UNIVERSIDADE FEDERAL DE PELOTAS
Centro de Desenvolvimento Tecnoldgico
Programa de Pd6s-Graduagao em Computagao

R A A

45 gras™

Dissertacao

ReDId: Simulacao de Computacao Quantica baseada em

Reducao e Decomposicao via Operador Identidade

Anderson Braga de Avila

Pelotas, 2016

Anderson Braga de Avila

ReDId: Simulacao de Computacao Quantica baseada em
Reducao e Decomposicao via Operador Identidade

Dissertacao apresentada ao Programa de
Pés-Graduacao em Computacao da Universi-
dade Federal de Pelotas, como requisito par-
cial a obtencao do titulo de Mestre em Ciéncia
da Computacgao

Orientadora: Prof. Dr. Renata Hax Sander Reiser
Coorientador: Prof. Dr. Mauricio Lima Pilla

Pelotas, 2016

Universidade Federal de Pelotas / Sistema de Bibliotecas
Catalogacao na Publicacao

A958r Avila, Anderson Braga de

ReDId : simulacao de computacgao quantica baseada em
Reducao e Decomposicao via operador Identidade /
Anderson Braga de Avila ; Renata Hax Sander Reiser,
orientadora ; Mauricio Lima Pilla, coorientador. — Pelotas,
2016.

60 f.

Dissertacao (Mestrado) — Programa de Pds-Graduacao
em Computacao, Centro de Desenvolvimento Tecnoldgico,
Universidade Federal de Pelotas, 2016.

1. Simulacao de computacao quantica. 2.
Processamento paralelo. 3. GPU. 4. Algoritmo de Shor. I.
Reiser, Renata Hax Sander, orient. Il. Pilla, Mauricio Lima,
coorient. lll. Titulo.

CDD : 005

Elaborada por Aline Herbstrith Batista CRB: 10/1737

Universidade Federal de Pelotas
Centro de Desenvolvimento Tecnolégico
Programa de Pds-Graduacdo em Computagdo

ATESTADO

ATESTO para os devidos fins, que ANDERSON BRAGA DE AVILA foi aprovado pela
Banca Examinadora da Defesa de Dissertacéo realizada em 3 de Margo de 2016, intitulada:
"ReDId: Quantum Computing Simulation based on Reduction and Decomposition via
Identity Operator", sob a orientagdo do Prof. Dr. Renata Hax Sander Reiser. Realizadas as
corregbes recomendadas pela Comissdo Examinadora, o trabalho serd encaminhado para
homologagsio pelo Colegiado do Programa de Pés-Graduagdo em Computagdo. Igualmente,
informamos que os demais requisitos necessdrios para a obten¢fio do grau de Mestre em
Ciéncia da Computacio pela Universidade Federal de Pelotas foram cumpridos.

Pelotas, 3 de Marco de 2016

ner

Ricardo Matsumufa de Araujo
Coordenador do Programa de Pés-Graduagio em Computacéo

Programa de Pés-Graduagdo em Computagdo - Universidade Federal de Pelotas
E-mail: ppge@inf.ufpeledubr Site: htip://www.inf.ufpel.edu.br/ppge Telefone:+55 (53) 3921-1327

RESUMO

AVILA, Anderson Braga de. ReDId: Simulacao de Computacao Quantica baseada
em

Reducao e Decomposicao via Operador Identidade. 2016. 60 f. Dissertacao (Mes-
trado em Ciéncia da Computacao) — Programa de Pos-Graduagao em Computacao,
Centro de Desenvolvimento Tecnoldgico, Universidade Federal de Pelotas, Pelotas,
2016.

Um dos maiores obstaculos para a simulacao de algoritmos quanticos é o cres-
cimento exponencial das complexidades espaciais e temporais, devido a expansao
das transformacdes e dos estados de leitura/escrita pelo uso do produto tensor
em aplicagdes multi-dimensionais. A simulacao destes sistemas é muito relevante
para desenvolver e testar novos algoritmos quanticos. Para minimizar o problema
gerado pela alta complexidade da simulagdo de algoritmos quanticos, este trabalho
apresenta uma nova estratégia nomeada ReDlId, provendo otimizagdes baseadas na
reducao e decomposicao via operador Identidade. Na sequéncia, o trabalho consi-
dera a implementagao do algoritmo que faz uso da estratégia ReDld, explorando os
componentes VPE-qGM e VirD-GM que integram o ambiente D-GM. Para validagao,
considera-se a aplicagao das otimizagdes via estratégia ReDId nas simulagdes de
transformacdes Hadamard de 21 a 28 qubits e Transformadas de Fourier Quantica de
26 a 28 qubits. Estes algoritmos foram simulados sobre CPU, sequencialmente e em
paralelo, e em GPU, mostrando reducdo da complexidade temporal e, consequen-
temente, menor tempo de simulacdo. Além disso, avaliacées do algoritmo de Shor
considerando o uso de 2n + 3 qubits no algoritmo quéantico para calculo da ordem,
foram simulados até 25 qubits. Ao comparar nossas implementacdes executando no
mesmo hardware com o simulador LIQUi|) - Language-Integrated Quantum Operati-
ons, versao disponivel pela QuArC - Quantum Architectures and Computation Group
da Microsoft Research, o simulador via estratégia ReDId mostrou-se mais rapido.

Palavras-chave: Simulagdo de Computagao Quantica, Processamento Paralelo,
GPU, Algoritmo de Shor.

ABSTRACT

AVILA, Anderson Braga de. ReDld: Quantum Computing Simulation based on
Reduction and Decomposition via Identity Operator. 2016. 60 f. Dissertacao
(Mestrado em Ciéncia da Computacdo) — Programa de Po6s-Graduagcao em
Computagcao, Centro de Desenvolvimento Tecnoldgico, Universidade Federal de
Pelotas, Pelotas, 2016.

One of the main obstacles for the adoption of quantum algorithm simulation is the
exponential increase in temporal and spatial complexities, due to the expansion of
transformations and read/write states by using tensor product in multi-dimensional ap-
plications. Simulation of these systems is very relevant to develop and test new quan-
tum algorithms. To minimize the problem created by the high complexity of the simu-
lation of quantum algorithms, this paper presents a new strategy named ReDId, which
provides optimizations based on the reduction and decomposition via Identity operator.
Next, the paper considers the implementation of the algorithm that makes use of the
ReDld strategy, exploring the components VPE-gGM and VirD-GM that integrate the
D-GM environment. For evaluation, is considered the application of optimization via
ReDld strategy in simulations of Hadamard transformations from 21 to 28 qubits and
Quantum Fourier Transforms from 26 to 28 qubits. Those algorithms were simulated
over CPU, sequentially and in parallel, and in GPU, showing reduced temporal com-
plexity and, consequently, shorter simulation time. Moreover, evaluations of the Shor’s
algorithm considering 2n + 3 qubits in the order-finding quantum algorithm were simu-
lated up to 25 qubits. Comparing our implementations running on the same hardware
with LIQUi|) - Language-Integrated Quantum Operations, release version by QUArC -
Quantum Architectures and Computation Group from Microsoft Research, the simula-
tor via ReDId strategy proved to be faster.

Keywords: Quantum Computing Simulation, Parallel Processing, GPU, Shor’s Algo-
rithm.

Figura 1
Figura 2
Figura 3
Figura 4

Figura 5
Figura 6
Figura 7

Figura 8
Figura 9

Figura 10
Figura 11
Figura 12
Figura 13
Figura 14
Figura 15

Figura 16
Figura 17
Figura 18

Figura 19
Figura 20
Figura 21

Figura 22
Figura 23

Figura 24
Figura 25

Figura 26
Figura 27

LISTA DE FIGURAS

CircuitoQuantico. 18
Transformagdes quanticas controladas CNOT 21
Porta Toffoli no modelo de circuitos quanticos. 21
Porta Controlled-U no modelo de circuitos quanticos. 21
Exemplos de QuIDDs para diferentes estados quanticos. 25
Transformagdes quanticas no QuiDDPro. 25
Pseudocodigo para descricao de uma aplicacao quantica no Mas-

sive Parallel Quantum Computer Simulator. 26
Distribuicao de amplitudes para 4 processos MPI 26
Distribuicdo de amplitudes para N processos MPI considerando a

PErMULACAD 0. « « + v v v v i e e e e e e e e 27
Transformagao quanticade 1 qubit 28
Matriz que define a evolugao do sistema quantico. 28
Decomposicdo da transformacado quantica. 29
Decomposicdo de M, e ¢, paracasosemque 2! <2F. 29

Tempos, em segundos, para simulacao de transformagoes Hadamard. 30
Principais mapeamentos a serem feitos para computagao das am-

plitudes. 31
Tempos de simulacao para transformagcdes Walsh-Hadamard e TFQ. 32
Saida de uma execugdo no simulador LIQUi| >. 33

Tempos de simulacéo para o algoritmo de Shor no simulador LIQU | >. 34

Matrizes Bésicas para a Transformagdo H®®
Transformagao nao-controlada decomposta 40

Transformagao controlada decomposta 40
Framework do SimuladorD-GM. 44
Exemplo de decomposicado parauma TQ. 46
Tempos de execucao para a Transformacao Hadamard em CPU,

variando o numerode threads 50
Tempos de execucgao para a Transformacao Hadamard em GPU,

variando o limite de operadores 50

Transformacao Hadamard, 27-28 Qubits, 26-28 Limite, GPU 51
Tempos de execucgao para a Transformada de Fourier Quantica, 26-
28qubits. 51

Tabela 1
Tabela 2

Tabela 3
Tabela 4

LISTA DE TABELAS

Fatoracao classica x Fatoragao quantica. Fonte:() 17
Principais caracteristicas da GeForce 8800GTX 32
Numero de etapas afetadas pelo limite de qubits emuma TFQ. . . . 52

Tempos Médios de Simulacao para o Algoritmo de Shor, em segundos. 52

LISTA DE ABREVIATURAS E SIGLAS

D-GM Distributed Geometric Machine
VirD-GM Virtual Distributed Geometric Machine

VPE-gGM Visual Programing Environment for the Quantum Geometric Machine Mo-
del

QCEdit Quantum Circuit Editor
M-QCEdit Mobile Quantum Ciruit Editor

TQ Transformacao Quantica

TFQ Transformada de Fourier Quantica
qGM Quantum Geometric Machine
gPE Quantum Process Editor

gME Quantum Memory Editor

QS Quantum Simulator

cQ Computacao Quantica

MQ Mecanica Quantica

MPP Mixed Partial Process

QuiDD Quantum Information Decision Diagram
MPQCS Massive Parallel Quantum Computer Simulator
CPU Central Processing Unit

GPU Graphic Processing Unit

CUDA Compute Unified Device Architecture

SUMARIO

1 INTRODUGAO ittt ettt e e e e e e e e e e ettt e e e 11
11 Tema. e 11
1.2 Motivagao 12
1.3 Objetivos 13
1.4 OrganizacaodoTexto. 13
2 COMPUTAGAOQUANTICA ittt e 15
21 ConceitosBasicos 15
2.1.1 Postulados da Mecanica Quantica 16
2.1.2 Transformagbes Quanticas 18
2.1.3 Transformada de Fourier Quantica 21
2.1.4 Algoritmo de Shor para Fatoragdo Quantica 22
2.2 Consideragoesfinais 23
3 SIMULADORESQUANTICOS vttt it i i e e e s 24
31 QuIDDPro 24
3.2 Massive Parallel Quantum Computer Simulator 26
3.3 General-Purpose Parallel Simulator for Quantum Computing 28
3.4 Quantum Computer Simulation using CUDA 30
3.5 Language-integrated Quantum Operations—-LIQUi| > 32
3.6 ConsideracoesFinais 34
4 REDID: ESTRATEGIA PARA REDUCAO DA COMPLEXIDADE ESPACIAL
ETEMPORAL e e e e e e e e ae e e 36
4.1 Replicacoes e Esparcialidade do Operador Identidade 37
4.2 DecomposicaodeTQs 40
4.3 Processos Mistos Parciais 41
4.4 ConsideragoesFinais, 42
5 ESTUDO DE CASO: IMPLEMENTACAO DA ESTRATEGIA REDID NO D-GM 43
51 AmbienteD-GM 43
5.2 Implementagées 45
521 Computagcgoem CPU 45
522 Computaggoem GPU 47
6 RESULTADOS i ittt e e e e e e e e 49
6.1 TransformacaoHadamard 49
6.2 Transformada de FourierQuantica 51

6.3 AlgoritmodeShor 52

6.4 ConsideracoesFinais 52

7 CONCLUSAOD ittt e e e e e e e e e e e e e e e e e 54
7.1 Trabalhos Futuros e 55

REFERENCIASt it e e e e e e e e e e e e e e e e s, 57

1 INTRODUCAO

Neste trabalho € realizada a concepcao da estratégia de simulagao ReDId, que visa
a reducao da complexidade espacial e temporal inerente da simulacao de aplicacoes
quanticas, através do uso inteligente do operador Identidade na representacao de
transformacdes quanticas (TQs) e pela decomposicao das transformacoes. Ao invés
de executar uma TQ em um Unico passo, ela é dividida passos e sé operadores dife-
rentes do ldentidade sdo armazenados.

Este trabalho esta inserido no Projeto ExPloreD-GM - Explorando o Paralelismo e
a Distribuicao do Modelo D-GM em Aplicagbées Cientificas e Tecnologias Associadas,
buscando o estudo e aplicagao de otimizagdes para simulagao, sequencial e paralela,
de algoritmos quanticos a partir de computadores classicos.

O Projeto ExPloreD-GM busca a consolidacao do ambiente D-GM (Distributed Ge-
ometric Machine), para modelagem e desenvolvimento de aplicagdes quanticas a par-
tir de dois principais componentes de software: (i) o VPE-qGM (Visual Programming
Environment of the Quantum Geometric Machine Model), ambiente de programacgao
visual para modelagem de algoritmos quéanticos; e (i7) o VirD-GM (Virtual Distribu-
ted Geometric Machine), ambiente de execucao distribuida e gerenciamento destas
aplicacoes.

1.1 Tema

O tema central desta dissertacao € a simulacao de algoritmos da Computagao
Quantica (CQ). A CQ é um paradigma fundamentado nos postulados definidos pela
Mecanica Quantica (M @), a qual prové interpretagoes para os comportamentos fisicos
incomuns que se fazem presentes quando da manipulacao de elementos em escala
atdbmica/subatémica, substituindo, dessa forma, as leis da Fisica Classica (NIELSEN;
CHUANG, 2003; PESSOA, 2003).

