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RESUMO

MATZENAUER, Mônica Lorea. Uma abordagem para análise consensual de
conjuntos fuzzy hesitantes típicos via agregações estendidas e implicações
fuzzy com base em ordens admissíveis. Orientador: Renata Reiser. 2021. 107 f.
Tese (Doutorado em Ciência da Computação) – CDTEC, Universidade Federal de
Pelotas, Pelotas, 2021.

A Lógica Fuzzy Hesitante Típica (LFHT) está fundamentada na teoria dos
Conjuntos Fuzzy Hesitantes Típicos (CFHT), os quais consideram como graus de
pertinência os subconjuntos finitos e não vazios do intervalo unitário, chamados
Elementos Fuzzy Hesitantes Típicos (EFHT). Nessa abordagem lógica, não
apenas um número mas também subintervalos no intervalo unitário são também
representações para EFHT, e podem ser aplicados no processo de tomada de
decisão baseada em múltiplos critérios envolvendo muitos especialistas (TDMC-ME).
Neste contexto, a LFHT provê a modelagem de situações onde ocorre não apenas
incerteza de dados, mas também indecisão ou hesitação entre especialistas sobre
os possíveis valores atribuídos às preferências referentes a coleções de objetos.
Visando reduzir o colapso de informações para comparação e ranqueamento de
alternativas nas relações de preferência, esta tese, primeiramente, desenvolve novas
ideias sobre os conetivos lógicos da LFHT, as quais são investigadas no âmbito
de três ordens admissíveis: (i) as ordens lexicográficas denominadas 〈H,�Lex1〉
e 〈H,�Lex2〉, relacionadas a ocorrência do menor/maior elemento em um CFHT
ordenado de forma crescente e decrescente, respectivamente; (ii) a classe relevante
das ordens 〈H,�〉, satisfazendo a propriedade de cardinalidade injectiva. Estudamos
propriedades das negações e agregações, como as t-normas e operadores OWA
são considerados, com especial interesse nas estruturas axiomáticas que definem
as implicações e preservam suas propriedades algébricas e representabilidade. Estes
estudos teóricos são aplicados a problemas TDMC-ME, para seleção de suporte a
múltiplas alternativas de software. Como principal contribuição, introduzimos uma
análise consenso sobre EFHT que formalmente contrói medidas de consenso por meio
de funções de agregação estendidas, implicações e negações fuzzy. Usamos ordens
admissíveis para comparação e, ainda, fornecendo uma análise de consistência sobre
matrizes de preferência. A ação de automorfismos mostra-se oportuna para geração
de novos operadores, preservando as principais propriedades consensuais que
incluem unanimidade, consenso mínimo, dissensão máxima, simetria e invariância
para replicação. O modelo CCAI aplica ordens admissíveis para promover o uso
de medidas de consenso fuzzy, viabilizando comparações mesmo entre EFHT com
cardinalidades diferentes. E ainda, o CCAI-método é aplicado na análise consensual,
via grupo de especialistas que consideram conjuntos fuzzy hesitantes típicos e
fornecem classificações para múltiplos estilos de cervejas artesanais.
Palavras-chave: Conjuntos Fuzzy Hesitantes Típicos, Medidas de Consenso,
Implicações Fuzzy, Agregações Estendidas, Ordens Admissíveis.



ABSTRACT

MATZENAUER, Mônica Lorea. An approach for consensual analysis on Typical
Hesitant Fuzzy Sets via extended aggregations and fuzzy implications based
on admissible orders. Advisor: Renata Reiser. 2021. 107 f. Thesis (Doctorate in
Computer Science) – CDTEC, Federal University of Pelotas, Pelotas, 2021.

The Typical Hesitant Fuzzy Logic (THFL) is founded on the theory of the Typical
Hesitant Fuzzy Sets (THFS), which are defined by considering as membership degrees
the finite and non-empty subsets of the unit interval, which are called as Typical
Hesitant Fuzzy Elements (THFE). In such logical approach, not only a number but
also subintervals, in the unitary interval are also THFE-representations, which can
be applied in the decision-making process based on multiple criteria involving many
specialists (ME-MCDM). In this context, THFL provides the modelling for situations
where there exists not only data uncertainty, but also indecision or hesitation among
experts about the possible values for preferences regarding collections of objects. In
order to reduce the information collapse for comparison and/or ranking of alternatives
in the preference relationships, this thesis firstly develops new ideas about THFL’s
logical connectives, which are investigated within the scope of three admissible orders.
In the set H of all hesitant fuzzy values, consider: (i) the lexicographic orders
〈H,�Lex1〉 and 〈H,�Lex2〉, related to the occurrence of the smallest/largest element
in an ascending/descending ordered THFS, respectively; (ii) the relevant class of
order 〈H,�A〉, satisfying the injective cardinality property. In particular, properties
of negations and aggregations are studied, as t-norms and OWA operators, with
special interest in the axiomatic structures defining the implications and preserving
their algebraic properties and representability. Thus, these theoretical results are
submitted to the ME-MCDM problem, in order to select the better support for multiple
software alternatives. As a main contribution, in this thesis, we discuss consensus
measures on THFE and present a model that formally builds consensus measures
through extended aggregation functions and fuzzy negation, using admissible orders
for comparison and further, differentiating an analysis of consistency over preference
matrices. The action of automorphisms provides the generation of new conjugate
operators, preserving the main consensual properties as proposed in the Beliakov’s
research, including unanimity, minimum consensus, maximum dissension, symmetry
and invariance for replication. The new CCAI-method is presented, by applying
admissible orders and promoting the use of fuzzy consensus measures based on
multi-valued fuzzy logics, and, then, this work enables comparisons even between
THFE with different cardinalities. These new theoretical results are then applied to
another ME-MCDM problem, obtaining CCAI-consensus in a group of experts which
consider typical hesitant fuzzy sets to provide classifications for multiple styles of craft
beers.
Keywords: Typical Hesitant Fuzzy Sets, Consensus Measures, Fuzzy Implications,
Extended Aggregations, Admissible Orders.
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1 INTRODUCTION

Fuzzy Set Theory (FS), presented by (ZADEH, 1965), has yielded several
extensions over the years. Among the most relevant contributions in this research
area, we highlight the following works:

• the extension known as Type-2 Fuzzy Sets (T2FS), introduced in (ZADEH, 1971,
1975), which considers the membership functions as FS on the unit interval [0, 1];

• the Set-Valued Fuzzy Sets (SVFS), introduced by (GRATTAN-GUINNESS, 1976)
expressing the membership degrees as subsets of the unit interval [0, 1];

• Atanassov’s Intuitionistic Fuzzy Sets (IFS) in (ATANASSOV, 1986), where the
definition of a fuzzy set considers not only the membership function, but also its
dual construction providing the non-membership degree; and

• Hesitant Fuzzy Sets (HFS), proposed by (TORRA; NARUKAWA, 2009) as
another extension for fuzzy sets, in which the membership degree of an hesitant
fuzzy set is also given as a subset of [0, 1].

Note that despite the existence of different extensions in order to handle imprecise
information, there are relationships among them as showed in (BUSTINCE et al.,
2016). This work explored the inclusion relationships between some types of fuzzy
sets and it also concluded that, in fact, the concepts of HFS and SVFS are equivalent.
However, the results achieved in (TORRA, 2010) presented an explicit definition for
the union and intersection operations on HFS, which was not the research focused
in (GRATTAN-GUINNESS, 1976).

In sequence, (BEDREGAL et al., 2014a) noticed that in most applications of HFS,
Typical Hesitant Fuzzy Elements (THFE) are used, i.e. finite and non-empty hesitant
fuzzy degrees. Then, the notion of Typical Hesitant Fuzzy Logic (THFL) appears,
which is based on Typical Hesitant Fuzzy Sets (THFS) conceived taking THFE as
membership degrees.

Relevant research in decision making has been supported by the HFS theory,
since it was introduced in 2010. See, for instance, the studies in (ZENG et al., 2020;
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FARHADINIA; AICKELIN; KHORSHIDI, 2020; REZAEI; REZAEI, 2020; FARHADINIA;
XU, 2020; WANG et al., 2021) considering the logical study of HFS. In particular,
several weighted average (WA) and ordered weighted average (OWA)-like operators
have been proposed to be used in multi-criteria and decision making (MCDM) problems
dealing with multiple attributes and multiple specialists (BEDREGAL et al., 2014a; XIA;
XU, 2011a; ZHU; XU; XIA, 2012; MATZENAUER et al., 2021).

A frequent issue in the context of MCDM problems is that it is not always possible to
find a consensus among a group of experts. So, it seems more appropriate to consider
a set of possible values taking into account everyone’s opinion. For instance, in order
to provide a membership degree for an element of the universe, HFS can be useful
to express this membership degree through a set of THFE, which will consider all the
opinions given by the group of experts.

However, some research questions arise from this setting:

(i) How much do these elements agree with each other?

(ii) Is it possible to combine these elements into a single output?

(iii) Is the result reliable and does it reflect the opinions provided by the group?

The consolidated research on consensus measures provide relevant results
contributing to answer all these questions, which have been applied in different
contexts. In the current literature, we can find works on fields like consensual
processes (UNZU; VORSATZ, 2011), consensual measures and aggregations
(BELIAKOV; CALVO; JAMES, 2014), majority decisions (LAPRESTA; LLAMAZARES,
2010) and preference intensities group decision and negotiation (GARCÍA-LAPRESTA;
LLAMAZARES, 2001; LLAMAZARES; PÉREZ-ASURMENDI; GARCÍA-LAPRESTA,
2013).

Apart from other results, we provide a general idea of up to what extent the expert
inputs agree with one another based on our approach using the theory of THFS. In our
proposal, we present a model that formally constructs consensus measures by means
of aggregations functions, fuzzy implication-like functions and fuzzy negations, using
admissible orders to compare the THFE, and also providing an analysis of consistency
on them. Our theoretical results are applied into a problem of decision making with
multi-criteria illustrating our methodology to achieve consensus in a group of experts
working with typical hesitant fuzzy sets.

1.1 Main contributions

As the main contribution, this thesis introduces a model to provide semantic
interpretation for consensus setting on Typical Hesitant Fuzzy Sets, namely the
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CCH-Model: Consensus Measures on Typical Hesitant Fuzzy Sets (THFS) based on
Extended Aggregation and Implication Operators.

The main properties proposed in the literature of consensus measures are studied
here from the setting of inputs on the class of THFS defined over H, which is the set
of all finite and non-empty subsets of the unit interval [0, 1], mainly according to the
approach in (BELIAKOV; CALVO; JAMES, 2014). However, the studies are restricted
to the fact that the agreement among evaluations has the same relevance.

Going beyond, among several partial orders defined over H, the present proposal
represents an extension that considers an admissible partial order ≤A on H; based on
an extended aggregation operator A, as a binary relation promoting comparison even
between THFE with different cardinalities.

The main contributions achieved with the development of this work are listed below:

(i) Starting with fuzzy extensions of consensus measures from U to H and taking
into account so many distinct partial orders for THFS, this work introduces a new
admissible order based on a hesitant aggregation functionA, refining not only the
restricted consensual order <RH but many other ones, providing a comparison
between HFS which do not have the same cardinalities;

(ii) This research considers the concepts of admissible orders obtained from hesitant
aggregation functions and fuzzy negations, providing methods to generate
comparisons (ordering) of typical hesitant fuzzy elements (BUSTINCE et al.,
2013; MIGUEL et al., 2016; LIMA, 2019);

(iii) Extension of the main concepts of fuzzy connectives (fuzzy negations,
aggregation functions, t-norms and t-conorms, fuzzy implications) are
considered, discussing their properties regarding admissible orders (BUSTINCE
et al., 2020; MATZENAUER et al., 2021);

(iv) This work also considers a formal definition of consensus measures extending
this concept to the typical hesitant fuzzy sets. Actually, various applications
can be found in the literature concerning consensus measures (LI et al., 2018;
RODRÍGUEZ et al., 2018), and also an attempt of a formal mathematical
definition was given in (BELIAKOV; CALVO; JAMES, 2014).

(v) This study explores methodologies based on the CCH-Model, a construction of
consensus measures through different implications, exploring main properties of
fuzzy implications which are required, regarding admissible/total orders on H.
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1.2 Objectives

The main objective of this thesis is to extend Beliakov’s work by applying consensus
measures to typical hesitant fuzzy sets based on aggregation functions and admissible
orders.

The specific objectives are described as follows:

• Contribute for the study of hesitant fuzzy sets and admissible linear orders,
considering their relevance in multi-valued fuzzy sets by allowing comparison and
ordering relations;

• Collaborate to the study of hesitant fuzzy aggregators, exploring the main
properties, analysing their relevance to consensus measurement methodologies
and practical applications;

• Study fuzzy consensus measures and provide the application of related
methodology in the decision making based on multi-criteria and -attribute from
many specialists;

• Introduce the study of main classes of hesitant fuzzy implications, exploring the
main properties and constructors of duality and conjugation;

• Propose the CCH-Model, based on an axiomatic definition of consensus
measures consistent with studies of admissible linear orders in typical hesitant
fuzzy sets.

1.3 Outline of the thesis

This work is organized as follows. After this introductory chapter, the related works
are presented in Chapter 2.

Chapter 3 presents the definition of aggregation function, including t-norms,
t-conorms, and also other fuzzy connectives. Besides, partial orders are approached
on hesitant fuzzy sets and the notion of consensus measures is also reported
(BELIAKOV; CALVO; JAMES, 2014).

Next, in Chapter 4, it is presented a new Admissible H Order for the HFS elements.
And this allows us to introduce some operators, such as the typical hesitant fuzzy
negations and typical hesitant t-norms.

In Chapter 5, the notion of some typical hesitant fuzzy connectives is presented,
based on an admissible order � related to the poset (H,≤). Main properties of
〈H,�〉-negations and 〈H,�〉-implication functions are analysed.

Chapter 6 presents the notion of 〈H,�〉-implications, as typical hesitant fuzzy
implications considering admissible 〈H,�〉-orders, discussing their main properties.
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Chapter 7 describes the proposed strategy to solve an ME-MCDM (Multi
Expert-Multi Criteria Decision Making) problem taking into account the admissible
〈H,�〉-orders introduced in previous chapters.

In Chapter 8 we extend the notion of consensus measures on Typical Hesitant
Fuzzy Sets. Based on the formal definition of a consensus measure on the H, we
formalise CCA,I-Models to obtain new methodologies of consensus preserving main
properties in the context of Typical Hesitant Fuzzy Sets. This study also considers the
corresponding extensions of aggregations, implications and fuzzy negations.

Finally, the Final Considerations presents the results corresponding the publications
achieved so far.



2 RELATED WORKS

This chapter presents a study of related works on several tutorials and reviews that
emphasize the relevance of the investigation on consensus measures, as presented
in (BELIAKOV; CALVO; JAMES, 2014) and (PRADERA et al., 2016).

Here, we highlight works that, besides being the state of the art, present relevant
results and analyze them with emphasis on the following applied concepts: hesitant
fuzzy sets, aggregation operators and consensus measures. This selection also
considers the applied research field.

Thus, the following list highlights the author and publication year, summarizing the
main characteristics of each work. Table 2 gathers these relevant articles in the area,
showing the paper title according to the list, the aggregation operators (since these
operators are used to compare the results) and/or strategy used, and the applied field.

The selected articles are briefly described as follows.

1. In paper (XU; CABRERIZO; HERRERA-VIEDMA, 2017) an additive consistency
based estimation measure to normalize the HFPR is proposed, based on which, a
consensus model is developed. Here, two feedback mechanisms are proposed,
namely, interactive mechanism and automatic mechanism, to obtain a solution
with desired consistency and consensus levels, using induced ordered weighted
averaging (IOWA) operator to aggregate the individual HFPR into a collective one.

2. The results in (WU; XU, 2018) introduce LSGDM consensus model in which the
clusters are allowed to change, and the decision makers provide preferences
using fuzzy preference relations. A novel distance measure over the possibility
distribution based on the hesitant fuzzy element is given to compute the
various consensus measures, after which a local feedback strategy, with four
identification rules and two direction rules, is designed to guide the consensus
reaching process.

3. In the study of (ZHANG; WANG; TIAN, 2015), it is developed a decision
support model that simultaneously addresses the consistency and consensus
for group decision making based on hesitant fuzzy preference relations. Two
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convergent algorithms were proposed, using hesitant fuzzy averaging operator in
the developed support model.

4. In (RODRÍGUEZ et al., 2018), the paper presents a new adaptive consensus
reaching processes (CRP) model to deal with large-scale group decision making
(LSGDM) which includes: clustering process to weight expert’s sub-groups taking
into account their size and cohesion, the use of hesitant fuzzy sets to fuse
expert’s sub-group preferences to keep as much information as possible, and
the definition of an adaptive feedback process that generates advice depending
on the consensus level achieved to reduce the time and supervision costs of the
CRP.

5. In the paper (GARCÍA-LAPRESTA; PÉREZ-ROMÁN, 2016), an agglomerative
hierarchical clustering process is proposed, where the clusters of agents are
generated by using a distance-based consensus measure; considering that
agents judge the feasible alternatives through linguistic terms – when they are
confident in their opinions – or linguistic expressions formed by several linguistic
terms when they hesitate.

6. The consistency of aggregations defined as HPFPR in (BASHIR; RASHID;
IQBAL, 2018) provides novel algorithms, achieving reasonable consensus
between decision makers. The final algorithm proposed comprehends other
algorithms shown, presenting a complete decision support model for group
decision making.

7. The study in (ZHANG; LI; LIANG, 2020) presents, after reviewing the relevant
literature, four kinds of interval-valued hesitant fuzzy (IVHF) multi-granulation
decision-theoretic rough sets (MG-DTRS) over two universes proposed according
to different risk appetites of experts. Then, they explore some fundamental
propositions of newly proposed models.

8. In the paper (WU; XU, 2016), the authors develop separate consistency and
consensus processes to deal with HFLPR individual rationality and group
rationality. First, a possibility distribution approach and a 2-tuple linguistic model
are introduced as support tools. Then, a new consistency measure is defined and
a convergent algorithm described to aid the consistency improvement process in
a given HFLPR.

9. In (LAN et al., 2018), it is proposed a new order relation extraction method
based on a new additive consistency fuzzy preference relation for hesitant
fuzzy elements (HFE). Then, the proposed additive consistency fuzzy preference
relation is applied to integrate group decision information.



21

10. The study of (LIAO; XU; XIA, 2014) introduces the concepts of multiplicative
consistency, perfect multiplicative consistency and acceptable multiplicative
consistency for a hesitant fuzzy preference relation, based on which, two
algorithms are given to improve the inconsistency level of a hesitant fuzzy
preference relation. Furthermore, the consensus of group decision making is
studied based on the hesitant fuzzy preference relations.

11. The paper (LIU; JIANG, 2019) presents some novel consistency and consensus
improvement methods by using an optimization technique proposed for three
actual cases: (1) the decision makers refuse to modify their opinions and the
problem is without time pressure; (2) the decision makers are willing to modify
their opinions and the problem is without time pressure; (3) the decision-making
problem is under time pressure.

12. In (ZHANG; LIANG; ZHANG, 2018), it is defined a new distance measure for two
HFLTS and it is proposed a distance-based consensus measure for the MAGDM
with HFLTS. Then, based on this consensus measure, they develop a minimum
adjustment distance consensus rule for the MAGDM with HFLTS, which can
minimize the adjustment distance between the original and adjusted opinions in
the process of reaching consensus. Moreover, to obtain the collective opinion
with maximum consensus, it is developed a minimum distance aggregation
model, which minimizes the maximum of the distance between each decision
maker’s individual opinion and the collective opinion. Furthermore, based on the
proposed consensus rule and aggregation model, it is presented a consensus
reaching process for MAGDM with HFLTS.

Paper Title
Operator /
Strategy

Applied
Field

1. A consensus model for hesitant fuzzy preference
relations and its application in water allocation
management

IHFOWA GDM

2. A consensus model for large-scale group decision
making with hesitant fuzzy information and changeable
cluster

WA LSGDM

3. A decision support model for group decision making
with hesitant fuzzy preference relations

HFA
GDM with

HFPR

4. A large scale consensus reaching process managing
group hesitation

HFWA LSGDM
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5. Consensus-based clustering under hesitant qualitative
assessments

OWA,
arithmetic
mean and

median

clustering
process

6. Hesitant probabilistic fuzzy preference relations in
decision making

HPFA GDM

7. Interval-valued hesitant fuzzy multi-granularity
three-way decisions in consensus processes with
applications to multi-attribute group decision making

optimistic and
pessimistic
tactics and
IVHF hybrid
averaging

MAGDM

8. Managing consistency and consensus in group
decision making with hesitant fuzzy linguistic preference
relations

WA and
arithmetic
average

HFLPR

9. Multi-attribute group decision making based on
hesitant fuzzy sets, TOPSIS method and fuzzy preference
relations

TOPSIS
method

MAGDM

10. Multiplicative consistency of hesitant fuzzy preference
relation and its application in group decision making

AHFWA and
AHFA

GDM with
HFP

information

11. Optimizing consistency and consensus improvement
process for hesitant fuzzy linguistic preference relations
and the application in group decision making

WA
HFLPR in

GDM

12. Reaching a consensus with minimum adjustment in
MAGDM with hesitant fuzzy linguistic term sets

minimum
distance

aggregation
model

MAGDM
with HFLTS

Table 1 – The use of aggregators among the main papers analyzed about consensus
measure in hesitant fuzzy sets.

So, through this study of the related works on the hesitant fuzzy sets and consensus
measures research areas, it is verified that none of these articles had made use of
implication functions for the construction of the methods defining consensus measures.

Moreover, despite considering a restrict universe under which the applications are
developed, the selected research papers show that the formal definition of consensus
measures based on THFS considering the ordered structure provided by admissible
linear orders is a prospective research field.

Thus, in this thesis we discuss consensus measures for THFE, which are the finite
and non-empty fuzzy membership degrees under the scope of THFS. Also, we present
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a model that formally constructs consensus measures by means of aggregations
functions, fuzzy implication-like functions and fuzzy negations, using admissible orders
to compare the THFE. Then, theoretical results are applied into a problem of decision
making with multi-criteria, illustrating a methodology to achieve consensus in a group
of experts working with typical hesitant fuzzy sets.



3 PRELIMINARIES

In this chapter, basic concepts of aggregation functions on the unit interval [0, 1]
are revisited, and also some properties are recalled and exemplifications are pointed
out (BELIAKOV; BUSTINCE; CALVO, 2016; GRABISCH et al., 2009). We also include
the important class of triangular norms (GRABISCH et al., 2009; KLEMENT; MESIAR;
PAP, 2000).

In addition, fuzzy connectives, as negations and implications are also considered
and their main properties are reported (ALSINA; MAURICE; SCHWEIZER, 2006;
BELIAKOV; PRADERA; CALVO, 2007).

3.1 Concepts on fuzzy set theory

Extended fuzzy aggregation operators, partial orders on fuzzy set theory and fuzzy
connectives are considered in this section.

3.1.1 Partial orders on fuzzy sets

Let us recall the notions of partial ordering. Let P be a non-empty set, a partial
order ≤ on the set P is a binary relation on P which satisfies:

P1: p ≤ p, for each p ∈ P (reflexivity),

P2: If p ≤ q and q ≤ p, then p = q for all p, q ∈ P (antisymmetry),

P3: If p ≤ q and q ≤ r, then p ≤ r for all p, q, r ∈ P (transitivity).

Observe that we will say a < b when (a, b) is in a relation ≤ but a 6= b. A set P with a
partial order ≤ is referred to as a partially ordered set (poset) and denoted by (P,≤). If
any two elements a, b are comparable in a poset (P,≤), i.e. either a ≤ b or b ≤ a, then
the partial order ≤ is said to be a linear order (and then P is a chain).

In this work, we consider the poset ([0, 1],≤), where ≤ is the partial order of real
numbers restricted to unit interval [0, 1].
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3.1.2 Fuzzy aggregation operators

Based on (BELIAKOV; PRADERA; CALVO, 2007), main properties of aggregation
functions are reported in the following.

Definition 3.1.1 A function A : [0, 1]n → [0, 1] is an n-ary aggregation function (AF) if it
verifies the following conditions

A1: If xi ≤ yi, for each i = 1, . . . , n, then A(x1, . . . , xn) ≤ A(y1, . . . , yn) (isotonicity);

A2: A(0, . . . , 0) = 0 and A(1, . . . , 1) = 1 (boundary conditions).

Consider Nn = {1, 2, . . . , n}, for a natural number n such that n ≥ 1. Other
properties which can be required for an aggregation function A:

A3: A(x1, . . . , xn) = A(x(1), . . . , x(n)) for each permutation ( ) : Nn → Nn (symmetry).

An aggregation function A is a disjunctive (conjunctive) function if, respectively, we
have that:

A4: A(1, x) = A(x, 1) = 1, for all x ∈ [0, 1];

A5: A(0, x) = A(x, 0) = 0, for all x ∈ [0, 1].

