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ABSTRACT

ANDERSSON, Virginia Ortiz. Dengue Incidence Rate Estimation Using Aerial and
Street-level Urban Imagery with Deep Learning Models. Advisor: Ricardo Mat-
sumura Araujo. 2019. 154 f. Thesis (Doctorate in Computer Science) — Technological
Development Center, Federal University of Pelotas, Pelotas, 2019.

Motivated by sociological theories that present the physical appearance of the
urban environment as an influential factor in the behavior of inhabitants, the new Visual
Computational Sociology research area has investigated computer vision models
to infer latent variables such as demographic, socioeconomic, cultural, and health
indicators from aerial and street-level urban imagery. Just like crime events can be
inferred from the appearance of the urban environment, occurrences of diseases,
such as dengue fever, can be explained from visual data as well. This work proposes
the use of aerial and street-level images to estimate dengue fever incidence rates, in
an automated way, to increase the estimation effectiveness of dengue and its variants
in urban regions. Specifically, it was proposed using computer vision techniques
capable of extracting attributes from urban images automatically and neural network
models for multiple regression to estimate latent variables of dengue incidence using
urban environment visual attributes as predictors. For this, experiments were carried
out using street-level and aerial images, together with historical dengue fever data
obtained from the Brazilian capitals Rio de Janeiro (RJ), Sao Paulo (SP), and Salvador
(BA). Results showed evidence that: (i) street-level image features can be used for
estimating dengue incidence rates, although models using aerial image features
present better results; (ii) the combination of aerial and street-level features contribute
to better results in estimating dengue incidence rates; (iii) models generalize poorly
to other cities, slightly improving the results when using transfer-learning techniques
and multiple cities in training and (iv) Deep Convolutional Neural Networks (Deep
Convnets) are suitable for use in the proposed model, since its features presented
better results compared to designed descriptor techniques. At last, it is expected
that the proposed models will contribute to an improvement in the state of the art of
dengue estimation models, and the obtained results contribute to public health policies
in urban centers, through better results or in optimizing their accomplishment.

Keywords: Dengue Fever Estimation. Visual Computational Sociology. Street-level
Images. Aerial Images. Deep Convolutional Neural Networks. Machine Learning.
Computer Vision.



RESUMO

ANDERSSON, Virginia Ortiz. Estimativa de Incidéncia de Dengue Utilizando
Imagens Urbanas Aéreas e no Nivel da Rua com Modelos de Aprendizado
Profundo. Orientador: Ricardo Matsumura Araujo. 2019. 154 f. Tese (Doutorado
em Ciéncia da Computagéo) — Centro de Desenvolvimento Tecnolégico, Universidade
Federal de Pelotas, Pelotas, 2019.

Motivada por teorias sociolégicas que apresentam a aparéncia fisica do ambi-
ente urbano como um fator influente no comportamento dos individuos habitantes,
a recente area de pesquisa Sociologia Computacional Visual investiga modelos de
visdo computacional para inferir varidveis latentes, como indicadores demograficos,
socioeconOmicos, culturais e de saude a partir de imagens urbanas aéreas e no nivel
da rua. Da mesma forma que as ocorréncias criminais podem ser inferidas a partir
da aperéncia do ambiente urbano, ocorréncias de doengas, como a dengue, também
podem ser explicadas a partir de dados visuais presentes nas imagens. Este trabalho
propde o0 uso de técnicas de visdo computacional capazes de extrair atributos de
imagens urbanas automaticamente e modelos de rede neural para regressao multipla
de variaaveis latentes da incidéncia da dengue usando atributos visuais do ambiente
urbano como preditores. Foram realizados experimentos com imagens aéreas e de
rua, juntamente com dados histéricos de dengue nas capitais Rio de Janeiro (RJ),
Sao Paulo (SP) e Salvador (BA). Os resultados mostraram evidéncias de que (i)
features de imagens no nivel da rua podem ser usadas para estimar as taxas de
incidéncia de dengue, embora os modelos que utilizam features de imagens aéreas
apresentem melhores resultados, e (i) a combinacao de features aéreas e de nivel
de rua contribuem para melhores resultados na estimativa das taxas de incidéncia de
dengue; (iii) modelos generalizam insuficientemente para outras cidades, melhorando
ligeiramente os resultados ao usar técnicas de transfer learning e mais cidades
no treinamento; e (iv) Redes Neurais Convolucionais Profundas (Deep ConvNet)
sdo adequadas para uso no modelo proposto, uma vez que apresenta melhores
resultados em comparagdo com técnicas de descritores projetados. Finalmente,
espera-se que os modelos propostos contribuam para uma melhoria no estado da
arte dos modelos de estimativa de dengue, e os resultados obtidos contribuam para
as politicas de saude publica nos centros urbanos, por meio de melhores resultados
ou na otimizacao de sua realizagao.

Palavras-chave:

Estimativa de Dengue, Sociologia Computacional Visual, Imagens no Nivel da Rua,
Imagens Aéreas, Redes Neurais Convolucionais, Aprendizado de Maquina, Visao
Computacional
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1 INTRODUCTION

Dengue is an infectious disease transmitted by mosquitoes, which causes morbidity
and significant economic losses (ZELLWEGER et al., 2017). According to the World
Health Organization (WHO, 2018), it is estimated that 500,000 people are infected with
dengue all year round, including their most severe case, and approximately 2.5% of
these people die from the disease. Any of four viruses serotypes DENV-1 to DENV-
4, from the genus Flavivirus, can cause classic dengue fever and its variants dengue
hemorrhagic fever and dengue shock syndrome. The DENV-1 to DENV-4 viruses are
spread through the female mosquitoes, more specifically the Aedes aegypti and Aedes
albopictus. The transmission of dengue occurs with the mosquito feeding on an in-
fected person, followed by an incubation phase inside the mosquito that will become
infectious to other people (GUZMAN; ISTURIZ, 2010).

According to WILDER-SMITH; GUBLER (2008), the observed increase in the inci-
dence of cases of dengue fever is highly correlated with global population growth. A
growing population entails societal and demographic changes such as urbanization,
deforestation, construction of dams and irrigation systems, and can lead to precari-
ous infrastructures of housing, sewage, and waste management systems. The Aedes
mosquitoes are closely associated with humans, water, and domestic environment fea-
tures. Some of these features, especially in the urban environment, create ideal condi-
tions for mosquitoes breeding and feeding in humans (THAMMAPALO et al., 2008).

Estimating regional dengue incidence is an essential part of creating policies to
prevent the disease from spreading. Traditionally, dengue fever estimation is done by
physically inspecting locations for specific environment characteristics that contribute
to the vector habitat, or using historical data and socioeconomic and climatic factors
correlations. Such methods usually involve the use of demographic data, such as in the
attack ratio (AR) index, which divides the number of dengue cases by the population
at risk. According to (COELHO; DE CARVALHO, 2015), to calculate the AR index is
necessary to estimate the population exposed to the disease, and the number of the
population at risk is virtually impossible to determine without regular virological data
collection. Moreover, the Demographic Census, which acquires population data, is



19

expensive and is collected with a significant period of at least ten years (IBGE, 2016).
The difficulty in collecting demographic data, especially in developing countries, pose
difficulty in inferring such demographic-based indexes.

While traditionally estimation is done by physically inspecting locations or using his-
torical data, recently remote sensing techniques have been proposed, including the use
of aerial photography (AMARASINGHE et al., 2017). Aerial photography and street-
level images depict the urban scenarios and are close representations of the human
environment available in digital form. Urban imagery is gradually turning ubiquitous
since the popularity of services offered by Apple, Bing, and Google through aerial
maps and street view, and their use in daily life is gradually increasing, mostly to aid
navigation (GEBRU et al., 2017).

A relatively new research field, the Visual Computational Sociology is dedicated to
investigate the ability of direct inference of latent socioeconomic variables from urban
images through the use of computer vision techniques, specially Deep Convolutional
Neural Networks to relate a city’s physical appearance with social statistics, such as
income (GEBRU et al., 2017), demographics (De Nadai et al., 2016), behavior (ARI-
ETTA; EFROS, 2014) and to make decisions based on implicit and explicit visual cues
(KHOSLA et al., 2014). Since the urban imagery contains data that can correlate with
such latent variables, the information on images can also be used to infer latent health
variables, such as dengue fever incidence, without the use of demographic data.

1.1 Motivation

The urban environment contains a large amount of information we can directly per-
ceive, especially by our sight, and additional information we can infer, implicitly con-
necting the elements present in the environment we observe. We visualize a scene
in an urban environment detecting houses, cars in the streets, signs, and commercial
buildings. By observing this same scene, it is possible to infer, according to our ac-
quired knowledge, other characteristics of the place, such as safeness, wealthiness,
and healthiness of the residents or the purpose of the environment, and if it is a com-
mercial, industrial or residential place (KHOSLA et al., 2014). Those implicit pieces
of information are non-visual attributes (ARIETTA; EFROS, 2014) or “latent variables”,
which are present in society and the urban environment and are not directly visible,
such as demographic, socioeconomic, cultural, and health indicators of the region ob-
served.

Street-level images depict typically urban scenes from a person’s perspective and
are the closest depiction of the human environment available in digital form. Their pop-
ularity increased with navigation services, such as Google Street View (ANGUELOV
et al., 2010; GOOGLE, 2017), that make available access to street images, contribut-
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ing to their ubiquity. Recently, cars with onboard cameras are gradually becoming
more popular, contributing to the popularity of street-level image data category (GE-
BRU et al., 2017).

The urban environment can also be represented digitally by aerial photography,
providing a bird’s-eye view of Earth, with images taken from a variety of aircraft. Aerial
photography has become widely available in the last decade due to the popularity of
mapping services such as those offered by Apple, Bing, and Google, with a large
fraction of cities covered by such services. Aerial images provide a unique source of
geographic information by allowing a large area to be covered in a single image.

Since the emergence of street-level and aerial imagery data, computer vision mod-
els have been used in conjunction with street-level and satellite imagery to relate the
physical appearance of a city with social statistics such as income, perceived safety,
social behavior, and to make decisions based on implicit and explicit visual cues. These
models are inspired by environmental theories that show the influence that the envi-
ronment exerts on social factors and human behavior, such as Broken Window Theory
(WILSON; KELLING, 1982), and “Routine Activity of Places” (SHERMAN; GARTIN;
BURGER, 1989). This relatively new research area received denominations from the
authors DOERSCH et al. (2012) as “Computational Geo-cultural Modeling”, from ARI-
ETTA; EFROS (2014) as “City Forensics” and from GEBRU et al. (2017) as “Visual
Census Estimation” and “Visual Computational Sociology”. Recently, SHAPIRO (2017)
referenced this line of research as “Street-level datafication”, which links visual envi-
ronment qualities, geographic information, and social valuations and risks. Other de-
nominations for this area appears as “vision-based urban perception”, in WANG et al.
(2018).

