-276	2,44	7,5987E-203	2,42829E-13	0
2,02	9,7993E-120	4,89495E-07	9,0149E-281	2,45	4,3314E-205	1,62088E-13	0
2,03	1,8422E-121	3,66355E-07	4,6229E-285	2,46	2,3998E-207	1,079E-13	0
2,04	3,3661E-123	2,73446E-07	2,1997E-289	2,47	1,2924E-209	7,16317E-14	0
2,05	5,9783E-125	2,03544E-07	9,7127E-294	2,48	6,7648E-212	4,74249E-14	0
2,06	1,032E-126	1,51099E-07	3,9794E-298	2,49	3,4418E-214	3,1313E-14	0
2,07	1,7317E-128	1,11862E-07	1,5129E-302	2,50	1,7021E-216	2,06186E-14	0
2,08	2,8242E-130	8,25882E-08	5,337E-307	2,51	8,1815E-219	1,35397E-14	0
2,09	4,4771E-132	6,08094E-08	0	2,52	3,8225E-221	8,86703E-15	0
2,10	6,8986E-134	4,4652E-08	0	2,53	1,7359E-223	5,79112E-15	0
2,11	1,0332E-135	3,26984E-08	0	2,54	7,6623E-226	3,77193E-15	0
2,12	1,504E-137	2,38798E-08	0	2,55	3,2874E-228	2,45009E-15	0
2,13	2,1281E-139	1,7392E-08	0	2,56	1,3709E-230	1,58714E-15	0
2,14	2,9268E-141	1,26324E-08	0	2,57	5,5568E-233	1,02534E-15	0
2,15	3,9126E-143	9,15037E-09	0	2,58	2,1893E-235	6,60593E-16	0

	R	RADIAL				R	ADIAL	
d	RA1	RA2	RA3	ď	RA1		RA2	RA3
2,59	8,3839E-238	4,24442E-16	0	3,02		0	1,76752E-25	0
2,60	3,1207E-240	2,71969E-16	0	3,03		0	1,00735E-25	0
2,61	1,129E-242	1,73795E-16	0	3,04		0	5,72549E-26	0
2,62	3,9704E-245	1,10757E-16	0	3,05		0	3,24535E-26	0
2,63	1,3571E-247	7,03917E-17	0	3,06		0	1,83454E-26	0
2,64	4,5088E-250	4,46158E-17	0	3,07		0	1,03421E-26	0
2,65	1,456E-252	2,82015E-17	0	3,08		0	5,81444E-27	0
2,66	4,5701E-255	1,77776E-17	0	3,09		0	3,26004E-27	0
2,67	1,3943E-257	1,11761E-17	0	3,10		0	1,82287E-27	0
2,68	4,1347E-260	7,00687E-18	0	3,11		0	1,01649E-27	0
2,69	1,1918E-262	4,38102E-18	0	3,12		0	5,65287E-28	0
2,70	3,3389E-265	2,73176E-18	0	3,13		0	3,1351E-28	0
2,71	9,0922E-268	1,69873E-18	0	3,14		0	1,734E-28	0
2,72	2,4066E-270	1,05348E-18	0	3,15		0	9,56455E-29	0
2,73	6,1914E-273	6,51543E-19	0	3,16		0	5,26134E-29	0
2,74	1,5483E-275	4,01861E-19	0	3,17		0	2,88632E-29	0
2,75	3,7632E-278	2,47188E-19	0	3,18		0	1,5791E-29	0
2,76	8,8906E-281	1,51633E-19	0	3,19		0	8,61571E-30	0
2,77	2,0416E-283	9,27634E-20	0	3,20		0	4,68802E-30	0
2,78	4,5568E-286	5,65948E-20	0	3,21		0	2,54393E-30	0
2,79	9,8859E-289	3,44345E-20	0	3,22		0	1,37669E-30	0
2,80	2,0847E-291	2,08943E-20	0	3,23		0	7,42992E-31	0
2,81	4,2728E-294	1,26438E-20	0	3,24		0	3,99897E-31	0
2,82	8,5124E-297	7,63033E-21	0	3,25		0	2,1465E-31	0
2,83	1,6484E-299	4,59226E-21	0	3,26		0	1,14902E-31	0
2,84	3,1025E-302	2,7563E-21	0	3,27		0	6,13398E-32	0
2,85	5,6759E-305	1,64984E-21	0	3,28		0	3,26568E-32	0
2,86	1,0093E-307	9,84863E-22	0	3,29		0	1,73389E-32	0
2,87	0	5,86307E-22	0	3,30		0	9,18091E-33	0
2,88	0	3,4809E-22	0	3,31		0	4,84805E-33	0
2,89	0	2,06098E-22	0	3,32		0	2,55308E-33	0
2,90	0	1,21695E-22	0	3,33		0	1,34085E-33	0
2,91	0	7,16622E-23	0	3,34		0	7,02279E-34	0
2,92	0	4,20846E-23	0	3,35		0	3,66824E-34	0
2,93	0	2,46475E-23	0	3,36		0	1,91083E-34	0
2,94	0	1,43959E-23	0	3,37		0	9,92664E-35	0
2,95	0	8,38535E-24	0	3,38		0	5,1428E-35	0
2,96	0	4,87102E-24	0	3,39		0	2,65714E-35	0
2,97	0	2,82186E-24	0	3,40		0	1,36913E-35	0
2,98	0	1,6303E-24	0	3,41		0	7,03545E-36	0
2,99	0	9,39329E-25	0	3,42		0	3,60542E-36	0
3,00	0	5,39739E-25	0	3,43		0	1,84262E-36	0
3,01	0	3,0929E-25	0	3,44		0	9,39147E-37	0

	F	RADIAL				RADIAL	
d	RA1	RA2	RA3	d	RA1	RA2	RA3
3,45	0	4,77361E-37	0	3,88	0	8,36114E-51	0
3,46	0	2,41979E-37	0	3,89	0	3,76974E-51	0
3,47	0	1,22328E-37	0	3,90	0	1,69501E-51	0
3,48	0	6,16721E-38	0	3,91	0	7,60066E-52	0
3,49	0	3,10076E-38	0	3,92	0	3,39896E-52	0
