UNIVERSIDADE FEDERAL DE PELOTAS

Centro de Engenharias Programa de Pós-Graduação em Ciências Ambientais

Dissertação

Modelagem da transferência de calor entre as massas de grãos de arroz em um silo armazenador

Marcos Vinicius Henriques dos Santos

Marcos Vinicius Henriques dos Santos Modelagem da transferência de calor entre as massas de grãos de arroz em um silo armazenador Dissertação apresentada ao Programa de Pós-Graduação em Ciências Ambientais da Universidade Federal de Pelotas, como requisito parcial à obtenção do título de Mestre em Ciências Ambientais

Coorientador: Prof. Dr. Guilherme Jahnecke Weymar

Orientador: Prof. Dr. Daniela Buske

Universidade Federal de Pelotas / Sistema de Bibliotecas Catalogação na Publicação

S237m Santos, Marcos Vinicius Henriques dos

Modelagem da transferência de calor entre as massas de grãos de arroz em um silo armazenador / Marcos Vinicius Henriques dos Santos ; Daniela Buske, orientadora ; Guilherme Jahnecke Weymar, coorientador. — Pelotas, 2020.

95 f.

Dissertação (Mestrado) — Programa de Pós-Graduação em Ciências Ambientais, Centro de Engenharias, Universidade Federal de Pelotas, 2020.

1. Método de separação de variáveis. 2. Método da transformada de Laplace. 3. GILTT. 4. Arroz com casca. 5. Silo experimental. I. Buske, Daniela, orient. II. Weymar, Guilherme Jahnecke, coorient. III. Título.

CDD: 363.7

MODELAGEM DA TRANSFERÊNCIA DE CALOR ENTRE AS MASSAS DE GRÃOS DE ARROZ EM UM SILO ARMAZENADOR

por

Marcos Vinicius Henriques dos Santos

Dissertação submetida ao Programa de Pós-Graduação em Ciências Ambientais, PPGCamb, do Centro de Engenharias da Universidade Federal de Pelotas, como parte dos requisitos necessários para a obtenção do Título de

Mestre em Ciências Ambientais

Banca Examinadora:

Profa. Dra. Daniela Buske – Orientador (UFPel)

Prof. Dr. Guilherme Jahnecke Weymar – Co-Orientador (UFPel)

Profa. Dra. Ruth da Silva Brum (UFPel)

Prof. Dr. Régis Sperotto de Quadros (UFPel)

Profa. Dra. Fernanda Tumelero (UFPel)

Prof. Dr. Igor da Cunha Furtado (UFPel)

Resumo

HENRIQUES, Marcos Vinicius dos Santos. **Modelagem da transferência de calor entre as massas de grãos de arroz em um silo armazenador**. 2020. 95 f. Dissertação (Mestrado em Ciências Ambientais) — Programa de Pós-Graduação em Ciências Ambientais, Centro de Engenharias, Universidade Federal de Pelotas, Pelotas, 2020.

O Brasil é um dos maiores exportadores de arroz do mundo, além disso, o arroz é um dos grãos mais consumidos. Entretanto, a produção, pela primeira vez em anos, não tem conseguido acompanhar o consumo, necessitando diminuir as perdas em seu processo produtivo, principalmente no armazenamento, na qual a temperatura é um fator vital na qualidade do grão. Assim, o objetivo deste trabalho é através da modelagem matemática, criar uma ferramenta para simular a temperatura interna dos grãos de arroz dentro do silo. Dessa forma, através das análises simuladas de diferentes modelos, geram-se recomendações construtivas para pequenos agricultores. Para alcançar o objetivo foi solucionado o modelo da transferência de calor levando em consideração o tipo de grão e as dimensões do silo, utilizando métodos clássicos de resolução, como separação de variáveis, transformada de Laplace e GILTT. De forma a fazer a validação dos modelos, são utilizados dados experimentais gerados para o caso estudado. Os resultados obtidos mostram que os métodos propostos são eficazes para o monitoramento da temperatura no interior de silos armazenadores de pequena escala, os quais caso sejam implementados em um aplicativo podem se tornar uma ferramenta de baixo custo utilizada por pequenos agricultores.

Palavras-chave: Método de separação de variáveis. Método da transformada de Laplace. GILTT. Arroz com casca. Silo experimental.

Abstract

HENRIQUES, Marcos Vinicius dos Santos. **Heat transfer modeling between rice grain masses in a storage silo**. 2020. 95 f. Dissertação (Mestrado em Ciências Ambientais) — Programa de Pós-Graduação em Ciências Ambientais, Centro de Engenharias, Universidade Federal de Pelotas, Pelotas, 2020.

Brazil is one of the largest rice exporters in the world, in addition, rice is one of the most consumed grains. However, production, for the first time in years, has not been able to keep up with consumption, needing to reduce losses in its production process, especially in storage, in which temperature is a vital factor in the quality of the grain. Thus, the objective of this work is through mathematical modeling, to create a tool to simulate the internal temperature of the rice grains inside the silo. Thus, through simulated analyzes of different models, constructive recommendations for small farmers are generated. To achieve the objective, the heat transfer model was solved taking into account the type of grain and the dimensions of the silo, using classic methods of resolution, such as separation of variables, Laplace transform and GILTT. In order to validate the models, experimental data generated for the case studied are used. The results obtained show that the proposed methods are effective for monitoring the temperature inside small-scale storage silos, which, if implemented in an application, can become a low-cost tool used by small farmers.

Keywords: Variables separation method. Laplace transform method. GILTT. Rice with pell. Experimental silo.

Lista de Figuras

Figura 1	Comparação da capacidade de armazenamento e a produção do estado do RS no período de 2006 a 2019	17
Figura 2	Respiração do grão de arroz versus Temperatura	19
Figura 3	Imagem das correntes convectivas dentro do silo em dias quentes e frios	22
Figura 4	Diagrama de conservação de grãos	24
Figura 5	Diagrama de aeração de grãos	25
Figura 6	Ilustração da condução de calor em um sistema de coordenadas cilíndricas	26
Figura 7	Ilustração do silo experimental do LEPC	33
Figura 8	Ilustração da disposição dos sensores e cabos ao longo da altura	0.4
Figura 9	da massa de grãos e raio do silo	34
i igura 5	a) Cabo 1 b) Cabo 2 c) Cabo 3	36
Figura 10	Ésquema ilustrativo representando as condições do problema em z	
	e r	38
Figura 11	Truncamento da solução do modelo unidimensional $T(z,t)$ no Cabo 1 pelo a) método SV e b) método TL	63
Figura 12	Comparação entre as temperaturas observadas e as preditas no Cabo 1 pelos métodos SV e TL em $T(z,t)$ no a) Sensor 1, b) Sensor	
T: 10	2 e c) Sensor 3	64
Figura 13	Comparação entre as temperaturas observadas e as preditas no Sensor 2 pelos métodos SV e TL em $T(z,t)$ no a) Cabo 2, b) Cabo 3.	65
Figura 14	Histograma dos erros absolutos e suas frequências pelo modelo unidimensional $T(z,t)$ no Cabo 3, a) Sensor 1 método SV, b) Sensor	
	1 método TL, c) Sensor 2 método SV, d) Sensor 2 método TL, e)	~~
Figura 15	Sensor 3 método SV, f) Sensor 3 método TL	69
i iguia 10	temperatura ao longo da coluna de grãos no Cabo 1, pelo método	
	a) SV e b) TL	70
Figura 16	Truncamento da solução unidimensional $T(r,t)$ no Sensor 1 pelo a)	70
Figura 17	método SV e b) pelo método TL	72
i iguia i i	Sensor 1 pelos métodos SV e TL em z e r no a) Cabo 1, b) Cabo 2	
	e c) Cabo 3	73
Figura 18	Evolução da temperatura no tempo (de 0 á 20h), distribuição da temperatura ao longo do raio do silo no Cabo 1, pelo método a) SV	
Figura 19	e b) TL	74
rigura 19	dimensional $T(r,t)$ no Sensor 1, a) Cabo 1 método SV, b) Cabo 1	
	método TL, c) Cabo 2 método SV, d) Cabo 2 método TL, e) Cabo 3 método SV, f) Cabo 3 método TL	75
Figura 20	Truncamento da solução bidimensionais $T(r, z, t)$ no cabo 1 pelo a)	. •
_	método SV e b) pelo método GILTT	77

Figura 21	Comparação entre as temperaturas observadas e as preditas no	
	Cabo 1 pelos métodos SV, TL e GILTT nos modelos bidimensional	
	e unidimensional no a) Sensor 1, b) Sensor 2 e c) Sensor 3	78
Figura 22	Comparação entre as temperaturas observadas e as preditas no	
_	Sensor 2 pelos métodos SV e GILTT nos modelos bidimensional e	
	unidimensional no a) Cabo 2, b) Cabo 3	79
Figura 23	Histograma dos erros absolutos e suas frequências pelo modelo bi-	
_	dimensional $T(r, z, t)$ no Cabo 3, a) Sensor 1 método SV, b) Sensor	
	1 método GILTT, c) Sensor 2 método SV, d) Sensor 2 método GILTT,	
	e) Sensor 3 método SV, f) Sensor 3 método GILTT	80

Lista de Tabelas

Tabela 1 Tabela 2	Nutrientes do arroz integral, branco e parbolizado	16 18
Tabela 3 Tabela 4 Tabela 5	Posição dos sensores em relação a altura da massa de grãos Temperatura inicial em cada sensor e cabo	34 36 37
Tabela 6 Tabela 7	Pesos e raízes da quadratura Gaussiana	62
Tabela 8	e método nos Cabos 1, 2 e 3	67 70
Tabela 9	Análise estatística do modelo unidimensional $T(r,t)$ pelo método SV e TL nos Cabos 1, 2 e 3	74
Tabela 10	Análise estatística do modelo bidimensional $T(r,z,t)$ em cada sensor e método nos cabos 1, 2 e 3	81

Lista de Abreviaturas e Siglas

CEng Centro de Engenharias

CONAB Companhia Nacional de Abastecimento

COR Coeficiente de Correlação

EDO Equação Diferencial Ordinária

EDP Equação Diferencial Parcial

FAO Food and Agriculture Organization of the United Nations

FB Fração de Inclinação

FS Desvio Fracional Padrão

GILTT Generalized Integral Laplace Transform Technique

GITT Generalized Integral Transform Technique

LEPC Laboratório de Engenharia de Pós Colheita

MMQ Método dos Mínimos Quadrados

NMSE Erro Quadrático Médio Normalizado

SIK Swedish Institute for Food and Biotechnology

SV Separação de Variáveis

TL Transformada de Laplace

UFPel Universidade Federal de Pelotas

USDA United States Department of Agriculture

Lista de Símbolos

ρ_m	Densidade da massa de grãos	$\left(\frac{Kg}{m^3}\right)$
----------	-----------------------------	-------------------------------

- C_m Calor específico do grão $\left(\frac{Kcal}{g \circ C}\right)$
- T Temperatura interna da massa de grãos (${}^{\circ}C$)
- t Tempo (s)
- ρ_a Densidade do ar $\left(\frac{Kg}{m^3}\right)$
- C_a Calor específico do ar $\left(\frac{Kcal}{g^{\circ}C}\right)$
- V_r Velocidade do ar em torno do raio do silo $\left(\frac{m}{s}\right)$
- V_z Velocidade do ar em torno da altura da massa de grãos $\left(\frac{m}{s}\right)$
- V_{θ} Velocidade do ar em torno do ângulo $\left(\frac{m}{s}\right)$
- r Variável raio do silo (m)
- z Variável altura da massa de grãos (m)
- θ Variável ângulo vertical da massa de grãos ($\pi radianos$)
- K_m Condutividade térmica do grão $\left(\frac{Kcal}{m.s^{\circ}C}\right)$
- H_{fg} Calor de evaporação da água $\left(rac{Kcal}{g}
 ight)$
- M Umidade do grão (%)
- q_h Fontes Externas ou internas e sumidouros de calor $\left(\frac{Kcal}{s}\right)$
- lpha Coeficiente de difusividade térmica do grão $\left(\frac{m^2}{s}\right)$
- H_s Altura máxima da massa de grãos (m)
- R_s Raio do silo (m)
- T_o Temperatura observada (°C)
- T_p Temperatura predita (°C)
- σ_o Desvio padrão da temperatura observada
- σ_p Desvio padrão da temperatura predita
- λ Autovalores do problema de Sturm-Liouville
- ω Autofunções do problema de Sturm-Liouville
- N Quadrado da norma
- E_a Erro absoluto (°C)
- E_{med} Mediana dos erros absolutos (°C)
- $\mu \qquad \qquad \text{M\'edia dos erros absolutos } (^{\circ}C)$
- σ Desvio padrão dos erros

- A_s Coeficiente de assimetria
- K Coeficiente de curtose
- P_i Valor do percentil dos erros na posição i $({}^{\circ}C)$

Sumário

1 Introdução		13
2.1 Objetivo	geral	15 15 15
3.1 Cultura de3.2 Armazene3.3 Aeração3.4 Modelage3.4.1 GILTT	bliográfica o arroz amento de grãos em matemática ana área	16 16 19 22 26 28 30
4.1 Estudo ex 4.2 Condiçõe 4.2.1 Condiç 4.2.2 Condiç 4.2.3 Condiç 4.3 Solução c 4.3.1 Modelo 4.3.2 Modelo 4.3.3 Modelo 4.3.4 Modelo 4.3.5 Modelo da mas 4.3.6 Modelo	ia	33 33 35 37 37 37 38 42 45 48 50
5.1 Compara5.2 Compara	ção entre os métodos no modelo unidimensional $T(z,t)$ ção entre os métodos no modelo unidimensional $T(r,t)$ ção entre os métodos no modelo bidimensional $T(r,z,t)$	62 62 71 76
6 Conclusão		83
Referências .		85
APÊNDICE A	Dados das temperaturas no cabo 1 pelo modelo unidimensional $T(z,t)$	89
APÊNDICE B	Dados das temperaturas no cabo 2 pelo modelo unidimensional $T(z,t)$	90
APÊNDICE C	Dados das temperaturas no cabo 3 pelo modelo unidimensional $T(z,t)$	91

APÊNDICE D	Dados das temperaturas no sensor 1 pelo modelo unidimensional $T(r,t)$	92
APÊNDICE E	Dados das temperaturas no cabo 1 pelo modelo bidimensional $T(r,z,t)$	93
APÊNDICE F	Dados das temperaturas no cabo 2 pelo modelo bidimensional $T(r,z,t)$	94
APÊNDICE G	Dados das temperaturas no cabo 3 pelo modelo bidimensional $T(r,z,t)$	95

1 Introdução

O arroz é um dos cereais mais consumidos no mundo inteiro, além disso, é importante na economia do Brasil por ser um dos maiores produtores do mundo. Segundo a Companhia Nacional de Abastecimento - CONAB (2019a), estima-se que a produção de arroz brasileira para o ano de 2019 seja de 11,8 milhões de toneladas, aproximadamente 2,4% do cenário mundial. No ano de 2017/18, apenas o Rio grande do Sul produziu 8,2 milhões de toneladas desse grão. Desta forma, pode-se mostrar a importância do estado do Rio Grande do Sul na produção de arroz.

Apesar da alta produção de arroz que o Brasil possui, estudos realizados pela *United States Department of Agriculture* (USDA) mostram que a Safra 2018/19 teve sua produção de arroz mundial, estimada em 487,35 milhões de toneladas, abaixo do consumo, 488,06 milhões de toneladas, pela primeira vez nos últimos anos.

Para suprir esse aumento de consumo de alimentos, duas soluções normalmente são utilizadas. A primeira seria o aumento da área de cultivo, que poderia causar impacto direto ao meio ambiente, já que para isso ocorrer deve-se desmatar mais áreas. Já a segunda e mais relevante do ponto de vista ambiental seria o aperfeiçoamento máximo de todo processo de produção de grãos, em específico o de armazenamento, buscando assim diminuir possíveis agravamentos do problema.

Em 2011, uma pesquisa publicada pela *Food and Agriculture Organization of the United Nations* (FAO) e desenvolvida por pesquisadores da *Swedish Institute for Food and Biotechnology* (SIK), constatou uma perda de 4% nos cereais produzidos na América Latina na etapa de manejo e armazenamento (GUSTAVSSON; CEDERBERG; SONESSON, 2011), indicando um enorme deficit de boas práticas desse processo produtivo.

No processo de armazenagem, o objetivo é manter a mesma qualidade do grão no momento que foi colhido, sendo a temperatura e umidade suas características mais importantes. No caso do arroz, sua umidade ideal é próxima a 13% e com baixas temperaturas, reduzindo assim a chance de proliferação de insetos e microrganismos (ELIAS, 2007). De acordo com Bemiller; Whistler (2009), grãos armazenados com umidade acima de 14,5% podem resultar no desenvolvimento de mofo se a temperatura dos grãos ultrapassar a faixa entre 22-24°C durante um longo período de tempo.

O monitoramento da temperatura na massa de grãos é denominado de termometria (WEBER, 2001). Segundo Puzzi (2000), termometria é o processo de obtenção de valores de temperatura de uma massa de grãos armazenada em silos ou armazéns graneleiros, equipados com dispositivos à base de pares termoelétricos. Dentre as diversas técnicas para diminuir o gradiente de temperatura na massa de grãos e minimizar a migração de umidade, está a aeração (JAYAS; WHITE; MUIR, 1995).

A aeração é utilizada como forma de controle, preservando a temperatura dos grãos por longos períodos. Esse processo faz com que se diminuam os gradientes térmicos na massa do grão e, consequentemente, minimize a migração de umidade, com isso inibe-se o desenvolvimento de insetos e roedores (GOERGEN, 2010). Para evitar gastos de energia com ventiladores, é necessário o monitoramento em tempo real da temperatura interna do silo, além de conhecimento do operador de quando aerar. Entretanto, grande parte dos agricultores familiares não possuem tecnologia adequada para auxiliar no monitoramento desses fatores. Uma das maneiras de compensar o não investimento na monitoração do grão é criando formas diferentes da tradicional para armazenamento em "silo metálico".

Nas pequenas propriedades, agricultores que armazenam milho em estruturas rústicas como paióis de madeira, têm perdas causadas por insetos e roedores que podem, em alguns casos, alcançar mais de 40% do produto armazenado (EMBRAPA, 2015). Dito isso, é possível observar que existem muitas formas de melhorias nos processos da cadeia produtiva, minimizando custos de energia e evitando o desperdício de grãos de forma sustentável. Um exemplo de ferramenta utilizada para o estudo e conhecimento destes parâmetros, principalmente a distribuição de temperatura, é o uso da modelagem para o problema.

Desta forma, o objetivo central deste trabalho é a utilização de um modelo matemático para previsão da distribuição de temperatura em um silo (com grãos armazenados). Com esta previsão, é possível determinar os melhores instantes para se utilizar ventiladores para a aeração dos grãos em estudo. A otimização no uso destes ventiladores na aeração é um fator de extrema importância para a economia de energia elétrica.

Este trabalho está organizado da seguinte forma: O Capítulo 1 introduz o tema e comenta a problemática do assunto. No Capítulo 2 apresentam-se os objetivos do trabalho, bem como os meios utilizados para solucionar o problema de pesquisa desta dissertação. O Capítulo 3 detalha as características do arroz e do processo de armazenamento, aeração. Neste capítulo, é apresentado o modelo proposto e as hipóteses utilizadas. Já no Capítulo 4, descreve-se o protótipo criado para o experimento e a coleta de dados, além da resolução dos modelos com os métodos propostos. Encontram-se no Capítulo 5, os resultados dos modelos e a comparação das temperaturas do experimento e as obtidas pelos modelos. Por fim, o Capítulo 6 conclui a discussão do capítulo anterior e apresenta-se sugestões para novos trabalhos.

2 Objetivo

2.1 Objetivo geral

O objetivo desse trabalho é modelar matematicamente o processo de transferência de calor em um protótipo de silo armazenador de arroz.

2.2 Objetivos específicos

- Aplicar um modelo de simulação de temperatura interna dos grãos em um silo armazenador, baseado em balanços dinâmicos de calor e o posicionamento da massa de grãos no silo.
- Validar o modelo através de simulações comparando com os dados experimentais.
- Fazer uma análise estatística da comparação dos dados experimentais com os preditos.
- Comparar duas técnicas de solução para os modelos propostos e analisar qual o melhor para descrever a distribuição de temperaturas dentro do silo.
- Indicar formas de aplicação no cenário real dos modelos validados.

3 Revisão bibliográfica

3.1 Cultura do arroz

Fibra solúvel

O *Oryza Sativa* (arroz) é um dos cereais mais consumidos e produzidos no Brasil e no mundo. Ele é constituído principalmente por amido, apresentando quantidades menores de proteínas, lipídios, fibras e cinzas. Mesmo assim, sua composição pode se alterar devido à variações ambientais, de manejo, de processamento e de armazenamento, tendo características nutricionais diferenciadas (ZHOUM et al., 2002). A Tabela 1 mostra a quantidade desses nutrientes para diferentes tipos de arroz.

Tabela 1: Nutrientes do arroz integral, branco e parbolizado.

Fonte: Walter; Marchezan; Avila, 2008. Constituinte Integral Branco polido Parbolizado polido Amido total 74,12% 87,58% 85,08% Proteínas (N x 5,95) 8,94% 9,44% 10,46% Lípidios 2,52% 0,36% 0,69% Cinzas 1,15% 0,30% 0,67% Fibra total 11,76% 2,87% 4,15% Fibra insolúvel 8,93% 1,63% 1,05%

1,82%

2,82%

2,82%

De acordo com o Cadastro Nacional de Unidades Armazenadoras, mantido pela CONAB, o Brasil possui uma capacidade estática de 152 milhões de toneladas, diante de uma produção de grãos estimada em cerca de 200 milhões de toneladas para safra 2014/15. A maior produção de arroz se encontra nos estados do Rio Grande do Sul, Santa Catarina e Tocantins, produzindo 80% do arroz do país (CONAB, 2015). Conforme dados do último Censo Agropecuário (2017), a agricultura familiar é responsável por 16% de toda a produção de arroz em casca em área de lavoura temporária do Brasil, tendo uma participação de 19% na economia de produção vegetal do país. Na Figura 1 é possível ver acomparação entre a produção total de grãos e a capacidade de armazenamento no estado do Rio Grande do Sul.

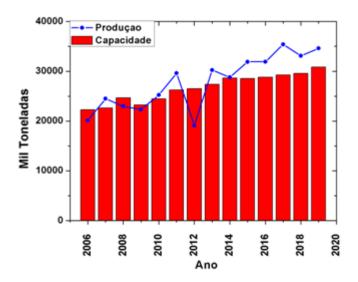


Figura 1: Comparação da capacidade de armazenamento e a produção do estado do RS no período de 2006 a 2019.

Fonte: CONAB, 2019b; IBGE, 2019

Nota-se pelo gráfico que a produção está bem acima da capacidade de armazenamento, além disso, o mau uso do armazenamento pode gerar perda de grãos quantitativas e qualitativas. Dados emitidos pela FAO, indicados na Tabela 2, mostram as perdas de grãos em cada etapa produtiva ao redor do mundo (GUSTAVSSON; CE-DERBERG; SONESSON, 2011). Por conta desse deficit no armazenamento, o Plano Nacional de Armazenagem 2013/2014, tem como objetivo modernizar e aumentar a capacidade estática do parque armazenador de grãos do Brasil, disponibilizando nos últimos anos cerca de R\$25 bilhões para investimentos em estruturas de armazenagem de grãos (CONAB, 2015). Porém, para saber quais as condições ideais de armazenagem de grãos, primeiro precisa-se conhecer suas características.

Tabela 2: Perdas de grãos no mundo por etapa produtiva.

Fonte: Gustavsson; Cederberg; Sonesson, 2011.

Região	Produção	Manuseio e Armazena-	Processamento e Empacotamento	Distribuição	Consumo
		gem	•		
Europa incluindo a	2%	4%	0,5-10%	2%	25%
Rússia					
América do Norte e	2%	2%	0,5-10%	2%	27%
Oceania					
Ásia industriali-	2%	10%	0,5-10%	2%	20%
zada					
África Subsariana	6%	8%	3,5%	2%	1%
África do Norte,	6%	8%	2-7%	4%	12%
Ásia Ocidental e					
Central					
Sul e Sudeste da	6%	7%	3,5%	2%	3%
Ásia					
América Latina	6%	4%	2-7%	4%	10%

Pesquisadores como Elias; Oliveira; Vanier (2018), comentam as características importantes do grão durante seu armazenamento. A primeira é a sua capacidade de absorver a umidade, ou seja, a higroscopicidade. O arroz é um grão altamente higroscópico, isso ocorre devido ao amido em meio aquoso ser mais eletronegativo do que o grupo carboxila, atraindo o H^+ e passando para a forma iônica. Ou seja, o grupo amina $(-NH_2)$, ao receber mais um H se transforma em radical de amônia $(-NH_3^+)$, formando pólos moleculares altamente higroscópicos, conforme mostra na equação (1):

$$-NH_2 + H^+ \to -NH_3^+.$$
 (1)

Outra característica importante é sua capacidade de respiração. O ato de respirar gera calor, aumentando assim a temperatura e quanto maior a temperatura mais frequente é a respiração, aumentando o risco de deterioração, como mostra a reação da respiração na equação (2):

$$C_6H_{12}O_6 \to 6CO_2 + 6H_2O + 667, 2Kcal.$$
 (2)

Em condições aeróbias, o coeficiente respiratório dos grãos de gramíneas (ou poáceas) se aproxima de $CO_2/O_2=1$, sendo comparado à oxidação completa da glicose. Isso ocorre devido ao alto conteúdo de carboidratos que predomina nas sementes soldadas ao pericarpo (camada externa do fruto das angiospermas), como o caso do arroz.

Sua respiração acelera conforme aumenta a umidade e a temperatura, além disso, não apenas o grão tem metabolismo, como ácaros, insetos e outros tipos de organismos presentes no armazenamento. Na Figura 2 é possível observar o aumento da respiração de acordo com a temperatura.

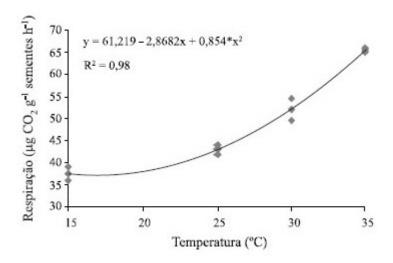


Figura 2: Respiração do grão de arroz versus Temperatura. Fonte: MARINI et al., 2012.

Outro fator é a composição do ar ambiente, na qual taxas de gás carbônico e de oxigênio presentes no local podem afetar o processo de respiração.

3.2 Armazenamento de grãos

Foi estimado por Lorini (2015), que 10% de todo o grão produzido no Brasil anualmente é perdido durante seu armazenamento. As perdas de grãos no armazenamento podem ser quantitativas devido a redução de peso ou de volume devido a respiração, ou qualitativas que se caracteriza pelas alterações na qualidade do produto devido a perda de nutrientes (BACALTCHUK; LORINI, 2008). Já os contaminantes podem ser (QUEIROZ et al., 2009):

- Químicos: micotoxinas, metais pesados ou pesticidas;
- Físicos: vidro e materiais estranhos da colheita;
- Biológicos: microrganismos patogênicos, roedores entre outros.

Os mais importantes contaminantes na hora do armazenamento são os de natureza biológica, devido sua presença mesmo após à descontaminação dos grãos e, por conta disso, é necessário tomar atitudes preventivas durante todo o processo.

É importante ressaltar que a melhor qualidade do grão é no momento da colheita. A etapa de armazenagem apenas tem o objetivo de manter ao máximo essas qualidades e, portanto, é nessa fase do processo que se agrega maior valor ao grão.

Em visto disso,o beneficiamento industrial (ato de transformar o produto primário em industrializado de maior valor comercial), pode variar em função da forma de comercialização (ELIAS; OLIVEIRA; VANIER, 2018).

As propriedades térmicas de materiais biológicos, como por exemplo, a difusividade e a condutividade, são essenciais para conhecer a distribuição de temperatura, aquecimento e resfriamento, obtendo assim um melhor desempenho de equipamentos como por exemplo, o silo de armazenagem. Essas propriedades térmicas podem variar de acordo com a natureza, espécie, teor de umidade do ambiente e do grão e da temperatura (KAZARIAN; Hall, 1965).

Devido sua estrutura interna porosa e constituição química específica, o grão tem uma má condutibilidade térmica, onde através de seus poros acontecem trocas constantes de calor e umidade com o ar ambiente da armazenagem. Suas trocas de calor e água são dinâmicas e contínuas até que se atinja o limite de obtenção do equilíbrio higroscópico em determinada temperatura. A umidade crítica dos grãos, para o desenvolvimento de microrganismos associados é de 14%, enquanto para os insetos e ácaros está entre 8 e 10%. Em relação aos microrganismos, observa-se que os fungos necessitam uma temperatura ideal (entre 25 e 30°C) para se desenvolverem (ELIAS; OLIVEIRA; VANIER, 2018).

Para o armazenamento de arroz, diversos autores indicam umidades próximas a 14%. Gomes; Merch (1982) comentam que 14% é a umidade ideal de armazenamento para o arroz em base úmida, durante curtos períodos, enquanto 13% para longos. Entretanto Puzzi (2000), indica uma umidade de 12% para arroz em casca, durante longos períodos. Por conta disso, é primordial saber como acontecem as trocas de calor dentro e fora do silo, para então estipular a temperatura interna com maior precisão, tendo assim melhor controle das condições de armazenamento.

O fenômeno que caracteriza a troca de calor entre duas substâncias entre si, ou entre o sistema e o meio externo devido sua diferença de temperatura, é chamado de transferência de calor ou fluxo de calor. Esse processo ocorre quando um corpo ou meio de maior temperatura transfere seu calor para o de menor temperatura, podendo ser através da condução, convecção ou radiação (LUZ, 2008). O autor explica cada uma delas:

- Condução: é feita através da troca de energia interna entre dois ou mais corpos, devido ao seu movimento molecular. Acontece devido as moléculas dos corpos fazerem um movimento vibratório, cuja velocidade é maior conforme sua temperatura for maior, permitindo um intercâmbio de energia cinética entre elas, onde as que possuem maior temperatura por choque cedem energia às de menor temperatura.
- Convecção: a transferência é dada através das ações ocasionadas pelas par-

tículas do fluido quando passam calor de um ponto a outro, recebendo calor de uma fonte quente e se movendo em direção a uma fonte fria, formando correntes convectivas devido à diferença de densidade do fluido, frio e quente.

 Radiação: diferente da condução e da convecção, por não necessitar de meio físico para se realizar, a transferência pode ocorrer mesmo sem diferença de temperatura. Ocorre por meio das ondas eletromagnéticas, onde os corpos emitem radiações térmicas que são proporcionais à sua temperatura. Um exemplo desse processo é o que acontece com um objeto, que mesmo sem estar em contato com o sol é aquecido por ele.

No armazenamento, acontece transferência de calor na massa de grãos principalmente por condução e convecção. Na condução o calor é transferido nos pontos de contato, um entre o outro, de grão para grão e de grão para parede do silo. Enquanto por meio da convecção é transferido de uma sessão para outra da massa em decorrência do fluxo de ar intergranular criado pela diferença de temperatura em diferentes pontos da massa de grãos, ou em relação ao meio exterior (ANDRADE, 2001).

Porém, as mudanças de temperatura também causam transferências de calor por convecção no interior do silo, na qual podemos separar em duas situações, quando a temperatura externa é maior que a interna e vice e versa. Em dias quentes, onde a temperatura externa é maior que a interna, os grãos próximos a parede se aquecem, formando correntes de ar quente, que devido sua densidade menor do que o ar, sobe em direção ao topo do silo, ao resfriar-se no centro do silo forma uma corrente descendente de ar frio, respingando água nos grãos localizados no topo do silo, aumentando assim sua umidade, conforme mostra a Figura 3 (BALA, 2017).

Enquanto em dias frios, o ar próximo à parede do silo esfria, formando uma corrente convectiva que por densidade é descendente, fazendo com que ao chegar ao centro da massa de grão embaixo do silo gere correntes acesdentes de ar quente que sobem e criam uma região de condensação no topo do silo (BALA, 2017). Além disso, após um tempo as correntes convectivas fazem com que na região inferior do silo, no ponto mais frio da massa de grãos, ocorra condensação da água que atingiu o ponto de orvalho (temperatura na qual o vapor de água presente no ar ambiente se liquidifica por condensação), assim os grãos localizados nesta região se umidificam, sofrendo então problemas de deterioração (ELIAS; OLIVEIRA; VANIER, 2018).

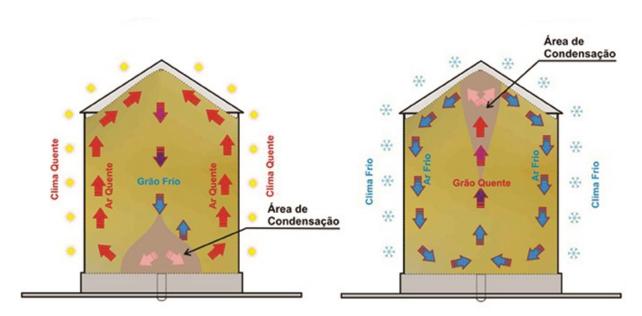


Figura 3: Imagem das correntes convectivas dentro do silo em dias quentes e frios. Fonte: EQUIPASA, 2019.

Como citado anteriormente, a aeração é uma das diversas técnicas para diminuir o gradiente de temperatura na massa de grãos, além de minimizar a migração de umidade (JAYAS; WHITE; MUIR, 1995). Além disso, por consequência inibe-se o desenvolvimento de insetos e da microflora e até remove-se odores indesejados (SILVA; LACERD FILHO; DEVILLA, 2000).

Diante de sua importância no processo de armazenamento, na seção seguinte aborda-se suas características, como por exemplo, quando aerar e os tipos de aeração.

3.3 Aeração

A aeração consiste na movimentação forçada do ar através da massa de grãos em condições ambiente ou controlada, com o objetivo de diminuir e uniformizar a temperatura e umidade dos grãos armazenados, evitando sua perda de qualidade (WE-BER, 2005). Hara (1979) comenta que o operador do ventilador tem que ter conhecimento do tipo de grão, umidade do grão e ambiente, se há impurezas, temperatura interna e condições climáticas, para então definir o tempo de aeração e consequentemente reduzir o consumo de energia. Porém, essa realidade está longe dos sistemas de armazenagens atuais.

Conforme comentam Elias; Oliveira; Vanier (2018) existem cinco tipos de aeração, cada uma com um objetivo diferente, são eles:

 Provisória: É utilizada em grãos recém-colhidos, que chegam com a umidade acima da ideal para armazenamento. Por conta disso, ela é utilizada como meio de conservação temporária enquanto os grãos aguardam a secagem, para controlar não apenas danos imediatos, como danos latentes, que se manifestam durante o armazenamento, como a incidência de defeitos nos grãos, fungos e outros tipos de contaminação. Além disso, dependendo da temperatura do ar, pode-se fazer uma secagem prévia, diminuindo a porcentagem de água do grão.

- Resfriamento ou manutenção: Mesmo quando o grão está nas condições ideais de armazenamento, dependendo da situação, é usada a aeração para corrigir um início de aquecimento, ou para resfriá-la em ciclo único, ou então progressivamente para uniformizar a temperatura em toda a massa de grãos, visto que pode haver diferenciação entre camadas.
- Corretiva: Usada quando os grãos armazenados adquiriram odores estranhos, ou por interesse de conservação, na qual os grãos estão com umidade menor do que a de comercialização. A aeração com ar úmido, realizada um pouco antes da expedição, pode corrigir essa diferença sem afetar a qualidade do produto.
- Secante: Tem como objetivo manter os grãos a uma temperatura suficientemente baixa, ocasionando uma lenta dessecação no próprio silo. Esse caso diferencia-se da manutenção, pois o ar é insuflado quando a umidade relativa for baixa, menor do que a umidade de equilíbrio, fazendo com que o fluxo de ar deva ser superdimensionado, maior do que o usado para secagem, deixando em um processo lento que pode ser melhorado pelo controle e/ou pela correção das condições psicrométricas do ar.
- **Transilagem:** Por fim, essa consiste em transferir os grãos de um silo para outro, na qual passam pela massa de ar, ao contrário da aeração tradicional, ocasionando uma redução e homogeneização da temperatura.