Definition 3.1.2 A function A :
∞⋃
n=1

[0, 1]n → [0, 1] is an extended aggregation (EAF) if

the following condition holds:

∀n ∈ N2, A � [0, 1]n : [0, 1]n → [0, 1] is an AF and A(x) = x, ∀x ∈ [0, 1].

Thus, based on Definition 3.1.2, we can identify any EAF A with a family of functions
(An)n∈N2 such that each An : [0, 1]n → [0, 1] is an AF.

For EAF, the following two properties can also be considered:

A6: A(x1, . . . , xn) = A(x1, . . . , xn, . . . , x1, . . . , xn) (invariance for replications);

A7: A(x1, . . . , xn) = A(x1, . . . , xi, 1, xi+1, . . . , xn) (invariance for 1).

According with (BELIAKOV; PRADERA; CALVO, 2007), generally, a given property
holds for an EAF A if, and only if, it holds for each member of the family An.

Remark 3.1.1 Given a bivariate aggregation function A, we can define an EAF
A′ :

∞⋃
n=1

[0, 1]n → [0, 1], as follows:

A′(x) = x and A′(x1, . . . , xn) = A(x1, A
′(x2, . . . , xn)),∀n ∈ N2. (1)
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Proposition 3.1.1 (YAGER, 1988) Let ω = (w1, w2, . . . wn) ∈ [0, 1]n be a positive
weighting vector, meaning that its components are all non-negative (wi ∈ [0, 1]) and
their sum equals one, i.e.

∑n
i=1wi = 1. Let (x1, . . . , xn) ∈ [0, 1]n and σ : Nn → Nn, with

Nn = {1, 2, . . . , n} be a permutation such that xσ(1) ≥ . . . ≥ xσ(n), then an n-dimensional
ordered weighted averaging (OWAω) operator w.r.t. a weighting vector ω is a function
OWAω : [0, 1]

n → [0, 1], defined by:

OWAω(x1, . . . , xn) =
n∑
i=1

wixσ(i), (2)

verifying A1, A2 and A3 properties and also the idempotency property:

(A8) A(x, . . . , x) = x, for all x ∈ [0, 1].

The OWA operators provide a parameterized family of aggregation operators, which
include many of the well-known operators such as the maximum, the minimum, the
median and the arithmetic mean. In order to obtain these particular operators, we
should simply choose particular weights.

According to (BELIAKOV; PRADERA; CALVO, 2007, Section 2.5.2), an OWA is a
non-decreasing (strictly increasing if all weights are positive) and idempotent; OWA
functions are continuous, symmetric, homogeneous and shift-invariant; OWA functions
do not have neutral or absorbing elements, except for the minimum and maximum.

Proposition 3.1.2 Let OWAω : [0, 1]
n → [0, 1] be the ordered weighted averaging

operator, as given in Eq.(2). The extended ordered weighted averaging operator
OWA′ω :

∞⋃
n=1

[0, 1]n → [0, 1], obtained by Eq.(1) and expressed as follows

OWA′ω(x1, . . . , xn) = OWAω(x1, OWA′ω(x2, . . . , xn)),∀n ≥ 2, (3)

verifies A1, A2, A3 and A8 properties.

Proof: Straightforward from Proposition 3.1.1. 2

The definition of triangular norms is presented next. Since each t-norm is an
aggregation function with four specific properties, it enables a formal interpretation of
intersections in the theory of fuzzy sets.

Definition 3.1.3 A function T : [0, 1]2 → [0, 1] is a t-norm if, for each x, y, z ∈ [0, 1], it
satisfies:

T1: T (x, y) = T (y, x) (commutativity);

T2: T (x, T (y, z)) = T (T (x, y), z) ( associativity);

T3: If x ≤ y, then T (x, z) ≤ T (y, z) (isotonicity);

T4: T (x, 1) = x (neutrality of 1-element).
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3.1.3 Other fuzzy connectives

Definition 3.1.4 A function N : [0, 1]→ [0, 1] is a fuzzy negation if

N1: N(0) = 1 and N(1) = 0;

N2: If x ≤ y then N(y) ≤ N(x), for all x, y ∈ [0, 1].

A fuzzy negation N is strict if it is continuous additionally, it is strong if it is involutive,
i.e.

N3: N(N(x)) = x,∀x ∈ [0, 1];

N4: If x < y, then N(y) < N(x).

The most common strong fuzzy negation is NS(x) = 1 − x, also known as the
standard or Zadeh negation. Each strong fuzzy negation is strict, but the converse
does not hold. For example, the negation N(x) = 1−

√
x is strict, but it is not strong.

Moreover, the action of a strong fuzzy negation N on a function f : [0, 1]n → [0, 1],
denoted by fN and named the N -dual function of f , is defined as:

fN(~x) = (f(N(~x), N(~y))), ~x, ~y ∈ [0, 1]n. (4)

We now recall the notion of (fuzzy) implication function. An implication function,
in the sense of Fodor and Roubens, see (BACZYŃSKI et al., 2013; BACZYŃSKI;
JAYARAM, 2008; BUSTINCE; BURILLO; SORIA, 2003; PRADERA et al., 2016), is
a mapping I : [0, 1]2 → [0, 1], such that, for every x, y, z ∈ [0, 1]:

I1: If x ≤ y, then I(y, z) ≤ I(x, z) (first place antitonicity);

I2: If y ≤ z, then I(x, y) ≤ I(x, z) (second place isotonicity);

I3: I(0, 0) = 1 (left boundary);

I4: I(1, 1) = 1 (right boundary);

I5: I(1, 0) = 0 (corner condition).

Other properties may be demanded from these implication functions, depending
most of the times on the application, see (BACZYŃSKI; JAYARAM, 2008), for instance.
A brief list is given as follows:

I6: I(0, y) = 1 (left boundary);

I7: I(x, 1) = 1 (right boundary);

I8: I(x, x) = 1 (identity principle);
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I9: I(x, I(y, z)) = I(y, I(x, z)) (exchange principle);

I10: I(x, y) = I(N(y), N(x)), for a strong negation N (contrapositive);

I11: If x ≤ y, then I(x, y) = 1 (left-ordering property);

I12: If I(x, y) = 1, then x ≤ y (right-ordering property).

Table 2 reports the definition of fuzzy implications and corresponding NS-dual
coimplications considered in this work. In some works, such as (BUSTINCE;
BURILLO; SORIA, 2003; SHI et al., 2010), the properties and the relations of such
fuzzy connectives have been investigated.

Table 2 – Fuzzy (Co)Implications.

Fuzzy Implications Fuzzy Coimplications

IFD(x, y)=

 1, if x ≤ y,

max(1− x, y), otherwise.
JFD(x, y)=

 0, if x ≥ y,

min(1− x, y), otherwise.

ILK(x, y)=

 1, if x ≤ y,

1− x+ y, otherwise.
JLK(x, y)=

 0, if x ≥ y,

y − x, otherwise.

IRB(x, y)=

 1, if x ≤ y,

1− x+ xy, otherwise.
JRB(x, y)=

 0, if x ≥ y,

y − xy, otherwise.

I30(x, y)=

min(1− x, y, 0.5), if 0<y<x<1,

min(1− x, y),otherwise.
J30(x, y)=

max(1− x, y, 0.5), if 0<x<y<1,

max(1− x, y),otherwise.

IRS(x, y)=

 1, if x ≤ y,

0,otherwise.
JRS(x, y)=

 0, if x ≥ y,

1,otherwise.

IGD(x, y)=

 1, if x ≤ y,

y, otherwise.
JGD(x, y)=

 y, if x ≥ y,

1, otherwise.

IWB(x, y)=

 1, if x 6= y,

y, otherwise.
JWB(x, y)=

 y, if x 6= y,

1, otherwise.

IGG(x, y)=

 1, if x ≤ y,
y
x , otherwise.

JGG(x, y)=

 0, if x ≤ y,
y−x
1−x , otherwise.

IY G(x, y)=

 1, if x = 0 and y = 0,

yx, otherwise.
JY G(x, y)=

 0, if x = 1 and y = 1,

1− (1− x)(1−y), otherwise.

3.2 Concepts on fuzzy consensus measures

First, the notion of fuzzy preference relation is considered and thus, the axiomatic
definition of fuzzy consensus measures is reported.
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Multi-criteria decision making (MCDM) refers to evaluating, prioritizing or selecting
over some available alternatives {A1, A2, ..., Ap} with respect to a set of criteria
{c1, c2, ..., cq}, which are usually conflicted with each other. In order to do that, it is
necessary to assign a value to each alternative, with respect to each criterion.

For instance, suppose some friends provide ratings for three styles of craft beers
(shown in Table 3). As well as comparing the average, we can observe that while
everyone partially agrees that the Sour style craft beer is not very good, and the Pale
Ale style is not too bad, there is a lack of consensus regarding the Weiss style.

Table 3 – Individual ratings for craft beer styles.

Craft Beer Style F1 F2 F3 F4 Average

Sour (S) 0.3 0.2 0.2 0.4 0.275

Weiss (W) 0.2 0.3 0.9 0.8 0.55

Pale Ale (P) 0.65 0.7 0.65 0.6 0.65

Consensus measures, that is, functions which give an entirely idea of how much the
inputs agree with one another, have been increasingly employed in decision making
contexts. Such measures have been used in voting and preference aggregation, for
example to describe a set of voters and group them according to the similarity in their
preferences (BELIAKOV; CALVO; JAMES, 2014).

Similar to the standard divergence of the mean in statistical summaries, consensus
measures can provide an indication of reliability or the degree to which an entire
evaluation reflects the opinions of all individuals in a group. As such, they have
also been used to inform consensus reaching processes, where a minimum level of
consensus can be set and a final decision may not be accepted if the consensus
measure output is below a threshold. The consensus level between the pairwise
preferences of an individual and the group can also be used to make recommendations
increasing the overall agreement between experts (BELIAKOV; CALVO; JAMES,
2014).

For a finite set of objectives, χ = {x1, x2..., xn}, a fuzzy preference relation (FPR) is
defined by a fuzzy set on the product set χ× χ, as follows.

Definition 3.2.1 (B. ZHU, 2014, Definition 1) A FPR R ⊆ χ× χ is characterized by the
membership function µR : χ× χ→ [0, 1].

Thus, the FPR R can be represented by an n × n matrix R = (rij)n×n, where
rij = µR(xi, xj), for all i, j ∈ {1, 2, ..., n}. In addition, for an element rij interpreting
the preference degree of xi over xj, the following holds:

(i) if rij = 0.5, then it indicates indifference between xi and xj, or maximal fuzziness;
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(ii) if rij > 0.5, then it indicates that xi is preferred over xj;

(iii) if rij = 1, it implies that alternative xi is definitely preferred over alternative xj

(crisp case).

As usual, R satisfies the additive reciprocity property:

rij + rji = 1 i, j = 1, 2, ...n. (5)

Example 3.2.1 Using the example in Table 3, it is possible to present the preference
matrices for each specialist, related to all craft beer styles.

The corresponding preference matrices RF1 (Maryan), RF2 (Jonathan), RF3 (Willian)
and RF4 (Caroline) related to all craft beer styles are described below.

RF1 RF2 RF3 RF4
0.5 0.3 0.2

0.7 0.5 0.4

0.8 0.6 0.5




0.5 0.4 0.1

0.6 0.5 0.3

0.9 0.7 0.5




0.5 0.1 0.3

0.9 0.5 0.2

0.7 0.8 0.5




0.5 0.3 0.4

0.7 0.5 0.9

0.6 0.1 0.5



One can notice that for RF1 matrix, the sum of Maryan’s preferences between the
weiss and the sour styles has to be the value 1. For example, according to Eq.(5), as
her preference value for the weiss style, over the sour, is 0.7 then the preference value
for the sour style, over the weiss, is 0.3, meaning that, the sum of the preferences
between these two styles is equal to 1. Analogously, this was also analyzed for all the
other relations between styles.

As proposed in (BELIAKOV; CALVO; JAMES, 2014), consensus measures are
defined by functions on the unit interval [0, 1], modeling the agreement related to several
inputs based on two main properties:

1. The unanimity, interpreting the complete consensus which is achieved when all
inputs are the same;

2. The minimal consensus, which is related to the special case of two inputs,
resulting in a null-consensus whenever one of theses inputs lies at one of the
extremes (either 0, or 1) in the unit interval.

The main idea of a consensus measure is formalized as follows:

Definition 3.2.2 (BELIAKOV; CALVO; JAMES, 2014, Definition 7). A function
C : [0, 1]n → [0, 1] is said to be a consensus measure if it satisfies the following
properties:
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C1: C(a, a, ..., a) = 1, ∀a ∈ [0, 1] (Unanimity);

C2: C(0, 1) = C(1, 0) = 0 (Minimum consensus for n = 2).

Considering further properties desired of consensus measures (BELIAKOV;
CALVO; JAMES, 2014), we are focusing on the following:

C3: C(x1, x2, ..., xn) = C(xσ(1), xσ(2), ..., xσ(n)), for all σ-permutation on {1,...,n} and
(x1, . . . , xn) ∈ [0, 1]n (Symmetry );

C4: C(x1, x2, ..., xn) = 0, when n = 2k and k = #{xi : xi = 0} = #{xi : xi = 1}
(Maximum Dissension);

C5: C(x1, x2, ..., xn) = C(N(x1), N(x2), ..., N(xn)), when N is a strong fuzzy negation
(Reciprocity );

C6: C(x) = C(x, x) = C(x, x, . . . , x), ∀~x ∈ [0, 1]n (Replication Invariance);

C7: For n = 2k, let half of the evaluations be equal, a = (a, a, ..., a) where a ∈ [0, 1]k.
If |a − xj| ≤ |a − yj| for j = 1, ..., k, then C(a, x1, x2, ..., xk) ≥ C(a, y1, y2, ..., yk).
(Monotonicity w.r.t. the Majority ).

There are many works related to consensus measure which have been employed
in decision making contexts. In most cases, fuzzy connectives and aggregation
operators are considered, in order to relate the sets of membership degree which
are obtained from expert opinions. Such measures have been applied in voting
preferences aggregation (UNZU; VORSATZ, 2011) and used to inform consensus
reaching processes (HERRERA-VIEDMA et al., 2007).

Consensus provides understanding by distinct ways in group decision making
(GDM) contexts, briefly described below in accordance with (HERRERA-VIEDMA
et al., 2007) and (ROTHSTEIN; BUTLER, 2006).

(i) The state of agreement in a group, meaning a common feeling between the
individuals about the values in question. From this perspective, consensus has
been denoted as a full and unanimous agreement, though it has been considered
questionable, if such state is possible in real world and virtual situations.

(ii) Methodology to reach consensus, which is also related to the sense given above,
implying in an evolution of the attest of the group for consensus with respect
to their testimonies. And this evolution can be freed or facilitated by a specific
individual.
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(iii) Approach in which decisions should be meant in multi-person settings. It aims
to achieve the consent, but not necessarily the agreement of the individuals, by
arranging views of all parties involved to obtain a decision that will produce what
will be useful to the entire group. It is not always related to a particular individual
who may give consent to, not necessarily in his/her first choice, but because, for
example, he/she wants to cooperate with the group.

The first approaches of consensus reaching process started in the late 1940s
and early 1950s, with two main contributions, that are considered the beginning
of participatory management in decision making, as shown in the review by
(HERRERA-VIEDMA et al., 2014).

Later, the consensus theory is developed in a more general form in (SPILLMAN;
SPILLMAN; BEZDEK, 1980). These initial formulations describe the formation of
group consensus, but do not provide an adequate account of settled patterns of
disagreement. Later, many models of consensus reaching (formation) have been
proposed, notably in the domain of the so called rational consensus.

Then, in the year of 1985, the classical consensus approaches were introduced,
where the notion of consensus has conventionally been understood in terms of strict
and unanimous agreement.

Other important contributions in fuzzy consensus and fuzzy decision making
appeared later in 1986 and 1996, as observed in the review done by
in (HERRERA-VIEDMA et al., 2014).

It is possible to find different consensus approaches in the literature, according to
the reference domain used to obtain the consensus measures:

A. Consensus measures focused on a set of experts, where consensus degrees
are obtained in three steps:

(i) for each pair of individuals, is computed a degree of agreement as to their
opinions between all the pairs of options,

(ii) these agreement degrees are combined to obtain a degree of agreement of
each pair of individuals as to their preferences between pairs of options; and
finally,

(iii) these agreement degrees are combined to obtain an agreement degree of
pairs of individuals as to their preferences between pairs of options, which is
the consensus degree of the group of experts.

B. Consensus measures can also focus on the alternative set, considering three
levels of a preference relation:

(i) level of preference, which indicates the consensus degree existing among
all the preference values attributed by the experts to a specific preference;
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(ii) level of alternative, which allows us to measure the consensus existing over
all the alternative pairs where a given alternative is present; and

(iii) level of preference relation, which evaluates the social consensus, that is, the
current consensus existing among all the experts about all the preferences.

According to (HERRERA-VIEDMA et al., 2014), in order to guide the experts
to change their preferences during the discussion process, the analysis of levels in
preference relations seems to be adequate in consensus process designs. In addition,
four current trends in the field of consensus models were also discussed:

(i) Adaptative consensus models, providing strategies adapting the number of
changes in the GDM problem which are required to the experts in each round
of consensus (MATA; MARTÍNEZ-LÓPEZ; HERRERA-VIEDMA, 2009);

(ii) Trust based consensus models, providing techniques to explore unsuitable
specialists for the decision process, in order to consider a subgroup of
relevant specialists improving the achievement of solutions of problems in GDM
(ALONSO et al., 2013);

(iii) Dynamic and changeable consensus models, investigating new situations where
alternatives might change and even disappear while experts are discussing and
making decision (VICTOR et al., 2011);

(iv) Consensus models based on agent theory, as a tool to obtain alternatives
based on anthologies providing an advanced representation of information for
possible evaluation of alternatives analyzed by groups of specialists (PÉREZ;
CABRERIZO; HERRERA-VIEDMA, 2011).

The use of these models is at an early stage of development and several future
challenges still have to be solved.

3.2.1 Application of consensus measure algorithm

In (XIA; XU, 2011b), an algorithm is introduced, which can automatically modify the
diverging individual fuzzy preference relations so as to reach an acceptable consensus.
This prevents the specialists from changing their preferences and then, making the
decision more efficient.

It is possible to describe a group decision making as follows: suppose that m
decision makers el (l = 1, 2, ..,m) give their individual fuzzy preference relations
Rl = (rijl)n×n (l = 1, 2, ..,m) over alternatives x1, x2, ...xn, and λ = (λ1, λ2, .., λm)

T is
the weighting vector of the decision makers el (l = 1, 2, ..,m) with the condition that∑m
l=1 λl = 1 and 0 ≤ λl ≤ 1, l = 1, 2, ..,m.
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The following steps apply the algorithm proposed in (XIA; XU, 2011b, Alg. 4.1),
using the idea presented in Table 3.

As presented in Example 3.2.1, we consider four specialists el (l = 1, 2, 3, 4)

providing ratings for three styles of craft beers, and then their corresponding matrices
of fuzzy preference relations about three craft beer styles. So, in this example we
applied the algorithm seen in (XIA; XU, 2011b, Alg. 4.1) to reach an acceptable group
consensus, that is summarized in the following steps:

Step 1. It is constructed the multiplicative consistent fuzzy preference relations
Rl (l = 1, 2, 3, 4) from Rl (l = 1, 2, 3, 4) using Eq. (6):

rik =
n

√∏n
t=1(ritrtk)

n

√∏n
t=1(ritrtk) +

n

√∏n
t=1((1− rit)(1− rtk))

, i, k = 1, 2, .., n. (6)

The matrices Rl of preference relation are reported in the following:

R1 =


0.5 0.709 0.793

0.291 0.5 0.611

0.207 0.389 0.5



R2 =


0.5 0.673 0.868

0.327 0.5 0.762

0.132 0.238 0.5



R3 =


0.5 0.783 0.853

0.217 0.5 0.616

0.147 0.384 0.5



R4 =


0.5 0.807 0.455

0.193 0.5 0.166

0.545 0.834 0.5


Step 2. Then, the individual fuzzy preference relations Rl (l = 1, 2, 3, 4) are

aggregated into a group fuzzy preference relation R according to Eq. (7). For
convenience, let s = 0, R(0)

l = (r
(0)
ijl )n×n = Rl = (rijl)n×n, R(0)

= (r
(0)
ij )n×n = R =

(rij)n×n, l = 1, 2, 3, 4, and

rij =

∏m
l=1(rijl)

λl∏m
l=1(rijl)

λl +
∏m
l=1(1− rijl)λl

, i, j = 1, 2, ..n, (7)

then, we obtain the matrice R(0) as follows:

R
(0)

=


0.5 0.747 0.769

0.253 0.5 0.530

0.231 0.470 0.5


Step 3. The deviation degree between each individual preference relation R(0)

l and
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the group preference relation R(0) is calculated by Eq. (8):

d(R
(s)

l , R
(s)
) =

1

n2

n∑
i=1

n∑
j=1

|r(s)ijl − r
(s)
ij |. (8)

The result parameters are reported in the sequence:

d(R
(0)
, R

(0)

1 ) = 0.0317 d(R
(0)
, R

(0)

2 ) = 0.0901

d(R
(0)
, R

(0)

3 ) = 0.0461 d(R
(0)
, R

(0)

4 ) = 0.1638

As the algorithm indicates, without loss of generality, in this example it is considered
ρ = 0.05. Thus,

d(R
(0)
, R

(0)

2 ) = 0.0901 > 0.05 and d(R
(0)
, R

(0)

4 ) = 0.1638 > 0.05,

and then, it is necessary to perform Step 4.
Step 4. Supposing a normalization η = 0.5, then it is calculated again the terms

R
(1)

l = (r
(1)
ijl )n×n, l = 2, 4 and R(1)

= (r
(1)
ij )n×n, where R(1)

l = R
(0)

l , l = 1, 3 and

r
(1)
ijl =

(r
(0)
ijl )

(1−η)(r
(0)
ij )

η

(r
(0)
ijl )

(1−η)(r
(0)
ij )

η + (1− r(0)ijl )(1−η)(1− r
(0)
ij )

η
, i, j, l = 2, 4, (9)

r
(1)
ij =

∏m
l=1(r

(1)
ijl )

λl∏m
l=1(r

(1)
ijl )

λl +
∏m
l=1(1− r

(1)
ijl )

λl
, i, j = 1, 2, 3, 4. (10)

Thus:

R
(1)
2 =


0.5 0.711 0.824

0.289 0.5 0.655

0.176 0.345 0.5

 R
(1)
4 =


0.5 0.779 0.625

0.221 0.5 0.322

0.375 0.678 0.5



R
(1)

=


0.5 0.747 0.784

0.253 0.5 0.551

0.216 0.449 0.5


So, let s = 1, and return to Step 3, once it is necessary to recalculate the deviation

degree between each individual preference relation R
(1)

l and the group preference
relation R(1) by Eq. (8):

d(R
(1)
, R

(1)
1 ) = 0.0317 d(R

(1)
, R

(1)
2 ) = 0.0480

d(R
(1)
, R

(1)
3 ) = 0.0461 d(R

(1)
, R

(1)
4 ) = 0.0852



36

Since d(R
(1)
, R

(1)

4 ) = 0.0852 > 0.05, it is necessary to go back to Step 4, obtaining
R

(2)

1 = R
(1)

1 , R(2)

2 = R
(1)

2 , R(2)

3 = R
(1)

3 and

R
(2)
4 =


0.5 0.763 0.711

0.237 0.5 0.433

0.289 0.567 0.5

 R
(2)

=


0.5 0.743 0.800

0.257 0.5 0.580

0.200 0.420 0.5


So, by Eq. (8), we reach the following values:

d(R
(2)
, R

(2)
1 ) = 0.0317 d(R

(2)
, R

(2)
2 ) = 0.0480

d(R
(2)
, R

(2)
3 ) = 0.0461 d(R

(2)
, R

(2)
4 ) = 0.0380

Finally, all of the deviation relations are less then 0.05, thus the acceptable
consensus of the group is achieved.

3.3 Chapter summary

In this chapter, we reported the concepts on fuzzy set theory, revisiting the basic
concepts of aggregation functions on the unit interval [0, 1]. Some properties and
exemplifications were presented, including an important class of triangular norms.
Besides, the main properties of fuzzy connectives were reported, such as fuzzy
negations and implication functions. Extended fuzzy aggregation operators and partial
orders on fuzzy set theory were also considered in this chapter, as well as the notion
of fuzzy preference relation and after, the axiomatic definition of fuzzy consensus
measures. The chapter concludes with an exemplification using a consensus measure
algorithm.



4 THEORY OF TYPICAL HESITANT FUZZY SETS

Hesitant Fuzzy Sets (HFS) were introduced by Torra in (TORRA; NARUKAWA,
2009) and Torra and Narukawa in (TORRA, 2010). In their work, the membership
degree of an element that belongs to a set was represented by means of a subset of
[0, 1].

In the process of decision-making, HFS can be useful to handle situations where
there is indecision among many possible values for the preferences over objects.