3,50	0	1,55477E-38	0	3,93	0	1,51586E-52	0
3,51	0	7,77462E-39	0	3,94	0	6,74196E-53	0
3,52	0	3,87712E-39	0	3,95	0	2,99041E-53	0
3,53	0	1,92822E-39	0	3,96	0	1,3228E-53	0
3,54	0	9,56356E-40	0	3,97	0	5,8354E-54	0
3,55	0	4,73042E-40	0	3,98	0	2,56724E-54	0
3,56	0	2,33344E-40	0	3,99	0	1,12636E-54	0
3,57	0	1,14791E-40	0	4,00	0	4,92839E-55	0
3,58	0	5,6317E-41	0	4,01	0	2,15055E-55	0
3,59	0	2,75541E-41	0	4,02	0	9,35861E-56	0
3,60	0	1,34446E-41	0	4,03	0	4,06153E-56	0
3,61	0	6,54227E-42	0	4,04	0	1,75786E-56	0
3,62	0	3,17486E-42	0	4,05	0	7,58743E-57	0
3,63	0	1,53652E-42	0	4,06	0	3,26605E-57	0
3,64	0	7,41597E-43	0	4,07	0	1,40206E-57	0
3,65	0	3,56955E-43	0	4,08	0	6,00244E-58	0
3,66	0	1,71347E-43	0	4,09	0	2,56275E-58	0
3,67	0	8,20269E-44	0	4,10	0	1,09119E-58	0
3,68	0	3,91609E-44	0	4,11	0	4,63352E-59	0
3,69	0	1,86451E-44	0	4,12	0	1,96218E-59	0
3,70	0	8,85308E-45	0	4,13	0	8,28672E-60	0
3,71	0	4,19219E-45	0	4,14	0	3,49014E-60	0
3,72	0	1,97972E-45	0	4,15	0	1,46596E-60	0
3,73	0	9,32357E-46	0	4,16	0	6,14066E-61	0
3,74	0	4,37903E-46	0	4,17	0	2,56523E-61	0
3,75	0	2,05112E-46	0	4,18	0	1,06869E-61	0
3,76	0	9,5812E-47	0	4,19	0	4,44014E-62	0
3,77	0	4,4634E-47	0	4,20	0	1,83974E-62	0
3,78	0	2,07361E-47	0	4,21	0	7,60211E-63	0
3,79	0	9,60742E-48	0	4,22	0	3,13277E-63	0
3,80	0	4,43918E-48	0	4,23	0	1,28747E-63	0
3,81	0	2,04557E-48	0	4,24	0	5,27674E-64	0
3,82	0	9,40034E-49	0	4,25	0	2,1568E-64	0
3,83	0	4,30813E-49	0	4,26	0	8,79163E-65	0
3,84	0	1,96902E-49	0	4,27	0	3,57393E-65	0
3,85	0	8,9749E-50	0	4,28	0	1,4489E-65	0
3,86	0	4,07967E-50	0	4,29	0	5,85801E-66	0
3,87	0	1,84943E-50	0	4,30	0	2,36198E-66	0

	F	RADIAL			i	RADIAL	
d	RA1	RA2	RA3	d	RA1	RA2	RA3
4,31	0	9,49773E-67	0	4,74	0	6,99697E-85	0
4,32	0	3,80873E-67	0	4,75	0	2,49566E-85	0
4,33	0	1,5232E-67	0	4,76	0	8,87721E-86	0
4,34	0	6,07505E-68	0	4,77	0	3,14909E-86	0
4,35	0	2,41635E-68	0	4,78	0	1,11406E-86	0
4,36	0	9,58487E-69	0	4,79	0	3,93052E-87	0
4,37	0	3,79166E-69	0	4,80	0	1,38296E-87	0
4,38	0	1,49585E-69	0	4,81	0	4,85269E-88	0
4,39	0	5,88526E-70	0	4,82	0	1,69814E-88	0
4,40	0	2,30918E-70	0	4,83	0	5,92627E-89	0
4,41	0	9,03583E-71	0	4,84	0	2,06256E-89	0
4,42	0	3,5261E-71	0	4,85	0	7,15891E-90	0
4,43	0	1,37226E-71	0	4,86	0	2,47802E-90	0
4,44	0	5,32594E-72	0	4,87	0	8,55419E-91	0
4,45	0	2,06145E-72	0	4,88	0	2,9449E-91	0
4,46	0	7,95729E-73	0	4,89	0	1,01106E-91	0
4,47	0	3,06319E-73	0	4,90	0	3,4618E-92	0
4,48	0	1,17598E-73	0	4,91	0	1,18207E-92	0
4,49	0	4,50239E-74	0	4,92	0	4,02531E-93	0
4,50	0	1,7191E-74	0	4,93	0	1,36702E-93	0
4,51	0	6,54603E-75	0	4,94	0	4,62982E-94	0
4,52	0	2,48583E-75	0	4,95	0	1,56376E-94	0
4,53	0	9,41412E-76	0	4,96	0	5,26739E-95	0
4,54	0	3,55554E-76	0	4,97	0	1,76944E-95	0
4,55	0	1,33921E-76	0	4,98	0	5,92779E-96	0
4,56	0	5,03045E-77	0	4,99	0	1,98046E-96	0
4,57	0	1,88444E-77	0	5,00	0	6,59868E-97	0
4,58	0	7,04003E-78	0				
4,59	0	2,62291E-78	0				
4,60	0	9,7456E-79	0				
4,61	0	3,61119E-79	0				
4,62	0	1,33447E-79	0				
4,63	0	4,91796E-80	0				
4,64	0	1,80749E-80	0				
4,65	0	6,62499E-81	0				
4,66	0	2,42164E-81	0				
4,67	0	8,82779E-82	0				
4,68	0	3,2093E-82	0				
4,69	0	1,16355E-82	0				
4,70	0	4,20705E-83	0				
4,71	0	1,517E-83	0				
4,72	0	5,4552E-84	0				
4,73	0	1,95637E-84	0				

	С	LUSTER			С	LUSTER	
d	CA1	CA2	CA3	d	CA1	CA2	CA3
0,01	2,56089E-10	3,67736E-06	2,07885E-11	0,52	6,60391E-23	0,011355417	1,32277E-10
0,02	2,65372E-09	9,31717E-06	1,60242E-10	0,53	1,82044E-24	0,005955137	1,70295E-11