Para saber qual tipo de aeração deve-se aplicar, usa-se o diagrama de conservação de grãos elaborado por Burges e Burrel (1974) ilustrado na Figura 4. Segundo Christensen; Kaufmann (1974), o diagrama identifica as condições propícias para controle metabólico dos grãos, assim como dos organismos que os acompanham no armazenamento, utilizando a temperatura do grão e o teor de umidade do bulbo úmido em base úmida.

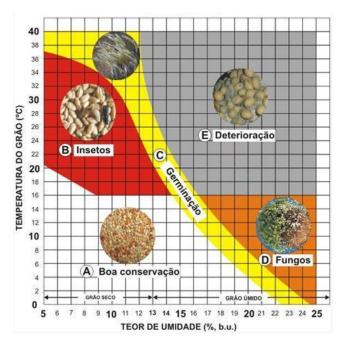


Figura 4: Diagrama de conservação de grãos. Fonte: Christensen; Kaufmann,1974.

É possível observar através do diagrama, que a condição A (Boa conservação) é a ideal de armazenamento com temperatura e umidade baixas; a B (Insetos) é o cenário com o aumento da temperatura devido a proliferação dos insetos; a condição C (Germinação) é a condição que o grão germina, perdendo assim nutrientes; a D (Fungos) é a proliferação de fungos devido ao aumento da umidade; e o pior cenário considerado é o E (Deterioração) que é a deterioração do grão.

Com isso, Lasseran (1978) fez um diagrama da aeração utilizando as informações obtidas anteriormente, conforme mostra a Figura 5. Observando o diagrama de aeração, nota-se que é necessário ter como primeiro princípio de conduta a redução da temperatura do grão, deve-se levar em conta a diferença de temperatura do grão e ambiental. Além disso, a umidade relativa do ar deve ser considerada para evitar o aumento de umidade do grão, evitando-se assim a aeração em dias úmidos e chuvosos.

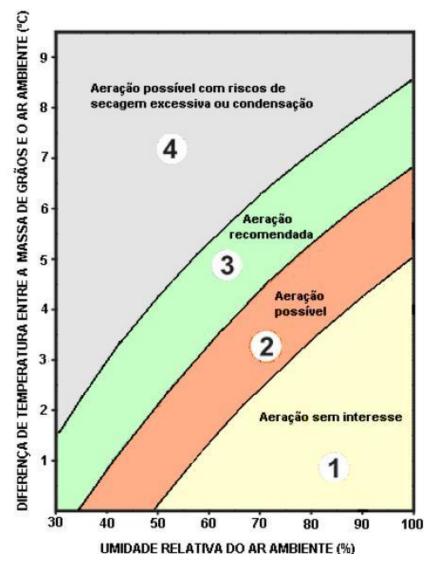


Figura 5: Diagrama de aeração de grãos. Fonte: Lasseran,1978.

Logo, pode-se concluir que o uso de aeração é maior em regiões com baixa umidade e altas temperaturas, gerando um enorme gasto de energia. Entretanto, o consumo excessivo vem pelo mau uso dos ventiladores e por desconhecimento da temperatura exata da massa de grão, levando em consideração apenas a temperatura externa. Com isso, novas formas de diminuir o gasto com aeração são pesquisadas, para uma melhor sustentabilidade das empresas e diminuição de gastos.

Como por exemplo, Anton (2016) que como forma de diminuir o gasto com a aeração no silo, desenvolveu uma técnica utilizando a lógica fuzzy, que permite ajustar, de forma automática, a velocidade de sistemas de aeração/ventilação e vazão de ar, melhorando a eficácia e eficiência energética através da diminuição do uso dos ventiladores.

Outro exemplo é Schellin (2014), que avaliou os efeitos da utilização de exaustores eólicos no consumo de energia, nas propriedades químicas, físicas e sensoriais

dos grãos e em propriedades térmicas da pasta de arroz, armazenada em silos metálicos por 9 meses. No experimento, observou-se que o uso de sistema de exaustão pelo sistema eólico durante o armazenamento de arroz reduziu a perda de matéria seca, assim como a energia necessária para a aeração de manutenção, diminuindo assim o gasto energético.

3.4 Modelagem matemática

Existem diversos estudos sobre modelos matemáticos para se aproximar das características de armazenamento, baseados nas propriedades termofísicas dos grãos, com intuito de prever suas condições, seja temperatura e/ou umidade (SUTHERLAND; BANKS; GRIFFITHS, 1971)

De acordo com Özisik (1993), o primeiro passo na solução analítica de um problema de condução de calor para uma determinada região é escolher um sistema de coordenadas ortogonais, de modo que suas superfícies coordenadas coincidam com as superfícies de contorno da região. Por exemplo, o sistema de coordenadas cilíndricas é usada para corpos que têm formas como cilindro, e assim por diante. Na Figura 6 é possível observar as direções radial, circunferêncial e axial do fluxo de calor em um sistema de coordenadas cilíndricas.

Figura 6: Ilustração da condução de calor em um sistema de coordenadas cilíndricas.

Fonte: Elmaryama; Omar, (2012).

Com intuito de projetar e avaliar a temperatura interna dos grãos em um silo (coordenadas cilíndricas) é apresentada a construção do modelo utilizado (equação governante do problema). O método criado por Özisik (1993) e explicado por Bala (2017), supõe que o material seja isotrópico e sua condutividade térmica seja invariável com a temperatura. Além disso, deve ser levado em consideração o problema da

migração de umidade nos grãos armazenados.

Com isso, podemos solucionar o problema da transferência de calor ao resolver sua equação de balanço de energia, onde a conservação da entalpia por unidade de volume de grãos a granel e a energia está ligada à equação da umidade através de um termo fonte. Assim, a equação governante fica da seguinte forma:

$$(\rho_m C_m) \frac{\partial T}{\partial t} + (\rho_a C_a) \left[V_r \frac{\partial T}{\partial r} + V_z \frac{\partial T}{\partial z} + V_\theta \frac{\partial T}{\partial \theta} \right] =$$

$$K_m \left(\frac{\partial^2 T}{\partial r^2} + \frac{1}{r} \frac{\partial T}{\partial r} + \frac{1}{r^2} \frac{\partial^2 T}{\partial \theta^2} + \frac{\partial^2 T}{\partial z^2} \right) + \rho_m H_{fg} \frac{\partial M}{\partial t} + q_h. \tag{3}$$

O primeiro termo do lado esquerdo da equação, $\left[(\rho_m C_m) \frac{\partial T}{\partial t}\right]$, é a representação da transferência de calor em regime transiente, onde a temperatura muda não só com a posição no interior do silo, como também com o tempo. Esse termo é calculado multiplicando a densidade da massa do grão (ρ_m) , calor específico da massa do grão (C_m) e a variação da temperatura interna do grão (T) com o passar do tempo (T).

Em seguida, no próximo termo da equação, $(\rho_a C_a) \left[V_r \frac{\partial T}{\partial r} + V_z \frac{\partial T}{\partial z} + V_\theta \frac{\partial T}{\partial \theta} \right]$, tem-se a transferência de calor por convecção, a qual é representada pela multiplicação da densidade do ar (ρ_a) , calor específico do ar (C_a) e o produto interno do vetor velocidade (\vec{V}) com o gradiente de temperatura (z - altura da massa de grãos), radial (r - posicionamento da massa de grãos ao longo do raio do silo) e circunferêncial $(\theta$ - ângulo vertical).

O primeiro termo do lado direito da equação, $K_m \left(\frac{\partial^2 T}{\partial r^2} + \frac{1}{r} \frac{\partial T}{\partial r} + \frac{1}{r^2} \frac{\partial^2 T}{\partial \theta^2} + \frac{\partial^2 T}{\partial z^2} \right)$, é a transferência de calor por condução, que é aproximado pela Lei de Fourier, em que a difusão turbulenta térmica é aproximada pela multiplicação da condutividade térmica da massa de grãos (K - habilidade dos materiais de conduzir energia térmica) pelo gradiente da temperatura.

O segundo termo do lado direito da equação, $\rho_m H_{fg} \frac{\partial M}{\partial t}$, está relacionado a evapotranspiração do grão, onde pode ser representada, através da densidade da massa de grão, calor de evaporação (H_{fg}) e a relacão da umidade do grão (M) no decorrer do tempo. Por fim, o último termo da equação, q_h , é o somatório dos fluxos de calor ocasionados por fontes externas ou internas e sumidouros, como por exemplo, a radiação solar.

Para o problema proposto no trabalho, foram levantadas as seguintes hipóteses simplificativas:

- Alimentos que têm alto teor de amido devido a sua mudança de estrutura, como por exemplo, o aumento da viscosidade, quando aquecidos devido a gelatilização podem com o passar do tempo ter comportamento exclusivamente condutivo (GUMERATO; SCHMIDT; GOLDONI, 2007). Assim, considera-se que os grãos estão compactados dentro do silo, logo a transferência de calor por convecção, $(\rho_a C_a) \left[V_r \frac{\partial T}{\partial r} + V_z \frac{\partial T}{\partial z} + V_\theta \frac{\partial T}{\partial \theta} \right] \approx 0;$
- No interior do silo não há fontes ou sumidouros de calor, o silo experimental é fechado e não serão utilizados ventiladores, $(q_h \approx 0)$;
- A variação da umidade ao longo do tempo é próxima de zero e dentro dos valores ideais de armazenamento, conforme bibliografias citadas anteriormente, logo $\rho_m H_{fg} \frac{\partial M}{\partial t} \approx 0$.

Utilizando as hipóteses simplificativas, considera-se a transferência de calor apenas por condução do contato grão a grão, e grão e parede, assim a equação (3) pode ser reescrita como:

$$\frac{\partial^2 T}{\partial r^2} + \frac{1}{r} \frac{\partial T}{\partial r} + \frac{\partial^2 T}{\partial z^2} + \frac{1}{r^2} \frac{\partial^2 T}{\partial \theta^2} = \frac{1}{\alpha} \frac{\partial T}{\partial t}; \tag{4}$$

onde, α é o coeficiente de difusividade térmica do grão (representa, fisicamente, a relação entre a condução e a capacidade de armazenamento de calor no material), $\frac{K}{\rho_m C_m}$, e indica a velocidade com que a temperatura se propaga no sentido do fluxo de calor.

Existem inúmeras maneiras de se resolver um modelo matemático de maneira analítica, entre elas destacamos a utilização do método de Separação de Variáveis (SV), Transformada de Laplace (TL) e Generalized Integral Laplace Transform Technique (GILTT).

3.4.1 GILTT

A seguir são mostrados os passos básicos para a obtenção da solução de um problema dependente do tempo pela *Generalized Integral Transform Technique* (GITT) em geometria cilíndrica. Esta análise faz uso da metodologia adotada por Wortmann (2003).

O método GITT consiste na construção de um problema auxiliar de Sturm-Liouville associado ao problema estacionário, em seguida ocorre a determinação da técnica da transformada integral em uma série truncada usando como base as auto-funções de um problema de Sturm-Liouville, substituindo esta expansão no problema original. Para exemplificar considere a equação:

$$AT(r,z,t) = S; (5)$$

onde A é o operador diferencial parcial associado ao problema unidimensional dependente do tempo, S é o termo fonte, T é a variável a qual quer se encontrar a solução, (r,z) as coordenadas cilíndricas e t o tempo. Em seguida são definidas as condições de contorno homogêneas:

$$a_1 \frac{dT(a,r,t)}{dz} + a_2 T(a,r,t) = 0;$$
 (6)

$$b_1 \frac{dT(b,r,t)}{dz} + b_2 T(b,r,t) = 0; (7)$$

sendo a < z < b, t > 0 e a_1 , a_2 , b_1 e b_2 as constantes dependentes das propriedades físicas.

O primeiro passo é a determinação de um problema auxiliar que leve o máximo de informação do problema original, minimizando o número de termos necessários para o truncamento da solução. Para isso, deve-se identificar o operador L na equação, visto que a base carregará mais informação na medida em que menos termos do operador L forem nulos. Dessa forma, expande-se a variável T(r,z,t) em uma base adequada, onde o operador A é reescrito na seguinte forma:

$$AT(r,z,t) = BT(r,z,t) + LT(r,z,t);$$
(8)

onde L é o operador associado ao problema de Sturm-Liouville, B é o operador associado aos termos restantes e λ são os autovalores do problema de Sturm-Liouville. Assim, L pode ser definido como:

$$L\omega(\lambda, z) \equiv \nabla[p(z) \nabla \omega(\lambda, z)] + q(z)\omega(\lambda, z); \tag{9}$$

em a < z < b. As funções p(z) e q(z) devem ser reais e contínuas, além de p(z) > 0 em todo o intervalo (a,b). As condições de contorno aplicadas a variável dependente do problema auxiliar devem ser as mesmas aplicadas a variável dependente do problema principal, ou seja:

$$L\omega(\lambda, z) + \lambda^2 \omega(\lambda, z) = 0; \tag{10}$$

$$a_1 \frac{\partial \omega(\lambda, a)}{\partial z} + a_2 \omega(\lambda, a) = 0;$$
 (11)

$$b_1 \frac{\partial \omega(\lambda, a)}{\partial z} + b_2 \omega(\lambda, a) = 0.$$
 (12)

A equação (10) é conhecida como problema de Sturm-Liouville e é a forma geral dos problemas auxiliares utilizados na GITT. Em seguida, pode-se reescrever a

equação (10) para um λ_m qualquer, visto que λ é independente das constantes a_1 , a_2 , b_1 e b_2 .

$$L\omega_m(z) + \lambda^2 \omega_m(z) = 0; (13)$$

onde: $\omega_m(z) \equiv \omega(\lambda_m,z)$. As funções $\omega_m(z)$ e os valores de λ são as autofunções e autovalores do operador L, respectivamente. Elas formam uma base para o espaço onde o operador L está contido, cuja sua ortogonalidade é definida conforme Özisik (1993):

• $m \neq n$

$$\frac{1}{N_m^{\frac{1}{2}}N_n^{\frac{1}{2}}} \int \omega_m(z)\omega_n(z)dz = 0;$$
 (14)

 \bullet m=n

$$\frac{1}{N_m^{\frac{1}{2}}N_n^{\frac{1}{2}}} \int \omega_m(z)\omega_n(z)dz = 1;$$
 (15)

onde N_m é o quadrado da norma $L^2(a,b)$ expressa por:

$$N_m = \int \omega_m^2(z) dz. \tag{16}$$

Estas autofunções são usadas para expandir a variável T(r,z,t) da equação (5) na seguinte expressão:

$$T(r,z,t) = \sum_{i=1}^{\infty} \frac{\overline{T}_i(r,t)\omega_i(z)}{N_i^{\frac{1}{2}}}.$$
 (17)

Após determinado o problema de autovalores associado ao problema original e expandido a variável dependente, aplica-se na equação (5) o seguinte operador:

$$\frac{1}{N_{\cdot}^{\frac{1}{2}}} \int \omega_i(z) dz; \tag{18}$$

que é a transformação integral propriamente dita. Após a execução de todas as integrações o resultado é um sistema de Equações Diferenciais Ordinárias (EDO's), cuja variável dependente é $\overline{T}_i(r,t)$, cuja solução pode ser encontrada através do método TL (conhecido como método GILTT).

Uma vez resolvidas as duas grandezas, trunca-se a equação (17) em um valor suficientemente grande de termos para a obtenção da solução final do problema.

3.5 Trabalhos na área

Utilizando o modelo da transferência de calor por condução em um silo, sem considerar a aeração ou outro tipo de transferência, Stark (2018) utilizou o método TL

para encontrar a temperatura interna da massa de grãos de arroz dentro de um silo, comparando as temperaturas encontradas com as observadas em seu experimento. Os resultados obtidos foram satisfatórios, mostrando uma precisão de até 1,4°C de diferença com a temperatura observada.

Enquanto Andrade et al. (2001) resolveu, utilizando o método dos elementos finitos, o modelo de transferência de calor tridimensional por condução em um regime transiente, com geração interna de calor, de forma a simular o desenvolvimento de fungos e insetos, além das influências de condições ambientais e externas ao silo (temperatura do ar, radiação solar e velocidade do vento). A técnica utilizada se mostrou adequada, tendo seu erro médio de 2,2%, onde o autor concluiu que os grãos armazenados na superfície superior do silo, apresentaram maior perda de qualidade, devido a maiores gradientes de temperatura e umidade relativa durante o período de armazenagem.

Em outro trabalho, realizado por Devilla et al. (2004), que tinha como objetivo observar como a temperatura se comporta nos eixos radial e axial dentro do processo de armazenagem de milho, instalaram-se sensores em vários pontos do silo, utilizando de aeração para manter uma diferença de temperatura entre as massas de grãos. Durante seu experimento constatou que a redução de temperatura na massa de grãos depende da localização do produto no interior do silo, onde as reduções de temperatura tornaram-se menores à medida que a sua localização se aproximava do centro do silo.

Ainda utilizando a aeração, Iguaz et al. (2004) desenvolveram um modelo de simulação para predição da temperatura dos grãos de arroz em um silo com aeração, indicando o tempo necessário para resfriar o grão armazenado sob diferentes condições de ventilação. Enquanto, Neutzling (2016), para entender melhor o funcionamendo do fluxo de ar e o estado térmico durante o processo de aeração do silo, criou um modelo matemático simulando a dinâmica do resfriamento de grãos de soja armazenados em silo metálico, indicando que há um equilíbrio térmico entre a superfície do grão e o ar em cada camada da coluna de grãos. Em seus resultados observou que a superfície dos grãos resfria-se numa taxa maior do que a do interior do grão. O mesmo afirma Goergen (2010), que através da solução do modelo da transferência de calor em uma esfera (grão), constatou que o interior do grão permanece aquecido por mais tempo durante o processo de aeração.

Para simular a distribuição do fluxo de ar em sistemas reais de armazenagem de grãos, Faoro (2019) e Rech (2018) utilizaram modelos matemáticos em 3D para simular a transferência de calor em um silo com aeração. Rech (2018) através da solução do modelo da transferência de calor pelo Método das Diferenças Finitas, mostrou a evolução da temperatura no interior do silo durante o processo de aeração. Enquanto Faoro (2019) considerou em seu trabalho que a transferência de calor da

massa de grãos no interior do silo é anisotrópica e não uniforme em todas as direções. O autor desenvolveu um software capaz de analisar as variáveis do problema, como: pressão, vazão específica global, vazão específica local, velocidade e temperatura e através das informações predizer, quando e qual a melhor forma de aerar a massa de grãos no interior do silo.

Neste trabalho, busca-se propor uma metodologia que auxilie o pequeno agricultor a administrar a temperatura interna da massa de grãos de arroz. Para isso apresenta-se a solução dos modelos unidimensionais e o bidimensional da transferência de calor por condução em um silo armazenador de arroz. Analisa-se diferentes metodologias de resolução, de forma a descobrir qual a mais eficaz para o armazenamento de arroz em silos de pequena escala.

4 Metodologia

4.1 Estudo experimental

Este trabalho tem como objetivo medir a variação de temperatura na massa de grãos de arroz, de forma unidimensional e bidimensional, comparando os dados encontrados com os observados experimentalmente. O experimento utilizado foi realizado por Stark (2018) na Universidade Federal de Pelotas (UFPel), no Centro de Engenharias, no Laboratório de Engenharia de Pós-Colheita (LEPC).

A Figura 7 apresenta o protótipo de silo do LEPC, que foi utilizado no experimento, o qual possui altura de 1m e um diâmetro de 1m. O protótipo foi preenchido com grãos de arroz em casca com difusividade térmica de $3,27\times10^{-6}m^2s^{-1}$ (DOTTO; PINTO; MOREIRA, 2016), a uma temperatura ambiente de 22,5°C, até atingir a altura experimental de 0,7 metros. Foram analisadas medições de temperatura de 30 em 30 minutos em um período total de 24 horas (1440 minutos).

Figura 7: Ilustração do silo experimental do LEPC. Fonte: Stark, 2018.

Para o experimento, foram utilizados nove sensores de temperatura distribuídos em três diferentes alturas ao longo de três cabos, a uma distância de 0,28m da parede do silo, conforme mostra a Figura 8. As localizações dos sensores em relação à base do silo (ponto de referência) estão apresentadas na Tabela 3. Além disso, ele possui dois sensores de umidade, um na entrada de ar de aeração, na base do silo, e outro na parte da saída de ar, em cima do silo.

Tabela 3: Posição dos sensores em relação a altura da massa de grãos.

Fonte: Stark, 2018.					
Identificação	Posição (m)				
	Sensor 1	Sensor 2	Sensor 3		
Cabo 1	0,01	0,23	0,56		
Cabo 2	0,01	0,29	0,56		
Cabo 3	0,01	0,29	0,58		

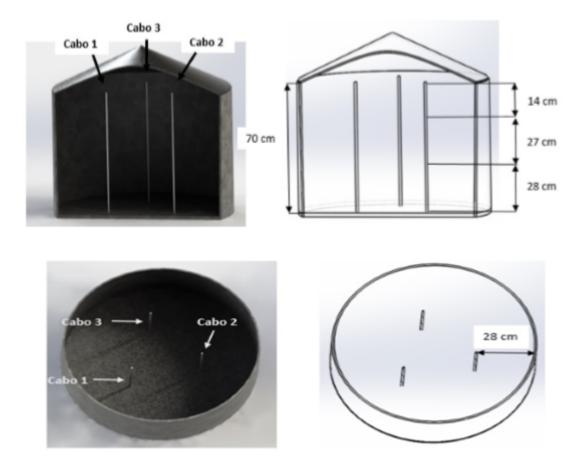


Figura 8: Ilustração da disposição dos sensores e cabos ao longo da altura da massa de grãos e raio do silo.

Fonte: Stark, 2018.

Esse experimento consistiu em medir a variação de temperatura entre os grãos dentro do silo, coletando dados a cada 30 minutos durante um dia. Para criar a variação de temperatura nas camadas de grãos, utilizou-se a aeração forçada e um aquecedor na entrada de ar, onde os grãos foram aquecidos durante um intervalo de tempo de 50 minutos. Além disso, para o experimento, foram instaladas placas de isopor na base e no topo do silo experimental, com o intuito de isolá-lo (condições de fluxo de calor nulo neste pontos).

4.2 Condições do problema

Neste trabalho, pretende-se analisar a distribuição de temperatura nos grãos armazenados no silo, utilizando os modelos unidimensionais e bidimensional, representados pelas equações:

$$\frac{\partial^2 T}{\partial r^2} + \frac{1}{r} \frac{\partial T}{\partial r} = \frac{1}{\alpha} \frac{\partial T}{\partial t}; \tag{19}$$

$$\frac{\partial^2 T}{\partial z^2} = \frac{1}{\alpha} \frac{\partial T}{\partial t};\tag{20}$$

$$\frac{\partial^2 T}{\partial r^2} + \frac{1}{r} \frac{\partial T}{\partial r} + \frac{\partial^2 T}{\partial z^2} = \frac{1}{\alpha} \frac{\partial T}{\partial t}; \tag{21}$$

sendo a equação (19), o modelo unidimensional da temperatura interna dos grãos ao longo do tempo relacionada apenas ao seu posicionamento em torno do raio do silo, T(r,t). Enquanto na equação (20), tem-se o modelo unidimensional que relaciona a temperatura interna somente a altura da massa de grãos, T(z,t). Por fim, o modelo bidimensional (21), que relaciona a temperatura interna do grão em ambos os fluxos de calor radiais e axiais T(r,z,t).

4.2.1 Condições do modelo T(z,t)

Para o modelo unidimensional T(z,t), as seguintes condições de contorno serão utilizadas, as quais representam que não há fluxo de calor no topo ($z=H_s$) e na base do silo (z=0):

$$\left. \frac{\partial T}{\partial z} \right|_{z=0} = 0; \tag{22}$$

$$\left. \frac{\partial T}{\partial z} \right|_{z=H_s} = 0;$$
 (23)

e a seguinte condição inicial:

$$T(z,0) = F(z); (24)$$

$$F(z) = C_0 e^{C_1 z + C_2} + C_3. (25)$$

A condição inicial é representada por uma função perfil em z, F(z). Para obter os coeficientes dessa função perfil, representados pela equação (25), foram utilizadas as temperaturas obtidas pelos sensores após o aquecimento e realizou-se um ajuste exponencial da curva com o Método dos Mínimos Quadrados (MMQ). Na Tabela 4 se encontra os valores da temperatura inicial em cada um dos sensores utilizados para fazer o procedimento citado.

Tabela 4: Temperatura inicial em cada sensor e cabo.

Fonte: Stark, 2018. Identificação Temperatura (°C) Sensor 1 Sensor 2 Sensor 3 Cabo 1 31,3 24,2 22,8 Cabo 2 24,3 23,3 30,3 Cabo 3 31,1 23,7 23,8

As temperaturas são maiores na base e vão decrescendo até o topo do silo. Mas no cabo 3, a temperatura do sensor 2 é maior que o sensor 3, indicando que houve possível erro de leitura.

Na Figura 9 são apresentados os gráficos da função temperatura inicial, obtidos pelo MMQ. Após utilizar o método, encontraram-se os valores das constantes da função F(z), apresentados na Tabela 5.

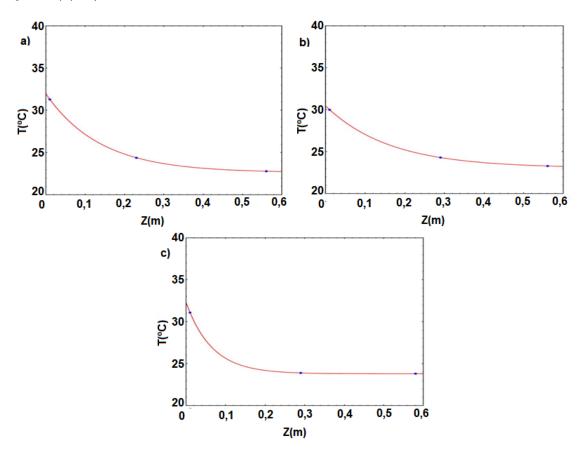


Figura 9: Gráfico da função perfil da temperatura inicial dos grãos de arroz no a) Cabo 1 b) Cabo 2 c) Cabo 3.

Fonte: Stark, 2018.

Tabela 5: Constantes da função F(z) em cada cabo.

Fonte: Stark,2018. Identificação C_0 C_1 C_2 C_3 9,31188 Cabo 1 -7,23951 0 22,6384 Cabo 2 -6,16646 23,0666 30 -1,40319 Cabo 3 -15,2809 -0.161737 23,7988 10

4.2.2 Condições do modelo T(r,t)

Para o modelo unidimensional T(r,t), utilizam-se as seguintes condições de contorno, onde a primeira significa que a temperatura interna tem que ser uma função limitada, logo:

$$T(r \to 0, t) < M, sendo M \in R;$$
 (26)

a segunda indica que a temperatura na lateral do silo é igual a temperatura ambiente:

$$T(R_s, 0) = T_{amb}; (27)$$

além disso, o problema tem a seguinte condição inicial:

$$T(r,0) = F(r). (28)$$

Sua condição inicial é dada por uma função perfil em r, F(r). Para obter os coeficientes dessa função foi utilizada a temperatura no sensor 1 em cada um dos cabos após o aquecimento.

4.2.3 Condições do modelo T(r, z, t)

Para o modelo bidimensional são utilizadas as mesmas condições de contorno para z e para r, conforme mostra a Figura 10. Devido ao valor do raio ser fixo em cada um dos sensores e cabo, a condição inicial utilizada fica igual a utilizada em T(z,t).

$$T(r, z, 0) = F(z).$$
 (29)

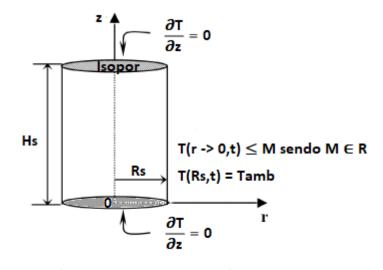


Figura 10: Esquema ilustrativo representando as condições do problema em z e r

Em seguida são resolvidos os modelos utilizando o método TL e SV. Devido a complexidade do modelo bidimensional, o mesmo foi resolvido utilizando o método GILTT.

4.3 Solução dos modelos matemáticos

4.3.1 Modelo unidimensional pelo método SV ao longo da coluna de grãos

Pelo método SV, pode-se definir o problema do modelo unidimensional T(z,t), equação (20), assumindo a temperatura interna como uma função dessa temperatura na coordenada (z), $\psi(z)$, e uma função da alteração da temperatura no decorrer do tempo (t), $\tau(t)$:

$$T(z,t) = \psi(z)\tau(t). \tag{30}$$

Utilizando a regra do produto também denominada "lei de Leibniz", pode-se transformar a Equação Diferencial Parcial (EDP) da equação (20) em EDO's de $\psi(z)$ e $\tau(t)$:

$$\frac{\partial^2 T}{\partial z^2} = \frac{d^2 \psi(z)}{dz^2} \tau(t); \tag{31}$$

$$\frac{\partial T}{\partial t} = \frac{d\tau(t)}{dt}\psi(z). \tag{32}$$

Substituindo os termos na equação (20), obtém-se:

$$\frac{d^2\psi(z)}{dz^2}\tau(t) = \frac{1}{\alpha}\frac{d\tau(t)}{dt}\psi(z). \tag{33}$$

Divide-se equação (33) por $\psi(z)\tau(t)$, para isolar as variáveis, obtendo:

$$\frac{1}{\psi(z)}\frac{d^2\psi(z)}{dz^2} = \frac{1}{\alpha}\frac{1}{\tau(t)}\frac{d\tau(t)}{dt}.$$
 (34)

Para que a igualdade (34) seja possível, ambos os termos devem ser iguais a uma constante, δ , chamada de constante de separação, assim têm-se:

$$\frac{d^2\psi(z)}{dz^2} = \delta\psi(z); \tag{35}$$

$$\frac{d\tau(t)}{dt} = \alpha \delta \tau(t). \tag{36}$$

A resolução da equação (36) se dá separando os termos e integrando ambos os lados da igualdade.

$$\frac{1}{\tau(t)}d\tau(t) = \alpha\delta dt; \tag{37}$$

$$\int \frac{1}{\tau(t)} d\tau(t) = \int \alpha \delta dt; \tag{38}$$

$$\frac{1}{\ln(\tau(t))} = \alpha \delta t + A_1. \tag{39}$$

De forma a isolar $\tau(t)$, utiliza-se a função exponencial, ficando da seguinte maneira a solução:

$$\tau(t) = Ae^{\alpha\delta t}; \tag{40}$$

onde, A é a constante e^{A_1} . Encontrada a solução da função que depende do tempo, em seguida resolve-se a equação (35), onde deve-se levar em consideração três casos, $\delta > 0$, $\delta = 0$ e $\delta < 0$. Onde a solução geral da EDO de segunda ordem é dada da seguinte maneira:

$$\psi(z) = Be^{\phi z}; \tag{41}$$

sendo ϕ as raízes da função definida como, $\phi = \pm \sqrt{\delta}$.

• Para $\delta > 0$

Denominando $\delta=\beta^2$, com isso têm-se duas raízes reais e distintas, $\phi_1=+\beta$ e $\phi_2=-\beta$.

$$\psi(z) = Be^{\beta z} + Ce^{-\beta z}.$$
(42)

Para utilizar as condições de contorno, foi derivada a função $\psi(z)$.

$$\psi'(z) = B\beta e^{\beta z} - C\beta e^{-\beta z}; \tag{43}$$

assim, utilizando a condição de contorno (22), tem-se:

$$\psi'(0) = 0 = B\beta e^{\beta 0} - C\beta e^{-\beta 0}; \tag{44}$$

logo, B = C. Em seguida utiliza-se a condição de contorno (23).

$$\psi'(H_s) = 0 = C\beta e^{\beta H_s} - C\beta e^{-\beta H_s}.$$
 (45)

A equação (45) só é possivel se C ou β for igual a 0, ou seja, uma solução trivial.

• Para $\delta = 0$

Têm-se duas raízes reais e iguais, $\phi_1 = \phi_2 = 0$.

$$\psi(z) = B + Cz. \tag{46}$$

Utilizando as condições de contorno, tem-se como autofunção associada uma função constante:

$$\psi(z) = B. \tag{47}$$

Com $\psi(z)$ sendo uma constante e delta sendo igual a zero, a temperatura interna do grão seria uma constante.

• Para $\delta < 0$

Denomina-se $\delta=-\beta^2$, resultando em raízes imaginárias conjugadas, $\phi_1=i\beta$ e $\phi_2=-i\beta$:

$$\psi(z) = B\cos(\beta z) + C\sin(\beta z). \tag{48}$$

Para utilizar as condições de contorno, foi derivada a função $\psi(z)$.

$$\psi'(z) = -\beta B \sin(\beta z) + \beta C \cos(\beta z); \tag{49}$$

assim, utilizando a condição de contorno (22), tem-se:

$$\psi'(0) = 0 = \beta C \tag{50}$$

assim, C=0. Substituindo C na equação (50) e utilizando a condição de contorno (23), encontra-se:

$$\psi'(H_s) = 0 = -\beta A \sin(\beta H_s); \tag{51}$$

para que a solução da equação (51) não seja trivial:

$$\sin(\beta H_s) = 0; (52)$$

dessa forma pode-se definir β como:

$$\beta = \left(\frac{n\pi}{H_{\circ}}\right);\tag{53}$$

com $n=1,2,3,\ldots$ Uma vez definida a constante da separação de variável, substitui-se a mesma nas funções $\psi(z)$ e $\tau(t)$, obtendo as soluções para as funções em z e t:

$$\psi(z) = \sum_{n=0}^{\infty} B \cos\left(\frac{n\pi}{H_s}z\right); \tag{54}$$

$$\tau(t) = Ae^{-\left(\frac{n\pi}{H_s}\right)^2 \alpha t}. (55)$$

Resolvidas as funções, junta-se as constantes A e B, denominando a constante resultante como D_n , definindo a solução do modelo unidimensional, T(z,t), como:

$$T(z,t) = \sum_{n=0}^{\infty} D_n \cos\left(\frac{n\pi}{H_s}z\right) e^{-\left(\frac{n\pi}{H_s}\right)^2 \alpha t}.$$
 (56)

Porém, o modelo ainda não está completamente resolvido, falta definir a constante D_n , a qual é obtida utilizando a condição inicial (24).

$$T(z,0) = F(z) = \sum_{n=0}^{\infty} D_n \cos\left(\frac{n\pi}{H_s}z\right); \tag{57}$$

onde utiliza-se a propriedade de ortogonalidade das autofunções cossenos para determinar D_n , assim:

$$D_n = \frac{1}{N(z)} \int_0^{H_s} F(z) \cos\left(\frac{n\pi}{H_s}z\right) dz; \tag{58}$$

na qual N(z) é expresso através da ortogonalidade das séries de cosseno de Fourier.

$$N(z) = \int_0^{H_s} \cos^2\left(\frac{n\pi}{H_s}z\right) dz. \tag{59}$$

Substituindo F(z) pela equação (25), e resolvendo as integrais das equações (58) e (59), encontra-se D_n como:

• Para n=0

$$D_0 = \frac{1}{H_s} \left(\frac{C_0 e^{C_2} (e^{C_1 H_s} - 1)}{C_1} + C_3 H_s \right); \tag{60}$$

• Para n = 1, 2, 3...

$$D_{1,2,3...} = \frac{2}{H_s} \left(\frac{C_0 C_1 e^{C_2} H_s^2 [(-1)^n e^{C_1 H_s} - 1]}{C_1^2 H_s^2 + n^2 \pi^2} \right).$$
 (61)

Por fim, substituindo a constante encontrada na equação (56), tem-se a solução do modelo unidimensional T(z,t) pelo método SV:

$$T(z,t) = \frac{1}{H_s} \left(\frac{C_0 e^{C_2} (e^{C_1 H_s} - 1)}{C_1} + C_3 H_s \right) \cos \left(\frac{n\pi}{H_s} z \right) e^{-\left(\frac{n\pi}{H_s}\right)^2 \alpha t} + \tag{62}$$

$$\sum_{n=1}^{\infty} \frac{2}{H_s} \left(\frac{C_0 C_1 e^{C_2} H_s^2 [(-1)^n e^{C_1 H_s} - 1]}{C_1^2 H_s^2 + n^2 \pi^2} \right) \cos \left(\frac{n\pi}{H_s} z \right) e^{-\left(\frac{n\pi}{H_s}\right)^2 \alpha t}.$$

Em seguida foi resolvido o mesmo modelo utilizando o método TL, com o intuito de observar qual dos dois é mais preciso no cálculo da temperatura interna da massa de grãos de arroz no silo, utilizando as mesmas condições definidas anteriormente.