These Visual Computational Sociology models are being used to navigate and
search for optimized urban routes, improvements in planning and understanding of
urban aspects, to propose alternatives and automate the census and remote sens-
ing applications such as object detection, crop yield estimation, and crowd estimation
(DOERSCH et al., 2012; ARIETTA; AGRAWALA; RAMAMOORTHI, 2013; ARIETTA;
EFROS, 2014; KHOSLA et al., 2014; De Nadai et al., 2016; GEBRU et al., 2017,?;
MNIH; HINTON, 2010; CHENG; HAN, 2016; GEIPEL; LINK; CLAUPEIN, 2014; MEYN-
BERG; CUI; REINARTZ, 2016).

The same way that socioeconomic factors, such as the occurrence of crimes, can
be explained by environmental criminological theories, the presence of diseases, such
as dengue fever, can also be attributed to environmental factors and physical ur-
ban structures (COHEN et al., 2003; WILDER-SMITH; GUBLER, 2008; KIKUTI et al.,
2015).

According to KRYSTOSIK et al. (2017), an investigation at streets and neighbor-
hood level that incorporates environmental attributes such as aspects of housing, street
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configuration, presence of standing water, and other environmental risks is of interest
to the research area. The use of urban imagery, such as street-level images, has
proved to be a useful proxy for demographic data, and the elaboration of models of
disease inference.

1.2 Research Goals

Given the need for a fine-scale analysis of neighborhoods and streets related with
dengue cases, and the emergence of Visual Computational Sociology research area,
which applies computer vision models to infer latent variables from urban imagery im-
ages, the following Subsections 1.2.1 and 1.2.2 presents an overview of the general
objectives and specific objectives, respectively, of this research Thesis.

1.2.1 General Objective
The general objective of this present Thesis is:
e To use street-level image domain in conjunction with aerial imagery to estimate
dengue incidence rates in urban regions.
1.2.2 Specific Objectives
The Specific Objectives of this Thesis, enrolled as Hypotheses in Section 3.2, are:

e To evaluate the use of aerial and street-level image features as dengue incidence
rate single estimators.

¢ To evaluate the use of aerial and street-level image features combined as dengue
incidence rate estimators.

¢ To evaluate the geographic portability of the models, trained and evaluated in one
city to be applied in other different city.

e To evaluate the suitability of Deep Convolutional Neural Networks (Deep Con-
vNet) for use in the proposed models as urban image feature extractors.

The next Section 1.3 enumerates the contributions resulted from the application of
methodology and experiments to the achievement of the listed objectives, and Section
1.4 presents the published works resulted from the presented models experiments.

1.3 Contributions

¢ In the field of Visual Computational Sociology, it is proposed a Deep Convolu-
tional Neural Network based model for estimating real positive values of latent
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health variables, specifically dengue fever rates, from actual incidence data, as a
regression model, without normalization or stratification.

e Also in the field of Visual Computational Sociology, it was produced results with
models that merge features obtained from different domains, that may be useful
in future analysis and research.

e The provision of anonymous datasets of aggregated dengue incidence rates per
fine-grained regions, labeling their belonging georeferenced location points, in
Brazilian cities.

e Models trained with real dengue fever data, especially for aerial image data do-
main, can contribute to future works by transfer learning techniques, with Deep
Convolutional Neural Networks.

¢ Indengue fever prediction, it is proposed a model for estimating dengue incidence
rates solely from urban images, a ubiquitous data domain, without the need of
social-economic government data e.g., population, income, which can be scarce
in developing countries.

e Also, in dengue fever prediction, the proposed models can be used in public
health policies targeted at fine-scale street-level analyses.

1.4 Published Works

The following works were published using the resulting methodology and models
proposed in this present Thesis, sorted by relevance order:

e Combining Street-level and Aerial Images for Dengue Incidence Rate Esti-
mation. In: [JCNN - International Joint Conference on Neural Networks, 2019,
Budapest, Hungary. Proceedings of the 2019 International Joint Conference on
Neural Networks (IJCNN-2019), 2019. p. 1-8. - Qualis A1

e Towards Predicting Dengue Fever Rates Using Convolutional Neural Net-
works and Street-Level Images. In: IJCNN - IEEE International Joint Confer-
ence on Neural Networks, 2018, Rio de Janeiro. Proceedings of the 2018 IEEE
International Joint Conference on Neural Networks (IJCNN-2018), 2018. p. 1-8.
- Qualis A1

The following works were published using the same methodology and model basis
proposed in this present Thesis, with the use of street-level images for estimation of
other urban latent variables, specifically crime incidence rates:
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e Investigating Crime Rate Prediction Using Street-Level Images and Siamese
Convolutional Neural Networks. In: Communications in Computer and Informa-
tion Science (PRINT), v. 720, p. 81, 2017. After the presentation at the First Latin
American Workshop on Computational Neuroscience (LAWCN). - Qualis B5

e Towards Crime Rate Prediction through Street-level Images and Siamese Con-
volutional Neural Networks. In: ENIAC - National Meeting of Artificial and Com-
putational Intelligence, 2017, Uberlandia. Proceedings from National Meeting of
Artificial and Computational Intelligence. Porto Alegre: SBC, 2017. V. 1. p. 1-8. -
Qualis B4



2 FOUNDATIONS AND RELATED WORKS

2.1 Computer Vision Designed Descriptors

Designed descriptors are a set of computer vision algorithms and techniques de-
veloped to obtain features or concise representations from images to solve specific
problems such as object detection, image classification and scene recognition (SRINI-
VAS et al., 2016). Notable examples of descriptors are Spatial Envelopes or GIST from
OLIVA; TORRALBA (2001) and Histogram of Oriented Gradients (HOGs) from DALAL;
TRIGGS (2005). Those were the standard choice of computer vision techniques before
the advent of Deep Learning approaches, where feature vectors are learned by deep
convolutional architectures. The next Subsection 2.1.1 briefly describes the descriptor
GIST and Subsection 2.1.2 describes the HOGs.

2.1.1 Spatial Envelopes (GIST)

Proposed by (OLIVA; TORRALBA, 2001), the global descriptor Spatial Envelope or
GIST descriptor is a low dimensional representation of an image without requiring low-
level or mid-level object segmentation i.e. without requiring segmenting and processing
individual objects or regions. According to the authors, the “gist” is “an abstract repre-
sentation of the scene that spontaneously activates memory representation of scene
categories”, such as a beach, a city, a forest.

Following (OLIVA; TORRALBA, 2001) idea, the spatial structure of an image scene
can be represented as a set of perceptual dimensions: naturalness, openness, rough-
ness, expansion and ruggedness, and this set of dimensions can be estimated using
spectral information. There are different models for GIST descriptors, including the
original (OLIVA; TORRALBA, 2001)’s GIST, where an image is divided into 4x4 equally-
sized non-overlapping regions, in which the magnitude spectrum of Windowed Fourier
Transform (WFT) is computed. Next, the feature dimension of the resulting WFT is re-
duced using principal component analysis (PCA). It is usually applied to scene recog-
nition problems. GIST descriptors were used in the feature extraction methodology of
DOUZE et al. (2009), FANG; SANG; XU (2013), KHOSLA et al. (2014), NAIK et al.
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(2014) and ORDONEZ; BERG (2014).

2.1.2 Histogram Of Oriented Gradients (HOGs)

The HOGs were proposed by (DALAL; TRIGGS, 2005) to characterize the appear-
ance and shape of an object in an image by the distribution of local intensity gradients
or edge directions. In short, the authors of HOG method divide an image window into
small cells, compute the gradients of the cells, distribute weights between spatial and
orientation features and accumulate a local 1-D histogram of the gradient directions
over the pixels of this cell. Also, each cell can belong to a block in which all cells
are normalized according to an accumulated “energy”. HOG descriptors were used
in street-level images feature detection by the authors (DOERSCH et al., 2012), (ARI-
ETTA; AGRAWALA; RAMAMOORTHI, 2013), (ARIETTA; EFROS, 2014), (KHOSLA
et al., 2014), (PORZI et al., 2015), (NAIK et al., 2014).

2.2 Deep Convolutional Neural Networks

According to GOODFELLOW; BENGIO; COURVILLE (2016), Deep Convolutional
Neural Networks (Deep ConvNets) (LECUN et al., 1998) are neural networks that use
convolution operations, in one or more layers, for processing data with grid-like topol-
ogy. They learn attributes or features hierarchically, i.e., performing feature learning,
which best represents the grid-like data for a given task, e.g., object classification in
images. The concept of depth or deep learning on ConvNets, according to the au-
thors, refers to the methodology of breaking a learning problem into a series of more
simplified mappings, described by different layers.

The traditional methodology for pattern recognition problems in computer vision in-
volves the use of hand-designed feature extraction, to concentrate the relevant input
values, followed by a trainable classifier algorithm, with the disadvantage of becom-
ing increasingly complex whenever a new feature extraction method was proposed
(LECUN et al., 1998; SRINIVAS et al., 2016). Later, during the competition of the Im-
ageNet Large Scale Visual Recognition Challenge in 2012 (RUSSAKOVSKY et al.,
2015), KRIZHEVSKY; SUTSKEVER; HINTON (2012) proposed a model based on
convolutional neural networks (ConvNets) that surpassed the results of other models
based on classic computer vision techniques in the task of classifying an image into 1
of 1000 labels. The proposed model was the AlexNet architecture, which made Con-
vNets the state of the art in computer vision models. The feature learning methodology
of Deep ConvNets contrasts with feature design methodology in computer vision clas-
sic approaches, such as GIST (OLIVA; TORRALBA, 2001), “Scale-invariant feature
transform” (SIFT) (LOWE, 2004) and HOG (DALAL; TRIGGS, 2005).
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2.2.1 Generalities of Deep ConvNets

Deep ConvNets are composed of convolutional layers, that apply some convolution-
family operation in data, together with layers that execute other operations such as
pooling, batch normalization, and activations, in a hierarchical arrangement following
a concept based on the representation of the cat’s primary visual cortex, composed of
“simple fields” and “complex fields”. The “simple fields” are convolutional layers that
are responsible for learning basic shapes such as borders and contours, and “complex
fields” are pooling layers responsible for learning a collection of these basic forms,
previously found, to identify parts of objects (GOODFELLOW; BENGIO; COURVILLE,
2016; HUBEL; WIESEL, 1962; SRINIVAS et al., 2016).