0,03	2,44808E-08	2,28886E-05	1,13994E-09	0,54	4,46743E-26	0,003028081	2,02334E-12
0,04	2,01051E-07	5,45182E-05	7,48408E-09	0,55	9,75996E-28	0,001492899	2,21865E-13
0,05	1,46992E-06	0,000125907	4,53469E-08	0,56	1,89822E-29	0,000713642	2,24523E-14
0,06	9,5673E-06	0,000281934	2,53577E-07	0,57	3,28665E-31	0,000330763	2,09694E-15
0,07	5,54362E-05	0,000612111	1,30865E-06	0,58	5,06603E-33	0,000148642	1,80743E-16
0,08	0,00028596	0,001288549	6,23289E-06	0,59	6,95169E-35	6,47668E-05	1,43777E-17
0,09	0,001313182	0,002630017	2,73973E-05	0,60	8,49222E-37	2,73622E-05	1,05553E-18
0,10	0,005368498	0,005204789	0,000111142	0,61	9,23549E-39	1,12082E-05	7,15162E-20
0,11	0,019538391	0,009986995	0,000416103	0,62	8,94143E-41	4,45152E-06	4,47188E-21
0,12	0,063304249	0,018580339	0,001437726	0,63	7,70658E-43	1,71422E-06	2,58064E-22
0,13	0,182593356	0,033516564	0,00458462	0,64	5,91323E-45	6,4005E-07	1,37441E-23
0,14	0,468862112	0,058620892	0,013492198	0,65	4,0392E-47	2,31711E-07	6,75553E-25
0,15	1,071799038	0,099410538	0,036644965	0,66	2,45626E-49	8,13332E-08	3,06446E-26
0,16	2,181170636	0,163455484	0,091854011	0,67	1,32973E-51	2,76806E-08	1,28292E-27
0,17	3,951609107	0,260587536	0,212487869	0,68	6,40851E-54	9,1342E-09	4,95677E-29
0,18	6,37332945	0,402805	0,453651515	0,69	2,74954E-56	2,92249E-09	1,76746E-30
0,19	9,150963337	0,603702725	0,893846199	0,70	1,0502E-58	9,06611E-10	5,81637E-32
0,20	11,6970223	0,877280528	1,625381967	0,71	3,57101E-61	2,72695E-10	1,76648E-33
0,21	13,31042358	1,236063877	2,727723117	0,72	1,08098E-63	7,9528E-11	4,95125E-35
0,22	13,48393004	1,688614095	4,224714247	0,73	2,91309E-66	2,2488E-11	1,28078E-36
0,23	12,16043639	2,236696077	6,038743764	0,74	6,98871E-69	6,16549E-12	3,05764E-38
0,24	9,763148302	2,872569946	7,966142529	0,75	1,49262E-71	1,63897E-12	6,73675E-40
0,25	6,978123765	3,577019597	9,698437037	0,76	2,83797E-74	4,22438E-13	1,36983E-41
0,26	4,440128154	4,318760266	10,8970172	0,77	4,8037E-77	1,0557E-13	2,5706E-43
0,27	2,515129774	5,055730848	11,29966922	0,78	7,23856E-80	2,55804E-14	4,45201E-45
0,28	1,268333161	5,738466678	10,81374269	0,79	9,71037E-83	6,00979E-15	7,11588E-47
0,29	0,569395922	6,315312616	9,550773389	0,80	1,15965E-85	1,36899E-15	1,04967E-48
0,30	0,227563923	6,738774341	7,784903931	0,81	1,2329E-88	3,02361E-16	1,429E-50
0,31	0,080965598	6,971946472	5,856257739	0,82	1,1669E-91	6,47499E-17	1,7954E-52
0,32	0,025645177	6,993816693	4,065737303	0,83	9,83222E-95	1,34444E-17	2,08182E-54
0,33	0,007231342	6,802389834	2,605017556	0,84	7,37523E-98	2,70662E-18	2,2278E-56
0,34	0,001815266	6,414988164	1,540402456	0,85	4,925E-101	5,28327E-19	2,2002E-58
0,35	0,000405667	5,865665222	0,840639819	0,86	2,9278E-104	9,99919E-20	2,0054E-60
0,36	8,07062E-05	5,200268358	0,423387392	0,87	1,5495E-107	1,83491E-20	1,68691E-62
0,37	1,4294E-05	4,470141904	0,196796827	0,88	7,3005E-111	3,26475E-21	1,30959E-64
0,38	2,25375E-06	3,725666139	0,084420996	0,89	3,0621E-114	5,63214E-22	9,38273E-67
0,39	3,1635E-07	3,010742616	0,033422202	0,90	1,1434E-117	9,42071E-23	6,20407E-69
0,40	3,95309E-08	2,359013335	0,01221158	0,91	3,8008E-121	1,52785E-23	3,78596E-71
0,41	4,39759E-09	1,792149487	0,004117758	0,92	1,1248E-124	2,40251E-24	2,1322E-73
0,42	4,35512E-10	1,320094858	0,001281451	0,93	2,9632E-128	3,663E-25	1,10823E-75
0,43	3,83967E-11	0,942807692	0,00036804	0,94	6,9496E-132	5,41496E-26	5,31603E-78
0,44	3,01367E-12	0,652872183	9,75531E-05	0,95	1,451E-135	7,76142E-27	2,3534E-80