Aplicagbes envolvendo propriedades da M@ (emaranhamento, sobreposicao, in-
versibilidade, nao-clonagem) no contexto computacional, permitem, a concepg¢ao de
uma nova classe de computadores (computadores quanticos), os quais sao capa-

12

zes de apresentar um desempenho exponencialmente maior do que os computado-
res classicos (OMER, 1998), principalmente em areas que envolvem a modelagem,
manipulacao, transmissao e o processamento da informacao quantica como na pes-
quisa em:

(i) criptografia, explorando a nao-localidade quantica para transmitir mensagens com
seguranca absoluta (SHOR, 1997);

(if) busca em listas ndao-ordenadas (GROVER, 1996);

(iii) teletransporte, transportando informacao quantica de um lugar para outro sem
que ocorra o deslocamento através de um meio fisico (STEFFEN et al., 2013);

(iv) e ainda, algoritmos de fatoragao e logaritmo discreto (SHOR, 1994).

No processamento da informacdo quantica, o estado-da-arte em hardware
qguantico ainda apresenta baixa escalabilidade devido a dificuldade de manipulacao e
controle de particulas elementares (elétrons, fotons, etc), as quais tém potencial para
serem utilizadas como qubits. Assim, atualmente, o estudo e modelagem de algorit-
mos para CQ pode ser realizado de duas principais formas: através da especificacao
matematica do sistema ou do desenvolvimento dos circuitos quanticos(HEY, 1999;
KNILL; NIELSEN, 2000) em softwares de simulacao(RAEDT et al., 2006; NIWA; MAT-
SUMOTO; IMAI, 2002).

1.2 Motivacao

A simulagao quantica é uma area de pesquisa basica, com muitos problemas para
serem investigados, porém bem consolidada nos seus fundamentos. Contudo, a
simulagao de sistemas quanticos através de computadores classicos mostra-se ine-
ficiente, visto o alto custo computacional associado a aplicacao das transformacoes
que determinam a evolugao temporal do sistema.

Nesse cenario, a adocao de solucdes voltadas para o ganho de desempenho é
essencial para simulagcao assim como a continua pesquisa considerando a exploracao
de novas abordagens de otimizagao da complexidade espacial e temporal, tornam-se
estratégias essenciais para simulacao de aplicacdoes quanticas complexas.

A introducao de diferentes solugoes para lidar com a complexidade de simulacao
de algoritmos quanticos (HEY, 1999), a partir de computadores classicos, tem con-
tribuido para delinear as melhores abordagens, lidando com os diferentes problemas
decorrentes do aumento exponencial no armazenamento e processamento, ambos
requeridos por sistemas multi-qubits.

13

Uma atual e relevante abordagem, em consolidacdo neste trabalho, considera
a integracao de dois esforgos: (i) a busca por otimizagdo das estruturas associa-
das a transformacgdes quanticos; e (ii) a paralelizacdo das operagdes envolvidas na
evolucao do estado do sistema.

Esta integracao constitue-se em um grande desafio, porém a perspectiva de bons
resultados consiste na grande motivagao que impulsiona esse tipo de pesquisa.

Neste contexto, no Projeto D-GM, integrando o ambiente de desenvolvimento
VPE-qGM e o ambiente de gerenciamento VirD-GM, promove-se suporte desde a
concepgao até o desenvolvimento de aplicagbes, considerando uma arquitetura de
software que contempla uma abordagem hibrida, viabilizando a computacao (hete-
rogénea) via CPUs ou GPUs para suporte a aplicagoes multi-qubits.

1.3 Objetivos

Este trabalho tem como objetivo geral a concepgao, modelagem e aplicagao de
uma nova estratégia para tratamento das complexidades espacial e temporal, ineren-
tes a simulacao de algoritmos quanticos multi-qubits via software em computadores
classicos.

A partir desta estratégia, tem-se a possibilidade de aplicagao de solucdes eficientes
para o ambiente D-GM, visando a extensao das suas capacidades de simulacao em
multicomputadores e/ou multiprocessadores.

Mais especificamente, considera-se os seguintes objetivos:

concepgao, modelagem e desenvolvimento de uma nova estratégia para
simulacao de computacao quantica;

e implementacao de um novo algoritmo execucao para o ambiente D-GM, em lin-
guagem C/C++ para as execugoes em CPU, e em CUDA para as execugoes em
GPUs;

e validagcado das otimizagOes pela execugao de aplicagoes provendo a simulagao
de algoritmos quanticos, e posterior avaliagao dos resultados alcangados;

e divulgagao na comunidade cientifica dos resultados obtidos na pesquisa
por publicagbes em eventos/jornais especializados da area de simulagao da
computacao quantica e de computacao heterogénea via CPUs (Central Proces-
sing Units) e GPUs (Graphics Processing Units).

1.4 Organizacao do Texto

Na continuidade, este trabalho esta estruturado da forma descrita logo a seguir.

14

No Capitulo 2 os principais fundamentos relacionados a CQ sao descritos, in-
cluindo uma breve discussao sobre duas aplicagdes quanticas simuladas neste tra-
balho.

No Capitulo 3, sao discutidas as caracteristicas encontradas em alguns simulado-
res quanticos mais relevantes, incluindo o simulador utilizada para comparagao com
este trabalho.

Uma das principais contribuicoes deste trabalho é descrita no Capitulo 4, contem-
plando a criagcao da nova estratégia de simulacao de algoritmos quanticos, a Secao 4.1
abrange a otimizagao referentes as replicacoes e esparcialidades geradas pelo opera-
dor Identidade, a Secao 4.2 descreve como se da a decomposicao das transformacoes
qguanticos e a Secao 4.3 discute o0 uso da particao das memorias para proves escala-
bilidade as aplicacoes.

Na sequéncia, o Capitulo 5 contempla a descricao do ambiente D-GM e das
implementagdes direcionadas a criagao da nova biblioteca de execugao com suporte
a simulacao em CPUs e GPUs usando a estratégia ReDId descrita neste trabalho.

No Capitulo 6 sao mostrados os resultados obtidos com simulagbes de aplicagoes
Hadamard, TQF e Shor usando a extensao da biblioteca qGM-Analyzer com suporte
as otimizacoes propostas pelo ReDld, bem como uma comparacao com o simulador
LIQUi| > para o algoritmo de Shor.

Por fim, no Capitulo 7, as principais conclusdes obtidas a partir da realizagdo deste
trabalho, bem como propostas de continuidade do projeto D-GM sao apresentadas.

2 COMPUTAGAO QUANTICA

O corrente capitulo contempla os principais conceitos de CQ e MQ que funda-
mentam este trabalho. Também sao estudados alguns dos simuladores quanticos
disponiveis atualmente.

2.1 Conceitos Basicos

A manipulacao de particulas em escala atdmica/subatémica compreende uma ta-
refa de alta complexidade, visto que nessas situagoes as particulas (fétons, elétrons e
outras particulas de mesma escala) exibem comportamentos incomuns, nao definidos
pelas leis da fisica classica. A MQ é a area da fisica que estuda tais comportamentos,
apresentando teorias que definem de forma precisa os fenébmenos que ocorrem em
pequena escala.

Um dos principais fundamentos da MQ € a ocorréncia de superposicao de es-
tados (PESSOA, 2003). Na mecanica classica, é estabelecido que uma particula
possui um estado Unico e bem definido, como por exemplo, um elétron com um spin
positivo. Na MQ, uma particula pode ser definida a partir da coexisténcia de dois ou
mais estados, ou seja, um elétron com spin positivo e negativo simultaneamente.

A MQ também contempla a interpretagao do fendmeno da dualidade onda-
particula, exemplificado através do Experimento da Fenda Dupla (THE DOUBLE-
SLIT EXPERIMENT, 2009), na qual uma particula atémica é capaz de apresentar
dois comportamentos distintos: (:) ondulatério, onde sua trajetéria € descrita por
uma superposi¢ao de ondas; (ii) corpuscular, com uma trajetéria bem definida. Uma
particula quantica € definida através de uma funcao de onda, sendo constituida de
uma grande variedade de estados possiveis. Porém, ao utilizar qualquer dispositivo
para medir (observar) o estado dessa particula, sua funcao de onda colapsa em uma
das possibilidades, comportando-se, a partir desse ponto, como uma particula com
um estado bem definido.

Desse comportamento surge o principio da incerteza de Heisenberg (PESSOA,
2003) que, em suma, estabelece que ao medir o estado de um objeto quantico,

16

instantaneamente seu estado sera alterado, deixando de apresentar propriedades
quanticas. Nota-se, portanto, a impossibilidade de determinar a trajetoria de uma
particula quantica, visto que, ao medir a correspondente posicao, seu estado colapsa,
impedindo a medida de sua velocidade.

O principio do entrelacamento (PESSOA, 2003) considera que duas particulas
criadas juntas sao capazes de interagir de forma imediata mesmo quando separadas
espacialmente por qualquer distancia, de forma que, ao submeter uma particula a um
determinado efeito, a outra particula entrelacada a esta ira reagir instantaneamente.
Interpretacdes detalhadas dos principios da MQ podem ser obtidas em (PESSOA,
2003; PORTUGAL; LAVOR; MACULAN, 2004).

2.1.1 Postulados da Mecanica Quantica

Essas ponderagoes iniciais fundamentam a descrigao do comportamento de siste-
mas quanticos, 0s quais sdo matematicamente especificados através de quatro pos-
tulados definidos pela MQ), permitindo a analogia com sistemas fisicos:

e Espaco de Estados: Na CQ, o qubit € a unidade basica de informagao, sendo o
sistema quantico mais simples, definido por um vetor de estado, unitario e bidi-
mensional, genericamente descrito, na notagao de Dirac (NIELSEN; CHUANG,
2003), pela expressao |¢) = al0) + §|1). Os coeficientes « € § sdo numeros
complexos correspondentes as amplitudes dos respectivos estados, respeitando
a condicao de normalizacéo |a|* + |3]? = 1, garantindo a unitariedade do vetor
de estado do sistema, representado por v = (a, 3)!.

e Evolucdo do Sistema: A mudanca de estado em um sistema quantico é feita por
transformagdes quanticas unitarias, associadas a matrizes ortonormalizadas de
ordem 2V x 2 sendo N a quantidade de qubits da transformagao.

e Medida Quantica: O processo de extracdo de informacdo de um sistema
quantico, identificando qual o estado corrente mais provavel, é estudado a par-
tir da operacao de medida. A medida quantica projetiva considera um conjunto
de operadores de projecao, os quais aplicam diferentes processos de filtragem
sobre o espaco de estados. O estado final do sistema depende do operador de
projecao executado.

e Sistemas Compostos: O espaco de estados de um sistema quantico de multiplos
qubits € compreendido pelo produto tensorial do espaco de estados de seus
sistemas componentes. Considerando um sistema quantico de dois qubits, |¢)) =
al0) + B|1) e |¢) = ~|0) + §|1), o correspondente espacgo de estados é composto

v denota a transposta de v

17

pelo produto tensor

1) @ lp) = @|00) + 5]01) +~[10) 4 4[11). (1)

A aplicacao das propriedades da MQ no contexto computacional resulta no para-
digma da CQ, permitindo o desenvolvimento de computadores quanticos com capa-
cidade de processamento exponencialmente maior que os computadores classicos,
como demonstrado pela Tabela 1.

Tabela 1: Fatoragao classica x Fatoracao quantica. Fonte:()
Tamanho do n° a ser fatorado \ Algoritmo Classico \ Algoritmo Quantico

512 bits 4 dias 34 segundos
1024 bits 10° anos 4,5 minutos
2048 bits 104 anos 36 minutos
4096 bits 10% anos 4.8 horas

O modelo mais recorrente para descricao de aplicagcdes quanticas € o modelo de
circuitos quanticos (NIELSEN; CHUANG, 2003). Essa representacao é uma das mais
fundamentais da CQ, sendo caracterizada por uma notagcao grafica intuitiva que re-
mete ao modelo de circuitos digitais utilizados na computacao classica.

Os circuitos quanticos compreendem sincronizagoes e composicdes de por-
tas (transformacdes) quanticas unitarias e operacées de medidas, modelando
qualquer tipo de algoritmo quantico, conforme apresentado na Figura 1. Algu-
mas convengdes sdo adotadas visando uma descricdo homogénea dos algoritmos
quanticos, sendo descritas a seguir:

e Linhas Horizontais: Cada linha representa um dos qubits que compdem o cir-
cuito, e a correspondente evolucao temporal ocorre da esquerda para a direita;

e Linhas Verticais: Indicam que uma determinada transformagdo quéntica atua
sobre os qubits conectados através desta linha;

e Controle: Representado por um circulo sobre a linha de um qubit. Se o circulo for
fechado, indica que é considerado o estado |1) do qubit; se for aberto, considera-
se o estado |0);

e Portas Quanticas: Transformacoes unitarias que manipulam o qubit sobre o qual
sao aplicadas;

e Medida: No final de cada linha do circuito pode aparecer uma operagao de me-
dida, determinando o estado classico do correspondente qubit.

18

|LJ"—| HIL | v s _‘G 1

|u’:,4@ [-j L 2|y (| = T — [7_,1 }22;!: -1 0

"Enitiyii s Al i

= — ——")
I rrreprerrrs (J B . M. —— s

Figura 1: Circuito Quantico

2.1.2 Transformacoes Quanticas

As transformagdes unitarias quanticas sao as operacoes responsaveis por mani-
pular as amplitudes associadas aos estados do sistema. Essas transformacoes sao
definidas por matrizes unitarias quadradas de ordem 2, onde N representa a quanti-
dade de qubits sobre os quais a transformacao ira atuar. As principais transformacdes
quanticas basicas sao descritas na sequéncia.

e Hadamard: E a transformagéo responsavel por gerar a superposicdo dos esta-
dos de um qubit. Sua definicdo matricial é:

1 (11
H:ﬁ<1—1> @)

A aplicagdo de H sobre o vetor de estado do qubit genérico |¢), definido na
primeiro postulado da MQ), resulta em:

H|p) = %mﬁ,a) 3)

e Pauly X: Equivalente a porta classica NOT, que inverte as amplitudes dos esta-
dos de um qubit. A correspondente definigao matricial e aplicagao sobre o vetor
de estado de |¢) é representado por:

01 o B
X = = 4
(10) (ﬂ) (04) @
e Pauly Y: Quando aplicada a |¢), resulta em Y'|¢)) = —i3|0) + i|1). A correspon-
dente definicao matricial é:
0 —
Y = 5
(3) .