In this chapter, the notion of some typical hesitant fuzzy connectives is presented,
based on an admissible partial order ≤ related to the poset (H,≤). Then, is presented
three new admissible orders in the typical hesitant fuzzy setting, which will allow us to
introduce the notion of some typical hesitant connectives.

4.1 Typical hesitant fuzzy sets

Formally, let ℘([0, 1]) be the power set of [0, 1]. A HFS A defined over U , where U is
a non-empty set, is given by:

A = {(x, µA(x)) : x ∈ U}, (11)

where µA : U → ℘([0, 1]) is the membership function. In particular, when µA(x) is finite
and non-empty for each x ∈ U , in this case we have a Typical Hesitant Fuzzy Set
(THFS).

Definition 4.1.1 (BEDREGAL et al., 2014a) Let H = {X ⊆ [0, 1] : X is finite and
X 6= ∅}. A THFS A defined over U is given by Eq. (11), where µA : U → H.

Each X ∈ H is named Typical Hesitant Fuzzy Element (THFE) of H and the
cardinality of X, i.e. the number of elements of X, is referred to as #X. The ith

smallest element of a THFE X will be denoted by X(i).
The bottom and the top elements {0} and {1} will be denoted, respectively, by

0H and 1H. The set of all unitary subsets on ℘([0, 1]) is called the set of diagonal or
degenerate elements of H and will be denoted by DH, i.e. DH = {X ∈ H : #X = 1}.
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Some examples of THFS are X = {0.3, 0.4, 0.7} and Y = {0.5, 0.6} where #X = 3

and #Y = 2. In these examples, X(1) = 0.3 and Y (2) = 0.6.
In (BEDREGAL et al., 2014, Definition 3.2), a function F : Hn → H is said to

preserve degenerate elements if F(DH) ⊆ DH, i.e. if it satisfies the property:

DP : F({x1}, . . . , {xn}) ∈ DH for each x1, . . . , xn ∈ [0, 1].

According with (BEDREGAL et al., 2014, Example 3.1), if F : Hn → H preserves
degenerate elements then, the function F : [0, 1]n → [0, 1] such that ∀x1, . . . , xn ∈ [0, 1]:

{F (x1, . . . , xn)} = F({x1}, . . . , {xn}) (12)

is well defined and it is said to be induced from F
In addition, based on (BEDREGAL et al., 2014, Example 3.2), any function F :

[0, 1]n → [0, 1] induces a mapping F : Hn → H which preserves degenerate elements
as follows:

F(X1, . . . , Xn) = {F (x1, . . . , xn) : xi ∈ Xi, ∀i ∈ Nn},∀X1, . . . , Xn ∈ H, (13)

where Nn = {1, . . . , n}.

4.2 〈H,≤〉-partial orders

There are several proposals of orders for THFE, as for example the ones given in
(BEDREGAL et al., 2014a; WANG; XU, 2016; XU; XIA, 2011; ZHANG; YANG, 2016,
2015). The unique consensus among all these orders is that all of them refines1 the
following restrictive partial 〈H,≤R H〉-order:

X ≤RH Y iff X = 0H or Y = 1H or (#X = #Y = n and X(i) ≤ Y (i),∀i ∈ Nn). (14)

Since, trivially, for each X ∈ H, we have that 0H ≤RH X ≤RH 1H, then 0H is the bottom
and 1H is the top element of the poset 〈H,≤RH〉.

In a restrictive order approach, the condition enabling a comparison between two
THFE X, Y ∈ H, which are different from 0H and 1H, is that they have the same
cardinality, meaning that #X = #Y .

Example 4.2.1 Take the partial order introduced by Xu and Xia (XU; XIA, 2011), that
for two HFE with different cardinalities, it is added the minimum element (or maximum
element) to the shortest HFE up to both of the HFE has the same cardinality. In
(SANTOS et al., 2014; XU; LIU; ZHANG, 2019), formal definitions were given for Xu

1A partial ≤1-order on a set S refines another partial order ≤2 on S if (S,≤2) ⊆ (S,≤1), i.e. for each
x, y ∈ S such that x ≤2 y we have that x ≤1 y.
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and Xia’s order (≤XX) transforming elements of H in elements of other sets. In the
following, we provide a direct formal definition of≤XX , i.e. not using the aforementioned
approach. Let X, Y ∈ H, then

X ≤XX Y iff


Xn ≤RH Y and n ≤ m; or

X ≤RH Y m and X(1) ≤ Y (1) and m ≤ n,
(15)

where m = #X, n = #Y and Zk = {Z(#Z−i+1) : i ∈ Nk} for k ≤ #Z.

By preserving the same cardinality of HFS based on repetitions of THFE, another
way to generate partial orders for THFE is considering the following strategy.

Example 4.2.2 In (FARHADINIA, 2016), given in Definition 3.2, which is defined for
X, Y ∈ H(n) by requiring

X <Lex Y ⇔ ∃i, 1 ≤ i ≤ n such that X(j) = Y (j) for j < i and X(i) < Y (i).

Based on the above lexicographical ordering, Farhadinia presents a “novel HFS
ranking technique” in Definition 3.3 of (FARHADINIA, 2016), the ranking vector is a
pair-composed function given by the score function SAM (as the arithmetic mean) and
the successive deviation function ϑ, defined as follows:

R(X) = (SAM(X), ϑ2(X)) =

(
1

n

n∑
i=1

X(i) ,
n−1∑
i=1

(
X(i+1) −X(i)

)2)
.

For X, Y ∈ H(n), the 〈H(n),≤R〉-relation is established as follows:

X <R Y ⇔ R(X) <Lex R(Y );X ≤R Y ⇔ R(X) ≤Lex R(Y ); and X = Y ⇔ R(X) = R(Y );

where for each (a, b), (c, d) ∈ [0, 1]2, (a, b) ≤Lex (c, d) iff a < c or (a = c and b ≤ d).
Nevertheless, ≤R is not an order on H(n) since the antisymmetry fails. Moreover, such
relation is not an order on H and therefore can not be considered as HFS ranking
technique. In fact, consider X = {0, 0.3, 0.6, 0.7} and Y = {0.1, 0.2, 0.5, 0.8}. Then
SAM(X) = 0.4 = SAM(Y ) and ϑ2(X) = 0.19 = ϑ2(Y ), i.e. X ≤R Y and Y ≤R X.

Example 4.2.3 Let �Lex be the order on H(n) proposed in (WANG; XU, 2016, Example
2), which is given as follows:

X �Lex Y ⇔


X = Y or

∃m > 0, such that ∀i < m, X(i) = Y (i) and X(m) < Y (m).
(16)
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Thus, �Lex is a very restrictive order, because it only enables the comparison
between two THFE with the same cardinality, i.e. this relation is a linear order on
H(n). There is an extension of such order in (BEDREGAL et al., 2014a, Remark 1) for
H, i.e. it allows to compare THFE of different cardinalities, but this order is not linear.

Our aim in the present work is to establish an admissible order to allow comparisons
between THFE without this restriction. The idea of admissible order was presented in
(BUSTINCE et al., 2013) for interval-valued fuzzy sets and after in (MIGUEL et al.,
2016) for interval-valued Atanassov’s intuitionistic fuzzy sets. We acknowledge that
some efforts have already been made in order to establish an admissible ordering for
hesitant fuzzy sets, as seen in (WANG; XU, 2016). However, their proposal requires
that both THFE must have the same cardinality.

In the next section, we present an admissible order in the typical hesitant fuzzy
setting, which will allow us to introduce the notion of some typical hesitant connectives.

4.3 Admissible 〈H,�〉-orders for typical hesitant fuzzy sets

In order to allow to overcome the main restrictions of typical hesitant fuzzy sets,
that is, the difficulty to consolidate methods to enable the ordering of typical hesitant
fuzzy elements and comparisons, this chapter presents a new Admissible H Order for
the HFS elements and also allow us to introduce some operators, such as the typical
hesitant fuzzy negations and typical hesitant t-norms introduced in the next chapter.

4.3.1 Admissible H orders for typical hesitant fuzzy elements

Although the principal order relation we use in H is the standard partial order ≤RH ,
the existence of many incomparable pairs of THFE is an undesirable situation in some
applications as well as in the study of important properties of typical hesitant fuzzy
connectives, mainly related to implications, negations and aggregation functions. Thus,
we make use of admissible 〈H,�〉-orders, a family of total orders that refine the partial
〈H,≤RH〉-order.

Definition 4.3.1 A partial 〈H,�〉-order is admissible if it refines 〈H,≤RH〉.2

From now on, admissible total orders will be simply referred to as admissible orders.
And, the expressions 〈H,≤〉 and 〈H,�〉 denote the poset of all THFE w.r.t. the partial
≤-order and to the admissible (total) �-order on H, respectively. Moreover, OP and
OA denote the sets of all partial orders and all admissible orders on H, respectively. In
addition, 〈H,�,0H,1H〉 is a chain and therefore a complete lattice. See (MATZENAUER

2Note that the admissible orders in Definition 4.3.1 is not equivalent to the notion of admissible order
for hesitant fuzzy elements (HFE) presented in (WANG; XU, 2016). In fact, it proposes a total order for
HFE restricted to a size n which refines the order ≤RH restricted to H(n).
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et al., 2020), as a first attempt of defining an admissible order on H in a more restrictive
way, moving to a more general order relation as follows.

4.3.1.1 Admissible 〈H,�Lex1〉 and 〈H,�Lex2〉 orders for typical hesitant fuzzy elements

In this subsection, we introduce the concepts of 〈H,�Lex1〉- and 〈H,�Lex2〉-orders
for typical hesitant fuzzy elements, which are admissible total orders, i.e. both are
totals and refines 〈H,≤RH〉.

Theorem 4.3.1 The relations �Lex1 and �Lex2 on H, are defined, respectively, as:

X �Lex1 Y ⇔


∃i ∈ Nmin(m,n) : X

(i) < Y (i) and X(j) = Y (j),∀j < i; or

m ≤ n and X(j) = Y (j),∀j ∈ Nm,
(17)

X �Lex2 Y ⇔



∃i ∈ Nmin(m,n) : X
(#X−i+1) < Y (#Y−i+1) and

X(#X−i+j+1) = Y (#Y−i+j+1),∀j < i; or

m ≤ n and X(#X−j+1) = Y (#X−j+1),∀j ∈ Nm;

(18)

where m = #X and n = #Y , are admissible total orders, i.e. �Lex1,�Lex2 ∈ OA.

Proof: The proof related to �Lex1-order is presented and the other one can be
analogously done. Trivially �Lex1 is reflexive and in case X �Lex1 Y and Y �Lex1 X for
some X, Y ∈ H, then by Eq. (17), we have the following cases:

(i) Suppose that X 6= Y . Then, (a) ∃i ∈ Nmin(m,n) : X
(i) < Y (i) and X(j) = Y (j),∀j <

i; and (b) ∃k ∈ Nmin(m,n) : Y
(k) < X(k) and X(j) = Y (j),∀j < k. If i < k, then

by (b) we have that X(i) = Y (i) which is a contradiction with (a). Analogously, if
k < i, by (a) and (b) we will have that X(k) = Y (k) and Y (k) < X(k) which is also
a contradiction. Finally, in case i = k, from (a) and (b) we would have X(i) < Y (i)

and Y (i) < X(i) which is also a contradiction.

(ii) (a) m ≤ n and ∀j ∈ Nm, X
(j) = Y (j) and (b) ∃i ∈ Nm : Y (i) < X(i) and X(j) =

Y (j),∀j < i. So, by (a) X(i) = Y (i) and by (b) Y (i) < X(i) which is a contradiction.

(iii) (a) ∃i ∈ Nmin(m,n) : X
(i) < Y (i) and X(j) = Y (j),∀j < i, and (b) n ≤ m and ∀j ∈

Nn, X
(j) = Y (j). So, by (a) X(i) < Y (i) for some i ∈ Nn. By (b), X(i) = Y (i) which

is a contradiction.

Therefore, the unique possibility is that: (a) m ≤ n and ∀j ∈ Nm, X
(j) = Y (j) and (b)

n ≤ m and ∀j ∈ Nm, X
(j) = Y (j). But in this case m = n and ∀j ∈ Nm, X

(j) = Y (j)

which means that X = Y . Hence �Lex1 is antisymmetric.
Finally, suppose that X �Lex1 Y �Lex1 Z for some X, Y, Z ∈ H. In case X = Y or
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Y = Z, trivially X �Lex1 Z. Let m = #X, n = #Y and p = #Z. So, we have the
following possibilities:

(i) (a) ∃i ∈ Nmin(m,n) : X
(i) < Y (i) and X(j) = Y (j), ∀j < i; and

(b) ∃k ∈ Nmin(n,p) : Y
(k) < Z(k) and Y (j) = Z(j),∀j < k. If i < k, then by (b)

we have that Y (j) = Z(j) and for all j ≤ i therefore by (a), we have that ∃i ∈
Nmin(m,p) : X

(i) < Y (i) and X(j) = Y (j), ∀j < i, i.e. X ≺Lex1 Z. Analogously, if
k < i, by (a) and (b) we will have that X(k) = Y (k) and Y (k) = Z(k) and for
each j < i, X(k) = Y (k) = Z(k). So, X ≺Lex1 Z. Finally, in case i = k, then
from (a) and (b) we would have X(i) < Y (i) and Y (i) < Z(i) and for each j < i,
X(k) = Y (k) = Z(k). So, X ≺Lex1 Z.

(ii) (a) m < n and ∀j ∈ Nm, X
(j) = Y (j); and

(b) ∃i ∈ Nmin(n,p) : Y
(i) < Z(i) and Y (j) = Z(j),∀j < i. If min(m, p) = p, then

from (a) and (b), X(i) < Z(i) and X(j) = Z(j),∀j < i. So, X ≺Lex1 Z. Else,
if min(m, p) = m and i > m, then by (a) and (b), we have that m ≤ p and
∀j ∈ Nm, X

(j) = Z(j) and therefore X �Lex1 Z. Finally, in case min(m, p) = m and
i ≤ m then by (a) and (b), we have that X(i) < Z(i) and X(j) = Z(j), ∀j < i, i.e.
X ≺Lex1 Z.

(iii) (a) ∃i ∈ Nmin(m,n) : X
(i) < Y (i) and X(j) = Y (j),∀j < i; and

(b) n < p and ∀j ∈ Nn, X
(j) = Y (j). If min(m,n) = m, then m < p and from (a)

and (b), X(i) < Y (i) = Z(i) and X(j) = Y (j) = Z(j),∀j < i ≤ n, i.e. X ≤Lex1 Z.
If min(m,n) = n, then from (a) and (b), X(i) < Y (i) = Z(i) and X(j) = Y (j) =

Z(j), ∀j < i, i.e. X �Lex1 Z.

(iv) (a) m < n and ∀j ∈ Nm, X
(j) = Y (j); and (b) n < p and ∀j ∈ Nn, Y

(j) = Z(j). So,
m < p and ∀j ∈ Nm, X

(j) = Y (j) = Z(j) which means that X �Lex1 Z.

So, �Lex1 is transitive and, therefore, it is a partial order which is trivially total and
refines the partial 〈H,≤RH〉-order. Therefore, Theorem 4.3.1 is verified. 2

4.3.1.2 Admissible 〈H,�fA〉 orders

The admissible 〈H,�fA〉-orders is a family of total orders that refine the partial
〈H,≤RH〉-order. In this section, we present the concept of 〈H,�fA〉-orders for typical
hesitant fuzzy elements.

Theorem 4.3.2 Let A∗ : H → [0, 1] be a function such that A∗ is increasing w.r.t. ≤RH ,
A∗(0H) = 0 and A∗(1H) = 1 and f ∗ : H→ R be a function such that the property:

IC : f ∗(X) = f ∗(Y )⇒ #X = #Y (injective-cardinality property)
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is satisfied. The relation �f
∗

A∗ on H defined by

X �f
∗

A∗ Y ⇔



X = Y, or

A∗(X) < A∗(Y ), or

A∗(X) = A∗(Y ) and f ∗(X) < f ∗(Y ),

(19)

is a total admissible order on H whenever, for each n ∈ N+, A∗n = A∗ � H(n) is injective.

Proof: Trivially, the �f
∗

A∗-order is reflexive and antisymmetric. Let X, Y, Z ∈ H. If
X �f

∗

A∗ Y and Y �f
∗

A∗ Z then, in case X = Y or Y = Z, we immediately have that
X �f

∗

A∗ Z. If X �f
∗

A∗ Y and Y �f
∗

A∗ Z, the next cases hold:

1. A∗(X) < A∗(Y ) and A∗(Y ) < A∗(Z), then A∗(X) < A∗(Z);

2. A∗(X) < A∗(Y ), A∗(Y ) = A∗(Z) and f ∗(Y ) < f ∗(Z), which means that A∗(X) <

A∗(Z);

3. A∗(X) = A∗(Y ), f ∗(X) < f ∗(Y ) and also consider that A∗(Y ) < A∗(Z), then the
following in equation is verified: A∗(X) < A∗(Z);

4. A∗(X) = A∗(Y ) and f ∗(X) < f ∗(Y ). When we also consider that A∗(Y ) = A∗(Z)

and f ∗(Y ) < f ∗(Z). Then, we have that A∗(X) = A∗(Z) and f ∗(X) < f ∗(Z).

All of the above cases imply that X ≺f
∗

A∗ Z. So, we have a transitive 〈H,�f
∗

A∗〉-relation.
In addition, for each X, Y ∈ H such that X 6= Y , we have the following three cases:

1. A∗(X) < A∗(Y ) and so, it implies that X ≺f
∗

A∗ Y ;

2. A∗(Y ) < A∗(X) and so, it implies that Y ≺f
∗

A∗ X;

3. A∗(X) = A∗(Y ) so, if f ∗(X) < f ∗(Y ), then X ≺f
∗

A∗ Y and if f ∗(Y ) > f ∗(X), then
Y ≺f

∗

A∗ X. Finally, if f ∗(X) = f ∗(Y ), then because f ∗ satisfies the property IC,
we have that #X = #Y and so, since A∗#X is injective, then X = Y , which is a
contradiction.

Therefore, we have that 〈H,�f
∗

A∗〉-order is total. Finally, let X, Y ∈ H such that X ≤RH
Y . If X = Y , then by the reflexivity property, X �f

∗

A∗ Y and if X <RH Y , then we have
three cases:

1. X = 0H and Y 6= 0H, and in this case A∗(0H) = 0 and A∗(Y ) 6= 0 because A∗#Y

is injective and A∗#Y (0, . . . , 0) = 0. Therefore, A∗(X) < A∗(Y ) which means that
X ≺f

∗

A∗ Y ;

2. X 6= 1H and Y = 1H, which is analogous to the previous case;
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3. Neither X = 0H, nor Y = 1H, and in this case #X = #Y = n and X(i) ≤ Y (i) for
each i ∈ Nn. So, A∗n(X) < A∗n(Y ) since A∗n is injective and increasing. Therefore,
X ≺f

∗

A∗ Y .

Therefore, one can conclude that 〈H,�f
∗

A∗〉-order is admissible and total. 2

Observe that A∗ can be seen as an EAF. In general, it is not easy to find an EAF
such that the family of aggregation functions be injective. In fact, for each n > 1

and an n-ary aggregation function A∗n, if A∗n is either idempotent or has a neutral or an
annihilator element, then A∗n is not injective. Moreover, if A∗n is injective then it is neither
conjunctive, nor disjunctive nor average aggregation function (BELIAKOV; BUSTINCE;
CALVO, 2016) meaning that A∗n is a mixed aggregation function. Moreover, it is clear
that not all mixed aggregation functions are injective (e.g. proper uninorms and proper
nullnorms). See more details in the literature (BELIAKOV; PRADERA; CALVO, 2007).

Given x ∈ [0, 1] and i ∈ N+, denote by x[i] the i-th decimal digit of the proper decimal
expansion3 of x, in case x 6= 1, and 9 in case x = 1. Since x ∈ [0, 1] and 1 = 0.9, the
integer part of x, i.e. x[0], will always be 0. Thus, if x = π − 3, y = 0.25 and z = 1 then
we have that: (i) x[0] = 0, x[1] = 1, x[2] = 4, x[3] = 1, x[4] = 5, etc.; (ii) y[0] = 0, y[1] = 2,
y[2] = 5 and y[i] = 0, for all i ∈ N+2 = {3, 4, . . .}; (iii) z[0] = 0 and z[i] = 9, for each i ∈ N+.

Inspired in a function proposed in (SANTANA et al., 2020), where the decimal
expansion of two ordered values in [0, 1] are mixed, we introduce a function which
mixes the (ordered) values of THFE, as presented in the next proposition.

Proposition 4.3.1 Let A : H → [0, 1] be the function such that, for each i ∈ N+,
A(X)[i] =

(
X(k)

)[j]
for k = ((i − 1) mod #X) + 1 and j =

⌈
i

#X

⌉
. Then, A satisfies the

property of Theorem 4.3.2. And, �fA is a total admissible order on H, if f ∗ : H → R
satisfies IC.

Proof: Trivially A(0H) = 0 and A(1H) = 1. Now, if X ≤RH Y then we have four cases.

1. If X = 0H, then A(X) = 0 ≤ A(Y );

2. If Y = 1H, then A(X) ≤ 1 = A(Y );

3. If #X = #Y , X 6= Y and X(k) ≤ Y (k) for each k ∈ N#X , then there exists jk ∈ N,(
X(k)

)[j]
<
(
Y (k)

)[j]
and for each i < jk,

(
X(k)

)[i]
=
(
Y (k)

)[i]
. So, A(X) ≤ A(Y );

4. If X = Y , then trivially A(X) = A(Y ).

Now we will prove that An is an injective function, for each n ∈ N+2 since A1 = IdH(1).
Let n ∈ N+2 and X, Y ∈ H(n) such that X 6= Y . If An(X) = An(Y ) then, for each i ∈ N+,
An(X)[i] = An(Y )[i], i.e.

(
X(k)

)[j]
=
(
Y (k)

)[j]
. Observe that for each l ∈ Nn and p ∈ N,

3Decimal expansions for real numbers is proper if there is no m ∈ N such that for each n > m, the
n-th digit is always 9.
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taking i = pn + l, we have that k = l and j = p + 1. Therefore, for each l ∈ Nn and
p ∈ N,

(
X(l)

)[p]
=
(
Y (l)

)[p]
, i.e. X(l) = Y (l). So, An is injective. The remaining of the

proof follows straightforward from Theorem 4.3.2. 2

Example 4.3.1 Taking the function A : H→ [0, 1] in Proposition 4.3.1 and the functions
f, g : H → R given as f(X) = −#X and g(X) = #X. Three incomparable pairs of
〈H,≤R〉-order are presented in the following items:

(i) Let X = {1/8, 2/3, 4/5} and Y = {1/3, 3/4} be THFE. Then, we have that
A(0.125, 0.6, 0.8) = 0.1682605600 < 0.373530 = A(0.3, 0.75) and therefore, X ≺fA Y
and X ≺gA Y .

(ii) Let X = {0.2, 0.5, 0.82, 0.95}, Y = {0.282, 0.595} ∈ H. So, we obtain
A(0.2, 0.5, 0.82, 0.95) = 0.258925 = A(0.282, 0.595). Therefore, we obtain that
X ≺fA Y since f(X) = −4 < −2 = f(Y ) and Y ≺gA X, because g(Y ) = 2 <

4 = g(X).

(iii) Let X = {0.5, 0.7, 0.9} and Y = {0.58, 0.69, 0.7} be THFE. Since A(X) = 0.579 and
A(Y ) = 0.56789, then Y ≺fA X and Y ≺gA X.

For each n ∈ N+, i ∈ Nn and x ∈ [0, 1], the following notation is introduced:

(i) τn,i(x) = 0.x[i]x[n+i]x[2n+i] . . .; and

(ii) σn(x) =


1 if x = 1

arg maxk∈Nn τk,1(x) < τk,2(x) < . . . < τk,k(x) if x < 1,

(iii) H(n↓) =
n⋃
k=1

H(k).

Lemma 4.3.1 Let A : H → [0, 1] be a function defined in Proposition 4.3.1 and f ∗ :

H → R be a function satisfying the condition stated in Theorem 4.3.2. For all n ∈ N+,
the function A(−1)

n↓ : [0, 1]→ H(n↓) defined by

A
(−1)
n↓ (x) =

{
τσn(x),i(x) : i ∈ Nσn(x)

}
, (20)

verifies the following conditions:

1. for each X ∈ H such that A(X) 6= 1, A(−1)
#X↓(A(X)) = X;

2. for each x ∈ [0, 1] and n ∈ N, #A(−1)
n↓ (x) = σn(x);

3. for each x ∈ [0, 1] and n ∈ N, A(A(−1)
n↓ (x)) = x;

4. if x, y ∈ [0, 1] and x ≤ y, then A(−1)
n↓ (x) �f

∗

A A
(−1)
n↓ (y);
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5. for each x ∈ [0, 1] and n ∈ N, A(−1)
n↓ (x) = 0H ⇔ x = 0 and A(−1)

n↓ (x) = 1H ⇔ x = 1;

6. for each x ∈ [0, 1] , if m ≤ n then A(−1)
m↓ (x) �f

∗

A A
(−1)
n↓ (x).

