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RESUMO

AVILA, Anderson Braga de. ReDId: Simulação de Computação Quântica baseada
em
Redução e Decomposição via Operador Identidade. 2016. 60 f. Dissertação (Mes-
trado em Ciência da Computação) – Programa de Pós-Graduação em Computação,
Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas,
2016.

Um dos maiores obstáculos para a simulação de algoritmos quânticos é o cres-
cimento exponencial das complexidades espaciais e temporais, devido à expansão
das transformações e dos estados de leitura/escrita pelo uso do produto tensor
em aplicações multi-dimensionais. A simulação destes sistemas é muito relevante
para desenvolver e testar novos algoritmos quânticos. Para minimizar o problema
gerado pela alta complexidade da simulação de algoritmos quânticos, este trabalho
apresenta uma nova estratégia nomeada ReDId, provendo otimizações baseadas na
redução e decomposição via operador Identidade. Na sequência, o trabalho consi-
dera a implementação do algoritmo que faz uso da estratégia ReDId, explorando os
componentes VPE-qGM e VirD-GM que integram o ambiente D-GM. Para validação,
considera-se a aplicação das otimizações via estratégia ReDId nas simulações de
transformações Hadamard de 21 a 28 qubits e Transformadas de Fourier Quântica de
26 a 28 qubits. Estes algoritmos foram simulados sobre CPU, sequencialmente e em
paralelo, e em GPU, mostrando redução da complexidade temporal e, consequen-
temente, menor tempo de simulação. Além disso, avaliações do algoritmo de Shor
considerando o uso de 2n + 3 qubits no algoritmo quântico para cálculo da ordem,
foram simulados até 25 qubits. Ao comparar nossas implementações executando no
mesmo hardware com o simulador LIQUi|� - Language-Integrated Quantum Operati-
ons, versão disponı́vel pela QuArC - Quantum Architectures and Computation Group
da Microsoft Research, o simulador via estratégia ReDId mostrou-se mais rápido.

Palavras-chave: Simulação de Computação Quântica, Processamento Paralelo,
GPU, Algoritmo de Shor.



ABSTRACT

AVILA, Anderson Braga de. ReDId: Quantum Computing Simulation based on
Reduction and Decomposition via Identity Operator. 2016. 60 f. Dissertação
(Mestrado em Ciência da Computação) – Programa de Pós-Graduação em
Computação, Centro de Desenvolvimento Tecnológico, Universidade Federal de
Pelotas, Pelotas, 2016.

One of the main obstacles for the adoption of quantum algorithm simulation is the
exponential increase in temporal and spatial complexities, due to the expansion of
transformations and read/write states by using tensor product in multi-dimensional ap-
plications. Simulation of these systems is very relevant to develop and test new quan-
tum algorithms. To minimize the problem created by the high complexity of the simu-
lation of quantum algorithms, this paper presents a new strategy named ReDId, which
provides optimizations based on the reduction and decomposition via Identity operator.
Next, the paper considers the implementation of the algorithm that makes use of the
ReDId strategy, exploring the components VPE-qGM and VirD-GM that integrate the
D-GM environment. For evaluation, is considered the application of optimization via
ReDId strategy in simulations of Hadamard transformations from 21 to 28 qubits and
Quantum Fourier Transforms from 26 to 28 qubits. Those algorithms were simulated
over CPU, sequentially and in parallel, and in GPU, showing reduced temporal com-
plexity and, consequently, shorter simulation time. Moreover, evaluations of the Shor’s
algorithm considering 2n+ 3 qubits in the order-finding quantum algorithm were simu-
lated up to 25 qubits. Comparing our implementations running on the same hardware
with LIQUi|� - Language-Integrated Quantum Operations, release version by QuArC -
Quantum Architectures and Computation Group from Microsoft Research, the simula-
tor via ReDId strategy proved to be faster.

Keywords: Quantum Computing Simulation, Parallel Processing, GPU, Shor’s Algo-
rithm.
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1 INTRODUÇÃO

Neste trabalho é realizada a concepção da estratégia de simulação ReDId, que visa
a redução da complexidade espacial e temporal inerente da simulação de aplicações
quânticas, através do uso inteligente do operador Identidade na representação de
transformações quânticas (TQs) e pela decomposição das transformações. Ao invés
de executar uma TQ em um único passo, ela é dividida passos e só operadores dife-
rentes do Identidade são armazenados.

Este trabalho está inserido no Projeto ExPloreD-GM - Explorando o Paralelismo e
a Distribuição do Modelo D-GM em Aplicações Cientı́ficas e Tecnologias Associadas,
buscando o estudo e aplicação de otimizações para simulação, sequencial e paralela,
de algoritmos quânticos a partir de computadores clássicos.

O Projeto ExPloreD-GM busca a consolidação do ambiente D-GM (Distributed Ge-
ometric Machine), para modelagem e desenvolvimento de aplicações quânticas a par-
tir de dois principais componentes de software: (i) o VPE-qGM (Visual Programming
Environment of the Quantum Geometric Machine Model), ambiente de programação
visual para modelagem de algoritmos quânticos; e (ii) o VirD-GM (Virtual Distribu-
ted Geometric Machine), ambiente de execução distribuı́da e gerenciamento destas
aplicações.

1.1 Tema

O tema central desta dissertação é a simulação de algoritmos da Computação
Quântica (CQ). A CQ é um paradigma fundamentado nos postulados definidos pela
Mecânica Quântica (MQ), a qual provê interpretações para os comportamentos fı́sicos
incomuns que se fazem presentes quando da manipulação de elementos em escala
atômica/subatômica, substituindo, dessa forma, as leis da Fı́sica Clássica (NIELSEN;
CHUANG, 2003; PESSOA, 2003).

Aplicações envolvendo propriedades da MQ (emaranhamento, sobreposição, in-
versibilidade, não-clonagem) no contexto computacional, permitem, a concepção de
uma nova classe de computadores (computadores quânticos), os quais são capa-



12

zes de apresentar um desempenho exponencialmente maior do que os computado-
res clássicos (ÖMER, 1998), principalmente em áreas que envolvem a modelagem,
manipulação, transmissão e o processamento da informação quântica como na pes-
quisa em:

(i) criptografia, explorando a não-localidade quântica para transmitir mensagens com
segurança absoluta (SHOR, 1997);

(ii) busca em listas não-ordenadas (GROVER, 1996);

(iii) teletransporte, transportando informação quântica de um lugar para outro sem
que ocorra o deslocamento através de um meio fı́sico (STEFFEN et al., 2013);

(iv) e ainda, algoritmos de fatoração e logaritmo discreto (SHOR, 1994).

No processamento da informação quântica, o estado-da-arte em hardware
quântico ainda apresenta baixa escalabilidade devido a dificuldade de manipulação e
controle de partı́culas elementares (elétrons, fótons, etc), as quais têm potencial para
serem utilizadas como qubits. Assim, atualmente, o estudo e modelagem de algorit-
mos para CQ pode ser realizado de duas principais formas: através da especificação
matemática do sistema ou do desenvolvimento dos circuitos quânticos(HEY, 1999;
KNILL; NIELSEN, 2000) em softwares de simulação(RAEDT et al., 2006; NIWA; MAT-
SUMOTO; IMAI, 2002).

1.2 Motivação

A simulação quântica é uma área de pesquisa básica, com muitos problemas para
serem investigados, porém bem consolidada nos seus fundamentos. Contudo, a
simulação de sistemas quânticos através de computadores clássicos mostra-se ine-
ficiente, visto o alto custo computacional associado a aplicação das transformações
que determinam a evolução temporal do sistema.

Nesse cenário, a adoção de soluções voltadas para o ganho de desempenho é
essencial para simulação assim como a contı́nua pesquisa considerando a exploração
de novas abordagens de otimização da complexidade espacial e temporal, tornam-se
estratégias essenciais para simulação de aplicações quânticas complexas.

A introdução de diferentes soluções para lidar com a complexidade de simulação
de algoritmos quânticos (HEY, 1999), a partir de computadores clássicos, tem con-
tribuı́do para delinear as melhores abordagens, lidando com os diferentes problemas
decorrentes do aumento exponencial no armazenamento e processamento, ambos
requeridos por sistemas multi-qubits.
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Uma atual e relevante abordagem, em consolidação neste trabalho, considera
a integração de dois esforços: (i) a busca por otimização das estruturas associa-
das a transformações quânticos; e (ii) a paralelização das operações envolvidas na
evolução do estado do sistema.

Esta integração constitue-se em um grande desafio, porém a perspectiva de bons
resultados consiste na grande motivação que impulsiona esse tipo de pesquisa.

Neste contexto, no Projeto D-GM, integrando o ambiente de desenvolvimento
VPE-qGM e o ambiente de gerenciamento VirD-GM, promove-se suporte desde a
concepção até o desenvolvimento de aplicações, considerando uma arquitetura de
software que contempla uma abordagem hı́brida, viabilizando a computação (hete-
rogênea) via CPUs ou GPUs para suporte a aplicações multi-qubits.

1.3 Objetivos

Este trabalho tem como objetivo geral a concepção, modelagem e aplicação de
uma nova estratégia para tratamento das complexidades espacial e temporal, ineren-
tes a simulação de algoritmos quânticos multi-qubits via software em computadores
clássicos.

A partir desta estratégia, tem-se a possibilidade de aplicação de soluções eficientes
para o ambiente D-GM, visando a extensão das suas capacidades de simulação em
multicomputadores e/ou multiprocessadores.

Mais especificamente, considera-se os seguintes objetivos:

• concepção, modelagem e desenvolvimento de uma nova estratégia para
simulação de computação quântica;

• implementação de um novo algoritmo execução para o ambiente D-GM, em lin-
guagem C/C++ para as execuções em CPU, e em CUDA para as execuções em
GPUs;

• validação das otimizações pela execução de aplicações provendo a simulação
de algoritmos quânticos, e posterior avaliação dos resultados alcançados;

• divulgação na comunidade cientı́fica dos resultados obtidos na pesquisa
por publicações em eventos/jornais especializados da área de simulação da
computação quântica e de computação heterogênea via CPUs (Central Proces-
sing Units) e GPUs (Graphics Processing Units).

1.4 Organização do Texto

Na continuidade, este trabalho está estruturado da forma descrita logo a seguir.
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No Capı́tulo 2 os principais fundamentos relacionados à CQ são descritos, in-
cluindo uma breve discussão sobre duas aplicações quânticas simuladas neste tra-
balho.

No Capı́tulo 3, são discutidas as caracterı́sticas encontradas em alguns simulado-
res quânticos mais relevantes, incluindo o simulador utilizada para comparação com
este trabalho.