In convolutional layers, the Convolution is a linear operation between two functions
f(z) and g¢(z) to produce a third function h(x) that describes overlapping regions or
modifications during several multiplications between f(x) and a delayed ¢(z) function
through time ¢ (BRACEWELL, 1986; O'HAVER, 1997).

The mathematical description of the general convolution, that is observed through
time, is described in Equation 1,

/ F(mglt ) (1)

where the integral of the function f(7) multiplied by a spatially reversed function
g(t— 1) observed with T through time ¢ gives the convolution function (f x ¢)(t) between
f(t) and g(t) (BRACEWELL, 1986; O’'HAVER, 1997; HOSSACK, 2016; GOODFEL-
LOW; BENGIO; COURVILLE, 2016).

In machine learning, the function f(¢) is referred as the grid-like multidimensional
input data, such as an image, and the function g(¢) that multiply f(¢) by means of shift-
ing through time is know as convolution kernel, or simply kernel, and the output of
(f = g)(t) is the feature map. In addition, the convolution operation is executed in more
than one dimension, i.e. axis, at a time, and most common implementations present a
different convolution-family operation know as cross-correlation', where some transfor-
mations in kernel function such as “flipping” are not used (GOODFELLOW; BENGIO;
COURVILLE, 2016).

The Equation 2 describes the cross-correlation operation used in most neural net-
work libraries, for input function I and kernel K with i, j displacements as,

(IxK)( ZZIz+mJ+nK( n) (2)

defining the sum of the product in both input axes, from I(m,n) input function,

'According to GOODFELLOW; BENGIO; COURVILLE (2016), there is a convention in machine
learning field of calling both convolution and cross-correlation as “convolution”.
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displaced in i, j units, and K (m,n) kernel function, without reversal. While the learn-
ing process is performed, the kernel K - a multidimensional array of parameters -
is adapted while loss function minimization criteria, to obtain the feature map from
(I = K)(i,7) that best fit the problem criteria (BRACEWELL, 1986; GOODFELLOW,;
BENGIO; COURVILLE, 2016).

According to LECUN et al. (1998) and GOODFELLOW; BENGIO; COURVILLE
(2016), the motivation for the use of convolutional layers instead of ordinary fully-
connected layers are: (i) the possibility of reducing the connections, resulting in sparse
weighting, (i) parameter sharing and (iii) equivariance.

The convolutions operations perform a series of linear activations in the convolu-
tional layers. The pooling layers in Deep ConvNets are responsible for executing a
summary statistic in a particular location in output, replacing this output value by the
statistic. It also has nonlinear operators, such as the traditional sigmoid, hyperbolic
tangent (tanh), rectified linear unit (ReLU), and Leaking RelLU functions, which are
added to the output of convolutional layers, to insert a nonlinearity to the convolution
operation, generalizing better to real data. The final architecture is trained using an
optimization algorithm, such as Stochastic Gradient Descent (SGD) (BOTTOU, 2010),
to find the best weights for all blocks that best fit the target task, minimizing a loss
function (SRINIVAS et al., 2016).

The general structure of Deep ConvNets, taking LeNet and AlexNet (LECUN et al.,
1998; KRIZHEVSKY; SUTSKEVER; HINTON, 2012) architectures as basic references,
is composed of blocks that are organized following a concept based on the representa-
tion of the cat’s primary visual cortex, composed of “simple fields” and “complex fields”
(HUBEL; WIESEL, 1962; SRINIVAS et al., 2016). In simplified terms, in ConvNets’
“simple fields” are hidden layers that are responsible for learning basic shapes such as
borders and contours, and “complex fields” are layers responsible for learning a collec-
tion of these basic forms, previously found, to identify parts of objects (GOODFELLOW;
BENGIO; COURVILLE, 2016).

Figure 1 represents the AlexNet (KRIZHEVSKY; SUTSKEVER; HINTON, 2012) ar-
chitecture, presented here for the purpose of exemplifying the operation of Deep Con-
vNets. The “simple fields” respond to oriented edges and grids, similar to convolutional
filters, and the “complex fields” are sensitive to edges and grids, but with spatial in-
variance, i.e. don'’t vary if they are translated into space (HUBEL; WIESEL, 1962;
SRINIVAS et al., 2016). The “simple fields” gave the idea of “convolutional layers” - “C”
blocks represented in Figure 1 - responsible for learning a set of convolutional cores
or filters. The “complex fields” are implemented as “Max-Pooling layers” - “P” blocks in
Figure 1 - which perform the max-pooling operation responsible for applying a maxi-
mization filter, replacing each n x n region with its highest value. This operation selects
the highest activation in the region, contributing to spatial invariance (as in complex
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fields) and decreases the size of the parameters to be learned by the next layers.

New architectures, in addition to the AlexNet, are being developed, driven mainly
by the need to obtain better results in applying benchmark datasets and competitions
such as the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) (RUS-
SAKOVSKY et al., 2015). The result of these competitions, usually involving image
classification, and supervised machine learning, contributes to new approaches in
building these architectures. Also, the use of Deep ConvNets may differ, depending
on the task to which they are being applied.

2.2.2 Transfer Learning

According to SRINIVAS et al. (2016), the use of Deep ConvNets as a computational
vision methodology can be done by training a complete architecture “from scratch?”, or
by using a previous developed architecture and pretrained weights, technique called
transfer learning.

Transfer learning works by exploring the ability of first convolutional layers to gen-
erate attributes common to most natural images (YOSINSKI et al., 2014). Thus, pre-
trained ConvNets can use (i) fine-tuning, when using previous architecture and pre-
trained weights, and updating gradients from all or only some layers, i.e., “frozen
weights” during training. In addition, these layers can be removed, replaced, or added
to the original architecture to suit the new network task; or (ii) using activations of a pre-
viously trained ConvNet as an image feature extractor, similar to designed descriptors
methods (YOSINSKI et al., 2014; SRINIVAS et al., 2016).

When the proposed task for architecture is very different from the general task of
already built and previously trained architectures, it is necessary to train the complete
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Figure 1 — Deep Convolutional Neural Network model example depicting AlexNet ar-
chitecture. Adapted from KRIZHEVSKY; SUTSKEVER; HINTON (2012); SRINIVAS
et al. (2016).

2Term to inform that no previous training weights from different datasets were used to initialize the
training process.
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Table 1 — Main benchmark datasets for training and validating Deep ConvNets.

Dataset Author Overview Total Images
MNIST (LECUN et al., 1998) Manually written characters. 70.000
Small images (32 x 32 x 3)
CIFAR-10/100 (KRIZHEVSKY, 2009) labeled with 10 and 100 classes 80 million

of distinct natural elements.
Images labeled according to
ImageNet (DENG et al., 2009) WordNet hierarchies 3.2 million
of approximately 1000 classes.
It has approx. 91
different object types,

MS-COCO (LIN et al., 2014) . T 328.000
totaling 2.5 million
labeled instances.

Openlmages (KRASIN et al., 2017) 'Lhas [abels in bounding boxes 9 million

and global labels.
Intended for
computer vision problems involving
SUN (XIAO et al., 2010) categorization and 130.519
scene comprehension.
It has 899 categories.
Intended for categorization and
Places (ZHOU et al., 2014, 2018a) understanding of scenes. 10 million
It has 434 categories.

Deep ConvNet text in all its layers, using a specific dataset for the task. This methodol-
ogy is costly because it requires a large amount of training data to obtain good results
(SRINIVAS et al., 2016).

2.2.3 Benchmark Datasets

Benchmark datasets, in the computer vision research field, are databases contain-
ing a large number of previously labeled images, specifically designed for the training
and validation of Deep ConvNet architectures, applied to computer vision problems.
The primary research datasets were grouped in Table 1. Among the datasets listed,
the most used imagery set in state of the art, with transfer learning techniques, is the
ImageNet dataset. Places dataset is most used in related works of the Visual Com-
putational Sociology area since its main goal is to categorization and understanding of
natural scenes.

2.2.4 Architectures Implementations

Among the developed Deep ConvNet architectures that presented the best perfor-
mances in computer vision tasks competitions, e.g. ILSVRC, according to KARPATHY
(2017), those presented in Table 2 stand out. In addition to these architectures, re-
cent implementations have also been added, which somehow optimize consolidated
proposed architectures.
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Table 2 — Notable Implementations of Deep ConvNet Architectures.

Architecture Author Overview
Introduced the successful
LeNet (LECUN et al., 1998) use of Deep ConvNets for

digit recognition.

Popularized the use of Deep ConvNets in
computer vision problems

after the results obtained in the
ILSVRC (RUSSAKOVSKY et al., 2015),
making it the standard
methodology in the field.
Containing 16 convolutional layers,
the authors have shown that
VGGNet (SIMONYAN; ZISSERMAN, 2015) small depth filters in the

network are important components
for better performance.

Optimized computational resources
compared to previous architectures.
Implemented optimizations with
normalization of parameters
between layers.

ResNet (HE et al., 2016) Has different versions varying
number of layers.

Is the state of the art

between current implementations.
Small CNN, which achieves

the same accuracy

AlexNet (KRIZHEVSKY; SUTSKEVER; HINTON, 2012)

Inception-v3 (SZEGEDY et al., 2015)

SaueezeNet (IANDOLA et al., 2016) of architecture AlexNet
with fewer parameters.
Inception-v4 (SZEGEDY et al., 2017) Proposed combination of

ResNet and Inception architecture.

With a feed-forward approach,

where all layers are connected together,
DenseNet (HUANG et al., 2017) seeks to correct various problems

other architectures, e.g. vanish-gradient,
reducing the number of parameters used.

2.3 Visual Computational Sociology

Computer vision and machine learning models have been used extensively for the
discovery of environment-related attributes in street-level images. According to DUBEY
et al. (2016), the visual analysis of scenes in urban images has different objectives,
such as perception responses, understanding of the characteristics of cities through
the urban visual scene, the study of the connection between urban appearance and
socioeconomic factors, and the comparison between different environments. Although
most of works in the Visual Computational Sociology use street-level imagery to infer
latent variables, the use of aerial photography and satellite images with computer vision
models is proposed for land use classification, poverty incidence identification, geo-
localization and house prices. In the next Subsections 2.3.1, 2.3.2, 2.3.3, works using
street-level, aerial and satellite imagery, and fusion models with aerial and street-level
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images, respectively, are summarized to cover the use of computer vision models to
infer latent variables in Visual Computational Sociology models.