4.3.2 Modelo unidimensional pelo método TL ao longo da coluna de grãos

Para resolver o modelo unidimensional T(z,t), equação (20), inicialmente aplica-se a transformada de Laplace na variável temporal (t), definida por:

$$\mathcal{L}\{T(z,t), t \to s\} = \overline{T}(z,s),\tag{63}$$

ficando da seguinte maneira:

$$\frac{1}{\alpha}(s\overline{T}(z,s) - \overline{T}(z,0)) = \frac{d^2\overline{T}}{dz^2}.$$
 (64)

Note que a equação (64) é uma EDO de segunda ordem não homogênea. Reescrevendo a equação para isolar a condição inicial (24), obtém-se:

$$-\frac{1}{\alpha}\overline{T}(z,0) = -\frac{s}{\alpha}\overline{T}(z,s) + \frac{d^2\overline{T}}{dz^2}.$$
 (65)

A solução geral dessa EDO de segunda ordem não homogênea é representada como:

$$\overline{T}(z,s) = \overline{T}_h(z,s) + \overline{T}_p(z,s); \tag{66}$$

sendo \overline{T}_h a solução homogênea e \overline{T}_p a solução particular. Para obter a solução \overline{T}_h resolve-se a equação homogênea associada, apresentada a seguir:

$$0 = -\frac{s}{\alpha} \overline{T_h}(z, s) + \frac{d^2 \overline{T}}{dz^2}.$$
 (67)

A solução dessa equação tem a seguinte forma:

$$\overline{T_h}(z,s) = Ae^{\phi z}; \tag{68}$$

sendo ϕ definido como:

$$\phi^2 - \frac{s}{\alpha} = 0. ag{69}$$

Substituindo o valor de ϕ , pode-se definir a solução homogênea como:

$$\overline{T_h}(z,s) = Ae^{\sqrt{\frac{s}{\alpha}}z} + Be^{-\sqrt{\frac{s}{\alpha}}z}.$$
 (70)

Encontrada a solução homogênea, o próximo passo é obter a solução particular, que pode ser solucionada através do método de variação de parâmetros:

$$-\frac{1}{\alpha}\overline{T}_p(z,0) = -\frac{s}{\alpha}\overline{T}_p(z,s) + \frac{d^2\overline{T}_p}{dz^2};$$
(71)

$$\overline{T_p}(z,s) = v_1 e^{\sqrt{\frac{s}{\alpha}}z} + v_2 e^{-\sqrt{\frac{s}{\alpha}}z}; \tag{72}$$

onde v_1 e v_2 são calculados através das condições do método da variação de parâmetros, nesse caso, as condições do método para resolvê-la, são:

$$0 = v_1' e^{\sqrt{\frac{s}{\alpha}}z} + v_2' e^{-\sqrt{\frac{s}{0a}}z}; \tag{73}$$

$$-\frac{1}{\alpha}\overline{T_p}(z,0) = v_1' \frac{de^{\sqrt{\frac{s}{\alpha}}z}}{dz} + v_2' \frac{de^{-\sqrt{\frac{s}{\alpha}}z}}{dz}.$$
 (74)

Substituindo a condição inicial (25) na equação (74) e calculando a derivada em relação a z, obtém-se a equação:

$$-\frac{1}{\alpha}(C_0 e^{C_1 z + C_2} + C_3) = \sqrt{\frac{s}{\alpha}} v_1' e^{\sqrt{\frac{s}{\alpha}} z} - \sqrt{\frac{s}{\alpha}} v_2' e^{-\sqrt{\frac{s}{\alpha}} z}.$$
 (75)

Resolvendo o sistema gerado pelas equações (73) e (75), obtêm-se os valores de v_1 ' e v_2 ':

$$v_1' = -\frac{e^{-\sqrt{\frac{s}{\alpha}}z}(C_0e^{C_1z + C_2} + C_3)}{2\alpha\sqrt{\frac{s}{\alpha}}};$$
(76)

$$v_2' = \frac{e^{-\sqrt{\frac{s}{\alpha}}z}(C_0e^{C_1z + C_2} + C_3)}{2\alpha\sqrt{\frac{s}{\alpha}}}.$$
 (77)

Aplicando a integração nas equações (76) e (77), chega-se às expressões de v_1 e v_2 , apresentadas a seguir:

$$v_{1} = \frac{e^{-\sqrt{\frac{s}{\alpha}}z} \left(\sqrt{\frac{s}{\alpha}} (C_{0}e^{C_{1}z+C_{2}} + C_{3}) - C_{1}C_{3}\right)}{2s\left(\sqrt{\frac{s}{\alpha}} - C_{1}\right)};$$
(78)

$$v_2 = \frac{e^{\sqrt{\frac{s}{\alpha}}z} \left(\sqrt{\frac{s}{\alpha}} (C_0 e^{C_1 z + C_2} + C_3) + C_1 C_3\right)}{2s \left(\sqrt{\frac{s}{\alpha}} + C_1\right)}.$$
 (79)

Portanto, a solução particular obtida é:

$$\overline{T_p}(z,s) = \frac{C_0 s e^{C_1 z + C_2} + C_3 (s - C_1^2 \alpha)}{s(s - C_1^2 \alpha)}.$$
(80)

Somando as soluções homogênea e particular obtidas nas equações (70) e

(80), tem-se a solução geral transformada:

$$\overline{T}(z,s) = Ae^{\sqrt{\frac{s}{\alpha}}z} + Be^{-\sqrt{\frac{s}{\alpha}}z} + \frac{C_0se^{C_1z + C_2} + C_3(s - C_1^2\alpha)}{s(s - C_1^2\alpha)}.$$
(81)

Contudo, ainda não foram determinadas as constantes A e B presentes na equação (81), desta forma, são utilizadas as condições de contorno (22) e (23) para encontrá-las:

$$\overline{T}_{z}(z,s) = \sqrt{\frac{s}{\alpha}} A e^{\sqrt{\frac{s}{\alpha}}z} - \sqrt{\frac{s}{\alpha}} B e^{-\sqrt{\frac{s}{\alpha}}z} + \frac{C_{0}C_{1}e^{C_{1}z+C_{2}}}{(s-C_{1}^{2}\alpha)};$$
(82)

$$\overline{T}_z(0,s) = 0 = \sqrt{\frac{s}{\alpha}}A - \sqrt{\frac{s}{\alpha}}B + \frac{C_0C_1e^{C_2}}{(s - C_1^2\alpha)};$$
 (83)

$$\overline{T}_z(H_s, s) = 0 = \sqrt{\frac{s}{\alpha}} A e^{\sqrt{\frac{s}{\alpha}} H_s} - \sqrt{\frac{s}{\alpha}} B e^{-\sqrt{\frac{s}{\alpha}} H_s} + \frac{C_0 C_1 e^{C_1 H_s + C_2}}{(s - C_1^2 \alpha)}.$$
 (84)

Resolvendo o sistema, determina-se A e B como:

$$A = \frac{C_0 C_1 e^{C_2} \left(1 - e^{H_s \left(\sqrt{\frac{s}{\alpha}} + C_1 \right)} \right)}{\left(\sqrt{\frac{s}{\alpha}} (e^{\sqrt{\frac{s}{\alpha}} 2H_s} - 1) \right) (s - C_1^2 \alpha)}; \tag{85}$$

$$B = \frac{C_0 C_1 e^{C_2 + \sqrt{\frac{s}{\alpha}} H_s} \left(e^{\sqrt{\frac{s}{\alpha}} H_s} - e^{H_s C_1} \right)}{\left(\sqrt{\frac{s}{\alpha}} (e^{\sqrt{\frac{s}{\alpha}} 2H_s} - 1) \right) (s - C_1^2 \alpha)}.$$
 (86)

Com as constantes determinadas, a solução geral transformada está bem determinada:

$$\overline{T}(z,s) = \frac{C_0 C_1 e^{C_2} \left(1 - e^{H_s \left(\sqrt{\frac{s}{\alpha}} + C_1\right)}\right)}{\left(\sqrt{\frac{s}{\alpha}} \left(e^{\sqrt{\frac{s}{\alpha}} 2H_s} - 1\right)\right) \left(s - C_1^2 \alpha\right)} \left(e^{\sqrt{\frac{s}{\alpha}} z}\right) +$$

$$\frac{C_{0}C_{1}e^{C_{2}+\sqrt{\frac{s}{\alpha}}H_{s}}\left(e^{\sqrt{\frac{s}{\alpha}}H_{s}}-e^{H_{s}C_{1}}\right)}{\left(\sqrt{\frac{s}{\alpha}}\left(e^{\sqrt{\frac{s}{\alpha}}2H_{s}}-1\right)\right)\left(s-C_{1}^{2}\alpha\right)}\left(e^{-\sqrt{\frac{s}{\alpha}}z}\right)+\frac{C_{0}se^{C_{1}z+C_{2}}+C_{3}\left(s-C_{1}^{2}\alpha\right)}{s\left(s-C_{1}^{2}\alpha\right)}.$$
(87)

Porém, para obter a resolução do modelo T(z,t) em função do tempo, é necessário aplicar a transformada inversa de Laplace na equação (87). Devido a complexidade em determinar os pontos de singularidade para a inversão, utiliza-se o método numérico de quadratura Gaussiana (BURDEN; FAIRES, 2011) para fazer a inversão numérica, o qual pode ser representada por:

$$T(z,t) = \mathcal{L}^{-1}\{\overline{T}(z,t), s \to t\} = \sum_{i=1}^{n} \left(\frac{P_i}{t}\right) w_i T\left(z, \frac{P_i}{t}\right); \tag{88}$$

onde P_i e w_i são as raízes e pesos da quadratura Gaussiana, respectivamente. Em seguida, após a resolução da modelagem unidimensional T(z,t), os mesmos métodos são aplicados ao plano radial, T(r,t).

4.3.3 Modelo unidimensional pelo método SV ao longo do raio do silo

Pelo método SV, podemos resolver o modelo unidimensional, T(r,t), definindo a temperatura interna como o produto de duas funções, uma dependendo somente da variável espacial e a outra dependendo da variável temporal, conforme equação abaixo:

$$T(r,t) = \xi(r)\tau(t). \tag{89}$$

De forma a transformar as condições de contorno nulas, utiliza-se a seguinte troca de variável:

$$W(r,t) = T(r,t) - T_{amb}.$$
 (90)

Assim, as condições de contorno ficam:

$$W(r \to 0, t) \le M - T_{amb}, sendo \ M \in R;$$
 (91)

$$W(R_s, t) = 0; (92)$$

e a seguinte condição inicial:

$$W(r,0) = F(r) - T_{amb}. (93)$$

Da mesma forma que foi resolvido T(z,t), utiliza-se a regra do produto transformando a EDP em um conjunto de EDO's de $\xi(r)$ e $\tau(t)$:

$$\frac{\partial^2 W}{\partial r^2} + \frac{1}{r} \frac{\partial W}{\partial r} = \frac{d^2 \xi(r)}{d^2 r} + \frac{1}{r} \frac{d \xi(r)}{d r} \tau(t); \tag{94}$$

$$\frac{\partial W}{\partial t} = \frac{d\tau(t)}{dt}\xi(r). \tag{95}$$

Substituindo os termos na equação (19), obtém-se:

$$\frac{d^2\xi(r)}{d^2r} + \frac{1}{r}\frac{d\xi(r)}{dr}\tau(t) = \frac{d\tau(t)}{dt}\xi(r). \tag{96}$$

Para isolar as variáveis, dividiu-se ambos os lados da equação (96) por $\xi(r)\tau(t)$,

ficando da seguinte forma:

$$\frac{1}{\xi(r)} \left(\frac{d^2 \xi(r)}{d^2 r} + \frac{1}{r} \frac{d\xi(r)}{dr} \right) = \frac{1}{\tau(t)} \frac{1}{\alpha} \frac{d\tau(t)}{dt}. \tag{97}$$

Porém, para que essa igualdade seja possível, ambas as funções devem ser igual a uma constante, denominada δ , definindo a EDO, como:

$$\frac{d^2\xi(r)}{d^2r} + \frac{1}{r}\frac{d\xi(r)}{dr} = \delta\xi(r); \tag{98}$$

$$\frac{d\tau(t)}{dt} = \alpha \delta \tau(t). \tag{99}$$

A resolução da EDO (99) se dá, separando os termos e integrando ambos os lados da igualdade:

$$\frac{1}{\tau(t)}d\tau(t) = \alpha\delta dt; \tag{100}$$

$$\int \frac{1}{\tau(t)} d\tau(t) = \int \alpha \delta dt; \tag{101}$$

$$\frac{1}{\ln(\tau(t))} = \alpha \rho t + C_1. \tag{102}$$

De forma a isolar $\tau(t)$, utiliza-se a função exponencial, ficando da seguinte maneira a solução:

$$\tau(t) = Ce^{\alpha \rho t}; \tag{103}$$

onde C é a constante e^{C_1} . Uma vez resolvida a função temporal, resolve-se a função em r (98). Porém, primeiro deve-se transformá-la em uma função de Bessel de ordem zero:

$$r^{2}\frac{d^{2}\xi(r)}{d^{2}r} + r\frac{d\xi(r)}{dr} + (\beta^{2}r^{2})\xi(r) = 0;$$
(104)

sendo β , uma constante. Para isso, foi multiplicado ambos os lados da EDO (98) por r^2 :

$$r^{2}\frac{d^{2}\xi(r)}{d^{2}r} + r\frac{d\xi(r)}{dr} + (-r^{2}\delta)\xi(r) = 0;$$
(105)

logo, para que a equação (105) se torne uma função de Bessel de ordem zero, $\delta = -\beta^2$. Então, a solução é dada da seguinte forma:

$$\xi(r) = AJ_0(r\beta) + BY_0(r\beta); \tag{106}$$

onde, J_0 é a função de Bessel de primeira espécie de ordem zero, e Y_0 de segunda espécie de ordem zero.

Utilizando a condição de contorno com a nova variável (91), segue que para

W(r,t) ser limitado quando o raio tender a zero, descarta-se a função de segunda espécie de Bessel, Y_0 , logo, B=0.

$$\xi(r) = AJ_0(r\beta). \tag{107}$$

Em seguida, é utilizada a condição de contorno (92).

$$\xi(R_s) = 0 = AJ_0(R_s\beta).$$
 (108)

Para que isso seja possível, a função de Bessel tem que ser igual aos zeros da função, nomeados de $R_{0,n}$. Assim, pode-se definir β como:

$$\beta_n = \frac{R_{0,n}}{R_c}. (109)$$

Definido β , pode-se reescrever as soluções de $\tau(t)$, representado pela equação (89), e $\xi(r)$, representado pela equação (107). Em seguida, denomina-se D_n a junção das constantes A e C. Dessa forma, a solução do modelo unidimensional T(r,t), fica:

$$W(r,t) = \sum_{n=1}^{\infty} D_n J_{0,n} \left(r \frac{R_{0,n}}{R_s} \right) e^{-\left(\frac{R_{0,n}}{R_s}\right)^2 \alpha t}.$$
 (110)

Por fim, precisa-se obter o valor da constante D_n , na qual utiliza-se a condição inicial (93) para encontrá-la:

$$W(r,0) = F(r) - T_{amb} = \sum_{n=1}^{\infty} D_n J_{0,n} \left(r \frac{R_{0,n}}{R_s} \right).$$
 (111)

De forma a encontrar o valor de \mathcal{D}_n utiliza-se as propriedades de ortogonalidade da função de Bessel, dessa forma:

$$D_n = \frac{1}{N(r)} \int_0^{R_s} (F(r) - T_{amb}) r J_{0,n} \left(r \frac{R_{0,n}}{R_s} \right) dz; \tag{112}$$

na qual, N(r) é norma da função de Bessel em r, definida como:

$$N(r) = \int_0^{R_s} r J_{0,n}^2 \left(r \frac{R_{0,n}}{R_s} \right) dr.$$
 (113)

Resolvendo as integrais da equação (112) e calculando a norma da função de Bessel, N(r), a constante D_n é determinada como:

$$D_n = \frac{2}{R_s^2 [J_0(R_{0,n})^2 + J_1(R_{0,n})^2]} \left(\frac{(F(r) - T_{amb})R_s J_1(R_{0,n})}{\beta_n} \right).$$
 (114)

Definida D_n , todas as variavéis foram encontradas. Por fim, substitui-se D_n na

equação (110), e retorna-se à variável T. Dessa forma, a equação da temperatura interna está bem solucionada, a qual pode ser definida como:

$$T(r,t) = T_{amb} + \sum_{n=1}^{\infty} \frac{2(F(r) - T_{amb})J_1(R_{0,n})}{R_s \beta_n [J_0(R_{0,n})^2 + J_1(R_{0,n})^2]} J_{0,n} \left(r \frac{R_{0,n}}{R_s}\right) e^{-\left(\frac{R_{0,n}}{R_s}\right)^2 \alpha t}.$$
 (115)

Solucionado o modelo unidimensional T(r,t), equação (19), pelo método SV, como forma de comparar dois métodos diferentes, soluciona-se o mesmo modelo aplicando o método TL.

4.3.4 Modelo unidimensional pelo método TL ao longo do raio do silo

Para resolver o modelo T(r,t), inicialmente aplica-se a transformada de Laplace na variável temporal (t), definida por:

$$\mathcal{L}\{T(r,t), t \to s\} = \overline{T}(r,s). \tag{116}$$

Ficando da seguinte maneira:

$$\frac{1}{\alpha}(s\overline{T}(r,s) - \overline{T}(r,0)) = \frac{d^2\overline{T}}{dr^2} + \frac{1}{r}\frac{d\overline{T}}{dr}.$$
 (117)

Assim como pelo método SV, para transformar as condições de contorno nulas, utiliza-se a seguinte troca de variável:

$$W(r,t) = T(r,t) - T_{amb};$$
 (118)

assim, as condições de contorno ficam:

$$W(r \to 0, t) \le M - T_{amb}, sendo \quad M \in R;$$
 (119)

$$W(R_s, t) = 0;$$
 (120)

e a seguinte condição inicial:

$$W(r,0) = F(r) - T_{amb}. (121)$$

Reescrevendo a equação para utilizar a condição inicial (121), obtém-se:

$$-\frac{1}{\alpha}\overline{W}(r,0) = -\frac{s}{\alpha}\overline{W}(r,s) + \frac{d^2\overline{W}}{dr^2} + \frac{1}{r}\frac{d\overline{W}}{dr}.$$
 (122)

A solução geral dessa EDO não homogênea é representada como:

$$\overline{W}(r,s) = \overline{W}_h(r,s) + \overline{W}_p(r,s); \tag{123}$$

sendo, \overline{W}_h a solução homogênea e \overline{W}_p a solução particular. Para obter a solução \overline{W}_h , resolve-se a equação homogênea associada, apresentada a seguir:

$$0 = -\frac{s}{\alpha}\overline{W}_h(r,s) + \frac{d^2\overline{W}}{dr^2} + \frac{1}{r}\frac{d\overline{W}}{dr}.$$
 (124)

Uma das formas de resolver a EDO (124), é transformá-la em uma função de Bessel de ordem zero:

$$r^{2}\frac{d^{2}\overline{W}}{dr^{2}} + r\frac{d\overline{W}}{dr} + \beta^{2}r^{2}\overline{W}_{h}(r,s) = 0;$$

$$(125)$$

sendo β , uma constante. Logo, foi multiplicado ambos os lados da EDO (124) por r^2 :

$$0 = -\frac{s}{\alpha}r^2\overline{W}_h(r,s) + r^2\frac{d^2\overline{W}}{dr^2} + r\frac{d\overline{W}}{dr};$$
(126)

Dessa forma, para que a equação (126) se torne uma função de Bessel de ordem zero, $-\frac{s}{\alpha}=\beta^2$. Assim, a solução da função de Bessel é dada por:

$$\overline{W}_h(r,s) = AJ_0(r\beta) + BY_0(r\beta); \tag{127}$$

onde, J_0 é a função de Bessel de primeira espécie de ordem zero, e Y_0 de segunda espécie de ordem zero.

Definida a solução homogênea, a solução particular é encontrada ao substituir a condição inicial (121) e $-\frac{s}{\alpha}$ por β^2 , ficando da seguinte maneira:

$$-\frac{1}{\alpha}(F(r) - T_{amb}) = \beta^2 \overline{W}_p(r, s) + \frac{d^2 \overline{W}}{dr^2} + \frac{1}{r} \frac{d\overline{W}}{dr}; \tag{128}$$

na qual sua solução é uma constante qualquer, denominada γ :

$$\overline{W}_p(r,s) = \gamma. \tag{129}$$

Substituindo \overline{W}_p na equação (128), obtém-se o valor da constante γ :

$$-\frac{1}{\alpha}(F(r) - T_{amb}) = \beta^2 \gamma; \tag{130}$$

assim, pode-se definir γ , como:

$$\gamma = \frac{(F(r) - T_{amb})}{s};\tag{131}$$

logo,

$$\overline{W_p}(r,s) = \frac{(F(r) - T_{amb})}{s}. (132)$$

Somando ambas as soluções homogênea e particular, obtidas nas equações (127) e (132), tem-se a solução geral transformada:

$$\overline{W}(r,s) = AJ_0(r\beta) + BY_0(r\beta) + \frac{(F(r) - T_{amb})}{s}.$$
(133)

Contudo, ainda falta definir as constantes A e B. Para defini-las, utiliza-se a condição de contorno (119), a qual diz que para W(r,t) ser limitado quando r tender a zero é necessário descartar a função de segunda espécie de Bessel, logo, B=0:

$$\overline{W}(r,s) = AJ_0(r\beta) + \frac{(F(r) - T_{amb})}{s}.$$
(134)

Em seguida, utiliza-se a condição (120):

$$\overline{W}(R_s, s) = 0 = AJ_0(R_s\beta) + \frac{(F(r) - T_{amb})}{s}.$$
(135)

Dessa forma, podemos definir a constante A como:

$$A = -\frac{(F(r) - T_{amb})}{sJ_0(R_s\beta)}. (136)$$

Após encontrada a constante A, substitui-se na equação (134) definindo assim a solução transformada da temperatura interna como:

$$\overline{W}(r,s) = -\frac{(F(r) - T_{amb})}{sJ_0(-R_s\sqrt{\frac{s}{\alpha}})}J_0\left(-r\sqrt{\frac{s}{\alpha}}\right) + \frac{(F(r) - T_{amb})}{s}.$$
(137)

Com as constantes definidas a solução geral transformada está finalizada. Porém, para obter W(r,t) é necessário aplicar a transformada inversa de Laplace na equação (137) e em seguida retornar à variável T. Devido à complexidade em determinar os pontos de singularidade para a inversão, foi utilizado o método numérico de quadratura Gaussiana, o qual pode ser representado por:

$$T(r,t) = T_{amb} + \mathcal{L}^{-1}\{\overline{W}(r,s), s \to t\}$$
(138)

Por fim, para uma melhor precisão na predição da temperatura interna, foram resolvidos os modelos bidimensionais em dois métodos distintos, SV e GILTT.

4.3.5 Modelo bidimensional pelo método SV ao longo do raio do silo e altura da massa de grãos

A resolução da temperatura interna do modelo bidimensional T(r,z,t), equação (21), pelo método SV, pode ser definida pelo produto de três funções, uma função

relacionada a altura da massa de grãos (z), raio do silo (r) e no decorrer do tempo (t).

$$T(r, z, t) = \xi(r)\psi(z)\tau(t). \tag{139}$$

As condições de contorno são iguais as utilizadas no modelo unidimensional. Logo para, $0 < r < R_s$.

$$\left. \frac{\partial T}{\partial z} \right|_{z=0} = 0; \tag{140}$$

$$\left. \frac{\partial T}{\partial z} \right|_{z=H_s} = 0. \tag{141}$$

Enquanto as condições em r, para $0 < z < H_s$, são:

$$T(r \to 0, z, t) \le M, sendo \ M \in R;$$
 (142)

$$T(R_s, z, 0) = T_{amb}.$$
 (143)

Para que as condições de contorno relacionadas ao raio sejam nulas, é necessária uma mudança de variável, assim como no modelo unidimensional. Assim, define-se:

$$W(r, z, t) = T(r, z, t) - T_{amb}. (144)$$

Dessa forma, as condições de contorno transformadas ficam:

$$\left. \frac{\partial W}{\partial z} \right|_{z=0} = 0; \tag{145}$$

$$\left. \frac{\partial W}{\partial z} \right|_{z=H_s} = 0; \tag{146}$$

$$W(r \to 0, z, t) \le M - T_{amb}, sendo \quad M \in R;$$
 (147)

$$W(R_s, z, t) = 0;$$
 (148)

e para a condição inicial, utiliza-se a função perfil (z), conforme equação (25), devido ao raio durante os experimentos não se alterar.

$$W(r, z, 0) = F(z) - T_{amb}. (149)$$

Definida as condições, utiliza-se a regra do produto transformando a EDP em EDO's:

$$\frac{\partial^2 W}{\partial r^2} + \frac{1}{r} \frac{\partial W}{\partial r} = \left(\frac{d^2 \xi(r)}{dr^2} + \frac{1}{r} \frac{d \xi(r)}{dr}\right) \tau(t) \psi(z); \tag{150}$$

$$\frac{\partial^2 W}{\partial z^2} = \frac{d^2 \psi(z)}{dz^2} \tau(t) \xi(r); \tag{151}$$

$$\frac{\partial W}{\partial t} = \frac{d\tau(t)}{dt} \xi(r) \psi(z). \tag{152}$$

Substituindo os termos na equação (21), obtém-se:

$$\left(\frac{d^2\xi(r)}{dr^2} + \frac{1}{r}\frac{d\xi(r)}{dr}\right)\tau(t)\psi(z) + \frac{d^2\psi(z)}{dz^2}\tau(t)\xi(r) = \frac{d\tau(t)}{dt}\xi(r)\psi(z). \tag{153}$$

De forma a isolar as variáveis, divide-se ambos os lados da equação (153) por $\xi(r)\psi(z)\tau(t)$, ficando da seguinte forma:

$$\frac{1}{\xi(r)} \left(\frac{d^2 \xi(r)}{dr^2} + \frac{1}{r} \frac{d\xi(r)}{dr} \right) + \frac{1}{\psi(z)} \frac{d^2 \psi(z)}{dz^2} = \frac{1}{\tau(t)} \frac{1}{\alpha} \frac{d\tau(t)}{dt}. \tag{154}$$

Porém, para que essa igualdade seja possível, ambos lados da equação têm que ser igual a uma constante, denominada δ , encontrando as seguintes EDO's:

$$\frac{1}{\xi(r)} \left(\frac{d^2 \xi(r)}{dr^2} + \frac{1}{r} \frac{d\xi(r)}{dr} \right) + \frac{1}{\psi(z)} \frac{d^2 \psi(z)}{dz^2} = \delta;$$
 (155)

$$\frac{d\tau(t)}{dt} = \alpha \delta \tau(t). \tag{156}$$

De forma a separar as variáveis z e r, novamente considera-se uma constante na qual ambas as funções sejam iguais, denominada γ , definindo assim as EDO's de $\xi(r)$ e $\psi(z)$, como:

$$\frac{d^{2}\xi(r)}{dr^{2}} + \frac{1}{r}\frac{d\xi(r)}{dr} = \gamma\xi(r);$$
(157)

$$\frac{d^2\psi(z)}{dz^2} = \beta\psi(z);\tag{158}$$

onde, $(\beta = \delta - \gamma)$. A resolução da equação em relação a função tempo (156) se dá, separando os termos e integrando ambos os lados da igualdade:

$$\frac{1}{\tau(t)}d\tau(t) = \alpha\delta dt; \tag{159}$$

$$\int \frac{1}{\tau(t)} d\tau(t) = \int \alpha \delta dt; \tag{160}$$

$$\frac{1}{\ln(\tau(t))} = \alpha \delta t + C_1. \tag{161}$$

De forma a isolar $\tau(t)$, utiliza-se a função exponencial, ficando da seguinte maneira a solução:

$$\tau(t) = Ae^{\alpha\rho t}; \tag{162}$$

onde A é a constante e^{C_1} .

A solução da função em z da equação (158) é determinada levando em consi-

deração três casos, $\beta > 0$, $\beta = 0$ e $\beta < 0$, onde a solução geral da EDO de segunda ordem é dada da seguinte maneira:

$$\psi(z) = Be^{\phi z}; \tag{163}$$

sendo ϕ as raízes da função definida como $\phi=\pm\sqrt{\beta}$.

• Para $\beta > 0$

Denomina-se $\beta=\zeta^2$, logo têm-se duas raízes reais e distintas, $\phi_1=+\zeta$ e $\phi_2=-\zeta$. Dessa forma a solução geral fica:

$$\psi(z) = Be^{\zeta z} + Ce^{-\zeta z}. ag{164}$$

Para utilizar as condições de contorno, deriva-se a função $\psi(z)$, ficando da seguinte maneira:

$$\psi'(z) = B\zeta e^{\zeta z} - C\zeta e^{-\zeta z}. ag{165}$$

Em seguida, utiliza-se a condição de contorno (145):

$$\psi'(0) = 0 = B\zeta e^{\zeta 0} - C\zeta e^{-\zeta 0}; \tag{166}$$

logo, B=C. Usando a condição de contorno (146), adotando B=C, obtém-se:

$$\psi'(H_s) = 0 = B\zeta e^{\zeta H_s} - C\zeta e^{-\zeta H_s}. \tag{167}$$

A solução da equação (167) só é possivel se B ou ζ for igual a 0, ou seja, uma solução trivial.

• Para $\beta = 0$

Nesse caso, têm-se duas raízes reais e iguais, $\phi_1 = \phi_2 = 0$.

$$\psi(z) = A + Bz. \tag{168}$$

Porém, ao derivar-se a equação (168) para utilizar as condições de contorno, nota-se que não é possível encontrar uma solução para este caso, visto que z e H_s teriam que ser iguais a zero.

$$\psi'(z) = B; \tag{169}$$

$$\psi'(0) = 0 = B; \tag{170}$$

logo, B=0, chegando a uma solução constante, e por consequência tendo uma temperatura interna constante em relação a z.

$$\psi(z) = A. \tag{171}$$

• Para $\beta < 0$

Denomina-se $\beta=-\zeta^2$, com isso têm-se duas raízes imaginárias e distintas, $\phi_1=i\zeta$ e $\phi_2=-i\zeta$. Assim, a solução geral fica:

$$\psi(z) = B\cos(\zeta z) + C\sin(\zeta z). \tag{172}$$

Para utilizar as condições de contorno, novamente foi deriva-se a função $\psi(z)$.

$$\psi'(z) = -\zeta B \sin(\zeta z) + \zeta C \cos(\zeta z). \tag{173}$$

Dessa forma, ao usar a condição de contorno (145), obtém-se:

$$\psi'(0) = 0 = \zeta C; \tag{174}$$

ou seja, C=0, Aplicando a condição (146), tem-se.

$$\psi'(H_s) = 0 = -\zeta B \sin(\zeta H_s). \tag{175}$$

Assim, para que a solução da equação (175) não seja trivial:

$$\sin(\zeta H_s) = 0. \tag{176}$$

Dessa forma, definimos (como:

$$\zeta = \left(\frac{n\pi}{H_s}\right). \tag{177}$$

Em seguida, resolve-se a função em relação a r. Uma forma de resolver a EDO (157) é transformando-a em uma função de Bessel de ordem zero:

$$r^{2}\frac{d^{2}\xi(r)}{dr^{2}} + r\frac{d\xi(r)}{dr} + (\sigma^{2}r^{2})\xi(r) = 0;$$
(178)

sendo σ , uma constante. Para isso, multiplica-se ambos os lados da EDO (157) por r^2 :

$$r^{2}\frac{d^{2}\xi(r)}{dr^{2}} + r\frac{d\xi(r)}{dr} + (-r^{2}\gamma)\xi(r) = 0;$$
(179)

logo, $\gamma = -\sigma^2$. Transformado a equação em uma função de Bessel, sua solução é

dada por:

$$\xi(r) = DJ_0(r\sigma) + EY_0(r\sigma); \tag{180}$$

onde, J_0 é a função de Bessel de primeira espécie de ordem zero e Y_0 de segunda espécie de ordem zero.

Utilizando a condição de contorno (147), segue que para W(r, z, t) ser limitado quando r tender a zero, necessita-se descartar a função de segunda espécie de Bessel, logo, E=0.

$$\xi(r) = DJ_0(r\sigma). \tag{181}$$

Em seguida, é utilizada a condição de contorno (148).

$$\xi(R_s) = 0 = DJ_0(R_s\sigma).$$
 (182)

Dessa forma, pode-se definir a constante σ como os zeros da função de Bessel, definidos como $R_{0,m}$ dividido pelo raio máximo do silo:

$$\sigma_m = \frac{R_{0,m}}{R_s}. (183)$$

Definida ambas as constantes, define-se δ como:

$$\delta = -\left(\frac{R_{0,m}}{R_s}\right)^2 - \left(\frac{n\pi}{H_s}\right)^2. \tag{184}$$

Após juntar as constantes A, B e D, denominando a constante resultante como $F_{n,m}$, pode-se definir W(r,z,t) como:

$$W(r,z,t) = \sum_{n=0}^{\infty} \sum_{m=1}^{\infty} F_{n,m} J_{0,m} \left(r \frac{R_{0,m}}{R_s}\right) \cos\left(\frac{n\pi}{H_s} z\right) e^{\left(-\frac{R_{0,m}}{R_s}^2 - \frac{n\pi}{H_s}^2\right)\alpha t}.$$
 (185)

Porém ainda falta definir a constante $F_{n,m}$, para isso utiliza-se a condição inicial (149) e tem-se:

$$W(r,z,0) = F(z) - T_{amb} = \sum_{n=0}^{\infty} \sum_{m=1}^{\infty} F_n J_{0,m} \left(r \frac{R_{0,m}}{R_s}\right) \cos\left(\frac{n\pi}{H_s}z\right).$$
 (186)

A constante $F_{n,m}$ pode ser definida através da ortogonalidade das funções de Bessel e de Cossenos:

$$F_{n,m} = \frac{1}{N(r)N(z)} \int_0^{R_s} \int_0^{H_s} (F(z) - T_{amb}) r J_{0,m} \left(r \frac{R_{0,m}}{R_s} \right) \cos\left(\frac{n\pi}{H_s} z\right) dz dr; \tag{187}$$

na qual, N(z) é expresso através da ortogonalidade das séries de cosseno de Fourier:

$$N(z) = \int_0^{H_s} \cos^2\left(\frac{n\pi}{H_s}z\right) dz; \tag{188}$$

e N(r) é norma da função de Bessel em r:

$$N(r) = \int_{1}^{R_s} r J_{0,m}^2 \left(r \frac{R_{0,m}}{R_s} \right) dr.$$
 (189)

Resolvendo as integrais da equação (187) em relação a z e r, e solucionando as equações (188) e (189), define-se $F_{n,m}$ como:

•
$$n = 0$$

$$F_{0,m} = \frac{1}{H_s} \frac{2}{R_s^2 [J_0(R_{0,m})^2 + J_1(R_{0,m})^2]} \left(\frac{C_0 e^{C_2} (e^{C_1 H_s} - 1)}{C_1} + ((C_3 - T_{amb}) H_s) \right) \frac{R_s^2 J_1(R_{0,m})}{R_{0,m}};$$
(190)

• n = 1, 2, 3...

$$F_{n,m} = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{2}{H_s} \frac{2}{R_s^2 [J_0(R_{0,m})^2 + J_1(R_{0,m})^2]} \left(\frac{C_0 C_1 e^{C_2} H_s^2 [(-1)^n e^{C_1 H_s} - 1]}{C_1^2 H_s^2 + n^2 \pi^2} \right) \frac{R_s^2 J_1(R_{0,m})}{R_{0,m}}. \tag{191}$$

Encontrado a constante $F_{n,m}$ e voltando para a variável T, a solução do modelo bidimensional, T(r,z,t) pelo método SV está bem determinada:

$$T(r,z,t) = \sum_{m=1}^{\infty} F_{0,m} J_{0,m} \left(r \frac{R_{0,m}}{R_s}\right) \cos\left(\frac{n\pi}{H_s}z\right) e^{\left(-\frac{R_{0,m}}{R_s}^2 - \frac{n\pi}{H_s}^2\right)\alpha t} +$$

$$\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} F_{n,m} J_{0,m} \left(r \frac{R_{0,m}}{R_s}\right) \cos\left(\frac{n\pi}{H_s}z\right) e^{\left(-\frac{R_{0,m}}{R_s}^2 - \frac{n\pi}{H_s}^2\right)\alpha t} + T_{amb}.$$
(192)

Em seguida, soluciona-se o modelo bidimensional através do método GILTT para fins de comparação de resultados. Não foi possível utilizar o método TL devido à complexidade inerente no modelo.