Uma das principais contribuições deste trabalho é descrita no Capı́tulo 4, contem-
plando a criação da nova estratégia de simulação de algoritmos quânticos, a Seção 4.1
abrange a otimização referentes as replicações e esparcialidades geradas pelo opera-
dor Identidade, a Seção 4.2 descreve como se dá a decomposição das transformações
quânticos e a Seção 4.3 discute o uso da partição das memórias para proves escala-
bilidade as aplicações.

Na sequência, o Capı́tulo 5 contempla a descrição do ambiente D-GM e das
implementações direcionadas a criação da nova biblioteca de execução com suporte
à simulação em CPUs e GPUs usando a estratégia ReDId descrita neste trabalho.

No Capı́tulo 6 são mostrados os resultados obtidos com simulações de aplicações
Hadamard, TQF e Shor usando a extensão da biblioteca qGM-Analyzer com suporte
às otimizações propostas pelo ReDId, bem como uma comparação com o simulador
LIQUi| > para o algoritmo de Shor.

Por fim, no Capı́tulo 7, as principais conclusões obtidas a partir da realização deste
trabalho, bem como propostas de continuidade do projeto D-GM são apresentadas.



2 COMPUTAÇÃO QUÂNTICA

O corrente capı́tulo contempla os principais conceitos de CQ e MQ que funda-
mentam este trabalho. Também são estudados alguns dos simuladores quânticos
disponı́veis atualmente.

2.1 Conceitos Básicos

A manipulação de partı́culas em escala atômica/subatômica compreende uma ta-
refa de alta complexidade, visto que nessas situações as partı́culas (fótons, elétrons e
outras partı́culas de mesma escala) exibem comportamentos incomuns, não definidos
pelas leis da fı́sica clássica. A MQ é a área da fı́sica que estuda tais comportamentos,
apresentando teorias que definem de forma precisa os fenômenos que ocorrem em
pequena escala.

Um dos principais fundamentos da MQ é a ocorrência de superposição de es-
tados (PESSOA, 2003). Na mecânica clássica, é estabelecido que uma partı́cula
possui um estado único e bem definido, como por exemplo, um elétron com um spin
positivo. Na MQ, uma partı́cula pode ser definida a partir da coexistência de dois ou
mais estados, ou seja, um elétron com spin positivo e negativo simultaneamente.

A MQ também contempla a interpretação do fenômeno da dualidade onda-
partı́cula, exemplificado através do Experimento da Fenda Dupla (THE DOUBLE-
SLIT EXPERIMENT, 2009), na qual uma partı́cula atômica é capaz de apresentar
dois comportamentos distintos: (i) ondulatório, onde sua trajetória é descrita por
uma superposição de ondas; (ii) corpuscular, com uma trajetória bem definida. Uma
partı́cula quântica é definida através de uma função de onda, sendo constituı́da de
uma grande variedade de estados possı́veis. Porém, ao utilizar qualquer dispositivo
para medir (observar) o estado dessa partı́cula, sua função de onda colapsa em uma
das possibilidades, comportando-se, a partir desse ponto, como uma partı́cula com
um estado bem definido.

Desse comportamento surge o princı́pio da incerteza de Heisenberg (PESSOA,
2003) que, em suma, estabelece que ao medir o estado de um objeto quântico,



16

instantaneamente seu estado será alterado, deixando de apresentar propriedades
quânticas. Nota-se, portanto, a impossibilidade de determinar a trajetória de uma
partı́cula quântica, visto que, ao medir a correspondente posição, seu estado colapsa,
impedindo a medida de sua velocidade.

O princı́pio do entrelaçamento (PESSOA, 2003) considera que duas partı́culas
criadas juntas são capazes de interagir de forma imediata mesmo quando separadas
espacialmente por qualquer distância, de forma que, ao submeter uma partı́cula a um
determinado efeito, a outra partı́cula entrelaçada a esta irá reagir instantaneamente.
Interpretações detalhadas dos princı́pios da MQ podem ser obtidas em (PESSOA,
2003; PORTUGAL; LAVOR; MACULAN, 2004).

2.1.1 Postulados da Mecânica Quântica

Essas ponderações iniciais fundamentam a descrição do comportamento de siste-
mas quânticos, os quais são matematicamente especificados através de quatro pos-
tulados definidos pela MQ, permitindo a analogia com sistemas fı́sicos:

• Espaço de Estados: Na CQ, o qubit é a unidade básica de informação, sendo o
sistema quântico mais simples, definido por um vetor de estado, unitário e bidi-
mensional, genericamente descrito, na notação de Dirac (NIELSEN; CHUANG,
2003), pela expressão |ψ� = α|0� + β|1�. Os coeficientes α e β são números
complexos correspondentes às amplitudes dos respectivos estados, respeitando
a condição de normalização |α|2 + |β|2 = 1, garantindo a unitariedade do vetor
de estado do sistema, representado por v = (α, β)t1.

• Evolução do Sistema: A mudança de estado em um sistema quântico é feita por
transformações quânticas unitárias, associadas a matrizes ortonormalizadas de
ordem 2N × 2N , sendo N a quantidade de qubits da transformação.

• Medida Quântica: O processo de extração de informação de um sistema
quântico, identificando qual o estado corrente mais provável, é estudado a par-
tir da operação de medida. A medida quântica projetiva considera um conjunto
de operadores de projeção, os quais aplicam diferentes processos de filtragem
sobre o espaço de estados. O estado final do sistema depende do operador de
projeção executado.

• Sistemas Compostos: O espaço de estados de um sistema quântico de múltiplos
qubits é compreendido pelo produto tensorial do espaço de estados de seus
sistemas componentes. Considerando um sistema quântico de dois qubits, |ψ� =
α|0�+ β|1� e |ϕ� = γ|0�+ δ|1�, o correspondente espaço de estados é composto

1vt denota a transposta de v
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pelo produto tensor

|ψ� ⊗ |ϕ� = α|00�+ β|01�+ γ|10�+ δ|11�. (1)

A aplicação das propriedades da MQ no contexto computacional resulta no para-
digma da CQ, permitindo o desenvolvimento de computadores quânticos com capa-
cidade de processamento exponencialmente maior que os computadores clássicos,
como demonstrado pela Tabela 1.

Tabela 1: Fatoração clássica x Fatoração quântica. Fonte:()
Tamanho do no a ser fatorado Algoritmo Clássico Algoritmo Quântico

512 bits 4 dias 34 segundos
1024 bits 105 anos 4,5 minutos
2048 bits 1014 anos 36 minutos
4096 bits 1026 anos 4,8 horas

O modelo mais recorrente para descrição de aplicações quânticas é o modelo de
circuitos quânticos (NIELSEN; CHUANG, 2003). Essa representação é uma das mais
fundamentais da CQ, sendo caracterizada por uma notação gráfica intuitiva que re-
mete ao modelo de circuitos digitais utilizados na computação clássica.

Os circuitos quânticos compreendem sincronizações e composições de por-
tas (transformações) quânticas unitárias e operações de medidas, modelando
qualquer tipo de algoritmo quântico, conforme apresentado na Figura 1. Algu-
mas convenções são adotadas visando uma descrição homogênea dos algoritmos
quânticos, sendo descritas a seguir:

• Linhas Horizontais: Cada linha representa um dos qubits que compõem o cir-
cuito, e a correspondente evolução temporal ocorre da esquerda para a direita;

• Linhas Verticais: Indicam que uma determinada transformação quântica atua
sobre os qubits conectados através desta linha;

• Controle: Representado por um cı́rculo sobre a linha de um qubit. Se o cı́rculo for
fechado, indica que é considerado o estado |1� do qubit ; se for aberto, considera-
se o estado |0�;

• Portas Quânticas: Transformações unitárias que manipulam o qubit sobre o qual
são aplicadas;

• Medida: No final de cada linha do circuito pode aparecer uma operação de me-
dida, determinando o estado clássico do correspondente qubit.
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Figura 1: Circuito Quântico

2.1.2 Transformações Quânticas

As transformações unitárias quânticas são as operações responsáveis por mani-
pular as amplitudes associadas aos estados do sistema. Essas transformações são
definidas por matrizes unitárias quadradas de ordem 2N , onde N representa a quanti-
dade de qubits sobre os quais a transformação irá atuar. As principais transformações
quânticas básicas são descritas na sequência.

• Hadamard: É a transformação responsável por gerar a superposição dos esta-
dos de um qubit. Sua definição matricial é:

H =
1√
2

�
1 1

1 −1

�
(2)

A aplicação de H sobre o vetor de estado do qubit genérico |ψ�, definido na
primeiro postulado da MQ, resulta em:

H|ψ� = 1√
2
(α + β,α− β)t (3)

• Pauly X: Equivalente a porta clássica NOT, que inverte as amplitudes dos esta-
dos de um qubit. A correspondente definição matricial e aplicação sobre o vetor
de estado de |ψ� é representado por:

X =

�
0 1

1 0

� �
α

β

�
=

�
β

α

�
(4)

• Pauly Y: Quando aplicada à |ψ�, resulta em Y |ψ� = −iβ|0�+ iα|1�. A correspon-
dente definição matricial é:

Y =

�
0 −i

i 0

�
(5)
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• Pauly Z: A matriz de transformação dessa operação é dada por:

Z =

�
1 0

0 −1

�
(6)

Sua função é realizar a inversão de fase do qubit, transformando o vetor de
estado em (α,−β)t.

• Phase (S): Introduz uma fase relativa, ou seja, leva o qubit |ψ� para o estado
S|ψ� = α|0�+iβ|1�, onde a amplitude de |0� mantém-se inalterada, enquanto que
a amplitude de |1� difere por um fator de fase igual à i. A matriz correspondente
a porta Phase é descrita por:

S =

�
1 0

0 i

�
(7)

• π/8: Transformação quântica associada a seguinte matriz unitária:

T =

�
1 0

0 exp(iπ/4)

�
(8)

A aplicação de T ao vetor de estado de |ψ� resulta em (α, exp(iπ/4)β)t.