2.3.1 Street-level Imagery Models

In “What makes Paris look like Paris?”, DOERSCH et al. (2012) proposed a method-
ology to automatically extract visual elements from street-level images, such as win-
dows, balconies, traffic signs, and lamps, that are representative for a specific ge-
ographical region. In “On Relating Visual Elements to City Statistics”, ARIETTA;
AGRAWALA; RAMAMOORTHI (2013), applied the methodology of DOERSCH et al.
(2012) to estimate probabilities of social and economic statistic occurring in an area,
based on street-level images. The authors collected georeferenced statistics with lati-
tude and longitude coordinates of (i) occurrence of theft, (ii) housing prices, (iii) pres-
ence of graffiti and (iv) presence of trees, from the U.S. cities San Francisco, Oak-
land, Seattle, Chicago, Los Angeles, Boston and Philadelphia. The authors applied the
patch clustering methodology to street-level imagery, aiming to discover discrimina-
tive patches from the statistics. Next, authors used Support Vector Regression (SVR)
(DRUCKER et al., 1997), by learning a set of weights over the detection scores for
each visual feature. Combining the weighted detection scores, the authors computed
the probability of observing the statistic based on visual features detected in the image.

Later, ARIETTA; EFROS (2014) extended ARIETTA; AGRAWALA; RAMAMOOR-
THI (2013) work and applied the proposed prediction algorithm in US cities, discov-
ering that there was a predictive relationship between visual elements from an envi-
ronment and non-visual variables like crime and theft rates, housing prices, population
density, graffiti density and perception of danger. They compared the use of HOG
(DALAL; TRIGGS, 2005), and color descriptors with the Deep Convolutional Neural
Networks (ConvNet) activations from the fifth convolutional layer (C5) of the AlexNet
(KRIZHEVSKY; SUTSKEVER; HINTON, 2012) architecture, and concluded that the
HOG + color descriptors were more visually consistent but captured less from the city
semantics. The authors also presented a scalable distributed processing framework to
speed the extraction of visual elements from images and implemented their model to
relate visual city attributes to any geolocated statistic presented in that city.

In “Looking Beyond the Visible Scene” (KHOSLA et al., 2014), the authors ex-
plored the ability to use street-level imagery that contains urban visual scenes to
predict the distance of surroundings establishments such as hospitals and fast-food
restaurants, and crime rates using the visual scene of a location. The authors applied
HOGs and Deep Convolutional Neural Networks (ConvNet) activations from the sev-
enth fully-connected layer (FC7) of AlexNet (KRIZHEVSKY; SUTSKEVER; HINTON,
2012) architecture as descriptors. They relate the street view images with the distance
of the closest establishments and trained a linear Support Vector Regression (SVR)
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(DRUCKER et al., 1997) algorithm on the image features obtained by each descriptor.
The results achieved in finding hospitals and fast-food restaurants ranged from 0.58%
to 0.61% of average accuracy, and 72.0% for crime rate prediction.

In “Learning High-level Judgments of Urban Perception’, (ORDONEZ; BERG, 2014)
proposed the use of an automatic prediction of the sense of places, i.e. the percep-
tion about a location, using the Place Pulse 1.0 dataset (SALESSES; SCHECHTNER,;
HIDALGO, 2013), to predict the human judgments of safety, uniqueness, and wealth
of a location. Their model was divided into a machine learning binary classifier e.g.,
safe or non-safe and a regression model, that approximates the quantitative rate values
from the Place Pulse dataset. The authors proposed the use of GIST (OLIVA; TOR-
RALBA, 2001), SIFT (LOWE, 2004) descriptors with Fisher Vectors (PERRONNIN;
SANCHEZ; MENSINK, 2010) encoding, and Deep ConvNet activations from AlexNet
(KRIZHEVSKY; SUTSKEVER; HINTON, 2012) FC6 layer. The results showed that
the use of the FC6 layer as descriptors surpassed the use of classic computer vision
techniques.

The authors NAIK et al. (2014) in “Streetscore: predicting the perceived safety of
one million streetscapes” proposed the use of street view images to predict the per-
ception of safeness of an environment. The ground truth data was the Place Pulse
1.0 dataset (SALESSES; SCHECHTNER; HIDALGO, 2013), gathered by user rank-
ing. Authors used different feature extraction methods and chose the best performance
features: GIST (DALAL; TRIGGS, 2005), Geometric Texton Histograms, and Geomet-
ric Color Histograms. Next, the image features obtained with the methods were used
to train a predictor using Support Vector Regression (SVR) (DRUCKER et al., 1997)
algorithm. The features were used alone and combined (named by the authors as
StreetScore). The achieved accuracy of StreetScore binary safe or non-safe classifier
was 78.42%.

In “Predicting and Understanding Urban Perception with Convolutional Neural Net-
works”, (PORZI et al., 2015) proposed the use of Deep Convolutional Neural Networks
(ConvNets) to predict human perception responses of safeness from a place automat-
ically. The authors proposed a Deep ConvNet architecture based on AlexNet architec-
ture (KRIZHEVSKY; SUTSKEVER; HINTON, 2012), where the first to second and third
layers are maintained and latent detectors layers are attached to the previous feature
extraction layers. The safety predictor is a linear function applied to the output of the
latent detector. The authors used the Place Pulse 1.0 dataset without transforming the
user rates in ground truth rankings, obtaining as the most relevant results among all
experiments, 70.25% of accuracy with the proposed Deep ConvNet against 66.37% of
HOG descriptors and SVM classifier.

In “Deep Learning the City: Quantifying Urban Perception At A Global Scale’,
(DUBEY et al., 2016) proposed two Siamese-like Deep ConvNet architectures
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(CHOPRA; HADSELL; LECUN, 2005), named Streetscore-CNN (SS-CNN) and Rank-
ing SS-CNN (RSS-CNN) to predict the human judgment of the six attributes with
pairwise comparisons. The SS-CNN is trained for binary classification and the RSS-
CNN network learns an additional set of weights to retrieve a ranking distribution in-
stead of a binary classification. They proposed different approaches using Transfer
Learning techniques, initializing the feature extraction layers with pretrained weights
from AlexNet (KRIZHEVSKY; SUTSKEVER; HINTON, 2012), PlacesNet (ZHOU et al.,
2014) and VGGNet (SIMONYAN; ZISSERMAN, 2015), obtaining 72.4% with SS-CNN
and 73.5% with RSS-CNN of accuracy training with VGGNet architecture.

De Nadai et al. (2016) in “Are Safer Looking Neighborhoods More Lively? A Mul-
timodal Investigation into Urban Life” proposed a “liveliness,” i.e., level of activity esti-
mator for neighborhoods in Rome and Milan, ltaly, using street-level imagery related to
population density. The authors used categories of population density obtained from
mobile phone activity data to proxy the liveliness in the neighborhoods. The safeness
prediction model was implemented by fine-tuning the ConvNet AlexNet (KRIZHEVSKY;
SUTSKEVER; HINTON, 2012) trained with Places205 (ZHOU et al., 2014) and re-
training with Places Pulse 1.0. By transferring knowledge, the resulting network could
predict the appearance of safety in the new images. The authors found that the ap-
pearance of safety is positively correlated with higher densities of people present in
neighborhoods per area.

KANG; KANG (2016), in “Urban Safety Prediction Using Context and Object In-
formation via Double-Column Convolutional Neural Network”, propose the prediction
of safety scores of US cities, using the fusion of context and object information via
double-column Deep ConvNet, being one column for context information extraction
and another column for object information extraction. For context information, authors
use the whole street-view image, and object information is extracted from the highest
saliency patch. Ground truth safety scores were obtained from Place Pulse 1.0 (SA-
LESSES; SCHECHTNER; HIDALGO, 2013) dataset. Authors used a Deep ConvNet
based on AlexNet (KRIZHEVSKY; SUTSKEVER; HINTON, 2012) architecture. Ob-
ject context column receives the whole street-level image, and the object information
column receives the most significant image patch. In the proposed method, vectors
resulting the last max-pooling layers were concatenated, replacing the original AlexNet
fully-connected layers to 8192, 4096 and 1 nodes respectively. As a result, the authors
achieved root mean square error (RMSE) of 0.74, the best result between all experi-
mented approaches, with 0.90 of Pearson correlation coefficient.

In “Using Deep Learning and Google Street View to Estimate the Demographic
Makeup of the US” GEBRU et al. (2017) and “Fine-Grained Car Detection for Visual
Census Estimation”, (GEBRU et al., 2017) proposed a computer vision pipeline to pre-
dict several statistics outcomes e.g. race, education levels, income, voter preferences,
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per capita carbon emission and crime rates, through the detection and classification of
cars in Google Street View images and regression methods to correlate the quantities
and classifications with social city statistics.

Next, GEBRU et al. (2017) takes the visual census estimation step, using the output
of the car classifier to cluster different data related to the type of car, e.g., most expen-
sive cars and high or low percentage of foreign cars and to estimate demographic
statistics and voter preferences. The authors trained a logistic regression model to es-
timate education levels and race, and a ridge regression model to estimate income and
voter preferences. The authors found strong correlations between the carmaker and
race and between car body type and voter preference, suggesting that most Democrats
own sedans, and Republicans prefer extended-cab pickup trucks.

LIU et al. (2017), in “Place-centric Visual Urban Perception with Deep Multi-instance
Regression” presented a regression model based on a deep multi-instance approach
method to predict safety scores from street-level images in specific regions. The au-
thors propose the use of 20,000 crime occurrence location points, with 8 street-level
camera views directions in 5 different cities of the USA. Each location point is labeled
with a weakly supervised method of assigned the crime labels by first estimating pri-
mary instances, and secondly, clustering the instances to label regions with the highly
scored values. Next, the authors apply a deep convolutional neural network based on
AlexNet architecture to predict crime scores. Authors achieved R? = (.81 for their built
dataset.