4.3.6 Modelo bidimensional pelo método GILTT ao longo do raio do silo e altura da massa de grãos

A solução pelo método GILTT se dá construindo um problema auxiliar de Sturm-Liouville associado ao problema estacionário, utilizando autofunções e resolvendo por TL a variável temporal.

O primeiro passo para a resolução do problema é definir as condições de contorno e inicial, as quais são utilizadas as mesmas do modelo bidimensional solucio-

nado pelo método SV, ou seja, para $0 < r < R_s$:

$$\left. \frac{\partial T}{\partial z} \right|_{z=0} = 0; \tag{193}$$

$$\left. \frac{\partial T}{\partial z} \right|_{z=H_s} = 0; \tag{194}$$

enquanto para as condições em r, para $0 < z < H_s$, são:

$$T(r \to 0, z, t) \le M, sendo \quad M \in R;$$
 (195)

$$T(R_s, z, 0) = T_{amb}.$$
 (196)

Para que as condições de contorno relacionadas ao raio sejam nulas, é necessária uma mudança de variável, trocando T por W:

$$W(r, z, t) = T(r, z, t) - T_{amb}. (197)$$

Dessa forma, as condições de contorno ficam:

$$\left. \frac{\partial W}{\partial z} \right|_{z=0} = 0; \tag{198}$$

$$\left. \frac{\partial W}{\partial z} \right|_{z=H_z} = 0; \tag{199}$$

$$W(r \to 0, z, t) \le M - T_{amb}, sendo \quad M \in R;$$
 (200)

$$W(R_s, z, t) = 0. (201)$$

Assim como no modelo anterior, utiliza-se a mesma condição inicial, onde no tempo zero a temperatura interna da massa de grãos relaciona-se apenas à função perfil (z) conforme equação (25), devido ao raio durante os experimentos não se alterar.

$$W(r, z, 0) = F(z) - T_{amb}. (202)$$

Em seguida, aplica-se TL na variável temporal (t), definida como:

$$\mathcal{L}\{W(r,z,t),t\to s\} = \overline{W}(r,z,s),\tag{203}$$

ficando da seguinte maneira:

$$\frac{1}{\alpha}(s\overline{W}(r,z,s) - \overline{W}(r,z,0)) = \frac{d^2\overline{W}}{dr^2} + \frac{1}{r}\frac{d\overline{W}}{dr} + \frac{d^2\overline{W}}{dz^2}.$$
 (204)

Reescrevendo a equação para isolar a condição inicial (202), obtém-se:

$$-\frac{1}{\alpha}\overline{W}(r,z,0) = -\frac{s}{\alpha}\overline{W}(r,z,s) + \frac{d^2\overline{W}}{dr^2} + \frac{1}{r}\frac{d\overline{W}}{dr} + \frac{d^2\overline{W}}{dz^2}.$$
 (205)

As autofunções do problema de Sturm-Liouville são usadas para expandir a variável W(r,z,s) na forma:

$$\overline{W}(r,z,s) = \sum_{n=0}^{\infty} \overline{W}_n(r,s)\psi_n(z).$$
 (206)

onde, $\psi(z)$ é a solução analítica do problema auxiliar, que encontra-se tabulada no livro de Ozisik (ÖZISIK, 1993) e é definida como:

$$\psi(z) = A\cos(\zeta z) + B\sin(\zeta z). \tag{207}$$

A solução dessa EDO é encontrada da mesma forma que no modelo unidimensional T(z,t) pelo método SV, onde utilizando as condições de contorno na derivada da função $\psi(z)$, encontra-se:

$$\zeta = \left(\frac{n\pi}{H_s}\right);\tag{208}$$

e sua solução se dá na forma:

$$\psi(z) = \cos\left(\frac{n\pi}{H_s}z\right). \tag{209}$$

Os valores de ζ_n para o sistema de Sturm-Liouville fornecem uma solução nãotrivial e são conhecidas como autovalores e $\psi_n(z)$ são as autofunções.

Substituindo a equação (206) na equação transformada (205), utilizando a condição inicial (202), tem-se:

$$-\frac{1}{\alpha}F(z) - T_{amb} = -\frac{s}{\alpha} \sum_{n=0}^{\infty} \overline{W}_n(r,s)\psi_n(z) + \sum_{n=0}^{\infty} \overline{W}''_n(r,s)\psi_n(z) + \frac{1}{r} \sum_{n=0}^{\infty} \overline{W}'_n(r,s)\psi_n(z) - \sum_{n=0}^{\infty} \overline{W}_n(r,s)\zeta^2\psi_n(z),$$
(210)

onde, $\psi_n''(z) = -\zeta^2 \psi_n(z)$. Na sequência tomam-se momentos, ou seja, aplica-se o operador integral:

$$\int_{0}^{H_s} (\cdot) \psi_n(z) dz; \tag{211}$$

na equação (210). Assim:

$$-\frac{1}{\alpha} \int_{0}^{H_{s}} (F(z) - T_{amb}) \psi_{n}(z) dz = \frac{s}{\alpha} \overline{W}_{n}(r, s) \int_{0}^{H_{s}} \psi_{n}^{2}(z) dz + \overline{W}_{n}''(r, s) \int_{0}^{H_{s}} \psi_{n}^{2}(z) dz + \frac{1}{r} \overline{W}_{n}'(r, s) \int_{0}^{H_{s}} \psi_{n}^{2}(z) dz - \overline{W}_{n}(r, s) \int_{0}^{H_{s}} \zeta^{2} \psi_{n}^{2}(z) dz.$$
(212)

Substituindo F(z) pela equação (25) e resolvendo as integrais, têm-se:

$$\int_0^{H_s} F(z)\psi_n(z)dz = I; \tag{213}$$

$$\int_{0}^{H_{s}} \psi_{n}(z)^{2} dz = K; \tag{214}$$

onde, I e K são as soluções das integrais, definidas como:

• n = 0

$$I_0 = \left(\frac{C_0 e^{C_2} (e^{C_1 H_s} - 1)}{C_1} + ((C_3 - T_{amb}) H_s)\right). \tag{215}$$

$$K_0 = H_s; (216)$$

• n = 1, 2, 3...

$$I_n = \frac{C_0 C_1 e^{C_2} H_s^2 [(-1)^n e^{C_1 H_s} - 1]}{C_1^2 H_s^2 + n^2 \pi^2}.$$
 (217)

$$K_n = \frac{H_s}{2}. (218)$$

Resolvidas as integrais, substitui-se seus resultados na equação (212), em seguida isola-se a constante K, obtendo assim um conjunto de EDO's, cuja váriavel dependente é $\overline{W}_n(r,s)$:

$$-\frac{I}{\alpha K} = \left(-\frac{s}{\alpha} - \zeta^2\right) \overline{W}(r, s) + \overline{W}''(r, s) + \frac{1}{r} \overline{W}'(r, s). \tag{219}$$

A obtenção da solução da equação (219) é feita solucionando este conjunto de equações transformadas. A solução geral da equação (219) é representada como:

$$\overline{W}(r,s) = \overline{W}_h(r,s) + \overline{W}_p(r,s); \tag{220}$$

sendo \overline{W}_h a solução homogênea e \overline{W}_p a solução particular. Para obter a solução \overline{W}_h , resolve-se a equação homogênea associada, apresentada a seguir:

$$0 = \left(-\frac{s}{\alpha} - \zeta^2\right) \overline{W}(r, s) + \overline{W}''(r, s) + \frac{1}{r} \overline{W}'(r, s). \tag{221}$$

Uma das formas de resolver a EDO (221), é transformá-la em uma função de

Bessel de ordem zero:

$$r^{2}\frac{d^{2}\overline{W}}{dr^{2}} + r\frac{d\overline{W}}{dr} + \beta^{2}r^{2}\overline{W}_{h}(r,s) = 0;$$
(222)

sendo β uma constante. Logo, multiplica-se ambos os lados da EDO (212) por r^2 e defini-se $\left(-\frac{s}{\alpha}-\zeta^2\right)=\beta^2$. Assim, a solução da equação de Bessel é dada por:

$$\overline{W}_h(r,s) = DJ_0(r\beta) + EY_0(r\beta); \tag{223}$$

onde J_0 é a função de Bessel de primeira espécie de ordem zero, e Y_0 de segunda espécie de ordem zero.

Encontrada a solução homogênea, a solução particular é resolvida pelo método dos coeficientes indeterminados:

$$-\frac{I}{\alpha K} = \beta^2 \overline{W}(r,s) + \overline{W}''(r,s) + \frac{1}{r} \overline{W}'_n(r,s);$$
 (224)

na qual sua solução é uma constante qualquer denominada, γ :

$$\overline{W}_p(r,s) = \gamma; \tag{225}$$

Substituindo \overline{W}_p na equação (224), obtém-se a solução particular:

$$-\frac{I}{\alpha K} = \beta^2 \gamma. \tag{226}$$

Assim, pode-se definir γ como:

$$\gamma = -\frac{I}{\alpha K \beta^2}. (227)$$

Logo:

$$\overline{W_p}(r,s) = -\frac{I}{\alpha K \beta^2}.$$
 (228)

Somando ambas as soluções homogênea e particular obtidas nas equações (223) e (228), tem-se a solução geral transformada de W(r,s):

$$\overline{W}(r,s) = DJ_0(r\beta) + EY_0(r\beta) - \frac{I}{\alpha K \beta^2}.$$
 (229)

Contudo, ainda falta definir as constantes D e E, utilizando a condição de contorno (195). Então para que W(r,s) seja limitado quando r tender a zero, descarta-se a função de segunda espécie de Bessel, logo, E=0:

$$\overline{W}(r,s) = DJ_0(r\beta) - \frac{I}{\alpha K \beta^2}.$$
 (230)

Em seguida, utiliza-se a condição (196):

$$\overline{W}(R_s, s) = 0 = DJ_0(R_s\beta) - \frac{I}{\alpha K \beta^2}.$$
 (231)

Dessa forma, pode-se definir a constante D como:

$$D = \frac{I}{\alpha K \beta^2 J_0(R_s \beta)}.$$
 (232)

Após encontrada a constante D, substitui-se na equação (230), definindo assim a solução transformada como:

$$\overline{W}(r,s) = \left(\frac{I}{\alpha K \beta^2 J_0(R_s \beta)} J_0(r\beta)\right) - \frac{I}{\alpha K \beta^2}.$$
 (233)

Assim, a solução transformada do modelo bidimensional W(r,z,s) está bem definida:

$$\overline{W}(r,z,s) = \sum_{n=0}^{\infty} \left[\left(\frac{I}{\alpha K \beta^2 J_0(R_s \beta)} J_0(r\beta) \right) - \frac{I}{\alpha K \beta^2} \right] (\cos(\zeta z))$$
 (234)

Porém, para obter T(r,z,t) é necessário aplicar a transformada inversa de Laplace na equação (234) e substituir a variável W por T. Devido à complexidade em determinar os pontos de singularidade para a inversão, foi utilizado o método numérico de quadratura Gaussiana, o qual pode ser representado por:

$$T(r,z,t) = T_{amb} + \mathcal{L}^{-1}\{\overline{T}(r,z,s), s \to t\}$$
(235)

As simulações foram feitas utilizando o software Scilab, simulando as resoluções da equação governante e comparando-as com as temperaturas observadas experimentalmente.

5 Resultados e discussão

Este capítulo, apresenta os resultados numéricos e estatísticos obtidos na resolução dos modelos unidimensionais pelos métodos TL e SV e do modelo bidimensional pelos métodos SV e GILTT. As temperaturas observadas e preditas podem ser encontradas nos Apêndices A a G.

As soluções obtidas no capítulo 4 foram implementadas utilizando o software Scilab 6.0.2. Cabe salientar que não se apresenta todos os resultados obtidos, escolhendo-se os mais relevantes.

5.1 Comparação entre os métodos no modelo unidimensional T(z,t)

Considerando o modelo unidimensional T(z,t) representado pela equação (20), suas soluções tanto para o método SV, equação (62), quanto para o método TL, equação (87), foram estimadas utilizando o software Scilab. O truncamento das soluções foram estimadas utilizando o cabo 1 como referência, representados na Figura 11. Nota-se que para o método TL foram necessários 8 pontos da quadratura gaussiana para a convergência dos dados, seus pesos (w_i) e raízes (P_i) são representados na Tabela 6. Enquanto que para o método SV, a convergência se deu em n=400. Porém, para uma melhor aproximação dos dados foi utilizado n=1000. Devido aos resultados serem muito próximos uns dos outros, foi ilustrado apenas o sensor 1 na Figura 11.

Tabela 6: Pesos e raízes da quadratura Gaussiana Fonte: Burden; Faires (2011).

1 611661 2414611, 1 41166 (2011).							
Ν		w_i	P_i				
	Real	Imaginário	Real	Imaginário			
1	-39,79528	1338,783902	10,169446	1,649202			
2	-39,79528	-1338,783902	10,169446	-1,649202			
3	70,020480	-641,933247	9,406471	4,969217			
4	70,020480	641,933247	9,406471	-4,969217			
5	-34,242643	127,808748	7,738688	8,370879			
6	-34,242643	-127,808748	7,738688	-8,370879			
7	4,517451	-6,142475	4,685495	12,010579			
8	4,517451	6,142475	4,685495	-12,010579			

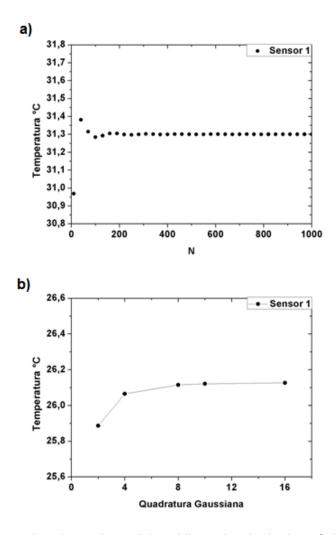


Figura 11: Truncamento da solução do modelo unidimensional T(z,t) no Cabo 1 pelo a) método SV e b) método TL.

Em seguida, comparou-se as soluções das metodologias com os dados experimentais para observar suas precisões. Para facilitar a visualização da distribuição da temperatura ao longo do tempo, a Figura 12 apresenta uma comparação entre as temperaturas observadas e preditas em °C em cada um dos métodos, para cada um dos sensores no cabo 1. No gráfico, a temperatura observada é representada pelos pontos azuis, as temperaturas preditas pelo método SV pela linha vermelha e pelo método TL por estrelas verdes. No Apêndice A são apresentadas as temperaturas observadas no experimento e as temperaturas obtidas com os métodos SV e TL para o cabo 1.

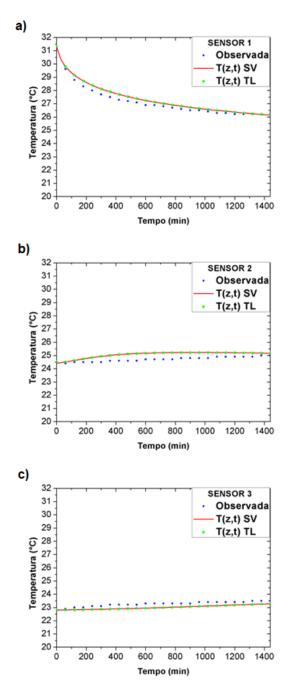


Figura 12: Comparação entre as temperaturas observadas e as preditas no Cabo 1 pelos métodos SV e TL em T(z,t) no a) Sensor 1, b) Sensor 2 e c) Sensor 3.

Ao comparar os dois métodos no cabo 1 em cada um dos sensores, nota-se que não existe uma diferença significativa. Quanto à temperatura observada e a predita, o perfil de temperatura obtido com o método SV e TL acompanham a física do problema (distribuição de temperatura ao longo da coluna de grãos), pois as variações entre as temperaturas preditas (modelo) e observadas são pequenas (menores que 1°C).

Nos cabos 2 e 3 o mesmo acontece, porém apresentando erros maiores, com alguns valores acima de 1°C. Diferente do cabo 1, nos outros cabos houve uma diferença visível entre os métodos aplicados na solução do modelo T(z,t), podendo-se

notar uma diferença significativa no sensor 2, onde há uma discrepância maior entre os valores das temperaturas observadas (T_o) e preditas (T_p) pelo método TL, conforme mostra a Figura13. Os dados das T_o e T_p por ambos os métodos no modelo unidimensional T(z,t) do cabo 1 a 3 se encontram nos Apêndices A a C, respectivamente.

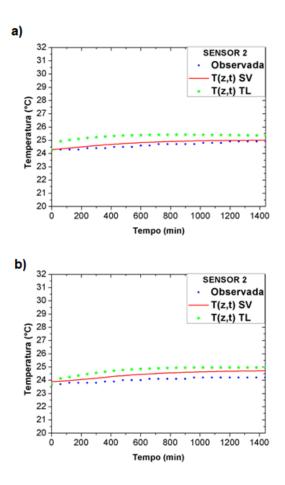


Figura 13: Comparação entre as temperaturas observadas e as preditas no Sensor 2 pelos métodos SV e TL em T(z,t) no a) Cabo 2, b) Cabo 3.

Em seguida, para verificar a concordância das temperaturas preditas (T_p) com as temperaturas observadas (T_o) , é feita uma análise estatística (HANNA,1989), a fim de avaliar o seu desempenho. Os índices estatísticos utilizados são:

• Erro quadrático médio normalizado (NMSE): é uma medida adimensional que informa sobre os desvios das temperaturas observadas no experimento com as obtidas pelos métodos, onde quanto menor o valor, melhor o modelo.

$$NMSE = \frac{\overline{(T_o - T_p)^2}}{T_o T_p}.$$
 (236)

• Coeficiente de correlação (COR): é uma medida adimensional que descreve o grau de associação ou concordância entre as variáveis, quanto mais próximo a 1 melhor sua performance.

$$COR = \frac{\overline{(T_o - \overline{T_o})(T_p - \overline{T_p})}}{\sigma_o \sigma_p}.$$
 (237)

• Fração de inclinação (FB): é uma medida adimensional na qual indica a tendência que os dados têm de se superestimar ou subestimar quando comparados aos reais, tendo seu valor ótimo igual a zero.

$$FB = \frac{\overline{T_o} - \overline{T_p}}{0.5(\overline{T_o} - \overline{T_p})}.$$
 (238)

• Desvio fracional padrão (FS): é uma medida adimensional na qual indica o quanto o modelo consegue simular a dispersão dos dados observados, tendo seu valor ideal igual a zero.

$$FS = \frac{\overline{\sigma_o} + \overline{\sigma_p}}{0, 5(\overline{\sigma_o} + \overline{\sigma_p})};$$
(239)

onde T e σ são a temperatura e o desvio padrão das temperaturas, respectivamente. Na Tabela 7 são apresentados os índices estatísticos NMSE, FB, FS e COR para ambos os métodos e sensores, nos cabos 1, 2 e 3.

Tabela 7: Análise estatística do modelo	unidimensional $T(z,t)$ em ca	ada sensor e método nos Cabos 1,
2 e 3.		

Índices estatísticos						
índices	Método SV cabo 1		Método TL cabo 1			
	Sensor 1	Sensor 2	Sensor 3	Sensor 1	Sensor 2	Sensor 3
NMSE	0,0001	0,0002	-0,0001	0,0001	0,0002	0,0001
COR	0,9739	0,7610	0,9023	0,9738	0,7693	0,9023
FB	-0,0087	-0,0145	0,0108	-0,0087	-0,0146	0,0108
FS	-0,0460	0,2840	0,1525	-0,0462	0,2601	0,1525
	Método SV cabo 2			Método TL cabo 2		
	Sensor 1	Sensor 2	Sensor 3	Sensor 1	Sensor 2	Sensor 3
NMSE	0,0013	0,0001	0,0001	0,0013	0,0008	0,0001
COR	0,9588	0,9219	0,8802	0,9585	0,6537	0,8801
FB	-0,0348	-0,0069	0,0104	-0,0352	-0,0272	0,0105
FS	0,0697	0,0075	0,1532	0,0717	0,0659	0,1676
Método SV cabo 3 Método			todo TL cab	ю 3		
	Sensor 1	Sensor 2	Sensor 3	Sensor 1	Sensor 2	Sensor 3
NMSE	0,0007	0,0003	0,0003	0,0007	0,0009	0,0003
COR	0,9680	0,9664	0,8371	0,9683	0,9014	0,8453
FB	0,0250	-0,0163	0,0163	0,0246	-0,0296	0,0159
FS	0,0727	-0,4128	-1,1870	0,0725	-0,5356	1,0972

Através dos resultados dos índices estatísticos, observa-se que NMSE, FB e FS estão bem próximos de zero (valor ideal). Assim, conclui-se que os desvios entre as temperaturas observadas e preditas é quase zero e que os modelos não tendem a subestimar ou superestimar os valores encontrados.

Em relação ao índice COR, os resultados estão próximos de 1 (valor ideal), com exceção do sensor 2, o que mostra um alto grau de concordância entre as variáveis (T_o e T_p), indicando bons resultados. No sensor 2, é possível confirmar que a concordância da temperatura observada com a predita foi pior para o método TL, comprovando que o método SV é mais eficaz ao calcular a temperatura interna da massa de grãos para o modelo unidimensional T(z,t) usando as condições propostas.

Na sequência, apresenta-se na Figura 14 o histograma dos erros absolutos (E_a) , que pode ser definido como:

$$E_a = |T_o - T_p|. (240)$$

Com os erros absolutos, criou-se as suas classes de frequências e aproximouse a curva de distribuição delas. Para obter a expressão da curva, utilizou-se uma distribuição normal, representada por:

$$F(x) = \frac{e^{-0.5\left(\frac{E_a - \mu}{\sigma}^2\right)}}{\sqrt{2\pi}\sigma};$$
(241)

onde, μ é a média aritmética e σ é o desvio padrão dos erros. Além disso, foi analisado a assimetria e o grau de achatamento (curtose) das curvas de distribuição, onde a assimetria pode ser representada pelo segundo coeficiente de Pearson, expresso como:

$$A_s = \frac{3(\mu - E_{med})}{\sigma};\tag{242}$$

onde, A_s é o coeficiente de assimetria e E_{med} é a mediana dos erros. É dito que a distribuição é simétrica se $A_s=0$, $A_s<0$ é assimétrica negativa e $A_s>0$ é assimétrica positiva.

Para análise da curtose precisa-se separar a distribuição dos dados ordenados do menor para o maior em partes iguais, onde será separado em 100 partes (percentis). Define-se a posição de cada percentis da seguinte maneira:

$$k = \frac{i(n+1)}{100}; (243)$$

onde, i é o i-ésimo percentil, sendo i um valor real de 1 á 100, n é o tamanho da amostra de dados e k é a posição do percentil dentro da amostra de dados. Em caso da posição não ser um número inteiro, utiliza-se a seguinte regra para encontrar seu valor:

$$P_i = k_b + f(k_a - k_b); (244)$$

onde, P_i é o valor do percentil na posição i, k_b é a posição do percentil arredondada para baixo, k_a é a posição do percentil arredondada para cima e f é a fração do valor inteiro encontrada na posição, como por exemplo, em k = 4, 25, f = 0, 25.

Uma vez feita a separação da amostra de dados pode-se definir a curtose da seguinte maneira:

$$K = \frac{P_{75} - P_{25}}{2(P_{90} - P_{10})}; (245)$$

onde, K é o coeficiente de curtose. É dito que a distribuição é mais alongada (Lepto-cúrtica) se K < 0,263, K > 0,263 é mais achatada (Platicúrtica), e K = 0,263 possui o mesmo achatamento que a distribuição normal (Mesocúrtica).

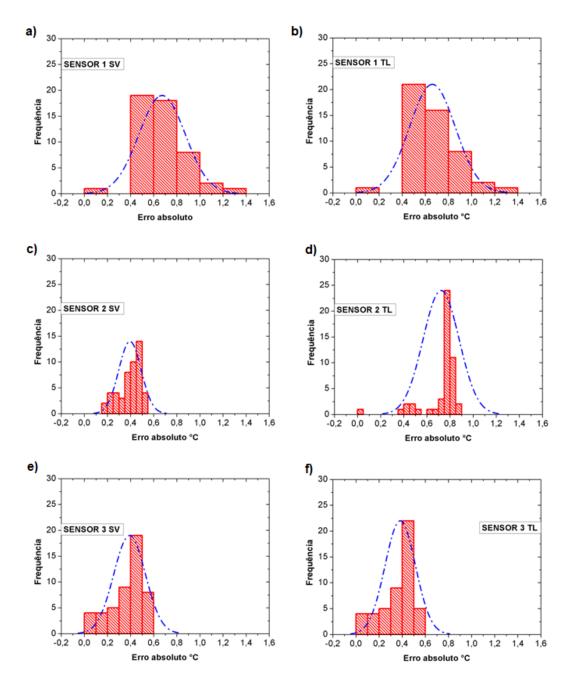


Figura 14: Histograma dos erros absolutos e suas frequências pelo modelo unidimensional T(z,t) no Cabo 3, a) Sensor 1 método SV, b) Sensor 1 método TL, c) Sensor 2 método SV, d) Sensor 2 método TL, e) Sensor 3 método SV, f) Sensor 3 método TL.

Ao observar os histogramas do cabo 3, o qual apresentou maiores diferenças de temperatura observada e predita, nota-se que o maior erro absoluto se encontra no sensor 1 (1,4°C). Apesar disso, mesmo que o sensor 1 mostre valores altos de erro absoluto, em sua maioria está abaixo dos 0,6°C, assim como os apresentados pelo sensor 2 e 3.

Quanto a comparação dos métodos, pode-se ver no sensor 2 uma diferença dos erros entre as temperaturas preditas pelos métodos, onde a solução pelo método TL chega a uma diferença de 0,45°C a mais de erro, indicando que o método SV é

mais preciso e apresenta menor frequência de erros maiores. Além disso, a curva de distribuição normal indica que as temperaturas preditas pelo modelo analisado pode representar o fenômeno da transferência de calor da massa de grãos dentro do silo.

Na Tabela 8 são apresentados os valores encontrados para os coeficientes de simetria e curtose para cada um dos sensores e método.

Tabela 8: Coeficiente de	e simetria e curtose dos er	ros pelo modelo unidimensional ${\it T}$	(z,t) no Cabo 3.

índices	Método SV cabo 3			3 Método TL cabo 3		
	Sensor 1	Sensor 2	Sensor 3	Sensor 1	Sensor 2	Sensor 3
A_s	0,74	-0,73	-0,83	0,76	-0,79	-0,74
K	0,213	0,261	0,248	0,212	0,082	0,252

A distribuição demonstrou assimetria positiva no sensor 1 e negativa nos sensores 2 e 3. Enquanto a curtose para todos os sensores é Leptocúrtica, ou seja, mais alongada que a distribuição normal, indicando que os dados tendem a estar abaixo da média no sensor 1 e acima da média nos sensores 2 e 3, conforme mostra a Tabela 8.

Para ilustrar a variação da temperatura ao longo do tempo, calcula-se a temperatura interna da massa de grãos, variando a altura da massa de grão de z=0,01m a 0,7m. A Figura 15 mostra essa variação em determinados momentos do tempo (t=0 a 20h).

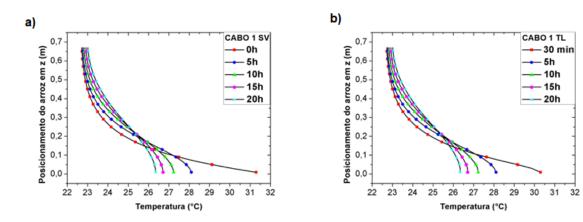


Figura 15: Evolução da temperatura no tempo (de 0 a 20h), distribuição da temperatura ao longo da coluna de grãos no Cabo 1, pelo método a) SV e b) TL.

Observa-se que o modelo está coerente com o fenômeno físico, ou seja, a temperatura dos grãos no interior do silo tende a entrar em equilíbrio, uma vez que os contornos estão isolados (condicões de contorno impostas no problema). É possível notar que não há diferença significativa entre as soluções pelo modelo SV e TL nesse caso. Além disso, Os Cabos 2 e 3 apresentaram resultados similares ao cabo 1.

Conclui-se que o modelo matemático foi validado pelos resultados obtidos experimentalmente, onde os métodos possuem alto grau de precisão com os dados observados, devido aos resultados serem bem próximos, com o maior erro entre os cabos e sensores igual a 1,4°C, durante todo o experimento.

Além disso, o método SV é um procedimento inteiramente analítico, pois na aplicação da metodologia não é realizada nenhuma aproximação a não ser o truncamento da série, consequentemente, obtém-se uma excelente performance computacional e alta precisão dos resultados. Já para o método TL, além do truncamento da série, tem-se a inversão numérica da TL pelo método da quadratura Gaussiana, que por sua vez, pode gerar mais erros e piorar a performance computacional, quando comparado ao método SV.

Dessa forma, conclui-se que mesmo sem equipamentos de medição (sensores) é possível predizer a temperatura interna da massa de grãos utilizando ferramentas de baixo custo, como a modelagem matemática. Ou seja, mesmo sem a tecnologia adequada, é possível evitar gastos excessivos de energia (aeração) para manter o equilíbrio de temperatura da massa de grãos.

5.2 Comparação entre os métodos no modelo unidimensional T(r,t)

A resolução do modelo unidimensional T(r,t) foi realizada utilizando apenas o sensor 1, de forma a diminuir a interferência da transferência de calor vertical. Na Figura 16, mostra-se o truncamento das soluções para os métodos SV e TL, do mesmo modo que foi realizado para o modelo T(z,t). Similarmente, o truncamento da solução pelo método TL, representado pela equação (137), foi realizado com a quadratura Gaussiana utilizando 8 pontos, enquanto o truncamento da solução por SV, representado pela equação (115), foi com n=500, mas para melhor precisão dos resultados utilizou-se na geração de dados n=900, conforme indicado anteriormente. Os dados gerados por ambos os métodos se encontram no Apêndice D.

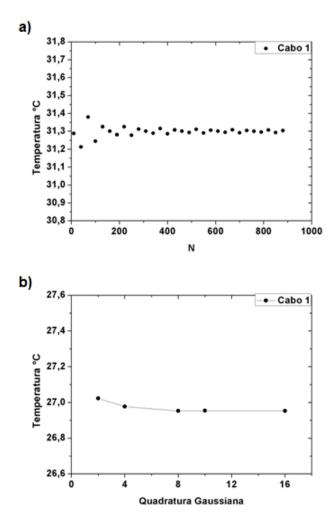


Figura 16: Truncamento da solução unidimensional ${\cal T}(r,t)$ no Sensor 1 pelo a) método SV e b) pelo método TL.

Para facilitar a visualização da distribuição da temperatura interna ao longo do tempo, utilizou-se o modelo T(r,t) e o comparando com o modelo T(z,t) em ambas as soluções dos métodos SV e TL foi gerado um gráfico apresentado na Figura 17, na qual a temperatura observada é representada pelos pontos azuis. As temperaturas preditas pelo método SV no modelo T(z,t) são representadas por uma linha vermelha. Já a temperatura predita pelo mesmo método, porém pelo modelo T(r,t) é representada pela linha preta. A solução pelo método TL foi representada através de estrelas da cor verde para o modelo T(z,t) e rosa para o T(r,t).

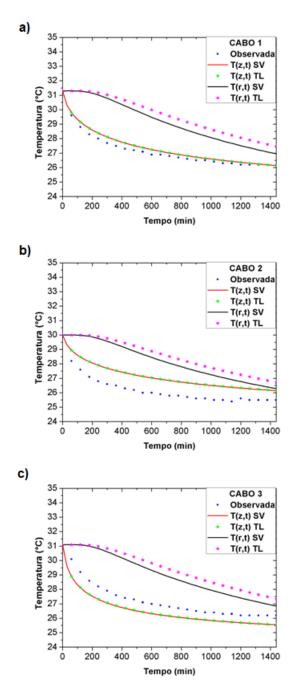


Figura 17: Comparação entre as temperaturas observadas e as preditas no Sensor 1 pelos métodos SV e TL em z e r no a) Cabo 1, b) Cabo 2 e c) Cabo 3.

Nota-se que o perfil da temperatura obtido pelo modelo unidimensional T(r,t) apresenta valores bem acima da temperatura observada, em ambos as soluções por SV e TL, quando comparada ao método unidimensional T(z,t). É possível afirmar que a transferência de calor é melhor distribuída ao longo da altura da massa de grãos. Entre as soluções do modelo unidimensional T(r,t), observam-se erros maiores pelo método TL, da mesma forma que ocorrido pelo modelo T(z,t). Para analisar a concordância dos dados, realizou-se a análise estatística com os índices NMSE, COR, FB e FS para os cabos 1, 2 e 3, representados na Tabela 9.

Tabela 9: Análise estatística do modelo unidimensional $T(r,t)$ pelo método SV e TL nos Cabos 1,	2 e
3.	

	Índices estatísticos										
índices	Méto	do SV sen	sor 1	Método TL sensor 1							
	Cabo 1	Cabo 2	Cabo 3	Cabo 1	Cabo 2	Cabo 3					
NMSE	0,0059	0,0061	0,0047	0,0080	0,0080	0,0066					
COR	0,8341	0,7968	0,8515	0,8031	0,7621	0,8190					
FB	-0,0715	-0,0731	-0,0637	-0,0855	-0,0854	-0,0774					
FS	-0,2698	-0,2692	-0,1637	-0,1520	-0,1514	-0,0449					

Os valores obtidos dos índices estatísticos para o modelo T(r,t) foram piores quando comparados com o modelo T(z,t), porém, ainda são valores perto do ideal, indicando boa concordância com os dados observados. De forma a analisar a distribuição da temperatura ao longo do raio do silo experimental, foram criados perfis para os tempos de 0, 5h, 10h, 15h e 20h, conforme mostra a Figura 18.

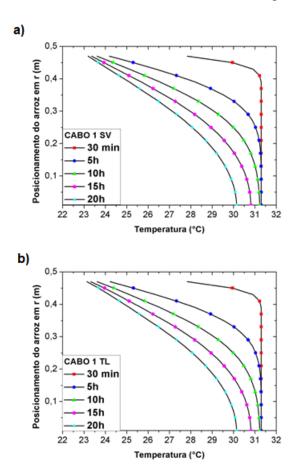


Figura 18: Evolução da temperatura no tempo (de 0 á 20h), distribuição da temperatura ao longo do raio do silo no Cabo 1, pelo método a) SV e b) TL.

Pode-se perceber que no centro, onde tem a entrada de ar, a temperatura mudou aproximadamente 1,5°C do instante inicial até o final (20h). Conforme se aproxima das paredes do silo, as temperaturas vão se equilibrando com o ambiente ao passar do tempo. A linha com pontos vermelhos tem temperaturas altas para todas posições do raio, entre aproximadamente 30°C e 31,5°C, porque em 30 min recém havia sido desligado o aquecimento, antes do início do experimento.

Para mostrar com melhor exatidão os erros do modelo T(r,t), foram elaborados histogramas, representados pela Figura 19.

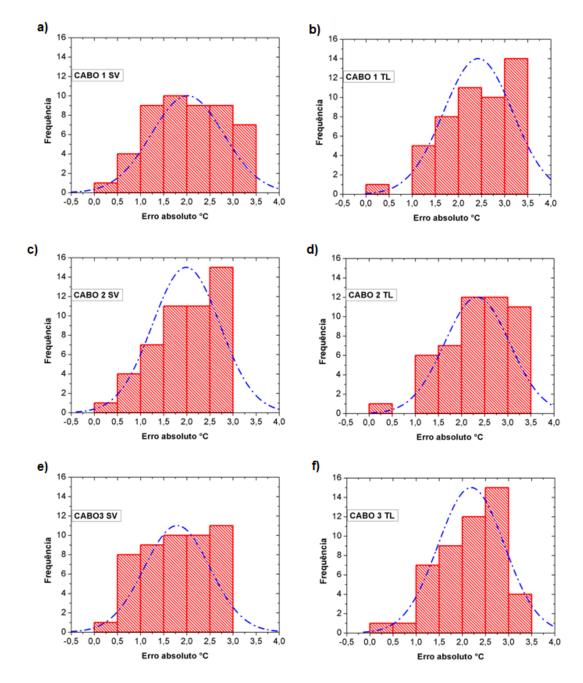


Figura 19: Histograma dos erros absolutos e suas frequências pelo modelo unidimensional T(r,t) no Sensor 1, a) Cabo 1 método SV, b) Cabo 1 método TL, c) Cabo 2 método SV, d) Cabo 2 método TL, e) Cabo 3 método SV, f) Cabo 3 método TL.