19

e Pauly Z: A matriz de transformacao dessa operacao € dada por:

10
Z:<0—1> (6)

Sua funcao ¢é realizar a inversao de fase do qubit, transformando o vetor de
estado em («a, —)"

e Phase (S): Introduz uma fase relativa, ou seja, leva o qubit |¢)) para o estado
S|y) = «|0)+1i5|1), onde a amplitude de |0) mantém-se inalterada, enquanto que
a amplitude de |1) difere por um fator de fase igual a i. A matriz correspondente
a porta Phase é descrita por:

e 7/8: Transformagao quantica associada a seguinte matriz unitaria:

T = (-) ®
0 exp(im/4)

A aplicagao de T ao vetor de estado de |¢) resulta em (o, exp(in/4)5)".

Para exemplificagdo do aumento exponencial nas transformagdes quanticas apli-
cadas a multiplos qubits, considera-se, primeiramente, a transformacao Hada-
mard (H) aplicada a um qubit. A seguinte representacao matricial descreve tal cenario:

1 1 1 a) 1 [a+p
=35 (1 5)(5) -5 (070) ”

Considerando, agora, a aplicacao simultdnea de H a dois qubits de um sistema
guantico, tem-se a matriz

1 1 1 1 1 1 1
H®2 _ ® — — _

a qual é obtida a partir da operagao de produto tensorial (®) entre as correspondentes
matrizes de 1 qubit. O operador ® gera um aumento exponencial na quantidade de ele-
mentos da matriz resultante, influenciando significativamente no custo de simulagao
das operagoes.

—
|
—_
—_
|
—_

-1 -1 1

20

A aplicacdo de H®? ao sistema quantico com espaco de estados definido na Eq. 1,
€ dada por

1111 a a+B+y+36
1 1 -1 1 -1 1 — -0
- o8 I I B (11)
211 1 -1 —1 ~ 2| a+pB—y-0

1 -1 -1 1 5 S)

Além das transformacdes de mdultiplos qubits, obtidas pelo produto tensorial de
transformagodes unitarias basicas, existem transformacdes controladas que modificam
o estado de um ou mais qubits considerando o estado corrente dos demais. Dentre
as transformagdes controladas, destacam-se:

CNOT (Controled NOT)

A transformacao quéantica CNOT recebe 2 qubits |¢)) e |p) como entrada e aplica a
transformacao NOT (Pauly X) a um deles (qubit alvo), considerando o estado corrente
do outro qubit (controle). Dessa observacao, percebe-se a possibilidade de algumas
configuragOes distintas para essa transformagao:

e Controle no Qubit |¢)): A modificagdo no qubit |¢) pode ser realizada quando o
estado de |¢) for |0) ou |1). No modelo de circuitos quanticos, essas operagoes
sao apresentadas de acordo com a Figura 2(a), respectivamente. Assim, tém-se
0S seguintes operadores matriciais que manipulam o vetor de estado do sistema:

01 00 « I} 1 0 00 « «
1 0 0 0 0100

e =l (12)
0010 ~ ~ 0001 ~ 5
0001 5 5 0010 5 5

e Controle no Qubit |¢): A modificagdo no qubit 1)) pode ser realizada quando
o estado de |p) for |0) ou |1). Analogamente ao caso anterior, as correspon-
dentes representacdes no modelo de circuitos quanticos sao apresentadas na
Figura 2(b), respectivamente. Os dois operadores matriciais que definem o com-
portamento dessa transformacao sao:

(13)

o = O ©
o O = O
o O O =
- o o o
S 2w 9
SRR ¢)
o O o =
- o o o
o = o o
[B e R S
> 2w Q
™ =2 o> 2

Toffoli

21

[\N \. ©) ©
(a) Portas com controle em (b) Portas com controle em
))

Figura 2: Transformacdes quanticas controladas CNOT

A transformacao controlada Toffoli é definida para trés qubits, de forma a aplicar a
transformacao Pauly X ao terceiro qubit quando os estados dos dois primeiros qubits
forem |1). A representacdao no modelo de circuitos quanticos € exemplificada pela
Figura 3.

[4)

©)

|W> O

Figura 3: Porta Toffoli no modelo de circuitos quanticos.

Controlled-U

Na transformacgao controlada CNOT, o operador Pauly X é aplicado ao qubit alvo
considerando o estado de um Unico qubit de controle. Porém, transformagdes con-
troladas genéricas (Controlled-U) (NIELSEN; CHUANG, 2003) podem ser definidas,
de forma a utilizar variadas configuragdes de qubits de controle e aplicar qualquer
transformacao unitaria U ao(s) qubit(s) alvo.

[¥) ’L
u

©) Y]

Figura 4: Porta Controlled-U no modelo de circuitos quanticos.

A partir da composicao, sequencial e sincrona, de transformagdes quanticas,
€ possivel realizar computagées (GROVER, 1996; SHOR, 1997; KNILL; NIELSEN,
2000; AARONSON, 2007) que exploram os fen6menos particulares da mecanica
quantica, obtendo ganhos frente aos melhores algoritmos classicos conhecidos.

2.1.3 Transformada de Fourier Quantica

A execucao da Transformada de Fourier Quantica (TFQ) se da pela aplicagao de
operadores de descolocamento controlados e Hadamard e pode ser descrito como

22

uma operacao de todo o sistema em termos de entradas e saidas dos corresponden-
tes estados na base computacional de um estado quantico.

Ao tomar n qubits, N = 2" estados classicos da base computacional {|j) : j =
0,...,N —1},aTFQ aplicada a cada |k) pode ser expressada como:

DFT(k) =161 = = Z e~ |j) (14)
onde {|¢x) : k=0,...,N — 1} denota a nova base ortogonal.

Na computagao da Eq. 14, realizada passo por passo em cada estado na base
ortogonal, o efeito de transformagdes controladas em cada qubit pode ser avaliada,
no vetor de estado do sistema quantico. Baseado na propriedade de superposicao
da computacao quantica, n qubits de entrada se transformam em N = 2" estados da
base computacional.

No entanto, a execucao de diferentes qubits da entrada pode ser realizada in-
dependentemente dos outros N — 1 componentes do vetor de estado num sistema
quantico, fazendo com que este problema adequado para explorar CPUs multi-core e
GPUs. Além disso, alcancar escalabilidade quando sistemas maiores como o algo-
ritmo quantico de fatoragao sao simuladas.

2.1.4 Algoritmo de Shor para Fatoracao Quantica

Considere o problema da fatoracao de numeros primos: “dado um inteiro posi-
tivo N (normalmente com varias centenas de digitos), como descobrir seus fatores
primos”?

E bem conhecido que fatorar N pode ser reduzida a tarefa de escolher aleatoria-
mente um numero inteiro a coprimo de N, e entdao a ordem r de a modulo N.

Esta abordagem para a fatoragcao permitiu que Shor construi-se seu algoritmo de
fatoracao para a computacao quantica (SHOR, 1994, 1997). Ele consiste em um pré-
processamento classico, um algoritmo quantico para procurar a ordem, e um pos-
processamento classico (WECKER; SVORE, 2014).

O Unico uso de computacao quantica no algoritmo de Shor é para procurar a ordem
de « modulo N, onde N é um inteiro de n bits que queremos fatorar. Adicionalmente,
o periodo r € o menor inteiro positivo que satisfaz a” = 1(mod N).

Dado um numero N para fatorar, o algoritmo segue os seguintes passos (BEAU-
REGARD, 2003):

1. Se N é par, retorne o fator 2.

2. Determine classicamente se N = pgparap > 1e g > 2 e se for o caso retorne o
fator p (isto pode ser feito em tempo polinomial).

23

3. Escolha aleatoriamente um numero a que satisfaca 1 < « < N — 1. Usando o
algoritmo de Euclides, determine se gcd(a, N) > 1 e se for o caso, retorne o fator
gcd(a, N).

4. Se r & impar ou r é par mas a’/? = —1(mod N), entdo va para o passo 3. Caso
contrério, calcule ged(a™? — 1, N) e ged(a’™/? + 1, N). Teste para saber se um
desses € um fator nao-trivial de N, e retorne o fator se for.

O algoritmo quantico para calcular a ordem usado neste trabalho é o descrito
em (BEAUREGARD, 2003), usando 2n + 3 qubits para fatorar um inteiro de n bits.

2.2 Consideracoes finais

Neste capitulo foram descritos os principais conceitos que fundamentam a CQ,
com énfase nas portas quanticas que estruturam os principais algoritmos utilizados na
validacao dos resultados desenvolvidos.

Foram brevemente estudas a evolucao das transformagdes Hadamard, a ca-
racterizada a geracao de estados de sobreposicao em sistemas multiqubits, com
representacao que faz uso de matrizes densas na modelagem do paralelismo
quantico. Em contraposicao, as portas controladas sao representadas por matrizes
esparsas geradas pela uso do operador Identidade.

Estas duas classes de transformacoes quanticas sao discutidas nos préximos
capitulos, e definem estratégias distintas quanto as otimizacdes propostas. A primeira
estratégia se reporta ao uso da parcialidade dos processos para controle da granu-
losidade das computagdes concorrentes, enquanto que na segunda, consideram-se
operacoes de decomposicao e redugao para minimizar as redundancias na iteracao
do operador identidade pela aplicacao do produto tensorial em sistemas multi-qubits.

Estes operadores sao considerados quando da simulagao do algoritmo de
Shor(SHOR, 1994), que para calculo da fatoracao de um nimero inteiro N primei-
ramente considera o algoritmo quantico de céalculo da ordem de um inteiro mddulo
N e na sequéncia, aplica a Transformagao Quantica de Fourier Discreta para descobrir
o periodo de uma funcao de forma eficiente.

No préximo capitulo, sdo reportados os principais simuladores estudados no con-
texto deste trabalho.

3 SIMULADORES QUANTICOS

Atualmente estdo disponiveis simuladores quanticos com diversas abordagens.
Dentre os mais relevantes, tem-se simuladores sequenciais que implementam
otimizagdes para representacao de transformacdes e de estados quanticos, redu-
zindo a quantidade de memodria requerida durante a simulacao, suportando sistemas
quanticos com mais de 30 qubits.

Também sao consideradas abordagens para simulagao paralela de algorit-
mos quanticos, focados na reducdo do tempo necessario para aplicacdo das
transformagdes quanticas pela exploracdo de clusters e GPUs.

A escolha dos simuladores considerados nesta sessdo estd embasada na
descricao apresentada em (MARON, 2013).

3.1 QuiDDPro

O simulador QuIDDPro, proposto em (VIAMONTES, 2007), utiliza estruturas de-
nominadas QulDDs (Quantum Information Decision Diagrams) para representar efici-
entemente transformacgdes e estados quanticos multidimensionais, os quais sao de-
finidos, matricialmente, por blocos de valores repetidos. Esses padroes de repeticao
ocorrem com frequéncia em varios algoritmos, sendo possivel obter uma significativa
reducao no consumo de memoria e no tempo de acesso as informacgoes.

Um QuIDD é uma representagao comprimida de matrizes e vetores, permitido que
computacoes sejam realizadas diretamente sobre essa estrutura otimizada. Exempli-
ficando, na Figura 5, tem-se a representacao de diferentes estados quanticos utilizado
QuiDDs. Na Figura 5(c), a aresta sdlida saindo do vértice I, equivale a assinalar o
valor 1 ao primeiro bit do indice de 2 bits. Ja a aresta tracejada do vértice I; equi-
vale a assinalar o valor 0 ao segundo bit do mesmo indice. Esses caminhos levam ao
valor —%, o qual é a amplitude do estado da base computacional indexado por |10).

Dessa representacao percebe-se que, para estados com amplitudes iguais, é ob-
tido um QuIDD extremamente simples. Para estados com muitas amplitudes diferen-
tes, nao é possivel obter compressao. Entretanto, tais estados nao sao usuais na

25

Vector representation ——_

i ("I!‘\‘ : I\/’% ~
(a) ! \ o) 1 (b) o (c)
; It ; P
1/2 4 3 ‘:/ Il\l :/I 1\‘ ' 0.26 "/ 1\-:‘ “/I l\“ 1/2 o
l P20 /*“/ —" D044y, S “;:x;;"k\'T'/f =172
VA I e Sl 2010, ST SRy,
KRR ECA R ERIERREN Ry, NS
12 1\0.80\—0.10 0.44‘0.26“
0) 1 2 3 0o 1

QulDD represenlalionﬁﬁ(

Figura 5: Exemplos de QuIDDs para diferentes estados quéanticos. Fonte: (VIAMON-
TES, 2007)

CQ. Transformagoes quanticas sao definidas de forma analoga, como visto nas Figu-
ras 6(a) e 6(b).

RoR,
11 1 17 \
00 2 2 2 2 R,
1 _1 1 _1 Co " Co = L3
01 2 2 2 T2
R, R,
11 1 1
10 2 2 2 T2 C, C C
1 _1 _1 1 :
1 | 2 T2 2 2 3 0 I
00 01 10 11
01 1212
COCI 01 2 3
(a) Definicdo matricial de H®? (b) Representagdo de H®2|00) usando
QuiDD

Figura 6: Transformacdes quanticas no QuIDDPro. Fonte: (VIAMONTES, 2007)

Varios resultados obtidos pelo QuIDDPro podem ser vistos em (GROUP, 2007).
Como destaque, tem-se a simulacao de instancias do Algoritmo de Grover para sis-
temas de até 40 qubits, no qual o consumo de memodria ndo ultrapassou 0, 398 MB,
enquanto que demais pacotes de simulacao ficaram limitados a sistemas de até 25 qu-
bits. Entretanto, por se tratar de um processamento sequencial, a simulacao demo-
rou 8, 23* segundos.

26

3.2 Massive Parallel Quantum Computer Simulator

O Massive Parallel Quantum Computer Simulator (MPQCS) (RAEDT et al.,
2006) consiste em um software para simulagao paralela de computadores quanticos,
podendo ser aplicado a maquinas paralelas high end ou a clusters de desktops co-
muns. Implementado em Fortran 90, o simulador suporta as transformacoes quanticas
universais necessarias para descricao de qualquer algoritmo quantico. O algoritmo
pode ser descrito a partir de um pseudo-cédigo, demonstrado na Figura 7, ou por
um circuito quantico, gerado a partir de uma interface grafica desenvolvida para MS
Windows. O circuito é interpretado e automaticamente gera o correspondente pseudo-
codigo.