0,45	2,10575E-13	0,438349266	2,38638E-05	0,96	2,6971E-139	1,07863E-27	9,61515E-83
0,46	1,30986E-14	0,28536419	5,38752E-06	0,97	4,4629E-143	1,45343E-28	3,6255E-85
0,47	7,25354E-16	0,180121574	1,12251E-06	0,98	6,5744E-147	1,89889E-29	1,26163E-87
0,48	3,57589E-17	0,110234888	2,15847E-07	0,99	8,6219E-151	2,40544E-30	4,05182E-90
0,49	1,56937E-18	0,065412307	3,83047E-08	1,00	1,0066E-154	2,95444E-31	1,20094E-92
0,50	6,13164E-20	0,037634568	6,27352E-09	1,01	1,0462E-158	3,51839E-32	3,28504E-95
0,51	2,13272E-21	0,020994304	9,48249E-10	1,02	9,6802E-163	4,06255E-33	8,29306E-98

	CI	LUSTER				CLUSTER	
d	CA1	CA2	CA3	d	CA1	CA2	CA3
1,03	7,9738E-167	4,54821E-34	1,9321E-100	1,54			6,4787E-281
1,04	5,8472E-171	4,93708E-35	4,1545E-103	1,55			2,3266E-285
1,05	3,8172E-175	5,19621E-36	8,2442E-106	1,56			7,7112E-290
1,06	2,2184E-179	5,30261E-37	1,5098E-108	1,57			2,3587E-294
1,07	1,1478E-183	5,24663E-38	2,5519E-111	1,58		•	6,6583E-299
1,08	5,2865E-188	5,03336E-39	3,9806E-114	1,59		•	1,7347E-303
1,09	2,1677E-192	4,68191E-40	5,7305E-117	1,60			4,1708E-308
1,10	7,9128E-197	4,22255E-41	7,6135E-120	1,61			0
1,11	2,5714E-201	3,69244E-42	9,3353E-123	1,62		•	0
1,12	7,4391E-206	3,13068E-43	1,0564E-125	1,63			0
1,13	1,9159E-210	2,57366E-44	1,1032E-128	1,64			0
1,14	4,3928E-215	2,05141E-45	1,0633E-131	1,65		•	0
1,15	8,9664E-220	1,5854E-46	9,4585E-135	1,66			0
1,16	1,6293E-224	1,18799E-47	7,7648E-138	1,67		•	0
1,17	2,6357E-229	8,63126E-49	5,8828E-141	1,68		•	0
1,18	3,7957E-234	6,08027E-50	4,1133E-144	1,69		•	0
1,10	4,8662E-239	4,15296E-51	2,6543E-147	1,70			0
1,19	5,554E-244	2,7503E-52	1,5808E-150	1,70			0
1,20	5,6433E-249	2,7303E-32 1,766E-53	8,6883E-154	1,71			0
1,21	•	1,700E-55 1,09948E-54	4,4071E-157			,	
	5,1046E-254			1,73			0
1,23	4,1105E-259	6,63697E-56	2,0631E-160	1,74		•	0
1,24	2,9468E-264	3,88455E-57	8,9134E-164	1,75		•	0
1,25	1,8806E-269	2,20444E-58	3,554E-167	1,76		•	0
1,26	1,0685E-274	1,21295E-59	1,3078E-170	1,77		, -	0
1,27	5,4042E-280	6,47106E-61	4,4414E-174	1,78		,	0
1,28	2,4334E-285	3,3473E-62	1,3921E-177	1,79		,	0
1,29	9,7543E-291	1,67881E-63	4,0266E-181	1,80		•	0
1,30	3,4809E-296	8,16382E-65	1,0749E-184	1,81		•	0
1,31	1,1058E-301	3,84923E-66	2,6483E-188	1,82		•	0
1,32	3,1276E-307	1,75971E-67	6,0215E-192	1,83		•	0
1,33	0	7,80001E-69	1,2636E-195	1,84		•	0
1,34	0	3,35225E-70	2,447E-199	1,85		,	0
1,35	0	1,3969E-71	4,3736E-203	1,86		,	0
1,36	0	5,64392E-73	7,2141E-207	1,87			0
1,37	0	2,21097E-74	1,0982E-210	1,88			0
1,38	0	8,39794E-76	1,5429E-214	1,89			0
1,39	0	3,09278E-77	2,0005E-218	1,90			0
1,40	0	1,10437E-78	2,3939E-222	1,91			0
1,41	0	3,82353E-80	2,6437E-226	1,92			0
1,42	0	1,28352E-81	2,6945E-230	1,93			0
1,43	0	4,1776E-83	2,5345E-234	1,94		,	0
1,44	0	1,31838E-84	2,2002E-238	1,95			0
1,45	0	4,03403E-86	1,7627E-242	1,96			0
1,46	0	1,19681E-87	1,3033E-246	1,97			0
1,47	0	3,44269E-89	8,8933E-251	1,98			0
1,48	0	9,60193E-91	5,6007E-255	1,99			0
1,49	0	2,59661E-92	3,2551E-259	2,00			0
1,50	0	6,80833E-94	1,746E-263	2,01		,	0
1,51	0	1,73086E-95	8,6433E-268	2,02		•	0
1,52	0	4,26649E-97	3,9488E-272	2,03	0	6,7107E-197	0
1,53	0	1,01969E-98	1,6649E-276	2,04	. 0	3,3197E-199	0

	CL	USTER	
d CA1		CA2	CA3
2,05	0	1,5923E-201	0
2,06	0	7,4052E-204	0
2,07	0	3,3392E-206	0
2,08	0	1,4599E-208	0
2,09	0	6,1886E-211	0
2,10	0	2,5436E-213	0
2,11	0	1,0137E-215	0
2,12	0	3,9168E-218	0
2,13	0	1,4674E-220	0
2,14	0	5,3304E-223	0
2,14	0	1,8774E-225	0