Proof: Let A : H → [0, 1] and f ∗ : H → R be functions satisfying the same condition
stated in Theorem 4.3.2. First note that A(−1)

n↓ is well defined.
(1.) Since, when A(X) 6= 1, σ#X(A(X)) = #X, then it is immediate;
(2.) For each x ∈ [0, 1] and n ∈ N+, since by definition, τσn(x),1(x) < τσn(x),2(x) < . . . <

τσn(x),σn(x)(x), then #A
(−1)
n↓ (x) = #

{
τσn(x),i(x) : i ∈ Nσn(x)

}
= σn(x);

(3.) Immediate;
(4.) Let x, y ∈ [0, 1] be such that x < y. From item 3, A(A(−1)

n↓ (x)) < A(A
(−1)
n↓ (y)).

Therefore, by definition of �f
∗

A , A(−1)
n↓ (x) ≺f

∗

A A
(−1)
n↓ (y);

(5.) Immediate;
(6.) Straightforward from Eq. (20). So, one can conclude Lemma 4.3.1 is held. 2

In order to reduce notation we consider A(−1)
1↓ ≡ A

(−1)
1 .

4.4 Chapter summary

In this chapter, we reported the notion of some typical hesitant fuzzy based on an
admissible partial order ≤ related to the poset (H,≤). Thus, we made use of total
admissible 〈H,�〉-orders, a family of total orders that refine the partial 〈H,≤RH〉-order.
Then, here were introduced three new admissible orders in the typical hesitant fuzzy
setting, which will allow us to present the notion of some typical hesitant connectives
in the next chapters.



5 SOME CLASSES OF 〈H,�〉-OPERATORS

In this section, the notion of some typical hesitant fuzzy connectives is presented,
based on an admissible order � related to the poset (H,�). Main properties of
〈H,�〉-negations and 〈H,�〉-implication functions are analysed.

5.1 Typical hesitant fuzzy negations

In (SANTOS et al., 2014), it was presented the notion of typical hesitant fuzzy
negations (THFN) using Xu-Xia-partial order and in (BEDREGAL et al., 2014), another
order on H was considered for the THFN. As a more general setting, the concept of
〈H,�〉-negation is presented, considering an arbitrary admissible order � on H.

Definition 5.1.1 Let � be admissible orders. A function N : H → H is a THFN
w.r.t 〈H,�〉-order and called as 〈H,�〉-negation N if, for all X, Y ∈ H, the following
properties are verified:

(N 1) N (0H) = 1H and N (1H) = 0H (boundary conditions);

(N 2) If X � Y , then N (Y ) � N (X) (antitonicity).

Moreover, the 〈H,�〉-negation N is strong if it is involutive:

(N 3) N (N (X)) = X, ∀X ∈ H.

Additionally, an 〈H,�〉-negation N is strictly decreasing meaning that

(N 4) if X ≺ Y , then N (X) ≺ N (Y ).

Proposition 5.1.1 If N : H → H is a strong 〈H,�〉-negation, then it is strictly
decreasing, i.e. for each X, Y ∈ H, if X ≺ Y , then N (Y ) ≺ N (X).

Proof: Let X, Y ∈ H such that X ≺ Y . By (N 2), N (Y ) � N (X). If N (Y ) = N (X),
then X = N (N (X)) = N (N (Y )) = Y , which is a contradiction. So, N (Y ) ≺ N (X). 2

Corollary 5.1.1 IfN : H→ H is a strong 〈H,�〉-negation and α ∈ H, such thatN (α) =

α. Then, for all X < α < Y , we have that N (Y ) ≺ α ≺ N (X).



48

Proof: Straightforward from Proposition 5.1.1. 2

Proposition 5.1.2 For an 〈H,�〉-negation N , N⊥ � N � N>, whenever

N⊥(X) =

1H, if X = 0H,

0H, otherwise;
and N>(X) =

1H, if X ≺ 1H,

0H, otherwise.

Proof: Straightforward from Definition 5.1.1. 2

Proposition 5.1.3 Each 〈H,�〉-negation N is an 〈H,�〉-join morphism and an 〈H,�
〉-meet morphism, i.e. for each X, Y ∈ H, the following expressions hold N (X ∨ Y ) =

N (X) ∧ N (Y ) and N (X ∧ Y ) = N (X) ∨ N (Y ), where ∨ and ∧ are the maximum and
minimum w.r.t. �-order.

Proof: Since � is a linear order, then either X � Y or Y � X. Without loss of
generality, assume that X � Y and, hence, N (Y ) � N (X), X∨Y = Y and X∧Y = X.
So, N (X ∨ Y ) = N (Y ) = N (X) ∧N (Y ) and N (X ∧ Y ) = N (X) = N (X) ∨N (Y ). 2

5.2 Generating 〈H,�〉-negations from fuzzy negations

Firstly, we present a simple method to generate 〈H,�〉-negations w.r.t. both
admissible orders, �Lex1- and �Lex2-order, which are given by Eq.(17) and Eq.(18),
respectively.

Proposition 5.2.1 Let N : [0, 1] → [0, 1] be a fuzzy negation. Then, the functions
Ñ , ˜̃N : H → H respectively defined as Ñ(X) =

{
N
(
X(1)

)}
and ˜̃N(X) ={

N
(
X(#X)

)}
,∀X ∈ H, are 〈H,�Lex1〉- and 〈H,�Lex2〉-negations.

Proof: The proof that function Ñ is an 〈H,�Lex1〉−negation is presented. The other
one can be analogously constructed. Let �Lex1 be an admissible order given by
Eq.(17). So, we have:
(N 1) Ñ(0H) = {N(0)} = 1H and Ñ(1H) = {N(1)} = 0H;
(N 2) If X �Lex1 Y , then X(1) ≤ Y (1) and Ñ(Y ) = {N(Y (1))} �Lex1 {N(X(1))} = Ñ(X).

Since the case of �Lex2 is analogous, therefore, Proposition 5.2.1 is verified. 2

Corollary 5.2.1 Let N : [0, 1] → [0, 1] be a negation. Then, for all X ∈ H, ˜̃N(X) ≤RH
Ñ(X).

Example 5.2.1 Considering the results from Proposition 5.2.1, and Ñ(˜̃N) be the
standard 〈[0, 1],≤〉-negation defined here as 1− x,∀x ∈ [0, 1], the following holds:
(i) For X ′ = {0.3, 0.445, 1.0}, Ñ(X ′) = {0.6} and ˜̃N(X ′) = 0H;
(ii) For X ′′ = {0.1, 0.35, 0.9}, Ñ(X ′′) = {0.9} and ˜̃N(X ′′) = {0.1}.
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Remark 5.2.1 Despite of N being a strong fuzzy negation, the 〈H,�Lex1〉- and
〈H,�Lex2〉- negations generated from N do not verify the involutive property. By taking
X ∈ H such that #X ∈ N2 and a strong negation N , then Ñ(Ñ(X)) = {N(N(X(1)))} =
{X(1)} ⊂ X. So, Ñ is a non-strong 〈H,�Lex1〉-negation. The same analysis can be
extended to the ˜̃N function.

Now, a methodology to obtain strong fuzzy negations w.r.t. 〈H,�fA〉-order is
presented.

Theorem 5.2.1 Let N : [0, 1] → [0, 1] be a strictly decreasing fuzzy negation, A : H →
[0, 1] as required in Theorem 4.3.2 and f ∗ : H → R be the function f ∗(X) = −#X for
each X ∈ H. The function NA,f∗ : H→ H, given by

NA,f∗(X) = A
(−1)
#X↓(N(A(X))), (21)

where A(−1)
n is the function defined in Lemma 4.3.1, is an 〈H,�fA〉-negation. In addition,

1. NA,f∗ has an inverse function;

2. If N is a strong fuzzy negation, then NA,f∗ is also strong.

Proof: Trivially, NA,f∗(0H) = 1H and NA,f∗(1H) = 0H. If X �f
∗

A Y . So, it holds that:
(i) if A(X) < A(Y ), then the next results hold:

A(X) < A(Y )⇔ N(A(Y )) < N(A(X))), by N being strictly decreasing;

⇔ A(A
(−1)
#Y ↓(N(A(Y )))) < A(A

(−1)
#X↓(N(A(X)))), by Lemma 4.3.1;

⇔ A(NA,f∗(Y )) < A(NA,f∗(X)), by Eq. (21).

So, NA,f∗(Y ) ≺f
∗

A NA,f∗(X).
(ii) if A(X) = A(Y ) and f ∗(X) ≤ f ∗(Y ), then it holds that:
(a) N(A(X)) = N(A(Y )) and, by Lemma 4.3.1, A(NA,f∗(X)) = A(A

(−1)
#X↓(N(A(X)))) =

N(A(X)) = N(A(Y )) = A(A
(−1)
#Y ↓(N(A(Y )))) = A(NA,f∗(Y ));

(b) Since f ∗(X) ≤ f ∗(Y ) then #X > #Y . So, because N(A(X)) = N(A(Y )) and
by Lemma 4.3.1, A(−1)

#Y ↓(N(A(Y ))) �f
∗

A A
(−1)
#X↓(N(A(X))). Therefore, NA,f∗(Y ) �f

∗

A

NA,f∗(X).
Hence, NA,f∗(Y ) �f

∗

A NA,f∗(X), and the function NA,f∗ is an 〈H,�f
∗

A 〉-negation.
In order to prove item 1, since N is strictly decreasing then it is invertible,
with N−1 as its inverse. Let N (−1)

A,fˆ∗ : H → H, defined by N (−1)
A,f∗ (X) =

A
(−1)
#X↓(N

−1(A(X))), for each X ∈ H. Since, N−1 is also a strictly decreasing
fuzzy negation, then, by the previous proof, N (−1)

A,f∗ is also an 〈H,�f
∗

A 〉-
negation. Moreover, from Lemma 4.3.1, we have that N (−1)

A,f∗ (NA,f∗(X)) =
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A
(−1)
#X↓(N

−1(A(A
(−1)
#X↓(N(A(X)))))) = X, and analogously, NA,f∗(N (−1)

A,f∗ (X)) =

A
(−1)
#X↓(N(A(A

(−1)
#X↓(N

−1(A(X)))))) = X. Consequently, NA,f∗ is invertible. The proof
of item 2 can be obtained analogously. Therefore, Theorem 5.2.1 is verified. 2

Example 5.2.2 Let NS be the standard 〈[0, 1],≤〉-negation defined here as

NS(x) = 0.9− x,∀x ∈ [0, 1].

Consider f ∗ : H→ R, f ∗(X) = −#X and A as the entangle order given in Prop. 4.3.1.
By Theorem 5.2.1, the function NSA,f∗, given in Eq. (21) is a strong 〈H,�f

∗

A 〉-negation.
See, e.g., the following results:

(1) For X ′′ = {0.1, 0.35, 0.9}, following the above methodology: NSA,f∗(X ′′) = (A
(−1)
3↓ ◦

NS ◦ A)({0.1, 0.35, 0.9}) = (A
(−1)
3↓ ◦ NS)(0.139050) = A

(−1)
3↓ (0.860949). Now, we need to

consider the following calculus.
For k = 3 we obtain that:
(i) τ(3, 1) = 0.89 ≡ 0.9;
(ii) τ(3, 2) = 0, 649 ≡ 0, 65; and
(iii) τ(3, 3) = 0.09 ≡ 0.1.
Therefore, τ(3, 1) > τ(3, 2) > τ(3, 3) and σ3(0.860949) 6= 3. Analogously, for k = 2.
Meaning that σ3(0.860949) = 1 implying NSA,f∗(X ′′) = {0.86095}.

5.3 Typical hesitant aggregation functions

In (BEDREGAL et al., 2014a), an extended notion of n-ary aggregation functions
for THFE using one of the partial orders is proposed by the authors. In the following,
the definition of 〈H,�〉-aggregation function generalizes that notion by considering an
admissible 〈H,�〉-order.

Definition 5.3.1 A function A : Hn → H is an n-ary typical hesitant aggregation
function w.r.t. the admissible total 〈H,�〉-order, called as 〈H,�〉-aggregation, if the
following properties are verified:

(A1) A(X1, . . . , Xn) � A(Y1, . . . , Yn), when Xi � Yi, for all i ∈ Nn (isotonicity);

(A2) A(0H, . . . ,0H) = 0H and A(1H, . . . ,1H) = 1H (boundary conditions).

In the following, some extra properties can be satisfied for some (but not all) typical
hesitant extended aggregation functions. For example, A satisfies:

(A3) symmetry if for each permutation ( ) : Nn → Nn,

A(X1, . . . , Xn) = A(X(1), . . . , X(n)).
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An 〈H,�〉-aggregation function A is a conjunctive (disjunctive) function if, for each
i ∈ Nn, Xi � A(X1, . . . , Xn) (Xi � A(X1, . . . , Xn)). Moreover, when A is disjunctive
(conjunctive) and bivariate, we respectively have that:

(A4) A(1H, X) = A(X,1H) = 1H, for all X ∈ H;

(A5) A(0H, X) = A(X,0H) = 0H, for all X ∈ H.

In particular, from (A4) and (A5) we have the corresponding properties:

(A4a) A(1H,0H) = A(0H,1H) = 1H;

(A5a) A(0H,1H) = A(1H,0H) = 0H.

Definition 5.3.2 A function A :
n⋃
n=1

Hn → H is a typical hesitant extended aggregation

function if, for each n ∈ N+2, A � Hn is an 〈H,�〉-aggregation function and A(X) = X,
for each X ∈ H.

Any 〈H,�〉-order related to a typical hesitant extended aggregation function (THEA)
is identified with a family of functions (An)n∈N+2 such that An is an 〈H,�〉- aggregation.

Remark 5.3.1 Let A be a binary 〈H,�〉-aggregation function, a THEA A′ is given as
follows:

A′(X) = X; and A′(X1, . . . , Xn) = A(X1,A′(X2, . . . , Xn)),∀n ∈ N+2. (22)

For THEA, the following properties can also be considered:

(A6) invariance of replication if:

A(X1, . . . , Xn) = A(X1, . . . , Xn, . . . , X1, . . . , Xn);

(A7) invariance for 1H if, for each i = 1, . . . , n:

A(X1, . . . , Xn) = A(X1, . . . , Xi,1H, Xi+1, . . . , Xn);

(A8) idempotence for all X ∈ H:

A(X, . . . , X) = X.
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5.4 Typical hesitant triangular norms

The extension of the notion of t-norms for typical hesitant fuzzy elements was
presented in (BEDREGAL et al., 2014a), taking into account the partial order proposed
in that paper. The following definition generalizes this notion by considering admissible
orders on H.

Definition 5.4.1 Let T : H2 → H and let the admissible 〈H,�〉-order on H. T is a
typical hesitant triangular norm w.r.t. 〈H,�〉-order, or 〈H,�〉-t-norm in short, if

(T 1) It is commutative: T (X, Y ) = T (Y,X);

(T 2) It is associative: T (X, T (Y, Z)) = T (T (X, Y ), Z);

(T 3) It is monotonic, i.e., if X � Y then T (X,Z) � T (Y, Z); and

(T 4) 1H is the neutral element: T (X,1H) = X.

Remark 5.4.1 For all 〈H,�〉-t-norm, T (1H,0H) = T (0H,1H) = 0H.

Example 5.4.1 By taking n = max{#X,#Y }, the corresponding extension TP , TM and
TLK given as follows:

i. TP (X, Y ) = A
(−1)
n↓ (TP (A(X), A(Y )));

ii. TM(X, Y ) = A
(−1)
n↓ (TM(A(X), A(Y )));

iii. TLK(X, Y ) = A
(−1)
n↓ (TLK(A(X), A(Y ))),

are typical hesitant t-norms w.r.t. the admissible order 〈H,�f
∗

A 〉. Moreover, we also
have that:

i. TP (X, Y ) = {x · y | x ∈ X, y ∈ Y },

ii. TM(X, Y ) = {min{x, y} | x ∈ X, y ∈ Y },

iii. TL(X, Y ) = {max{x+ y − 1, 0} | x ∈ X, y ∈ Y },

are typical hesitant t-norms w.r.t. the admissible 〈H,�Lex1〉- and 〈H,�Lex2〉-orders.

5.5 Generating 〈H,�〉-aggregations from aggregations

The idea of 〈H,�Lex1〉-, 〈H,�Lex2〉 and 〈H,�fA〉-OWA, are presented in this section
as the ordered weighted average aggregations, considering the admissible 〈H,�Lex1〉-,
〈H,�Lex2〉- and 〈H,�fA〉- orders, respectively.
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5.5.1 Generating 〈H,�Lex1〉-aggregations from aggregations

The concept of 〈H,�Lex1〉-OWA is presented as the ordered weighted average
aggregations, considering the admissible 〈H,�Lex1〉-orders.

Proposition 5.5.1 Let M : [0, 1]n → [0, 1] be a strict aggregation and m = max{#Xi :

i ∈ Nn}. The functionMLex1 : Hn → H, defined as

MLex1(X1, . . . , Xn) =
{
M
(
X

(1,m)
1 , . . . , X(1,m)

n

)
, . . . ,M

(
X

(m,m)
1 , . . . , X(m,m)

n

)}
, (23)

is a THEA where X(j,m)
i =


X

(j)
i , if j ≤ #Xi

X
(#Xi)
i , otherwise.

Proof: Trivially,MLex1(0H, . . . ,0H) =
{
M
(
0
(1,1)
H , . . . ,0

(1,1)
H

)}
= {M(0, . . . , 0)} = {0} =

0H and MLex1(1H, . . . ,1H) =
{
M
(
1
(1,1)
H , . . . ,1

(1,1)
H

)}
= {M(1, . . . , 1)} = {1} = 1H.

Let X1, . . . , Xn, Y ∈ H such that Xi ≺Lex1 Y for some i ∈ Nn. Then, either (1) there
exist k ≤ min{#Xi,#Y } such that X(k)

i < Y (k) and X
(j)
i = Y (j) for each j < k, or (2)

#Xi ≤ #Y and X(j)
i = Y (j) for each j ≤ #Xi.

Case (1): Clearly,M
(
X

(j,m)
1 , . . . , X(j,m)

n

)
=M

(
X

(j,m)
1 , . . . , X

(j,m)
i−1 , Y (j,m), X

(j,m)
i+1 , . . . , X(j,m)

n

)
for each j < k and, because M is strictly increasing:
(i) M

(
X

(k,m)
1 , . . . , X(k,m)

n

)
< M

(
X

(k,m)
1 , . . . , X

(k,m)
i−1 , Y (k,m), X

(k,m)
i+1 , . . . , X(k,m)

n

)
, and

(ii)MLex1(X1, . . . , Xn)
(j,m) =M

(
X

(j,m)
1 , . . . , X(j,m)

n

)
for each j ∈ Nm.

Therefore,MLex1(X1, . . . , Xn) �Lex1MLex1(X1, . . . , Xi−1, Y,Xi+1, . . . , Xn).
Case (2): Likewise, ∀j ∈ N#Xi

we have that

MLex1(X1, . . . , Xn)
(j,m) =M

(
X

(j,m)
1 , . . . , X(j,m)

n

)
=M

(
X

(j,m)
1 , . . . , X

(j,m)
i−1 , Y (j,m), X

(j,m)
i+1 , . . . , X(j,m)

n

)
=MLex1(X1, . . . , Xi−1, Y,Xi+1, . . . , Xn)

(j,m)

=M
(
X

(j,m)
1 , . . . , X

(j,m)
i−1 , Y (j,m), X

(j,m
i+1 , . . . , X

(j,m)
n

)
≤M(X1, . . . , Xi−1, Y,Xi+1, . . . , Xn)

(j,m).

So, MLex1(X1, . . . , Xn) �Lex1 MLex1(X1, . . . , Xi−1, Y,Xi+1, . . . , Xn). And, Prop. 5.5.1
holds. 2

In the next corollary we describe the expression of an 〈H,�Lex1〉-OWA operator.

Corollary 5.5.1 LetOWAω : [0, 1]n → [0, 1] be the EAF defined byOWAω(x1, . . . , xn) =∑n
i=1wixσ(i), w.r.t. a positive weighing vector ω = (w1, w2, . . . wn) ∈ [0, 1]n. For m =
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max{#Xi : i ∈ Nn}, the function OWALex1ω : Hn → H, given as

OWALex1ω (X1, . . . , Xn) =
{
OWAω

(
X

(1,m)
1 , . . . , X(1,m)

n

)
, . . . , OWAω

(
X

(m,m)
1 , . . . , X(m,m)

n

)}
,

(24)

is an 〈H,�Lex1〉-aggregation, whenever X(j,m)
i =

X
(j)
i , if j ≤ #Xi

X
(#Xi)
i , otherwise.

Proof: Straight from Prop. 5.5.1, as an OWA is strictly increasing and ω is positive
(BELIAKOV; PRADERA; CALVO, 2007). 2

Example 5.5.1 Considering the following tuples of THFS in H4 and the weighing vector
ω = (0.1, 0.2, 0.3, 0.4):

X1 = ({0.4}, {0.7},1H,1H) ; X2 = ({0.75}, {0.85},1H,1H) ;

X3 = ({0.45}, {0.7},1H,1H) ; X4 = ({0.7}, {0.8},1H,1H) ;

X5 = ({0.39, 0.44, 0.45}, {0.61, 0.75},1H,1H) ;X6 = (1H,1H, {0.6, 0.8, 0.9}, {0.4, 0.7, 0.8}) .

Then, we obtain that the following results:

1. OWALex1ω (X1) = {0.1 ·0.4+0.2 ·0.7+0.3 ·1+0.4 ·1} = {0.04+0.14+0.3+0.4} = {0.88};

2. OWALex1ω (X2) = {0.1·0.75+0.2·0.85+0.3·1+0.4·1} = {0.075+0.17+0.3+0.4} = {0.945};

3. OWALex1ω (X3) = {0.1·0.45+0.2·0.7+0.3·1+0.4·1} = {0.045+0.14+0.3+0.4} = {0.885};

4. OWALex1ω (X4) = {0.1 ·0.7+0.2 ·0.8+0.3 ·1+0.4 ·1} = {0.07+0.16+0.3+0.4} = {0.93};

5. OWALex1ω (X5) = {0.1 · 0.39 + 0.2 · 0.61 + 0.3 · 1.0 + 0.4 · 1.0, 0.1 · 0.44 + 0.2 · 0.75 + 0.3 ·
1.0 + 0.4 · 1.0, 0.1 · 0.45 + 0.2 · 0.75 + 0.3 · 1.0 + 0.4 · 1.0} = {0.861, 0.894, 0.895};

6. OWALex1ω (X6) = {0.1 · 0.4 + 0.2 · 0.6 + 0.3 · 1.0 + 0.4 · 1.0, 0.1 · 0.7 + 0.2 · 0.8 + 0.3 · 1.0 +
0.4 · 1.0, 0.1 · 0.8 + 0.2 · 0.9 + 0.3 · 1.0 + 0.4 · 1.0} = {0.86, 0.93, 0.96}.

5.5.2 Generating 〈H,�Lex2〉-aggregations from aggregations

The concept of 〈H,�Lex2〉-OWA is presented as the ordered weighted average
aggregations, considering the admissible 〈H,�Lex2〉-orders.

Proposition 5.5.2 Let M : [0, 1]n → [0, 1] be a strict aggregation function. When m =

max{#Xi : i ∈ Nn}, the functionMLex2 : Hn → H, defined as follows:

MLex2(X1, . . . , Xn) =
{
M
(
X

(1,m)
1 , . . . , X(1,m)

n

)
, . . . ,M

(
X

(m,m)
1 , . . . , X(m,m)

n

)}
, (25)

is an 〈H,�Lex2〉-aggregation operator, where X(j,m)
i =

X
#Xi−m+j
i , if j > m−#Xi

X
(1)
i , otherwise.
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Proof: Analogous to the proof of Proposition 5.5.1. 2

In the next corollary, we describe the expression of an 〈H,�Lex2〉-OWA operator.

Corollary 5.5.2 Let OWAω : [0, 1]n → [0, 1] be the ordered weighted average operator
(OWA) w.r.t. the positive weighing vector ω = (w1, w2, . . . wn). When m = max{#Xi :

i ∈ Nn}, the function OWALex2ω : Hn → H, defined by

OWALex2ω (X1, . . . , Xn) =
{
OWAω

(
X

(1,m)
1 , . . . , X(1,m)

n

)
, . . . , OWAω

(
X

(m,m)
1 , . . . , X(m,m)

n

)}
,

(26)

is an 〈H,�Lex2〉-aggregation operator, where X(j,m)
i =

X
#Xi−m+j
i , if j > m−#Xi

X
(1)
i , otherwise.