QUBITS 32

INITIAL STATE O
MPIPROCESSES 32

! The command QUBITS sets the size of the quantum computer

! The initial state of the quantum computer is set to [0...0>
! Number of MPI processes is set to 32

! {not used by the OpenMP code)
1
1
1

HO Hadamard operaticn on gubit O
These lines are cmitted here but contain commands for
Hadamard operaticns carried out con gqubits 1-25

H 26 Hadamard operaticn on gubit 26

H 27 Hadamard operaticn on qubit 27

1
SWAP 1 0 27 ! Command to swap 1 pair of gqubits: gqubits O and 27
!
SWAP 1 27 28 ! Command to swap qubits 27 and 28

Figura 7: Pseudocodigo para descricao de uma aplicacao quantica no Massive Parallel
Quantum Computer Simulator. Fonte: (RAEDT et al., 2006)

A técnica de paralelizacdo do MPQCS consiste em distribuir o espaco de es-
tados do sistema quantico através de todos os nodos do cluster, utilizando o mo-
delo de programacao MPI para comunicacao entre os processos. A quantidade de
processos (N) MPI necessarios para construgcao do sistema quantico depende da
razdo N = 2L /2M onde L representa a quantidade de qubits do sistema e M é a quan-
tidade de qubits que cada processo é capaz de armazenar. Dessa forma, cada pro-
cesso tém acesso direto a um determinado intervalo do espaco de estados do sistema
quantico, enquanto que os demais estados sao acessiveis através de comunicagao
com o0s correspondentes processos. A Figura 8 descreve um cenario com L = 4 e
M = 2, associando o0s processos as respectivas amplitudes armazenadas.

- — (3 2 1 0)
3210
00 01 10 11
00[[a(0000) [a(0100)|a(1000) [a(1100)
01[[a(0001)|a(0101) [a(1001) [a(1101)
10[[a(0010)|a(0110) [a(1010) [a(1110)
11][a(0011)]a(0111)[a(1011) [a(1111)

Figura 8: Distribuicdo de amplitudes para 4 processos MPI. Fonte: (RAEDT et al.,
2006)

27

Os valores 00, 01, 10 e 11 fazem alusao ao rank de cada processo MPI. Ja 00, 01,
10 e 11 indexam as posicoes de memoria de cada processo.

Considerando que a aplicacdo de uma transformacao quantica sobre o sistema
usualmente altera as amplitudes de todos os estados, percebe-se a necessidade
de um método para obter as amplitudes armazenadas em processos diferentes.
Exemplificando, considera-se a distribuigcao ilustrada pela Figura 8 e a aplicagao da
transformagao quantica NOT ao qubit 2 do sistema. Para efetivacao dessa operagao,
€ necessario que cada processo MPI tenha conhecimento das amplitudes associadas
aos estados |0) e |1) do qubit 2. Essa condigao é satisfeita apds a troca de amplitudes
entre os processos, definida pela permutacao -, apresentada na Figura 9. Percebe-
se, agora, que todos 0s processos possuem as amplitudes associadas aos estados do
qubit 2. Assim, todos os processos podem aplicar, simultaneamente, a transformacgao
qguantica sobre esse qubit, caracterizando a evolucdo do estado global do sistema
quantico. Descricdes detalhadas de como essa troca é realizada podem ser obtidas
em (RAEDT et al., 2006).

3210 3210
“1—(3210) “2—(3012)
00 01 10 11 00 01 10 11

00{|a(0000) |a(0100)|a(1000)|a(1100)||a(0000) |a(((
01{/a(0001) [a(0101)|a(1001)|a(1101)|a(0100) |a(((
10)|a(0010) |a(0110) |a(1010)|a(1110) ||a(0010) |a(0011) |a(1010) |a(1011)
11|[a(0011) [a(0111) [a(1011) |a(1111)|[a(0110)|a(((

Figura 9: Distribuicao de amplitudes para N processos MPI considerando a
permutagao o,. Fonte: (RAEDT et al., 2006)

Os testes foram realizados em varios supercomputadores, como IBM BlueGene/L,
Cray X1E, IBM Regatta p690+, dentre outros. Os principais resultados demonstram
a capacidade de simulagado de sistemas com até 36 qubits, exigindo aproximada-
mente 1 TB RAM e 4096 processadores. Esse alto custo se deve ao armazenamento
explicito de todas as amplitudes que definem o estado do sistema quantico, impli-
cando no armazenamento de 23¢ valores complexos, usualmente representados por
dois dados do tipo float.

Em 2010, o MPQCS fez uso do supercomputador JUGENE para executar uma
instancia do Algoritmo de Shor com 42 qubits, fatorando o nimero 15707 em 113 x 139.
Para isso, foram necessarios 262.144 processadores, porém o consumo de memdria e
o tempo de simulacao requerido nao foram divulgados.

Dada a constante necessidade de comunicagao entre 0s processos, 0 simula-
dor exige uma rede de intercomunicacao de alta capacidade. Dessa forma, clusters
comuns, formados por PCs conectados por uma rede ethernet, apresentarao uma
limitagdo na quantidade de nodos que podem ser utilizados eficientemente, interfe-

28

rindo diretamente na dimensao dos sistemas quanticos suportados.

3.3 General-Purpose Parallel Simulator for Quantum Computing

A natureza inerentemente paralela associada a evolugdo de um sistema quantico
€ explorada, no General-Purpose Parallel Simulator for Quantum Computing (NIWA;
MATSUMOTO; IMAI, 2002), a partir do particionamento da matriz associada a
transformacgao unitaria em sub-matrizes. Essas sub-matrizes sao aplicadas, de forma
paralela, a sub-vetores associados ao estado do sistema quantico.

Para a aplicacdo de uma transformagcao sobre o qubit i, como ilustrado na Fi-
gura 10, faz-se necessario a geragao da matriz X a partir do produto tensor X =
(@) @ U @ (@_i D)

)

Figura 10: Transformacgao quantica de 1 qubit

A Figura 11 mostra uma representagao genérica para a matriz X, na qual tem-se
uma possivel decomposicao em termos de submatrizes S.

S[) U1 0 U192 0
5 0
e . 0 uyp 0 u12 i
= s e . = < k P
X where Sy oy 0ty 0 (0<k <2
52 _9 - .
0 Szi,l 0 U921 0 U292

an an—i

Figura 11: Matriz que define a evolucao do sistema quantico. Fonte: (NIWA; MATSU-
MOTO; IMAI, 2002)

A metodologia para particionamento de X depende da quantidade de processa-
dores disponiveis (27) no cluster. A matriz X é decomposta em um sequéncia de
multiplicagdes de submatrizes-subvetores indexadas por M (0 < k < 2%). M, é defi-
nido como sendo Si¢r, Ou seja, 0 produto S;, (2" x 2"7%) x ¢, (2""), onde ¢, é um
vetor que armazena as amplitudes dos estados do sistema quantico. Como todos os
produtos M (0 < k < 2Y) sdo independentes, tem-se a possibilidade de execugao
simultanea de 2~ multiplicagdes de submatrizes-subvetores em cada processador,
como exemplificado na Figura 12. Ao final da execugao de cada produto, tem-se uma
primitiva de sincronizagao para atualizar todas as amplitudes do vetor de estado do
sistema quantico.

29

S[) O CDD
S1 3] } (processor 0) Qpon—i
e O’k27?71+l
X|¢) = where ¢ =
#1= Q(ky1)2n—i—2
O’(k—’—l)Z“’i—l
0 Sai_g Pai_g } (processor 2F))
Soyi 1 Pai_q (0<k <2

Figura 12: Decomposicao da transformacao quantica. Fonte: (NIWA; MATSUMOTO;
IMALI, 2002)

Quando o numero de submatrizes S, € menor que a quantidade de processadores
disponiveis (2! < 2F), ocorre um desbalanceamento no cluster, fazendo com que deter-
minados processadores trabalhem de forma excessiva enquanto outros permanecem
ociosos. Assim, as matrizes S, devem ser decompostas para viabilizar a execugao
paralela. Essa decomposicdo se da pela divisdo de S, em 27+ chunks de linhas,
indexados por R;(0 < j < 2P+1), as quais armazenam 2"~i~("+1) linhas de .

As multiplicagbes de chunks indexados por R; e R,r,; Sa0 mapeadas para o
mesmo processador, conforme apresentado na Figura 13.

M,=8,0,:
Un Un @,
Rﬂ{ ~Un U ey
___ r__ar______-.
C U ! U ! PR
RI{ : . : ~ @iy
2"-1 { ! "'. [T (8P
i};’.ll ..E PRy .l.l‘ s p—— ...:I..,F.:ll R ———— /.. T
REP { . . U i : Un /
v v. /|l
R2P+I{ S O S ! / _________
) | JJ'f @ iy

Figura 13: Decomposicdo de M, e ¢, para casos em que 2! < 27, Fonte: (NIWA;
MATSUMOTO; IMAI, 2002)

Transformagdes quanticas também podem ser definidas a partir de matrizes de

30

rotagéo (Ur(0)) e de mudanca de fase (Up1(¢) € Upa(¢)), definidas por

cos —sind 1 0 e 0
Ur(0) = (sind cosd >, Up1(¢) = (0 i) e Upa(9) = (01) (15)

Por exemplo, a porta quéantica NOT pode ser obtida por Ur(3)Up: (7). Essa ca-
racteristica permite a implementacado de um modelo de erros, considerando a de-
coeréncia dos sistemas quanticos, a qual é simulada a partir da inser¢cao de pequenos
desvios nos angulos 6 e ¢, permitindo uma simulagao coerente com as teorias fisicas
qgue fundamentam a Teoria da Informacao Quantica.

O simulador foi desenvolvido sobre o computador paralelo Sun Enterprise (E4500),
o qual possui 8 processadores UltraSPARC-II (400MHz), 1 MB cache, 10GB RAM e
OS Solaris 2.8 (64 bits).

Dentre os resultados obtidos, destaca-se a simulagao de transformacbes Hada-
mard em um sistema quantico de 29 qubits, conforme apresentado na Figura 14.

Num. of Procs

Qubits 1 2 4 8
20 238 118 0.76 | 0.40
22 1085 | 573 | 320 | 1.35

24 46.94 | 2496 | 13.40 9.58
26 205.81 | 109.97 | 58.83 | 38.71
28 887.40 | 467.71 | 253.82 | 167.31
29 20279 | 1081.1 | 592.08 | 395.81

Figura 14: Tempos, em segundos, para simulacao de transformacbées Hadamard.
Fonte: (NIWA; MATSUMOTO; IMAI, 2002)

O simulador fica limitado em aproximadamente 29 qubits devido ao custo de arma-
zenamento do espaco de estados e da matriz de transformacao do sistema, os quais
crescem exponencialmente conforme sao adicionados novos qubits.

3.4 Quantum Computer Simulation using CUDA

O simulador quantico descrito em (GUTIERREZ et al., 2010) utiliza as premissas do
modelo de programacao CUDA para exploragao do paralelismo associado a evolugao
dos sistemas quanticos. Dessa forma, viabiliza-se a execucao do calculo das amplitu-
des associadas aos estados da base computacional a partir de um grande niumero de
threads, as quais executam sobre as unidades de processamento das GPUSs.

Essa abordagem considera o armazenamento explicito de todas as amplitudes
que definem o estado do sistema quantico, de forma que uma grande quantidade
de memoria é necessaria para suporte a simulacao de algoritmos complexos. A
obtencao das novas amplitudes dos estados nao se da por matrizes geradas a partir

31

da operacao de produto tensor, reduzindo o custo de processamento e armazena-
mento da simulagdo. As novas amplitudes sao definidas a partir das matrizes asso-
ciadas as transformacdes quanticas universais, de um e dois qubits. Essas matrizes
fornecem os coeficientes que serao multiplicados pelas amplitudes associadas aos es-
tados do sistema. A descricao detalhada do calculo das amplitudes pode ser estudado
em (GUTIERREZ et al., 2010).

Para realizagcao dos célculos, é necessario copiar todo o vetor de amplitudes para
a memoria global da GPU. Visando um acesso mais rapido a esses dados durante
a execucao das threads, os conjuntos de amplitudes a serem modificadas sao copi-
adas para a area de memoria compartilhada, a qual possui menor tempo de acesso.
Entretanto, faz-se necessario uma funcao de mapeamento que realize essa copia de
forma eficiente, garantindo um acesso coalescido a memdria, aproveitando a largura
de banda disponivel no barramento e evitando a serializagao das threads.

Cada bloco de threads é associado com determinados conjuntos de amplitu-
des (closed groups), os quais podem ser processados de forma independente. Cada
thread do bloco realiza, simultaneamente, a computacao associada a determinadas
amplitudes contida nos conjuntos. Esse mapeamento depende da granulosidade do
problema e da quantidade de recursos computacionais disponiveis. Dessa forma,
pode ser definido previamente que uma thread compute apenas algumas amplitudes
ou todas as amplitudes de varios conjuntos distintos. Na Figura 15 é apresentada uma
visao simplificada dos principais mapeamentos a serem realizados.

STATE VECTOR COEFFICIENTS

Computation:
Global MenD Closed groups
_ %
S :0,0//')‘9

computation
assignment

mapping for coalescing
aware implementation

Thread coordinates:
Block id + Thread id

Shared Memory
(Data Parallel Cache)

LOCAL COPY OF COEFFICIENT
SUBSETS PER BLOCK

Figura 15: Principais mapeamentos a serem feitos para computacao das amplitudes.
Fonte: (GUTIERREZ et al., 2010)

A analise de desempenho considera uma GPU NVIDIA GeForce 8800GTX e CUDA
1.1. As principais caracteristicas da GPU sao descritas na Tabela 2.