2,16	0	6,4111E-228	0
2,17	0	2,1228E-230	0
·		•	
2,18	0	6,8148E-233	0
2,19	0	2,1213E-235	0
2,20	0	6,4022E-238	0
2,21	0	1,8735E-240	0
2,22	0	5,3156E-243	0
2,23	0	1,4623E-245	0
2,24	0	3,9005E-248	0
2,25	0	1,0087E-250	0
2,26	0	2,5295E-253	0
2,27	0	6,15E-256	0
2,28	0	1,4498E-258	0
2,29	0	3,3137E-261	0
2,30	0	7,3436E-264	0
2,31	0	1,578E-266	0
2,32	0	3,2876E-269	0
2,33	0	6,641E-272	0
2,34	0	1,3007E-274	0
2,35	0	2,4701E-277	0
2,36	0	4,5482E-280	0
2,37	0	8,1199E-283	0
2,38	0	1,4056E-285	0
2,39	0	2,359E-288	0
2,40	0	3,8389E-291	0
2,41	0	6,057E-294	0
2,42	0	9,2663E-297	0
2,43	0	1,3745E-299	0
2,44	0	1,9768E-302	0
2,45	0	2,7565E-305	0
2,46	0	3,727E-308	0
2,47	0	0	0
2,48	0	0	0
2,49	0	0	0
2,50	0	0	0
2,51	0	0	0
5,00	0	0	0

	SEM	I-RETÍCULO	
d	SRA1	SRA2	SRA3
0,01	1,88901E-05	0,006166061	3,68118E-10
0,02	2,22204E-05	0,006448811	4,99039E-10
0,02	2,61067E-05	0,006743035	6,75111E-10
0,04	3,06365E-05	0,000743033	9,11399E-10
0,05	3,59096E-05	0,007367476	1,22782E-09
		0.007698503	
0,06	4,20403E-05	,	1,65065E-09
0,07	4,91595E-05	0,008042625	2,21446E-09
0,08	5,7416E-05	0,008400271	2,96466E-09
0,09	6,69797E-05	0,00877188	3,96073E-09
0,10	7,80439E-05	0,009157903	5,28041E-09
0,11	9,08279E-05	0,009558798	7,02511E-09
0,12	0,000105581	0,009975037	9,32679E-09
0,13	0,000122584	0,010407099	1,23568E-08
0,14	0,000142157	0,010855474	1,63369E-08
0,15	0,00016466	0,011320662	2,1554E-08
0,16	0,000190499	0,011803174	2,83779E-08
0,17	0,000220132	0,01230353	3,72842E-08
0,18	0,000254072	0,012822261	4,88836E-08
0,19	0,000292898	0,013359906	6,3958E-08
0,20	0,000337257	0,013917017	8,35063E-08
0,21	0,000387873	0,014494153	1,08802E-07
0,22	0,000445557	0,015091884	1,41465E-07
0,23	0,000511213	0,015710791	1,83549E-07
0,24	0,000511213	0,016351461	2,37656E-07
0,24	0,000505049	0,010331401	3,07071E-07
0,26	0,000766668	0,017700494	3,95934E-07
0,27	0,000875478	0,018410082	5,09448E-07
0,28	0,000998546	0,019143882	6,54138E-07
0,29	0,001137564	0,019902527	8,3817E-07
0,30	0,0012944	0,02068666	1,07174E-06
0,31	0,001471113	0,021496931	1,36753E-06
0,32	0,001669969	0,022334	1,74133E-06
0,33	0,001893457	0,023198531	2,21267E-06
0,34	0,00214431	0,024091199	2,80573E-06
0,35	0,002425518	0,025012682	3,55032E-06
0,36	0,002740352	0,025963669	4,48314E-06
0,37	0,00309238	0,026944853	5,64925E-06
0,38	0,003485494	0,027956931	7,10383E-06
0,39	0,003923925	0,029000609	8,91431E-06
0,40	0,004412268	0,030076596	1,11629E-05
0,40	0,004412200	0,030076556	1,39494E-05
0,41	0,004955500	0,031103000	1,73953E-05
			•
0,43	0,006228661	0,033505571	2,1647E-05
0,44	0,006970683	0,034717972	2,68819E-05
0,45	0,007791854	0,035966288	3,33129E-05
0,46	0,008699437	0,037251248	4,11965E-05
0,47	0,00970122	0,038573583	5,08394E-05
0,48	0,010805538	0,039934024	6,26085E-05
0,49	0,012021297	0,041333302	7,69414E-05
0,50	0,013357989	0,04277215	9,43583E-05
0,51	0,014825718	0,044251296	0,000115476

	SEMI	-RETÍCULO	
d	SRA1	SRA2	SRA3
1,03	0,653777748	0,191131401	0,236570027
1,04	0,681400128	0,195436566	0,259185632
1,05	0,709347665	0,199794507	0,283370933
1,06	0,737566077	0,204204452	0,309166802
1,07	0,765997905	0,208665576	0,33660734
1,08	0,794582667	0,213177003	0,365718969
1,09	0,823257033	0,217737803	0,396519515
1,10	0,851955027	0,222346994	0,429017316
1,10	0,880608245	0,222340994	0,429017310
		•	
1,12	0,909146104	0,231706349	0,499085391
1,13	0,93749611	0,236454282	0,536617262
1,14	0,965584141	0,241246139	0,575768094