Proof: Analogously, considering the OWA as a strictly increasing function whenever
ω is positive (see (BELIAKOV; PRADERA; CALVO, 2007, p.69)) then, from Proposition
5.5.1, Corollary 5.5.2 holds. 2

Example 5.5.2 Considering the tuples of THFS in H4 and the weighting vector ω
presented in Example 5.5.1. Then, we obtain that the following results:

1. OWALex2ω (X1) = {0.1 ·1+0.2 ·1+0.3 ·0.7+0.4 ·0.4} = {0.1+0.2+0.21+0.16} = {0.67};

2. OWALex2ω (X2) = {0.1·1+0.2·1+0.3·0.85+0.4·0.75} = {0.1+0.2+0.255+0.3} = {0.855};

3. OWALex2ω (X3) = {0.1 ·1+0.2 ·1+0.3 ·0.7+0.4 ·0.45} = {0.1+0.2+0.21+0.18} = {0.69};

4. OWALex2ω (X4) = {0.1 ·1+0.2 ·1+0.3 ·0.8+0.4 ·0.7} = {0.1+0.2+0.24+0.28} = {0.82};

5. OWALex2ω (X5) = {0.1 · 1+ 0.2 · 1+ 0.3 · 0.75+ 0.4 · 0.45, 0.1 · 1+ 0.2 · 1+ 0.3 · 0.61+ 0.4 ·
0.44, 0.1 · 1 + 0.2 · 1 + 0.3 · 0.61 + 0.4 · 0.39} = {0.705, 0.659, 0.639};

6. OWALex2ω (X6) = {0.1 · 1 + 0.2 · 1 + 0.3 · 0.9 + 0.4 · 0.8, 0.1 · 1 + 0.2 · 1 + 0.3 · 0.8 + 0.4 ·
0.7, 0.1 · 1 + 0.2 · 1 + 0.3 · 0.6 + 0.4 · 0.4} = {0.89, 0.82, 0.64}.

5.5.3 Generating 〈H,�fA〉-aggregations from fuzzy aggregation functions

In this section, we present the concept of 〈H,�fA〉-OWA, as the ordered weighted
average aggregation, considering the admissible 〈H,�fA〉-order.

Theorem 5.5.1 Let M : [0, 1]n → [0, 1] be an strictly increasing aggregation function, A
and f ∗ be functions verifying the conditions of Theorem 4.3.2. The function MA,f∗ :

Hn → H, given as

MA,f∗(X1, . . . , Xn) = A
(−1)
m↓ (M(A(X1), . . . , A(Xn))) , (27)

is an 〈H,�f
∗

A 〉-aggregation function, where m = max{#Xi : i ∈ Nn}. In addition, if M
verifies Ai thenMA,f∗ satisfies Ai, for i ∈ N6.
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Proof: Trivially, MA,f∗(0H, . . . ,0H) = A
(−1)
1 (M(A(0H), . . . , A(0H))) =

A
(−1)
1 (M(0, . . . , 0)) = 0H and, besides, MA,f∗(1H, . . . ,1H) =

A
(−1)
1 (M(A(1H), . . . , A(1H))) = A

(−1)
1 (M(1, . . . , 1)) = 1H. Let X1, . . . , Xn, Y ∈

H, such that Xi ≺f
∗

A Y , for some i ∈ Nn. Then, either A(Xi) <

A(Y ) or A(Xi) = A(Y ) and f ∗(Xi) < f ∗(Y ). In case A(Xi) <

A(Y ), then because M is strictly increasing, M(A(X1), . . . , A(Xn)) <

M(A(X1), . . . , A(Xi−1), A(Y ), A(Xi+1), . . . , A(Xn)) and therefore, by Lemma
4.3.1, MA,f∗(X1, . . . , Xn) ≺f

∗

A MA,f∗(X1, . . . , Xi−1, Y,Xi+1, . . . , Xn). For the
case that A(Xi) = A(Y ) and f ∗(Xi) < f ∗(Y ), then M(A(X1), . . . , A(Xn)) =

M(A(X1), . . . , A(Xi−1), A(Y ), A(Xi+1), . . . , A(Xn)) and #Xi > #Y .
So, by Lemma 4.3.1 we have that A(MA,f∗(X1, . . . , Xn)) =

A(MA,f∗(X1, . . . , Xi−1, Y,Xi+1, . . . , Xn)) and f ∗(MA,f∗(X1, . . . , Xn)) ≤
f ∗(MA,f∗(X1, . . . , Xi−1, Y,Xi+1, . . . , Xn)). 2

Corollary 5.5.3 Let a positive weighting vector ω = (w1, w2, . . . wn) and OWAω :

[0, 1]n → [0, 1] be the OWA w.r.t. ω. The function OWAA,f∗ω : Hn → H, defined by

OWAA,f∗ω (X1, . . . , Xn) = A
(−1)
m↓ (OWAω(A(X1), . . . , A(Xn))) , (28)

is an 〈H,�f
∗

A 〉-aggregation operator.

Proof: Since the OWA is strictly increasing, whenever ω is positive (see (BELIAKOV;
PRADERA; CALVO, 2007, p.69)), then from Proposition 5.5.1, the corollary holds. 2

Example 5.5.3 Taking THFS and weighting vector in Example 5.5.1, by the action of
OWAA,fω operator, we obtain the results:

1. OWAA,fω (X1) = A
(−1)
1↓ (0.1 · 0.4 + 0.2 · 0.7 + 0.3 · 1.0 + 0.4 · 1.0) = A

(−1)
1↓ (0.88) = {0.88} =

OWALex1ω (X1);
2. OWAA,fω (X2) = OWALex1ω (X2);
3. OWAA,fω (X3) = OWALex1ω (X3);
4. OWAA,fω (X4) = OWALex1ω (X4);
5. OWAA,fω (X5) = A

(−1)
3↓ (0.1·0.344945+0.2·0.6715+0.3·1.0+0.4·1.0) = A

(−1)
3↓ (0.8687945) =

{0.8687945};
6. OWAA,fω (X6) = A

(−1)
3↓ (0.1·0.478+0.2·0.689+0.3·1+0.4·1) = A

(−1)
3↓ (0.8856) = {0.85, 0.86}.

5.6 Chapter summary

In this section, the notion of some typical hesitant fuzzy connectives was presented,
based on an admissible order � related to the poset (H,�). Then, considering an
arbitrary admissible order � on H, the concept of 〈H,�〉-negation was presented. Also,
we presented a simple method to generate 〈H,�〉-negations w.r.t. three admissible
orders, �Lex1-, �Lex2-, �f

∗

A -orders.
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Here, we also presented the definition of t-norms for typical hesitant fuzzy elements,
considering admissible orders on H.

In the following, the definition of 〈H,�〉-aggregation function was presented also
considering an admissible 〈H,�〉-order. The concepts of 〈H,�Lex1〉-, 〈H,�Lex2〉
and 〈H,�fA〉-OWA, were presented in this section as the ordered weighted average
aggregations, considering the admissible 〈H,�Lex1〉-, 〈H,�Lex2〉- and 〈H,�fA〉- orders,
respectively.



6 TYPICAL HESITANT 〈H,�〉-IMPLICATIONS

In (BEDREGAL et al., 2014a), it was presented the extension of the notion of typical
hesitant t-norms and in (BEDREGAL et al., 2014; SANTOS et al., 2014) the notion
of typical hesitant negation for the partial orders considered in those papers. Here
we introduce the notion of 〈H,�〉-implications, as typical hesitant fuzzy implications
considering an admissible 〈H,�〉-order, discussing its main properties. From now on,
we denote I〈H,�〉 as the set of all 〈H,�〉-implications.

6.1 Definition of 〈H,�〉-implications

The main fuzzy implications are extended to hesitant fuzzy implications, presenting
the main properties, as antitonicity, isotonicity and corner conditions. In addition, to the
extended examples of the main implications, we also studied methods of the conjugate
that preserve these properties.

Definition 6.1.1 A function I : H×H→ H is a typical hesitant fuzzy implication (THFI)
w.r.t. 〈H,�〉-order, denotes as 〈H,�〉-implication, if for each X, Y, Z ∈ H, the following
properties are verified:

(I1) If X � Y , then I(Y, Z) � I(X,Z) (first place antitonicity);

(I2) If Y � Z, then I(X, Y ) � I(X,Z) (second place isotonicity);

(I3) I(0H,0H) = 1H (corner condition 1);

(I4) I(1H,1H) = 1H (corner condition 2); and

(I5) I(1H,0H) = 0H (corner condition 3).

The dual construction of a THFI I : H2 → H w.r.t. an 〈H,�〉-order, is a typical
hesitant fuzzy coimplication (THFC), denoted as J : H2 → H verifying properties from
J 1 to J 5.
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Definition 6.1.2 A function J : H × H → H is a typical hesitant fuzzy coimplication
(THFC) w.r.t. 〈H,�〉-order, denotes as 〈H,�〉-coimplication, if for each X, Y, Z ∈ H,
the following properties are verified:

(J 1) If X � Y , then J (Y, Z) � J (X,Z) (first place antitonicity);

(J 2) If Y � Z, then J (X, Y ) � J (X,Z) (second place isotonicity);

(J 3) J (0H,0H) = 0H (corner condition 1);

(J 4) J (1H,1H) = 0H (corner condition 2); and

(J 5) J (0H,1H) = 1H (corner condition 3).

6.2 Main properties and examples of 〈H,�〉-implications

From these properties we can deduce that each 〈H,�〉-(co)implication also satisfies
two others.

Proposition 6.2.1 Let I(J ) : H × H → H be an 〈H,�〉-(co)implication. I(J ) verifies
the following properties:

(I6) I(0H, Y ) = 1H (left boundary); (J 6) J (1H, Y ) = 0H (left boundary);

(I7) I(X,1H) = 1H (right boundary). (J 7) J (X,0H) = 0H (right boundary).

Proof: For all X, Y ∈ H, the following holds:

(I6) By I2, I(0H, Y ) � I(0H,0H) = 1H, implying that I(0H, Y ) = 1H;

(I7) By I1, I(X,1H) � I(1H,1H) = 1H, implying that I(X,1H) = 1H.

Analogously, also can be prove for the dual construction. Therefore, Proposition 6.2.1
is verified. 2

Extra properties of 〈H,�〉-implications are reported in the following:

(I8) I(X,X) = 1H (identity principle);

(I9) I(X, I(Y, Z)) = I(Y, I(X,Z)) (exchange principle);

(I10) I(X, Y ) = I(N (Y ),N (X)), if N is 〈H,�〉-negation (contrapositive symmetry);

(I11) X � Y ⇒ I(X, Y ) = 1H (left-ordering property);

(I12) I(X, Y ) = 1H ⇒ X � Y (right ordering property).
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Besides, for 〈H,�〉-coimplications, extra properties are reported in the following:

(J 8) J (X,X) = 0H (normality condition);

(J 9) J (X,J (Y, Z)) = J (Y,J (X,Z)) (exchange principle);

(J 10) J (X, Y ) = J (N (Y ),N (X)), if N is 〈H,�〉-negation (contraposition);

(J 11) Y � X ⇒ J (X, Y ) = 0H (left-ordering coimplication property);

(J 12) J (X, Y ) = 0H ⇒ Y � X (right-ordering coimplication property).

Remark 6.2.1
(
I〈H,�〉,∨〈H,�〉,∧〈H,�〉, I⊥, I>

)
is a bounded lattice, where

I⊥(X, Y )=

0H, if X =1H and Y =0H

1H, otherwise;
I>(X, Y ) =

1H, if X =Y =1H or X=Y =0H

0H, otherwise;

and the meet and joint-morphisms w.r.t 〈H,�〉 are given as follows:

I1 ∧〈H,�〉 I2(X, Y ) = min〈H,�〉 (I1(X, Y ), I2(X, Y )) ;

I1 ∨〈H,�〉 I2(X, Y ) = max〈H,�〉 (I1(X, Y ), I2(X, Y )) .

Example 6.2.1 For each�∈ OA we obtain the Gödel and Rescher 〈H,�〉-implications:

IRS(X, Y ) =

1H, if X � Y

0H, otherwise;
IGD(X, Y ) =

1H, if X � Y

Y, otherwise.

Independently from the 〈H,�〉−order, we have the Weber hesitant fuzzy implication:

IWB(X, Y ) =

1H, if X 6= 1H

Y, otherwise.

So, 〈H,�〉-implication refines results from 〈[0, 1],≤〉, meaning that IRS ≺ IGD ≺ IWB.

In the following, specific examples for the three admissible orders are presented.

Example 6.2.2 Other examples related to 〈H,�Lex1〉-implication are Goguen, Yager,
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Fodor and Łukasiewisc:

IGG(X, Y ) =

1H, if X �Lex1 Y{
Y (1)

X(1)

}
, otherwise;

IYG(X, Y ) =


1H, if X �Lex1 Y{(
Y (1)

)X(1)}
,otherwise;

IFD(X, Y ) =

1H, if X �Lex1 Y{
max

(
1−X(1), Y (1)

)}
,otherwise;

ILK(X, Y ) =


1H, if X �Lex1 Y{
1−X(1) + Y (1)

}
,otherwise.

In addition, 〈H,�Lex1〉 refines results from 〈[0, 1],≤〉, meaning that:

(1) IRS ≺Lex1 IGD ≺Lex1 IGG ≺Lex1 ILK ≺Lex1 IWB;

(2) IRS ≺Lex1 IGD ≺Lex1 IFD ≺Lex1 ILK ≺Lex1 IWB; and

(3) IYG ≺Lex1 ILK ≺Lex1 IWB.

Example 6.2.3 Analogous examples of 〈H,�Lex2〉-implication are reported:

IGG(X, Y ) =

1H, if X �Lex2 Y{
Y (#Y )

X(#X)

}
,otherwise;

IYG(X, Y ) =


1H, if X �Lex2 Y{(
Y (#Y )

)X(#X)}
,otherwise;

IFD(X, Y ) =

1H, if X �Lex2 Y{
max

(
1−X(#X), Y (#Y )

)}
,otherwise;

ILK(X, Y ) =


1H, if X �Lex2 Y{
1−X(#X) + Y (#Y )

}
,otherwise.

The corresponding refinements are also obtained.
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Example 6.2.4 And, analogous 〈H,�fA〉-implications are then expressed below:

IGG(X, Y ) =

1H, if X �fA Y

A
(−1)
m↓

(
A(Y )
A(X)

)
,otherwise;

IYG(X, Y ) =

1H, if X �fA Y

A
(−1)
m↓

(
A(Y )A(X)

)
,otherwise;

IFD(X, Y ) =

1H, if X �fA Y

A
(−1)
m↓ (max(1− A(X), A(Y )),otherwise;

ILK(X, Y ) =

1H, if X �fA Y

A
(−1)
m↓ (1− A(X) + A(Y )),otherwise;

if m = max(#X,#Y ) and A(−1)
m↓ : [0, 1]→ H as given in Theorem 5.2.1.

6.3 Natural 〈H,�〉-negations obtained from 〈H,�〉-implications

In (SANTOS et al., 2014) the notion of typical hesitant fuzzy negations (THFN)
uses Xu-Xia-partial order and in (BEDREGAL et al., 2014) another order on H was
discussed for the THFN. Here, a method to obtain Natural 〈H,�〉-negations obtained
from 〈H,�〉-implications is presented.

Proposition 6.3.1 Let � be an admissible partial order on H and let the function I(J )
be an 〈H,�〉-(co)implication. Then, the function NI(J ) : H→ H, defined by

(I13) NI(X) = I(X,0H), (J 13) NJ (X) = J (X,1H),

is an 〈H,�〉-negation, called as the natural typical hesitant fuzzy negation of I(J ), or
the natural 〈H,�〉-negation NI(J ).

Proof: From the corner conditions, NI(0H) = 1H and NI(1H) = 0H. If X � Y , then by
(I1), it holds that NI(Y ) = I(Y,0H) � I(X,0H) = NI(X). Analogously, it can be prove
for the dual construction. Therefore, Preposition 6.3.1 holds. 2

Example 6.3.1 Let �∈ OA. See examples of natural 〈H,�〉-negations:

(i) For each �∈ OA: NIRS = NIGD = N⊥ and NIWB = N>.

(ii) For 〈H,�Lex1〉−order, NILK(X) = NIFD(X) = {1 − X(1)}, ∀X ∈ H. Then, by
Example 6.2.2, we have the following comparisons:

(a) N⊥ = NIRS = NIGD = NIGG ≺Lex1 NILK ≺Lex1 NIWB = N>;

(b) N⊥ = NIRS = NIGD ≺Lex1 NIFD = NILK ≺Lex1 NIWB = N>; and
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(c) N⊥ = NIYG ≺Lex1 NILK ≺Lex1 NIWB = N>.

(iii) For 〈H,�Lex2〉−order, ∀X ∈ H, we obtain the following expression NILK(X) =

NIFD(X) = {1 − X(#X)}. Then, by Example 6.2.3, we have analogous
comparisons as presented in (a), (b) and (c).

(iii) For 〈H,�fA〉−order, ∀X ∈ H, we have that

NILK(X) = NIFD(X) = NIYG(X) = A
(−1)
#X↓(0.9− A(X)).

In particular, when A is the function in Proposition 4.3.1, then NILK = NIFD =

NIYG = NSA,f
. Then, by Example 6.2.4, analogous comparisons as (a), (b) and

(c) can also be obtained together with the following: N⊥ = NIYG = NILK ≺
f
A

NIWB = N>.

Proposition 6.3.2 Let I be an 〈H,�〉-implication verifying properties (I8), (I9) and
(I12). Then, the following holds:

(i) X � NI(NI(X)) for each X ∈ H;

(ii) NI(NI(NI(X))) = NI(X) for each X ∈ H;

(iii) NI is strong if and only if NI is surjective.

Proof: Let I be an 〈H,�〉-implication satisfying (I8), (I9) and (I12). So:

(i) By (I8) and (I9), I(X, I(I(X,0H),0H)) = I(I(X,0H), I(X,0H)) = 1H. Therefore,
by (I12), X � I(I(X,0H),0H)) = NI(NI(X)).

(ii) Since NI is decreasing, from the previous item one can conclude that
NI(NI(NI(X))) � NI(X), for each X ∈ H. On the other hand, for all X ∈ H, by
(I9) and (I8), we obtain the following equation:
I(I(X,0H), I(I(I(X,0H),0H),0H)) = I(I(I(X,0H),0H), I(I(X,0H),0H)) = 1H.
So, by (I12), it holds that I(X,0H) � I(I(I(X,0H),0H),0H), i.e., NI(X) �
NI(NI(NI(X))), for X ∈ H. Therefore, NI(NI(NI(X))) = NI(X).

(iii) (⇒) Let X ∈ H and Y = NI(X). Since NI is strong, NI(Y ) = X.

(⇐) Let X ∈ H. Since NI is surjective, there is Y ∈ H such that NI(Y ) = X. So,
by the previous item, NI(NI(X)) = NI(NI(NI(Y ))) = NI(Y ) = X.

Concluding, this yields the desired result and Proposition 6.3.2 is verified. 2
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6.4 Generation of 〈H,�〉-implications from fuzzy implications

The order-preserving method to generate 〈H,�fA〉-implications from fuzzy
implications is presented, based on representable 〈H,�Lex1〉- and 〈H,�Lex2〉-
implications.

6.4.1 〈H,�Lex1〉-implications preserving main fuzzy implications

Common properties of implications are preserved by 〈H,�Lex1〉-implications.

Theorem 6.4.1 Let I1, I2, · · · , In(J1, J2, · · · , Jn) : [0, 1]2 → [0, 1] be functions verifying
Ii(Ji), for some i ∈ N8, I10(J10) for a fuzzy negation N , and I11(J11). The function
˜I1, . . . , In( ˜J1, . . . , Jn) : H2 → H defined by

˜I1, . . . , In(X, Y ) = {Ik(X(1), Y (1)) : k ∈ Nn}, (29)

˜J1, . . . , Jn(X, Y ) = {Jk(X(1), Y (1)) : k ∈ Nn}, (30)

verifies Ii(J i), for i ∈ N8, for i = 11 and for i = 10, w.r.t. 〈H,�Lex1〉-negation Ñ .

Proof: Let I1, · · · , In : [0, 1]2 → [0, 1] be functions verifying properties I1-I8 and
I10-I11.

(I1) By Eq. (17), if X1 �Lex1 X2 then X
(1)
1 ≤ X

(1)
2 . So, by Eq. (29) and I1 we have

that ˜I1, . . . , In(X1, Y ) = {Ik(X(1)
1 , Y (1)) : k ∈ Nn} �Lex1 {Ik(X(1)

2 , Y (1)) : k ∈ Nn} =
˜I1, . . . , In(X2, Y ).

(I2) By Eq. (17), Y1 �Lex1 Y2 implies that Y (1)
1 ≤ Y

(1)
2 . So, by Eq. (29) and I2,

˜I1, . . . , In(X, Y1) = {Ik(X(1), Y
(1)
1 ) : k ∈ Nn} �Lex1 {Ik(X(1), Y

(1)
2 ) : k ∈ Nn} =

˜I1, . . . , In(X, Y2).

(I3) By Eq.(29) and I3, ˜I1, . . . , In(0H,0H) = {Ik(0, 0) : k ∈ Nn} = {1} = 1H.

(I4) By Eq.(29) and I4, ˜I1, . . . , In(1H,1H) = {Ik(1, 1) : k ∈ Nn} = {1} = 1H.

(I5) By Eq.(29) and I5, ˜I1, . . . , In(1H,0H) = {Ik(1, 0) : k ∈ Nn} = {0} = 0H.

(I6) By Eq.(29) and I6, ˜I1, . . . , In(0H, Y ) = {Ik(0, Y (1)) : k ∈ Nn} = {1} = 1H.

(I7) By Eq.(29) and I7, ˜I1, . . . , In(X,1H) = {Ik(X(1), 1) : k ∈ Nn} = {1} = 1H.

(I8) By Eq.(29) and I8, ˜I1, . . . , In(X,X) = {Ik(X(1), X(1)) : k ∈ Nn} = {1} = 1H.

(I10) If Ik verifies I10 w.r.t. an N fuzzy negation. Hence, by Eq.(29) we obtain:
˜I1, . . . , In

(
Ñ(Y ), Ñ(X)

)
= {Ik(N(Y (1)), N(X(1))) : k ∈ Nn} = {Ik(X(1), Y (1)) : k ∈

Nn} = ˜I1, . . . , In(X, Y ), where Ñ is the 〈H,�Lex1〉-negation generated from N , in
Prop. 5.2.1.
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(I11) By Eq.(17), X �Lex1 Y implies that X(1) ≤ Y (1). Thus, by Eq.(29) and I11,
˜I1, . . . , In(X, Y ) = {Ik(X(1), Y (1)) : k ∈ Nn} = {1} = 1H.

Analogously, we can prove for the dual construction, the representable coimplication
˜J1, . . . , Jn. Therefore Theorem 6.4.1 holds. 2

Corollary 6.4.1 If I1, I2, · · · , In (J1, J2, · · · , Jn): [0, 1]2 → [0, 1] are fuzzy
(co)implications, then the function ˜I1, . . . , In, ˜J1, . . . , Jn : H2 → H, defined by Eq. (29)
and Eq. (30) is an 〈H,�Lex1〉-(co)implication.

Proof: It follows straightforward from Theorem 6.4.1. 2

In the Theorem 6.4.1 converse construction, the analysis of the conditions result
from the proposed properties of representable 〈H,�Lex1〉-implications that can be
restricted to fuzzy implication functions based on diagonal elements of THFS.

Theorem 6.4.2 Let I(J ) be an 〈H,�Lex1〉-(co)implication verifying properties Ik(J k),
k ∈ N12, except k = 9, and considering I10(J 10) w.r.t. an 〈H,�Lex1〉-negation Ñ

generated from a fuzzy negation N as in Proposition 5.2.1. The function I(J) : [0, 1]2 →
[0, 1] given as I(x, y) = (I({x}, {y}))(1) , (J(x, y) = (J ({x}, {y}))(1)), verifies properties
Ik(Jk), k ∈ N12, except k = 9, and considering I10(J10) w.r.t. the fuzzy negation N .

Proof: Straightforward. 2

Proposition 6.4.1 〈H,�Lex1〉-negation w.r.t. the 〈H,�Lex1〉-(co)implication ˜I1, . . . , In
( ˜J1, . . . , Jn) is, respectively, given as

N ˜I1,...,In
(X) = {NIk(X

(1)) : k ∈ Nn},∀X ∈ H, (31)

N ˜J1,...,Jn
(X) = {NJk(X

(1)) : k ∈ Nn},∀X ∈ H. (32)

Proof: For all X ∈ H, we have that N ˜I1,...,In
(X) = ˜I1, . . . , In(X,0H) = {Ik(X(1), 0) : k ∈

Nn} = {NIk(X
(1)) : k ∈ Nn}. In addition, the boundary conditions are also verified:

(N 1) N ˜I1,...,In
(0H) = {NIk(0) : k ∈ Nn} = 1H; and N ˜I1,...,In

(1H) = {NIk(1) : k ∈ Nn} = 0H;

(N 2) And, when X1 �Lex1 X2, then by I1 the following holds:
N ˜I1,...,In

(X1) = ˜I1, . . . , In(X1,0H) �Lex1 ˜I1, . . . , In(X2,0H) = N ˜I1,...,In
(X2).