In “StreetNet: Preference Learning with Convolutional Neural Network on Urban
Crime Perception”, (FU; CHEN; LU, 2018), authors propose the use of Deep Con-
vNets to learn a perceptional crime rank, i.e., inference of certain types of crimes most
likely to occur in an area, from street-level images, in US cities. The crime ranking
labeling was conducted using the georeference, type, and timestamp of event, from
official cities crime records. Crime types were ranked with a descending order, with
timestamp crime occurring time nearest the street-level image timestamp. However,
authors do not explain how they gather timestamps for street-level images. To eval-
uate their Deep ConvNet model, authors compare specific metrics for label-ranking
results, reporting that their approach performs better than AlexNet and VGG architec-
tures pretrained with ImageNet and Places datasets when designed for the same task.
Furthermore, authors show that perpendicular street-level images perform better than
using 4-direction, stating that there is heavy noise in parallel images, and reported the
best classification results in a small radius, with sample points near events.

In “Measuring social, environmental and health inequalities using deep learning and
street imagery”, SUEL et al. (2019) addresses the problem of inferring categories of
different latent variables from street-level images using the same proposed model. Au-
thors gather Census information from London, U.K., such as mean income, occupancy
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rating, education, self reported health, unemployment, and crime deprivation. Each la-
tent variable was categorized in a 10-decile distribution, where decile one correspond-
ing to the worst-off 10%, and decile 10 the best-off 10%, being one categorized decile
of each latent variable attributed to a postcode location. For each location, street-level
images in different orientations were obtained from Google Street View APl (GOOGLE,
2017). Authors use VGG16 (SIMONYAN; ZISSERMAN, 2015) architecture as a fea-
ture extractor, and fed each feature into three fully-connected layers, concatenating the
last layer to classify images in a specific decile, for each latent variable. Best decile pre-
dictions obtained for mean income with mean average error M AE = 1.1 and Pearson
correlation coefficient » = 0.86, and worst results using the model presented Pearson
correlation coefficient » = 0.57 for crime deprivation, and mean Pearson correlation
between all outcomes equal » = 0.77.

2.3.2 Aerial and Satellite Models

In the research article “Combining Satellite Imagery and Machine Learning to Pre-
dict Poverty”, from JEAN et al. (2016), the authors use daylight satellite imagery ob-
tained from Google Static Maps APl (GOOGLE, 2018a) to estimate poverty regions in
African countries, using as a proxy the ground truth information of nightlights intensi-
ties instead of georeferenced economic data. The authors propose the use of Deep
Convolutional Neural Networks (ConvNets) pretrained with ImageNet (DENG et al.,
2009) datasets and fine-tune it on daylight satellite images to predict nightlight inten-
sities. This network is used next as a feature extractor for nightlight intensities from
daylight images. Next, features extracted from this network are used as predictors
in ridge regression models, with cluster-level data from a parallel survey performed
to map poverty in the localities. Based on these extracted features, the models can
predict expenditures and assets in the local regions, with 72 ranging from 0.41 to 0.75.

Later, OSHRI et al. (2018) in “Infrastructure Quality Assessment in Africa using
Satellite Imagery and Deep Learning”, studied the use of Deep ConvNets to infer in-
frastructure quality in African countries using satellite images from Landsat 8 and Sen-
tinel 1 and ground truth data for infrastructure from Afrobarometer Round 6 (BENY-
ISHAY et al., 2017). The authors’ methodology consists of detecting infrastructure in
studied regions as a multi-binary classification problem, where the input is a satel-
lite image, and the outputs are binary labels indicating the quality of different types of
infrastructure detected in the site. The authors used ResNet (HE et al., 2016) archi-
tecture pretrained with ImageNet (DENG et al., 2009). Modifications were made in
the first convolutional layers, extending filters to more than three channels, initializing
RGB channels with ImageNet weights and the non-RGB channels with Xavier initial-
ization (GLOROT; BENGIO, 2010). They obtained the best results on the classification
of electricity and sewerage, with AUROC values greater than 0.85, and infrastructure
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elements that require zoom levels, e.g., market stalls, health clinics, police stations,
from satellite images presented worst results.

ALBERT; KAUR; GONZALEZ (2017) in “Using Convolutional Networks and Satel-
lite Imagery to Identify Patterns in Urban Environments at a Large Scale” propose the
use of Deep ConvNets of architectures VGG-16 (SIMONYAN; ZISSERMAN, 2015) and
ResNet (HE et al., 2016) to classify types of urban land use in satellite images from
Google Maps with large scales, using Urban Atlas ® dataset as ground truth for land use
labels. The authors investigate the use of transfer learning in the ConvNets architec-
tures with different domains, e.g. ImageNet (DENG et al., 2009), and related domains
as DeepSat dataset (BASU et al., 2015), with different European cities, and performed
the classification on satellite Google Maps image tiles with resolution 224 x 224 and
zoom level of 17, labeled according to a 100 x 100 grid structure interpolated in Ur-
ban Atlas original polygons. As results, the authors found that ResNet-50 architecture
pretrained with DeepSat dataset and fine-tuned with satellite images collected for the
experiments yielded better results in classification, a zoom scale of 250m performed
better than 50m, 100m, 150m zoom levels, and a dataset composed of multiple cities for
training, presented gains in reported accuracies, 70% to 80%, when classifying different
cities, in contrast with training with a unique city.

In “Beyond Spatial Auto-Regressive Models: Predicting Housing Prices with Satel-
lite Imagery” (BENCY et al., 2017), authors propose the use of features obtained from
satellite images from Google Maps in house pricing datasets, performing fine-tune in
Deep ConvNets from Inception v3 (SZEGEDY et al., 2016) architecture pretrained with
ImageNet (DENG et al., 2009) to infer house prices. The authors compared the use
of features obtained from Deep ConvNets with known methods in housing price and
tested different zoom scales in satellite images, with several estimators, including linear
regression, random forest, and multilayer perceptron (MLP) regressors. The authors
found that house level attributes obtained from deep features, and neighborhood-level
features from housing price dataset are complementary to infer price variations. Fur-
thermore, the zoom level inspection in satellite imagery from Google Maps showed that
BENCY et al. (2017) proposed method benefits from larger neighborhood areas.

NAJJAR; KANEKO; MIYANAGA (2018) in “Crime Mapping from Satellite Imagery
via Deep Learning”, the authors propose the use of Deep ConvNets to generate maps
indicating urban crime rates using satellite imagery, obtained from Google Static Maps
APl (GOOGLE, 2018a) and crime occurrences from US cities Chicago, Denver and
San Francisco, collected from their police departments. The authors distributed the
crime occurrences inside a grid data structure, disposed of in the studied area, with
corresponding regions of 900m? each. Each cell received a safety score according to
the sum of crimes committed within its boundaries, a methodology similar to related

Shttps://www.eea.europa.eu/data-and-maps/data/urban-atlas
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works (ANDERSSON; BIRCK; ARAUJO, 2017). The labels of the crime rate were
categorized into three levels, according to k-means clustering. Images were collected
from Google API with different zoom levels, from 17 to 20, from cell center coordinates,
and used with AlexNet (KRIZHEVSKY; SUTSKEVER; HINTON, 2012) ConvNet archi-
tecture, pretrained with ImageNet (DENG et al., 2009) and Places205 (ZHOU et al.,
2018b) datasets, and different models were trained to test the performance of trans-
fer learning from different datasets and different zoom levels of satellite images. The
authors report as a result the accuracy of 0.79 using zoom levels of 17 and Places205
pretrained model.

Recently, “Poverty Incidence Identification of Cities and Municipalities using Con-
volutional Neural Network as Applied to Satellite Imagery” from MESINA; ISANAN;
MADERAZO (2019) presents the use of Deep ConvNets to classify the wealth of
developing countries through satellite imagery. In their work, authors use AlexNet
(KRIZHEVSKY; SUTSKEVER; HINTON, 2012) architecture to identify poverty levels
in municipalities of the Philippines using Google Earth (GOOGLE, 2018b) satellite im-
ages. Poverty ground truth data for municipalities was obtained from the Philippines’
economic and development authorities, and georeferenced coordinates of their bound-
aries obtained from GADM database*. The authors performed data augmentation in
100 original examples, obtaining a total of 72,000 images, and wealth index labels were
categorized in range of 10, i.e., 0 — 10, 11 — 20, until 41 and beyond, and changed the
fully-connected 1000 classifier layer from AlexNet to 5 classes. As a result, the authors
obtained an average accuracy of 0.84 in classifying wealth ranges.

In “Predicting Food Security Outcomes Using ConvNets for Satellite Tasking”, GAN-
GULI; DUNNMON; HAU (2019) proposed an ensemble of models to assist policy-
makers using food security metrics (FSM) in developing world countries. The first
model consists of a Deep ConvNet that predicts FSM from satellite images correspon-
dent to the studied regions, and the second model uses the resulting predicted values
as reward grids in a reinforcement search problem for automated satellite direction
modification algorithm. To predict FSM values from satellite images, authors trained
a VGG16 (SIMONYAN; ZISSERMAN, 2015) architecture with DeepSat (BASU et al.,
2015) dataset to classify satellite images with land types and use labels. Next, authors
extracted features from SustLab® images from the pretrained VGG16 network, and
built ridge regression models to predict FSM categories of values. Results obtained
for the authors’ models varied between 30.8% to 46.4% of test accuracy. Finally, the
resultant grid structure with FSM categories was used as a reward grid in a satellite
tasking problem. For more information on the subject, which is not addressed in this
work, see reference.

“https://gadm.org/
SProprietary dataset. Reference not provided by authors.
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2.3.3 Street-level and Aerial Fusion Models

In the Scene Analysis research field, related to Visual Computational Sociology,
models can benefit from the combined multi-view aerial and street-level images, in
tasks such as object detection, scene understanding, reconstruction, and classifica-
tion. According to LEFEVRE et al. (2017), the varying viewpoints, different scales,
illuminations, sensory modality, and possibly time acquisition from satellite and street-
level images, present a challenge for models that merge information from such different
domains. In this Subsection, related works that propose the use of aerial and street-
level images combined are presented.

WORKMAN et al. (2017), in “A Unified Model for Near and Remote Sensing” ad-
dresses the issue of fusing aerial and street-level images in a Deep ConvNet model
to predict latent variables, which authors denominate fusing “overhead” (aerial) and
“ground-level” (street-level) to obtain “geospatial functions”. For the ground-level fea-
ture images, authors use VGG16 (SIMONYAN; ZISSERMAN, 2015) architecture pre-
trained with Places (ZHOU et al., 2018b), with the resulting feature vector of 820 po-
sitions reduced to 50. The same architecture is used for overhead images, where
authors use only the convolutional layers and reduce the dimensionality of each out-
put. Next, the features are fused by average pooling the ground-level feature map with
kernel size 6 x 6 and stride 2 and concatenating it with the overhead feature on the 7th
VGG16 convolutional layer. To predict the latent variables (geospatial function) using
the ground-level and overhead concatenated feature maps, authors compute the hy-
percolumn (HARIHARAN et al., 2015) features for each H x W pixel location, which
consists of outputs of all convolutional units above that location, stacked in one vec-
tor. This hypercolumn feature is then fed to a multilayer perceptron (MLP) to classify
the categories of building, land use, and building age. The best results achieved were
77.40% of accuracy for land use classification.