Para exemplificação do aumento exponencial nas transformações quânticas apli-
cadas a múltiplos qubits, considera-se, primeiramente, a transformação Hada-
mard (H) aplicada a um qubit. A seguinte representação matricial descreve tal cenário:

H|ψ� ≡ 1√
2

�
1 1

1 −1

�
×
�

α

β

�
=

1√
2

�
α + β

α− β

�
(9)

Considerando, agora, a aplicação simultânea de H à dois qubits de um sistema
quântico, tem-se a matriz

H⊗2 ≡ 1√
2

�
1 1

1 −1

�
⊗ 1√

2

�
1 1

1 −1

�
=

1

2




1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1




, (10)

a qual é obtida a partir da operação de produto tensorial (⊗) entre as correspondentes
matrizes de 1 qubit. O operador ⊗ gera um aumento exponencial na quantidade de ele-
mentos da matriz resultante, influenciando significativamente no custo de simulação
das operações.
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A aplicação de H⊗2 ao sistema quântico com espaço de estados definido na Eq. 1,
é dada por

1

2




1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1




×




α

β

γ

δ




=
1

2




α + β + γ + δ

α− β + γ − δ

α + β − γ − δ

α− β − γ + δ




(11)

Além das transformações de múltiplos qubits, obtidas pelo produto tensorial de
transformações unitárias básicas, existem transformações controladas que modificam
o estado de um ou mais qubits considerando o estado corrente dos demais. Dentre
as transformações controladas, destacam-se:

CNOT (Controled NOT )
A transformação quântica CNOT recebe 2 qubits |ψ� e |ϕ� como entrada e aplica a

transformação NOT (Pauly X ) a um deles (qubit alvo), considerando o estado corrente
do outro qubit (controle). Dessa observação, percebe-se a possibilidade de algumas
configurações distintas para essa transformação:

• Controle no Qubit |ψ�: A modificação no qubit |ϕ� pode ser realizada quando o
estado de |ψ� for |0� ou |1�. No modelo de circuitos quânticos, essas operações
são apresentadas de acordo com a Figura 2(a), respectivamente. Assim, têm-se
os seguintes operadores matriciais que manipulam o vetor de estado do sistema:




0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1







α

β

γ

δ




=




β

α

γ

δ




e




1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0







α

β

γ

δ




=




α

β

δ

γ




(12)

• Controle no Qubit |ϕ�: A modificação no qubit |ψ� pode ser realizada quando
o estado de |ϕ� for |0� ou |1�. Analogamente ao caso anterior, as correspon-
dentes representações no modelo de circuitos quânticos são apresentadas na
Figura 2(b), respectivamente. Os dois operadores matriciais que definem o com-
portamento dessa transformação são:




0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 1







α

β

γ

δ




=




γ

β

α

δ




e




1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0







α

β

γ

δ




=




α

δ

γ

β




(13)

Toffoli
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(a) Portas com controle em
|ψ�

(b) Portas com controle em
|ϕ�

Figura 2: Transformações quânticas controladas CNOT

A transformação controlada Toffoli é definida para três qubits, de forma a aplicar a
transformação Pauly X ao terceiro qubit quando os estados dos dois primeiros qubits
forem |1�. A representação no modelo de circuitos quânticos é exemplificada pela
Figura 3.

Figura 3: Porta Toffoli no modelo de circuitos quânticos.

Controlled-U
Na transformação controlada CNOT, o operador Pauly X é aplicado ao qubit alvo

considerando o estado de um único qubit de controle. Porém, transformações con-
troladas genéricas (Controlled-U) (NIELSEN; CHUANG, 2003) podem ser definidas,
de forma a utilizar variadas configurações de qubits de controle e aplicar qualquer
transformação unitária U ao(s) qubit(s) alvo.

Figura 4: Porta Controlled-U no modelo de circuitos quânticos.

A partir da composição, sequencial e sı́ncrona, de transformações quânticas,
é possı́vel realizar computações (GROVER, 1996; SHOR, 1997; KNILL; NIELSEN,
2000; AARONSON, 2007) que exploram os fenômenos particulares da mecânica
quântica, obtendo ganhos frente aos melhores algoritmos clássicos conhecidos.

2.1.3 Transformada de Fourier Quântica

A execução da Transformada de Fourier Quântica (TFQ) se dá pela aplicação de
operadores de descolocamento controlados e Hadamard e pode ser descrito como
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uma operação de todo o sistema em termos de entradas e saı́das dos corresponden-
tes estados na base computacional de um estado quântico.

Ao tomar n qubits, N = 2n estados clássicos da base computacional {|j� : j =

0, . . . , N − 1}, a TFQ aplicada a cada |k� pode ser expressada como:

DFT (|k�) = |φk� =
1√
N

N−1�

j=0

e
2πijk
N |j� (14)

onde {|φk� : k = 0, . . . , N − 1} denota a nova base ortogonal.
Na computação da Eq. 14, realizada passo por passo em cada estado na base

ortogonal, o efeito de transformações controladas em cada qubit pode ser avaliada,
no vetor de estado do sistema quântico. Baseado na propriedade de superposição
da computação quântica, n qubits de entrada se transformam em N = 2n estados da
base computacional.

No entanto, a execução de diferentes qubits da entrada pode ser realizada in-
dependentemente dos outros N − 1 componentes do vetor de estado num sistema
quântico, fazendo com que este problema adequado para explorar CPUs multi-core e
GPUs. Além disso, alcançar escalabilidade quando sistemas maiores como o algo-
ritmo quântico de fatoração são simuladas.

2.1.4 Algoritmo de Shor para Fatoração Quântica

Considere o problema da fatoração de números primos: “dado um inteiro posi-
tivo N (normalmente com várias centenas de dı́gitos), como descobrir seus fatores
primos”?

É bem conhecido que fatorar N pode ser reduzida a tarefa de escolher aleatoria-
mente um número inteiro a coprimo de N , e então a ordem r de a módulo N .

Esta abordagem para a fatoração permitiu que Shor construı́-se seu algoritmo de
fatoração para a computação quântica (SHOR, 1994, 1997). Ele consiste em um pré-
processamento clássico, um algoritmo quântico para procurar a ordem, e um pós-
processamento clássico (WECKER; SVORE, 2014).

O único uso de computação quântica no algoritmo de Shor é para procurar a ordem
de a módulo N , onde N é um inteiro de n bits que queremos fatorar. Adicionalmente,
o perı́odo r é o menor inteiro positivo que satisfaz ar ≡ 1(mod N).

Dado um número N para fatorar, o algoritmo segue os seguintes passos (BEAU-
REGARD, 2003):

1. Se N é par, retorne o fator 2.

2. Determine classicamente se N = pq para p ≥ 1 e q ≥ 2 e se for o caso retorne o
fator p (isto pode ser feito em tempo polinomial).
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3. Escolha aleatoriamente um número a que satisfaça 1 < a ≤ N − 1. Usando o
algoritmo de Euclides, determine se gcd(a,N) > 1 e se for o caso, retorne o fator
gcd(a,N).

4. Se r é ı́mpar ou r é par mas ar/2 = −1(mod N), então vá para o passo 3. Caso
contrário, calcule gcd(ar/2 − 1, N) e gcd(ar/2 + 1, N). Teste para saber se um
desses é um fator não-trivial de N , e retorne o fator se for.

O algoritmo quântico para calcular a ordem usado neste trabalho é o descrito
em (BEAUREGARD, 2003), usando 2n+ 3 qubits para fatorar um inteiro de n bits.

2.2 Considerações finais

Neste capı́tulo foram descritos os principais conceitos que fundamentam a CQ,
com ênfase nas portas quânticas que estruturam os principais algoritmos utilizados na
validação dos resultados desenvolvidos.

Foram brevemente estudas a evolução das transformações Hadamard, a ca-
racterizada a geração de estados de sobreposição em sistemas multiqubits, com
representação que faz uso de matrizes densas na modelagem do paralelismo
quântico. Em contraposição, as portas controladas são representadas por matrizes
esparsas geradas pela uso do operador Identidade.

Estas duas classes de transformações quânticas são discutidas nos próximos
capı́tulos, e definem estratégias distintas quanto às otimizações propostas. A primeira
estratégia se reporta ao uso da parcialidade dos processos para controle da granu-
losidade das computações concorrentes, enquanto que na segunda, consideram-se
operações de decomposição e redução para minimizar as redundâncias na iteração
do operador identidade pela aplicação do produto tensorial em sistemas multi-qubits.

Estes operadores são considerados quando da simulação do algoritmo de
Shor(SHOR, 1994), que para cálculo da fatoração de um número inteiro N primei-
ramente considera o algoritmo quântico de cálculo da ordem de um inteiro x módulo
N e na sequência, aplica a Transformação Quântica de Fourier Discreta para descobrir
o perı́odo de uma função de forma eficiente.

No próximo capı́tulo, são reportados os principais simuladores estudados no con-
texto deste trabalho.



3 SIMULADORES QUÂNTICOS

Atualmente estão disponı́veis simuladores quânticos com diversas abordagens.
Dentre os mais relevantes, tem-se simuladores sequenciais que implementam
otimizações para representação de transformações e de estados quânticos, redu-
zindo a quantidade de memória requerida durante a simulação, suportando sistemas
quânticos com mais de 30 qubits.

Também são consideradas abordagens para simulação paralela de algorit-
mos quânticos, focados na redução do tempo necessário para aplicação das
transformações quânticas pela exploração de clusters e GPUs.

A escolha dos simuladores considerados nesta sessão está embasada na
descrição apresentada em (MARON, 2013).

3.1 QuIDDPro

O simulador QuIDDPro, proposto em (VIAMONTES, 2007), utiliza estruturas de-
nominadas QuIDDs (Quantum Information Decision Diagrams) para representar efici-
entemente transformações e estados quânticos multidimensionais, os quais são de-
finidos, matricialmente, por blocos de valores repetidos. Esses padrões de repetição
ocorrem com frequência em vários algoritmos, sendo possı́vel obter uma significativa
redução no consumo de memória e no tempo de acesso às informações.

Um QuIDD é uma representação comprimida de matrizes e vetores, permitido que
computações sejam realizadas diretamente sobre essa estrutura otimizada. Exempli-
ficando, na Figura 5, tem-se a representação de diferentes estados quânticos utilizado
QuIDDs. Na Figura 5(c), a aresta sólida saindo do vértice I0 equivale a assinalar o
valor 1 ao primeiro bit do ı́ndice de 2 bits. Já a aresta tracejada do vértice I1 equi-
vale a assinalar o valor 0 ao segundo bit do mesmo ı́ndice. Esses caminhos levam ao
valor −1

2
, o qual é a amplitude do estado da base computacional indexado por |10�.

Dessa representação percebe-se que, para estados com amplitudes iguais, é ob-
tido um QuIDD extremamente simples. Para estados com muitas amplitudes diferen-
tes, não é possı́vel obter compressão. Entretanto, tais estados não são usuais na
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Figura 5: Exemplos de QuIDDs para diferentes estados quânticos. Fonte: (VIAMON-
TES, 2007)

CQ. Transformações quânticas são definidas de forma análoga, como visto nas Figu-
ras 6(a) e 6(b).