The dual construction is analogously achieved. Therefore, Proposition 6.4.1 holds. 2
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6.4.2 〈H,�Lex2〉-implication as a structure-preserving properties

See in the following analogous results from Proposition 6.4.3 which can be
extended to representable 〈H,�Lex2〉-implications.

Theorem 6.4.3 Let I1, I2, · · · , In(J1, J2, · · · , Jn) : [0, 1]2 → [0, 1] be functions verifying a
property from Ii(Ji), for some i ∈ N8, I10(J10) w.r.t. a negation N , and I11(J11). The

function ˜̃
I1, . . . , In(

˜̃
J1, . . . , Jn) : H2 → H defined by

˜̃
I1, . . . , In(X, Y ) = {Ik(X(#X), Y (#Y )) : k ∈ Nn}, (33)
˜̃

J1, . . . , Jn(X, Y ) = {Jk(X(#X), Y (#Y )) : k ∈ Nn}, (34)

verifies property Ii(J i), for i ∈ N8, and also for I11(J 11) and I10(J 10) w.r.t. to the
〈H,�Lex2〉-natural negation ˜̃N .

Proof: Analogously done in Theorem 6.4.1. 2

Corollary 6.4.2 If I1, I2, · · · , In(J1, J2, · · · , Jn) : [0, 1]2 → [0, 1] are fuzzy (co)implication

functions then the function ˜̃
I1, . . . , In(

˜̃
J1, . . . , Jn) : H2 → H defined by Eq.(33) (and

Eq.(34)) is an 〈H,�Lex2〉-(co)implication.

Proof: Follows directly from Theorem 6.4.3. 2

Theorem 6.4.4 Let I(J ) be an 〈H,�Lex2〉-(co)implication verifying properties Ik(J k),
k ∈ N12, except k = 9, and considering I10(J 10) w.r.t. an 〈H,�Lex2〉-negation ˜̃N
generated from a negationN as Prop. 5.2.1. The function I(J) : [0, 1]2 → [0, 1], given as
I(x, y) = (I({x}, {y}))(m) , (J(x, y) = (J ({x}, {y}))(m)), where m = #I({x}, {y}), (m =

#J ({x}, {y})), verifies Ik(Jk), except k = 9 considering I10(J10) w.r.t. the fuzzy
negation N .

Proof: Straightforward. 2

Proposition 6.4.2 From Theorem 6.4.4, the natural 〈H,�Lex2〉-negation is given as

N ˜̃
I1,...,In

(X) = {NIk(X
(#X)) : k ∈ Nn},∀X ∈ H, (35)

N ˜̃
J1,...,Jn

(X) = {NJk(X
(#X)) : k ∈ Nn},∀X ∈ H. (36)

Proof: For all X ∈ H, N ˜̃
I1,...,In

(X) =
˜̃

I1, . . . , In(X,0H) = {Ik(X(#X), 0) : k ∈ Nn} =

{NIk(X
(#X)) : k ∈ Nn}. In addition, the boundary conditions are also verified:

(N 1) N ˜̃
I1,...,In

(0H) = {NIk(0) : k ∈ Nn} = 1H; and N ˜̃
I1,...,In

(1H) = {NIk(1) : k ∈ Nn} = 0H;
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(N 2) If X1 �Lex2 X2, N ˜̃
I1,...,In

(X1) =
˜̃

I1, . . . , In(X1,0H) �Lex2
˜̃

I1, . . . , In(X2,0H) =

N ˜̃
I1,...,In

(X2).

The dual construction is analogously achieved. Therefore, Proposition 6.4.2 holds. 2

6.4.3 〈H,�fA〉−implication as a structure-preserving properties

The generation of 〈H,�fA〉-implications from fuzzy implication functions are detailed,
if A : H→ [0, 1] satisfies the conditions of Theorem 4.3.2 and f ∗ : H→ R verifies IC.

Theorem 6.4.5 Let NA,f∗ be an 〈H,�f
∗

A 〉-negation. Let I(J) : [0, 1]2 → [0, 1] be a
function verifying the property Ii(Ji), for some i ∈ N8 and also I10(J10) and I11(J11),
and in case i ∈ {10}, w.r.t. a negation N . The function IA,f∗(JA,f∗) : H2 → H given by

IA,f∗(X, Y ) = A
(−1)
n↓ (I(A(X), A(Y ))), (37)

JA,f∗(X, Y ) = A
(−1)
n↓ (J(A(X), A(Y ))), (38)

when n = max{#X,#Y }, verifies Ii (J i) related to 〈H,�f
∗

A 〉-order, and for i = 10, w.r.t.
the 〈H,�f

∗

A 〉-negation NA,f∗. In addition, if I(J) verifies I12 then IA,f∗ (JA,f∗) verifies

(I12a) If IA,f∗(X, Y ) then A(X) ≤ A(Y ), ∀X, Y ∈ H.

Proof: Let I : [0, 1]2 → [0, 1] be a function verifying Ik, k ∈ N12. The following holds:

(I1) If X1 �f
∗

A X2, then either A(X1) < A(X2) or A(X1) = A(X2) and f ∗(X1) ≤ f ∗(X2).
By I1, I(A(X1), A(Y )) ≥ I(A(X2), A(Y )) and it holds that

IA,f∗(X1, Y ) = A
(−1)
n↓ (I(A(X1), A(Y ))), by Eq.(37)

�f
∗

A A
(−1)
n↓ (I(A(X2), A(Y ))) = IA,f∗(X2, Y ), by Lemma 4.3.1 and Eq.(19).

Otherwise, if A(X1) = A(X2) and f ∗(X1) ≤ f ∗(X2) then A(IA,f∗(X1, Y )) =

A(IA,f∗(X2, Y )) and #X2 ≤ #X1 and by Lemma 4.3.1 and I1, f ∗(IA,f∗(X2, Y )) ≤
f ∗(IA,f∗(X1, Y )). So, IA,f∗(X2, Y )) �f

∗

A IA,n↓(X1, Y ).

(I2) If Y1 �f
∗

A Y2 then either A(Y1) < A(Y2) or A(Y1) = A(Y2) and f ∗(Y1) ≤ f ∗(Y2). By
I2, I(A(X), A(Y1)) ≤ I(A(X), A(Y2)) implying in the following result

IA,f∗(X, Y1) = A
(−1)
n↓ (I(A(X), A(Y1))) by Eq.(37)

�f
∗

A A
(−1)
n↓ (I(A(X), A(Y2))) = IA,f∗(X, Y2), by Lemma 4.3.1 and Eq.(19).

Otherwise, if A(Y1) = A(Y2) and f ∗(Y1) ≤ f ∗(Y2) then A(IA,f∗(X, Y1)) =

A(IA,f∗(X, Y2)) and #Y2 ≤ #Y1 and by Lemma 4.3.1 and I2, f ∗(IA,f∗(X, Y1)) ≤
f ∗(IA,f∗(X, Y2)). So, IA,f∗(X, Y1)) �f

∗

A IA,f∗(X, Y2).
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(I3) IA,f∗(0H,0H) = A
(−1)
1↓ (I(A(0H), A(0H))) = A

(−1)
n↓ (I(0, 0)) = A

(−1)
1↓ (1) = 1H.

(I4) IA,f∗(1H,1H) = A
(−1)
1↓ (I(A(1H), A(1H))) = A

(−1)
1↓ (I(1, 1)) = A

(−1)
1↓ (1) = 1H.

(I5) IA,f∗(1H,0H)=A
−1
1↓ (I(A(1H), A(0H)))=A

−1
1↓ (I(1, 0))=A

−1
1↓ (0)=0H.

(I6) Follows from Proposition 6.2.1.

(I7) Follows from Proposition 6.2.1.

(I8) By Eq.(37) and Lemma 4.3.1, IA,f∗(X,X)=A
(−1)
n↓ (I(A(X), A(X)))=A

(−1)
n↓ (1) = 1H.

(I10) Let NA,f∗ : H → H be the 〈H,�f
∗

A 〉-negation generated from a fuzzy negation N

as in Theorem 5.2.1. Then, if I satisfies I12 for N , then the following holds:

IA,f∗(NA,f∗(Y ),NA,f∗(X)) = A−1n↓ (I(A(NA,f∗(Y ), A(NA,f∗(X))))), by Eq. (37);

= A
(−1)
n↓ (I(A(A

(−1)
n↓ (N(A(Y )))), A(A

(−1)
n↓ (N(A(X)))))) by Eq.(21);

= A
(−1)
n↓ (I(A(X), A(Y ))) = IA,f∗(X, Y ), by Lemma 4.3.1 and I12.

(I11) If X �f
∗

A Y then A(X) ≤ A(Y ). Then by I10, I(A(X), A(Y )) = 1. Hence, by
Lemma 4.3.1, IA,f∗(X, Y ) = A

(−1)
n↓ (I(A(X), A(Y ))) = A

(−1)
n↓ (1) = 1H.

(I12a) If IA,f∗(X, Y ) = 1H it means that A−1n↓ (I(A(X), A(Y ))) = 1H. Then, by
Lemma 4.3.1, I(A(X), A(Y )) = 1 and by I12 A(X) ≤ A(Y ).

Analogously, we can prove for the dual construction JA,f∗(X, Y ). Therefore,
Theorem 6.4.5 is verified. 2

In the following theorem, we present a method to obtain 〈[0, 1],≤〉-implications from
〈H,�f

∗

A 〉-implications based on the family of functions A(−1)
n , defined in Lemma 4.3.1.

Theorem 6.4.6 Let I(J ) be an 〈H,�f
∗

A 〉-function given by Eq.(37) (and Eq. (38))
verifying properties Ii(J i), for i ∈ N12, except i = 9, and for the case of I10(J 10), by
considering the 〈H,�f

∗

A 〉-negation as NA,f∗. For each n ∈ N+, IA,n(JA,n) : [0, 1]2 → [0, 1]

given as

IA,n(x, y) = A(I(A(−1)
n↓ (x), A

(−1)
n↓ (y))), (39)

JA,n(x, y) = A(J (A(−1)
n↓ (x), A

(−1)
n↓ (y))), (40)

verifies property Ii(Ji), except i = 9, and for I10(J10) by considering the fuzzy
negation as N .

Proof: Respecting the above conditions, we have the next following results:
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(I1) If x1 ≤ x2, by Lemma 4.3.1, A
(−1)
n↓ (x1) ≤ A

(−1)
n↓ (x2). By I1,

I(A(−1)
n↓ (x1), A

(−1)
n↓ (y)) �fA I(A

(−1)
n↓ (x2), A

(−1)
n↓ (y)). By Eq. (39) and since A

is increasing w.r.t. �fA, IA,n(x1, y) = A(I(A−1n↓ (x1), A−1n (y))) ≥ A(I(A−1n↓ (x2),
A−1n (y))) = IA,n(x2, y).

(I2) If y1 ≤ y2, by Lemma 4.3.1, A
(−1)
n↓ (y1) ≤ A

(−1)
n↓ (y2), and then by I2,

I(A(−1)
n↓ (x), A

(−1)
n↓ (y1)) �fA I(A

(−1)
n↓ (x), A

(−1)
n↓ (y2)). So, by Eq. (39) and because

A is increasing w.r.t. �fA, IA,n(x, y1) = A(I(A(−1)
n↓ (x), A

(−1)
n↓ (y1))) ≤ A(I(A(−1)

n↓ (x),

A
(−1)
n↓ (y2))) = IA,n(x, y2).

(I3) By I3, IA,n(0, 0) = A(I(A(−1)
n↓ (0), A

(−1)
n↓ (0))) = A(I(0H,0H)) = A(1H) = 1.

(I4) By I4, IA,n(1, 1) = A(I(A(−1)
n↓ (1), A

(−1)
n↓ (1))) = A(I(1H,1H)) = A(1H) = 1.

(I5) By I5, IA,n(1, 0) = A(I(A(−1)
n↓ (1), A

(−1)
n↓ (0))) = A(I(1H,0H)) = A(0H) = 0.

(I6) By I6, IA,n(0, y) = A(I(A(−1)
n↓ (0), A

(−1)
n↓ (y))) = A(I(0H, A

−1
n↓ (y))) = A(1H) = 1.

(I7) By I7, IA,n(x, 1) = A(I(A(−1)
n↓ (x), A

(−1)
n↓ (1))) = A(I(A−1n↓ (x),0H)) = A(1H) = 1.

(I8) By I8, IA,n(x, x) = A(I(A(−1)
n↓ (x), A

(−1)
n↓ (x))) = A(1H) = 1.

(I10) Let I verifying I12 w.r.t. the 〈H,�f
∗

A 〉-negation NA,f∗ generated from
a fuzzy negation N . Then, by I12, and property IC and Eq. (39),
IA,n(x, y) = A(I(A(−1)

n↓ (x), A
(−1)
n↓ (y))) = A(I(NA,f∗(A(−1)

n↓ (y)),NA,f∗(A(−1)
n↓ (x)))) =

A(I(A(−1)
n↓ (N(A(A

(−1)
n↓ (y))), A

(1)
n↓ (N(A(A

(−1)
n↓ (x)))) = IA,n(N(y), N(x)).

(I11) If x ≤ y, by Lemma 4.3.1, A−1n↓ (x) �
f∗
A A−1n↓ (y), implying by I10, that

I(A(−1)
n↓ (x), A

(−1)
n↓ (y)) = 1H. Consequently A(I(A(−1)

n↓ (x), A
(−1)
n↓ (y))) = 1 and

IA,n(x, y) = 1,

(I12) If IA,n(x, y) = 1 then, by Eq. (39), A(I(A(−1)
n↓ (x), A

(−1)
n↓ (y))) = 1 and, by Lemma

4.3.1, I(A(−1)
n↓ (x), A

(−1)
n↓ (y)) = 1H. So, by I12, A(−1)

n↓ (x) �f
∗

A A
(−1)
n↓ (y) and then,

A(A
(−1)
n↓ (x)) ≤ A(A

(−1)
n↓ (y)). Hence, by Lemma 4.3.1, x ≤ y.

Analogously, we can prove for the dual construction JA,n(X, Y ). Therefore,
Theorem 6.4.6 holds. 2

Proposition 6.4.3 Let NI(NJ) : [0, 1] → [0, 1] be the natural 〈[0, 1],≤〉-negation of a
fuzzy (co)implication I(J) and IA,f∗(JA,f∗) : H2 → H be the 〈H,�f

∗

A 〉-(co)implication
generated from I(J) in Theorem 6.4.5. Then, the natural 〈H,�f

∗

A 〉-negation of
IA,f∗(JA,f∗) is the function NIA,f∗ (NJA,f∗ ) : H→ H given as follows

NIA,f∗ (X) = A−1n↓ (NI(A(X))) ∀X ∈ H; (41)
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NJA,n
(X) = A−1n↓ (NJ(A(X))) ∀X ∈ H, (42)

when n = #X.

Proof: By Eq. (37), we have that NIA,f∗ (X) = IA,f∗(X,0H) = A−1n↓ (I(A(X), A(0H))) =

A−1n↓ (IA,n(A(X), A(0))) = A−1n↓ (NI(A(X))). Besides, by Prop. 6.3.1, NIA,f∗ is an
〈H,�f

∗

A 〉-negation. Analogously, we can prove for the dual construction. Therefore,
Proposition 6.4.3 holds. 2

6.5 Chapter summary

In this chapter, we introduced the notion of 〈H,�〉-implications, as typical
hesitant fuzzy implications considering an admissible 〈H,�〉-order, discussing its main
properties. The main fuzzy implications were extended to hesitant fuzzy implications,
presenting the main properties, as antitonicity, isotonicity and corner conditions. In
addition, to the extended examples of the main implications, we also studied methods
of the conjugate that preserve these properties.

Besides, the concept of 〈H,�〉-negation was presented based on an arbitrary
admissible 〈H,�〉-order, and an order-preserving method to obtain 〈H,�〉-implications
from fuzzy implications is given, based on representable 〈H,�Lex1〉- and 〈H,�Lex2〉-
implications. The generation of 〈H,≺fA〉-implications from fuzzy implication functions
are also detailed.



7 PROPOSED STRATEGY FOR SOLVING A ME-MCDM
PROBLEM

Straight to the applied soft computing, this section describes the proposed
strategy to solve a ME-MCDM (Multi Expert-Multi Criteria Decision Making) problem
considering the 〈H,�〉-orders introduced in previous sections. Firstly, see Fig. 1,
the diagram summarizing the main classes and their attributes, discussed in this
article and which are involved in the next algorithmic proposal. In hesitant fuzzy
environments, in order to solve a process of alternatives sorting analysis in the class of
ME-MCDM problems, we can explore the admissibility, linearity and refinement related
to 〈H,�〉-orders, as the ordered-structure supporting the main attributes in the classes
identifying fuzzy connectives (negations, aggregation and implication functions).

The application described in (WEN; ZHAO; XU, 2019, Example 1) is considered
as a case-study for the selection of a support-software, enabling its validation and
comparison. Note that we present detailed calculation descriptions regarding the
〈H,�fA〉-order. The other ones can be analogously done.

7.1 〈H,�〉- Algorithm-solution for ME-MCDM problem

In order to help the user in problems involving decision making based on many
experts and multiple criterion. See, e.g., in the selection of an software systems
available in the market nowadays, a data processing company aims to clarify
differences of such systems (CHEN; XU; XIA, 2013). In this case study, let A =

{A1, A2, . . . , An2} (#A = n2) be the set of software alternatives and T = {T1, . . . , Tn1}
(#T = n1) be the set of the selected criterion, including a team of experts E =

{E1, . . . En} (n = #E). So, the proposal methodology to solve this ME-MCDM problem
is described in the following steps:

Step 1 Define n, n1 and n2, reporting the number of experts, the number of attributes
and the number of alternatives in the modelled application, respectively.
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Figure 1 – Main classes and their attributes involved in the proposed algorithm

Step 2 Select the 〈H,�〉-order and the corresponding 〈H,�〉-implication and
aggregation;

Step 3 Determine each THFS xik, for i ∈ Nn2 and k ∈ Nn1, associating to each pair
alternative-criterion the expert opinions including their corresponding aggregation
values, resulting on n2 × n1 tabular data structure;

Step 4 Determine each THFS zij(xk) = I(xik,xjk) obtained by the action of an 〈H,�〉-
implication in the THFS of the previous step, which results on sets of at most n1

THFS as the components of the n2 × n2 tabular data, ∀i, j ∈ Nn2 and ∀k ∈ Nn1.
As examples, for the proposed three admissible order approaches:

(i) 〈H,�fA〉-order, for A and f from Theorem 4.3.2, and 〈H,�fA〉-implication ILK
as given in Example 6.2.4, then we have that

zij(xk) = ILK(xik,xjk) =

1H, if xik �fA xjk;

A
(−1)
n↓ (1− A(xik) + A(xjk)), otherwise.
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(ii) 〈H,�Lex1〉-order, and an 〈H,�Lex1〉-implication ILK from Example 6.2.2, then

zij(xk) = ILK(xik,xjk) =


1H, if xik �Lex1 xjk

{1−xik+xjk :i ∈ Nn, n = min(#X,#Y )},otherwise.

(iii) 〈H,�Lex2〉-order, and an 〈H,�Lex2〉-implication ILK from Example 6.2.3, then

zij(xk) = ILK(xik,xjk) =

1H, if xik �Lex2 xjk
{1−xik+xjk :i ∈ Nn, n = min(#X,#Y )},otherwise.

Step 5 Apply the selected 〈H,�〉-order and take an increasing ordering of all the
resulting k-components zij(xk), for all k ∈ Nn1, related to each i, j ∈ Nn2;

Step 6 Electing the best alternative, based on the selected 〈H,�〉-aggregation
performed over the resulting k-components zij(xk), for all k ∈ Nn1, related to
each k ∈ Nn1, and i, j ∈ Nn2, such that i ≤ j and considering the following cases:

(i) 〈H,�fA〉-OWA in Eq. (28): O (zij(xk)k∈Nn1)i,j∈Nn2
�fA O (zji(xk)k∈Nn1)j,i∈Nn2

;

(ii) 〈H,�Lex1〉-OWA in Eq. (24):O (zij(xk)k∈Nn1)i,j∈Nn2
�Lex1 O (zji(xk)k∈Nn1)j,i∈Nn2

;

(iii) 〈H,�Lex2〉-OWA in Eq.(26):O (zij(xk)k∈Nn1)i,j∈Nn2
�Lex2 O (zji(xk)k∈Nn1)j,i∈Nn2

.

Since, for all other cases (i > j) the comparison has already been done, we have
that Ai is a better alternative than Aj , denoted as Ai = Aj.

7.2 Case-study: Solving a ME-MCDM problem in a CIM-application

This section extends the application described in (WEN; ZHAO; XU, 2019, Example
1) from HFS to THFS, in order to solve the ME-MCDM problem under several
alternatives in the selection of a CIM (Computer-Integrated Manufacturing) software,
enabling further comparison.

The data of the CIM ME-MCDM problem were extracted from the application
presented in (WEN; ZHAO; XU, 2019), meaning that in order to help the user in the
selection of software systems which are available in the market, a data processing
company aims to clarify differences of such systems.

Step 1: In this case study, we are considering the following data:

1. Let A = {A1, . . . ,A7} (n2 = 7) be the set of software alternatives;

2. Let X be the set of the selected attributes: (i) functionality (x1); (ii) usability (x2);
(iii) portability (x3); and (iv) maturity (x4) (n1 = 4); and

3. It also includes a team of three experts (n = 3).



74

Step 2: This step is based on the following data:

1. We are considering the three admissible orders: 〈H,�fA〉, for A and f being the
functions in Example 4.3.1, including 〈H,�Lex1〉- and 〈H,�Lex2〉-orders, extending
the usual restrictive partial 〈H,≤RH〉-order;

2. In addition, let ILK : (H)2 → H be the corresponding representable hesitant
fuzzy implication function obtained from Łukasiewicz fuzzy implication w.r.t. the
previous three admissible orders selected, as presented in Examples 6.2.2, 6.2.3
and 6.2.4, respectively;

3. And, finally, we take the extended aggregation function: min :
∞⋃
n=1

[0, 1]4 → [0, 1].

Step 3: Based on the data extracted from CIM-application in (WEN; ZHAO; XU,
2019):

1. See Table 4, expressing THFS (xik)i∈N7,k∈N4, whose THFE are describing the data
evaluations of all three decision makers, as values between 0 and 1, for each data
pair w.r.t. alternative-attributes of the proposed application;

2. It is placed in additional lines, the values obtained by the action of the
selected aggregation operators performed over each THFS, and reported as:
A(xik), min(xik) and max(xik),∀i ∈ N7, k ∈ N;.

3. And, summarizing, in the 5th column, the comparison among them is reported,
based on the selected admissible orders. Observe that the ordering related
to 〈H,�fA〉-order coincides with comparisons obtained from 〈H,�Lex1〉- and
〈H,�Lex2〉-orders.

Step 4: Now, the results obtained by applying the ILK implications generated w.r.t.
〈H,�fA〉-, 〈H,�Lex1〉-, 〈H,�Lex2〉-orders, as reported in Table 5, Table 6 and Table 7,
respectively. And corresponding 〈H,�fA〉-operator calculations are presented.

1. Firstly, we take the 〈H,�fA〉-order, for some functionsA and f from Theorem 4.3.2,
and the 〈H,�fA〉-implication ILK as given in Example 6.2.4. For n2 = 7, n1 = 4

and n = 3, all components of the 7× 7 tabular data consider 4 THFS with at most
3 THFE, expressed for all i, j ∈ N7 and k ∈ N4 as follows:

zij(xk)= ILK(xik,xjk) =

1H, if xik �fA xjk;

A
(−1)
n↓ (1− A(xik) + A(xjk)), otherwise;

(43)

2. In the sequence, the action of the ILK implication, given by Eq.(43), over pair-line
components (i, j) and (j, i) of Table 4 results on data reported in Table 5,
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Table 4 – Information related to THFS and admissible 〈H,�〉-orders.

k = 1 k = 2 k = 3 k = 4 Ordering

A1

THSF x1k {0.80, 0.85, 0.95} {0.70, 0.75, 0.80} {0.65, 0.80} {0.30, 0.35}
A(x1k) 0.889055 0.778050 0.685000 0.330500 x11 � x12 � x13 � x14

min(x1k) 0.80 0.70 0.65 0.30

max(x1k) 0.95 0.80 0.80 0.35

A2

THFS x2k {0.85, 0.90} {0.60, 0.70, 0.80} {0.20} {0.15}
A(x2k) 0.895000 0.678000 0.200000 0.150000 x21 � x22 � x23 � x24

min(x2k) 0.85 0.60 0.20 0.15

max(x2k) 0.90 0.80 0.20 0.15

A3

THFS x3k {0.20, 0.30, 0.40} {0.40, 0.50} {0.90, 1.00} {0.45, 0.50, 0.65}
A(x3k) 0.234 0.45 0.990909 0.456505 x33 � x34 � x32 � x31

min(x3k) 0.20 0.40 0.90 0.45

max(x3k) 0.40 0.50 1.00 0.65

A4

THFS x4k {0.80, 0.95, 1.00} {0.10, 0.15, 0.20} {0.20, 0.30} {0.60, 0.70, 0.80}
A(x4k) 0.899059 0.112050 0.230000 0.678000 x41 � x44 � x43 � x42

min(x4k) 0.80 0.10 0.20 0.60

max(x4k) 1.00 0.20 0.30 0.80

A5

THFS x5k {0.35, 0.40, 0.50} {0.70, 0.90, 1.00} {0.40} {0.20, 0.30, 0.35}
A(x5k) 0.345500 0.799009 0.400000 0.233005 x52 � x53 � x51 � x54

min(x5k) 0.35 0.70 0.40 0.20

max(x5k) 0.50 1.00 0.40 0.35

A6

THFS x6k {0.50, 0.60, 0.70} {0.80, 0.90} {0.40, 0.60} {0.10, 0.20}
A(x6k) 0.567000 0.890000 0.460000 0.120000 x62 � x61 � x63 � x64

min(x6k) 0.50 0.80 0.40 0.10

max(x6k) 0.70 0.90 0.60 0.20

A7

THFS x7i {0.80, 1.00} {0.15, 0.20, 0.35} {0.10, 0.20} {0.70, 0.85}
A(x7k) 0.8909 0.123505 0.120000 0.780500 x71 � x74 � x72 � x73

min(x7k) 0.80 0.15 0.10 0.70

max(x7k) 1.00 0.35 0.20 0.85

according to zij(xk) calculations, for all i, j ∈ N7 and k ∈ N4, reporting its related
aggregation.