Ao contrário dos erros encontrados pelo modelo unidimensional T(z,t), no T(r,t) são valores muito elevados, chegando a quase 3,5°C de diferença com a temperatura observada com uma grande frequência, sendo inviável a ser utilizado na prática.

Além disso, é possivel notar erros ainda maiores pelo método TL, mostrando melhor precisão que o método SV.

Conforme explica Devilla et al (2004) em seu experimento, a redução de temperatura na massa de grãos no interior do silo depende não apenas das distâncias radial e vertical, como das direções norte, sul, leste e oeste (posicionamento dentro do silo). Além disso, observou em seu experimento que a medida que se aumentava a distância radial, as temperaturas dos grãos situados nas direções sul e leste tendiam a aumentar, enquanto as daqueles situados nas direções norte e oeste apresentavam tendência à diminuição, e que as reduções de temperatura do produto tornaram-se menores à medida que a sua localização se aproximava do centro do silo.

Por conta disso e pelo fato da transferência de temperatura estar mais presente no plano axial que radial, espera-se que o modelo bidimensional tenha uma melhor precisão que o modelo T(r,t).

5.3 Comparação entre os métodos no modelo bidimensional T(r, z, t)

Para a análise de dados do modelo bidimensional foi utilizado como referência de temperatura inicial, apenas a função perfil em z, dada na equação (25). Na Figura 20 apresenta-se o truncamento das soluções para os métodos SV e GILTT. No truncamento da solução do método SV, equação (192), foram utilizados os mesmos valores de N e M. Dessa forma, podemos observar que o sensor 1 teve maior dificuldade de atingir a convergência, onde foram necessários mais de 40 termos. No truncamento da solução pelo método GILTT, representado pela equação (234), utilizou-se 8 pontos na quadratura Gaussiana, e variou-se os autovalores da expansão da concentração até que os dados convergissem. Para garantir a convergência da solução nas simulações realizadas no modelo bidimensional, utilizaram-se os valores de N e M iguais a 100. Os dados gerados por ambos os métodos se encontram no Apêndice E a G.

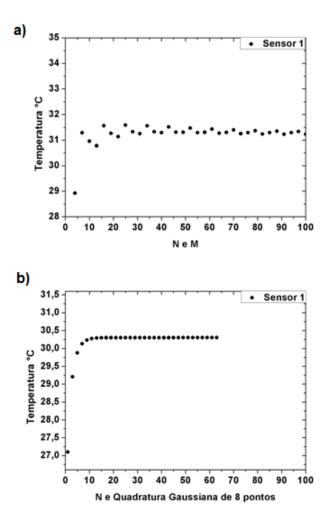


Figura 20: Truncamento da solução bidimensionais T(r,z,t) no cabo 1 pelo a) método SV e b) pelo método GILTT.

Para facilitar a visualização da distribuição da temperatura interna ao longo do tempo, utilizando o modelo bidimensional T(r,z,t) apresenta-se o gráfico na Figura 21, também mostram-se os gráficos do modelos unidimensionais para comparação. Na Figura 21, a temperatura observada é representada pelos pontos azuis, as temperaturas preditas pelo método SV no modelo T(z,t) por uma linha vermelha, no modelo T(r,t) por uma linha preta, enquanto no modelo T(r,z,t) por uma linha roxa. Em seguida, pelo método TL foram apresentadas as temperaturas preditas de cor verde para T(z,t) e rosa para T(r,t). Por fim, a temperatura pelo método GILTT foi representada com estrelas de cor azul claro.

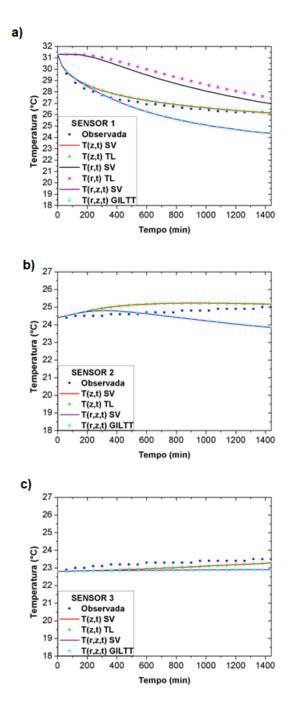


Figura 21: Comparação entre as temperaturas observadas e as preditas no Cabo 1 pelos métodos SV, TL e GILTT nos modelos bidimensional e unidimensional no a) Sensor 1, b) Sensor 2 e c) Sensor 3.

Ao observar os gráficos é possível notar que o modelo bidimensional não teve diferença entre os métodos de resolução, tendo valores muito próximos entre eles. Comparando a temperatura predita com a observada, os valores no sensor 2 e 3 deram resultados melhores quando comparados ao sensor 1. Porém, ao comparar com os modelos unidimensionais, sua aproximação foi inferior ao modelo T(z,t). Isso ocorre pois o modelo T(z,t) considera a transferência somente na altura do grão e para o problema real temos uma grande influência da transferência por convecção em

Entretanto, nos primeiros instantes de tempo 0 a 10h (600 min), o modelo bidimensional apresenta melhores resultados do que os unidimensionais, melhor exemplificado no sensor 2, afastando-se da temperatura observada conforme alcança as 24h (1440 min), como pode ser visto na Figura 22. Por conta disso, pode-se concluir que o modelo bidimensional é eficaz em um curto período de tempo e vai perdendo sua precisão com o passar do tempo.

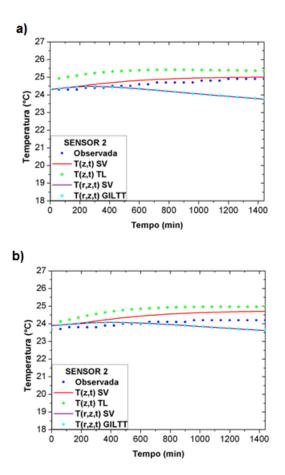


Figura 22: Comparação entre as temperaturas observadas e as preditas no Sensor 2 pelos métodos SV e GILTT nos modelos bidimensional e unidimensional no a) Cabo 2, b) Cabo 3.

De forma a ilustrar melhor os erros do modelo bidimensional, foram feitos os histogramas dos erros absolutos de ambos os métodos, conforme mostra a Figura 23.

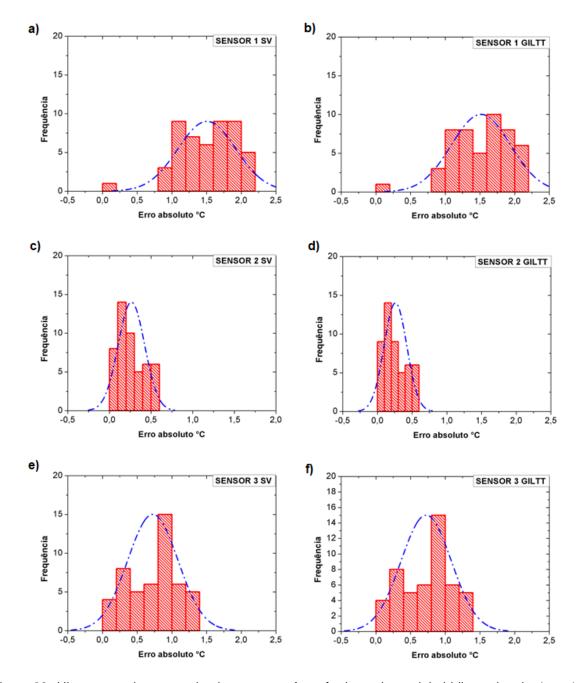


Figura 23: Histograma dos erros absolutos e suas frequências pelo modelo bidimensional T(r,z,t) no Cabo 3, a) Sensor 1 método SV, b) Sensor 1 método GILTT, c) Sensor 2 método SV, d) Sensor 2 método GILTT, e) Sensor 3 método SV, f) Sensor 3 método GILTT.

Ao observar os histogramas do cabo 3, o qual apresentou maiores diferenças de temperatura observada e predita, constatam-se erros menores que no modelo T(r,t), com um erro máximo proxímo a 2°C no sensor 1. Porém, ainda não se aproxima da precisão dada pelo modelo T(z,t). Entretanto, mesmo com os valores altos, os erros nos primeiros momentos (até 10h) não chegam a 1°C, mostrando erros menores do que os do modelo T(z,t) nos primeiros instantes.

Quando comparados os métodos, não há diferença entre eles, nem mesmo a frequência dos erros maiores são diferentes, indicando que ambos tem a mesma eficiência para calcular a temperatura interna da massa de grãos de arroz no silo usando o modelo bidimensional.

Para analisar a concordância dos dados, em seguida, realizou-se a análise estatística com os índices NMSE, COR, FB e FS para o cabo 1, 2 e 3, apresentados na Tabela 10.

Tabela 10: Análise estatística do modelo bidimensional T(r,z,t) em cada sensor e método nos cabos 1, 2 e 3.

Índices estatísticos										
índices	Mé	todo SV cab	ю 1	Méto	do GILTT ca	abo 1				
	Sensor 1	Sensor 2	Sensor 3	Sensor 1	Sensor 2	Sensor 3				
NMSE	0,0016	0,0005	0,0003	0,0016	0,0005	0,0003				
COR	0,9539	-0,8546	0,9579	0,9535	-0,8609	0,9584				
FB	0,0295	0,0120	0,0171	0,0296 0,0119		0,0171				
FS	-0,4488	-0,5474	1,4516	-0,4502	-0,5475	1,4497				
	Mé	todo SV cab	oo 2 Método GILTT cabo 2							
	Sensor 1	Sensor 2	Sensor 3	Sensor 1	Sensor 2	Sensor 3				
NMSE	0,0007	0,0006	0,0006	0,0007	0,0006	0,0006				
COR	0,9223	-0,9019	-0,8484	0,9216	-0,9011	-0,8460				
FB	0,0024	0,0172	0,0218	0,0026	0,0172	0,0218				
FS	-0,4366	-0,0766	0,8717	-0,4376	-0,0759	0,8733				
	Mé	todo SV cab	ю 3	Méto	do GILTT ca	abo 3				
	Sensor 1	or 1 Sensor 2 Ser		Sensor 1	Sensor 2	Sensor 3				
NMSE	0,0035	0,0002	0,0011	0,0035	0,0002	0,0011				
COR	0,9718	-0,6412	-0,9246	0,9717	-0,5725	-0,9240				
FB	0,0568	0,0048	0,0304	0,0572	0,0050	0,0304				
FS	-0,2704	-0,1944	-0,1214	-0,2744	0,1725	-0,1202				

Os valores dos índices NMSE, COR e FB foram bem próximos aos ideais em ambos os métodos, indicando boa concordância com a temperatura observada. Porém, com o FS longe de 0 (valor ideal), mostra-se que o modelo tem tendência de subestimar as temperaturas preditas.

Com isso, o modelo bidimensional T(r,z,t) também pode ser utilizado para predizer a temperatura interna da massa de grãos durante o período de armazenagem, sendo dos três o mais eficaz para predizer a temperatura interna da massa de grãos do arroz nas primeiras 10h, perdendo sua eficácia com o passar do tempo, visto que apresenta erros maiores que 2°C ao fim do dia. Portanto, é um excelente modelo para ser utilizado para armazenamento emergente, onde não se exigem longos períodos de armazenamento.

Quanto a comparação entre os métodos, ao contrário do método TL que estava um pouco inferior ao SV nos modelos unidimensionais, o método GILTT se equipara

ao mesmo, não mostrando diferença significativa. Isso ocorre devido ao fato de não depender apenas da inversão numérica da TL pelo método da quadratura Gaussiana.

No modelo bidimensional não se teve significativos ganhos na precisão da solução, e isso indica que provavelmente a convecção é que vai fazer a diferença.

6 Conclusão

O presente trabalho, teve como objetivo encontrar uma ferramenta que possa ser utilizada por agricultores que não possuem equipamentos para medição da temperatura do grão em silo (sensores), e por conta disso, acabam tendo um gasto excessivo de manutenção (aeração) para manter seu produto dentro da faixa comercial (umidade).

De forma à alcançar o objetivo, realizou-se a modelagem de transferência de calor por condução durante um dia, levando em consideração que o grão seria compactado, não estaria exposto diretamente ao sol e o grão seria limpo anteriormente, evitando aumento da temperatura por respiração de fungos e insetos. Por conta disso, a umidade interna não sofreria grandes alterações durante o período do experimento. Além disso, para melhor auxiliar o produtor no dimensionamento de seu silo, foi analisada a diferença da transferência de temperatura tanto unidimensional, levando em consideração apenas a altura, T(z,t) ou raio do silo, T(r,t), quanto bidimensional, levando em consideração o raio e a altura, T(r,z,t), comparando com a temperatura observada por sensores em um protótipo de silo.

Com o intuito de analisar a melhor forma de encontrar a temperatura interna para esses modelos, foram utilizadas diferentes metodologias de solução, como SV, TL e GILTT.

A solução unidimensional T(z,t) abordada neste trabalho mostrou uma boa correlação com os dados experimentais, pois os índices estatísticos são bem próximos dos valores ideais, apresentando um erro máximo de 0,57°C no cabo 1, 1,2°C no cabo 2 e 1,4°C no cabo 3 entre todos os sensores. Isso ocorre devido o método SV ser um procedimento inteiramente analítico onde não é realizada nenhuma aproximação além do truncamento da série, enquanto pelo método TL, além do truncamento, ainda temse a inversão numérica da TL pelo método da quadratura Gaussiana.

Ao comparar os resultados do modelo T(z,t) pelo modelo unidimensional da transferência de calor em torno do raio do silo, T(r,t), notou-se uma grande diferença entre as temperaturas observadas e as preditas, na qual houve grande frequência de erros acima de 1°C, chegando próximo a 4°C na solução pelo método TL. Dessa forma, conclui-se que há uma parcela maior de transferência de calor na vertical.

Em seguida, de forma a analisar a influência da distribuição espacial da temperatura dentro do silo, desenvolveu-se a solução do modelo bidimensional, T(r,z,t), onde nos primeiros momentos (10 primeiras horas) apresentou temperaturas próximas às observadas, mostrando ser tão eficaz ou melhor que o modelo unidimensional durante esse período. Porém, com o passar do tempo sua precisão tende a diminuir.

Quanto às metodologias utilizadas para solucionar o modelo bidimensional, não

houve discrepâncias entre elas, onde o método GILTT se mostrou tão capaz quanto o método SV na predição da temperatura interna da massa de grãos. Portanto, os métodos implementados mostraram-se eficazes como uma ferramenta de baixo custo. O modelo unidimensional T(z,t) mostrou-se mais eficaz ao longo do tempo, enquanto para curtos períodos (até 10h) o modelo bidimensional mostrou-se equivalente ou melhor em alguns casos. Esses modelos ao serem implementados em um software podem ser utilizados em forma de aplicativo por agricultores para determinar a temperatura interna dos silos de armazenamento de pequena escala, ou improvisados.

Como no experimento, o volume de grãos foi aquecido durante 30 min, sendo que a entrada de ar se encontra na base do silo, as temperaturas nos sensores 1 (localizados 1 cm da base) em todos cabos são mais altas da base para o topo e, com o passar do tempo, do centro para a parede do silo, onde temos temperatura ambiente nas condições de contorno. Passadas algumas horas, como a temperatura externa é menor que a interna e o ar quente é mais leve e tende a subir, acreditase que considerando a convecção natural a precisão das soluções encontradas será melhor.

Para uma melhor análise da transferência de calor no armazenamento, aconselha-se em futuros trabalhos, replicar o experimento em um silo de grande escala, variando o raio junto à sua altura.

Além disso, para uma melhor aproximação das condições reais da transferência de calor em um silo armazenador de grãos, é necessário o acréscimo da transferência de calor por convecção e, se for o caso, a inclusão da respiração do grão em várias condições de ambientes.

Referências

ANDRADE, E. Simulação da variação de temperatura em milho armazenado em silo metálico. 2001. Tese de Doutorado — Engenharia Agrícola - Univesidade Federal de Viçosa, Viçosa/MG.

ANTON, A. Eficiência energética na aeração de armazenadores de grãos utilizando lógica fuzzy. 2016. Trabalho de Conclusão de Curso — Engenharia Elétrica - Universidade Federal do Pampa, Alegrete/RS.

BACALTCHUK, B.; LORINI, I. A qualidade desejada na armazenagem de grãos no país. **Embrapa: Trigo**, 2008.

BALA, B. K. **Drying and storage of cereal grains**. 2.ed. Pondicherry, India: John Wiley Sons Ltd, 2017. 354p.

BEMILLER, J.; WHISTLER, R. **Starch Chemistry and Technology**. 3.ed. Academic Press: Food Science and technology international séries, 2009. 894p.

BURDEN, R.; FAIRES, J. **Numerical Analysis**. Boston, EUA: Brooks/Cole, 2011. 895p.

CHRISTENSEN, C.; KAUFMANN, H. Microflora, in storage of cereal grains and their produts. **American Association Ceral Chemist**, St Paul, EUA, p.158–192, 1974.

CONAB. A cultura do arroz. Brasília, DF: Conab, 2015. 180p.

CONAB. **Histórico mensal do arroz, análise de junho de 2018**. Disponível em: www.conab.gov.br/info agro/analises do mercado agropecuario e extrativista/analises do mercado/historico mensal de arroz. Acesso em: 14 dez. 2019.

CONAB. **Série Histórica da Armazenagem**. Disponível em: www.conab.gov.br/armazenagem/serie historica da armazenagem. Acesso em: 29 dez. 2019.

DEVILLA, I. et al. Variação da temperatura e umidade de grãos armazenados em silos com aeração. **Revista Brasíleira de Engenharia Agrícola e Ambiental**, Campina Grande, PB, v.8, n.2, p.284–291, 2004.

DOTTO, G.; PINTO, L.; MOREIRA, M. Determination of the effective thermal diffusivity in a porous bed containing rice grains. **Heat and Mass Transfer**, v.53, n.4, p.26–32, 2016.

ELIAS, M. E. **Pós-colheita de arroz**: Secagem, armazenamento e qualidade. Pelotas, RS: Editora e Gráfica Universitária, 2007. 437p.

ELIAS, M.; OLIVEIRA, M.; VANIER, N. **Tecnologias de pré-armazenamento, armazenamento e conservação de grãos**. Pelotas, RS: Pólo de inovação tecnológica em alimentos da região sul - SCT/RS, Universidade Federal de Pelotas, 2018. 100p.

ELMARYAMI, A.; OMAR, B. Developing 1D MM of Axisymmetric Transient Quenched Chromium Steel to Determine LHP. **Journal of Metallurgy**, 2012.

EMBRAPA. Armazenamento inadequado de grãos resulta em cerca de 15% de perdas. Disponível em: www.embrapa.br/busca-de-noticias/-/noticia/3860638/armazenamento inadequado de graos resulta em cerca de 15 de perdas. Acesso em: 10 dez. 2019.

EQUIPASA. **Informações Técnicas**. Disponível em: www.equipasa.com.br/?conteudo=canal&canalid=7. Acesso em: 20 dez. 2019.

FAORO, V. Modelagem Matemática e Otimização do Fluxo de Ar em Armazéns Graneleiros. 2019. Tese de Doutorado — Universidade Regional do Noroeste do Estado do Rio Grande do Sul (UNIJUI), Ijuí/RS.

GOERGEN, R. Modelagem matemática da transferência de calor em um meio particulado. 2010. Dissertação de Mestrado — Departamento de Física, Estatística e Matemática, Universidade Regional do Noroes do Estado do Rio Grande do Sul, Ijuí/RS.

GOMES, N.; MERCH, R. Armazenamento de grãos. **Administração Amaral de Souza**, Porto Alegre, RS, 1982.

GUMERATO, H. F.; SCHMIDT, F.; GOLDONI, J. Transferência de calor transiente na agitação linear intermitente de latas. **Ciências e tecnologia de Alimentos**, Campinas, SP, v.27, n.3, p.649–657, 2007.

GUSTAVSSON, J.; CEDERBERG, C.; SONESSON, U. Global Food Losses and Food Waste. **Roma: FAO**, 2011.

HANNA, S. Confidence limit for air quality models as estimated by bootstrap and jacknife resampling methods. **Atmospheric Environment**, v.23, p.1385–1395, 1989.

HARA, T. Aeração com qualidade. **Cultivar Máquinas**, Pelotas, RS, v.21, p.26–32, 1979.

IBGE. **Série Histórica de Produção de grãos**. Disponível em: www.ibge.gov.br/estatisticas/economicas/agricultura e pecuaria/9201 levantamento sistematico da produção agricola.html?=t=o que e. Acesso em: 29 dez. 2019.

IGUAZ, A. et al. Modelling and simulation of heat transfer in stored rough rice with aeration. **Biosystems Engineering**, v.89, n.1, p.69–77, 2004.

JAYAS, D.; WHITE, N.; MUIR, W. **Stored-grain ecosystems**. New York, EUA: Marcel Dekker Inc, 1995. 756p.

KAZARIAN, E.; Hall, C. Thermal properties of grain. **Transactions of the ASAE**, St Joseph, EUA, v.37, p.33–37, 1965.

LASSERAN, J. Princípios gerais de secagem. **Revista Brasíleira de Armazena-mento**, Viçosa, MG, v.3, p.17–45, 1978.

LORINI, I. Perdas anuais em grãos armazenados chegam a 10% da produção nacional., Piracicaba, SP, v.13, p.127–129, 2015.

LUZ, M. L. G. S. **Termodinâmica e transferência de calor**. 2.ed. Pelotas, RS: Editora e gráfica UFPel, 2008. 281p.

MARINI, P. et al. Alterações fisiológicas e bioquímicas em sementes de arroz submetidas ao estresse térmico. **Ciência Agronômica**, Fortaleza, CE, v.43, n.4, p.722–730, 2012.

OZISIK, M. N. Heat Conduction. New York, EUA: John Wiley Sons, Inc, 1993. 507p.

PUZZI, D. **Abastecimento e armazenagem de grãos**. 2.ed. Campinas, SP: Campinas: Instituto Campineiro de Ensino Agrícola, 2000. 666p.

QUEIROZ, V. et al. Boas práticas e sistema APPCC na fase de pós-colheita de milho. Sete Lagoas, MG: Circular Técnica 122, 2009. 128p.

RECH, F. Modelagem Matemática da Transferência de Calor em Silos de Soja. 2018. Dissertação de Mestrado — Universidade Regional do Noroeste do Estado do Rio Grande do Sul (UNIJUI), Ijuí/RS.

SCHELLIN, W. Efeitos do uso de exaustores eólicos como complemento á aeração convencional na qualidade de arroz armazenado em silos metálicos. 2014. Dissertação de Mestrado — Ciência e Tecnologia de Alimentos - Universidade Federal de Pelotas, Pelotas/RS.

SILVA, J.; LACERD FILHO, A.; DEVILLA, I. Aeração de grãos armazenados. **Editora Aprenda Fácil**, Viçosa, MG, p.261–277, 2000.

STARK, F. Avaliação estudo do comportamento da temperatura de grãos armazenados em um silo através de um modelo matemático. 2018. Trabalho de Conclusão de Curso — Engenharia Agrícola - Universidade Federal de Pelotas, Pelotas/RS.

SUTHERLAND, J.; BANKS, P.; GRIFFITHS, H. Equilibrium heat and moisture transfer in air flow through grain. **Journal of Agricultural Engineering Research**, v.17, p.368–386, 1971.

WALTER, M.; MARCHEZAN, E.; AVILA, L. Arroz: Composição e características nutricionais. **Ciência Rural**, Santa Maria, RS, v.38, n.4, p.1184–1192, 2008.

WEBER, E. A. **Excelência em beneficiamento e armazenagem de grãos**. Canoas, RS: Salles, 2005. 385p.

WEBER, E. Armazenagem agrícola. 2.ed. Guaíba, RS: Agropecuária, 2001. 395p.

WORTMANN, S. Formulação Semi-analítica para a Equação Transformada Resultante da Aplicação da GITT em Problemas Difusivos-Advectivos. 2003. Tese de Pós-Doutorado — Universidade Federal do Rio Grande do Sul, Porto Alegre/RS.

ZHOUM, Z. et al. Composition and functional properties of Rice. **International Journal of Food Science and Technology**, v.37, p.849–860, 2002.

APÊNDICE A Dados das temperaturas no cabo 1 pelo modelo unidimensional ${\cal T}(z,t)$

					- .	(0.0)					
Tempo	Temperatura (°C)										
(min)		Sensor 1			Sensor 2			Sensor 3			
0	TO	SV	TL	TO	SV	TL	TO	SV	TL		
	31,3	31,30013	31,3	24,5	24,39997	24,5	22,8	22,79997	22,8		
30 60	30,1 29,6	30,30843 29,79679	30,30836 29,79676	24,4	24,45447 24,51066	24,45447 24,51066	22,9 22,9	22,80497 22,81014	22,80497 22,81014		
90	29,0	29,79679	29,4365	24,4	24,51066	24,51066	23	22,81558	22,81559		
120	28,8	29,15362	29,15398	24,4	24,62741	24,62741	23	22,81335	22,81339		
150	28,5	28,91964	28,92016	24,5	24,6861	24,6861	23	22,82743	22,82743		
180	28,3	28,71953	28,72018	24,5	24,74307	24,74307	23	22,83382	22,83382		
210	28,1	28,54451	28,54526	24,5	24,79714	24,79714	23,1	22,84049	22,8405		
240	28	28,38893	28,38974	24,5	24,84755	24,84755	23,1	22,84744	22,84744		
270	27,8	28,24888	28,24974	24,5	24,89393	24,89394	23,1	22,85465	22,85466		
300	27,7	28,12157	28,12247	24,5	24,93618	24,93619	23,1	22,86213	22,86213		
330	27,6	28,00491	28,00582	24,5	24,97437	24,97438	23,1	22,86986	22,86986		
360	27,5	27,89729	27,89819	24,6	25,00869	25,00869	23,2	22,87785	22,87785		
390	27,4	27,79744	27,79834	24,6	25,03937	25,03937	23,2	22,8861	22,8861		
420	27,3	27,70437	27,70525	24,6	25,06668	25,06668	23,2	22,89461	22,89461		
450	27,3	27,61723	27,61809	24,6	25,0909	25,0909	23,2	22,90337	22,90337		
480	27,2	27,53536	27,53619	24,6	25,11229	25,11229	23,2	22,91239	22,9124		
510	27,1	27,45818	27,45897	24,6	25,1311	25,13111	23,2	22,92167	22,92167		
540	27,1	27,38522	27,38597	24,6	25,14758	25,14758	23,2	22,9312	22,9312		
570	27	27,31606	27,31677	24,6	25,16193	25,16193	23,3	22,94098	22,94098		
600	26,9	27,25034	27,25101	24,7	25,17436	25,17436	23,3	22,95099	22,95099		
630	26,9	27,18777	27,1884	24,7	25,18504	25,18504	23,3	22,96124	22,96124		
660	26,9	27,12808	27,12866	24,7	25,19415	25,19415	23,3	22,9717	22,9717		
690	26,8	27,07103	27,07156	24,7	25,20182	25,20182	23,3	22,98237	22,98237		
720	26,8	27,01642	27,01689	24,7	25,2082	25,2082	23,3	22,99324	22,99324		
750	26,7	26,96406	26,96448	24,7	25,2134	25,2134	23,3	23,00429	23,00429		
780	26,7	26,91378	26,91415	24,7	25,21753	25,21753	23,3	23,01551	23,01551		
810	26,6	26,86545	26,86577	24,7	25,2207	25,2207	23,3	23,02689	23,02689		
840	26,6	26,81893	26,81919	24,8	25,22299	25,22299	23,3	23,03841	23,03842		
870	26,6	26,7741	26,77431	24,8	25,22448	25,22448	23,3	23,05007	23,05007		
900	26,5	26,73085	26,731	24,8	25,22525	25,22525	23,3	23,06184	23,06184		
930	26,5	26,68908	26,68918	24,8	25,22535	25,22535	23,3	23,07371	23,07371		
960	26,5	26,64872	26,64876	24,8	25,22486	25,22486	23,4	23,08567	23,08567		
990	26,4	26,60966	26,60965	24,8	25,22383	25,22383	23,4	23,09771	23,09771		
1020	26,4	26,57185	26,57178	24,8	25,22229	25,2223	23,4	23,10982	23,10982		
1050	26,3	26,5352	26,53508	24,8	25,22031	25,22032	23,4	23,12198	23,12198		
1080	26,3	26,49967	26,49949	24,9	25,21792	25,21792	23,4	23,13419	23,13419		
1110	26,3	26,46518	26,46495	24,9	25,21516	25,21516	23,4	23,14643	23,14643		
1140	26,3	26,43169	26,43141	24,9	25,21205	25,21206	23,4	23,15869	23,1587		
1170	26,3	26,39915	26,39881	24,9	25,20864	25,20865	23,4	23,17097	23,17098		
1200	26,2	26,36751	26,36712	24,9	25,20495	25,20496	23,4	23,18326	23,18326		
1230	26,2	26,33672	26,33628	24,9	25,20101	25,20102	23,4	23,19555	23,19555		
1260	26,2	26,30676	26,30625	24,9	25,19684	25,19684	23,4	23,20782	23,20783		
1290	26,2	26,27757	26,27701	24,9	25,19246	25,19246	23,4	23,22009	23,22009		
1320	26,2	26,24912	26,24852	24,9	25,18789	25,18789	23,5	23,23232	23,23233		
1350	26,2	26,22139	26,22073	24,9	25,18315	25,18315	23,5	23,24453	23,24453		
1380	26,2	26,19434	26,19363	25	25,17825	25,17826	23,5	23,25671	23,25671		
1410	26,2	26,16795	26,16718	25	25,17322	25,17323	23,5	23,26884	23,26884		
1440	26,2	26,14218	26,14136	25	25,16807	25,16807	23,5	23,28093	23,28093		

APÊNDICE B Dados das temperaturas no cabo 2 pelo modelo unidimensional T(z,t)

Ta man -					Temperatura	(9.0)				
Tempo	1									
(min)		Sensor 1			Sensor 2			Sensor 3		
0	TO 30	SV 30,00006	TL 30	TO 24,3	SV 24,29996	TL 24,3	TO 23,3	SV 23,29995	TL 23,3	
30	28,7	29,30366	29,30923	24,3	24,29996	24,89206	23,4	23,30523	23,30517	
60	28,2	28,93849	28,94583	24,3	24,32767	24,93286	23,4	23,31067	23,31053	
90	27,9	28,678	28,68654	24,3	24,38561	24,97452	23,5	23,31638	23,31617	
120	27,6	28,47171	28,48114	24,3	24,41544	25,01663	23,5	23,32245	23,32215	
150	27,3	28,29961	28,30973	24,3	24,44586	25,0583	23,5	23,32886	23,32847	
180	27,1	28,15141	28,16206	24,3	24,47666	25,09853	23,5	23,33559	23,33509	
210	27	28,021	28,03208	24,3	24,50755	25,13653	23,6	23,34259	23,34198	
240	26,8	27,90444	27,91587	24,4	24,53819	25,1718	23,6	23,34985	23,34913	
270	26,7	27,799	27,81071	24,4	24,56826	25,2041	23,6	23,35734	23,3565	
300	26,6	27,70271	27,71466	24,4	24,59749	25,23338	23,6	23,36505	23,3641	
330	26,5	27,61411	27,62624	24,4	24,62567	25,25971	23,7	23,37298	23,3719	
360	26,5	27,53205	27,54433	24,4	24,65265	25,28323	23,7	23,38111	23,37991	
390	26,4	27,45564	27,46805	24,4	24,67834	25,30413	23,7	23,38945	23,38811	
420	26,3	27,38416	27,39667	24,5	24,70269	25,32259	23,7	23,39798	23,39651	
450	26,2	27,31703	27,32962	24,5	24,72567	25,33882	23,7	23,40671	23,40509	
480	26,2	27,25376	27,26642	24,5	24,74729	25,35301	23,7	23,41562	23,41386	
510	26,1	27,19394	27,20665	24,5	24,76758	25,36535	23,7	23,42472	23,42282	
540	26	27,13723	27,14998	24,5	24,78657	25,376	23,8	23,434	23,43194	
570	26	27,08334	27,09611	24,5	24,80433	25,38512	23,8	23,44345	23,44124	
600	26	27,032	27,04479	24,6	24,82089	25,39285	23,8	23,45307	23,4507	
630	26	26,983	26,9958	24,6	24,83632	25,39933	23,8	23,46284	23,46032	
660	25,9	26,93615	26,94895	24,6	24,85067	25,40468	23,8	23,47276	23,47008	
690	25,9	26,89127	26,90406	24,6	24,864	25,40899	23,8	23,48282	23,47998	
720	25,8	26,84821	26,86099	24,7	24,87638	25,41238	23,8	23,49301	23,49001	
750	25,8	26,80685	26,81961	24,7	24,88784	25,41492	23,8	23,50331	23,50015	
780	25,8	26,76705	26,77979	24,7	24,89846	25,41669	23,8	23,51373	23,51041	
810	25,7	26,72872	26,74144	24,7	24,90827	25,41777	23,8	23,52423	23,52076	
840	25,7	26,69175	26,70444	24,7	24,91733	25,41823	23,8	23,53483	23,53119	
870	25,6	26,65607	26,66873	24,7	24,92569	25,41811	23,8	23,5455	23,54171	
900	25,6	26,62158	26,63421	24,7	24,93338	25,41747	23,8	23,55623	23,55229	
930	25,6	26,58822	26,60081	24,7	24,94045	25,41637	23,8	23,56702	23,56292	
960	25,6	26,55593	26,56848	24,7	24,94693	25,41484	23,8	23,57785	23,57361	
990	25,5	26,52463	26,53714	24,8	24,95287	25,41292	23,8	23,58872	23,58433	
1020	25,5	26,49429	26,50675	24,8	24,9583	25,41065	23,8	23,59961	23,59508	
1050	25,5	26,46484	26,47726	24,8	24,96324	25,40807	23,8	23,61053	23,60586	
1080	25,5	26,43624	26,44861	24,8	24,96774	25,40519	23,8	23,62145	23,61664	
1110	25,4	26,40844	26,42077	24,8	24,97181	25,40206	23,8	23,63238	23,62744	
1140	25,4	26,38142	26,39369	24,8	24,97549	25,39868	23,9	23,6433	23,63823	
1170	25,5	26,35512	26,36735	24,9	24,9788	25,39509	23,9	23,65421	23,64901	
1200	25,6	26,32951	26,34169	24,9	24,98175	25,39131	23,9	23,66511	23,65978	
1230	25,6	26,30457	26,3167	24,9	24,98439	25,38736	23,9	23,67598	23,67053	
1260	25,5	26,28026	26,29234	24,9	24,98671	25,38324	23,9	23,68683	23,68126	
1290	25,5	26,25656	26,26858	24,9	24,98875	25,37898	23,9	23,69764	23,69196	
1320	25,5	26,23344	26,2454	24,9	24,99052	25,3746	23,9	23,70841	23,70262	
1350	25,5	26,21086	26,22277	24,9	24,99203	25,3701	24	23,71914	23,71324	
1380	25,5	26,18882	26,20068	24,9	24,99331	25,3655	24	23,72982	23,72382	
1410	25,5	26,16729	26,17909	24,9	24,99437	25,3608	24	23,74045	23,73435	
1440	25,5	26,14625	26,158	24,9	24,99522	25,35603	24	23,75103	23,74483	

APÊNDICE C Dados das temperaturas no cabo 3 pelo modelo unidimensional ${\cal T}(z,t)$