(a) Definição matricial de H⊗2 (b) Representação de H⊗2|00� usando
QuIDD

Figura 6: Transformações quânticas no QuIDDPro. Fonte: (VIAMONTES, 2007)

Vários resultados obtidos pelo QuIDDPro podem ser vistos em (GROUP, 2007).
Como destaque, tem-se a simulação de instâncias do Algoritmo de Grover para sis-
temas de até 40 qubits, no qual o consumo de memória não ultrapassou 0, 398 MB,
enquanto que demais pacotes de simulação ficaram limitados a sistemas de até 25 qu-
bits. Entretanto, por se tratar de um processamento sequencial, a simulação demo-
rou 8, 234 segundos.
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3.2 Massive Parallel Quantum Computer Simulator

O Massive Parallel Quantum Computer Simulator (MPQCS) (RAEDT et al.,
2006) consiste em um software para simulação paralela de computadores quânticos,
podendo ser aplicado a máquinas paralelas high end ou a clusters de desktops co-
muns. Implementado em Fortran 90, o simulador suporta as transformações quânticas
universais necessárias para descrição de qualquer algoritmo quântico. O algoritmo
pode ser descrito a partir de um pseudo-código, demonstrado na Figura 7, ou por
um circuito quântico, gerado a partir de uma interface gráfica desenvolvida para MS
Windows. O circuito é interpretado e automaticamente gera o correspondente pseudo-
código.

Figura 7: Pseudocódigo para descrição de uma aplicação quântica no Massive Parallel
Quantum Computer Simulator. Fonte: (RAEDT et al., 2006)

A técnica de paralelização do MPQCS consiste em distribuir o espaço de es-
tados do sistema quântico através de todos os nodos do cluster, utilizando o mo-
delo de programação MPI para comunicação entre os processos. A quantidade de
processos (N ) MPI necessários para construção do sistema quântico depende da
razão N = 2L/2M , onde L representa a quantidade de qubits do sistema e M é a quan-
tidade de qubits que cada processo é capaz de armazenar. Dessa forma, cada pro-
cesso têm acesso direto à um determinado intervalo do espaço de estados do sistema
quântico, enquanto que os demais estados são acessı́veis através de comunicação
com os correspondentes processos. A Figura 8 descreve um cenário com L = 4 e
M = 2, associando os processos às respectivas amplitudes armazenadas.

Figura 8: Distribuição de amplitudes para 4 processos MPI. Fonte: (RAEDT et al.,
2006)
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Os valores 00, 01, 10 e 11 fazem alusão ao rank de cada processo MPI. Já 00, 01,
10 e 11 indexam as posições de memória de cada processo.

Considerando que a aplicação de uma transformação quântica sobre o sistema
usualmente altera as amplitudes de todos os estados, percebe-se a necessidade
de um método para obter as amplitudes armazenadas em processos diferentes.
Exemplificando, considera-se a distribuição ilustrada pela Figura 8 e a aplicação da
transformação quântica NOT ao qubit 2 do sistema. Para efetivação dessa operação,
é necessário que cada processo MPI tenha conhecimento das amplitudes associadas
aos estados |0� e |1� do qubit 2. Essa condição é satisfeita após a troca de amplitudes
entre os processos, definida pela permutação σ2, apresentada na Figura 9. Percebe-
se, agora, que todos os processos possuem as amplitudes associadas aos estados do
qubit 2. Assim, todos os processos podem aplicar, simultaneamente, a transformação
quântica sobre esse qubit, caracterizando a evolução do estado global do sistema
quântico. Descrições detalhadas de como essa troca é realizada podem ser obtidas
em (RAEDT et al., 2006).

Figura 9: Distribuição de amplitudes para N processos MPI considerando a
permutação σ2. Fonte: (RAEDT et al., 2006)

Os testes foram realizados em vários supercomputadores, como IBM BlueGene/L,
Cray X1E, IBM Regatta p690+, dentre outros. Os principais resultados demonstram
a capacidade de simulação de sistemas com até 36 qubits, exigindo aproximada-
mente 1 TB RAM e 4096 processadores. Esse alto custo se deve ao armazenamento
explicito de todas as amplitudes que definem o estado do sistema quântico, impli-
cando no armazenamento de 236 valores complexos, usualmente representados por
dois dados do tipo float.

Em 2010, o MPQCS fez uso do supercomputador JUGENE para executar uma
instância do Algoritmo de Shor com 42 qubits, fatorando o número 15707 em 113× 139.
Para isso, foram necessários 262.144 processadores, porém o consumo de memória e
o tempo de simulação requerido não foram divulgados.

Dada a constante necessidade de comunicação entre os processos, o simula-
dor exige uma rede de intercomunicação de alta capacidade. Dessa forma, clusters
comuns, formados por PCs conectados por uma rede ethernet, apresentarão uma
limitação na quantidade de nodos que podem ser utilizados eficientemente, interfe-
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rindo diretamente na dimensão dos sistemas quânticos suportados.

3.3 General-Purpose Parallel Simulator for Quantum Computing

A natureza inerentemente paralela associada à evolução de um sistema quântico
é explorada, no General-Purpose Parallel Simulator for Quantum Computing (NIWA;
MATSUMOTO; IMAI, 2002), a partir do particionamento da matriz associada à
transformação unitária em sub-matrizes. Essas sub-matrizes são aplicadas, de forma
paralela, a sub-vetores associados ao estado do sistema quântico.

Para a aplicação de uma transformação sobre o qubit i, como ilustrado na Fi-
gura 10, faz-se necessário a geração da matriz X a partir do produto tensor X =

(⊗i−1
k=1I)⊗ U ⊗ (⊗n

k=i+1I).

Figura 10: Transformação quântica de 1 qubit

A Figura 11 mostra uma representação genérica para a matriz X, na qual tem-se
uma possı́vel decomposição em termos de submatrizes Sk.

Figura 11: Matriz que define a evolução do sistema quântico. Fonte: (NIWA; MATSU-
MOTO; IMAI, 2002)

A metodologia para particionamento de X depende da quantidade de processa-
dores disponı́veis (2P ) no cluster. A matriz X é decomposta em um sequência de
multiplicações de submatrizes-subvetores indexadas por Mk(0 ≤ k < 2i). Mk é defi-
nido como sendo Skφk, ou seja, o produto Sk(2

n−i × 2n−i) × φk(2
n−i), onde φk é um

vetor que armazena as amplitudes dos estados do sistema quântico. Como todos os
produtos Mk(0 ≤ k < 2i) são independentes, tem-se a possibilidade de execução
simultânea de 2i−P multiplicações de submatrizes-subvetores em cada processador,
como exemplificado na Figura 12. Ao final da execução de cada produto, tem-se uma
primitiva de sincronização para atualizar todas as amplitudes do vetor de estado do
sistema quântico.
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Figura 12: Decomposição da transformação quântica. Fonte: (NIWA; MATSUMOTO;
IMAI, 2002)

Quando o número de submatrizes Sk é menor que a quantidade de processadores
disponı́veis (2i < 2P ), ocorre um desbalanceamento no cluster, fazendo com que deter-
minados processadores trabalhem de forma excessiva enquanto outros permanecem
ociosos. Assim, as matrizes Sk devem ser decompostas para viabilizar a execução
paralela. Essa decomposição se dá pela divisão de Sk em 2P+1 chunks de linhas,
indexados por Rj(0 ≤ j < 2P+1), as quais armazenam 2n−i−(P+1) linhas de Sk.

As multiplicações de chunks indexados por Rj e R2P+j são mapeadas para o
mesmo processador, conforme apresentado na Figura 13.

Figura 13: Decomposição de Mk e φk para casos em que 2i ≤ 2P . Fonte: (NIWA;
MATSUMOTO; IMAI, 2002)

Transformações quânticas também podem ser definidas a partir de matrizes de
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rotação (UR(θ)) e de mudança de fase (UP1(φ) e UP2(φ)), definidas por

UR(θ) =

�
cosθ −sinθ

sinθ cosθ

�
, UP1(φ) =

�
1 0

0 eiφ

�
e UP2(φ) =

�
eiφ 0

0 1

�
. (15)

Por exemplo, a porta quântica NOT pode ser obtida por UR(
π
2
)UP1(π). Essa ca-

racterı́stica permite a implementação de um modelo de erros, considerando a de-
coerência dos sistemas quânticos, a qual é simulada a partir da inserção de pequenos
desvios nos ângulos θ e φ, permitindo uma simulação coerente com as teorias fı́sicas
que fundamentam a Teoria da Informação Quântica.

O simulador foi desenvolvido sobre o computador paralelo Sun Enterprise (E4500),
o qual possui 8 processadores UltraSPARC-II (400MHz), 1 MB cache, 10GB RAM e
OS Solaris 2.8 (64 bits).

Dentre os resultados obtidos, destaca-se a simulação de transformações Hada-
mard em um sistema quântico de 29 qubits, conforme apresentado na Figura 14.

Figura 14: Tempos, em segundos, para simulação de transformações Hadamard.
Fonte: (NIWA; MATSUMOTO; IMAI, 2002)

O simulador fica limitado em aproximadamente 29 qubits devido ao custo de arma-
zenamento do espaço de estados e da matriz de transformação do sistema, os quais
crescem exponencialmente conforme são adicionados novos qubits.

3.4 Quantum Computer Simulation using CUDA

O simulador quântico descrito em (GUTIÉRREZ et al., 2010) utiliza as premissas do
modelo de programação CUDA para exploração do paralelismo associado a evolução
dos sistemas quânticos. Dessa forma, viabiliza-se a execução do cálculo das amplitu-
des associadas aos estados da base computacional a partir de um grande número de
threads, as quais executam sobre as unidades de processamento das GPUs.

Essa abordagem considera o armazenamento explı́cito de todas as amplitudes
que definem o estado do sistema quântico, de forma que uma grande quantidade
de memória é necessária para suporte a simulação de algoritmos complexos. A
obtenção das novas amplitudes dos estados não se dá por matrizes geradas a partir
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da operação de produto tensor, reduzindo o custo de processamento e armazena-
mento da simulação. As novas amplitudes são definidas a partir das matrizes asso-
ciadas às transformações quânticas universais, de um e dois qubits. Essas matrizes
fornecem os coeficientes que serão multiplicados pelas amplitudes associadas aos es-
tados do sistema. A descrição detalhada do cálculo das amplitudes pode ser estudado
em (GUTIÉRREZ et al., 2010).

Para realização dos cálculos, é necessário copiar todo o vetor de amplitudes para
a memória global da GPU. Visando um acesso mais rápido a esses dados durante
a execução das threads, os conjuntos de amplitudes a serem modificadas são copi-
adas para a área de memória compartilhada, a qual possui menor tempo de acesso.
Entretanto, faz-se necessário uma função de mapeamento que realize essa cópia de
forma eficiente, garantindo um acesso coalescido a memória, aproveitando a largura
de banda disponı́vel no barramento e evitando a serialização das threads.

Cada bloco de threads é associado com determinados conjuntos de amplitu-
des (closed groups), os quais podem ser processados de forma independente. Cada
thread do bloco realiza, simultaneamente, a computação associada a determinadas
amplitudes contida nos conjuntos. Esse mapeamento depende da granulosidade do
problema e da quantidade de recursos computacionais disponı́veis. Dessa forma,
pode ser definido previamente que uma thread compute apenas algumas amplitudes
ou todas as amplitudes de vários conjuntos distintos. Na Figura 15 é apresentada uma
visão simplificada dos principais mapeamentos a serem realizados.