In “Integrating Aerial and Street View Images for Urban Land Use Classification”,
CAO et al. (2018) presented approaches to merge street-level and aerial images us-
ing Deep ConvNets models to classify urban land use. The authors construct ground
feature maps using semantic features extracted from street-level images and interpo-
lating the features in the spatial domain, fusing street-level features, and aerial images
sources from different views. To obtain the ground feature maps, authors used a pre-
trained ResNet architecture (HE et al., 2016) with Places365 dataset (ZHOU et al.,
2018b) without the original classifier layer to extract feature vectors from the 4 cardi-
nal Google Street View images, concatenating each feature vector. Next, each se-
mantic feature vector in each point is interpolated to adjacent areas, using Nadaraya-
Watson regression with Gaussian kernel to construct the ground feature maps, the
same methodology presented in WORKMAN et al. (2017). To fuse the ground-level
feature maps and aerial images, and further classify urban land use, authors propose
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the use of an encoder-decoder based Deep ConvNet architecture, known as SegNet
(BADRINARAYANAN; KENDALL; CIPOLLA, 2017). Their strategy uses two encoders,
one for aerial images and other to the ground-level density maps, and fusion is per-
formed by concatenating each corresponding feature maps produced by each convo-
lutional layer using channel dimension. The authors’ strategy was to search for the
best convolutional layer to concatenate the ground-level and aerial features. As a re-
sult, they found that the central layer immediately before the 3rd. max-pooling layer
achieved the best performance, and the overall result of 78.1% of accuracy in land use
for Brooklyn, New York.

Moving from land use classification to more sociological perceptions, WANG et al.
(2018) in “Urban Perception of Commercial Activeness from Satellite Images and
Streetscapes” authors proposed the use of classic computer vision methods to predict
commercial activeness of urban districts. Commercial locations were obtained from a
Point-of-Interest dataset. Street-level images were obtained from Baidu API (BAIDU,
2019), while aerial imagery was obtained from Google Earth service (GOOGLE,
2018b). The proxy data for commercial activeness was defined as the sum of the
user-generated comments on commercial entities. Authors performed the feature ex-
traction of street-level and aerial images using HOGs (DALAL; TRIGGS, 2005), GISTs
(OLIVA; TORRALBA, 2001), autoencoders and multifractal spectra, and applied Bag-
of-Features (BoF) technique to obtain a histogram-based descriptor for the studied re-
gions, that group similar visual features in histogram bins. The BoF descriptor, created
from all feature extraction applied methods, is then used as predictors in a Support
Vector Regression algorithm with RBF kernel to infer real values of commercial active-
ness. Accuracy is measured by Mean Absolute Percentage Error (MAPE), and authors
achieved 59.83% to 60.17% of accuracy using all features combined.

In LAW; PAIGE; RUSSELL (2018), “Take a Look Around: Using Street View and
Satellite Images to Estimate House Prices” authors propose the use of satellite im-
age data and street-level images to improve the estimation of house pricing models,
called “hedonic® price models” in London, U.K.. They propose non-linear and linear
fusion methods of known housing attributes, e.g., age, size, and accessibility, as well
as visual features from Google Street View (GOOGLE, 2017) and Bing Aerial images
(MICROSOFT, 2019), used as proxies for visual desirability of neighborhoods. In their
models, house prices to be predicted were set on a logarithmic scale, and housing at-
tributes were normalized. Two main Deep ConvNets models were used to learn feature
extractors for street-level and aerial images with a hedonic price model, training the pro-
posed architecture end-to-end with a non-linear and linear fusion approach. In the non-
linear approach, features from housing numeric attributes vector are concatenated to
the vector-valued output of ConvNets from street-level and satellite images input. Next,

6Related to pleasant and unpleasant sensations.
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in this same model, the resultant feature vector is input into a fully-connected 2-layer
network with 60 and 30 nodes, respectively. The linear approach combines each Deep
ConvNet for street-level and satellite images as a single network, with a direct scalar
output, without non-linearity functions. The results reported by the authors shows that
models using hedonic and urban imagery features yielded the best predictions, and the
use of aerial images improves the prediction of models using street-level imagery. The
mean square error (MSE) reported by authors with the full model, i.e., with hedonic,
aerial and street-level features, was 0.08.

HOFFMANN et al. (2019) in “Model Fusion for Building Type Classification from
Aerial and Street View Images”, authors explore data fusion strategies for models that
use aerial and street-level imagery, for building type classification problems. They pro-
pose the use of two fusion approaches, one being a geometric-level model fusion,
and other a decision-level model fusion. In geometric-level approach, authors ex-
plore VGG (SIMONYAN; ZISSERMAN, 2015) architecture fine-tuned with /mageNet
(DENG et al., 2009) with different setups, by stacking two-stream from last convolu-
tional vector-values horizontally, and stacking the last dense layer vector-values verti-
cally. In decision-level model fusion, authors also explore Inception (SZEGEDY et al.,
2016) architecture fine-tuned with ImageNet and Places365 (ZHOU et al., 2018b), first
by blending decision layers from the independent models by taking the mean of their
softmax layer vector-value result, and next by stacking decision layers with an addi-
tional machine learning algorithm, through concatenating the resulting softmax vector.
For each building type annotation from Open Street Maps (OSM) (OpenStreetMap con-
tributors, 2017), authors collected aerial images from Bing Maps APl (MICROSOFT,
2019) with different zoom levels and street-level images from Google Street View
(GOOGLE, 2017) pointing to each building, covering a variety of US cities. As results,
authors found that better building type classification is achieved with fusion feature vec-
tors from dense layers, and decision-level models yielded the best results, when highly
detailed zoom level, e.g., 19, models are added to the ensemble, compared with mod-
els that contain only street-level imagery, achieving 76% of building type accuracy with
decision-level model.

In the recently published work “Google Street View Image of a House Predicts Car
Accident Risk of its Resident”, KITA; KIDZINSKI (2019) proposed a methodology to
predict car accidents using images of insurance company client houses, gather by
Google’s Street View (GOOGLE, 2017) and Static Maps API (GOOGLE, 2018a) ser-
vices. The authors investigated current models that used zip-code as one of the at-
tributes and showed that different house features could be found in the same zip-code.
For that, they process more than 20,000 addresses, manually annotating information
about physical aspects of client houses, such as age, type, condition, and wealth of
residents, from street-level images, and from aerial imagery they gather neighborhood
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type, building density and street quality. Next, they investigate the importance of the
created attributes for risk prediction models, comparing the state of the art insurance
model with the new street image attributes. Results reported by authors indicate that
the urban imagery derived attributes can be predictive of car accident risk, inexistent
models, independently of the use of consolidated variables. Authors are also the first
to address the issue of the indiscriminate and unauthorized use of street and aerial im-
agery data for social mining through deep convolutional neural networks and machine
learning, that could predict private aspects of the residents and house owners.

2.4 Dengue Fever Estimation Using Environmental Attributes

Satellite sensory data are commonly used to obtain environmental attributes as
predictors for estimation models of dengue, using regression analysis and machine
learning algorithms. Several works proposed the use of continental and ocean temper-
ature, relative humidity, vegetation indices, and cumulative precipitation, combined with
socioeconomic variables (BUCZAK et al., 2012, 2014; TEURLAIl et al., 2015; STOLER-
MAN; MAIA; KUTZ, 2016; ANGGRAENI et al., 2017; ASHBY et al., 2017; DEB et al.,
2017; GUO et al., 2017; LAUREANO-ROSARIO et al., 2017; LI et al., 2017; SCAV-
UZZO et al., 2017; LAUREANO-ROSARIO et al., 2018). According to the mentioned
authors, these attributes correlate with the increase or decrease of dengue incidence
in a region and can be measured by remote sensing, usually performed by satellite.
Working with a wide area, without differentiation of localities, is one of the problems
with models that use satellite sensory data because they do not carry out fine-scale
evaluations or focus on specific sites where the mosquito reproduces and lives, which
contribute to its proliferation. This impairs actions to combat mosquitoes and disease
prevention, as it ignores high-granularity aspects present in neighborhoods, streets,
and homes.

Previous works on health behavior associated with urban characteristics investi-
gated US Census Bureau building information. They manually collected attributes as
predictors of sexually transmitted diseases (STD), premature mortality, body mass in-
dex (BMI), depression and mental health, and vector related infectious diseases such
as dengue fever. Previous to computer vision models, urban visual characteristics
to be used as predictors were obtained through manual inspection and classification
on-site, or through video resources, as ad hoc research or for census data collection
purposes. Notable works with such methodology are “Broken Windows and the Risk
of Gonorrhea” COHEN et al. (2000), “Neighborhood Physical Conditions and Health”
(COHEN et al., 2003) for STDs and premature mortality, mental health and depres-
sion in “Stressful Neighborhoods and Depression: A Prospective Study of the Impact
of Neighborhood Disorder” (LATKIN; CURRY, 2003) and “Relation between neighbor-
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hood environments and obesity in the multi-ethnic study of atherosclerosis” (MUJAHID
et al., 2008) for BMI and environment association. Works involving the investigation
of physical environmental characteristics related to the incidence of dengue fever are
described next.

The need for a more specific view of propitious sites for dengue vectors to breed and
live has prompted researchers to investigate environment attributes at the neighbor-
hood, street, and residence levels. In “Environmental factors and incidence of dengue
fever and dengue hemorrhagic fever in an urban area, Southern Thailand”, THAMMA-
PALO et al. (2008) investigated with exclusively manual techniques of data collection,
from on-site visits of health agents to localities, urban factors that could correlate with
the incidence of dengue in Songkhla county, southern Thailand. As possible attributes,
the authors manually collected data on characteristics of the buildings, such as type,
social function, and the presence or absence of appropriate water distribution, sewage,
and garbage collection systems. As a result, high correlations were found between in-
dices of dengue and houses built with bricks, stores interconnected with air passage
wells, and the absence of an appropriate garbage collection system.