Tempo (min)					Temperatura	(~(,)				
` ′		Sensor 1 Sensor 2 Sensor 3								
_	TO	SV	TL	ТО	SV	TL	TO	SV	TL	
U I	31,1	31,10032	31,1	23,7	23,90002	23,7	23,8	23,8	23,8	
30	30,5	29,57365	29,58472	23,7	23,91492	24,08877	23,9	23,80018	23,80067	
60	30,1	28,88543	28,89847	23,7	23,93202	24,13093	23,9	23,80039	23,80095	
90	29,6	28,4406	28,45473	23,7	23,95165	24,17904	23,9	23,80062	23,80126	
120	29,2	28,11318	28,128	23,8	23,97412	24,23272	24	23,80089	23,80162	
150	28,8	27,85571	27,87095	23,8	23,99961	24,29005	24	23,80121	23,80203	
180	28,6	27,64475	27,66023	23,8	24,02795	24,34857	24	23,80157	23,8025	
210	28,3	27,46696	27,48255	23,8	24,05862	24,40612	24	23,80198	23,80305	
240	28,2	27,31398	27,32959	23,8	24,09095	24,46122	24,1	23,80246	23,80367	
270	28	27,18022	27,19579	23,8	24,12422	24,51296	24,1	23,80301	23,80438	
300	27,9	27,06178	27,07726	23,8	24,15779	24,56089	24,1	23,80363	23,8052	
330	27,9	26,9558	26,97116	23,9	24,19113	24,60487	24,1	23,80435	23,80613	
360	27,6	26,86016	26,87536	23,9	24,2238	24,64495	24,1	23,80517	23,8072	
390	27,5	26,7732	26,78823	23,9	24,25552	24,6813	24,2	23,80611	23,80842	
420	27,4	26,69365	26,70848	23,9	24,28605	24,71415	24,2	23,80719	23,8098	
450	27,3	26,62046	26,6351	23,9	24,31526	24,74376	24,2	23,8084	23,81136	
480	27,3	26,55281	26,56724	24	24,34308	24,77038	24,2	23,80978	23,81311	
510	27,2	26,49001	26,50422	24	24,36945	24,79428	24,2	23,81132	23,81507	
540	27,1	26,43148	26,44548	24	24,39438	24,81571	24,2	23,81304	23,81723	
570	27	26,37676	26,39053	24	24,41789	24,83489	24,2	23,81495	23,81962	
600	27	26,32543	26,33898	24	24,44	24,85203	24,2	23,81705	23,82223	
630	26,9	26,27716	26,29048	24,1	24,46078	24,86732	24,2	23,81935	23,82506	
660	26,9	26,23163	26,24473	24,1	24,48026	24,88095	24,3	23,82185	23,82811	
690	26,8	26,1886	26,20148	24,1	24,49852	24,89306	24,3	23,82455	23,83138	
720	26,8	26,14784	26,1605	24,1	24,51562	24,90381	24,3	23,82745	23,83487	
750	26,7	26,10915	26,12159	24,1	24,53161	24,91332	24,3	23,83055	23,83856	
780	26,7	26,07236	26,08458	24,1	24,54656	24,9217	24,3	23,83384	23,84246	
810	26,6	26,03731	26,04932	24,1	24,56052	24,92907	24,3	23,83731	23,84654	
840	26,6	26,00388	26,01567	24,1	24,57356	24,93551	24,3	23,84097	23,85081	
870	26,5	25,97193	25,98351	24,1	24,58573	24,94111	24,3	23,8448	23,85524	
900	26,5	25,94136	25,95274	24,1	24,59708	24,94595	24,3	23,8488	23,85984	
930	26,5	25,91207	25,92324	24,1	24,60766	24,9501	24,3	23,85296	23,86459	
960	26,4	25,88398	25,89494	24,2	24,61752	24,95361	24,3	23,85727	23,86947	
990	26,4	25,857	25,86776	24,2	24,6267	24,95655	24,3	23,86172	23,87449	
1020	26,4	25,83105	25,84162	24,2	24,63526	24,95896	24,3	23,86631	23,87962	
1050	26,3	25,80608	25,81645	24,2	24,64321	24,9609	24,3	23,87102	23,88487	
1080	26,3	25,78203	25,7922	24,2	24,65061	24,96239	24,3	23,87585	23,89021	
1110	26,3	25,75883	25,76881	24,2	24,65749	24,96349	24,3	23,88079	23,89564	
1140	26,3	25,73644	25,74623	24,2	24,66387	24,96423	24,4	23,88583	23,90116	
1170	26,2	25,71481	25,72442	24,2	24,66979	24,96463	24,4	23,89096	23,90674	
1200	26,2	25,6939	25,70332	24,2	24,67528	24,96473	24,4	23,89619	23,91239	
1230	26,2	25,67367	25,68291	24,2	24,68037	24,96455	24,4	23,90149	23,9181	
1260	26,2	25,65409	25,66315	24,2	24,68507	24,96412	24,4	23,90686	23,92386	
1290	26,2	25,63511	25,64399	24,2	24,68942	24,96345	24,4	23,9123	23,92966	
1320	26,2	25,61671	25,62542	24,2	24,69343	24,96257	24,5	23,91779	23,93549	
1350	26,2	25,59886	25,60739	24,2	24,69713	24,96149	24,5	23,92334	23,94136	
1380	26,2	25,58153	25,58989	24,2	24,70053	24,96024	24,5	23,92894	23,94725	
1410	26,2	25,5647	25,57289	24,2	24,70365	24,95883	24,5	23,93458	23,95316	
1440	26,2	25,54834	25,55637	24,2	24,70651	24,95726	24,5	23,94025	23,95908	

APÊNDICE D $\,$ Dados das temperaturas no sensor 1 pelo modelo unidimensional T(r,t)

Tempo					Temperatura (OC)			
(min)		Cabo 1			Cabo 2	,		Cabo 3	
()	ТО	SV	TL	то	SV	TL	то	SV	TL
0	31,3	31,29386	31,3	30	29,99477	30	31,1	31,09400	31,1
30	30,1	31,30000	31,3	28,7	30,00000	30	30,5	31,10000	31,1
60	29,6	31,29993	31,3	28,2	29,99994	30	30,1	31,09993	31,1
90	29,1	31,29748	31,29968	27,9	29,99785	29,99972	29,6	31,09753	31,09968
120	28,8	31,28411	31,29663	27,6	29,98646	29,99713	29,2	31,08447	31,09671
150	28,5	31,25113	31,28599	27,3	29,95835	29,98806	28,8	31,05224	31,08631
180	28,3	31,19532	31,26326	27,1	29,91079	29,96869	28,6	30,99770	31,0641
210	28,1	31,11809	31,22618	27	29,84496	29,93709	28,3	30,92223	31,02786
240	28	31,02295	31,17461	26,8	29,76388	29,89313	28,2	30,82925	30,97746
270	27,8	30,91391	31,109711	26,7	29,67095	29,83782	28	30,72269	30,91403
300	27,7	30,79467	31,02327	26,6	29,56932	29,77268	27,9	30,60616	30,83934
330	27,6	30,66836	30,94729	26,5	29,46167	29,69939	27,9	30,48271	30,7553
360	27,5	30,53749	30,85365	26,5	29,35013	29,61959	27,6	30,35482	30,66379
390	27,4	30,40404	30,75407	26,4	29,23640	29,53472	27,5	30,22440	30,56647
420	27,3	30,26952	30,65003	26,3	29,12175	29,44605	27,4	30,09294	30,4648
450	27,3	30,13506	30,54278	26,2	29,00716	29,35464	27,3	29,96154	30,35999
480	27,2	30,00154	30,43337	26,2	28,89335	29,26139	27,3	29,83105	30,25306
510	27,1	29,86956	30,32264	26,1	28,78088	29,16702	27,2	29,70207	30,14485
540	27,1	29,73960	30,21129	26	28,67011	29,07212	27,1	29,57506	30,03603
570	27	29,61196	30,09987	26	28,56133	28,97717	27	29,45032	29,92715
600	26,9	29,48687	29,98883	26	28,45472	28,88253	27	29,32808	29,81863
630	26,9	29,36446	29,87852	26	28,35039	28,78851	26,9	29,20845	29,71083
660	26,9	29,24482	29,76921	25,9	28,24843	28,69535	26,9	29,09153	29,604
690	26,8	29,12798	29,66112	25,9	28,14885	28,60322	26,8	28,97735	29,49836
720	26,8	29,01395	29,55439	25,8	28,05166	28,51226	26,8	28,86590	29,39406
750	26,7	28,90268	29,44916	25,8	27,95683	28,42258	26,7	28,75717	29,29122
780	26,7	28,79415	29,3455	25,8	27,86434	28,33423	26,7	28,65111	29,18992
810	26,6	28,68830	29,24348	25,7	27,77412	28,24728	26,6	28,54766	29,09022
840	26,6	28,58506	29,14312	25,7	27,68613	28,16175	26,6	28,44676	28,99214
870	26,6	28,48436	29,04446	25,6	27,60030	28,07766	26,5	28,34835	28,89572
900	26,5	28,38611	28,94748	25,6	27,51657	27,99501	26,5	28,25233	28,80095
930	26,5	28,29024	28,8522	25,6	27,43487	27,91381	26,5	28,15865	28,70783
960	26,5	28,19668	28,75859	25,6	27,35512	27,83402	26,4	28,06721	28,61635
990	26,4	28,10533	28,66663	25,5	27,27727	27,75565	26,4	27,97794	28,52648
1020	26,4	28,01613	28,57629	25,5	27,20124	27,67866	26,4	27,89076	28,4382
1050	26,3	27,92898	28,48756	25,5	27,12698	27,60303	26,3	27,80560	28,35148
1080	26,3	27,84383	28,40039	25,5	27,05440	27,52874	26,3	27,72238	28,26629
1110	26,3	27,76059	28,31475	25,4	26,98346	27,45575	26,3	27,64103	28,1826
1140	26,3	27,67919	28,23061	25,4	26,91408	27,38404	26,3	27,56148	28,10037
1170	26,3	27,59957	28,14794	25,5	26,84623	27,31358	26,2	27,48367	28,01957
1200	26,2	27,52166	28,06669	25,6	26,77983	27,24434	26,2	27,40753	27,94017
1230	26,2	27,44540	27,98683	25,6	26,71483	27,17628	26,2	27,33301	27,86213
1260	26,2	27,37073	27,90833	25,5	26,65119	27,10937	26,2	27,26003	27,78542
1290	26,2	27,29759	27,83116	25,5	26,58886	27,0436	26,2	27,18855	27,71
1320	26,2	27,22593	27,75528	25,5	26,52778	26,97893	26,2	27,11852	27,63584
1350	26,2	27,15569	27,68065	25,5	26,46792	26,91533	26,2	27,04988	27,56291
1380	26,2	27,08684	27,60726	25,5	26,40924	26,85278	26,2	26,98259	27,49118
1410	26,2	27,01931	27,53506	25,5	26,35169	26,79124	26,2	26,91660	27,42063
1440	26,2	26,95307	27,46403	25,5	26,29523	26,73071	26,2	26,85186	27,35121

APÊNDICE E Dados das temperaturas no cabo 1 pelo modelo bidimensional T(r,z,t)

TO	Tempo					Temperatura	(°C)			
TO SV GILTT TO SV										
Name	(111111)	TO			TO			TO		
Section Sect		_			_	_				-
Bot Bot						,				
Post			,		,	-	-			,
120			,							
150					_					
180							· ·	_		· ·
210			-							
240 28 28,18947 28,18958 24,5 24,77827 24,77828 23,1 22,83718 22,83718 270 27,8 27,98253 27,98218 24,5 24,7936 24,79361 23,1 22,83988 28,28988 300 27,7 27,78432 27,8382 24,5 24,80031 24,80132 23,1 22,84222 22,84821 360 27,5 27,41564 27,41388 24,6 24,79568 24,76968 23,2 22,84821 22,84431 22,84821 390 27,4 27,4424 27,24202 24,6 24,78497 24,76945 23,2 22,84821 22,84821 420 27,3 27,08124 27,02457 24,6 24,75149 23,2 22,84972 22,8481 450 27,2 26,77904 26,7555 24,6 24,75149 23,2 22,85141 22,85141 450 27,1 26,63909 26,63525 24,6 24,7514 24,7514 22,285478 22,85478		-	,			-	-	_		
270		_	,	-	,		-			
27,7 27,78463 27,78382 24,5 24,80095 24,80096 23,1 22,84222 22,84222 23,330 27,6 27,59571 27,59442 24,5 24,80131 24,80132 23,1 22,84431 22,84431 360 27,5 27,41564 27,41388 24,6 24,79568 24,79568 23,2 22,84621 23,2 22,85622 22,85652 24,62461 23,2 22,85622 22,85652 24,62461 23,3 22,86532 22,86527 22,86563 22,86664 26,9			,		,	,				,
330			,	,	,	,		- '		,
360			,							
390 27,4 27,24424 27,24202 24,6 24,78497 24,78495 23,2 22,848 22,848 420 27,3 27,08124 27,07857 24,6 24,77002 24,76998 23,2 22,84972 22,84971 450 27,3 26,92629 26,9232 24,6 24,75154 24,75142 23,2 22,855091 22,85308 510 27,1 26,63909 26,63525 24,6 24,70648 24,70641 23,2 22,85652 22,85678 540 27,1 26,50603 26,51187 24,6 24,66081 23,2 22,85662 22,85675 570 27 26,37949 26,37502 24,6 24,65381 24,65373 23,3 22,86007 22,86066 600 26,9 26,25907 26,25492 24,7 24,56665 24,56662 23,3 22,86189 22,86189 660 26,9 26,03512 26,02988 24,7 24,56665 24,56662 23,3 22,86563 22,8					_					
420 27,3 27,08124 27,07857 24,6 24,77002 24,76998 23,2 22,84972 22,8491 450 27,3 26,92629 26,9232 24,6 24,75154 24,75149 23,2 22,85141 22,8514 480 27,2 26,77904 26,63525 24,6 24,7019 24,73019 23,2 22,856309 22,855308 510 27,1 26,630909 26,63525 24,6 24,76048 24,70641 23,2 22,85622 22,85678 540 27,1 26,630603 26,50187 24,6 24,68381 24,68373 23,3 22,85622 22,85627 600 26,9 26,14439 26,13939 24,7 24,62566 24,62549 23,3 22,86607 22,86189 660 26,9 26,03512 26,02988 24,7 24,56665 24,56862 23,3 22,86735 22,86754 720 26,8 25,33146 25,82578 24,7 24,53642 24,53641 23,3 <t< td=""><td></td><td>_</td><td>-</td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td></t<>		_	-					-		
450 27,3 26,92629 26,9232 24,6 24,75154 24,75149 23,2 22,85141 22,8514 480 27,2 26,77904 26,77556 24,6 24,73019 24,73012 23,2 22,85309 22,85308 510 27,1 26,53909 26,63525 24,6 24,70648 24,70641 23,2 22,85652 22,85678 540 27,1 26,50603 26,51187 24,6 24,868081 23,2 22,85652 22,85651 570 27 26,37949 26,37502 24,6 24,65381 24,65373 23,3 22,85662 22,85602 600 26,9 26,14439 26,139393 24,7 24,56665 24,56662 23,3 22,86189 22,86189 600 26,9 26,03512 26,02988 24,7 24,53642 24,53641 23,3 22,86752 22,86754 720 26,8 25,83146 25,82578 24,7 24,53642 24,55692 23,3 22,86752					_		-			
480 27,2 26,77904 26,77556 24,6 24,73019 24,73012 23,2 22,85309 22,85308 510 27,1 26,63909 26,63525 24,6 24,70648 24,70641 23,2 22,85479 22,85478 540 27,1 26,50603 26,50187 24,6 24,65381 24,68081 23,2 22,85625 22,85626 570 27 26,37949 26,37502 24,6 24,65381 24,65373 23,3 22,86007 22,86006 600 26,9 26,25907 26,25432 24,7 24,62556 24,62549 23,3 22,86189 22,86189 660 26,9 26,03512 26,02988 24,7 24,55662 24,56662 23,3 22,86375 22,86189 690 26,8 25,33091 25,92545 24,7 24,5059 24,50592 23,3 22,8678 22,86546 750 26,7 25,34566 25,33058 24,7 24,45059 24,50592 23,3 22		_			_	,				,
510 27,1 26,63909 26,63525 24,6 24,70648 24,70641 23,2 22,85479 22,85478 540 27,1 26,50603 26,5187 24,6 24,68089 24,68081 23,2 22,85652 22,85651 570 27 26,37949 26,27502 24,6 24,65256 24,65373 23,3 22,85828 22,86006 600 26,9 26,14439 26,13939 24,7 24,59643 24,59638 23,3 22,86375 22,86006 660 26,9 26,03512 26,02988 24,7 24,59643 24,59634 23,3 22,86375 22,86375 690 26,8 25,83146 25,82578 24,7 24,55642 24,53641 23,3 22,86563 22,86574 720 26,8 25,83146 25,82578 24,7 24,4552 24,47528 23,3 22,86943 22,86944 720 26,6 25,53646 25,63956 24,7 24,4445 24,4444 23,3 22,8		_	,		,	,	-			-
540 27,1 26,50603 26,50187 24,6 24,68089 24,68081 23,2 22,85652 22,85651 570 27 26,37949 26,37502 24,6 24,65381 24,65373 23,3 22,85828 22,85827 600 26,9 26,25907 26,25432 24,7 24,62556 24,62549 23,3 22,86007 22,86068 630 26,9 26,04439 26,13939 24,7 24,56665 24,56662 23,3 22,86189 22,86189 660 26,9 26,03512 26,02988 24,7 24,56662 23,3 22,86575 22,86375 690 26,8 25,93091 25,92545 24,7 24,5059 24,50592 23,3 22,86563 22,86574 750 26,7 25,73647 25,73058 24,7 24,47522 24,47528 23,3 22,86943 22,8674 780 26,6 25,55878 25,55246 24,7 24,47384 24,41399 23,3 22,87332 22					,	,			,	,
570 27 26,37549 26,37502 24,6 24,65381 24,65373 23,3 22,85828 22,85827 600 26,9 26,25907 26,25432 24,7 24,62556 24,62549 23,3 22,86007 22,86006 630 26,9 26,14439 26,139393 24,7 24,59643 24,59643 23,3 22,86189 22,86189 660 26,9 26,03512 26,02988 24,7 24,56665 24,56662 23,3 22,86754 22,86564 720 26,8 25,33091 25,92545 24,7 24,5069 24,50592 23,3 22,86752 22,86754 750 26,7 25,73647 25,73058 24,7 24,47522 24,47528 23,3 22,86943 22,86754 780 26,7 25,64566 25,63956 24,7 24,4445 24,4446 23,3 22,87324 22,87324 840 26,6 25,55878 25,55246 24,7 24,4445 24,4446 23,3 22,8		_			_					
600 26,9 26,25907 26,25432 24,7 24,62556 24,62549 23,3 22,86007 22,86006 630 26,9 26,14439 26,13939 24,7 24,59643 24,59638 23,3 22,86189 22,86189 660 26,9 26,03512 26,02988 24,7 24,56662 23,3 22,86375 22,86375 690 26,8 25,93091 25,92545 24,7 24,50692 24,50592 23,3 22,86752 22,86754 720 26,8 25,83146 25,82578 24,7 24,50592 23,3 22,86752 22,86754 750 26,7 25,64566 25,63956 24,7 24,47522 24,47528 23,3 22,86732 22,86754 780 26,7 25,64566 25,63956 24,7 24,4145 24,4446 23,3 22,87133 22,86734 810 26,6 25,54595 25,56966 24,8 24,38332 24,38351 23,3 22,87672 22,87322							<u> </u>			
630 26,9 26,14439 26,13939 24,7 24,59643 24,59638 23,3 22,86189 22,86189 660 26,9 26,03512 26,02988 24,7 24,56665 24,56662 23,3 22,86375 22,86375 690 26,8 25,93091 25,92545 24,7 24,53642 24,50692 23,3 22,86563 22,86564 720 26,8 25,83146 25,82578 24,7 24,50599 24,50592 23,3 22,86762 22,86754 750 26,7 25,64566 25,53958 24,7 24,47522 24,47528 23,3 22,87332 22,86944 780 26,6 25,55878 25,55246 24,7 24,4445 24,4446 23,3 22,87322 22,87322 810 26,6 25,54598 25,55246 24,7 24,4438 24,41399 23,3 22,87322 22,87324 840 26,6 25,39588 25,38911 24,8 24,353 24,3533 22,87693			-		_		-	-		
660 26,9 26,03512 26,02988 24,7 24,56665 24,56662 23,3 22,86375 22,86375 690 26,8 25,93091 25,92545 24,7 24,53642 24,53641 23,3 22,86563 22,86564 720 26,8 25,83146 25,82578 24,7 24,50599 24,50592 23,3 22,86752 22,86754 750 26,7 25,73647 25,73058 24,7 24,47522 24,47528 23,3 22,86732 22,86944 780 26,6 25,55878 25,55246 24,7 24,4445 24,4444 23,3 22,87322 22,87324 840 26,6 25,55878 25,56406 24,7 24,44384 24,41399 23,3 22,87509 22,87524 840 26,6 25,547559 25,46906 24,8 24,38332 24,38351 23,3 22,87693 22,87692 900 26,5 25,31942 25,31242 24,8 24,32323 23,3 22,87874 <td< td=""><td></td><td>_</td><td>-</td><td></td><td>_</td><td>-</td><td></td><td></td><td></td><td></td></td<>		_	-		_	-				
690 26,8 25,93091 25,92545 24,7 24,53642 24,53641 23,3 22,86563 22,86564 720 26,8 25,83146 25,82578 24,7 24,50599 24,50592 23,3 22,86752 22,86754 750 26,7 25,73647 25,73058 24,7 24,47522 24,47528 23,3 22,86943 22,86944 780 26,7 25,64666 25,63956 24,7 24,4445 24,4446 23,3 22,87322 22,87324 810 26,6 25,55878 25,55246 24,7 24,441394 24,41399 23,3 22,87322 22,87324 840 26,6 25,547559 25,46906 24,8 24,38332 24,38351 23,3 22,87693 22,87512 870 26,6 25,31942 25,31242 24,8 24,32323 23,3 22,87693 22,87878 930 26,5 25,19404 25,23879 24,8 24,23315 24,29349 23,3 22,8805 <td< td=""><td></td><td></td><td>,</td><td></td><td>,</td><td>,</td><td>-</td><td></td><td></td><td></td></td<>			,		,	,	-			
720 26,8 25,83146 25,82578 24,7 24,5059 24,50592 23,3 22,86752 22,86754 750 26,7 25,73647 25,73058 24,7 24,47522 24,47528 23,3 22,86943 22,86944 780 26,7 25,64566 25,63956 24,7 24,4445 24,4446 23,3 22,87322 22,87324 840 26,6 25,55878 25,55246 24,7 24,41384 24,41399 23,3 22,87522 22,87324 840 26,6 25,47559 25,46906 24,8 24,38332 24,38351 23,3 22,87693 22,87697 900 26,5 25,31942 25,31242 24,8 24,32293 24,32321 23,3 22,87694 22,87878 930 26,5 25,14604 25,23879 24,8 24,29315 24,29349 23,3 22,8805 22,8805 990 26,4 25,10755 25,16805 24,8 24,26371 24,2649 23,4 22,8					,					
750 26,7 25,73647 25,73058 24,7 24,47522 24,47528 23,3 22,86943 22,86944 780 26,7 25,64566 25,63956 24,7 24,4445 24,4446 23,3 22,87133 22,87135 810 26,6 25,55878 25,55246 24,7 24,41384 24,41399 23,3 22,87322 22,87324 840 26,6 25,47559 25,46906 24,8 24,38332 24,38351 23,3 22,87509 22,87512 870 26,6 25,39588 25,38911 24,8 24,353 24,35323 23,3 22,87697 900 26,5 25,31942 25,31242 24,8 24,32293 24,32321 23,3 22,87674 22,87878 930 26,5 25,17555 25,16805 24,8 24,29315 24,29349 23,4 22,88022 22,88226 990 26,4 25,10779 25,10002 24,8 24,2363 24,23505 23,4 22,88546 22,					_					
780 26,7 25,64566 25,63956 24,7 24,4445 24,4446 23,3 22,87133 22,87135 810 26,6 25,55878 25,55246 24,7 24,41384 24,41399 23,3 22,87322 22,87324 840 26,6 25,47559 25,46906 24,8 24,38332 24,38351 23,3 22,87509 22,87512 870 26,6 25,39588 25,38911 24,8 24,353 24,35323 23,3 22,87693 22,87697 900 26,5 25,31942 25,31242 24,8 24,32293 24,32321 23,3 22,87674 22,87878 930 26,5 25,24604 25,23879 24,8 24,29315 24,29349 23,3 22,8805 22,88055 960 26,5 25,177555 25,16805 24,8 24,29315 24,26409 23,4 22,8832 22,88226 990 26,4 25,04261 25,03456 24,8 24,23403 24,23605 23,4 22,						-	· ·			· ·
810 26,6 25,55878 25,55246 24,7 24,41384 24,41399 23,3 22,87322 22,87324 840 26,6 25,47559 25,46906 24,8 24,38332 24,38351 23,3 22,87509 22,87512 870 26,6 25,39588 25,38911 24,8 24,353 24,35323 23,3 22,87693 22,87878 900 26,5 25,31942 25,31242 24,8 24,32293 24,32321 23,3 22,87874 22,87878 930 26,5 25,24604 25,23879 24,8 24,29315 24,29349 23,3 22,8805 22,88055 960 26,5 25,17555 25,16805 24,8 24,23463 24,23460 23,4 22,88322 22,88226 990 26,4 25,04261 25,0456 24,8 24,23463 24,23605 23,4 22,88387 22,88392 1020 26,4 25,04261 25,0456 24,8 24,17763 24,17813 23,4 22		_	-		_		-	-		
840 26,6 25,47559 25,46906 24,8 24,38332 24,38351 23,3 22,87509 22,87512 870 26,6 25,39588 25,38911 24,8 24,353 24,35323 23,3 22,87693 22,87878 900 26,5 25,31942 25,31242 24,8 24,32293 24,32321 23,3 22,87874 22,87878 930 26,5 25,24604 25,23879 24,8 24,29315 24,29349 23,3 22,8805 22,88055 960 26,5 25,17555 25,16805 24,8 24,23463 24,23460 23,4 22,88222 22,88226 990 26,4 25,10779 25,10002 24,8 24,23463 24,23505 23,4 22,88546 22,88392 1020 26,4 25,04261 25,0456 24,8 24,17763 24,17813 23,4 22,88646 22,88570 1080 26,3 24,9194 24,91151 24,8 24,12286 24,17813 23,4 2		_			_	-		_		
870 26,6 25,39588 25,38911 24,8 24,353 24,35323 23,3 22,87693 22,87697 900 26,5 25,31942 25,31242 24,8 24,32293 24,32321 23,3 22,87874 22,87878 930 26,5 25,24604 25,23879 24,8 24,29315 24,29349 23,3 22,8805 22,88055 960 26,5 25,17555 25,16805 24,8 24,26371 24,26409 23,4 22,88222 22,88226 990 26,4 25,10779 25,10002 24,8 24,23463 24,23505 23,4 22,88387 22,88392 1020 26,4 25,04261 25,03456 24,8 24,20593 24,17813 23,4 22,88546 22,88511 1050 26,3 24,97985 24,97151 24,8 24,17763 24,17813 23,4 22,88848 1110 26,3 24,86112 24,85216 24,9 24,142285 23,4 22,88842 1140			,		,		-			,
900 26,5 25,31942 25,31242 24,8 24,32293 24,32321 23,3 22,87874 22,87878 930 26,5 25,24604 25,23879 24,8 24,29315 24,29349 23,3 22,8805 22,88055 960 26,5 25,17555 25,16805 24,8 24,26371 24,26409 23,4 22,88222 22,88226 990 26,4 25,10779 25,10002 24,8 24,23463 24,23505 23,4 22,88387 22,88392 1020 26,4 25,04261 25,03456 24,8 24,20593 24,17813 23,4 22,88546 22,88551 1050 26,3 24,97985 24,97151 24,8 24,17763 24,17502 23,4 22,88698 22,88703 1080 26,3 24,9194 24,91076 24,9 24,14975 24,15028 23,4 22,88842 22,88703 1100 26,3 24,86112 24,85216 24,9 24,19228 24,12285 23,4		_								
930 26,5 25,24604 25,23879 24,8 24,29315 24,29349 23,3 22,8805 22,88055 960 26,5 25,17555 25,16805 24,8 24,26371 24,26409 23,4 22,88222 22,88226 990 26,4 25,10779 25,10002 24,8 24,23463 24,23505 23,4 22,88387 22,88392 1020 26,4 25,04261 25,03456 24,8 24,20593 24,2064 23,4 22,88546 22,88551 1050 26,3 24,97955 24,97151 24,8 24,17763 24,17813 23,4 22,88698 22,88703 1080 26,3 24,9194 24,91076 24,9 24,14975 24,15028 23,4 22,88842 22,88848 1110 26,3 24,86112 24,85216 24,9 24,19522 24,12285 23,4 22,89894 1140 26,3 24,8049 24,79562 24,9 24,09524 24,09584 23,4 22,89107 <				,	,			- '	,	22,87697
960 26,5 25,17555 25,16805 24,8 24,26371 24,26409 23,4 22,88222 22,88226 990 26,4 25,10779 25,10002 24,8 24,23463 24,23505 23,4 22,88387 22,88392 1020 26,4 25,04261 25,03456 24,8 24,20593 24,2064 23,4 22,88546 22,88551 1050 26,3 24,97985 24,97151 24,8 24,17763 24,17813 23,4 22,88698 22,88703 1080 26,3 24,9194 24,91076 24,9 24,14975 24,15028 23,4 22,88842 22,88848 1110 26,3 24,86112 24,85216 24,9 24,12228 24,12285 23,4 22,89379 22,88948 1140 26,3 24,8049 24,79562 24,9 24,09524 24,09584 23,4 22,89107 22,89112 1170 26,3 24,69821 24,68825 24,9 24,06864 24,06925 23,4										,
990 26,4 25,10779 25,10002 24,8 24,23463 24,23505 23,4 22,88387 22,88392 1020 26,4 25,04261 25,03456 24,8 24,20593 24,2064 23,4 22,88546 22,88551 1050 26,3 24,97985 24,97151 24,8 24,17763 24,17813 23,4 22,88698 22,88703 1080 26,3 24,9194 24,91076 24,9 24,14975 24,15028 23,4 22,88842 22,88848 1110 26,3 24,86112 24,85216 24,9 24,12228 24,12285 23,4 22,88979 22,88984 1140 26,3 24,8049 24,79562 24,9 24,09524 24,09584 23,4 22,89107 22,89112 1170 26,3 24,69821 24,68825 24,9 24,06864 24,06925 23,4 22,89227 22,89232 1200 26,2 24,68825 24,9 24,01473 24,0431 23,4 22,89433			-		_					
1020 26,4 25,04261 25,03456 24,8 24,20593 24,2064 23,4 22,88546 22,88551 1050 26,3 24,97985 24,97151 24,8 24,17763 24,17813 23,4 22,88698 22,88703 1080 26,3 24,9194 24,91076 24,9 24,14975 24,15028 23,4 22,88842 22,88848 1110 26,3 24,86112 24,85216 24,9 24,12228 24,12285 23,4 22,8979 22,88984 1140 26,3 24,8049 24,79562 24,9 24,09524 24,09584 23,4 22,89107 22,89112 1170 26,3 24,75063 24,74101 24,9 24,06864 24,06925 23,4 22,89227 22,89232 1200 26,2 24,68825 24,9 24,01673 24,01737 23,4 22,89439 22,89434 1280 26,2 24,58755 24,58789 24,9 24,01673 24,01737 23,4 22,89635		26,5	25,17555	25,16805	24,8	24,26371	24,26409		22,88222	22,88226
1050 26,3 24,97985 24,97151 24,8 24,17763 24,17813 23,4 22,88698 22,88703 1080 26,3 24,9194 24,91076 24,9 24,14975 24,15028 23,4 22,88842 22,88848 1110 26,3 24,86112 24,85216 24,9 24,12228 24,12285 23,4 22,88979 22,88984 1140 26,3 24,8049 24,79562 24,9 24,09524 24,09584 23,4 22,89107 22,89112 1170 26,3 24,75063 24,74101 24,9 24,06864 24,06925 23,4 22,89227 22,89232 1200 26,2 24,69821 24,68825 24,9 24,04247 24,0431 23,4 22,89337 22,89432 1230 26,2 24,64755 24,63724 24,9 24,01673 24,01737 23,4 22,89439 22,89443 1290 26,2 24,58155 24,58789 24,9 23,99143 23,99208 23,4	990	26,4	,	25,10002	24,8	24,23463	24,23505	23,4	22,88387	
1080 26,3 24,9194 24,91076 24,9 24,14975 24,15028 23,4 22,88842 22,88848 1110 26,3 24,86112 24,85216 24,9 24,12228 24,12285 23,4 22,89979 22,88984 1140 26,3 24,8049 24,79562 24,9 24,09524 24,09584 23,4 22,89107 22,89112 1170 26,3 24,75063 24,74101 24,9 24,06864 24,06925 23,4 22,89227 22,89232 1200 26,2 24,68821 24,68825 24,9 24,04247 24,0431 23,4 22,89337 22,89342 1230 26,2 24,64755 24,63724 24,9 24,01673 24,01737 23,4 22,89439 22,89433 1260 26,2 24,59855 24,58789 24,99 23,99143 23,99208 23,4 22,89631 22,89535 1290 26,2 24,55115 24,54012 24,9 23,94276 23,5 22,89613	1020	26,4	25,04261	25,03456	24,8	24,20593	24,2064	23,4	22,88546	22,88551
1110 26,3 24,86112 24,85216 24,9 24,12228 24,12285 23,4 22,88979 22,88984 1140 26,3 24,8049 24,79562 24,9 24,09524 24,09584 23,4 22,89107 22,89112 1170 26,3 24,75063 24,74101 24,9 24,06864 24,06925 23,4 22,89227 22,89232 1200 26,2 24,69821 24,68825 24,9 24,04247 24,0431 23,4 22,89337 22,89342 1230 26,2 24,64755 24,63724 24,9 24,01673 24,01737 23,4 22,89439 22,89433 1260 26,2 24,59855 24,58789 24,9913 23,99143 23,99208 23,4 22,89631 22,89535 1290 26,2 24,55115 24,54012 24,9 23,9666 23,96721 23,4 22,89613 22,89617 1320 26,2 24,50526 24,49386 24,9 23,94276 23,5 22,89686		26,3	24,97985	24,97151	24,8	24,17763	24,17813	23,4	22,88698	22,88703
1140 26,3 24,8049 24,79562 24,9 24,09524 24,09584 23,4 22,89107 22,89112 1170 26,3 24,75063 24,74101 24,9 24,06864 24,06925 23,4 22,89227 22,89232 1200 26,2 24,69821 24,68825 24,9 24,04247 24,0431 23,4 22,89337 22,89342 1230 26,2 24,64755 24,63724 24,9 24,01673 24,01737 23,4 22,89439 22,89443 1260 26,2 24,59855 24,58789 24,9 23,99143 23,99208 23,4 22,89631 22,89535 1290 26,2 24,55115 24,54012 24,9 23,96656 23,96721 23,4 22,89613 22,89617 1320 26,2 24,50526 24,49386 24,9 23,94212 23,94276 23,5 22,89686 22,8969 1350 26,2 24,46081 24,44058 25 23,8945 23,89512 23,5	1080	26,3	24,9194	24,91076	24,9	24,14975	24,15028	23,4	22,88842	22,88848
1170 26,3 24,75063 24,74101 24,9 24,06864 24,06925 23,4 22,89227 22,89232 1200 26,2 24,69821 24,68825 24,9 24,04247 24,0431 23,4 22,89337 22,89342 1230 26,2 24,64755 24,63724 24,9 24,01673 24,01737 23,4 22,89439 22,89443 1260 26,2 24,59855 24,58789 24,9 23,99143 23,99208 23,4 22,89531 22,89535 1290 26,2 24,55115 24,54012 24,9 23,96656 23,96721 23,4 22,89613 22,89617 1320 26,2 24,50526 24,49386 24,9 23,94212 23,94276 23,5 22,89686 22,8969 1350 26,2 24,46081 24,44903 24,9 23,9181 23,91873 23,5 22,89749 22,89752 1380 26,2 24,41773 24,40558 25 23,8945 23,89512 23,5	1110	26,3	24,86112	24,85216	24,9	24,12228	24,12285	23,4	22,88979	22,88984
1200 26,2 24,69821 24,68825 24,9 24,04247 24,0431 23,4 22,89337 22,89342 1230 26,2 24,64755 24,63724 24,9 24,01673 24,01737 23,4 22,89439 22,89443 1260 26,2 24,59855 24,58789 24,9 23,99143 23,99208 23,4 22,89531 22,89535 1290 26,2 24,55115 24,54012 24,9 23,96656 23,96721 23,4 22,89613 22,89617 1320 26,2 24,50526 24,49386 24,9 23,94212 23,94276 23,5 22,89686 22,8969 1350 26,2 24,46081 24,44903 24,9 23,9181 23,91873 23,5 22,89749 22,89752 1380 26,2 24,41773 24,40558 25 23,8945 23,89512 23,5 22,89803 22,89805 1410 26,2 24,37596 24,36343 25 23,87132 23,87191 23,5 <t< td=""><td>1140</td><td>26,3</td><td>24,8049</td><td>24,79562</td><td>24,9</td><td>24,09524</td><td>24,09584</td><td>23,4</td><td>22,89107</td><td>22,89112</td></t<>	1140	26,3	24,8049	24,79562	24,9	24,09524	24,09584	23,4	22,89107	22,89112
1230 26,2 24,64755 24,63724 24,9 24,01673 24,01737 23,4 22,89439 22,89443 1260 26,2 24,59855 24,58789 24,9 23,99143 23,99208 23,4 22,89531 22,89535 1290 26,2 24,55115 24,54012 24,9 23,96656 23,96721 23,4 22,89613 22,89617 1320 26,2 24,50526 24,49386 24,9 23,94212 23,94276 23,5 22,89686 22,8969 1350 26,2 24,46081 24,44903 24,9 23,9181 23,91873 23,5 22,89749 22,89752 1380 26,2 24,41773 24,40558 25 23,8945 23,89512 23,5 22,89803 22,89805 1410 26,2 24,37596 24,36343 25 23,87132 23,87191 23,5 22,89846 22,89848	1170	26,3	24,75063	24,74101	24,9	24,06864	24,06925	23,4	22,89227	22,89232
1260 26,2 24,59855 24,58789 24,9 23,99143 23,99208 23,4 22,89531 22,89535 1290 26,2 24,55115 24,54012 24,9 23,96656 23,96721 23,4 22,89613 22,89617 1320 26,2 24,50526 24,49386 24,9 23,94212 23,94276 23,5 22,89686 22,8969 1350 26,2 24,46081 24,44903 24,9 23,9181 23,91873 23,5 22,89749 22,89752 1380 26,2 24,41773 24,40558 25 23,8945 23,89512 23,5 22,89803 22,89805 1410 26,2 24,37596 24,36343 25 23,87132 23,87191 23,5 22,89846 22,89848	1200	26,2	24,69821	24,68825	24,9	24,04247	24,0431	23,4	22,89337	22,89342
1290 26,2 24,55115 24,54012 24,9 23,96656 23,96721 23,4 22,89613 22,89617 1320 26,2 24,50526 24,49386 24,9 23,94212 23,94276 23,5 22,89686 22,8969 1350 26,2 24,46081 24,44903 24,9 23,9181 23,91873 23,5 22,89749 22,89752 1380 26,2 24,41773 24,40558 25 23,8945 23,89512 23,5 22,89803 22,89805 1410 26,2 24,37596 24,36343 25 23,87132 23,87191 23,5 22,89846 22,89848	1230	26,2	24,64755	24,63724	24,9	24,01673	24,01737	23,4	22,89439	22,89443
1320 26,2 24,50526 24,49386 24,9 23,94212 23,94276 23,5 22,89686 22,8969 1350 26,2 24,46081 24,44903 24,9 23,9181 23,91873 23,5 22,89749 22,89752 1380 26,2 24,41773 24,40558 25 23,8945 23,89512 23,5 22,89803 22,89805 1410 26,2 24,37596 24,36343 25 23,87132 23,87191 23,5 22,89846 22,89848	1260	26,2	24,59855	24,58789	24,9	23,99143	23,99208	23,4	22,89531	22,89535
1350 26,2 24,46081 24,44903 24,9 23,9181 23,91873 23,5 22,89749 22,89752 1380 26,2 24,41773 24,40558 25 23,8945 23,89512 23,5 22,89803 22,89805 1410 26,2 24,37596 24,36343 25 23,87132 23,87191 23,5 22,89846 22,89848	1290	26,2	24,55115	24,54012	24,9	23,96656	23,96721	23,4	22,89613	22,89617
1380 26,2 24,41773 24,40558 25 23,8945 23,89512 23,5 22,89803 22,89805 1410 26,2 24,37596 24,36343 25 23,87132 23,87191 23,5 22,89846 22,89848	1320	26,2	24,50526	24,49386	24,9	23,94212	23,94276	23,5	22,89686	22,8969
1410 26,2 24,37596 24,36343 25 23,87132 23,87191 23,5 22,89846 22,89848	1350	26,2	24,46081	24,44903	24,9	23,9181	23,91873	23,5	22,89749	22,89752
	1380	26,2	24,41773	24,40558	25	23,8945	23,89512	23,5	22,89803	22,89805
1440 26.2 24.33545 24.32254 25 23.84855 23.84911 23.5 22.8988 22.89882	1410	26,2	24,37596	24,36343	25	23,87132	23,87191	23,5	22,89846	22,89848
	1440	26,2	24,33545	24,32254	25	23,84855	23,84911	23,5	22,8988	22,89882