Figura 15: Principais mapeamentos a serem feitos para computação das amplitudes.
Fonte: (GUTIÉRREZ et al., 2010)

A análise de desempenho considera uma GPU NVIDIA GeForce 8800GTX e CUDA
1.1. As principais caracterı́sticas da GPU são descritas na Tabela 2.

Cada amplitude é um valor complexo representado por 2 floats de 32 bits cada,
permitindo o armazenamento de até 26 qubits (226 amplitudes) no espaço de memória
global da GPU. Devido ao tamanho reduzido da memória compartilhada, é possı́vel
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Tabela 2: Principais caracterı́sticas da GeForce 8800GTX
Atributo Valor
Multiprocessadores 16
Processadores em cada multiprocessador 8
Frequência de clock 1,35 GHz
Memória global 768 MB

realizar a cópia de até 210 amplitudes, limitando a quantidade de amplitudes a serem
calculadas simultaneamente. Uma análise geral de desempenho é vista na Figura 16.

Figura 16: Tempos de simulação para transformações Walsh-Hadamard e TFQ.
Fonte: (GUTIÉRREZ et al., 2010)

As simulações sequenciais realizadas consideram um PC com Intel Core2Duo
6400 @ 2,13GHz com 2GB RAM, utilizando a biblioteca libquantum para simulação
quântica. Como principais conclusões, destaca-se que o tamanho da memória fı́sica
da GPU limita de forma significativa a quantidade de qubits suportados. Entretanto,
para sistemas com até 26 qubits, um speedup de até 95× pode ser obtido, caracteri-
zando um excelente ganho de desempenho.

3.5 Language-Integrated Quantum Operations– LIQUi| >
LIQUi| > é um novo projeto de pesquisa na Microsoft (WECKER; SVORE, 2014)

que fornece uma arquitetura de software para computação quântica independente de
hardware. Ele contém uma linguagem embutida, de domı́nio especı́fico projetado para
algoritmos de programação quântica, com F# como a linguagem host. Também per-
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mite a extração de uma estrutura de dados de circuitos que pode ser utilizado para
otimizações, gerando uma versão compacta, altamente otimizada para simulação.

Dois ambientes de simulação diferentes estão disponı́veis para o usuário que per-
mitem que um trade-off entre o número de qubits e classe das operações.

O simulador LIQUi| > é altamente otimizado, tirando vantagem de várias técnicas
disponı́veis, incluindo gerenciamento personalizado de memória, paralelização, “gate
growing”, e virtualização (execução na nuvem).

O simulador possui uma versão disponı́vel para download no GitHub, porém ela é
limitada para simulações de no máximo 23 qubits, e permite a definição e simulação
de circuitos usando a linguagem F#. LIQUi| > é um programa executado por linha de
comando e possui algoritmos já incluı́dos para simulação, um exemplo de saı́da para
a execução do comando Liquid.exe Shor(21,true) que executa o algoritmo de Shor
otimizado para o número 21 pode ser visto na Figura 17.

Figura 17: Saı́da de uma execução no simulador LIQUi| >.

LIQUi| > apresenta simulações de até 30 qubits em uma única maquina de 32 GB
RAM limitado somente por memória e threads, resto da arquitetura não especificado.
A Figura 18 mostra os tempos de simulação do algoritmo de Shor apresentados
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em (WECKER; SVORE, 2014), sendo a linha com os menores tempos a última versão
do simulador após inserida todas as otimizações. O maior número fatorado até o mo-
mento possui 13 bits, sendo necessário 27 qubits, meio milhão de portas e 5 dias de
execução. O circuito utilizado para a parte quântica do algoritmo de Shor é o mesmo
citado neste trabalho.

Figura 18: Tempos de simulação para o algoritmo de Shor no simulador LIQUi| >.
Fonte: (WECKER; SVORE, 2014)

3.6 Considerações Finais

A proposta considerada pelo QuIDDPro é significante pela capacidade de redução
no consumo de memória, viabilizando a simulação de sistemas com até 40 qubits. O
QuIDDPro apresenta bons resultados quando existem padrões repetidos na estrutura
matricial, ou seja, é eficiente em determinadas classes de algoritmos e pode não apre-
sentar a mesma eficiência para casos genéricos. Apesar do ganho de memória obtido,
em determinadas configurações de transformações quânticas o tempo de simulação
ainda permanece alto. Esse obstáculo pode ser superado através da paralelização
das tarefas.

Os simuladores paralelos descritos neste capı́tulo representam transformações
e estados quânticos explicitamente a partir de matrizes e vetores, respectivamente.
Dessa forma, as possibilidades de simulação são limitadas pela quantidade de
memória disponı́vel do cluster utilizado. Entretanto, é possı́vel obter ganho no tempo
de simulação pela paralelização do produto matriz-vetor que caracteriza a evolução
de estado do sistema quântico. A distribuição das amplitudes dos estados ao longo
dos nodos também é uma estratégia adotada, porém apresenta elevado custo de
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comunicação.
O simulador LIQUi| > apresenta diversos tipos de otimizações, é o mais atual

entre os simuladores citados e disponibiliza a ferramenta para simulações. Além
destas caracterizações, acrescenta-se que este simulador considera o mesmo cir-
cuito quântico para o algoritmo de Shor que foi utilizado nas implementações para
validação do ReDId. Justifica-se portanto a escolha do simulador LIQUi| > para rea-
lizar comparações com os resultados alcançados no desenvolvimento deste trabalho,
as quais são apresentadas nos próximos capı́tulos.



4 REDID: ESTRATÉGIA PARA REDUÇÃO DA COMPLEXI-
DADE ESPACIAL E TEMPORAL

Em trabalhos anteriores (MARON et al., 2012; MARON; REISER; PILLA, 2013;
AVILA et al., 2014), processos relacionados a TQs n-dimensionais eram definidos por
um conjunto de matrizes básicas de baixa ordem para reduzir a memória usada nas
simulações devido ao crescimento exponencial da sua representação por uma única
matriz (2n × 2n).

Por exemplo, considere a TQ H⊗8, ao invés de armazenar uma matriz de 28 × 28, o
produto tensor poderia ser realizado somente entre pares de operadores gerando um
conjunto com 4 matrizes de 22 × 22, como mostrado na Figura 19.

Figura 19: Matrizes Básicas para a Transformação H⊗8

Os elementos necessários na computação da simulação da TQ eram gerados em
tempo de execução por iterações sobre estas matrizes, modelando a expansão ex-
ponencial da memória decorrente da aplicação do produto tensorial. No entanto, o
tempo total computacional gasto nestas iterações é alto quando se dá a execução
de TQs compostas por muitos operadores densos, como no caso das transformações
Hadamard.

As principais otimizações propostas pela estratégia ReDId estão principalmente
relacionadas à redução da complexidade espacial e temporal associada a simulação
de uma TQ, pelo uso inteligente do operador Identidade.

Abordagens distintas foram usadas para alcançar bons resultados, e elas são des-
critas nas seções a seguir.
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4.1 Replicações e Esparcialidade do Operador Identidade

A primeira otimização explora o comportamento do operador Identidade (I) quando
aplicado o produto tensorial com outros operadores. Nestes casos, a diagonal prin-
cipal do operador Identidade composta por valores unitários (1) gera a replicação de
dados referentes aos outros operadores e a diagonal secundária composta por valores
nulos (0) introduz a esparcialidade na matriz resultante.

Como um exemplo deste comportamento, considere a Eq. 16 para a transformação
I ⊗H, ao analisar a matriz resultante do produtor tensor entre esse operadores pode-
se facilmente verificar que os valores da matriz correspondente ao operador H são
replicados (duas vezes) e a quantidade de valores zeros gerados é igual a duas vezes
o número de elementos do operador H.

I ⊗H =

�
1 0

0 1

�
⊗ 1√

2

�
1 1

1 −1

�
=

1√
2




1 1 0 0

1 −1 0 0

0 0 1 1

0 0 1 −1




(16)

Assim, quanto maior for a quantidade de operadores I presentes em uma TQ,
maior será também a quantidade de elementos replicados e da esparcialidade na
matriz que representa esta TQ.

Por exemplo, uma TQ de 20 qubits com apenas um operador diferente de I, cada
elemento deste operador seria replicado 219 vezes e 221 zeros seriam gerados.

Quando considerado o método desenvolvido em trabalhos anteriores, as
replicações e esparcialidades inseridas pelo operador I não são tão significantes
em relação a complexidade espacial, pois o operador I não altera o resultado da
computação na composição com outro operador. Porém, são inseridas inúmeras
iterações pelas replicações, o que aumenta significativamente o número de operações
de uma computação, incrementando a complexidade temporal.

Considerando as argumentações acima, o trabalho considerou otimizar a
representação das TQs ao armazenar somente a expansão do produto tensorial en-
tre operadores diferentes de I gerando assim uma matriz reduzida (MR), evitando a
replicação de dados e inserção de esparcialidade gerada pelo operador I, resultando
então na diminuição da complexidade espacial das TQs assim caracterizadas.

Porém ao utilizar esta forma de representação não é possı́vel considerar a forma
convencional de cálculo das novas amplitudes do estado quântico, caracterizada pela
multiplicação entre matriz/vetor (processo-TQ/estado-vetor), uma vez que a ordem da
MR é sempre menor, no máximo igual, a dimensão do estado. Portanto, para usar
esta otimização é preciso adotar uma abordagem diferente que será explicada na
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sequência.
Informações relevantes referentes a nova abordagem de cálculo da multiplicação

matricial:

• Considera-se a representação binária das linhas/colunas da MR e das
posições (leitura e escrita) das amplitudes nos estados quânticos.

• A quantidade de bits utilizada para cada estrutura é a mı́nima necessária, ou
seja, para linhas/colunas é o equivalente ao número de operadores diferentes de
I na MR, e para as posições das amplitudes estados é o equivalente ao número
de qubits da aplicação.

• Cada bit das posições das amplitudes está relacionado a um operador da TQ. O
mais significativo, ao operador do primeiro qubit; segundo mais significativo, ao
operador do segundo qubit, e assim sucessivamente até esgotar a dimensão do
operador.

• Bits relacionados a operadores distintos do operador I são considerados bits-
ativos.

Utilizando as informações resumidas citadas, os passos para realização do cálculo
de cada nova amplitude são descritos abaixo:

• (i) Identificação da linha da matriz MR à ser usada - este processo é feito
pela concatenação dos bits-ativos da posição referente à nova amplitude, sendo
o número resultante a linha desejada;

• (ii) Multiplicação dos elementos desta linha por amplitudes do estado de
leitura - a amplitude pela qual cada elemento será multiplicado é determinada
substituindo os bits da coluna deste elemento na MR pelo bits-ativos da posição
da nova amplitude;

• (iii) Atribuição do valor da nova amplitude - este valor resulta da soma das
multiplicações realizadas no passo anterior.