Cada amplitude € um valor complexo representado por 2 floats de 32 bits cada,
permitindo o armazenamento de até 26 qubits (22 amplitudes) no espago de memoria
global da GPU. Devido ao tamanho reduzido da meméria compartilhada, € possivel

32

Tabela 2: Principais caracteristicas da GeForce 8800GTX

Atributo | Valor
Multiprocessadores 16
Processadores em cada multiprocessador 8
Frequéncia de clock 1,35 GHz
Memoria global 768 MB

realizar a copia de até 2'° amplitudes, limitando a quantidade de amplitudes a serem
calculadas simultaneamente. Uma analise geral de desempenho ¢é vista na Figura 16.

n CUDA programming model on GPU Sequential code on CPU Speed-up
Gate-by-gate Coalescing-aware Libquantum Optimized teru/topy
t (msec) N ¢ nstg last t (msec) t (msec) t (msec)
Walsh
15 0.32 10 4 2 5/6 0.11 442 1.76 16.3
16 0.46 10 4 2 6/6 0.20 10.57 3.82 18.9
17 0.78 9 4 3 3/5 0.42 3242 7.90 18.7
18 1.39 9 4 3 4/5 0.81 83.07 18.82 231
19 2.68 9 4 3 5/5 1.63 179.72 47.89 29.4
20 5.41 9 5 4 3/4 3.48 380.81 100.45 289
21 11.07 9 5 4 4/4 7.15 825.84 210.78 29.5
22 22.82 9 5 5 1/4 15.41 1688.36 439.86 28.5
23 47.28 9 5 5 2/4 31.73 3364.75 919.95 29.0
24 98.26 9 5 5 3/4 65.39 7066.15 1927.47 29.5
25 203.69 9 5 5 4/4 135.15 15077.27 4052.66 30.0
26 422.36 9 5 6 1/4 290.08 32729.87 8774.42 30.2
QFT
15 0.46 10 4 2 5/6 0.13 535 10.58 82.7
16 0.63 10 4 2 6/6 0.24 13.07 18.86 77.0
17 0.98 9 5 3 4/4 0.52 42.67 40.09 77.8
18 1.62 9 4 3 4/5 0.98 120.39 86.90 88.6
19 2.99 9 4 3 5/5 1.96 254.19 187.59 95.8
20 5.78 8 4 4 4/4 4.14 520.33 389.25 93.9
21 11.60 9 5 4 4/4 8.57 1107.78 816.98 95.3
22 237N 8 4 5 2(4 18.26 2264.26 1715.42 93.9
23 48.84 8 4 5 3/4 37.67 4631.77 3588.86 95.3
24 101.04 9 4 4 5/5 76.60 9752.44 7492.01 97.8
25 209.12 9 5 5 4/4 161.58 22878.99 15642.21 96.8
26 433.03 8 4 6 2(4 343.30 55325.69 32692.91 95.2

Figura 16: Tempos de simulagado para transformagoes Walsh-Hadamard e TFQ.
Fonte: (GUTIERREZ et al., 2010)

As simulagcdes sequenciais realizadas consideram um PC com Intel Core2Duo
6400 @ 2,13GHz com 2GB RAM, utilizando a biblioteca libquantum para simulagao
guantica. Como principais conclusées, destaca-se que o tamanho da memdria fisica
da GPU limita de forma significativa a quantidade de qubits suportados. Entretanto,
para sistemas com até 26 qubits, um speedup de até 95x pode ser obtido, caracteri-
zando um excelente ganho de desempenho.

3.5 Language-Integrated Quantum Operations— LIQUi| >

LIQUi| > é um novo projeto de pesquisa na Microsoft (WECKER; SVORE, 2014)
que fornece uma arquitetura de software para computacao quantica independente de
hardware. Ele contém uma linguagem embutida, de dominio especifico projetado para
algoritmos de programacao quantica, com F# como a linguagem host. Também per-

33

mite a extracdo de uma estrutura de dados de circuitos que pode ser utilizado para
otimizacgdes, gerando uma versao compacta, altamente otimizada para simulacgao.

Dois ambientes de simulacao diferentes estao disponiveis para o usuario que per-
mitem que um frade-off entre 0 nimero de qubits e classe das operacdes.

O simulador LIQU:| > é altamente otimizado, tirando vantagem de varias técnicas
disponiveis, incluindo gerenciamento personalizado de meméria, paralelizagao, “gate
growing’, e virtualizagao (execug¢ao na nuvem).

O simulador possui uma versao disponivel para download no GitHub, porém ela é
limitada para simulagdées de no maximo 23 qubits, e permite a definicdo e simulacao
de circuitos usando a linguagem F#. LIQU:| > é um programa executado por linha de
comando e possui algoritmos ja incluidos para simulagao, um exemplo de saida para
a execucao do comando Liquid.exe __Shor(21,true) que executa o algoritmo de Shor
otimizado para o numero 21 pode ser visto na Figura 17.

10000.0/

10000, 0/= The Language-Integrated qQuantum operations (LIQUi|>) Simulator =
10000, 0/= Copyright (c) 2015,2016 Microsoft Corporation

10000, 0/= If you use LIQUi|> in your research, please follow the guidelines at =
1 0000.0/= https: //github. com/msr-quarc/Liquid for citing LIQUi|> in your publications. =
10000, 0/

10000, 0/

1 0000. 0/=============== Logging to: Liquid.log opened ================

10000, 0/======== Doing Shor Round ==s=======

10000, 0/ 21 N = Number to factor

10000, 0/ z a = coPrime of N

10000, 0/ c = number of bits for N

0000, 0/ 32 2An

10000, 0/ 13 total qubits

10000.0/ 96.00% prob of random result (983/1024)
prob of Shor (worst case)
Compiling circuit

mins for compile

10000.0,/ 43.07%
10000.0/
:0000.0,/0.001156

10000, 0/ 13830

o]
10000, 0/ 30 = starting memory (ME)
= cnt of gates

1 0000. 0/ 3873 cache hits

10000, 0/ 121 cache misses

10000, 0/ 30 compiled memory (MB)

10000, 0/ wrapping circuit pieces

0000, 1/ 8 = wires have possibles: &8 (prv= 0GB did= 0 big=)]
10000, 1/ 2 = wires have possibles: 57 (prv= 0GB did= 3 big= 47
10000, 1/ 10 = wires have possibles: 52 (prv= 0GB did= 14 big= 39)
10000, 1/ 11 = wires have possibles: 51 (prv= 0GB did= 15 big= 81)
10000, 1/ 12 = wires have possibles: 48 (prv= 0GB did= 18 big= 124)
10000, 1/ 13 = wires have possibles: 47 (prv= 0GB did= 19 big= 166)
0000, 1/ 14 = Ran out of wires

10000, 1) MM: g: 13 b: 212 12=1 11=3 10=1 9=5 B=9

10000.1/0.118196 = mins for growing gates

0000. 1, 470 = cnt of gates

0000, 1/ 53 = grown memory (MB)

10000, 1/ Bit: 3 [MB: 41 m=1]

1 0000.2/ Bit: 3 [MB: 54 m=1]

10000, 4/ Bit: 7 [MB: 42 m=0]

1 0000.5/ Bit: & [MB: 42 m=1]

10000, 6/ Bit: 5 [MB: 43 m=0]

10000.6/... compiling MB= 200 cache(19785,126) GC:5611

10000.7/ Bit: 4 [MB: 44 m=1]

10000, 9/ Bit: 3 [MB: 44 m=0]

10001, 0/ Bit: 2 [ME: 44 m=1]

10001.1/ Bit: 1 [MBE: 44 m=0]

10001.1/... compiling ME= 200 cache(35697,126) GC: 4476

0001 Bit: o [MB: 44 m=1]

2/
10001, 2/0.026858 = mins for running
10001, 2/ 74.3236 Total Elapsed time (seconds)

10001, 2/ 13 Max Entangled

HivInla i - o] Gates Permuted

1o001.2/ 371 State Permuted

10001, 2/ 128 None Permuted

10001, 2/ 582 m = quantum result
:0001.2,/0.666992 C = 683,/1024 =~ 2/3
10001, 2/ odd denominator, expanding

10001.2/ 3 = §/2 = exponent

L L = T T 1 1 1

CDO000000D000T

ooo1.z2/ k] zh3 + 1 mod 21

o001.2/ 7 243 - 1 mod 21

0001, 2/ 7 factor = max({3,7)

:0001.2/C5V N & m den f1 f2z good,21,2,683,6,7,3,1

10001, 2/G0T: 21= X 3 co= z n,0=21,13 mins=1.24 SUCCESS!
10001, 2 /=============== Logging to: quufd.1gg closed ================

Figura 17: Saida de uma execug¢ao no simulador LIQU| >.

LIQUi| > apresenta simulagdes de até 30 qubits em uma Unica maquina de 32 GB
RAM limitado somente por memoria e threads, resto da arquitetura nao especificado.
A Figura 18 mostra os tempos de simulagao do algoritmo de Shor apresentados

34

em (WECKER; SVORE, 2014), sendo a linha com os menores tempos a ultima versao
do simulador apéds inserida todas as otimizagdes. O maior nimero fatorado até o mo-
mento possui 13 bits, sendo necessario 27 qubits, meio milhdo de portas e 5 dias de
execucao. O circuito utilizado para a parte quantica do algoritmo de Shor € o mesmo
citado neste trabalho.

1.E+7

Minutes to factor m_
1E+6 year -
month 3

- N\ -

’ b~
1.E+1 /’;//
minute A
1E+0
/ / | 9 mins
1E1

1E-2

bits to factor

IS

5 6 7 8 9 10 11 12 13 14

Figura 18: Tempos de simulagdo para o algoritmo de Shor no simulador LIQUi| >.
Fonte: (WECKER; SVORE, 2014)

3.6 Consideracoes Finais

A proposta considerada pelo QuIDDPro é significante pela capacidade de redugao
no consumo de memoria, viabilizando a simulacdo de sistemas com até 40 qubits. O
QuIDDPro apresenta bons resultados quando existem padroes repetidos na estrutura
matricial, ou seja, € eficiente em determinadas classes de algoritmos e pode nao apre-
sentar a mesma eficiéncia para casos genéricos. Apesar do ganho de memdria obtido,
em determinadas configuracdes de transformagdes quanticas o tempo de simulacao
ainda permanece alto. Esse obstaculo pode ser superado através da paralelizagao
das tarefas.

Os simuladores paralelos descritos neste capitulo representam transformagdes
e estados quanticos explicitamente a partir de matrizes e vetores, respectivamente.
Dessa forma, as possibilidades de simulagdao sao limitadas pela quantidade de
memoria disponivel do cluster utilizado. Entretanto, € possivel obter ganho no tempo
de simulacao pela paralelizacdo do produto matriz-vetor que caracteriza a evolugcao
de estado do sistema quantico. A distribuicao das amplitudes dos estados ao longo
dos nodos também é uma estratégia adotada, porém apresenta elevado custo de

35

comunicagao.

O simulador LIQUi| > apresenta diversos tipos de otimiza¢des, € o mais atual
entre os simuladores citados e disponibiliza a ferramenta para simulagdes. Além
destas caracterizagcOes, acrescenta-se que este simulador considera o mesmo cir-
cuito quantico para o algoritmo de Shor que foi utilizado nas implementacdes para
validacdo do ReDId. Justifica-se portanto a escolha do simulador LIQU:| > para rea-
lizar comparagoes com os resultados alcangados no desenvolvimento deste trabalho,
as quais sao apresentadas nos proximos capitulos.

4 REDID: ESTRATEGIA PARA REDUGCAO DA COMPLEXI-
DADE ESPACIAL E TEMPORAL

Em trabalhos anteriores (MARON et al., 2012; MARON; REISER; PILLA, 2013;
AVILA et al., 2014), processos relacionados a TQs n-dimensionais eram definidos por
um conjunto de matrizes basicas de baixa ordem para reduzir a meméria usada nas
simulagdes devido ao crescimento exponencial da sua representagao por uma unica
matriz (2" x 2").

Por exemplo, considere a TQ H*%, ao invés de armazenar uma matriz de 28 x 2%, o
produto tensor poderia ser realizado somente entre pares de operadores gerando um
conjunto com 4 matrizes de 2% x 22, como mostrado na Figura 19.

Figura 19: Matrizes Basicas para a Transformagao H*®

Os elementos necessarios na computagao da simulagao da TQ eram gerados em
tempo de execugao por iteracdes sobre estas matrizes, modelando a expansao ex-
ponencial da memdria decorrente da aplicacdo do produto tensorial. No entanto, o
tempo total computacional gasto nestas iteracoes € alto quando se da a execucao
de TQs compostas por muitos operadores densos, como no caso das transformacoes
Hadamard.

As principais otimizacdes propostas pela estratégia ReDld estao principalmente
relacionadas a reducao da complexidade espacial e temporal associada a simulacao
de uma TQ, pelo uso inteligente do operador Identidade.

Abordagens distintas foram usadas para alcangar bons resultados, e elas sao des-
critas nas segoes a seqguir.

37

4.1 Replicacoes e Esparcialidade do Operador Identidade

A primeira otimizagao explora o comportamento do operador Identidade (/) quando
aplicado o produto tensorial com outros operadores. Nestes casos, a diagonal prin-
cipal do operador Identidade composta por valores unitarios (1) gera a replicagao de
dados referentes aos outros operadores e a diagonal secundaria composta por valores
nulos (0) introduz a esparcialidade na matriz resultante.

Como um exemplo deste comportamento, considere a Eq. 16 para a transformagao
I ® H, ao analisar a matriz resultante do produtor tensor entre esse operadores pode-
se facilmente verificar que os valores da matriz correspondente ao operador H sao
replicados (duas vezes) e a quantidade de valores zeros gerados € igual a duas vezes
0 numero de elementos do operador H.

Jag (10 11 1) 1
=01)% m\ 4)T

Assim, quanto maior for a quantidade de operadores I presentes em uma TQ,
maior sera também a quantidade de elementos replicados e da esparcialidade na
matriz que representa esta TQ.

Por exemplo, uma TQ de 20 qubits com apenas um operador diferente de I, cada
elemento deste operador seria replicado 2! vezes e 22! zeros seriam gerados.

Quando considerado o método desenvolvido em trabalhos anteriores, as
replicagcoes e esparcialidades inseridas pelo operador / nao sao tao significantes
em relagao a complexidade espacial, pois o operador I nao altera o resultado da
computagao na composicao com outro operador. Porém, sdo inseridas inUmeras
iteracoes pelas replicacoes, o que aumenta significativamente o nimero de operacoes
de uma computagao, incrementando a complexidade temporal.

Considerando as argumentacées acima, o trabalho considerou otimizar a
representacao das TQs ao armazenar somente a expansao do produto tensorial en-
tre operadores diferentes de I gerando assim uma matriz reduzida (MR), evitando a
replicacao de dados e insercao de esparcialidade gerada pelo operador I, resultando
entdo na diminuicao da complexidade espacial das TQs assim caracterizadas.