In “Using geographically weighted regression (GWR) to explore varying spatial rela-
tionships of immature mosquitoes and human densities with the incidence of dengue”
(LIN; WEN, 2011), the authors propose a predictive model of dengue incidence us-
ing demographic density in Kaohsiung and Fengshan cities, Taiwan and Aedes vector
larval density indexes by inhabitants of the region Breteau Index which estimates the
density of Aedes mosquitoes per 100 houses or dwellings in the vicinity. The data
was collected manually, from visits of health agents in the neighborhoods and places
studied, trained to collect data. The authors used Ordinary Least Squares (OLS) and
GWR regression models to analyze the correlation between the chosen attributes and
the dengue indices of the regions. As a result, the authors explained that high rates
of dengue were associated with high rates of Aedes densities by residents in some
regions. However, in other areas, high rates of dengue were correlated with low Aedes
indices, by residents, leaving the study inconclusive.

In “Modeling dengue fever risk based on socioeconomic parameters, nationality and
age groups: GIS and remote sensing-based case study” (KHORMI; KUMAR, 2011),
the authors investigated the relationships between the quality of the neighborhoods,
population, and risk of dengue incidence in Jeddah, Saudi Arabia, using urban satellite
imagery. To classify the quality of the city’s neighborhoods as “low” or “high”, the au-
thors analyzed the images manually according to empirical criteria of the region, mea-
suring the width of the streets, the density of houses by area, and the roof area per
house. They used Geographically Weighted Regression (GWS) to estimate dengue
risk, using the total number of dengue cases in each district of Jeddah. The population
in each district and the environmental attributes that characterize the neighborhoods
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were set as predictors. As a result, the model proposed by the authors revealed that
there were strong positive associations between the attributes of population density
and quality of the neighborhoods and the probability of contamination with dengue.
Districts with low quality, according to their criteria, had a 71% risk of contamination
with dengue compared to high-quality ones. In addition, low population densities indi-
cated a low risk of dengue outbreaks in the region.

Subsequently, in “Near real-time characterization of urban environments: a holistic
approach for monitoring dengue fever risk areas”, SARFRAZ; TRIPATHI; KITAMOTO
(2014) proposed a method to classify land-use types to investigate the incidence of
dengue in Phitsanulok Province, Thailand, using urban satellite images of the Google
Earth services (GOOGLE, 2018b). The authors extracted buildings from satellite im-
agery using pixel-based image sorting techniques. Attributes related to land use were
obtained through spatial analysis. As a result, the authors showed that the majority of
dengue cases were found near irregular, compact, and dense buildings, located near
roads, surrounded by dense vegetation. Buildings in low-density housing, with bare
soil and medium vegetation, had low rates of dengue.

In “Assessment of land use factors associated with dengue cases in Malaysia using
boosted regression trees” (CHEONG; LEITAO; LAKES, 2014), the authors used satel-
lite imagery to study the relationships between land use characteristics and dengue
fever occurrences focusing on large areas. They used land features manually cata-
loged through on-site field trips, such as agricultural land use, water bodies, and the
presence of forests as environmental predictors. Through Boosted Regression Trees
(BRT) models, the authors showed that human settlements and water bodies land fac-
tors contributed the most for dengue risk prediction.

2.4.1 Dengue Assessment With Computer Vision and Urban Imagery

Recently, authors have used computer vision techniques and urban aerial pho-
tographs obtained by unnamed aerial vehicles (UAV) devices or “drones” to assist in
the classification of attributes that influence the occurrence of dengue. In “Supple-
menting Dengue via the Drone System” (AMARASINGHE et al., 2017; SUDUWELLA
et al., 2017), the authors used aerial photographs obtained by UAVs with Histogram
of Oriented Gradients (HOG) descriptors (DALAL; TRIGGS, 2005) and Support Vec-
tor Machines (SVM) for learning and classifying areas with water. In this work, the
authors propose the detection of possible areas with water retention using images ob-
tained with the UAV flying over specific sites indicated by health agents in Sri Lanka
provinces.

Similar methodology is presented in CASE (2017) master thesis, “Mosquitonet: In-
vestigating the Use of Unmanned Aerial Vehicles and Neural Networks for Integrated
Mosquito Management’, where the author proposes the use of Deep Convolutional
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Neural Networks (Deep ConvNets) to classify the presence of Aedes Albopictus and
objects related to their presence, using aerial images obtained from UAV devices, in
New York City, USA. Common backyard objects, e.g., containers, umbrellas, and flower
pots, were previously manually mapped, together with the occurrence of A. Albopictus,
and used as ground truth data. Among other object-related experiments, a Deep Con-
vNet of VGG16 (SIMONYAN; ZISSERMAN, 2015) architecture was used, pretrained
with ImageNet (DENG et al., 2009), to the binary classification of presence or not of A.
Albopictus. The small samples for the positive or negative presence of the mosquitoes
foreclose an accuracy report in results, but the author claims that the Deep ConvNet
activations showed objects in images similar to the manually collected for classifying a
household.

Motivated by the need to obtain fine-scale street-level data in places where access
and retrieval is difficult, in “A ubiquitous method for street scale spatial data collection
and analysis in challenging urban environments: mapping health risks using spatial
video in Petit-Goave, Haiti”’, CURTIS et al. (2013) proposed a method of obtaining spa-
tial data at the street and residential level using video, named Spatial Video, with the
objective of collecting information present on this scale, including places with standing
water, garbage accumulation, presence of animals, specific characteristics of the local
population and other cultural phenomena. Health experts then review these videos,
and features of interest to the sites are detected by those experts and manually geo-
referenced for future analysis of the disease on the spot.

Subsequently, in “Supporting local health decision making with spatial video:
Dengue, Chikungunya and Zika risks in a data-poor, informal community in Nicaragua”
CURTIS et al. (2017) applied the Spatial Video technique to identify street-level at-
tributes to map possible Aedes mosquito breeding sites where agents execute Spa-
tial Video in different streets to produce risk maps of diseases caused by the same
mosquito, using the same Spatial Video technique, (KRYSTOSIK et al., 2017) add the
"geonarratives", where health agents accompany the vehicle performing the Spatial
Video narrating the attributes of interest, e.g., accumulation of trash, floods, residences
with no proper conditions, which are found in the streets and monitored neighborhoods.
These narratives are peer-reviewed and manually georeferenced for future risk map-
ping of mosquito-borne diseases and lack of sanitary conditions.

Spatial Video techniques and geonarratives manually obtain the attributes of inter-
est in places where aerial photographs and satellite images are not reachable. These
attributes are obtained manually from the review and investigation by a specialist. The
automation of this process of obtaining attributes has been recently researched through
the application of computer vision techniques. In “Study of CNN Based Classifica-
tion for Small Specific Datasets”, LE et al. (2018) proposed, to aid in the mapping of
dengue, the automatic detection and classification of attributes of interest e.g., accu-
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mulated litter, puddles, and pagoda constructions into images using ConvNets. The
work of LE et al. (2018) detects and classifies attributes for dengue mapping, and is
not a predictive model of dengue.

Until the published works of ANDERSSON; BIRCK; ARAUJO (2018); ANDERS-
SON; CECHINEL; ARAUJO (2019), no related work has been found that automatically
detects attributes in street-level urban images and satellite imagery and also performs
dengue rates estimation using computer vision techniques and machine learning.



3 HYPOTHESES

3.1

General Objective

The general objective of this Thesis is to use street-level image domain in conjunc-
tion with aerial imagery to estimate dengue incidence rates in urban regions.

3.2

Enrolled Hypotheses

The following specific hypotheses are proposed for the present Thesis:

H. 1. Using street-level urban imagery is as effective as using urban satellite
imagery for estimating dengue-associated rates.

H. 2. The combination of street-level and urban aerial imagery contributes to bet-
ter results in estimating dengue-associated indices compared to the independent
use of each image domain.

H. 3. Dengue estimation models trained in a single city are able to generalize
estimation to other cities.

H. 4. It is possible to extract, from the models that use street-level and aerial im-
ages data, informative attributes for dengue prevention not yet explored in urban
areas that correlate with the occurrence of dengue.

H. 5. Deep Convolutional Neural Networks (Deep ConvNet) are suitable for use
in the proposed models because they can learn and extract attributes from urban
images, and estimate dengue-associated rates using these attributes.



4 METHODOLOGY

4.1 Data Collection, Pre-processing and Description

4.1.1 Dengue Fever Data

The main city chosen for the investigation and implementation of the proposed ap-
proaches, in the present Thesis, was Rio de Janeiro, located in the southeast region of
Brazil. Two more Brazilian capitals that appear in the Rapid Survey of Aedes aegypti
Infestation Indexes (LIRAa) performed in 2017 (Ministry of Health, 2017) were also
chosen for testing hypotheses and additional experiments, being Sao Paulo, capital
from the southeastern state of Sdo Paulo, and Salvador, capital from the northeastern
state of Bahia. The locations of the chosen cities are depicted in Figure 2, in the details
(a) and (b) over the Brazilian territory.

In Brazil, dengue fever (DF) notification records are maintained through the SINAN
(Notification of Grievance Information System) database system, managed by the
Health Surveillance Secretariat, of the Brazilian Ministry of Health. In general, dengue
fever records from SINAN datasets contain information about grievance collected by
health field agents at the site of infection through a questionnaire conducted with
the possibly affected individuals. Common fields are the type of grievance, investi-
gation start date, personal information about the patient such as residence address,
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Figure 2 — Depiction of the geographic location of the Brazilian studied regions: in (a)
Rio de Janeiro and Sao Paulo; and (b) Salvador.
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Table 3 — Total dengue cases, autochthonous dengue cases and used records, for
each studied city in the given year range.

City Total Autochthonous Used Year Range

Rio de Janeiro 226,478 226,478 226,478 2010 -2014
Sé&o Paulo 58,156 43,048 42,445 2015-2017
Salvador 10,856 1,615 1,331 2015- 2017

the serotype of dengue virus, autochthonous flag, i.e., cases where individuals were
infected in the place they inhabit, and final classification (SUS, 2018).

For Rio de Janeiro city, SINAN’s autochthonous dengue notification cases between
the years 2010 and 2014 were obtained through the city’s data portal “Datario”. From
this data, all cases were pre-processed by the Municipal Secretariat of Health, con-
verting the occurrence addresses as georeferenced data, with latitude and longitude
coordinates (DATARIO, 2017; SMS-RIO, 2017).