Como exemplo, considera-se a aplicação de um operador genérico ao primeiro
qubit e ao segundo qubit de um estado bi-dimensional dados pelas Eqs. 17 e 18,
respectivamente. Os elementos da matriz MR estão descritos na forma mij, onde i e
j são sua linha e coluna, respectivamente. As amplitudes dos estados estão descritas
na forma ab, onde b é a posição da amplitude no estado. Nos estados, os bits-ativos
estão em outra cor, para facilitar a visualização gráfica e, consequente compreensão
da metodologia adotada.
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�
m00 m01

m10 m11

�
×




a00

a01

a10

a11




=




a00 ×m00 + a10 ×m01

a01 ×m00 + a11 ×m01

a00 ×m10 + a10 ×m11

a01 ×m10 + a11 ×m11




(17)

�
m00 m01

m10 m11

�
×




a00

a01

a10

a11




=




a00 ×m00 + a01 ×m01

a00 ×m10 + a01 ×m11

a10 ×m00 + a11 ×m01

a10 ×m10 + a11 ×m11




(18)

Para um exemplo mais detalhado do cálculo de uma nova amplitude, considere o
cálculo do novo valor da amplitude referente à posição a0000 ao aplicar a TQ genérica
U ⊗ I ⊗ U ⊗ I à um estado 4-dimensional. A MR gerada é U ⊗ U , pois a TQ possui
operadores diferentes de I no primeiro e no terceiro qubit, e está descrita na Eq. 19.

Seguindo os passos apresentados anteriormente, tem-se que
(i) ao concatenar os bits-ativos da posição da amplitude, os quais estão identificados
com vermelho, temos o valor 10 que será a linha a ser utilizada;
(ii) cada elemento da linha 10 é multiplicado por uma amplitude – (m1000 × a0000) –
(m0001 × a0010) – (m1010 × a1000) – (m0011 × a1010); e
(iii) atribui-se a soma das multiplicações à posição 0000 do estado de escrita.

U ⊗ U =




m0000 m0001 m0010 m0011

m0100 m0101 m0110 m0011

m1000 m0001 m1010 m0011

m1100 m0001 m1110 m0011




(19)

Esta otimização também pode ser aplicada aos operadores controlados. Nestes
casos, somente as posições do estado de escrita que satisfazem o controle são cal-
culadas, as que não satisfazem são atribuı́das o valor no estado de leitura correspon-
dente a sua posição. Como exemplo, considere a aplicação de um operador controlado
genérico ao primeiro qubit, com controle em 1 no segundo qubit, o cálculo ficaria como
descrito na Eq.20.
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�
m00 m01

m10 m11

�
×




a00

a01

a10

a11




=




a00

a01 ×m00 + a11 ×m01

a10

a01 ×m10 + a11 ×m11




(20)

Embora este conceito otimize de forma significativa a representação de TQs envol-
vendo operadores I, nem todas apresentam operadores I ou uma quantidade sufici-
ente que torne possı́vel representá-las através de uma única matriz na memória.

Assim, para superar esta limitação, a próxima otimização considera a
decomposição de TQs.

4.2 Decomposição de TQs

Uma TQ n-dimensional pode ser decomposta aumentando o número de passos
para o cálculo da mesma, distribuindo os operadores diferente de I ao longo destes
passos, preservando o comportamento e propriedades da TQ. Está decomposição
permite o controle (e/ou incremento) da quantidade de operadores I presentes em
cada etapa de uma aplicação quântica.

Na Figura 20, mostra-se a decomposição da transformação H⊗H em duas etapas,
H ⊗ I e I ⊗H, mantendo o mesmo comportamento da aplicação independentemente
da ordem de composição destas etapas.

Figura 20: Transformação não-controlada decomposta

TQs controladas também podem ser decompostas, desde que os operadores con-
servem os controles associados a eles, como mostra a Figura 21.

Figura 21: Transformação controlada decomposta

Utilizando este conceito, pode-se maximizar o impacto da otimização descrita na
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seção anterior, pois poderá ser usada mesmo quando a quantidade de operadores I

da TQ for pequena ou até mesmo ausente.
Estas duas otimizações viabilizam a simulação de um algoritmo quântico de foma

eficiente, os quais não fazem uso de matrizes de menor ordem para simular o compor-
tamento do produto tensor e geração, por simulação via computadores convencionais,
dos novos estados quânticos.

No caso das otimizações por reduções, a complexidade espacial pode ser redu-
zida, limitando o número de operadores diferentes de I presentes em cada passo da
decomposição e tornando possı́vel a representação na memória de cada passo por
uma única matriz reduzida.

Além deste resultado, tem-se também a redução da complexidade temporal.
Pois, mesmo com o aumento do número de passos, não se tornam mais ne-
cessárias iterações, o que diminui muito o número total de acessos a memória e de
multiplicações envolvendo números complexos.

4.3 Processos Mistos Parciais

Apesar de ser possı́vel modelar TQs com baixa complexidade espacial, usando
ambas abordagens mostradas nas seções anteriorores, o tamanho dos estados de lei-
tura/escrita podem se tornar um fator limitante para simulação de TQs n-dimensionais,
pois estes também crescem de forma exponencial (2n). Por exemplo, uma TQ multi-
dimesional, na ordem de 28 qubits, precisa 4 GiB de memória para armazenar ambos
estados.

Uma vez que a memória das GPUs normalmente são menores que a memória
RAM principal, é necessário adotar uma abordagem que forneça escalabilidade para
a simulação de TQs multi-qubits.

O conceito de Processos Mistos Parciais (MPP), apresentando em (AVILA et al.,
2015), provê controle sobre o tamanho dos estados de leitura/escrita no cálculo de
uma TQ, contribuindo para o aumento da escalabilidade.

Baseando-se neste conceito, TQs com mais qubits que o limite suportado pela
memória da GPU, podem ter seus estados particionados em 2p sub-estados, onde p

indica o número de qubits acima do limite, tornando possı́vel a simulação da TQ.
Usando as otimizações descritas anteriormente, o número de sub-estados de lei-

turas que cada sub-estado de escrita precisa acessar para realizar o cálculo de suas
amplitudes é 2r, sendo r o número de operadores afetados pelo particionamento.

Por operadores afetados entende-se o número de operadores diferentes de I pre-
sentes nos p primeiros qubits da etapa da computação. Logo, etapas que não pos-
suam operadores afetados precisam somente do correspondente sub-estado de lei-
tura, o que as torna totalmente independentes.
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Para manter a consistência do resultado das computações concorrentes na
aplicação em simulação, cada etapa incluindo operadores afetados precisa calcular
os todos os sub-estados antes de prosseguir para o próxima etapa, respeitando as
dependências geradas.

As etapas envolvendo operadores não-afetados podem ser calculadas da mesma
forma ou podem ter cada sub-estado calculado de forma iterativa, pois não há de-
pendências, ou seja, cada sub-estado de escrita precisa somente do correspondente
sub-estado de leitura para realização do cálculo.

No caso de envolverem operadores afetados, somente os sub-estados que
satisfaçam tais controles precisam ser calculados e acessados para leitura.

4.4 Considerações Finais

Este capı́tulo descreveu as principais otimizações propostas pela estratégia ReDId
para a concepção e modelagem de um novo algoritmo visando a redução da comple-
xidade espacial e temporal das simulações quânticas.

Fez-se uso de construtores como replicação e esparcialidade para viabilizar uma
representação de TQs otimizada pelo uso inteligente do operador Identidade.

Além destes, a escalabilidade das aplicações pode ser incrementada ao considerar
o conceito de decomposição de operações concorrentes.

No Capı́tulo 5, apresentam-se exemplos dos conceitos que modelaram a
concepção do novo algoritmo, e validaram a simulação de algoritmos quânticos como
TQ de Hadamard, TQF e o algoritmo de Shor.



5 ESTUDO DE CASO: IMPLEMENTAÇÃO DA ESTRATÉGIA
REDID NO D-GM

Este capı́tulo descreve o ambiente D-GM e seus principais componentes e a
implementação da estratégia ReDId neste ambiente, considerando uma arquitetura
de software heterogênea, viabilizando a computação via CPUs e GPUs.

5.1 Ambiente D-GM

O projeto D-GM propõe um framework (AVILA et al., 2014) para simulação de
algoritmos quânticos, com interfaces gráficas para modelagem, desenvolvimento e
implementação de simulações, sequencialmente ou em paralelo, usando GPUs e
CPUs. A Figura 22 apresenta a organização do D-GM em seus diferentes nı́veis.

Cada nı́vel diferente tem sua própria funcionalidade no sentido da unificação da
modelagem e simulação de aplicações:

Quantum Circuit Level: provê a descrição de aplicações no modelo de circuitos
quânticos através do uso das ferramentas para modelagem e edição qCEdit (Quantum
Circuit Editor ) e sua versão para plataformas móveis M-qCEdit (GNUTZMANN, 2013),
as quais fornecem a opção de automaticamente exportar as aplicações para uma
representação de acordo com o modelo qGM (Quantum Geometric Machine).

qGM Level: contendo o ambiente VPE-qGM que tem o objetivo de oferecer su-
porte a modelagem e simulação de algoritmos quânticos considerando as abstrações
do modelo qGM. Dentre os componentes arquiteturais do ambiente, os seguintes são
destacados:

• qPE (Quantum Process Editor): IDE para o desenvolvimento gráfico dos algorit-
mos;

• qME (Quantum Memory Editor): interface para definição do estado inicial do
sistema quântico. Um grid de memória armazena cada estado básico e a cor-
respondente, modelando um vetor de estado de forma análoga à descrita na
Eq. 1;
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Figura 22: Framework do Simulador D-GM. Fonte: (AVILA et al., 2014)

• qS (Quantum Simulator): A partir das estruturas definidas nas interfaces do qPE
e qME, o qS realiza a simulação do algoritmo quântico, suportando duas aborda-
gens: (i) simulação passo-a-passo, a qual é relevante para viabilizar uma análise
detalhada da evolução da simulação; (ii) simulação distribuı́da;

• qGM-Analyzer : Biblioteca para realização das computações associadas aos
componentes que descrevem cada passo do algoritmo quântico, estando inte-
grada à interface qS. O suporte para aceleração por GPU é estabelecida nesta
biblioteca.