Porém ao utilizar esta forma de representacdo nao € possivel considerar a forma
convencional de calculo das novas amplitudes do estado quantico, caracterizada pela
multiplicacao entre matriz/vetor (processo-TQ/estado-vetor), uma vez que a ordem da
MR é sempre menor, no maximo igual, a dimensao do estado. Portanto, para usar
esta otimizacdo € preciso adotar uma abordagem diferente que sera explicada na

O O ==
|
-

_ = O O

—1

38

sequéncia.
Informacoes relevantes referentes a nova abordagem de calculo da multiplicacao
matricial:

e Considera-se a representacao binaria das linhas/colunas da MR e das
posicoes (leitura e escrita) das amplitudes nos estados quanticos.

e A quantidade de bits utilizada para cada estrutura € a minima necessaria, ou
seja, para linhas/colunas € o equivalente ao nimero de operadores diferentes de
I na MR, e para as posicoes das amplitudes estados é o equivalente ao nimero
de qubits da aplicacao.

e Cada bit das posi¢oes das amplitudes esta relacionado a um operador da TQ. O
mais significativo, ao operador do primeiro qubit; segundo mais significativo, ao
operador do segundo qubit, e assim sucessivamente até esgotar a dimensao do
operador.

¢ Bits relacionados a operadores distintos do operador I sao considerados bits-
ativos.

Utilizando as informacgoes resumidas citadas, os passos para realizagao do calculo
de cada nova amplitude sao descritos abaixo:

e (i) Identificacao da linha da matriz MR a ser usada - este processo é feito
pela concatenacao dos bits-ativos da posicao referente a nova amplitude, sendo
0 numero resultante a linha desejada;

e (ii) Multiplicacao dos elementos desta linha por amplitudes do estado de
leitura - a amplitude pela qual cada elemento sera multiplicado é determinada
substituindo os bits da coluna deste elemento na MR pelo bits-ativos da posicao
da nova amplitude;

e (iii) Atribuicao do valor da nova amplitude - este valor resulta da soma das
multiplicagbes realizadas no passo anterior.

Como exemplo, considera-se a aplicagado de um operador genérico ao primeiro
qubit e ao segundo qubit de um estado bi-dimensional dados pelas Egs. 17 e 18,
respectivamente. Os elementos da matriz M R estao descritos na forma m;;, onde i e
j sao sua linha e coluna, respectivamente. As amplitudes dos estados estao descritas
na forma a;, onde b é a posicdo da amplitude no estado. Nos estados, os bits-ativos
estao em outra cor, para facilitar a visualizacao grafica e, consequente compreensao
da metodologia adotada.

39

apo Qgp X Mgg + Aa19 X M1
mMge Mgy y apr | | ap1 X Mmoo + a1 X Moy (17)
mi;o My Ao Agp X Myg + A10 X Mqq

ai Qg1 X Myg + a11 X Mqq

ago Qgp X Mg + ag1 X Mgy
Moo Mor | | 301 | _ | &oo0 X Mig +agr X myy (18)
mj;o mMjy aio a10 X Moo + a11 X Mypoq

ai A0 X Myg + a1 X Myq

Para um exemplo mais detalhado do calculo de uma nova amplitude, considere o
calculo do novo valor da amplitude referente a posicao aggoo a0 aplicar a TQ genérica
U®I®U®I aum estado 4-dimensional. A MR gerada é U ® U, pois a TQ possui
operadores diferentes de I no primeiro e no terceiro qubit, e esta descrita na Eq. 19.

Seguindo os passos apresentados anteriormente, tem-se que
(7) ao concatenar os bits-ativos da posi¢cao da amplitude, os quais estao identificados
com vermelho, temos o valor 10 que sera a linha a ser utilizada;

(17) cada elemento da linha 10 € multiplicado por uma amplitude — (mjg00 X agooo) —
(mggo1 X ago10) — (M1010 X A1000) — (Moo11 X A1010); €

(7i1) atribui-se a soma das multiplicagdes a posi¢cao 0000 do estado de escrita.

Mgpgoo 1Mgpoo1 Mpoi0 Mypo11
Mpi1p0 Mgpipo1 Mp110 Mypo11
UoU = (19)

mMjpoo0 Mppo1 Mip10 Mpo11

mMjjp0 Mgoo1r Mii10 Mygo11

Esta otimizacdo também pode ser aplicada aos operadores controlados. Nestes
casos, somente as posi¢oes do estado de escrita que satisfazem o controle sao cal-
culadas, as que nao satisfazem sao atribuidas o valor no estado de leitura correspon-
dente a sua posicao. Como exemplo, considere a aplicacao de um operador controlado
genérico ao primeiro qubit, com controle em 1 no segundo qubit, o calculo ficaria como
descrito na Eq.20.

40

apo aopo
mgg Mgy Aol Qg1 X Mgg + a1 X Moy
X = (20)
mjo IMjg aio aiog
ai Qg1 X Myg + a11 X Mqq

Embora este conceito otimize de forma significativa a representacao de TQs envol-
vendo operadores I, nem todas apresentam operadores I ou uma quantidade sufici-
ente que torne possivel representa-las através de uma Unica matriz na memoria.

Assim, para superar esta limitagcdo, a préxima otimizacdo considera a
decomposicao de TQs.

4.2 Decomposicao de TQs

Uma TQ n-dimensional pode ser decomposta aumentando o nimero de passos
para o calculo da mesma, distribuindo os operadores diferente de I ao longo destes
passos, preservando o comportamento e propriedades da TQ. Esta decomposicao
permite o controle (e/ou incremento) da quantidade de operadores I presentes em
cada etapa de uma aplicacao quantica.

Na Figura 20, mostra-se a decomposicao da transformagao H ® H em duas etapas,
H®Iel® H, mantendo 0 mesmo comportamento da aplicacao independentemente
da ordem de composicao destas etapas.

+HF | _ |
+nF | | —HF

— i
fi—

Figura 20: Transformagao nao-controlada decomposta

TQs controladas também podem ser decompostas, desde que os operadores con-
servem os controles associados a eles, como mostra a Figura 21.

Figura 21: Transformagao controlada decomposta

Utilizando este conceito, pode-se maximizar o impacto da otimizacao descrita na

41

secao anterior, pois podera ser usada mesmo quando a quantidade de operadores [
da TQ for pequena ou até mesmo ausente.

Estas duas otimizagGes viabilizam a simulagao de um algoritmo quantico de foma
eficiente, os quais nao fazem uso de matrizes de menor ordem para simular o compor-
tamento do produto tensor e geragao, por simulacao via computadores convencionais,
dos novos estados quanticos.

No caso das otimizagoes por reducoes, a complexidade espacial pode ser redu-
zida, limitando o numero de operadores diferentes de I presentes em cada passo da
decomposicao e tornando possivel a representacdo na memoéria de cada passo por
uma unica matriz reduzida.

Além deste resultado, tem-se também a redugdao da complexidade temporal.
Pois, mesmo com o aumento do numero de passos, nao se tornam mais ne-
cessarias iteracoes, o que diminui muito o nimero total de acessos a memoria e de
multiplicagdes envolvendo numeros complexos.

4.3 Processos Mistos Parciais

Apesar de ser possivel modelar TQs com baixa complexidade espacial, usando
ambas abordagens mostradas nas secoes anteriorores, o tamanho dos estados de lei-
tura/escrita podem se tornar um fator limitante para simulacao de TQs n-dimensionais,
pois estes também crescem de forma exponencial (2"). Por exemplo, uma TQ multi-
dimesional, na ordem de 28 qubits, precisa 4 GiB de memdria para armazenar ambos
estados.

Uma vez que a meméria das GPUs normalmente sao menores que a memoria
RAM principal, € necesséario adotar uma abordagem que fornega escalabilidade para
a simulagao de TQs multi-qubits.

O conceito de Processos Mistos Parciais (MPP), apresentando em (AVILA et al.,
2015), prové controle sobre o tamanho dos estados de leitura/escrita no célculo de
uma TQ, contribuindo para o aumento da escalabilidade.

Baseando-se neste conceito, TQs com mais qubits que o limite suportado pela
memoria da GPU, podem ter seus estados particionados em 27 sub-estados, onde p
indica o numero de qubits acima do limite, tornando possivel a simulacao da TQ.

Usando as otimizagcdes descritas anteriormente, o nimero de sub-estados de lei-
turas que cada sub-estado de escrita precisa acessar para realizar o calculo de suas
amplitudes é 2", sendo r 0 niumero de operadores afetados pelo particionamento.

Por operadores afetados entende-se o numero de operadores diferentes de I pre-
sentes nos p primeiros qubits da etapa da computacao. Logo, etapas que nao pos-
suam operadores afetados precisam somente do correspondente sub-estado de lei-
tura, o que as torna totalmente independentes.

42

Para manter a consisténcia do resultado das computagdes concorrentes na
aplicagao em simulagdo, cada etapa incluindo operadores afetados precisa calcular
os todos os sub-estados antes de prosseguir para o préxima etapa, respeitando as
dependéncias geradas.

As etapas envolvendo operadores nao-afetados podem ser calculadas da mesma
forma ou podem ter cada sub-estado calculado de forma iterativa, pois ndo ha de-
pendéncias, ou seja, cada sub-estado de escrita precisa somente do correspondente
sub-estado de leitura para realizagao do calculo.

No caso de envolverem operadores afetados, somente os sub-estados que
satisfacam tais controles precisam ser calculados e acessados para leitura.

4.4 Consideracoes Finais

Este capitulo descreveu as principais otimizagdes propostas pela estratégia ReDld
para a concepgao e modelagem de um novo algoritmo visando a reduc¢ao da comple-
xidade espacial e temporal das simulagdes quanticas.

Fez-se uso de construtores como replicacao e esparcialidade para viabilizar uma
representacao de TQs otimizada pelo uso inteligente do operador Identidade.

Além destes, a escalabilidade das aplicacdes pode ser incrementada ao considerar
o conceito de decomposicao de operagdes concorrentes.

No Capitulo 5, apresentam-se exemplos dos conceitos que modelaram a
concepcao do novo algoritmo, e validaram a simulacao de algoritmos quanticos como
TQ de Hadamard, TQF e o algoritmo de Shor.

5 ESTUDO DE CASO: IMPLEMENTACAO DA ESTRATEGIA
REDID NO D-GM

Este capitulo descreve o ambiente D-GM e seus principais componentes e a
implementacao da estratégia ReDld neste ambiente, considerando uma arquitetura
de software heterogénea, viabilizando a computagao via CPUs e GPUs.

5.1 Ambiente D-GM

O projeto D-GM propoe um framework (AVILA et al., 2014) para simulagao de
algoritmos quanticos, com interfaces graficas para modelagem, desenvolvimento e
implementacao de simulagées, sequencialmente ou em paralelo, usando GPUs e
CPUs. A Figura 22 apresenta a organizacao do D-GM em seus diferentes niveis.

Cada nivel diferente tem sua propria funcionalidade no sentido da unificacao da
modelagem e simulacao de aplicagoes:

Quantum Circuit Level: prové a descricao de aplicacdes no modelo de circuitos
quanticos através do uso das ferramentas para modelagem e edicao qCEdit (Quantum
Circuit Editor) e sua versao para plataformas moéveis M-qCEdit (GNUTZMANN, 2013),
as quais fornecem a opcao de automaticamente exportar as aplicacées para uma
representacao de acordo com o modelo qGM (Quantum Geometric Machine).

qGM Level: contendo o ambiente VPE-qGM que tem o objetivo de oferecer su-
porte a modelagem e simulagao de algoritmos quanticos considerando as abstracoes
do modelo gGM. Dentre os componentes arquiteturais do ambiente, os seguintes sao
destacados:

e gPE (Quantum Process Editor): IDE para o desenvolvimento grafico dos algorit-
mos;

e gME (Quantum Memory Editor): interface para definigao do estado inicial do
sistema quantico. Um grid de memodria armazena cada estado basico e a cor-
respondente, modelando um vetor de estado de forma analoga a descrita na
Eq. 1;

Quantum
Circuit
LEVEL

Hardware
LEVEL

Figura 22: Framework do Simulador D-GM. Fonte: (AVILA et al., 2014)

- [

[ac_to_aeMm {51 XML files|

Interface

Remote Simulator

Remote Simulation

Manager
qPE qME
N |
N VIrD qC_to_qGMm
Connection gs Converter
VirD VirD
Launcher Loader
N VPE | VirD
Connection Executor
h 2 I
VirD-Clients
Server
(virD) p—"
(a1 [
Server

(VPE)

44

e ¢S (Quantum Simulator): A partir das estruturas definidas nas interfaces do qPE
e gME, o gS realiza a simulagao do algoritmo quantico, suportando duas aborda-

gens: (i) simulagao passo-a-passo, a qual é relevante para viabilizar uma analise

detalhada da evolucao da simulacgao; (ii) simulacao distribuida;

e qGM-Analyzer: Biblioteca para realizagcao das computacoes associadas aos
componentes que descrevem cada passo do algoritmo quantico, estando inte-
grada a interface gS. O suporte para aceleracao por GPU é estabelecida nesta

biblioteca.

D-GM Level: modulo de gerenciamento de simulagées distribuidas, Virtual Dis-

tributed Geometric Machine (VirD-GM) (AVILA et al., 2014), que se encarrega pela
comunicacao, escalonamento e sincronizacdo quando uma simulacao distribuida é
requisitada pelo VPE-qGM. A execucao distribuida de aplicacdes a partir do VirD-GM
se da através do uso de Processos Mistos Parciais. Os seus principais componentes
sao descritos abaixo.

e VirD-Loader: responsavel pela interpretagao de arquivos descritores contendo o
algoritmo a ser simulado e seu vetor de estado inicial.

45

e VirD-Launcher: realiza o escalonamento e controle de fluxo de execucao das
tarefas.

e VirD-Exec controla a comunicagao e transferéncia de dados entre os clientes de
execugao, nomeados Vird-Clients.

5.2 Implementacoes

Nesta secao, descreve-se a implementacao de uma nova biblioteca de execucao
para o ambiente D-GM em linguagem C/C++ que forneca suporte a simulagcao de al-
goritmos quanticos multi-qubits, sequencialmente e em paralelo, em CPUs e GPUs.
Esta implementacao utiliza a estratégia ReDId em acordancia com a descrigao ja apre-
sentada no Capitulo 4, que visa a reducao da complexidade espacial e temporal nas
simulacoes e aplicacoes.

A estratégia adotada para realizar a decomposicao de TQ no ambiente D-GM pode
ser dividida em duas partes:

(1) classificacao da TQ em grupos, separando operadores nao-controlados e com
controles distintos.

(2) definicao dos passos da TQ, cada um é formado por operadores que
pertencam ao mesmo grupo € atuem em qubits consecutivos respeitando o li-
mite de operadores por passo estabelecido. Em caso de particionamento da
memoria, operadores afetados e ndo-afetados ndo podem fazer parte do mesmo
passo.