1,15	0,993334756	0,24608067	0,616486722
1,16	1,020671518	0,250956571	0,658708146
1,17	1,047517333	0,255872483	0,702353121
1,18	1,073794802	0,260826993	0,747327864
1,19	1,099426585	0,265818638	0,793523894
1,20	1,124335772	0,270845898	0,840818032
1,21	1,148446266	0,275907202	0,889072549
1,22	1,171683163	0,281000927	0,938135479
1,23	1,193973137	0,286125397	0,987841109
1,24	1,215244823	0,291278887	1,038010641
1,25	1,235429198	0,296459618	1,088453026
1,26	1,254459948	0,301665763	1,13896598
1,27	1,272273836	0,306895446	1,18933716
1,28	1,288811046	0,312146741	1,239345517
1,29	1,304015521	0,317417675	1,288762787
1,30	1,317835278	0,322706229	1,337355135
1,31	1,330222701	0,328010338	1,384884924
1,32	1,34113482	0,333327892	1,431112584
1,33	1,350533555	0,338656738	1,475798584
1,34	1,358385938	0,343994681	1,518705456
1,35	1,364664307	0,349339484	1,559599878
1,36	1,369346467	0,354688871	1,598254762
1,37	1,372415822	0,360040529	1,634451346
1,38	1,37386147	0,365392106	1,667981243
1,39	1,373678273	0,370741216	1,698648435
1,40	1,371866881	0,376085441	1,726271178
1,41	1,368433734	0,381422329	1,750683792
1,42	1,36339102	0,386749398	1,771738318
1,43	1,356756604	0,392064139	1,789306008
1,44	1,348553922	0,397364015	1,803278637
1,45	1,338811846	0,402646465	1,813569615
1,46	1,327564509	0,407908906	1,820114876
1,47	1,314851112	0,413148732	1,822873548
1,48	1,300715693	0,418363322	1,821828375
1,49	1,285206873	0,423550035	1,816985897
1,50	1,268377579	0,428706217	1,808376382
1,51	1,25028474	0,433829202	1,796053511
1,52	1,230988972	0,438916314	1,780093819
1,53	1,210554235	0,443964869	1,760595908
.,50	.,	5, 555 1555	.,. 5555555

	SEMI	-RETÍCULO	
d	SRA1	SRA2	SRA3
2,05	0,098874069	0,593276308	0,055889309
2,06	0,091308233	0,593106596	0,049486169
2,07	0,084221376	0,592805798	0,043725229
2,08	0,07759247	0,592374115	0,038554364
2,09	0,071400571	0,591811832	0,033924086
2,10	0,065624898	0,591119322	0,02978763
2,11	0,060244924	0,590297044	0,026100986
2,11	0,055240441	0,58934554	0,022822912
2,12	0,05059163	0,588265442	0,022022912
	•		•
2,14	0,046279117	0,58705746	0,017341189
2,15	0,042284024	0,585722392	0,015068587
2,16	0,038588014	0,584261116	0,013066503
2,17	0,035173322	0,582674594	0,011306792
2,18	0,032022793	0,580963865	0,009763659
2,19	0,0291199	0,57913005	0,008413544
2,20	0,026448766	0,577174347	0,007235
2,21	0,023994175	0,575098032	0,006208565
2,22	0,021741578	0,572902456	0,005316639
2,23	0,019677104	0,570589042	0,00454335
2,24	0,01778755	0,568159288	0,003874436
2,25	0,016060385	0,565614762	0,003297113
2,26	0,014483737	0,5629571	0,002799964
2,27	0,013046385	0,560188008	0,002372817
2,28	0,011737743	0,557309254	0,002006639
2,29	0,010547847	0,554322674	0,00169343
2,30	0,010347047	0,554322074	0,00109343
2,31	0,008487444	0,548033671	0,001198514
2,32	0,00759995	0,544735216	0,001005127
2,33	0,00679719	0,541336866	0,000841185
2,34	0,006072017	0,537840741	0,000702515
2,35	0,00541778	0,534249015	0,000585481
2,36	0,004828304	0,530563909	0,000486926
2,37	0,004297865	0,526787692	0,000404117
2,38	0,003821164	0,522922677	0,00033469
2,39	0,00339331	0,518971218	0,000276613
2,40	0,00300979	0,51493571	0,000228137
2,41	0,002666452	0,510818584	0,000187764
2,42	0,002359479	0,506622307	0,000154213
2,43	0,002085371	0,502349377	0,000126393
2,44	0,001840923	0,498002324	0,000103376
2,45	0,001623202	0,493583703	8,43741E-05
2,46	0,001023202	0,489096094	6,87213E-05
2,40	0,001429333	0,484542101	5,58556E-05