In order to get a better understanding of such reported results, an example
presents calculations which are restricted to components z13(xi) and z31(xi),
related to the action of the implication function ILK over THFS from the first line
and the third column (i = 1; j = 3) and the converse (i = 3; j = 1), for all k ∈ N4,
respectively. The results from Eq. (43) are expressed in the following:

(I) Based on data from Table 4, first line and third column (i = 1; j = 3), for all
k ∈ N4, see the achieved THFS given by the next expression:

z13(xk)= ILK(x1k,x3k)=


1H, if x1k �fA x3k

A
(−1)
n↓ (1− A(x1k) + A(x3k)), otherwise;

(44)
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(a) Since A({0.80, 0.85, 0.95}) = 0.889055 ≥ 0.234 = A({0.20, 0.30, 0.40}), we
obtain that x11 = {0.80, 0.85, 0.95} �fA x31 = {0.20, 0.30, 0.40}, meaning that
z13(x1) = ILK(x11,x31) = ILK({0.80, 0.85, 0.95}, {0.20, 0.30, 0.40}) = A

(−1)
3 (1 −

0.889055 + 0.234). So, z13(x1) = A
(−1)
3 (0, 344945) = {0.39, 0.44, 0.45}. Concluding,

A(z13(x1)) = 0.344945.

(b) Since A({0.70, 0.75, 0.80}}) = 0.778050 ≥ 0.45 = A({0.40, 0.50}), then we have
as result that x12={0.70, 0.75, 0.80} �fA {0.40, 0.50} = x32. If n = min(3, 2) = 2,
then z13(x2) = ILK(x12,x32) = ILK({0.70, 0.75, 0.80}, {0.40, 0.50}) = A

(−1)
2 (1 −

0.778050 + 0.45) = A
(−1)
2 (0, 6715) = {0.61, 0.75}. So, A(z13(x2)) = 0.6715.

(c) Since A({0.65, 0.80}) = 0.685 ≤ 0.990989 = A({0.90, 1.00}), then we have
that: x13 = {0.65, 0.80} �fA {0.90, 1.00} = x33, implying the results: z13(x3) =

ILK(x13,x33) = ILK({0.65, 0.80}, {0.90, 1.00}) = 1H; and A(z13(x3)) = 1.0.

(d) Since A({0.30, 0.35}) = 0.3305 � 0.456505 = A({0.45, 0.50, 0.65}), then we
have the next results: x14 = {0.30, 0.35} �fA {0.45, 0.50, 0.65} = x34. If n =

min(3, 2) = 2, z13(x4) = ILK(x14,x34) = ILK({0.30, 0.35}, {0.45, 0.50, 0.65}) = 1H;
Thus, A(z13(x4)) = 1.0. Therefore, min (z13(xk))k∈N4

= z13(x1).

(II) Now, for each THFS given in Table 4 related to the third line and the first
column (k = 3; j = 1) and for all i ∈ N4, analogous results from the following
expression

z31(xk)= ILK(x3k,x1k)=


1H, if x3k �fA x1k

A
(−1)
n↓ (1− A(x3k) + A(x1k)), otherwise;

(45)

correspond to the achieved data, as reported in the next expressions:
(a) z31(x1) = ILK(x31,x11) = 1H and A(z31(x1)) = 1.0;
(b) z31(x2) = ILK(x32,x12) = 1H and A(z31(x2)) = 1.0;
(c) z31(x3) = ILK(x33,x13) = {0.649, 0.901} and A(z31(x3)) = 0.694091;
(d) z31(x4) = ILK(x34,x14) = {0.839, 0.795} and A(z31(x4)) = 0.873995.
And, therefore, min (z31(xk))k∈N4

= z31(x3). Thus, combinations of all other lines
in Table 4 resulting on the components given as zij(xk), ∀i ∈ N4, k, j ∈ N7, which
are presented in Table 5 at line i and column j.

Step 5: Now, THFS obtained in Step 4 are ordered increasingly w.r.t. the related
〈H,�fA〉-, 〈H,�Lex1〉- and 〈H,�Lex2〉-orders. See, the following sequence which is
obtained by taking the THFS obtained in items I. and II. from the previous step,
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considering the 〈H,�fA〉-order:

z13(x1) �fA z13(x2) �fA z13(x3) = z13(x4) = 1H; and

z31(x3) �fA z31(x4) �fA z31(x2) = z31(x1) = 1H.
(46)

Step 6: Finally, each component related to the 4-components of the
resulting THFS are aggregated to be compared. The above data
obtained from ILK are considered in Examples 5.5.1 and 5.5.3 in order
to illustrate the action of the following operators 〈H,�fA〉-OWAω, including
〈H,�Lex1〉-OWAω and 〈H,�Lex2〉-OWAω. So, we consider the 〈H,�fA〉-OWAω
aggregation operator in the next items:

(a) Observe, e.g, the data described in the previous step given by Eq. (46a) and
Eq. (46b):

OWAω(z13) =
4∑

k=1

wk · A (z13(xk)k∈N4)

= 0.1 · 0.344945 + 0.2 · 0.6715 + 0.3 · 1.0 + 0.4 · 1.0

= 0.8688845 �fA 0.944209

= 0.1 · 1.0 + 0.2 · 1.0 + 0.3 · 0.694091 + 0.4 · 0.873995

=
4∑

k=1

wk · A (z31(xk)k∈N4) = OWAω(z31).

where ω = {0.1, 0.2, 0.3, 0.4} and xi is sorted from the smallest to the greatest
element according to Eqs. (46a) and (46b), respectively. So, the related
analysis implies that A1 is a better option than A3, denoted as A1 =

f
A A3.

(b) By data extracted from Table 5, the comparisons, for all k ∈ N4, can be easily
verified: If i = j then Aj = Ai, for all i, j ∈ N7. Otherwise, for all j ∈ N7, the
following holds:

i. A1 =
f
A Aj, because zj1(xk) �fA z1j(xk) for j > 1;

ii. A3 =
f
A Aj, because zj3(xk) �fA z3j(xk) for j > 1, j 6= 3;

iii. A6 =
f
A Aj, because zj6(xk) �fA z6j(xk) for j > 1, j 6= 6, j 6= 3;

iv. A4 =
f
A Aj because zj4(xk) �fA z4j(xk), for j > 1, j 6= 6, j 6= 3, j 6= 4;

v. A2 =f
A A5 =f

A A7.

Analogous comparisons can be obtained for 〈H,�Lex1〉- and 〈H,�Lex2〉-orders.

Concluding, Table 8 presents the final comparison relations among the
CIM-Applications which is obtained by taking the representable hesitant approach
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of the Łukasiewicz fuzzy implication w.r.t to the three admissible orders: 〈H,�fA〉-,
〈H,�Lex1〉- and 〈H,�Lex2〉-orders. One can see that A1 is the best alternative and A2 is
the worst option, both w.r.t. the three presented 〈H,�〉-orders. Besides, it is observed
that the 〈H,�fA〉-order provides as a result, the 5-classes to the set of alternatives.
Moreover, in the case of 〈H,�Lex2〉-order, the result is presented as a strict increasing
chain.

Table 8 – Comparison of 〈H,�〉-orders based on the analysis of the CIM-Application

〈H,�〉-order Application Comparison Relationship for CIM-App

〈H,�fA〉-order A1 = A3 = A6 = A4 = A7 = A5 = A2

〈H,�Lex1〉-order A1 = A3 = A6 = A4 = A7 = A5 = A2

〈H,�Lex2〉-order A1 = A3 = A7 = A6 = A5 = A4 = A2

∗ The Best CIM-Application Choice (CIM-App)

Combining the Łukasiewicz implication operator w.r.t 〈H,�〉-order and the hesitant
fuzzy triangle product, denoted by the �-operator, the results from (WEN; ZHAO;
XU, 2019, example 1) present an algorithm which is implemented as a process of
alternatives’ sorting analysis, resulting on the following comparison: A1 � A3 � A6 �
A4 = A5 = A7 � A2, meaning that A4, A5 and A7 seem belong to the same class w.r.t.
�-order. This algorithm is based on a comparison between two THFE with the same
cardinality, meaning that the shorter one should be extended until its length is the same
as the longer one, by adding minimal elements. The results combine the Łukasiewicz
implication and the minimum operations to compare two THFE.

7.3 Chapter summary

In this chapter, we described the proposed strategy to solve a ME-MCDM
(Multi Expert-Multi Criteria Decision Making) problem considering the 〈H,�〉-orders
introduced in previous sections. We presented detailed calculation descriptions
regarding the 〈H,�fA〉-order. The other ones should be analogously done. We
also extended the proposal methodology to solve this ME-MCDM problem from HFS
to THFS, in order to solve the ME-MCDM problem under several alternatives in
the selection of a CIM (Computer-Integrated Manufacturing) software, enabling the
comparison. Concluding, we presented the final comparison relations among the
CIM-Applications which is obtained by taking the representable hesitant approach
of the Łukasiewicz fuzzy implication w.r.t to the three admissible orders: 〈H,�fA〉-,
〈H,�Lex1〉- and 〈H,�Lex2〉-orders.



8 CONSENSUS MEASURES ON TYPICAL HESITANT
FUZZY SETS

This chapter extends the notion of consensus measures on Typical Hesitant Fuzzy
Sets. In particular, the properties presented in Definition 3.2.2 are extended to a
bounded poset P.

In this proposal, based on formal definition of a consensus measure on the bounded
poset H, we formalize CCA,I−Models to obtain new methodologies of consensus
preserving main properties in the context of Typical Hesitant Fuzzy Sets. This study
also considers the corresponding extensions of aggregations, implications and fuzzy
negations.

8.1 Constructing typical hesitant preference relations

Many applications have used hesitant fuzzy sets in order to elicit preferences in
situations where the knowledge is not enough. So, it seems more reasonable to
express this hesitancy through a set of values instead of a single one (LIAO; XU; ZENG,
2014, 2015).

In (XIA; XU, 2013) hesitant fuzzy preference relations (HFPR) were formally
defined. Thus, for a set U = {u1, . . . , uk} of k-alternatives, a Typical Hesitant Fuzzy
Preference Relation (THFPR) is defined in the following.

Definition 8.1.1 A THFPR R on U , named as 〈H,�〉-preference relation, is
represented by a THFS on U×U , i.e. by a membership function µR : U×U → H. Then,
the relation R = (Xij)k×k whose elements are given by Xij = µR(ui, uj) ∈ H, such that
Xij = {0.5}, for 1 ≤ i, j ≤ k, indicating all the possible preference degree(s) of the
alternative Xi over Xj. Moreover, an additive 〈H,�〉-preference relation is a THFPR
R = (Xij)k×k satisfying the additional condition:

Xij = N (Xji), for 1 ≤ i, j ≤ k, (47)

where N is an 〈H,�〉-negation with {0.5} as the fix point.
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If Xij = {0.5}, then it indicates indifference between ui and uj and {0.5} � Xij

indicates that ui is preferred to uj.
In the following, additive 〈H,�〉-preference relations w.r.t. 〈H,�〉-negation are

obtained based on aggregation and implication operators.

Proposition 8.1.1 Let R be an 〈H,�〉-preference relation and N be an
〈H,�〉-negation which has {0.5} as a fix point. An additive 〈H,�〉-preference relation
R = (X ij)k×k is defined, for each 1 ≤ i, j ≤ k, as follows

X ij =


Xij, if Xji � Xij;

N (Xji), otherwise.
(48)

Proof: If Xji � Xij then X ij = Xij and therefore Xji = N (Xij) = N (X ij). Otherwise,
if Xij ≺ Xji then Xji = Xji and therefore X ij = N (Xji) = N (Xji). 2

Definition 8.1.2 Let R = (Xij)k×k be THFPR, A be an extended 〈H,�〉-aggregation
function, I be an 〈H,�〉-implication and N be an 〈H,�〉-negation. For 1 ≤ i, j ≤ k, the
operator R∗ = (X∗ij)n×n such that

X∗ij =



A(I(Xi1, X1j), . . . , I(Xik, Xkj)), if i < j;

N (A(I(Xi1, X1j), . . . , I(Xik, Xkj))), if i > j;

{0.5}, if i = j.

(49)

defines the 〈H,�〉-preference relation w.r.t. N obtained by A, I, and R.

Proposition 8.1.2 Let R = (Xij)k×k be additive 〈H,�〉-preference relation, A be
an extended 〈H,�〉-aggregation function, I be an 〈H,�〉-implication verifying I10
w.r.t. a 〈H,�〉-negation N which has {0.5} as a fix point. The 〈H,�〉-preference
relation R∗ = (X∗ij)n×n w.r.t. N obtained by A, I, and R in Eq.(49) is an additive
〈H,�〉-preference relation.

Proof: Firstly, for 1 ≤ i < j ≤ 1, we have that X∗ij = A(I(Xi1, X1j), . . . , I(Xik, Xkj)).
And, in addition, we have that:

X∗ji = N (A(I(Xj1, X1i), . . . , I(Xjk, Xki)))

= N (A(I(N (X1i),N (Xj1)), . . . , I(N (Xki),N (Xjk)))), by I10

= N (A(I(Xi1, X1j), . . . , I(Xik, Xkj))) = N (X∗ij), by Eq.(47).

Finally, if X∗ii = {0.5} then X∗ii = N (X∗ii). Therefore, Proposition 8.1.2 is verified. 2
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8.1.1 Consistency on 〈H,�〉-preference relations

In the 80’s, (TANINO, 1984) introduced an additive diffuse transitivity property, also
called complete consistency. Since then, consistency of FPR is associated with the
transitivity property (HERRERA-VIEDMA et al., 2004), representing the idea that the
preference degree by directly comparing two objectives must be equal to or greater
than the degree of preference between these two objectives, using an indirect chain
of objectives/actions. This property is desirable to avoid contradictions reflecting in
FPR, since the lack of consistency in decision making often leads to inconsistent
conclusions. According to (RODRÍGUEZ et al., 2018), the weak transitivity was
introduced as the minimum requirement condition which a FPR should satisfy in order
to obtain acceptable solutions.

The definition of weak transitivity for HFPR, proposed by (ZHU; XU, 2013), requires
that all the possible FPR R = (xij)k×k belong to a HFPR R = (Xij)k×k, i.e. xij ∈
Xij for each 1 ≤ i, j ≤ k, which satisfy the condition of weak transitivity yielding the
classes of weak/ordinary consistency. In (RODRÍGUEZ et al., 2018), a soft rule to
achieve the weak transitivity and ordinary consistency in a HFPR is introduced, since
the information provided by experts is hesitant and hence, a degree of contradictory
information should be reasonable.

From these points of view, this work extends the weak transitivity and ordinary
consistency related to HFPR considering admissible linear orders in 〈H,�〉-preference
relations.

Definition 8.1.3 Let R = (Xij)k×k be an 〈H,�〉-preference relation whose elements
Xij ∈ H, such that Xii = {0.5} and, for all i, j, l ∈ Nk, i 6= j 6= l, the following condition
is verified:

(WC1) if Xij �H {0.5} and Xjl �H {0.5} then Xil �H {0.5};

thus, R is called a weak transitivity 〈H,�〉-preference relation.

This transitivity can be interpreted as a hesitant information related to three
alternatives as follows: If the alternative Xi is preferred to Xl, and Xl is preferred
to Xj, then Xi should be preferred or at least equal to Xj.

Main classes of consistency are extended to 〈H,�〉-preference relations.

Definition 8.1.4 An additive 〈H,�〉-preference relation R = (Xij)k×k whose elements
Xij ∈ H, such that Xii = {0.5} and, for all i, j, l ∈ Nk, i 6= j 6= l, R verifies one of the
following conditions:

(OC1) If Xij �H {0.5} and Xjl �H {0.5}, then Xil �H {0.5}; or

(OC2) If Xij �H {0.5} and Xjl �H {0.5}, then Xil �H {0.5}; or
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(OC3) If Xij = {0.5} and Xjl = {0.5}, then Xil = {0.5};

thus, R is an ordinal consistency 〈H,�〉-preference relation.

Let R be an 〈H,�〉-preference relation and also consider the weak transitivity and
the ordinal consistency as proposed in Definitions 8.1.3 and 8.1.4, respectively. If
an additive 〈H,�〉-preference relation satisfies the weak transitivity and all their THFE
(except the diagonal ones) are not equal to the fix point of the related 〈H,�〉-negation,
then R also satisfies the ordinal consistency.

Definition 8.1.5 An additive 〈H,�〉-preference relation R = (Xij)k×k whose elements
Xij ∈ H, such that Xii = {0.5} and, for all i, j, l ∈ Nk, i 6= j 6= l, R verifies one of the
following conditions:

(a) if Xil �H min{Xij, Xjl}, then R satisfies the max-min transitivity;

(b) if Xil �H max{Xij, Xjl}, then R satisfies the max-max transitivity;

(c) if Xij �H {0.5} and Xjl �H {0.5}, then Xil �H min{Xij, Xjl}, and R satisfies the
restricted max-min transitivity;

(d) if Xij �H {0.5} and Xjl �H {0.5}, then Xil �H max{Xij, Xjl}, and R satisfies the
restricted max-max transitivity.

Observe that max-max transitivity implies max-min transitivity and restricted max-max
transitivity implies restricted max-min transitivity.

The weak transitivity is the usual transitivity property that a person should use if one
does not want to express inconsistent opinions; however, it is the minimal requirement
to find out whether a fuzzy preference relation is consistent or not. On the other
hand, the max-max transitivity cannot be verified between Xij and their reciprocal Xji.
Also, neither the restricted max-min transitivity nor the restricted max-max transitivity
implies reciprocity. Both the additive transitivity and the multiplicative transitivity imply
reciprocity. Further studies can be found in (ZHU; XU, 2013; CHICLANA et al., 2008;
ALONSO et al., 2008; ZHANG; DONG; XU, 2014; XIA; CHEN, 2015).

Example 8.1.1 Consider the HFPR presented in (RODRÍGUEZ et al., 2018) and
reported below.

R =



{0.5} {0.4, 0.6} {0.6} {0.4, 0.6}

{0.4, 0.6} {0.5} {0.8} {0.4}

{0.4} {0.2} {0.5} {0.2, 0.3}

{0.4, 0.6} {0.6} {0.7, 0.8} {0.5}


(50)
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(i) Firstly, we consider the consistency analysis based on 〈H,�fA〉-order, illustrating
Definitions 8.1.3 and 8.1.4. One can easily observe the following:

• R is an 〈H,�fA〉-preference relation which satisfies the weak transitivity and
ordinal consistency properties;

• Since X32 �fA X31 �fA X12, meaning that X32 6�fA minfA{X31, X12} and
X32 6�fA maxfA{X31, X12}, then R does not satisfy (a) and (b) properties in
Definition 8.1.5;

• R satisfies (c) in Definition 8.1.5;

• Since X42 �fA X43 �fA X23, we have that X43 6�fA maxfA{X42, X23}. Then R
does not satisfy (d) in Definition 8.1.5.

(ii) The consistency analysis based on 〈H,�Lex1〉-order related to the preference
relation R achieved the same results w.r.t. 〈H,�fA〉-order.

(iii) When 〈H,�Lex2〉-order is considered, then R does not satisfy the
weak-transitivity, since X24 6�Lex2 {0.5} despite that equations X21 �Lex2 {0.5}
and X14 �lex2 {0.5} are both verified.

(iv) According to conditions stated by Definitions 8.1.3 and 8.1.4, there may be a
fuzzy preference relation (FPR) which does not satisfy the weak consistency or
the ordinal consistency. As well pointed out in (RODRÍGUEZ et al., 2018), in this
example, two of the eight FPR do not satisfy the weak transitivity:



0.5 0.4 0.6 0.6

0.6 0.5 0.8 0.4

0.4 0.2 0.5 0.2

0.4 0.6 0.8 0.5





0.5 0.4 0.6 0.6

0.6 0.5 0.8 0.4

0.4 0.2 0.5 0.3

0.4 0.6 0.7 0.5



8.2 Consensus measures from 〈H,�〉

Based on the formal definition of a consensus measure on 〈H,�〉, this section
formalizes the consensus measures obtained from 〈H,�〉-implications functions and
〈H,�〉-aggregation functions denoted by CCAI-Model. New methods to obtain
consensus analysis can be constructed considering the CCAI-Model, preserving main
consensus measures properties in the context of Typical Hesitant Fuzzy Sets. This
study also considers the corresponding extensions of aggregations, implications and
fuzzy negations.
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The generalized notion of consensus measures from ([0, 1],≤) to a bounded
poset H = 〈H,�〉 is firstly considered, starting with the following definition which
straightforwardly extends the usual definition of consensus measure in [0, 1]:

Definition 8.2.1 Let H = 〈H,�〉 be a bounded poset. A function CC :
∞⋃
n=2

Hn → H is a

H-valued consensus measure on H if

(CH1) CC(X, . . . , X) = 1H, for all X ∈ H (unanimity);

(CH2) CC(0H,1H) = CC(1H,0H) = 0H (minimum consensus for n = 2).

Other properties can be required for H = 〈H,�〉-valued consensus measures on H.
Here we just adapt the ones considered in (BOSCH, 2006) in the context of consensus
measures on [0, 1] (fuzzy consensus measures).

(CH3) CC(X1, . . . , Xn) = CC(X(1), . . . , X(n)) where ( ) : Nn → Nn is a permutation
(symmetry);

(CH4) CC(X1, . . . , Xn) = 0H when Xi ∈ {0H,1H} for each i = 1, . . . , n and #{i ∈
{1, . . . , n} : Xi = 0H} = #{i ∈ Nn} : Xi = 1H} (maximum dissension);

(CH5) CC(X1, . . . , Xn) = CC(X1, . . . , Xn, . . . , X1, . . . , Xn) (invariance of replication);

(CH6) CC(X1, . . . , Xn) = CC(N (X1), . . . ,N (Xn)) (reciprocity for N ).

Remark 8.2.1 Observe that properties (CH2), (CH3) and (CH5) imply property (CH4).

In the next proposition, a method to guarantee the symmetric property for a
consensus measure is presented.

Proposition 8.2.1 Let ( ) be a permutation, � an admissible order on H and CC be an
H-valued consensus measure on H. Then the function CCS :

∞⋃
n=2

Hn → H given by

CCS(X1, . . . , Xn) = CC(X(1), . . . , X(n)), (51)

where X(i) is the ith least element considering �-order in the multiset {X1, ..., Xn}, is
an 〈H,�〉-valued consensus measure on H verifying (CH3).

Proof: Straightforward. 2

8.3 Constructing consensus measures on 〈H,�〉-implications

This section presents a methodology to obtain a consensus measure arising from
an 〈H,�〉-implication, by exploring the additional properties from (CH3) to (CH6).
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8.3.1 CCA,I-Model

This first method is based on a typical hesitant extended aggregation function A
and an 〈H,�〉-implication I.

Theorem 8.3.1 LetA be an extended 〈H,�〉-aggregation function satisfying (A4a) and
I be an 〈H,�〉-implication verifying (I8). Then the operator CCAI :

∞⋃
n=2

Hn → H given by

CCAI(X1, . . . , Xn) = Ani,j=1,i 6=j(I(Xi, Xj)), (52)

is an 〈H,�,0H,1H〉-valued consensus measure on H, verifying the conditions:

1. If A satisfies (A3) then CCAI satisfies (CH3).

2. If A satisfies (A3) and I satisfies (I10) w.r.t. N , then CCAI satisfies (CH6).

3. If A satisfies (A6) then CCAI satisfies (CH5).

Proof: Since I verifies (I8) and A verifies A4a it holds that:

(CH1) : CCAI(X, . . . , X) = A(I(X,X), . . . , I(X,X)) = A(1H, . . . ,1H) = 1H;

(CH2) : CCAI(0H,1H) = A(I(0H,1H), I(1H,0H))=A(1H,0H)=0H,by (A4a).