D-GM Level: módulo de gerenciamento de simulações distribuı́das, Virtual Dis-
tributed Geometric Machine (VirD-GM) (AVILA et al., 2014), que se encarrega pela
comunicação, escalonamento e sincronização quando uma simulação distribuı́da é
requisitada pelo VPE-qGM. A execução distribuı́da de aplicações a partir do VirD-GM
se dá através do uso de Processos Mistos Parciais. Os seus principais componentes
são descritos abaixo.

• VirD-Loader : responsável pela interpretação de arquivos descritores contendo o
algoritmo a ser simulado e seu vetor de estado inicial.
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• VirD-Launcher : realiza o escalonamento e controle de fluxo de execução das
tarefas.

• VirD-Exec controla a comunicação e transferência de dados entre os clientes de
execução, nomeados Vird-Clients.

5.2 Implementações

Nesta seção, descreve-se a implementação de uma nova biblioteca de execução
para o ambiente D-GM em linguagem C/C++ que forneça suporte a simulação de al-
goritmos quânticos multi-qubits, sequencialmente e em paralelo, em CPUs e GPUs.
Esta implementação utiliza a estratégia ReDId em acordância com a descrição já apre-
sentada no Capı́tulo 4, que visa a redução da complexidade espacial e temporal nas
simulações e aplicações.

A estratégia adotada para realizar a decomposição de TQ no ambiente D-GM pode
ser dividida em duas partes:

(1) classificação da TQ em grupos, separando operadores não-controlados e com
controles distintos.

(2) definição dos passos da TQ, cada um é formado por operadores que
pertençam ao mesmo grupo e atuem em qubits consecutivos respeitando o li-
mite de operadores por passo estabelecido. Em caso de particionamento da
memória, operadores afetados e não-afetados não podem fazer parte do mesmo
passo.

Um exemplo é mostrado na Figura 23 para uma TQ de 9 qubits considerando limites
de 3 operadores por passo e de 8 qubits para execução. Seguindo os passos descritos
anteriormente, a TQ primeiro é dividida em 3 grupos e então em 5 passos. O grupo
1 gera dois passos apesar de ter 3 operadores consecutivos, pois o primeiro qubit é
afetado pelo particionamento da memória.

Nas sub-seções a seguir são discutidas as implementações do algoritmo para CPU
e GPU.

5.2.1 Computação em CPU

Os melhores resultados em CPU usando a abordagem de decomposição descrita
acima foram alcançados quando o limite de operadores por passo de 1 e 2 foram
considerados. Por isso, foi optado por calcular a TQ operador por operador, o mesmo
que limite de operadores de 1, à fim de realizar otimizações direcionados ao tipo de
operador calculado. Os operadores podem ser classificados em dois tipos:

(i) Denso - operadores definidos por matrizes que não possuem valores nulos. Es-
tes operadores não permitem a aplicação de otimizações mais agressivas; e
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Figura 23: Exemplo de decomposição para uma TQ.

(ii) Esparsos - operadores definidos por matrizes com valores não-nulos somente
na diagonal principal ou na diagonal secundária. Nesses casos, otimizações
descartando computações envolvendo valores nulos podem ser aplicadas.

Para exemplificar estas otimizações, considere a aplicação de operadores
genéricos dos dois tipos ao primeiro qubit de um estado 2-dimensional. O cálculo
de operadores densos ocorre como descrito em Eq. 17. Para operadores esparsos,
Eqs. 21 e 22 definem como cada amplitude pode ser calculada usando um único valor
da matriz e do estado, enquanto operadores densos precisam de dois valores de cada
estrutura.
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A execução de uma TQ se dá operador por operador. Para cada um, é identi-
ficado o seu tipo e então o correspondente laço é executado a fim de produzir as
novas amplitudes. As implementações paralelas em CPU foram implementadas em
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OpenMP (OpenMP Architecture Review Board, 2015), replicando o código da versão
sequencial explicada acima e adicionando a diretiva “parallel for” nos laços onde as
novas amplitudes são calculadas.

5.2.2 Computação em GPU

Depois de realizar a decomposição da TQ de acordo com os parâmetros recebidos,
o cálculo dos passos é realizado.

Como descrito na Seção 4.3: passos afetados são calculados um por um, sendo
realizada uma chamada de kernel para cada combinação entre sub-estados de escri-
tas e sub-estados de leitura necessários para o cálculo. Todos os passos não-afetados
são calculados um sub-estado por vez, realizando chamadas de kernel de forma ite-
rativa a fim de reduzir a comunicação entre host e GPU, uma vez que o sub-estado
de escrita resultante do cálculo de um passo pode ser mantido na memória da GPU e
servir como sub-estado de leitura para o próximo passo.

Cada chamada do kernel CUDA recebe os seguintes parâmetros para execução:

• Estados (sub-estados) de leitura/escrita;

• Matriz reduzida do passo a ser computado;

• Valores e posições dos controles (se existirem);

• Informações de acesso as estruturas que possuem os dados citados acima.

A computação do kernel CUDA é dividida em 5 passos, descritos a seguir.
Passo 1: Identificação do lineId de cada thread, calculado usando informação

sobre a thread atual e do controle. O lineId define qual amplitude será calculada por
cada thread.

long read_shift = arg[SHIFT_READ ];

long shift_write = arg[SHIFT_WRITE ];

long lineId = (blockIdx.y * gridDim.x + blockIdx.x) *

blockDim.x + threadIdx.x;

if (arg[CTRL_COUNT ]){

for (i = arg[CTRL_COUNT] - 1; i >= 0 ; i--){

lineId = (lineId *2) - (lineId & (1 << (ctrl_pos[i]) - 1));

}

lineId = lineId | arg[CTRL_VALUE ];

}

lineId = lineId | shift_write;

Passo 2: Inicialização de variáveis locais a cada thread.
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long p = arg[MAT_START ];

long size = arg[MAT_SIZE ];

long shift = arg[SHIFT];

long read_mask = (size - 1) << shift;

long inc = 1 << shift;

long read_pos = (lineId & ~read_mask) + (p << shift);

long base = (( lineId & read_mask) >> shift) * size;

long end = arg[MAT_END ];

long read_shift = arg[SHIFT_READ ];

Passo 3: Computação da nova amplitude parcial usando as variáveis do passo
anterior, que definem acessos à matriz e estados.

cuFloatComplex accum = make_cuFloatComplex (0.0 ,0.0);

for(; p < end; p++){

accum = cuCaddf(accum , cuCmulf(readMem[read_pos - read_shift],

matrix[base+p]));

read_pos += inc;

}

Passo 4: Armazenamento e acumulação da nova amplitude, calculada e escrita
na memória global da GPU.

lineId -= shift_write;

if (arg[ACUMM ])

writeMem[lineId ]= cuCaddf(writeMem[lineId],accum );

else

writeMem[lineId ]= accum;

Passo 5: Cópia das amplitudes das posições complementares aos controles do
estado de leitura para o estado de escrita.

if(arg[CTRL_CMPL ]){

lineId = lineId & (~arg[CTRL_MASK ]);

for (i = 0; i < arg[CTRL_CMPL ]; i++){

p = lineId | ctrl_cmpl[i];

writeMem[p] = readMem[p];

}

}



6 RESULTADOS

A principal contribuição deste trabalho pode ser avaliado através da simulação de
três classes de TQs:

(1) simulações Hadamard de 21 até 28 qubits;

(2) simulações de Transformadas de Fourier Quântica de 26 até 28 qubits;

(3) simulações do algoritmo de Shor considerando números de 6 até 12 bits, ou seja,
aplicações de 15 até 25 qubits.

Simulações sequenciais e paralelas até 4 Threads foram realizadas em CPU, os
parâmetros considerados para as simulações em GPU foram limite de operadores por
passo de 1 até 6 e limite de qubits para execução de 26 até 28 a fim de avaliar o
comportamento do novo algoritmo do ambiente D-GM.

Os testes foram realizados em um desktop com processador Intel Core i7-3770, 8
GiB RAM, GPU NVidia GTX Titan X. Os experimentos foram executados no sistema
operacional Ubuntu Linux 14.04, 64 bits, e CUDA TOOLKIT 7.0.

Durante a simulação, os tempos médios de simulação para Hadamard e QFT foram
obtidos depois de 30 execuções de cada aplicação, descartando os 5 menores e 5
maiores tempos de execução, e para o algoritmo de Shor depois de 10 execuções por
ser uma aplicação com tempo de execução elevado.

Nas seções à seguir são mostrados os resultados das simulações, salienta-se que
diferentes escalas foram usados nos gráficos para melhor visualização dos resultados.

6.1 Transformação Hadamard

Tempos de simulação para transformações Hadamard em CPU podem ser visto
na Figura 24. Nota-se que o tempo de simulação diminui para todas as Hadamard
conforme o número de threads aumenta. No entanto, se afasta do ideal devido ao
aumento de cache misses.

Tempos de simulação para transformações Hadamard em GPU, sem considerar
limite de qubits para execução, são mostrados na Figura 25. Nota-se que o tempo
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(a) 21-24 Qubits (b) 25-28 Qubits

Figura 24: Tempos de execução para a Transformação Hadamard em CPU, variando
o número de threads

mı́nimo de execução ocorre sempre com limite de operadores por passo de 4 ou 5,
mostrando que simulações com estes limites alcançam o melhor desempenho neste
hardware para estas transformações.

(a) 21-24 Qubits (b) 25-28 Qubits

Figura 25: Tempos de execução para a Transformação Hadamard em GPU, variando
o limite de operadores

A Figura 26 mostra os tempos de simulação em GPU de 26 até 28 qubits, consi-
derando limite de qubits para execução. Como esperado as implementações usando
MPPs permitem a simulação mesmo quando o limite de qubits para execução é menor
que o número de qubits da transformação sendo calculada. No entanto, o tempo de
execução aumenta conforme a quantidade de qubits passados do limite, pois haverá
mais operadores afetados pelo particionamento do estado.

Em comparação com o método anterior (AVILA et al., 2015), tempos médios de
simulação foram medidos para transformações Hadamard de 21 e 22 qubits com tem-
pos de 110,407 s e 395,951 s respectivamente. O speedup relativo obtido comparando
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Figura 26: Transformação Hadamard, 27-28 Qubits, 26-28 Limite, GPU

nosso melhor resultado neste trabalho com o método anterior foi de ≈ 10.829×.
Este speedup tende a escalar com o número de qubits, pois a taxa de crescimento

do tempo conforme o aumento do número de qubits é de ≈ 2×, enquanto no método
anterior é de ≈ 3, 6×.

6.2 Transformada de Fourier Quântica

A Figura 27(a) mostra os tempos de simulação em CPU para TFQ, mostrando
ganho de desempenho com o aumento do número de threads. Por ser uma aplicação
composta basicamente por operadores esparsos controlados, a maioria dos cálculos
se dão pelos laços de execução otimizados promovendo um menor impacto no ganho
das simulações paralelas se comparado aos resultados da transformação Hadamard.