Um exemplo € mostrado na Figura 23 para uma TQ de 9 qubits considerando limites
de 3 operadores por passo e de 8 qubits para execucao. Seguindo os passos descritos
anteriormente, a TQ primeiro é dividida em 3 grupos e entdao em 5 passos. O grupo
1 gera dois passos apesar de ter 3 operadores consecutivos, pois o primeiro qubit &
afetado pelo particionamento da memoria.

Nas sub-secodes a seguir sao discutidas as implementacdes do algoritmo para CPU
e GPU.

5.2.1 Computacao em CPU

Os melhores resultados em CPU usando a abordagem de decomposicao descrita
acima foram alcangados quando o limite de operadores por passo de 1 e 2 foram
considerados. Por isso, foi optado por calcular a TQ operador por operador, 0 mesmo
que limite de operadores de 1, a fim de realizar otimizacoes direcionados ao tipo de
operador calculado. Os operadores podem ser classificados em dois tipos:

(1) Denso - operadores definidos por matrizes que ndao possuem valores nulos. Es-
tes operadores nao permitem a aplicagao de otimizagdes mais agressivas; e

46

TQ GRUPOS PASSOS
1 2 3 1 2 3 4 5

&}

= &

FHHx—e

Figura 23: Exemplo de decomposicao para uma TQ.

(i) Esparsos - operadores definidos por matrizes com valores nao-nulos somente
na diagonal principal ou na diagonal secundaria. Nesses casos, otimizacoes
descartando computacoes envolvendo valores nulos podem ser aplicadas.

Para exemplificar estas otimizagdes, considere a aplicacao de operadores
genéricos dos dois tipos ao primeiro qubit de um estado 2-dimensional. O calculo
de operadores densos ocorre como descrito em Eq. 17. Para operadores esparsos,
Egs. 21 e 22 definem como cada amplitude pode ser calculada usando um unico valor
da matriz e do estado, enquanto operadores densos precisam de dois valores de cada
estrutura.

apo ago X Moo

Moo 0 aopl ag1 X Moo
X = (21)

0 my; aio ajo X My

agy ay; X My

A0 1o X Myq

0 my; aop1 ap; X Moy
X = (22)

mjo 0 aio ago X Myjg

ail ag1 X Mjo

A execucao de uma TQ se da operador por operador. Para cada um, é identi-
ficado o seu tipo e entdo o correspondente laco é executado a fim de produzir as
novas amplitudes. As implementacoes paralelas em CPU foram implementadas em

47

OpenMP (OpenMP Architecture Review Board, 2015), replicando o cédigo da versao
sequencial explicada acima e adicionando a diretiva “parallel for” nos lagos onde as
novas amplitudes sao calculadas.

5.2.2 Computacao em GPU

Depois de realizar a decomposicao da TQ de acordo com os parametros recebidos,
o calculo dos passos € realizado.

Como descrito na Secao 4.3: passos afetados sao calculados um por um, sendo
realizada uma chamada de kernel para cada combinacao entre sub-estados de escri-
tas e sub-estados de leitura necessarios para o calculo. Todos os passos nao-afetados
sao calculados um sub-estado por vez, realizando chamadas de kernel de forma ite-
rativa a fim de reduzir a comunicacao entre host e GPU, uma vez que o sub-estado
de escrita resultante do calculo de um passo pode ser mantido na memoaria da GPU e
servir como sub-estado de leitura para o proximo passo.

Cada chamada do kernel CUDA recebe os seguintes parametros para execugao:

Estados (sub-estados) de leitura/escrita;

Matriz reduzida do passo a ser computado;

Valores e posicoes dos controles (se existirem);

Informacgodes de acesso as estruturas que possuem os dados citados acima.

A computacao do kernel CUDA é dividida em 5 passos, descritos a seguir.

Passo 1: Identificacao do lineld de cada thread, calculado usando informacao
sobre a thread atual e do controle. O lineld define qual amplitude sera calculada por
cada thread.

long read_shift = arg[SHIFT_READI];

long shift_write = arg[SHIFT_WRITE];

long lineId = (blockIdx.y * gridDim.x + blockIdx.x) *
blockDim.x + threadlIdx.x;

if (arg[CTRL_COUNTI]){
for (i = arg[CTRL_COUNT] - 1; i >= 0 ; i--){
lineId = (lineId*2) - (lineId & (1 << (ctrl_pos[i]) - 1));
}
lineId = lineId | arg[CTRL_VALUE];
}
lineId = lineId | shift_write;

Passo 2: Inicializacao de variaveis locais a cada thread.

48

long p = arg[MAT_START];

long size = arg[MAT_SIZE];

long shift = arg[SHIFT];

long read_mask = (size - 1) << shift;

long inc = 1 << shift;

long read_pos = (linelId & “read_mask) + (p << shift);
long base = ((lineId & read_mask) >> shift) * size;
long end = arg[MAT_END];

long read_shift = arg[SHIFT_READI];

Passo 3: Computacao da nova amplitude parcial usando as variaveis do passo
anterior, que definem acessos a matriz e estados.

cuFloatComplex accum = make_cuFloatComplex(0.0,0.0);
for(; p < end; p++){
accum = cuCaddf (accum, cuCmulf (readMem[read_pos - read_shift],
matrix [base+pl));

read_pos += inc;

Passo 4: Armazenamento e acumulacao da nova amplitude, calculada e escrita
na memoria global da GPU.

lineId -= shift_write;
if (arg[ACUMMI])

writeMem[lineId]= cuCaddf (writeMem[lineId],accum);
else

writeMem[lineId]= accum;

Passo 5: Copia das amplitudes das posicdes complementares aos controles do
estado de leitura para o estado de escrita.

if (arg [CTRL_CMPL]){
lineId = lineld & ("“arg[CTRL_MASKI1);
for (i = 0; i < arg[CTRL_CMPL]; i++){
p = lineId | ctrl_cmpl([i];

writeMem[p] = readMeml([p];

6 RESULTADOS

A principal contribuicdo deste trabalho pode ser avaliado através da simulagao de
trés classes de TQs:

(1) simulagbes Hadamard de 21 até 28 qubits;
(2) simulacdes de Transformadas de Fourier Quantica de 26 até 28 qubits;

(3) simulacdes do algoritmo de Shor considerando niumeros de 6 até 12 bits, ou seja,
aplicagcdes de 15 até 25 qubits.

Simulagdes sequenciais e paralelas até 4 Threads foram realizadas em CPU, os
parametros considerados para as simulacées em GPU foram limite de operadores por
passo de 1 até 6 e limite de qubits para execucao de 26 até 28 a fim de avaliar o
comportamento do novo algoritmo do ambiente D-GM.

Os testes foram realizados em um desktop com processador Intel Core i7-3770, 8
GiB RAM, GPU NVidia GTX Titan X. Os experimentos foram executados no sistema
operacional Ubuntu Linux 14.04, 64 bits, e CUDA TOOLKIT 7.0.

Durante a simulagao, os tempos médios de simulacao para Hadamard e QFT foram
obtidos depois de 30 execugdes de cada aplicacao, descartando os 5 menores e 5
maiores tempos de execuc¢ao, e para o algoritmo de Shor depois de 10 execugdes por
ser uma aplicacao com tempo de execucgao elevado.

Nas secoes a seguir sdo mostrados os resultados das simulagdes, salienta-se que
diferentes escalas foram usados nos graficos para melhor visualizagao dos resultados.

6.1 Transformacao Hadamard

Tempos de simulacao para transformagdées Hadamard em CPU podem ser visto
na Figura 24. Nota-se que o tempo de simulagao diminui para todas as Hadamard
conforme o numero de threads aumenta. No entanto, se afasta do ideal devido ao
aumento de cache misses.

Tempos de simulagao para transformacdées Hadamard em GPU, sem considerar
limite de qubits para execugao, sao mostrados na Figura 25. Nota-se que o tempo

50

Tempos Médios de Simulacao Tempos Médios de Simulacao
A A
14 A A 25
o—e H21 o—e H25
12 & ¢ H22 & ¢ H26
i m & H23 20 u . H27
a-a H24 a-a H28
1.0
C} a
15
208 g
€ A € Wo-eieeiae u -
< L - 2
06 10 R
A
0.4
*-------- - Tme ¢ --------- * L4
0.2}) - > T~
., -,
0.0 0 . . .
SEQ 1 2 4 SEQ 1 2 4
Ndmero de Threads Numero de Threads
(a) 21-24 Qubits (b) 25-28 Qubits

Figura 24: Tempos de execucao para a Transformacao Hadamard em CPU, variando
0 numero de threads

minimo de execugao ocorre sempre com limite de operadores por passo de 4 ou 5,
mostrando que simulagdoes com estes limites alcangcam o melhor desempenho neste
hardware para estas transformacoes.

Tempos Médios de Simulacao Tempos Médios de Simulacao
3.5 A
0.20f o—e H21 o—e H25
b A le e H22 10 . |& - H26
= & H23 u-a H27
H24 A H28
015 N A A 25 A A
@ 4 Z A A
g - - g 20 :
£ £
2 0.10 I3} "
- 15 .
[3 : - . _,-'.
- e -’ 1.0 ‘I~._>_>.‘>_‘__._
0.05 . .
M -7 ¢ 05 ‘-~——’_,,7__'/__,.//"
‘\0\ e ‘\'\0—0——*’4'
1 2 7y 5 6 1 2 3 7y 5 6
Limite de Operadores Limite de Operadores
(@) 21-24 Qubits (b) 25-28 Qubits

Figura 25: Tempos de execugao para a Transformagao Hadamard em GPU, variando
o limite de operadores

A Figura 26 mostra os tempos de simulacdo em GPU de 26 até 28 qubits, consi-
derando limite de qubits para execugao. Como esperado as implementagdes usando
MPPs permitem a simulagdo mesmo quando o limite de qubits para execugao € menor
gue o numero de qubits da transformacao sendo calculada. No entanto, o tempo de
execucao aumenta conforme a quantidade de qubits passados do limite, pois havera
mais operadores afetados pelo particionamento do estado.

Em comparacao com o método anterior (AVILA et al., 2015), tempos médios de
simulacao foram medidos para transformacdes Hadamard de 21 e 22 qubits com tem-
pos de 110,407 s e 395,951 s respectivamente. O speedup relativo obtido comparando

__Tempos Médios de Simulacao

51

Tempo (s)
w

L7 |#—% H28,26

o o H27,27
o—e H27,26
4 ¢ H28,28
& & H28,27

Limite de Operadores

Figura 26: Transformagao Hadamard, 27-28 Qubits, 26-28 Limite, GPU

nosso melhor resultado neste trabalho com o método anterior foi de ~ 10.829x.
Este speedup tende a escalar com o nimero de qubits, pois a taxa de crescimento
do tempo conforme o aumento do nimero de qubits € de ~ 2x, enquanto no método

anterior é de ~ 3,6x.

6.2 Transformada de Fourier Quantica

A Figura 27(a) mostra os tempos de simulacao em CPU para TF(), mostrando
ganho de desempenho com o aumento do numero de threads. Por ser uma aplicagao
composta basicamente por operadores esparsos controlados, a maioria dos calculos
se dao pelos lacos de execugao otimizados promovendo um menor impacto no ganho
das simulacoes paralelas se comparado aos resultados da transformagao Hadamard.

Tempo (s)

180

160

140}

-
]
=]

i
=)
=)

@
=)

o
=]

I
S

/

Tempos Médios de Simulacdo

Tempos Médios de Simulagdo

80 n

~—e
>
[3N]

QFT 26
QFT 27 60|
QFT 28

Tempo (s)
w
3

*
I

|

|

|
|
N
S}

QFT 26
QFT 27
QFT 28

~—e
> o
- [39]

=)

Nimero de Threads

(b)

27 28
Limite de Qubits

GPU, 26-28 Limite

Figura 27: Tempos de execugdo para a Transformada de Fourier Quantica, 26-28
qubits.

O limite de operadores por etapa ndo € relevante para a TF(Q pois ela possui so-
mente um operador por passo. Na Tabela 3 é mostrado o nimero de passos afetados

52

pela relacao entre o numero de qubits (etapas) da aplicacao e o limite de qubits para
execugao, e com base nestes dados pode ser observado na Figura 27(b) o ganho de
desempenho das simulacoes da T'F'(Q em GPU conforme o niumero de etapas afeta-
das pelo limite de qubits diminui.

Tabela 3: Numero de etapas afetadas pelo limite de qubits em uma TFQ.

LIM
QB(ET) 26 | 27 | 28
26 (351) olofo
27 (378) 271 0] 0
28 (406) 55 [28 | 0
QB (ET) - Qubits (Etapas). LIM - Limite de qubits para execugao.

6.3 Algoritmo de Shor

Tempos de simulagao para o algoritmo de Shor usando os simuladores LIQUi|) e
D-GM podem ser vistos na Tabela 4. Tempos de execucao do LIQU|) foram obtidos a
partir do “minutes for running” encontrado na saida da execuc¢ao da versao built-in do
algoritmo de Shor com a opgao de otimizagao em “true”.

Salienta-se que o simulador D-GM apresentou melhores resultados para todos os
nameros executados independente do tipo de execucgao realizada. As execugoes em
CPU mostraram ganho de performance conforme o numero de threads aumenta.

Assim como esperado, as execugoes em GPU obtiveram os melhores tempos em
todos os casos quando a parte quantica do algoritmo de Shor se torna o gargalo da
simulacgao ao invés do processamento classico necessario antes e depois desta parte,
gue seria para fatoragao de numeros com 7 ou mais bits (17 ou mais qubits).

Tabela 4: Tempos Médios de Simulagao para o Algoritmo de Shor, em segundos.

LIQU () D-GM

Numero | Bits | Qubits Seq. 1Thread 2 Threads 4 Threads GPU
57 6 15 11,01 1,49 1,53 0,92 0,87 0,99
119 7 17 47,00 9,26 9,36 5,01 3,41 2,64
253 8 19 201, 39 57,10 58.02 30.27 17,70 10,17
485 9 21 1.166, 36 358,89 348,49 239,69 211,64 50, 84
1.017 10 23 5.905,24 | 2.076,11 2.055,28 1.389,96 1.249, 54 280.67
2.045 11 25 LS NE NE NFE NE 1.623,87

Seq. - Sequencial. LS - Limite do Simulador. NE - Nao Executado.

6.4 Consideracoes Finais

As otimizacOes propostas pela estratégia ReDld para melhorar o desempenho da
simulagao de computagao quantica foram implementadas no framework D-GM, mas

53

nao se restringe a este ambiente, podendo ser implementada em outras plataformas
e/ou simuladores realizando as adaptacdes que virem a ser necessarias.