2,48	0,001104823	0,479924347	4,53038E-05
2,49	0,000969547	0,475245473	3,66688E-05
2,50	0,000849826	0,470508133	2,96177E-05
2,51	0,000744006	0,465714995	2,38726E-05
2,52	0,00065059	0,460868738	1,92017E-05
2,53	0,000568229	0,455972046	1,54126E-05
2,54	0,000495706	0,45102761	1,23453E-05
2,55	0,000431926	0,446038123	9,86786E-06

	SEMI	-RETÍCULO	
d	SRA1	SRA2	SRA3
3,07	6,53418E-08	0,18440926	4,85394E-12
3,08	5,34656E-08	0,180243845	3,47339E-12
3,09	4,3696E-08	0,176133555	2,48031E-12
3,10	4,5690E-08	0,170133333	1,76746E-12
3,10	2,90825E-08	0,17207693	1,76740E-12 1,25687E-12
3,12	2,3684E-08	0,164138597	8,9191E-13
3,13	1,92647E-08	0,160253727	6,31605E-13
3,14	1,56514E-08	0,156426202	4,46338E-13
3,15	1,27008E-08	0,152656325	3,14757E-13
3,16	1,02942E-08	0,148944354	2,21503E-13
3,17	8,33374E-09	0,145290504	1,55553E-13
3,18	6,73863E-09	0,141694944	1,0901E-13
3,19	5,44237E-09	0,138157804	7,62345E-14
3,20	4,39025E-09	0,134679169	5,32021E-14
3,21	3,53733E-09	0,131259086	3,70509E-14
3,22	2,84673E-09	0,127897562	2,57491E-14
3,23	2,28824E-09	0,124594564	1,78574E-14
3,24	1,83714E-09	0,121350023	1,23586E-14
3,25	1,47322E-09	0,118163834	8,53516E-15
3,26	1,17999E-09	0,115035856	5,88231E-15
3,27	9,44004E-10	0,111965912	4,04555E-15
3,28	7,54317E-10	0,108953793	2,77651E-15
3,29	6,02031E-10	0,105999259	1,90158E-15
3,30	4,7992E-10	0,103102037	1,29964E-15
3,31	3,82123E-10	0,100261824	8,86393E-16
3,32	3,03895E-10	0,097478289	6,03283E-16
3,33	2,41395E-10	0,094751073	4,09741E-16
3,34	1,91521E-10	0,092079789	2,7771E-16
3,35	1,51772E-10	0,032073703	1,8783E-16
	1,2013E-10		
3,36	•	0,086903346	1,26775E-16
3,37	9,49716E-11	0,084397289	8,53876E-17
3,38	7,49933E-11	0,081945374	5,73917E-17
3,39	5,91475E-11	0,079547095	3,84943E-17
3,40	4,65945E-11	0,077201928	2,57654E-17
3,41	3,66621E-11	0,07490933	1,72096E-17
3,42	2,88128E-11	0,072668738	1,14709E-17
3,43	2,26172E-11	0,070479573	7,62989E-18
3,44	1,77328E-11	0,06834124	5,06444E-18
3,45	1,38867E-11	0,066253127	3,35458E-18
3,46	1,08619E-11	0,06421461	2,21737E-18
3,47	8,48593E-12	0,062225051	1,46262E-18
3,48	6,62181E-12	0,060283799	9,62756E-19
3,49	5,16106E-12	0,058390192	6,32405E-19
3,50	4,01778E-12	0,056543559	4,14541E-19
3,51	3,12405E-12	0,054743216	2,71165E-19
3,52	2,42624E-12	0,052988476	1,77008E-19
3,53	1,88207E-12	0,051278638	1,15304E-19
3,54	1,45822E-12	0,049612999	7,4953E-20
3,55	1,12848E-12	0,047990847	4,86214E-20
3,56	8,72268E-13	0,047330047	3,14745E-20
3,57	6,73428E-13	0,040471407	2,03321E-20
5,57	0,10 1 20E-13	U,UTTUIT 131	2,0002 IE-20

SEMI-RETÍCULO								
d	SRA1	SRA2	SRA3					
4,09	1,88693E-19	0,005739964	1,54973E-31					
4,10	1,36803E-19	0,005485155	8,9623E-32					
4,11	9,90646E-20	0,005240497	5,1722E-32					
4,12	7,16517E-20	0,005005645	2,97869E-32					
4,13	5,1763E-20	0,004780261	1,71186E-32					
4,14	3,73506E-20	0,004564015	9,81754E-33					
4,15	2,69191E-20	0,004356587	5,61864E-33					
4,16	1,9378E-20	0,004157668	3,20888E-33					
4,17	1,39329E-20	0,003966953	1,82881E-33					
4,18	1,00059E-20	0,003784149	1,0401E-33					
4,19	7,17728E-21	0,003608971	5,90307E-34					
4,20	5,14217E-21	0,003441141	3,34328E-34					
4,21	3,67975E-21	0,00328039	1,88956E-34					
4,22	2,63012E-21	0,003126457	1,06572E-34					
4,23	1,87766E-21	0,002979089	5,99813E-35					
4,24	1,33889E-21	0,002838038	3,36886E-35					
4,25	9,53575E-22	0,002703069	1,88818E-35					
4,26	6,78345E-22	0,002573948	1,05608E-35					