APÊNDICE F Dados das temperaturas no cabo 2 pelo modelo bidimensional T(r,z,t)

Tempor Sensor 1 Sensor 2 Sensor 3 Temporal							•				
TO											
0 30 30,02471 30 24,3 24,30796 24,3 23,3 23,30404 23,3 23,0004 23,3 23,0004 23,3 23,0004 23,3 23,0004 23,3 23,0006 28,2 28,93844 28,93972 24,3 24,3564 24,36561 23,4 23,31066 23,31066 23,5 23,31061 23,31061 23,31061 23,31061 23,31061 23,31061 23,31061 23,31061 23,31061 23,31061 23,31061 23,31061 27,6 28,6003 26,6613 24,3 24,41590 24,41791 23,5 23,32097 23,32098	(min)										
Section		_				_		_			
60 28.2 28.93944 28.93972 24.3 24.35607 23.5 23.5 23.31615 23.31615 120 27.6 28.66093 28.67757 24.3 24.38507 23.35 23.32615 23.31615 150 27.3 28.2674 28.26835 24.3 24.41199 24.4199 25.5 23.32266 23.32266 180 27.1 28.08418 28.08485 24.3 24.43505 24.355 23.322665 23.32565 23.32565 23.32565 23.32565 23.32565 23.32565 23.32561 23.32567 23.3 23.5 23.32565 23.32565 23.32509 23.32509 23.32509 23.32565 23.32565 23.32565 23.32565 23.32565 23.32565 23.32565 23.32565 23.32567 23.32565 23.32567 23.32565 23.32561 23.32562 23.32561 23.32561 23.32561 23.32561 23.32561 23.32561 23.32561 23.32561 23.32561 23.32561 23.32561 23.32561 23.32561			,								
Potential			,				-				
120										,	
150			,						,	,	
180			· ·				· ·				
210											
240 26,8 27,7343 27,73437 24,4 24,47402 24,47403 23,6 23,32309 23,32309 270 26,7 27,56651 27,56628 24,4 24,47752 24,47753 23,6 23,31972 23,31972 300 26,6 27,40395 27,24615 24,4 24,47731 24,47731 23,7 23,31032 23,31032 330 26,5 27,24703 27,24615 24,4 24,4731 24,4731 23,7 23,31032 23,31032 360 26,5 27,9603 27,9482 24,4 24,46613 24,46612 23,7 23,29883 23,9384 420 26,3 26,81222 26,81039 24,5 24,44675 24,44472 23,7 23,29883 23,29283 450 26,2 26,5233 26,54945 24,5 24,44676 24,44565 24,34272 23,7 23,28686 23,28686 480 26,2 26,531497 26,31212 24,5 24,41669 24,41565		-	· ·			-	-				
270			,			-	-				
300 26,6 27,40395 27,40341 24,4 24,47704 24,47705 23,6 23,31538 23,31538 330 26,5 27,24703 27,24615 24,4 24,4731 24,4731 23,7 23,31032 23,31032 23,31032 23,31032 23,31032 23,31032 23,31032 23,31032 23,31032 23,31032 23,31032 23,31032 23,31032 23,31032 23,31032 23,31032 23,31032 23,31032 23,31032 23,30476 26,4 26,55108 26,94956 24,4 24,45656 24,45654 23,7 23,29889 23,29884 24,0 26,3 26,67923 26,67923 24,5 24,44475 24,44472 23,7 23,2983 23,29831 24,60 26,2 26,65933 26,54994 24,5 24,43103 24,43099 23,7 23,28062 23,28069 24,5 24,41569 23,7 23,28052 23,28049 24,5 24,41569 23,7 23,28052 23,28049 24,5 24,41569 24,41565 23,7 23,28052 23,28049 24,5 24,41569 23,7 23,2441 23,27438 24,41569 23,7 23,2441 23,27438 24,41569 23,7 23,2441 23,27438 24,41569 23,8 23,2657 23,26669 26,61497 26,31212 24,5 24,38112 24,38109 23,8 23,26383 23,26366 24,624347 24,34269 23,8 23,2567 23,25669 26,0944 24,5 24,38214 24,38209 23,8 23,2567 23,25669 26,0944 24,5 24,38214 24,34269 23,8 23,2567 23,25669 25,9 25,90742 25,80378 24,6 24,32245 24,32246 23,8 23,24558 23,24559 25,90742 25,80378 24,6 24,32245 24,32246 23,8 23,24559 25,90742 25,80378 24,6 24,28052 24,28058 23,8 23,24024 23,24027 22,24027			,								
330 26,5 27,24703 27,24615 24,4 24,4731 24,4731 23,7 23,31032 23,31032 360 26,5 27,09603 27,09462 24,4 24,46613 24,46612 23,7 23,30477 23,30476 23,000 26,4 26,95108 26,94956 24,4 24,46613 24,46614 23,7 23,29281 23,29281 24,000 26,3 26,81222 26,81039 24,5 24,44475 24,44472 23,7 23,29283 23,29281 24,500 26,2 26,67935 26,67723 24,5 24,44175 24,44472 23,7 23,29283 23,29281 24,500 26,2 26,5523 26,54994 24,5 24,441569 24,41565 23,7 23,28066 23,28069 26,1 26,4094 26,4281 24,5 24,38112 24,38109 23,8 23,26638 23,26636 26,112 26,4094 26,4281 24,5 24,38819 24,38109 23,8 23,26838 23,26836 23,26636 26,20415 26,20111 24,5 24,38213 24,58228 23,881 23,2628 23,26246 26,00415 26,00111 24,5 24,38231 24,36228 23,8 23,26248 23,26246 26,00416 26,29989 25,99361 24,6 24,3245 24,32246 23,8 23,25107 23,25107 26 25,99698 25,99361 24,6 24,30169 24,30172 23,8 23,25107 23,25107 26,25107			,				-	- '	,	,	
360 26,5 27,09603 27,09482 24,4 24,46613 24,46612 23,7 23,30477 23,00476 390 26,4 26,95108 26,94956 24,4 24,45656 24,45654 23,7 23,29889 23,29888 420 26,3 26,81222 26,81039 24,5 24,44475 24,44472 23,7 23,29283 23,28668 480 26,2 26,67935 26,67723 24,5 24,43150 24,41565 23,7 23,28068 23,28668 480 26,2 26,55233 26,54994 24,5 24,41569 24,41565 23,7 23,28049 23,7 23,27441 23,27438 540 26,1 26,31497 26,31212 24,5 24,38212 24,38109 23,8 23,26638 23,26638 570 26 26,0415 26,20111 24,5 24,36221 24,36228 23,8 23,2567 23,25669 600 26 25,99628 25,99361 24,6 24,32245 24,2		<u> </u>	,								
390 26,4 26,95108 26,94956 24,4 24,45656 24,45654 23,7 23,29889 23,29888 420 26,3 26,81222 26,81039 24,5 24,44475 24,44472 23,7 23,29283 23,292861 450 26,2 26,55233 26,54994 24,5 24,41569 24,41655 23,7 23,28052 23,28069 510 26,1 26,43094 26,42831 24,5 24,43169 24,41655 23,7 23,28052 23,28069 510 26,1 26,43094 26,42831 24,5 24,38112 24,38109 23,8 23,26638 23,26636 570 26 26,20415 26,20111 24,5 24,36231 24,36228 23,8 23,26248 23,26569 600 26 25,99698 25,99361 24,6 24,32427 24,32429 23,8 23,25507 23,25507 600 25,9 25,90012 25,80661 24,6 24,32459 24,32438 23,24556 <					_						
420 26,3 26,81222 26,81039 24,5 24,44475 24,44472 23,7 23,29283 23,29281 450 26,2 26,67935 26,67723 24,5 24,43103 24,43099 23,7 23,28668 23,28666 480 26,2 26,55233 26,54994 24,5 24,41569 23,7 23,28668 23,28668 510 26,1 26,43094 26,42831 24,5 24,38988 24,38894 23,7 23,27441 23,27438 540 26 26,31497 26,31212 24,5 24,38112 24,38109 23,8 23,26248 23,26246 600 26 26,09824 26,09503 24,6 24,3427 24,34269 23,8 23,25107 23,25607 600 26 25,99012 25,89661 24,6 24,30169 24,30172 23,8 23,24557 23,24559 600 25,9 25,9012 25,89638 24,6942 24,28052 24,28058 23,8 23,24558 23,		-				-	-				
450 26,2 26,67935 20,67723 24,5 24,43103 24,43099 23,7 23,28668 23,28666 480 26,2 26,55233 26,54994 24,5 24,41569 24,41565 23,7 23,28052 23,28049 510 26,1 26,43094 26,42831 24,5 24,39898 24,39890 23,7 23,27441 23,27438 540 26 26,31497 26,31212 24,5 24,38112 24,38109 23,8 23,26638 32,26836 570 26 26,20415 26,31111 24,5 24,36231 24,36228 23,8 23,26248 23,2666 600 26 26,99824 26,09503 24,6 24,3427 24,34269 23,8 23,2557 23,25607 630 26 25,996012 25,89661 24,6 24,32245 24,32246 23,8 23,24559 23,25507 690 25,9 25,80742 25,80378 24,6 24,28052 24,28058 23,8 23,24024		-	,				-				
480 26,2 26,55233 26,54994 24,5 24,41569 24,41565 23,7 23,28052 23,28049 510 26,1 26,43094 26,42831 24,5 24,38898 24,39894 23,7 23,27441 23,27438 540 26 26,31497 26,31212 24,5 24,38212 24,38209 23,8 23,26838 23,26838 570 26 26,0415 26,09903 24,6 24,3427 24,34269 23,8 23,25677 23,25667 600 26 26,09824 26,09503 24,6 24,3427 24,34269 23,8 23,2567 23,25667 630 26 25,99698 25,99361 24,6 24,30172 23,8 23,25107 23,25107 660 25,9 25,90012 25,89661 24,6 24,30169 24,20172 23,8 23,24558 23,24558 23,24558 23,24558 23,24024 23,24027 22,2590 25,8 25,71884 24,7142,2425904 24,25913 23,8			,			-				-	
510 26,1 26,43094 26,42831 24,5 24,39898 24,39894 23,7 23,27441 23,27438 540 26 26,31497 26,31212 24,5 24,38112 24,38109 23,8 23,26838 23,26836 570 26 26,20415 26,20111 24,5 24,36231 24,36228 23,8 23,26828 23,2667 23,25669 600 26 26,99894 26,999361 24,6 24,32245 24,32246 23,8 23,25107 23,25107 23,25107 23,25107 23,25107 23,25107 23,25107 23,25107 23,25107 23,24024 23,24558 23,24558 23,24558 23,24558 23,24558 23,24558 23,24558 23,24558 23,24558 23,24558 23,24558 23,24558 23,24024 23,24027 220 25,8 25,71864 25,71488 24,7 24,25904 24,28058 23,8 23,24024 23,24027 22,0 25,8 25,517864 25,71488 24,7 24,21548 24,21562			,			-	-			,	
540 26 26,31497 26,31212 24,5 24,38112 24,38109 23,8 23,26838 23,26836 570 26 26,0415 26,20111 24,5 24,36231 24,36228 23,8 23,26248 23,26246 600 26 26,09824 26,09503 24,6 24,3427 24,34269 23,8 23,25107 23,25107 630 26 25,99698 25,99361 24,6 24,32455 24,32246 23,8 23,25107 23,25107 660 25,9 25,90012 25,80378 24,6 24,30169 24,30172 23,8 23,24528 23,24502 690 25,9 25,80742 25,80378 24,6 24,28052 24,28058 23,8 23,24502 23,24502 750 25,8 25,51864 25,71488 24,7 24,23744 24,25913 23,8 23,22505 23,22506 750 25,8 25,55199 25,54798 24,7 24,219349 24,23745 23,8 23,2250			,				-		,	,	
570 26 26,20415 26,20111 24,5 24,36231 24,36228 23,8 23,26248 23,26246 600 26 26,09824 26,09503 24,6 24,3427 24,34269 23,8 23,2567 23,25669 630 26 25,99688 25,99361 24,6 24,32245 24,32246 23,8 23,25107 23,25107 660 25,9 25,90012 25,89661 24,6 24,30169 24,30172 23,8 23,24558 23,24558 690 25,9 25,80742 25,80378 24,6 24,28058 23,8 23,24024 23,24027 720 25,8 25,71864 25,71488 24,7 24,28594 24,28058 23,8 23,24024 23,24027 750 25,8 25,55199 25,54798 24,7 24,23734 24,23745 23,8 23,22506 23,22513 810 25,7 25,39353 25,39427 24,7 24,19369 23,8 23,21557 23,2156											
600 26 26,09824 26,09503 24,6 24,3427 24,34269 23,8 23,2567 23,25669 630 26 25,99698 25,99361 24,6 24,32245 24,32246 23,8 23,25107 23,25107 660 25,9 25,9012 25,89661 24,6 24,30169 24,30172 23,8 23,24558 23,24558 690 25,9 25,80742 25,80378 24,6 24,28052 24,28058 23,8 23,24024 23,24027 720 25,8 25,71864 25,71488 24,7 24,25904 24,25913 23,8 23,24024 23,23004 750 25,8 25,63357 25,62968 24,7 24,23734 24,23745 23,8 23,22506 23,23004 780 25,8 25,57599 25,54798 24,7 24,19354 24,19369 23,8 23,22506 23,22513 810 25,7 25,39853 25,39427 24,7 24,19354 24,19369 23,8 23,21			· ·			,					
630 26 25,99698 25,99361 24,6 24,32245 24,32246 23,8 23,25107 23,25107 660 25,9 25,90012 25,89661 24,6 24,30169 24,30172 23,8 23,24558 23,24559 690 25,9 25,80742 25,80378 24,6 24,28052 24,28058 23,8 23,24027 23,24027 720 25,8 25,71864 25,71488 24,7 24,25904 24,25913 23,8 23,23505 23,23508 750 25,8 25,563957 25,62968 24,7 24,23734 24,23745 23,8 23,22506 23,22513 810 25,8 25,55199 25,54798 24,7 24,19354 24,19369 23,8 23,22026 23,22033 840 25,7 25,4932 25,39427 24,7 24,11935 24,117172 23,8 23,21068 23,2036 870 25,6 25,25683 25,3219 24,7 24,12763 24,1976 23,8 23							-				
660 25,9 25,90012 25,89661 24,6 24,30169 24,30172 23,8 23,24558 23,24559 690 25,9 25,80742 25,80378 24,6 24,28052 24,28058 23,8 23,24024 23,24027 720 25,8 25,71864 25,71488 24,7 24,25904 24,25913 23,8 23,23505 23,23508 750 25,8 25,53357 25,62968 24,7 24,23734 24,23745 23,8 23,22506 23,22513 810 25,8 25,55199 25,54798 24,7 24,21548 24,21562 23,8 23,22506 23,22513 810 25,7 25,4737 25,46958 24,7 24,19364 23,8 23,22026 23,22033 840 25,7 25,39853 25,39427 24,7 24,11765 24,11776 23,8 23,21557 23,21566 870 25,6 25,25683 25,25229 24,7 24,12763 24,14776 23,8 23,19369 <td< td=""><td></td><td></td><td></td><td></td><td>_</td><td></td><td>-</td><td></td><td></td><td></td></td<>					_		-				
690 25,9 25,80742 25,80378 24,6 24,28052 24,28058 23,8 22,24024 22,24027 720 25,8 25,71864 25,71488 24,7 24,25904 24,25913 23,8 23,23505 23,23508 750 25,8 25,63357 25,62968 24,7 24,23734 24,23745 23,8 23,22999 23,23004 780 25,8 25,55199 25,54798 24,7 24,21548 24,21562 23,8 23,22506 23,22513 810 25,7 25,4737 25,46958 24,7 24,19369 23,8 23,22026 23,22033 840 25,7 25,39853 25,39427 24,7 24,17175 24,17172 23,8 23,21557 23,21566 870 25,6 25,32629 25,3219 24,7 24,18763 24,127784 23,8 23,21098 23,21068 930 25,6 25,18998 25,18528 24,7 24,12763 24,12784 23,8 23,19775 <td< td=""><td></td><td>_</td><td>-,</td><td></td><td></td><td>-</td><td>-</td><td></td><td></td><td></td></td<>		_	-,			-	-				
720 25,8 25,71864 25,71488 24,7 24,25904 24,25913 23,8 23,23505 22,23508 750 25,8 25,63357 25,62968 24,7 24,23734 24,23745 23,8 23,22999 23,23004 780 25,8 25,55199 25,54798 24,7 24,21548 24,21562 23,8 23,22506 23,22513 810 25,7 25,4737 25,46958 24,7 24,19354 24,19369 23,8 23,22026 23,22513 840 25,7 25,39853 25,39427 24,7 24,17155 24,17172 23,8 23,21557 23,21566 870 25,6 25,25683 25,3219 24,7 24,14956 24,14976 23,8 23,21098 23,21108 900 25,6 25,25683 25,32529 24,7 24,12763 24,12784 23,8 23,20208 23,2026 930 25,6 25,1256 25,12074 24,7 24,10577 24,106 23,8 23,1			,								
750 25,8 25,63357 25,62968 24,7 24,23734 24,23745 23,8 23,22999 23,23004 780 25,8 25,55199 25,54798 24,7 24,21548 24,21562 23,8 23,22506 23,22513 810 25,7 25,4737 25,46958 24,7 24,19354 24,19369 23,8 23,22026 23,22033 840 25,7 25,39853 25,39427 24,7 24,17155 24,17172 23,8 23,21557 23,21566 870 25,6 25,32629 25,3219 24,7 24,14956 24,14976 23,8 23,21098 23,21108 900 25,6 25,25683 25,25229 24,7 24,10777 24,106 23,8 23,20649 23,2066 930 25,6 25,1256 25,12074 24,7 24,04042 24,08426 23,8 23,19775 23,19787 990 25,5 25,06357 25,06357 24,98652 24,8 24,04094 24,0149 2			,								
780 25,8 25,55199 25,54798 24,7 24,21548 24,21562 23,8 23,22506 23,22513 810 25,7 25,4737 25,46958 24,7 24,19354 24,19369 23,8 23,22026 23,22033 840 25,7 25,39853 25,39427 24,7 24,17155 24,17172 23,8 23,21557 23,21566 870 25,6 25,32629 25,3219 24,7 24,14956 24,14976 23,8 23,21098 23,21108 900 25,6 25,25683 25,25229 24,7 24,12763 24,12784 23,8 23,20649 23,2066 930 25,6 25,18998 25,18528 24,7 24,10577 24,106 23,8 23,20208 23,2022 960 25,6 25,1256 25,12074 24,7 24,08402 24,08426 23,8 23,193775 23,19378 1020 25,5 25,06357 25,05853 24,8 24,040626 23,8 23,19348 23			· ·								
810 25,7 25,4737 25,46958 24,7 24,19354 24,19369 23,8 23,22026 23,22033 840 25,7 25,39853 25,39427 24,7 24,17155 24,17172 23,8 23,21557 23,21566 870 25,6 25,32629 25,3219 24,7 24,14976 23,8 23,21098 23,21108 900 25,6 25,25683 25,25229 24,7 24,12763 24,12784 23,8 23,20649 23,2066 930 25,6 25,18998 25,18528 24,7 24,10577 24,106 23,8 23,20208 23,2022 960 25,6 25,1256 25,12074 24,7 24,08426 23,8 23,19775 23,19877 990 25,5 25,06357 25,05853 24,8 24,06624 24,06626 23,8 23,19348 23,18941 1050 25,5 25,00375 24,98652 24,8 24,01965 24,0199 23,8 23,18512 23,18525 <tr< td=""><td>750</td><td>25,8</td><td>25,63357</td><td>25,62968</td><td>24,7</td><td>24,23734</td><td>24,23745</td><td>23,8</td><td>23,22999</td><td>23,23004</td></tr<>	750	25,8	25,63357	25,62968	24,7	24,23734	24,23745	23,8	23,22999	23,23004	
840 25,7 25,39853 25,39427 24,7 24,17155 24,17172 23,8 23,21557 23,21566 870 25,6 25,32629 25,3219 24,7 24,14956 24,14976 23,8 23,21098 23,21108 900 25,6 25,25683 25,25229 24,7 24,12763 24,12784 23,8 23,20649 23,2066 930 25,6 25,18998 25,18528 24,7 24,10577 24,106 23,8 23,20208 23,2022 960 25,6 25,1256 25,12074 24,7 24,08426 23,8 23,19775 23,19787 990 25,5 25,06357 25,05853 24,8 24,0624 24,06265 23,8 23,19348 23,199361 1020 25,5 25,00375 24,99852 24,8 24,04094 24,04119 23,8 23,18927 23,18927 1080 25,5 24,89029 24,88466 24,8 23,99854 23,9988 23,8 23,18101 23,		_	25,55199	25,54798	24,7	24,21548	24,21562	23,8	23,22506	23,22513	
870 25,6 25,32629 26,3219 24,7 24,14956 24,14976 23,8 23,21098 23,21108 900 25,6 25,25683 25,25229 24,7 24,12763 24,12784 23,8 23,20649 23,2066 930 25,6 25,18998 25,18528 24,7 24,10577 24,106 23,8 23,20208 23,2022 960 25,6 25,1256 25,12074 24,7 24,08402 24,08426 23,8 23,19775 23,19787 990 25,5 25,06357 25,05853 24,8 24,0624 24,06265 23,8 23,19348 23,18961 1020 25,5 25,00375 24,99852 24,8 24,04094 24,04119 23,8 23,18927 23,18941 1050 25,5 24,94603 24,8406 24,8 24,01965 24,0199 23,8 23,18512 23,18525 1080 25,5 24,89029 24,88466 24,8 23,99854 23,9988 23,8 23,17		25,7	25,4737	25,46958	24,7	24,19354		23,8		23,22033	
900 25,6 25,25683 25,25229 24,7 24,12763 24,12784 23,8 23,20649 23,2066 930 25,6 25,18998 25,18528 24,7 24,10577 24,106 23,8 23,20208 23,2022 960 25,6 25,1256 25,1274 24,7 24,08402 24,08426 23,8 23,19775 23,19787 990 25,5 25,06357 25,05853 24,8 24,0624 24,06265 23,8 23,19348 23,19361 1020 25,5 25,00375 24,99852 24,8 24,04094 24,04119 23,8 23,18927 23,18941 1050 25,5 24,94603 24,8406 24,8 24,01965 24,0199 23,8 23,18512 23,18525 1080 25,5 24,89029 24,88466 24,8 23,9984 23,9988 23,8 23,17611 23,18114 1110 25,4 24,83645 24,83058 24,8 23,97764 23,97788 23,8 23,17			,		24,7	24,17155	-				
930 25,6 25,18998 25,18528 24,7 24,10577 24,106 23,8 23,20208 23,2022 960 25,6 25,1256 25,12074 24,7 24,08402 24,08426 23,8 23,19775 23,19787 990 25,5 25,06357 25,05853 24,8 24,0624 24,06265 23,8 23,19348 23,19361 1020 25,5 25,00375 24,99852 24,8 24,04094 24,04119 23,8 23,18927 23,18941 1050 25,5 24,94603 24,8406 24,8 24,01995 24,0199 23,8 23,18512 23,18525 1080 25,5 24,89029 24,88466 24,8 23,99854 23,9988 23,81101 23,181101 23,18111 1110 25,4 24,83645 24,83058 24,8 23,9764 23,97788 23,8 23,17301 1170 25,5 24,78439 24,77629 24,8 23,95694 23,95718 23,9 23,16886 <			,								
960 25,6 25,1256 25,1274 24,7 24,08402 24,08426 23,8 23,19775 23,19787 990 25,5 25,06357 25,05853 24,8 24,0624 24,06265 23,8 23,19348 23,19361 1020 25,5 25,00375 24,99852 24,8 24,04094 24,04119 23,8 23,18927 23,18941 1050 25,5 24,94603 24,9406 24,8 24,01965 24,0199 23,8 23,18512 23,18525 1080 25,5 24,89029 24,88466 24,8 23,99854 23,9988 23,8 23,18101 23,18114 1110 25,4 24,83645 24,83058 24,8 23,97764 23,97788 23,8 23,17693 23,17706 1140 25,4 24,78439 24,77829 24,8 23,95718 23,9 23,16886 23,17301 170 25,5 24,34303 24,72769 24,9 23,9669 23,9 23,16886 23,16899			· ·								
990 25,5 25,06357 25,05853 24,8 24,0624 24,06265 23,8 23,19348 23,19361 1020 25,5 25,00375 24,99852 24,8 24,04094 24,04119 23,8 23,18927 23,18941 1050 25,5 24,94603 24,9406 24,8 24,01965 24,0199 23,8 23,18512 23,18525 1080 25,5 24,89029 24,88466 24,8 23,99854 23,9988 23,8 23,18101 23,18114 1110 25,4 24,83645 24,83058 24,8 23,97764 23,97788 23,8 23,17693 23,17706 1140 25,4 24,78439 24,77829 24,8 23,95694 23,95718 23,9 23,16886 23,17301 1170 25,5 24,68529 24,6787 24,9 23,93645 23,93669 23,9 23,16486 23,16989 1200 25,6 24,63808 24,63124 24,9 23,89637 23,9638 23,9 <			25,18998	25,18528		24,10577		23,8	23,20208	23,2022	
1020 25,5 25,00375 24,99852 24,8 24,04094 24,04119 23,8 23,18927 23,18941 1050 25,5 24,94603 24,9406 24,8 24,01965 24,0199 23,8 23,18512 23,18525 1080 25,5 24,89029 24,88466 24,8 23,99854 23,9988 23,8 23,18101 23,18114 1110 25,4 24,83645 24,83058 24,8 23,97764 23,97788 23,8 23,17693 23,17706 1140 25,4 24,78439 24,77829 24,8 23,95694 23,95718 23,9 23,16886 23,17301 1170 25,5 24,73403 24,72769 24,9 23,93645 23,93669 23,9 23,16886 23,16899 1200 25,6 24,68529 24,6787 24,9 23,9162 23,91642 23,9 23,16486 23,1698 1230 25,6 24,63808 24,63124 24,9 23,89637 23,89638 23,9		_			_		_			-	
1050 25,5 24,94603 24,9406 24,8 24,01965 24,0199 23,8 23,18512 23,18525 1080 25,5 24,89029 24,88466 24,8 23,99854 23,9988 23,8 23,18101 23,18114 1110 25,4 24,83645 24,83058 24,8 23,97764 23,97788 23,8 23,17693 23,17706 1140 25,4 24,78439 24,77829 24,8 23,95694 23,95718 23,9 23,17288 23,17301 1170 25,5 24,73403 24,72769 24,9 23,93645 23,93669 23,9 23,16886 23,16889 1200 25,6 24,63808 24,63124 24,9 23,9162 23,91642 23,9 23,16088 23,16098 1260 25,5 24,59235 24,58523 24,9 23,87637 23,87657 23,9 23,15699 23,15699 1290 25,5 24,50499 24,49732 24,9 23,85682 23,85699 23,9	990	25,5	25,06357	25,05853	24,8	24,0624	24,06265	23,8	23,19348	23,19361	
1080 25,5 24,89029 24,88466 24,8 23,99854 23,9988 23,8 23,18101 23,18114 1110 25,4 24,83645 24,83058 24,8 23,97764 23,97788 23,8 23,17693 23,17706 1140 25,4 24,78439 24,77829 24,8 23,95694 23,95718 23,9 23,17288 23,17301 1170 25,5 24,73403 24,72769 24,9 23,93645 23,93669 23,9 23,16886 23,16889 1200 25,6 24,63808 24,6787 24,9 23,9162 23,91642 23,9 23,16088 23,16098 1230 25,6 24,63808 24,63124 24,9 23,87637 23,87657 23,9 23,15698 23,15699 1290 25,5 24,59235 24,58523 24,9 23,87637 23,87657 23,9 23,15699 23,15699 1390 25,5 24,5049 24,49732 24,9 23,87562 23,85699 23,9	1020	25,5	25,00375	24,99852	24,8	24,04094	24,04119	23,8	23,18927	23,18941	
1110 25,4 24,83645 24,83058 24,8 23,97764 23,97788 23,8 22,17693 22,17706 1140 25,4 24,78439 24,77829 24,8 23,95694 23,95718 23,9 23,17288 23,17301 1170 25,5 24,73403 24,72769 24,9 23,93645 23,93669 23,9 23,16886 23,16899 1200 25,6 24,68529 24,6787 24,9 23,9162 23,91642 23,9 23,16486 23,16498 1230 25,6 24,63808 24,63124 24,9 23,89617 23,89638 23,9 23,16098 23,15699 1260 25,5 24,59235 24,58523 24,9 23,87637 23,87657 23,9 23,15699 23,15699 1290 25,5 24,5448 24,54061 24,9 23,87667 23,9 23,15293 23,15301 1320 25,5 24,50499 24,49732 24,9 23,8755 23,87657 23,9 23,14896		25,5			24,8	24,01965		23,8	23,18512	23,18525	
1140 25,4 24,78439 24,77829 24,8 23,95694 23,95718 23,9 23,17288 23,17301 1170 25,5 24,73403 24,72769 24,9 23,93645 23,93669 23,9 23,16886 23,16899 1200 25,6 24,68529 24,6787 24,9 23,9162 23,91642 23,9 23,16486 23,16498 1230 25,6 24,63808 24,63124 24,9 23,89617 23,89638 23,9 23,15098 23,16098 1260 25,5 24,59235 24,58523 24,9 23,87637 23,87657 23,9 23,15699 23,15699 1290 25,5 24,5448 24,54061 24,9 23,85682 23,85699 23,9 23,15293 23,15301 1320 25,5 24,50499 24,49732 24,9 23,83763 23,83765 23,9 23,14896 23,14903 1350 25,5 24,46326 24,4553 24,9 23,81843 23,81855 24	1080		24,89029	24,88466	24,8	23,99854	23,9988		23,18101	23,18114	
1170 25,5 24,73403 24,27269 24,9 23,93645 23,93669 23,9 23,16886 23,16889 1200 25,6 24,68529 24,6787 24,9 23,9162 23,91642 23,9 23,16486 23,16488 1230 25,6 24,63808 24,63124 24,9 23,89617 23,89638 23,9 23,16088 23,16098 1260 25,5 24,59235 24,58523 24,9 23,87637 23,87657 23,9 23,15699 23,15699 1290 25,5 24,548 24,54061 24,9 23,85682 23,85699 23,9 23,15293 23,15301 1320 25,5 24,50499 24,49732 24,9 23,83755 23,83765 23,9 23,14896 23,14903 1350 25,5 24,46326 24,4553 24,9 23,81843 23,81855 24 23,14499 23,14505 1380 25,5 24,38337 24,37483 24,9 23,79959 23,7997 24	1110	25,4	24,83645	24,83058	24,8	23,97764	23,97788	23,8	23,17693	23,17706	
1200 25,6 24,68529 24,6787 24,9 23,9162 23,91642 23,9 23,16486 23,16498 1230 25,6 24,63808 24,63124 24,9 23,89617 23,89638 23,9 23,16088 23,16098 1260 25,5 24,59235 24,58523 24,9 23,87637 23,87657 23,9 23,1569 23,15699 1290 25,5 24,548 24,54061 24,9 23,85682 23,85699 23,9 23,15293 23,15301 1320 25,5 24,50499 24,49732 24,9 23,8375 23,83765 23,9 23,14896 23,14903 1350 25,5 24,46326 24,4553 24,9 23,81843 23,81855 24 23,14499 23,14505 1380 25,5 24,42273 24,41449 24,9 23,79959 23,7997 24 23,14102 23,14106 1410 25,5 24,38337 24,37483 24,9 23,7810 23,78108 24 23,13		25,4	24,78439	24,77829	24,8	23,95694	23,95718	23,9	23,17288	23,17301	
1230 25,6 24,63808 24,63124 24,9 23,89617 23,89638 23,9 23,16098 23,16098 1260 25,5 24,59235 24,58523 24,9 23,87637 23,87657 23,9 23,1569 23,15699 1290 25,5 24,548 24,54061 24,9 23,85682 23,85699 23,9 23,15293 23,15301 1320 25,5 24,50499 24,49732 24,9 23,8375 23,83765 23,9 23,14896 23,14903 1350 25,5 24,46326 24,4553 24,9 23,81843 23,81855 24 23,14499 23,14505 1380 25,5 24,42273 24,41449 24,9 23,79959 23,7997 24 23,14102 23,14106 1410 25,5 24,38337 24,37483 24,9 23,7810 23,78108 24 23,13704 23,13707	1170	25,5	24,73403	24,72769	24,9	23,93645	23,93669	23,9	23,16886	23,16899	
1260 25,5 24,59235 24,58523 24,9 23,87637 23,87657 23,9 23,1569 23,15699 1290 25,5 24,548 24,54061 24,9 23,85682 23,85699 23,9 23,15293 23,15301 1320 25,5 24,50499 24,49732 24,9 23,8375 23,83765 23,9 23,14896 23,14903 1350 25,5 24,46326 24,4553 24,9 23,81843 23,81855 24 23,14499 23,14505 1380 25,5 24,42273 24,41449 24,9 23,79959 23,7997 24 23,14102 23,14106 1410 25,5 24,38337 24,37483 24,9 23,7810 23,78108 24 23,13704 23,13707	1200	25,6	24,68529	24,6787	24,9	23,9162	23,91642	23,9	23,16486	23,16498	
1290 25,5 24,548 24,54061 24,9 23,85682 23,85699 23,9 23,15293 23,15301 1320 25,5 24,50499 24,49732 24,9 23,8375 23,83765 23,9 23,14896 23,14903 1350 25,5 24,46326 24,4553 24,9 23,81843 23,81855 24 23,14499 23,14505 1380 25,5 24,42273 24,41449 24,9 23,79959 23,7997 24 23,14102 23,14106 1410 25,5 24,38337 24,37483 24,9 23,7810 24,23,13704 23,13707		25,6	24,63808	24,63124	24,9	23,89617	23,89638	23,9	23,16088	23,16098	
1320 25,5 24,50499 24,49732 24,9 23,8375 23,83765 23,9 23,14896 23,14903 1350 25,5 24,46326 24,4553 24,9 23,81843 23,81855 24 23,14499 23,14505 1380 25,5 24,42273 24,41449 24,9 23,79959 23,7997 24 23,14102 23,14106 1410 25,5 24,38337 24,37483 24,9 23,781 23,78108 24 23,13704 23,13707		25,5	24,59235	24,58523	24,9	23,87637	23,87657	23,9	23,1569	23,15699	
1350 25,5 24,46326 24,4553 24,9 23,81843 23,81855 24 23,14499 23,14505 1380 25,5 24,42273 24,41449 24,9 23,79959 23,7997 24 23,14102 23,14106 1410 25,5 24,38337 24,37483 24,9 23,781 23,78108 24 23,13704 23,13707	1290	25,5	24,548	24,54061	24,9	23,85682	23,85699	23,9	23,15293	23,15301	
1380 25,5 24,42273 24,41449 24,9 23,79959 23,7997 24 23,14102 23,14106 1410 25,5 24,38337 24,37483 24,9 23,781 23,78108 24 23,13704 23,13707	1320	25,5	24,50499	24,49732	24,9	23,8375	23,83765	23,9	23,14896	23,14903	
1410 25,5 24,38337 24,37483 24,9 23,781 23,78108 24 23,13704 23,13707	1350	25,5	24,46326	24,4553	24,9	23,81843	23,81855	24	23,14499	23,14505	
	1380	25,5	24,42273	24,41449	24,9	23,79959	23,7997	24	23,14102	23,14106	
1440 25,5 24,34512 24,33628 24,9 23,76266 23,76271 24 23,13306 23,13307	1410	25,5	24,38337	24,37483	24,9	23,781	23,78108	24	23,13704	23,13707	
	1440	25,5	24,34512	24,33628	24,9	23,76266	23,76271	24	23,13306	23,13307	