Then, CCAI is a 〈H,�,0H,1H〉-valued consensus measure on H. And, we also have
that the following holds:

(CH3) : When A is symmetric the following holds:

CCAI(X1, . . . , Xn) = Ani,j=1,i 6=j(I(Xi, Xj)) = Ani,j=1,i 6=j(I(X(i), X(j)))

= CCAI(X(1), . . . , X(n)).

(CH6) : If A satisfies A4a and I satisfies (I10) w.r.t. N , then we obtain the following:

CCAI(X1, . . . , Xn) = Ani,j=1,i 6=j(I(Xi, Xj)) = Ani,j=1,i 6=j(I(N (Xj),N (Xi)))

= Ani,j=1,i 6=j(I(N (Xi),N (Xj))) = CCAI(N (X1), . . . ,N (Xn)).

(CH5) : And finally, if A satisfies (A6) the following holds:

CCAI(X1, . . . , Xn) = Ani,j=1,i 6=j(I(Xi, Xj)) by Eq.(52)

= Ani,j=1,i 6=j

I(Xi, Xj), . . . , I(Xi, Xj)︸ ︷︷ ︸
n−times

 by (A6)

= CCAI(X1, . . . , Xn, . . . , X1, . . . , Xn︸ ︷︷ ︸
n−times

) by Eq.(52).
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Concluding, Theorem 8.3.1 is verified. 2

Remark 8.3.1 One can observe that, when A satisfies (A3), (A4a) and (A6) then CCAI
satisfies (CH4).

Corollary 8.3.1 Let TLK and ILK be the Łukasiewicz 〈H,�Lex1〉-t-norm and the
Łukasiewicz 〈H,�Lex1〉-implication. Then CCTLK ,ILK

:
∞⋃
n=2

Hn → H given by

CCTLK ,ILK
(X1, . . . , Xn) =

n

TLK
i,j=1,i 6=j

(ILK(Xi, Xj)), (53)

is an 〈H,�Lex1,0H,1H〉-valued consensus measure on H. In addition, CCTLK ,ILK
verifies

the conditions:

1. (CH3) since TLK is symmetric;

2. (CH6) since TLK is symmetric and ILK satisfies (I10); and

3. (CH5) since TLK satisfies (A4a);

meaning that it also verifies (CH4).

8.3.2 CCmin,I-Model

This method considers the minimum typical hesitant aggregation (Tmin = min) as
presented in Example 5.4.1, and an 〈H,�〉-implication I.

Theorem 8.3.2 LetA be an extended 〈H,�〉-aggregation function satisfying (A4a) and
I be an 〈H,�〉-implication verifying (I8). The operator CCmin,I :

∞⋃
n=2

Hn → H given by

CCmin,I(X1, . . . , Xn) =


I(X1, X2) ∧ I(X2, X1), if n = 2

CCmin,I(X1, CCmin,I(X2, . . . , Xn)), if n > 2,
(54)

is an 〈H,�〉-valued consensus measure on H verifying the condition:

If I satisfies (I10) w.r.t. N then CCmin,I satisfies (CH6).

Proof: Let 〈H,�〉 be a bounded lattice related to an admissible �- order on H. Let I
be a 〈H,�〉-implication verifying (I8).
(CC1): Clearly, by property (I8), CCmin,I(X,X) = I(X,X) = 1H, and, the inductive
hypothesis is that for k ≥ 2, CCmin,I(X, . . . , X︸ ︷︷ ︸

k−times

) = 1H. Then, we have that

CCmin,I(X, . . . , X︸ ︷︷ ︸
(k+1)−times

) = CCmin,I(X, CCmin,I(X, . . . , X︸ ︷︷ ︸
k−times

)) = I(X,1H) = 1H. So, by induction,
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for each n ≥ 2 we obtain the following: CCmin,I(X, . . . , X︸ ︷︷ ︸
n−times

) = 1H.

(CC2) : CCmin,I(0H,1H) = I(0H,1H)∧I(1H,0H) = 1H∧0H = 0H. Analogously, it is proved
that CCmin,I(1H,0H) = 0H. Then, CCmin,I is a 〈H,�〉-valued consensus measure on H.

(CH6) : If I satisfies (I10) w.r.t. N , then for n = 2 we obtain the following results:

CCmin,I(X1, X2) = I(X1, X2) ∧ I(X2, X1)

= I(N (X2),N (X1)) ∧ I(N (X1),N (X2))

= I(N (X1),N (X2)) ∧ I(N (X2),N (X1)) = CCmin,I(N (X1),N (X2)).

Assume now, that the hypothesis holds for n. For n+ 1 we obtain that:

CCmin,I(X1, . . . , Xn+1) = CCmin,I(X1, CCmin,I(X2, . . . , Xn+1))

= I(X1, CCmin,I(X2, . . . , Xn+1)) ∧ I(CCmin(X2, . . . , Xn+1), X1)

= I(N (CCmin,I(X2, . . . , Xn+1)),N (X1)) ∧ I(N (X1),N (CCmin,I(X2, . . . , Xn+1)))

= I(N (X1),N (CCmin,I(X2, . . . , Xn+1)) ∧ I(N (CCmin,I(X2, . . . , Xn+1),N (X1)))

= I(N (X1), CCmin,I(N (X2), . . . ,N (Xn+1)))

∧ I(CCmin,I(N (X2), . . . ,N (Xn+1)),N (X1)), by HI

= CCmin,I(N (X1), CCmin,I(N (X2), . . . ,N (Xn+1)))

= CCmin,I(N (X1), ...,N (Xn+1).

Concluding, Theorem 8.3.1 is verified. 2

Corollary 8.3.2 Let A be an extended 〈H,�〉-aggregation function satisfying (A4a)
and I be an 〈H,�〉-implication verifying (I8). The function CCI :

∞⋃
n=2

Hn → H given by

CCI(X1, . . . , Xn) =


I(X(2), X(1)) if n = 2

CCI(X(1), CCI(X(2), . . . , X(n))) if n > 2 ,
(55)

where X(i) is the ith least element w.r.t. �-order in the multiset {X1, ..., Xn}, is an
〈H,�〉-valued consensus measure on H verifying (CH3) and :

If I satisfies (I10) w.r.t. N then CCI satisfies (CH6).

Proof: Straightforward from Proposition 8.2.1 and Theorem 8.3.2. 2

Remark 8.3.2 Observe that CCI(X1, X2) = CCmin,I(X1, X2).
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8.3.3 Illustrating CCAI-consensus model on 〈H,�〉-orders

Firstly, an algorithmic method is described in this section, followed by an application
in ME-MCDM providing ratings for styles of craft beers.

8.3.3.1 CCAI-consensus model methodology

The CCAI-consensus model introduces a method to generate the HFPR based on
the consistency analysis and the consensus measure introduced in previous sections.

The two main steps consolidating CCAI-consensus model are listed below:

1. Preconditional steps

(1.1) Selection of the 〈H,�〉-order;

(1.2) Election of CCAI-consensus model, determining the corresponding negation,
implication and aggregation operators;

(1.3) Construction of the matrix R = (Xij)n×n based on the 〈H,�〉-preference
relation associate to the n-alternatives;

(1.4) Consistency analysis of relation R, eliciting pairwise comparison between
alternatives to eliminate inconsistency which support incomplete fuzzy
preference relations and missing information;

(1.5) Definition of corresponding additive matrix structure R = (X
(k)

ij )n×n related
to the 〈H,�〉-preference relation, calculating the THFE for all positions in the
matrix structure based on Eq. (49);

(1.6) Determination of the α-level criteria to achieve an α-level consensus in the
additive 〈H,�fA〉-preference relation R.

2. Iterative Steps: Construction of R(k)
= (X

(k)
ij )n×n, for k = 1.

(2.1) Taking k = 1;

(2.2) Calculation of the k-iteration of R(i);

(2.3) Calculation of the k-iteration of CCAI = (Yij)n×n based on Eq. (52) and
operators defined in previous item (1.2);

(2.4) Compare the α-level between the additive 〈H,�〉-preference relations CC(k)

and CC(k−1):

i. If there exist X(k)
ij �H {α}, for i < j then k = k + 1, and return to Step

(2.2);

ii. Otherwise, finish the algorithm process.
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8.3.3.2 CCAI-consensus model application in ME-MCDM problem

Considering a group of four friends providing ratings for three styles of craft beers
(as shown in Table 3) as well as comparing the average, which was firstly introduced
in (MATZENAUER et al., 2019/08). One can also see that while everyone partially
agrees that the craft beer Sour style is not very good, and the Pale Ale style is not too
bad, there is a lack of consensus regarding the Weiss style.

The corresponding preference matrices RF1, RF2, RF3 and RF4 related to all craft
beer styles described in Section 3.2, Example 3.2.1.

And, the THFS containing all the preferences, for each ij-position on the
Example 3.2.1, four preference matrices result on the matrix structure R = (Xij)4×4

presented as an additive HFPR as given in Eq.(56) below:

R =


{0.5} {0.1; 0.3; 0.4} {0.1; 0.2; 0.3; 0.4}

{0.6; 0.7; 0.9} {0.5} {0.2; 0.3; 0.4; 0.9}

{0.6; 0.7; 0.8; 0.9} {0.1; 0.6; 0.7; 0.8} {0.5}

 (56)

In the consistency analysis, R is an 〈H,�fA〉- (〈H,�Lex1〉-) preference relation
preserving the weak transitivity and ordinal consistency. And it also satisfies (a) and
(c) properties in Definition 8.1.5 w.r.t. 〈H,�fA〉- 〈H,�Lex1〉-order. However, it does
not verify properties from (b) e (d) in Definition 8.1.5, since max{X32, X21} �fA X31

(max{X32, X21} �Lex1 X31).
Finally, we also have thatR is an 〈H,�Lex2〉-preference relation preserving the weak

transitivity and ordinal consistency and property (a) in Definition 8.1.5. But it does not
satisfy (b) since max{X13, X32} �Lex2 X12. Analogous results follows from (c) and (d)
analysis.

8.3.3.3 CCAI-consensus model application based on 〈H,�fA〉-orders

From the matrix R = (Xij)3×3 related to 〈H,�fA〉-preference relation R, shown in
Section 8.3.3.2, the additive matrix structure R = (X ij)3×3 is reported as follows:

R =


{0.5} {0.321} {0.3211}

{0.6; 0.7; 0.9} {0.5} {0.2; 0.3; 0.4; 0.9}

{0.6; 0.7; 0.8; 0.9} {0.7651} {0.5}

 (57)

Take α=0.6 as a criteria to achieve an α-level consensus in the 〈H,�fA〉-preference
relation R, meaning that X ij �fA {0.6}, for all i > j.

The k-iteration over R is performed, for k ∈ N3, resulting on the R(k)
= (X

(k)
ij )3×3
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matrices, described in Table 9. These components in R(1) are obtained applying
Eq. (52) from Theorem 8.3.1. See below, how the resulting THFS in 12-position in
R(1) is calculated:

X
(1)

12 = TLK(ILK(X11, X12), ILK(X12, X22), ILK(X13, X32)),

when the corresponding implications returned the following data:

ILK(X11, X12) = ILK({0.5}, {0.321}) = {0.821};

ILK(X12, X22) = ILK({0.321}, {0.5}) = 1H;

ILK(X13, X32) = ILK({0.3211}, {0.761}) = 1H.

So, X(1)
12 = TLK({0.821},1H,1H) = {0.821}. And thus, by comparing and applying the

Łukasiewicz typical hesitant fuzzy t-norm, the consensus is described by the matrix
structure CC(1) = (Y

(1)

ij )3×3, as components of matrix CC(1) given in line 1, column 2 of
Table 9.

Observing, by Eq. (55), the Y (1)
12 component is calculated as follows:

Y
(1)

12 = TLK(ILK(X12, X
(1)

12 ), ILK(X
(1)

12 , X12))

= TLK(ILK({0.821}, {0.321}), ILK({0.321}, {0.821})) = {0.5} �fA {0.6}.

Analogously, the other Y
(1)
ij components can be obtained. At 1-iteration, the

estimate α-level consensus is achieved just to the THFS in the Y (1)

23 component. Thus, it
is necessary to generate a new iteration from R

(1) resulting on R(2). So, at 2nd-iteration,
the estimate α-level consensus is achieved just to the THFS in the Y

(1)
12 and Y

(1)
23

components in CC(2) matrix structure. Thus, it is necessary to generate a new iteration
from R

(2) resulting on R
(3). Finally, at the third iteration, α = 0.69 is achieved as the

consensus rate, meaning that all Y (1)

ij ≥
f
A {0.6}, for all i < j. This can be interpreted as

a consensus rate up to 69%.

8.3.3.4 CCAI-consensus model application based on 〈H,�Lex1〉-order

From the matrix R = (Xij)3×3 related to 〈H,�Lex1〉-preference relation R, shown in
Section 8.3.3.2, the additive matrix structure R = (X ij)3×3 as defined in sequence:

R =


{0.5} {0.4} {0.4}

{0.6; 0.7; 0.9} {0.5} {0.2; 0.3; 0.4; 0.9}

{0.6; 0.7; 0.8; 0.9} {0.8} {0.5}


Then, applying the algorithm described in Section 8.3.3.1 and considering the same
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Table 9 – CCAI-consensus model application based on 〈H,�fA〉-order.

k R(k) CC(k)

1


{0.5} {0.821} {0.735}

{0.19; 0.7} {0.5} {0.37; 0.7}
{0.25; 0.6} {0.623} {0.5}




1H {0.5} {0.56; 0.8}
{0.5} 1H {0.8579}

{0.56; 0.8} {0.8579} 1H



2


{0.5} {0.57; 0.6} {0.321}
{0.433} {0.5} {0.37; 0.7}
{0.69; 0.7} {0.623} {0.5}




1H {0.746} {0.56; 0.8}
{0.746} 1H {1H}
{0.56; 0.8} {1H} 1H



3


{0.5} {0.57; 0.6} {0.631}
{0.433} {0.5} {0.37; 0.7}
{0.39; 0.6} {0.623} {0.5}




1H 1H {0.69}
1H 1H {1H}
{0.69} {1H} 1H



α-criteria, the consensus is reached in the 3rd-iteration. See the results in Table 10.

8.3.3.5 CCAI-consensus model application based on 〈H,�Lex2〉-order

Analogously, starting with the matrix R = (Xij)3×3 related to 〈H,�Lex2〉-preference
relationR, shown in Section 8.3.3.2, the additive matrix structureR = (X ij)3×3 is given
in the following:

R =


{0.5} {0.1} {0.1}

{0.6; 0.7; 0.9} {0.5} {0.2; 0.3; 0.4; 0.9}

{0.6; 0.7; 0.8; 0.9} {0.1} {0.5}


And, by application of the algorithm described in Section 8.3.3.1 and the same

α-criteria, the consensus is reached in the 3rd-iteration. See the results in Table 11.

Remark 8.3.3 Based on results from Corollary 8.3.2, the application based on
CCmin,I-Model, as defined in Theorem 8.3.2 achieves the same result consensus.

8.4 Chapter summary

In this chapter, we extended the notion of consensus measures on Typical
Hesitant Fuzzy Sets, based on formal definition of a consensus measure on the
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Table 10 – CCAI-consensus model application based on 〈H,�Lex1〉-order.

k R(k) CC(k)

1


{0.5} {0.9} {0.5}
{0.1} {0.5} {0.5}
{0.5} {0.5} {0.5}




1H {0.5} {0.9}
{0.5} 1H {0.7}
{0.9} {0.7} 1H



2


{0.5} {0.6} {0.5}
{0.4} {0.5} {0.5}
{0.5} {0.5} {0.5}




1H {0.7} 1H

{0.7} 1H 1H

1H 1H 1H



3


{0.5} {0.57; 0.6} {0.631}
{0.433} {0.5} {0.37; 0.7}
{0.39; 0.6} {0.623} {0.5}




1H 1H {0.69}
1H 1H {1H}
{0.69} {1H} 1H



bounded poset H. We formalised the CCA,I−Models to obtain new methodologies of
consensus preserving main properties in the context of Typical Hesitant Fuzzy Sets,
also considering the corresponding extensions of aggregations, implications and fuzzy
negations.

The weak transitivity and ordinary consistency related to HFPR were also extended
considering admissible linear orders in 〈H,�〉-preference relations.

And, based on the formal definition of a consensus measure on 〈H,�〉, the
CCAI-Model was formalised from 〈H,�〉-implications functions and 〈H,�〉-aggregation
functions. New methods to obtain consensus analysis were constructed considering
this CCAI-Model, and preserving main consensus measures properties in the context
of Typical Hesitant Fuzzy Sets.

Then, was presented a methodology to obtain a consensus measure arising from
an 〈H,�〉-implication, where the first method was based on a typical hesitant extended
aggregation function A and an 〈H,�〉-implication I; and the second method considers
the minimum typical hesitant aggregation (Tmin = min) and an 〈H,�〉-implication I.

Some illustrating examples of CCAI- consensus model on 〈H,�〉-orders were
discussed. We presented an algorithmic method followed by an application in
ME-MCDM providing ratings for styles of craft beers.
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Table 11 – CCAI-consensus model application based on 〈H,�Lex2〉-order.

k R(k) CC(k)

1


{0.5} {0.6} {0.6}
{0.4} {0.5} {0.2}
{0.4} {0.8} {0.5}




1H {0.5} {0.5}
{0.5} 1H {0.3}
{0.5} {0.3} 1H



2


{0.5} {0.9} {0.5}
{0.1} {0.5} {0.7}
{0.5} {0.3} {0.5}




1H {0.7} {0.9}
{0.7} 1H {0.5}
{0.9} {0.5} 1H



3


{0.5} {0.9} {0.5}
{0.1} {0.5} {0.8}
{0.5} {0.2} {0.5}




1H 1H 1H

1H 1H {0.9}
1H {0.9} 1H





9 FINAL CONSIDERATIONS

In this work, new ideas in THFE are investigated and developed under the scope
of an arbitrary order, allowing the possibility of comparisons of THFE with different
cardinalities. A class of admissible linear 〈H,�fA〉-orders is also presented, when A

is an increasing aggregation function and f satisfies the injective-cardinality property.
Two other admissible linear orders are considered: 〈H,�Lex1〉- and 〈H,�Lex2〉-orders,
that allowed us to introduce a formal definition of hesitant fuzzy operators, such as
〈H,�〉-aggregation functions and 〈H,�〉-negations, including their respective important
properties. Emphasizing as main results, we have the generation of 〈H,�〉-negations
from fuzzy negations, also presenting some interesting examples.

Here, the contextual theoretical research on the properties of 〈H,�〉-implications is
related to the monotonicity analysis, which is restricted to the first place antitonicity and
second place isotonicity, but also including the identity and exchange principles, the left
and right boundary conditions, the contrapositive symmetry and ordering properties.
Some additional examples are also presented, mainly related to natural negations
obtained from 〈H,�〉-implication functions.

Based on such classes of 〈H,�〉-orders, expressions for the main examples
of aggregation functions and fuzzy implications are presented. Furthermore, the
representability of such operators is obtained from generation of 〈H,�〉-implications
as an order-preserving structure of main implication properties. Besides, is introduced
a formal definition for the representability of those negations, by constructing a method
to obtain 〈H,�〉-implications from 〈H,�〉-aggregations.

Another relevant contribution illustrating our theoretical results is an algorithmic
solution for an ME-MCDC problem, which used 〈H,�〉-operators and took into account
the selection of a CIM-software. By applying the Łukasiewicz implication, the example
reported an ME-MCDM problem in a CIM-application, which could be analysed from
three distinct comparisons based on 〈H,�〉-operators.

This work also presents improved consensus-based procedures based on
admissible 〈H,�〉-orders, handling Multi Expert-Multi Criteria Decision Making
(ME-MCDM) problems and using consistent 〈H,�〉-preference relations (HFPR). At
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the first level, the consistence analysis considers the weak transitivity and ordinal
consistency properties in 〈H,�〉-orders, also extending the notion of (restricted)
max-max and min-max transitivity. Subject to such results on consistency analysis,
normalised additive hesitant fuzzy preference relations introduce two strategies to
obtain a consensus-based model.

Then, we formally defined the generalised notion of consensus measures from
([0, 1],≤) to a bounded poset H = 〈H,�〉, also studying the corresponding extensions
of aggregations, implications and fuzzy negations. As one of the main contribution,
the CCAI- and CCmin,I-consensus models are presented as new methodologies of
consensus preserving main properties in the context of Typical Hesitant Fuzzy
Sets, by exploring properties of admissible 〈H,�〉-aggregation and admissible 〈H,�〉-
implications.

9.1 Future works

Ongoing works are focusing on other classes of implications, such as
(S,N)-implications (ZANOTELLI; REISER; BEDREGAL, 2020) and including the
residuation principle related to R-implications and the left-continuity of t-norms, in
the context of admissible 〈H,�〉-orders. And, in order to show the advantage of the
proposed method, further work extends case studies in cloud computing (SCHNEIDER
et al., 2020), for hesitant fuzzy environments, based on the theoretical results achieved
in this step of the research on admissible linear orders.

We also intend to explore new group of strategies to obtain consensus measures,
mainly connected to the class of operators, satisfying commutative, nondecreasing
aggregations with 1H-annihilator.

9.2 Publications

This section reports the publication of main results mainly connected with this
thesis and its related collaborative studies with LUPS/UFPEL, FMMFCC/UFPEL and
LoLITA/UFRN research groups.

9.2.1 Related publications

1. MATZENAUER, M. L.; REISER, R.; SANTOS, H.; BEDREGAL, B.;
BUSTINCE,H.. Strategies on admissible total orders over typical hesitant fuzzy
implications applied to decision making problems. In: International Journal of
Intelligent Systems. (IJIS, 2021), p. 1-50, 2021.

2. MATZENAUER, M. L.; REISER, R.; SANTOS, H.; PINHEIRO, J.; BEDREGAL,
B.. An Initial Study on Typical Hesitant (T,N)-Implication Functions. In:
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18th International Conference on Information Processing and Management of
Uncertainty in Knowledge-Based Systems. CCIS 1238, p. 747-760, 2020.

3. MATZENAUER, M. L.; REISER, R.; SANTOS, H.; BEDREGAL, B.. Typical
Hesitant Fuzzy Sets: Evaluating Strategies in GDM Applying Consensus
Measures. In: Conference of the International Fuzzy Systems Association and
the European Society for Fuzzy Logic and Technology. (EUSFLAT 2019), 2019.,
2019/08. Anais. Atlantis Press, 2019/08.

4. MATZENAUER, M. L.; REISER, R.; SANTOS, H.; BEDREGAL, B.; BUSTINCE,
H.. Typical Hesitant Fuzzy Implications Functions. In: Workshop Escola de
Informática Teórica (WEIT2019), 2019, Passo Fundo. Anais do Workshop Escola
de Informática Teórica (WEIT2019). PF: ed.UFSM, 2019. v. 1. p. 222-230.

9.2.2 Correlated publications

1. COSTA, L.; MATZENAUER, M. L. ; YAMIN, A.; REISER, R.; BEDREGAL,
B.. Interval Version of Generalized Atanassov’s Intuitionistic Fuzzy Index.
Communications in Computer and Information Science. 1ed.: Springer
International Publishing, 2018, v. 831, p. 217-229.

2. COSTA, L.; MATZENAUER, M. L.; ZANOTELLI, R.; NASCIMENTO, M.; FINGER,
A.; REISER, R.; YAMIN, A.; PILLA, M.. Analysing Fuzzy Entropy via Generalized
Atanassov’s Intuitionistic Fuzzy Indexes. Mathware Soft Computing, v. 24, p.
22-31, 2017.

3. COSTA, L.; FINGER, A.; NASCIMENTO, M.; MATZENAUER, M. L.; ZANOTELLI,
R.; REISER, R.; YAMIN, A.; PILLA, M.. Atanassov’s Intuitionistic Fuzzy Entropy:
Conjugation and Duality. In: Marcus Eduardo Mesquita; Graçaliz Dimuro;
Regivan Santiago; Estevão Laureano. (Org.). Recent Trends on Fuzzy Systems
Proc. IV CBSF. 1ed.Campinas: 2017, v. 1, p. 31-43.

4. COSTA, L.; MATZENAUER, M. L.; REISSER, R. H. S.; YAMIN, A.. Truly
Intuitionistic Fuzzy Properties of Implications from Generalized Atanassov’s
Intuitionistic Fuzzy Index. In: Workshop Escola de Informática Teórica
(WEIT2017), 2017, Santa Maria. Anais do Workshop Escola de Informática
Teórica (WEIT2017). Santa Maria: ed.UFSM, 2017. v. 1. p. 278-285.
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