4,27	4,81983E-22	0,002450454	5,89446E-36					
4,28	3,42056E-22	0,002332368	3,2831E-36					
4,29	2,42465E-22	0,002219482	1,82481E-36					
4,30	1,71666E-22	0,002111593	1,01215E-36					
4,31	1,21396E-22	0,002008504	5,60226E-37					
4,32	8,57452E-23	0,001910025	3,0944E-37					
4,33	6,04923E-23	0,001815973	1,70562E-37					
4,34	4,26261E-23	0,00172617	9,38168E-38					
4,35	3,00009E-23	0,001640445	5,14959E-38					
4,36	2,10902E-23	0,001558633	2,82071E-38					
4,37	1,48084E-23	0,001480574	1,54183E-38					
4,38	1,03854E-23	0,001406112	8,41025E-39					
4,39	7,27483E-24	0,001335101	4,57798E-39					
4,40	5,08988E-24	0,001267395	2,48675E-39					
4,41	3,55694E-24	0,001202856	1,34798E-39					
4,42	2,48273E-24	0,001141352	7,29168E-40					
4,43	1,73089E-24	0,001082753	3.93609E-40					
4,44	1,20529E-24	0,001026935	2,12029E-40					
4,45	8,38303E-25	0,000973779	1,13978E-40					
4,46	5,82364E-25	0,000923171	6,11417E-41					
4,47	4,04085E-25	0,000874999	3,27301E-41					
4,48	2,8005E-25	0,000829158	1,74844E-41					
4,49	1,93858E-25	0,000785544	9,32069E-42					
4,50	1,34034E-25	0,00074406	4,95836E-42					
4,51	9,25622E-26	0,00070461	2,63221E-42					
4,52	6,38464E-26	0,000667105	1,39443E-42					
4,53	4,39869E-26	0,000631456	7,37168E-43					
4,54	3,02688E-26	0,000597581	3,88892E-43					
4,55	2,08043E-26	0,000565397	2,04732E-43					
4,56	1,42822E-26	0,000534828	1,07556E-43					
4,57	9,79312E-27	0,000505801	5,63866E-44					
4,58	6,70707E-27	0,000478243	2,94993E-44					
4,59	4,58806E-27	0,000452086	1,54007E-44					
, - =	,	,	, =					

SEMI-RETÍCULO							
d	SRA1	SRA2	SRA3				
4,60	3,13481E-27	0,000427265	8,02345E-45				
4,61	2,13933E-27	0,000403718	4,17134E-45				
4,62	1,45824E-27	0,000381384	2,16413E-45				
4,63	9,92805E-28	0,000360207	1,12043E-45				
4,64	6,75126E-28	0,000340129	5,78868E-46				
4,65	4,58554E-28	0,0003211	2,98447E-46				
4,66	3,11086E-28	0,000303069	1,53549E-46				
4,67	2,10793E-28	0,000285986	7,88355E-47				
4,68	1,42665E-28	0,000269807	4,03914E-47				
4,69	9,64409E-29	0,000254487	2,06514E-47				
4,70	6,51165E-29	0,000239984	1,05366E-47				
4,71	4,39143E-29	0,000226257	5,36474E-48				
4,72	2,95805E-29	0,000213268	2,72577E-48				
4,73	1,99017E-29	0,00020098	1,38204E-48				
4,74	1,33739E-29	0,000189359	6,99274E-49				
4,75	8,97663E-30	0,00017837	3,53075E-49				
4,76	6,018E-30	0,000167981	1,77901E-49				
4,77	4,02973E-30	0,000158163	8,94509E-50				
4,78	2,69516E-30	0,000148886	4,48832E-50				
4,79	1,80044E-30	0,000140121	2,24738E-50				
4,80	1,20132E-30	0,000131844	1,12295E-50				
4,81	8,00609E-31	0,000124028	5,59937E-51				
4,82	5,32928E-31	0,000116649	2,78619E-51				
4,83	3,54325E-31	0,000109686	1,38349E-51				
4,84	2,35299E-31	0,000103115	6,8554E-52				
4,85	1,56071E-31	9,69163E-05	3,38988E-52				
4,86	1,03397E-31	9,10701E-05	1,67274E-52				
4,87	6,84199E-32	8,55577E-05	8,23694E-53				
4,88	4,52209E-32	8,03611E-05	4,04759E-53				
4,89	2,98526E-32	7,54635E-05	1,98481E-53				
4,90	1,96838E-32	7,08487E-05	9,71263E-54				
4,91	1,29635E-32	6,65014E-05	4,74293E-54				
4,92	8,52742E-33	6,24071E-05	2,31127E-54				
4,93	5,60272E-33	5,85518E-05	1,12395E-54				
4,94	3,67676E-33	5,49226E-05	5,45426E-55				
4,95	2,41E-33	5,1507E-05	2,64131E-55				
4,96	1,5778E-33	4,8293E-05	1,27642E-55				
4,97	1,03175E-33	4,52696E-05	6,15551E-56				
4,98	6,73876E-34	4,24261E-05	2,96228E-56				
4,99	4,39613E-34	3,97525E-05	1,4226E-56				
5,00	2,86448E-34	3,7239E-05	6,81758E-57				