APÊNDICE G $\,$ Dados das temperaturas no cabo 3 pelo modelo bidimensional T(r,z,t)

Temperatura (*C) Sensor 1 Sensor 2 Sensor 3							.0				
TO		Temperatura (°C)									
0 31,1 31,11019 31,1 23,7 23,90523 23,7 23,8 23,80543 23,8	(min)										
30		_				_		_			
Bot											
90			,			-	-			· ·	
120											
150			,						,	,	
180		<u> </u>	· ·								
210											
240 28,2 27,16242 27,16265 23,8 24,04086 24,04088 24,1 23,76145 23,76146 270 28 26,97488 26,97425 23,8 24,05296 24,05298 24,1 23,74584 23,74585 300 27,9 26,63598 26,63362 23,9 24,06974 24,06975 24,1 23,71073 23,71073 360 27,6 26,63263 23,9 24,07678 24,07677 24,2 23,67313 26,633811 23,9 24,07678 24,07677 24,2 23,65411 23,67312 420 27,4 26,0257 26,19775 23,9 24,0768 24,07677 24,2 23,65411 23,65414 400 27,3 26,075 26,08942 23,9 24,0769 24,07684 24,2 23,6552 23,6511 440 27,3 25,95481 25,94861 24 24,07113 24,07111 24,2 23,65821 23,58916 510 27,2 25,84143 25,82484		-	· ·			-	-				
270 28 26,97488 26,97425 23,8 24,05296 24,05298 24,1 23,74584 23,74585 300 27,9 26,79892 26,79832 23,8 24,0626 24,06261 24,1 23,72877 23,72878 330 27,9 26,63588 26,63362 23,9 24,06974 24,06975 24,1 23,71073 23,71073 360 27,6 26,48236 26,47915 23,9 24,07678 24,07443 24,1 23,69208 23,69208 390 27,5 26,33813 26,33411 23,9 24,07689 24,07688 24,2 23,67313 23,67312 480 27,3 26,075 26,06942 23,9 24,07699 24,07688 24,2 23,65111 23,65409 480 27,3 26,075 26,06942 23,9 24,07494 24,076814 24,22 23,65611 23,61648 510 27,2 25,84143 25,83485 24 24,07113 24,07494 24,05846 2			,				-				
300 27,9 26,79982 26,79832 23,8 24,0626 24,06261 24,1 23,72877 23,72878 330 27,9 26,63598 26,63362 23,9 24,06974 24,06975 24,1 23,71073 23,71073 36,7210 36,7			,								
330 27,9 26,63598 26,63362 23,9 24,06974 24,06975 24,1 23,71073 23,71073 360 27,6 26,48236 26,47915 23,9 24,07444 24,07443 24,1 23,69208 23,69208 27,5 26,33813 26,33411 23,9 24,07678 24,07677 24,2 23,67313 23,67312 23,67313			,					- '		,	
360 27,6 26,48236 26,47915 23,9 24,07444 24,07443 24,1 23,69208 23,6930 390 27,5 26,33813 26,33411 23,9 24,07678 24,07678 24,2 23,65413 23,67312 450 27,3 26,075 26,06942 23,9 24,07496 24,07494 24,2 23,6521 23,6517 480 27,3 25,95481 25,94851 24 24,07113 24,07111 24,2 23,61651 23,61648 510 27,2 25,84143 25,83446 24 24,05577 24,06557 24,06556 24,2 23,59816 23,58019 570 27 25,63311 25,62488 24 24,04029 24,0403 24,2 23,54569 23,5627 600 27 25,53715 25,52844 24 24,04029 24,0403 24,2 23,52916 23,58019 600 26,9 25,46438 25,47022 24,1 24,04029 24,0403 24,2											
390 27.5 26,33813 26,33411 23,9 24,07678 24,07677 24,2 23,67313 23,67312 420 27,4 26,0257 26,19775 23,9 24,0769 24,07688 24,2 23,65411 23,65409 450 27,3 25,95481 25,94851 24 24,07113 24,07111 24,2 23,65517 23,65817 510 27,2 25,84143 25,83486 24 24,07113 24,07111 24,2 23,58916 23,58913 540 27,1 25,73436 25,72674 24 24,05847 24,06556 24,2 23,58021 23,58019 570 27 25,63311 25,62488 24 24,04099 24,0493 24,2 23,58021 23,58019 600 27 25,53725 25,52844 24 24,04099 24,0403 24,2 23,52916 23,52918 630 26,9 25,36014 25,26778 24,1 24,00779 24,01782 24,2 23,52916					_						
420 27,4 26,20257 26,19775 23,9 24,0769 24,07688 24,2 23,65411 23,65409 450 27,3 26,075 26,06942 23,9 24,07496 24,07494 24,2 23,6352 23,63517 480 27,3 25,95481 25,94851 24 24,07113 24,2 23,58616 23,59816 23,59816 23,59813 510 27,2 25,634143 25,83446 24 24,05847 24,05846 24,2 23,58021 23,58019 570 27 25,53311 25,62488 24 24,04999 24,04999 24,2 23,5271 23,52671 23,52916 600 27 25,53725 25,52844 24 24,04029 24,04999 24,2 23,52916 23,52916 630 26,9 25,36014 25,55025 24,1 24,00782 24,3 23,51314 23,51317 690 26,8 25,20021 25,18393 24,1 24,00525 24,0053 24,3		-	· ·			-	-				
450 27,3 26,075 26,06942 23,9 24,07496 24,07494 24,2 23,6352 23,63517 480 27,3 25,95481 25,94851 24 24,07113 24,07111 24,2 23,61651 23,61648 510 27,2 25,84143 25,83466 24 24,06556 24,2 23,58016 23,58019 540 27,1 25,73436 25,72674 24 24,05847 24,05846 24,2 23,58021 23,58019 570 27 25,533725 25,52844 24 24,04029 24,04939 24,2 23,54569 23,54569 630 26,9 25,36014 25,35025 24,1 24,072951 24,02953 24,2 23,52918 26,352014 23,52918 660 26,9 25,36014 25,26778 24,1 24,0779 24,01782 24,3 23,43766 23,49768 720 26,8 25,20021 25,18931 24,1 23,993782 24,3 23,48261 23,48266			,				-		- 1		
480 27,3 25,958481 25,94851 24 24,07113 24,07111 24,2 23,61651 23,61648 510 27,2 25,84143 25,83446 24 24,06557 24,06556 24,2 23,58916 23,59813 540 27,1 25,73436 25,72674 24 24,0499 24,04999 24,2 23,58021 23,58019 570 27 25,53725 25,52844 24 24,04029 24,0403 24,2 23,54569 23,54569 600 26,9 25,44638 25,43702 24,1 24,02951 24,0403 24,2 23,52916 23,52918 660 26,9 25,36014 25,35025 24,1 24,01779 24,01782 24,3 23,51317 690 26,8 25,27818 25,26778 24,1 24,0053 24,3 23,48763 23,4768 720 26,8 25,20021 25,185931 24,1 23,992 23,99206 24,3 23,46808 23,46817 780		_									
510 27,2 25,84143 25,83446 24 24,06557 24,06556 24,2 23,59816 23,59813 540 27,1 25,73436 25,72674 24 24,05847 24,05846 24,2 23,58021 23,58019 570 27 25,63311 25,62488 24 24,04999 24,04999 24,2 23,58021 23,56567 600 27 25,53725 25,52844 24 24,04029 24,04033 24,2 23,52916 23,54569 630 26,9 25,46638 25,37022 24,1 24,02951 24,02953 24,2 23,52918 660 26,9 25,36014 25,35025 24,1 24,07179 24,01782 24,3 23,49763 23,49768 720 26,8 25,27818 25,26778 24,1 24,00525 24,0053 24,3 23,48668 23,49768 720 26,8 25,20021 25,19331 24,1 23,96379 23,96387 24,3 23,46608 23,46617 <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>,</td> <td>· ·</td>						-			,	· ·	
540 27,1 25,73436 25,72674 24 24,05847 24,05846 24,2 23,58021 23,58019 570 27 25,63311 25,62488 24 24,04999 24,04999 24,2 23,56271 23,5627 600 27 25,53725 25,52844 24 24,04029 24,0403 24,2 23,56271 23,56271 630 26,9 25,44638 25,43702 24,1 24,01779 24,01782 24,3 23,52916 23,52918 660 26,9 25,36014 25,35025 24,1 24,00779 24,01782 24,3 23,49763 23,49768 720 26,8 25,2021 25,18831 24,1 24,00525 24,0053 24,3 23,4963 23,48268 750 26,7 25,12594 25,11455 24,1 23,992 23,99206 24,3 23,4502 23,45438 750 26,7 25,15294 25,14155 24,1 23,96393 23,94908 24,3 23,45402			,						,	· ·	
570 27 25,63311 25,62488 24 24,04999 24,04999 24,2 23,56271 23,56271 600 27 25,53725 25,52844 24 24,04029 24,0403 24,2 23,54569 23,54569 630 26,9 25,44638 25,43702 24,1 24,02951 24,02953 24,2 23,52916 23,52918 660 26,9 25,36014 25,25025 24,1 24,01779 24,01782 24,3 23,51317 23,51317 690 26,8 25,27818 25,26778 24,1 24,007525 24,0053 24,3 23,49763 23,49768 720 26,8 25,20021 25,11855 24,1 23,97815 23,99206 24,3 23,46808 23,49768 750 26,7 25,12594 25,11455 24,1 23,97815 23,97822 24,3 23,46808 23,46817 780 26,7 25,05511 25,0429756 24,1 23,96379 23,96387 24,3 23,40											
600 27 25,53725 25,52844 24 24,04029 24,0403 24,2 23,54569 23,54569 630 26,9 25,44638 25,43702 24,1 24,02951 24,02953 24,2 23,52916 23,52918 660 26,9 25,36014 25,35025 24,1 24,01779 24,01782 24,3 23,51314 23,51317 690 26,8 25,27818 25,26778 24,1 24,00525 24,0053 24,3 23,49763 23,49768 720 26,8 25,20021 25,118931 24,1 23,97815 23,97822 24,3 23,48261 23,48261 750 26,7 25,05511 25,04325 24,1 23,96379 23,96387 24,3 23,45402 23,45412 810 26,6 24,9875 24,97516 24,1 23,94899 23,94908 24,3 23,44042 23,44055 840 26,6 24,92288 24,91007 24,1 23,93383 23,93347 24,3 23,4			· ·			,		,			
630 26,9 25,44638 25,43702 24,1 24,02951 24,02953 24,2 23,52916 23,52918 660 26,9 25,36014 25,35025 24,1 24,01779 24,01782 24,3 23,51314 23,51317 690 26,8 25,27818 25,26778 24,1 24,00525 24,0053 24,3 23,49763 23,49768 720 26,8 25,20021 25,18931 24,1 23,992 23,99206 24,3 23,48261 23,48268 750 26,7 25,12594 25,11455 24,1 23,97815 23,97822 24,3 23,45402 23,45413 810 26,6 24,9875 24,97516 24,1 23,94899 23,94908 24,3 23,44042 23,44055 840 26,6 24,92288 24,91007 24,1 23,93383 23,93392 24,3 23,44746 23,44748 870 26,5 24,86165 24,87788 24,1 23,90268 23,90278 24,3 23			-				-				
660 26,9 25,36014 25,35025 24,1 24,01779 24,01782 24,3 23,51314 23,51317 690 26,8 25,27818 25,26778 24,1 24,00525 24,0053 24,3 23,49763 23,49768 720 26,8 25,20021 25,18931 24,1 23,992 23,99206 24,3 23,48261 23,48268 750 26,7 25,12594 25,11495 24,1 23,992 23,99206 24,3 23,48261 23,48268 750 26,7 25,12594 25,11495 24,1 23,99379 23,96387 24,3 23,45402 23,45413 810 26,6 24,9875 24,97516 24,1 23,94899 23,94908 24,3 23,44042 23,44515 840 26,6 24,92288 24,91007 24,1 23,93383 23,93389 24,3 23,41452 23,41468 900 26,5 24,86105 24,847788 24,1 23,99268 23,90278 24,3 23,						-					
690 26,8 25,27818 25,26778 24,1 24,00525 24,0053 24,3 23,49763 23,49768 720 26,8 25,20021 25,18931 24,1 23,992 23,99206 24,3 23,48261 23,48268 750 26,7 25,12594 25,11455 24,1 23,97815 23,97822 24,3 23,46808 23,46817 780 26,7 25,05511 25,04325 24,1 23,96379 23,96387 24,3 23,45402 23,45413 810 26,6 24,92288 24,91007 24,1 23,94899 23,94908 24,3 23,44042 23,44055 840 26,6 24,92288 24,91007 24,1 23,93383 23,93392 24,3 23,44726 23,42741 870 26,5 24,86105 24,48778 24,1 23,91838 23,90278 24,3 23,40218 23,40236 900 26,5 24,74508 24,73086 24,1 23,8686 23,8699 24,3 23,			,			-	-				
720 26,8 25,20021 25,18931 24,1 23,992 23,99206 24,3 23,48261 23,48268 750 26,7 25,12594 25,11455 24,1 23,97815 23,97822 24,3 23,46808 23,46817 780 26,7 25,05511 25,04325 24,1 23,96379 23,96387 24,3 23,45402 23,45413 810 26,6 24,98288 24,91007 24,1 23,94899 23,94908 24,3 23,44042 23,44055 840 26,6 24,92288 24,91007 24,1 23,933332 24,3 23,44726 23,42741 870 26,5 24,86105 24,84778 24,1 23,91838 23,91847 24,3 23,40218 23,40236 900 26,5 24,80184 24,7881 24,1 23,8068 23,8699 24,3 23,379022 23,39041 960 26,4 24,66962 24,67592 24,2 23,87078 23,85474 24,3 23,36737 2			,								
750 26,7 25,12594 25,11455 24,1 23,97815 23,97822 24,3 23,46808 23,46817 780 26,7 25,05511 25,04325 24,1 23,96387 24,3 23,45402 23,45413 810 26,6 24,9875 24,97516 24,1 23,94899 23,94908 24,3 23,44042 23,44055 840 26,6 24,92288 24,91007 24,1 23,93383 23,93392 24,3 23,42726 23,42741 870 26,5 24,86105 24,84778 24,1 23,91838 23,91847 24,3 23,41452 23,41468 900 26,5 24,80184 24,7881 24,1 23,90268 23,90278 24,3 23,40218 23,40236 930 26,5 24,74508 24,73086 24,1 23,86868 23,8869 24,3 23,37863 23,37882 990 26,4 24,69383 24,62312 24,2 23,85465 23,85865 24,3 23,35665 2			,								
780 26,7 25,05511 25,04325 24,1 23,96379 23,96387 24,3 23,45402 23,45413 810 26,6 24,9875 24,97516 24,1 23,94899 23,94908 24,3 23,44042 23,44055 840 26,6 24,92288 24,91007 24,1 23,93383 23,93392 24,3 23,42726 23,42741 870 26,5 24,86105 24,84778 24,1 23,91838 23,91847 24,3 23,41452 23,41468 900 26,5 24,80184 24,7881 24,1 23,90268 23,90278 24,3 23,40218 23,40236 930 26,5 24,74508 24,73086 24,1 23,8868 23,8869 24,3 23,37863 23,37982 990 26,4 24,69062 24,67592 24,2 23,87078 23,87087 24,3 23,37637 23,36758 1020 26,4 24,58801 24,52347 24,2 23,82845 23,83854 24,3 2			· ·								
810 26,6 24,9875 24,97516 24,1 23,94899 23,94908 24,3 23,44042 23,44055 840 26,6 24,92288 24,91007 24,1 23,93383 23,93392 24,3 23,42726 23,42741 870 26,5 24,86105 24,84778 24,1 23,91838 23,91847 24,3 23,41452 23,41468 900 26,5 24,81084 24,7881 24,1 23,90268 23,90278 24,3 23,40218 23,40236 930 26,5 24,74508 24,73086 24,1 23,8868 23,8869 24,3 23,39022 23,39041 960 26,4 24,69062 24,67592 24,2 23,87087 24,3 23,37863 23,37882 990 26,4 24,6383 24,62312 24,2 23,85465 23,85447 24,3 23,35645 23,35665 1050 26,3 24,453962 24,52347 24,2 23,82221 23,32523 24,3 23,335665			-		_			-			
840 26,6 24,92288 24,91007 24,1 23,93383 23,93392 24,3 23,42726 23,42741 870 26,5 24,86105 24,84778 24,1 23,91838 23,91847 24,3 23,41452 23,41468 900 26,5 24,80184 24,7881 24,1 23,90268 23,90278 24,3 23,40218 23,40236 930 26,5 24,74508 24,73086 24,1 23,8688 23,8869 24,3 23,39022 23,39041 960 26,4 24,69062 24,67592 24,2 23,87078 23,87087 24,3 23,36737 23,367382 990 26,4 24,6383 24,62312 24,2 23,85465 23,85474 24,3 23,35645 23,35665 1020 26,4 24,539862 24,52347 24,2 23,83854 24,3 23,35665 23,34602 1050 26,3 24,49302 24,47638 24,2 23,80597 23,80605 24,3 23,33569 <t< td=""><td></td><td>_</td><td></td><td>-</td><td>_</td><td>-</td><td>_</td><td>_</td><td></td><td></td></t<>		_		-	_	-	_	_			
870 26,5 24,86105 24,84778 24,1 23,91838 23,91847 24,3 23,41452 23,41468 900 26,5 24,80184 24,7881 24,1 23,90268 23,90278 24,3 23,40218 23,40236 930 26,5 24,74508 24,73086 24,1 23,8868 23,8869 24,3 23,39022 23,39041 960 26,4 24,6962 24,67592 24,2 23,87078 23,87087 24,3 23,37863 23,37882 990 26,4 24,6383 24,62312 24,2 23,85465 23,85474 24,3 23,35645 23,35665 1020 26,4 24,58801 24,57235 24,2 23,823845 24,3 23,35645 23,35665 1050 26,3 24,49302 24,47688 24,2 23,80597 23,80605 24,3 23,32542 23,33569 1110 26,3 24,440479 24,38715 24,2 23,78973 23,79881 24,3 23,32543 <t< td=""><td></td><td></td><td>-</td><td></td><td></td><td>-</td><td></td><td></td><td></td><td>,</td></t<>			-			-				,	
900 26,5 24,80184 24,7881 24,1 23,90268 23,90278 24,3 23,40218 23,40236 930 26,5 24,74508 24,73086 24,1 23,8868 23,8869 24,3 23,39022 23,39041 960 26,4 24,69062 24,67592 24,2 23,87078 23,87087 24,3 23,37863 23,37882 990 26,4 24,6883 24,62312 24,2 23,85465 23,85474 24,3 23,35637 23,35658 1020 26,4 24,58801 24,57235 24,2 23,83845 23,83854 24,3 23,34582 23,35665 1050 26,3 24,53962 24,52347 24,2 23,8221 23,8223 24,3 23,34582 23,34603 1100 26,3 24,49302 24,47638 24,2 23,80597 23,80605 24,3 23,32543 23,32562 1110 26,3 24,40479 24,38715 24,2 23,78973 23,78981 24,3			· '			-	-				
930 26,5 24,74508 24,73086 24,1 23,8868 23,8869 24,3 23,39022 23,39041 960 26,4 24,69062 24,67592 24,2 23,87078 23,87087 24,3 23,37863 23,37882 990 26,4 24,6383 24,62312 24,2 23,85465 23,85474 24,3 23,36737 23,36758 1020 26,4 24,58801 24,57235 24,2 23,8845 23,83854 24,3 23,35645 23,35665 1050 26,3 24,53962 24,52347 24,2 23,80597 23,8023 24,3 23,33549 23,33569 1110 26,3 24,49302 24,47638 24,2 23,80597 23,80605 24,3 23,32549 23,33569 1110 26,3 24,40479 24,38715 24,2 23,78973 23,79881 24,3 23,31561 23,31561 1170 26,2 24,36297 24,348483 24,2 23,75739 23,75745 24,4 <			,							,	
960 26,4 24,69062 24,67592 24,2 23,87078 23,87087 24,3 23,37863 23,37863 23,37863 23,37863 23,37863 23,37863 23,37863 23,37863 23,37863 23,37863 23,37863 23,37863 23,37863 23,37863 23,37863 23,37863 23,37863 23,36758 1020 26,4 24,58801 24,57235 24,2 23,83845 23,83854 24,3 23,35645 23,35665 1050 26,3 24,53962 24,52347 24,2 23,82221 23,8223 24,3 23,34582 23,34603 1080 26,3 24,49302 24,47638 24,2 23,80597 23,80605 24,3 23,33549 23,33569 1110 26,3 24,40479 24,38715 24,2 23,78987 23,79881 24,3 23,35622 23,31561 2170 26,2 24,36297 24,34483 24,2 23,77353 23,7756 24,4 23,31662 23,31561 23,2662 24,283525 24,30393			· ·	,							
990 26,4 24,6383 24,62312 24,2 23,85465 23,85474 24,3 23,36737 23,36758 1020 26,4 24,58801 24,57235 24,2 23,83845 23,83854 24,3 23,35645 23,35665 1050 26,3 24,53962 24,52347 24,2 23,82221 23,8223 24,3 23,34582 23,34603 1080 26,3 24,49302 24,47638 24,2 23,80597 23,80605 24,3 23,33549 23,33569 1110 26,3 24,44811 24,43097 24,2 23,78973 23,78981 24,3 23,32562 23,32562 1140 26,3 24,40479 24,38715 24,2 23,77353 23,7736 24,4 23,31562 23,31581 1170 26,2 24,36297 24,34483 24,2 23,75739 23,75745 24,4 23,29672 23,29688 1230 26,2 24,28353 24,26438 24,2 23,72538 24,4 23,28766			-		_						
1020 26,4 24,58801 24,57235 24,2 23,83845 23,83854 24,3 23,35645 23,35665 1050 26,3 24,53962 24,52347 24,2 23,8221 23,8223 24,3 23,34582 23,34603 1080 26,3 24,49302 24,47638 24,2 23,80597 23,80605 24,3 23,33549 23,33569 1110 26,3 24,44811 24,43097 24,2 23,78973 23,78981 24,3 23,32543 23,32562 1140 26,3 24,40479 24,38715 24,2 23,77353 23,7736 24,4 23,31562 23,31581 1170 26,2 24,36297 24,34483 24,2 23,75739 23,75745 24,4 23,29662 23,30663 1200 26,2 24,28353 24,26438 24,2 23,75739 23,74137 24,4 23,2876 23,28774 1260 26,2 24,24576 24,261 24,2 23,70947 24,4 23,27869		_			_					-	
1050 26,3 24,53962 24,52347 24,2 23,82221 23,8223 24,3 23,34582 23,34603 1080 26,3 24,49302 24,47638 24,2 23,80597 23,80605 24,3 23,33549 23,33569 1110 26,3 24,44811 24,43097 24,2 23,78973 23,78981 24,3 23,32543 23,32562 1140 26,3 24,40479 24,38715 24,2 23,77353 23,7736 24,4 23,31562 23,31581 1170 26,2 24,32258 24,30393 24,2 23,75739 23,76745 24,4 23,29672 23,29688 1230 26,2 24,28353 24,26438 24,2 23,72532 23,72538 24,4 23,27669 23,2876 1260 26,2 24,24576 24,2261 24,2 23,70947 24,4 23,27869 23,27881 1290 26,2 24,18939 24,2 23,69363 23,69368 24,4 23,26996 23,27006 </td <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td>			-				-				
1080 26,3 24,49302 24,47638 24,2 23,80597 23,80605 24,3 23,33549 23,33569 1110 26,3 24,44811 24,43097 24,2 23,78973 23,78981 24,3 23,32543 23,32562 1140 26,3 24,40479 24,38715 24,2 23,77353 23,7736 24,4 23,31562 23,31581 1170 26,2 24,36297 24,34483 24,2 23,75739 23,75745 24,4 23,30606 23,30623 1200 26,2 24,28353 24,26438 24,2 23,72532 23,72538 24,4 23,2876 23,28774 1260 26,2 24,24576 24,2261 24,2 23,70947 24,4 23,27869 23,27881 1290 26,2 24,2092 24,18903 24,2 23,69363 23,69363 24,4 23,26996 23,27006 1320 26,2 24,17379 24,15312 24,2 23,67996 23,678 24,4 23,26996			,			-	-				
1110 26,3 24,44811 24,43097 24,2 23,78973 23,78981 24,3 23,32543 23,32562 1140 26,3 24,40479 24,38715 24,2 23,77353 23,7736 24,4 23,31562 23,31581 1170 26,2 24,36297 24,34483 24,2 23,75739 23,75745 24,4 23,30606 23,30623 1200 26,2 24,32258 24,30393 24,2 23,74131 23,74137 24,4 23,29672 23,29688 1230 26,2 24,28353 24,26438 24,2 23,72532 23,72538 24,4 23,27669 23,2774 1260 26,2 24,24576 24,2261 24,2 23,70947 24,4 23,27869 23,27881 1290 26,2 24,17379 24,15312 24,2 23,69363 24,4 23,26996 23,27006 1320 26,2 24,17379 24,15122 24,2 23,69363 24,4 23,26996 23,27006			,				_				
1140 26,3 24,40479 24,38715 24,2 23,77353 23,7736 24,4 23,31562 23,31581 1170 26,2 24,36297 24,34483 24,2 23,75739 23,75745 24,4 23,30606 23,30623 1200 26,2 24,32258 24,30393 24,2 23,74131 23,74137 24,4 23,29672 23,29688 1230 26,2 24,245363 24,26438 24,2 23,72532 23,72538 24,4 23,2876 23,28774 1260 26,2 24,24576 24,2261 24,2 23,70942 23,70947 24,4 23,28699 23,27881 1290 26,2 24,2092 24,18903 24,2 23,69363 23,69368 24,4 23,26996 23,27006 1320 26,2 24,17379 24,15312 24,2 23,67796 23,678 24,5 23,26141 23,26148 1350 26,2 24,13947 24,11829 24,2 23,6624 23,66245 24,5			,						,	,	
1170 26,2 24,36297 24,34483 24,2 23,75739 23,75745 24,4 23,30606 23,30623 1200 26,2 24,32258 24,30393 24,2 23,74131 23,74137 24,4 23,29672 23,29688 1230 26,2 24,28353 24,26438 24,2 23,72532 23,72538 24,4 23,2876 23,28774 1260 26,2 24,24576 24,2261 24,2 23,70942 23,70947 24,4 23,27869 23,27881 1290 26,2 24,2092 24,18903 24,2 23,69363 23,69368 24,4 23,26996 23,27006 1320 26,2 24,17379 24,15312 24,2 23,67796 23,678 24,5 23,26141 23,26148 1350 26,2 24,13947 24,11829 24,2 23,6624 23,66245 24,5 23,25303 23,25308 1380 26,2 24,10619 24,08451 24,2 23,64698 23,64703 24,5			· ·								
1200 26,2 24,32258 24,30393 24,2 23,74131 23,74137 24,4 23,29672 23,29688 1230 26,2 24,28353 24,26438 24,2 23,72532 23,72538 24,4 23,2876 23,28774 1260 26,2 24,24576 24,2261 24,2 23,70942 23,70947 24,4 23,27869 23,27861 1290 26,2 24,2092 24,18903 24,2 23,69363 23,69368 24,4 23,26996 23,27006 1320 26,2 24,17379 24,15312 24,2 23,67796 23,678 24,5 23,26141 23,26148 1350 26,2 24,13947 24,11829 24,2 23,6624 23,66245 24,5 23,25303 23,25308 1380 26,2 24,10619 24,08451 24,2 23,64698 23,64703 24,5 23,24481 23,24483 1410 26,2 24,0739 24,05172 24,2 23,6317 23,63174 24,5 <t< td=""><td></td><td>_</td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td></t<>		_			_						
1230 26,2 24,28353 24,26438 24,2 23,72532 23,72538 24,4 23,2876 23,28774 1260 26,2 24,24576 24,2261 24,2 23,70942 23,70947 24,4 23,27869 23,27881 1290 26,2 24,2092 24,18903 24,2 23,69363 23,69368 24,4 23,26996 23,27006 1320 26,2 24,17379 24,15312 24,2 23,67796 23,678 24,5 23,26141 23,26148 1350 26,2 24,13947 24,11829 24,2 23,6624 23,66245 24,5 23,25303 23,25308 1380 26,2 24,10619 24,08451 24,2 23,64698 23,64703 24,5 23,24481 23,24483 1410 26,2 24,0739 24,05172 24,2 23,6317 23,63174 24,5 23,23674 23,23673		26,2	24,36297	24,34483		23,75739	23,75745	24,4	23,30606	23,30623	
1260 26,2 24,24576 24,2261 24,2 23,70942 23,70947 24,4 23,27869 23,27881 1290 26,2 24,2092 24,18903 24,2 23,69363 23,69368 24,4 23,26996 23,27006 1320 26,2 24,17379 24,15312 24,2 23,67796 23,678 24,5 23,26141 23,26148 1350 26,2 24,13947 24,11829 24,2 23,6624 23,66245 24,5 23,25303 23,25308 1380 26,2 24,10619 24,08451 24,2 23,64698 23,64703 24,5 23,24481 23,24483 1410 26,2 24,0739 24,05172 24,2 23,6317 23,63174 24,5 23,23674 23,23673	1200	26,2	24,32258	24,30393	24,2	23,74131	23,74137	24,4	23,29672	23,29688	
1290 26,2 24,2092 24,18903 24,2 23,69363 23,69368 24,4 23,26996 23,27006 1320 26,2 24,17379 24,15312 24,2 23,67796 23,678 24,5 23,26141 23,26148 1350 26,2 24,13947 24,11829 24,2 23,6624 23,66245 24,5 23,25303 23,25308 1380 26,2 24,10619 24,08451 24,2 23,64698 23,64703 24,5 23,24481 23,24483 1410 26,2 24,0739 24,05172 24,2 23,6317 23,63174 24,5 23,23674 23,23673											
1320 26,2 24,17379 24,15312 24,2 23,67796 23,678 24,5 23,26141 23,26148 1350 26,2 24,13947 24,11829 24,2 23,6624 23,66245 24,5 23,25303 23,25308 1380 26,2 24,10619 24,08451 24,2 23,64698 23,64703 24,5 23,24481 23,24483 1410 26,2 24,0739 24,05172 24,2 23,6317 23,63174 24,5 23,23674 23,23673			,	,					,	,	
1350 26,2 24,13947 24,11829 24,2 23,6624 23,66245 24,5 23,25303 23,25308 1380 26,2 24,10619 24,08451 24,2 23,64698 23,64703 24,5 23,24481 23,24481 1410 26,2 24,0739 24,05172 24,2 23,6317 23,63174 24,5 23,23674 23,23673											
1380 26,2 24,10619 24,08451 24,2 23,64698 23,64703 24,5 23,24481 23,24483 1410 26,2 24,0739 24,05172 24,2 23,6317 23,63174 24,5 23,23674 23,23673											
1410 26,2 24,0739 24,05172 24,2 23,6317 23,63174 24,5 23,23674 23,23673		26,2	24,13947	24,11829		23,6624	23,66245	24,5	23,25303	23,25308	
	1380	26,2	24,10619	24,08451	24,2	23,64698	23,64703	24,5	23,24481	23,24483	
1440 26,2 24,04255 24,01987 24,2 23,61656 23,6166 24,5 23,22881 23,22877		26,2	24,0739			23,6317	23,63174			-	
	1440	26,2	24,04255	24,01987	24,2	23,61656	23,6166	24,5	23,22881	23,22877	