Pela exploragdao das caracteristicas do operador Identidade e uso da
decomposicao de TQ, foi possivel criar um algoritmo mais eficiente, permitindo a
simulacao de aplicacées com um grande ndmero de qubits em uma Unica maquina.

O uso do particionamento dos estados proporcionou escalabilidade as simulagdes
em GPU, permitindo desenvolvimento de aplicagées com uma quantidade de memdéria
maior que a disponivel na GPU, Experimentos mostraram simulacoes de até 28 qubits
nesta arquitetura.

Quando comparado com nosso método anterior (AVILA et al., 2015), o melhor
speedup relativo foi obtido para a Hadamard de 22 qubits, sendo 10, 829x mais rapido
usando esta arquitetura otimizada.

Simulacoes do algoritmo de Shor mostraram melhores resultados no framework D-
GM quando comparado ao simulador LIQUi|). Para o maior numero fatorado (10 bits,
23 qubits), a execugao sequencial em CPU foi 2,84 x mais rapida, a execugao paralela
4,72x mais rapida com 4 threads, e a execugcao em GPU 21,03x mais rapida.

7 CONCLUSAO

A simulacao de algoritmos quanticos em computadores classicos € uma tarefa que
requer alta capacidade de processamento, mas tem-se tornado uma das alternativas
viaveis para o estudo e desenvolvimento de aplicacdes, modelando e simulando o
comportamento de sistemas multi-qubits de forma simplificada.

Entretanto, explorar isoladamente os recursos computacionais providos por arqui-
teturas paralelas (clusters, grids, GPUSs) é insuficiente quando da simulagao de al-
goritmos quanticos complexos, uma vez que sistemas quanticos exigem recursos de
processamento e memoria exponencialmente maiores.

Para colaborar com novas estratégias de enfrentar tais problemas, este trabalho
foca nas possibilidades de extensao da capacidades de simulacdo do ambiente D-
GM (AVILA et al., 2014), abrangendo o estudo e implementagao de otimizagdes para
representacao e simulacao sequencial/paralela de transformagdes quanticas.

Foram implemnetadas técnicas capazes de reduzir de forma significativa o
custo (memdria e processamento) de simulacgao, viabilizando o desenvolvimento de
aplicacdes quanticas complexos (como algoritmos de fatoracao).

Destacam-se, na sequéncia, os principais resultados.

(i) Estudo e concepcao de nova estratégia de simulacido, denominada ReDId:

e minimizando a replicacao e explorando a esparcialidade dos operadores
ldentidade o projeto prové uma redugao significativa da complexidade es-
pacial e, quando combinado a decomposicao de transformacoes quanticas,
tém-se também a reducao da complexidade temporal das simulacoes;

e considerando a parcialidade na definicao dos operadores e estados, 0s re-
sultados mostram incremento na escalabilidade das computag¢des durante
a simulagao de aplicagdes, o que leva ao incremento da dimensao dos sis-
temas multi-qubits simulados (AVILA et al., 2015).

(ii) Modelagem e implementacao do algoritmo de execug¢ao que considera estas es-
tratégias na linguagem C/C++ para as execucoes em CPU, e em CUDA para as

55

execucoes em GPUs, a fim de obter o maior desempenho possivel em ambas
arquiteturas;

(iii) Validagcao das implementacoes, considerando:

e simulagcdes de operadores Hadamard de 21 até 28 qubits, sendo 10,829 x
mais rapido que a versao anterior (AVILA et al., 2015);

e simulagdes de Transformada de Fourier Quantica de 26 até 28 qubits (AVILA
et al., 2015);

e simulacdes do algoritmo de Shor considerando nimeros de 6 até 12 bits,
ou seja, aplicacdes de 15 até 25 qubits, e quando comparada com LIQU1|),
sua execucgao sequencial em CPU foi 2,84 x mais rapida, a execucao para-
lela 4, 72x mais rapida com 4 threads, e a execucao em GPU 21,03x mais
rapida (AVILA; REISER; PILLA, 2016a,b).

(iv) Introduz-se os primeiros passos para a concepcao e o desenvolvimento de uma
arquitetura de software hibrida para o projeto D-GM, viabilizando a computacao
distribuida (via CPUs) sob arquiteturas massivamente paralelas (via GPUS).
Obteve-se 0s seguintes resultados:

e especificacao de um algoritmo otimizado para simulacao de aplicacoes
quanticas fazendo uso da estratégia ReDld, incluindo sua implementacao
no ambiente D-GM e seus principais componentes, o VPE-qGM e o VirD-
GM.

e modelagem e simulacgao distribuida de algoritmos quanticos, apresentando
as construgoes e evolucao dos sistemas quanticos a partir de um conjunto
de interfaces graficas.

7.1 Trabalhos Futuros

A maior contribuicao deste trabalho esta associada a integracdo desses dois
esforgos: (i) a busca por otimizacdes das estruturas associadas a transformacoes
e estados quanticos; e (ii) a paralelizagao das operagdes de evolugdo do estado em
sistema multi-qubits considerando tais otimizacoes.

A consolidagcao desta integracao e novas otimizagdes constituem um grande de-
safio de pesquisa, porém a perspectiva de bons resultados é uma grande motivagao
na continuidade do projeto e busca por solugdoes mais eficientes para simulagao de
algoritmos quanticos a partir de computadores classicos.

Os principais trabalhos futuros, focados no projeto D-GM, sao brevemente descri-
tos a sequir:

56

(1) Potencializacao da dinamica de execugcao do ambiente D-GM e consolidagao de
seus principais componentes:

(i) o VPE-gGM e o VirD-GM, com potencial para viabilizar a simulagéo de al-
goritmos quanticos multi-qubits, Investiga-se a grande capacidade de pro-
cessamento que pode ser obtida pela exploracao de sistemas hibridos que
exploram a computacao com multicomputadores e/ou multiprocessadores;

(i) o ShareD-GM, estendendo a proposta de memdria compartilhada e dis-
tribuida a partir de novas estratégias de armazenamento, controle e
acesso de estados quanticos. A modelagem e implementagao de uma
nova forma de representagao e/ou armazenamento dos estados multi-
qubits. Investigacao de recursos de controle e monitoramento do inerente
crescimento exponencial associado ao numero de qubits das aplicacoes
quanticas, aliados a capacidade de simulacgao distribuida ja consolidada no
ambiente D-GM.

(2) A exploragao das potencialidades disponiveis no ambiente D-GM para execucao
de sistemas fuzzy e investigacdo de como ambientes de simulagao quantica sao
capazes de codificar conjuntos fuzzy (CFs) e suas operacoes logicas a partir de
operadores e transformacgdes quanticas multi-qubits.

(i) Extensao da biblioteca de métodos qGM-Analyzer para descricao de conec-
tivos fuzzy via operadores quanticos;

(il) Modelagem de conjuntos fuzzy por registadores quantico e operadores fuzzy
por transformagdes quanticas, considerando a incerteza tanto na expressao
das variaveis linguisticas quanto a incerteza inerente aos fenomenos fisicos
presentes nos sistemas reais.

57

REFERENCIAS

AARONSON, S. Shtetl-Optimized: Shor, Il do It. 2007. Disponivel em
http://scottaaronson.com/blog/?p=208.

AVILA, A. B. de; REISER, R. H. S.; PILLA, M. L. Quantum computing simulation
through reduction and decomposition optimizations with a case study of Shor’s
algorithm. Concurrency and Computation Practice and Experience, 2016. (Subme-
tido).

AVILA, A. B. de; SCHUMALFUSS, M. F; REISER, R. H. S.; PILLA, M. L.; MARON,
A. K. Optimizing Quantum Simulation for Heterogeneous Computing: a Hadamard
Transformation Study. Journal of Physics: Conference Series, v.649, n.1, p.012004,
2015.

AVILA, A. B.; REISER, R. H. S.; PILLA, M. L. Reduction and decomposition op-
timizations in quantum computing simulation applied to the Shor’s algorithm.
Gramado: CNMAGC, 2016. 1-7p. XXXVI Congresso Nacional de Matematica Aplicada
a Computacao (Submetido).

AVILA, A. B.; SHMALFUSS, M. F; REISER, R. H. S.; PILLA, M. L. Otimizagao de
Simulacao de Computacao Quantica Através da Reducao e Decomposicao Baseados
no Operador Identidade. In: XVI SIMPOSIO EM SISTEMAS COMPUTACIONAIS DE
ALTO DESEMPENHO (WSCAD), 2015, Florianépolis. Anais... SBC, 2015. p.1-12.

AVILA, A. B.; SHMALFUSS, M. F; REISER, R. H. S.; PILLA, M. L.; MARON, A. K.
Simulagao Distribuida de Algoritmos Quanticos via GPUs. In: XV SIMPOSIO EM SIS-
TEMAS COMPUTACIONAIS DE ALTO DESEMPENHO (WSCAD), 2014, Sao José
dos Campos. Anais... SBC, 2014. p.1-12.

AVILA, A. B.; SHMALFUSS, M. F.; REISER, R. H. S.; PILLA, M. L.; YAMIN, A. Sa-
lable quantum simulation by reductions and decompositions through the id-operator.
In: ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, 30., 2015, Salamanca.
Proceedings... ACM, 2015. p.1-3. (SAC ’15).

58

AVILA, A.; MARON, A.; REISER, R.; PILLA, M.; YAMIN, A. GPU-aware Distributed
Quantum Simulation. In: ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING,
29., 2014, New York, NY, USA. Proceedings... ACM, 2014. p.860-865. (SAC ’14).

BEAUREGARD, S. Circuit for Shor’s Algorithm using 2N+3 Qubits. Quantum Info.
Comput., Paramus, NJ, v.3, n.2, p.175-185, 2003.

GNUTZMANN, P. m-qCEdit: Um Ambiente para Modelagem e Simulagao de Circuitos
Quanticos via Plataformas Méveis. Comment: 39 paginas, Monografia de Graduagao
PPGC/UFPEL, 2013.

GROUP, Q. C. QulIDDPro: High-Performance Quantum Cir-
cuit Simulator. The University of Michigan, 2007. Disponivel em
http://vlsicad.eecs.umich.edu/Quantum/qp/results.html (mar.2016).

GROVER, L. K. A Fast Quantum Mechanical Algorithm for Database Search. In:
TWENTY-EIGHTH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING,
1996, New York, NY, USA. Proceedings... ACM, 1996. p.212-219. (STOC ’96).

GUTIERREZ, E.; ROMERO, S.; TRENAS, M. A.; ZAPATA, E. L. Quantum computer si-
mulation using the CUDA programming model. Computer Physics Communications,
v.181, p.283-300, Feb. 2010.

HEY, T. Richard Feynman and computation. Contemporary Physics, v.40, n.4, p.257—
265, 1999.

KNILL, E. H.; NIELSEN, M. A. Theory of quantum computation. Kluwer, 2000. Com-
ment: 5 pages.

MARON, A. Explorando as Possibilidades de Otimizacao da Simulacao de Algo-
ritmos Quanticos no VPE-qGM. Comment: 71 paginas, Dissertacdo de Mestrado
PPGC/UFPEL, 2013.

MARON, A. K.; REISER, R. H. S.; PILLA, M. L. Correlations from Conjugate and
Dual Intuitionistic Fuzzy Triangular Norms and Conorms. In: CCGRID 2013 IEEE/ACM
INTERNATIONAL SYMPOSIUM ON CLUSTER, CLOUD AND GRID COMPUTING,
2013, NY. Anais... |IEEE, 2013. p.1-8.

MARON, A.; REISER, R.; PILLA, M.; YAMIN, A. Quantum Processes: A New Inter-
pretation for Quantum Transformations in the VPE-qGM Environment. In: CLEI, 2012.
Anais... IEEE Computer Society - Conference Publishing Services, 2012. p.1-10.

NIELSEN, M. A.; CHUANG, I. L. Computacao Quantica e Informacao Quantica.
Bookman, 2003.

NIWA, J.; MATSUMOTO, K.; IMAI, H. General-Purpose Parallel Simulator for Quan-
tum Computing. In: THIRD INTERNATIONAL CONFERENCE ON UNCONVENTIO-
NAL MODELS OF COMPUTATION, 2002, London, UK, UK. Proceedings. .. Springer-
Verlag, 2002. p.230-251. (UMC ’02).

OMER, B. A. Procedural Formalism for Quantum Computing. In: ACM SIGPLAN 2003
HASKELL WORKSHOP, 1998. Proceedings... ACM, 1998.

OpenMP Architecture Review Board. The OpenMP API specification for parallel pro-
gramming. Disponivel em http://openmp.org/wp/openmp-specifications.

PESSOA, O. Conceitos de Fisica Quantica. SP: Editora Livraria da Fisica, 2003.

PORTUGAL, R.; LAVOR, C.; MACULAN, N. Uma Introducao a Computacao
Quantica. SP: Notas em Matemaitica Aplicada - SBMAC, 2004.

RAEDT, K. D.; MICHIELSEN, K.; RAEDT, H. D.; TRIEU, B.; ARNOLD, G.; RICHTER,
M.; LIPPERT, T.; WATANABE, H.; ITO, N. Massive Parallel Quantum Computer Si-
mulator. Quantum Physics, 2006. http://arxiv.org/abs/quant-ph/0608239.

SHOR, P. W. Algorithms for Quantum Computation: Discrete Logarithms and Facto-
ring. In: SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, 35., 1994,
Washington, DC, USA. Proceedings... IEEE Computer Society, 1994. p.124-134.

SHOR, P. W. Polynomial-Time Algorithms for Prime Factorization and Discrete Loga-
rithms on a Quantum Computer. SIAM J. Comput., Philadelphia, PA, USA, v.26, n.5,
p.1484—-1509, Oct. 1997.

STEFFEN, L.; SALATHE, Y.; OPPLIGER, M.; KURPIERS, P.; BAUR, M.; LANG, C.;
EICHLER, C.; PUEBLA-HELLMANN, G.; FEDOROQV, A.; WALLRAFF, A. Deterministic
quantum teleportation with feed-forward in a solid state system. Nature, v.500, p.319—
322, 2013.

THE Double-Slit Experiment. 20009. Disponivel em
http://www.doubleslitexperiment.com/.

VIAMONTES, G. Efficient Quantum Circuit Simulation. 2007. Phd Thesis — The
University of Michigan.

WECKER, D.; SVORE, K. M. LIQUi|): A Software Design Architecture
and Domain-Specific Language for Quantum Computing. 2014. Disponivel em
http://arxiv.org/abs/1402.4467.