(a) CPU (b) GPU, 26-28 Limite

Figura 27: Tempos de execução para a Transformada de Fourier Quântica, 26-28
qubits.

O limite de operadores por etapa não é relevante para a TFQ pois ela possui so-
mente um operador por passo. Na Tabela 3 é mostrado o número de passos afetados
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pela relação entre o número de qubits (etapas) da aplicação e o limite de qubits para
execução, e com base nestes dados pode ser observado na Figura 27(b) o ganho de
desempenho das simulações da TFQ em GPU conforme o número de etapas afeta-
das pelo limite de qubits diminui.

Tabela 3: Número de etapas afetadas pelo limite de qubits em uma TFQ.

QB(ET)
LIM

26 27 28

26 (351) 0 0 0
27 (378) 27 0 0
28 (406) 55 28 0

QB (ET) - Qubits (Etapas). LIM - Limite de qubits para execução.

6.3 Algoritmo de Shor

Tempos de simulação para o algoritmo de Shor usando os simuladores LIQUi|� e
D-GM podem ser vistos na Tabela 4. Tempos de execução do LIQUi|� foram obtidos à
partir do “minutes for running” encontrado na saı́da da execução da versão built-in do
algoritmo de Shor com a opção de otimização em “true”.

Salienta-se que o simulador D-GM apresentou melhores resultados para todos os
números executados independente do tipo de execução realizada. As execuções em
CPU mostraram ganho de performance conforme o número de threads aumenta.

Assim como esperado, as execuções em GPU obtiveram os melhores tempos em
todos os casos quando a parte quântica do algoritmo de Shor se torna o gargalo da
simulação ao invés do processamento clássico necessário antes e depois desta parte,
que seria para fatoração de números com 7 ou mais bits (17 ou mais qubits).

Tabela 4: Tempos Médios de Simulação para o Algoritmo de Shor, em segundos.
LIQUi|� D-GM

Número Bits Qubits Seq. 1 Thread 2 Threads 4 Threads GPU
57 6 15 11, 01 1, 49 1, 53 0, 92 0, 87 0, 99
119 7 17 47, 00 9, 26 9, 36 5, 01 3, 41 2, 64
253 8 19 201, 39 57, 10 58.02 30.27 17, 70 10, 17
485 9 21 1.166, 36 358, 89 348, 49 239, 69 211, 64 50, 84
1.017 10 23 5.905, 24 2.076, 11 2.055, 28 1.389, 96 1.249, 54 280.67
2.045 11 25 LS NE NE NE NE 1.623, 87

Seq. - Sequencial. LS - Limite do Simulador. NE - Não Executado.

6.4 Considerações Finais

As otimizações propostas pela estratégia ReDId para melhorar o desempenho da
simulação de computação quântica foram implementadas no framework D-GM, mas
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não se restringe a este ambiente, podendo ser implementada em outras plataformas
e/ou simuladores realizando as adaptações que virem a ser necessárias.

Pela exploração das caracterı́sticas do operador Identidade e uso da
decomposição de TQ, foi possı́vel criar um algoritmo mais eficiente, permitindo a
simulação de aplicações com um grande número de qubits em uma única máquina.

O uso do particionamento dos estados proporcionou escalabilidade às simulações
em GPU, permitindo desenvolvimento de aplicações com uma quantidade de memória
maior que a disponı́vel na GPU, Experimentos mostraram simulações de até 28 qubits
nesta arquitetura.

Quando comparado com nosso método anterior (AVILA et al., 2015), o melhor
speedup relativo foi obtido para a Hadamard de 22 qubits, sendo 10, 829× mais rápido
usando esta arquitetura otimizada.

Simulações do algoritmo de Shor mostraram melhores resultados no framework D-
GM quando comparado ao simulador LIQUi|�. Para o maior número fatorado (10 bits,
23 qubits), a execução sequencial em CPU foi 2, 84× mais rápida, a execução paralela
4, 72× mais rápida com 4 threads, e a execução em GPU 21, 03× mais rápida.



7 CONCLUSÃO

A simulação de algoritmos quânticos em computadores clássicos é uma tarefa que
requer alta capacidade de processamento, mas tem-se tornado uma das alternativas
viáveis para o estudo e desenvolvimento de aplicações, modelando e simulando o
comportamento de sistemas multi-qubits de forma simplificada.

Entretanto, explorar isoladamente os recursos computacionais providos por arqui-
teturas paralelas (clusters, grids, GPUs) é insuficiente quando da simulação de al-
goritmos quânticos complexos, uma vez que sistemas quânticos exigem recursos de
processamento e memória exponencialmente maiores.

Para colaborar com novas estratégias de enfrentar tais problemas, este trabalho
foca nas possibilidades de extensão da capacidades de simulação do ambiente D-
GM (AVILA et al., 2014), abrangendo o estudo e implementação de otimizações para
representação e simulação sequencial/paralela de transformações quânticas.

Foram implemnetadas técnicas capazes de reduzir de forma significativa o
custo (memória e processamento) de simulação, viabilizando o desenvolvimento de
aplicações quânticas complexos (como algoritmos de fatoração).

Destacam-se, na sequência, os principais resultados.

(i) Estudo e concepção de nova estratégia de simulação, denominada ReDId:

• minimizando a replicação e explorando a esparcialidade dos operadores
Identidade o projeto provê uma redução significativa da complexidade es-
pacial e, quando combinado a decomposição de transformações quânticas,
têm-se também a redução da complexidade temporal das simulações;

• considerando a parcialidade na definição dos operadores e estados, os re-
sultados mostram incremento na escalabilidade das computações durante
a simulação de aplicações, o que leva ao incremento da dimensão dos sis-
temas multi-qubits simulados (AVILA et al., 2015).

(ii) Modelagem e implementação do algoritmo de execução que considera estas es-
tratégias na linguagem C/C++ para as execuções em CPU, e em CUDA para as



55

execuções em GPUs, a fim de obter o maior desempenho possı́vel em ambas
arquiteturas;

(iii) Validação das implementações, considerando:

• simulações de operadores Hadamard de 21 até 28 qubits, sendo 10, 829×
mais rápido que a versão anterior (AVILA et al., 2015);

• simulações de Transformada de Fourier Quântica de 26 até 28 qubits (AVILA
et al., 2015);

• simulações do algoritmo de Shor considerando números de 6 até 12 bits,
ou seja, aplicações de 15 até 25 qubits, e quando comparada com LIQUi|�,
sua execução sequencial em CPU foi 2, 84× mais rápida, a execução para-
lela 4, 72× mais rápida com 4 threads, e a execução em GPU 21, 03× mais
rápida (AVILA; REISER; PILLA, 2016a,b).

(iv) Introduz-se os primeiros passos para a concepção e o desenvolvimento de uma
arquitetura de software hı́brida para o projeto D-GM, viabilizando a computação
distribuı́da (via CPUs) sob arquiteturas massivamente paralelas (via GPUs).
Obteve-se os seguintes resultados:

• especificação de um algoritmo otimizado para simulação de aplicações
quânticas fazendo uso da estratégia ReDId, incluindo sua implementação
no ambiente D-GM e seus principais componentes, o VPE-qGM e o VirD-
GM.

• modelagem e simulação distribuı́da de algoritmos quânticos, apresentando
as construções e evolução dos sistemas quânticos a partir de um conjunto
de interfaces gráficas.

7.1 Trabalhos Futuros

A maior contribuição deste trabalho está associada à integração desses dois
esforços: (i) a busca por otimizações das estruturas associadas a transformações
e estados quânticos; e (ii) a paralelização das operações de evolução do estado em
sistema multi-qubits considerando tais otimizações.

A consolidação desta integração e novas otimizações constituem um grande de-
safio de pesquisa, porém a perspectiva de bons resultados é uma grande motivação
na continuidade do projeto e busca por soluções mais eficientes para simulação de
algoritmos quânticos a partir de computadores clássicos.

Os principais trabalhos futuros, focados no projeto D-GM, são brevemente descri-
tos a seguir:
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(1) Potencialização da dinâmica de execução do ambiente D-GM e consolidação de
seus principais componentes:

(i) o VPE-qGM e o VirD-GM, com potencial para viabilizar a simulação de al-
goritmos quânticos multi-qubits, Investiga-se a grande capacidade de pro-
cessamento que pode ser obtida pela exploração de sistemas hı́bridos que
exploram a computação com multicomputadores e/ou multiprocessadores;

(ii) o ShareD-GM, estendendo a proposta de memória compartilhada e dis-
tribuı́da a partir de novas estratégias de armazenamento, controle e
acesso de estados quânticos. A modelagem e implementação de uma
nova forma de representação e/ou armazenamento dos estados multi-
qubits. Investigação de recursos de controle e monitoramento do inerente
crescimento exponencial associado ao número de qubits das aplicações
quânticas, aliados à capacidade de simulação distribuı́da já consolidada no
ambiente D-GM.

(2) A exploração das potencialidades disponı́veis no ambiente D-GM para execução
de sistemas fuzzy e investigação de como ambientes de simulação quântica são
capazes de codificar conjuntos fuzzy (CFs) e suas operações lógicas a partir de
operadores e transformações quânticas multi-qubits.

(i) Extensão da biblioteca de métodos qGM-Analyzer para descrição de conec-
tivos fuzzy via operadores quânticos;

(ii) Modelagem de conjuntos fuzzy por registadores quântico e operadores fuzzy
por transformações quânticas, considerando a incerteza tanto na expressão
das variáveis linguı́sticas quanto a incerteza inerente aos fenómenos fı́sicos
presentes nos sistemas reais.
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dos Campos. Anais. . . SBC, 2014. p.1–12.

AVILA, A. B.; SHMALFUSS, M. F.; REISER, R. H. S.; PILLA, M. L.; YAMIN, A. Sa-
lable quantum simulation by reductions and decompositions through the id-operator.
In: ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, 30., 2015, Salamanca.
Proceedings. . . ACM, 2015. p.1–3. (SAC ’15).



58

AVILA, A.; MARON, A.; REISER, R.; PILLA, M.; YAMIN, A. GPU-aware Distributed
Quantum Simulation. In: ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING,
29., 2014, New York, NY, USA. Proceedings. . . ACM, 2014. p.860–865. (SAC ’14).

BEAUREGARD, S. Circuit for Shor’s Algorithm using 2N+3 Qubits. Quantum Info.
Comput., Paramus, NJ, v.3, n.2, p.175–185, 2003.

GNUTZMANN, P. m-qCEdit: Um Ambiente para Modelagem e Simulação de Circuitos
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PESSOA, O. Conceitos de Fı́sica Quântica. SP: Editora Livraria da Fı́sica, 2003.

PORTUGAL, R.; LAVOR, C.; MACULAN, N. Uma Introdução à Computação
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