The SINAN’s dengue notification cases for Sdo Paulo and Salvador, between the
years 2015 and 2017, were requested through the Electronic System Of Citizen In-
formation Service (e-SIC) to the Brazilian Ministry of Health (CGU, 2017). Original
records contain reported occurrence nominal addresses, and were converted to lat-
itude and longitude coordinates using Google Geocoding APl (GOOGLE, 2019a) for
the proper use in this work. Some addresses could not be geographically resolved,
therefore some autochthonous occurrences were not included in the final datasets.

For all cities, only the autochthonous cases were used, allowing the site of infection
to be obtained more accurately from the available data. Rio de Janeiro city contains the
majority of dengue fever reported cases, followed by Sdo Paulo and Salvador. Table 3
enumerates total cases of dengue in each studied city, the number of autochthonous
cases, and cases used between the year range of occurrences. The geographic dis-
tribution of the dengue fever autochthonous cases, in the given years’ range, for each
studied city, is depicted in Figure 3.

- Autochthonous Dengue Cases

l:l Studied Cities: (a) Rio de Janeiro, (b) Sao Paulo, (c) Salvador

l:l Brazilian Territory - Water Bodies

Figure 3 — Geographic distribution of autochthonous dengue cases in studied cities,
between 2010 to 2014 for Rio de Janeiro, and 2015 to 2017 for S&o Paulo and Salvador.
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4.1.2 Street-level and Satellite Data Imagery
4.1.2.1 Urban environment coverage

In order to obtain uniform coverage of the studied territories with urban images
from Rio de Janeiro, Sdo Paulo, and Salvador, Environmental System Research Insti-
tute (ESRI) shapefiles containing the shape of the streets were collected using Open-
StreetMaps Hot Export Tool services (OpenStreetMap, 2018). The shapefiles contains
geometry and attribute information related to spatial elements stored as a set of vector
coordinates in a dataset (ESRI, 1998). They represent the roads and paths in cities
with points, lines and polygons that shape the streets and their boundaries, i.e., the
city limits, as depicted in Figure 4(a), with two-dimensional (2D) vertices composing
the streets in Figure 4(b).

Preprocessing of shapefiles was performed using the QGIS tool to clip vectors out-
side city boundaries and to select only elements relative to paths and roads (QGIS
Development Team, 2009). Next, all 2D vertices of street lines and polygons were
transformed into latitude and longitude coordinates. From this georeferenced vertices,
new points between them were created, using the haversine distance Equation 3,

a = sin®(op — p4/2) + cos py * cospp * sin*(Ag — Aa/2)0 (3a)
¢ =2xatan2(y/(a), /(1 — a)) (3b)
d=Rxc (3c)

if the distance d satisfies the condition d > 100m, with A(p4, A4) and B(gg, Ag) the
original vertices from which the distance will be calculated, with ¢ the latitude and A
the longitude of each point respectively, and R = 6378.137 the equatorial radius of the
earth in kilometers (GEONET, 2017; NASA.GQOV, 2019).

(a)

Figure 4 — (a) Rio de Janeiro streets’ shape, with the detail of 2D vertices in (b) com-
posing the streets.
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Table 4 — The number of georeferenced points computed for each studied city, covering
all urban roads and paths in the territory.

Rio de Janeiro S&o Paulo Salvador
Total City Points 407,305 576,556 112,146

The interpolated points created from the difference of vertices are depicted in Fig-
ure 5. Thereon, a dataset of georeferenced points, containing latitude and longitude
coordinates for all segments of roads and paths of the urban mesh was created for
each studied city, with total computed points enumerated in Table 4. All conversions
and haversine distance computing were implemented with Python Matplotlib Basemap
library (HUNTER, 2007).

4.1.2.2 Obtaining Aerial and Street-level imagery

Each city dataset that contains georeferenced points, composing the urban shape,
created following the methodology described in Section 4.1.2.1, was used to gather
urban imagery correspondent to each location point, to create a representative urban
imagery dataset that covers most of the territory of each city. To achieve this, the
Google Street View and Static Maps (GOOGLE, 2017, 2018a) services were used to
request RGB images for each location point, for street-level and aerial images respec-
tively.

With Google Street View API, four requests were made per georeferenced point for
Rio de Janeiro, Sdo Paulo, and Salvador cities, corresponding to the cardinal directions
of north, east, south, and west. The Street View API takes the parameter heading set
in the queries as S = {0,90, 180,270} as the cardinal directions, respectively. Other
parameters set were size = 640 x 640 for each image, and pitch = —0.76 that specifies
the amount of “up” or “down” from the angle of the camera. In Google Static Maps
API, requests were made per georeferenced point, with parameter center set to the
point’s latitude and longitude values, zoom, that sets the level of “enhance” of the map,
being detail values of “Buildings” equal to A = {19, 20, 21, 22}. All aerial images were

+ - Original shapefile vertices

1 -Imerpolaledpolnls
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Figure 5 — Original and interpolated latitude and longitude points, originally from shape-
files, covering the city and forming the street mesh.
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requested to have a resolution of 640 x 640. Figure 6 depicts the use of Street View
and Static Maps APls to request the four street-level images and four zoom level aerial
images for each georeferenced point that compose the street’s shape.

Although all the points in datasets are geographically valid, not all of them have valid
street-level or aerial images, for all camera and zoom levels or only some of them. The
output of invalid requests, i.e., geographic localities that Street View or Static Maps
APIs cannot return any image, are gray images displaying an error message at the
center, and their resulting files are less 17kb each. Image files in which the size was less
or equal 17kb were filtered and set as unavailable for street-level and aerial domains.
The location points of incomplete or unavailable images were set as not usable for the
study if one or more camera views were missing, or one of zoom = 19,20, 21 values
unavailable for aerial images.

Until the present date, requests for images from specific date and year are not
supported by both Street View and Static Maps Google APIs. In order to verify the year
of the street-level and aerial downloaded images, a random sample of 10 points was
selected for each city. Next, the year of the images from the corresponding geographic
points was obtained through manually comparing the images available in Google Street
View and Google Earth services with the downloaded images using the time machine
tool. Figure 7 shows the resulting years for the samples in each city. The street-level
and aerial images were gathered using APIls between years of 2016 to 2018, and a
small portion of points of Rio the Janeiro had their imagery requested in 2019, due to
the unavailability of images at the time of the first request.

A temporary street-level and aerial imagery datasets were built using the previously
described methodology for the experiments of this present Thesis, for each city, totaling
256, 380 valid points for Rio de Janeiro, 281,444 valid points for Sdo Paulo and 86, 455
valid points for Salvador. Table 5 summarizes the total valid points, street-level, and
aerial images that resulted after filtering invalid and missing images. Figure 8 depicts
some collected image examples from Rio de Janeiro, Sdo Paulo, and Salvador cities of

-22.914159731246905, -43.25068801678944

Google Street View API ,‘J:

$=1{0, 90, 180, 270 }

Google Static Maps API }—

= = TR
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Ve A={19,20,21,22}

Figure 6 — Example of requests made to obtain street-level and aerial imagery from
Google services, using the latitude and longitude location points from shapefiles.
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Table 5 — Summary of valid points and total aerial and street-level images available for
the study in each city.

City Valid points ~ Street-level images  Aerial images
Rio de Janeiro 256,380 1,025,520 1,025,520
Séo Paulo 281,444 1,125,776 1,125,776
Salvador 86,455 345,820 345,820

street-view and aerial domains, with an example of invalid requests returning no image
from a specific zoom level from a geographic point in Figure 8(f).

4.1.3 Dataset labeling methodology

In order to relate the georeferenced points that compose the streets shape with the
distribution of dengue fever rates in the studied territories, a grid-like data structure
was implemented following a methodology in criminology and crime prediction known
as Quadrat thematic mapping, where a count of crimes or a calculated density value
can be assigned to the area covered by the cell (BOWERS; JOHNSON; PEASE, 2004;
ECK et al., 2005; CHAINEY; TOMPSON; UHLIG, 2008; ROSSER et al., 2016).

The developed grid structure divides the territory into equally spaced cells with a
given resolution, delimited by arbitrary lower and upper-latitude and longitude corner
coordinates, with an independent instance for each city. Their line and column coordi-
nate index access each cell, and each cell can be assigned as being inside the territory
polygon or not. This structure provides latent variables with georeferenced points to be
distributed between the cells, allowing for a rate of incidence of the variable for each
grid cell region to be calculated as the sum of all occurrences found inside the cell. As
well as the latent variables, all georeferenced street points can be distributed between
each cell. When a georeferenced street point is associated with a cell, i.e., it lies inside
that cell, the street point is labeled with the corresponding total latent variable of that
cell. Thus, each street point is associated with a variable occurrence rate defined by
its surroundings, limited by the defined cell size.

[ Rio de Janeiro
I Sao Paulo
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Year of Images

Figure 7 — The year of the original capture of street-level and aerial imagery found in a
random sample of 10 georeferenced points for each city.
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(a) Street-level from Rio (b) Aerial from Rio de Janeiro
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(e) Street-level from Salvador (f) Aerial from Salvador

Figure 8 — Street-level and aerial imagery samples from the studied cities. Columns left
to right from street-level are 0 (north), 90 (east), 180 (south), and 270 (west) cardinal
directions. For aerial, left to right images depicts zoom levels equals to 19, 20, 21, and
22. In (f), an example of unavailable aerial images for zoom = 22.
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Figure 9 illustrate an example of grid structure instance over Rio de Janeiro, with a
resolution of 80 x 80. Each cell is indexed by their (line, column) and contains informa-
tion about their boundaries, such as latitude and longitude corner coordinates. Each
latent variable with geographic coordinates is distributed between the cells, and the as-
signed label of that cell is the total amount of their occurrences inside the cell. Similar
to the latent variables, street georeferenced points were also distributed between the
cells and label according to the cell total variable value.

Following the methodology described, a grid data structure of size 80 x 80 was in-
stantiated for each studied city, dividing the territories into equally spaced cells, limited
by a provided lower and upper latitude and longitudes that comprehend the adminis-
trative limits of the cities selected using the Google Maps service (GOOGLE, 2019b).
Each dengue fever georeferenced point in the dengue occurrences datasets was dis-
tributed between the cells, with the sum of all dengue occurrences found inside the
cell assigned as the label of that cell. Similarly to the dengue fever occurrences, each
street location point was distributed among the cells whose position corresponded to
and were labeled with the dengue value associated with that cell.

The application of the grid structure provides a blocky hot-spot map of dengue fever
occurrences, as depicted in Figures 10(a), 11(a) and 12(a), showing the distribution of
dengue rates over the administrative limits of Rio de Janeiro, Sdo Paulo and Salvador.
Since the methodology goal is to relate dengue rates with urban areas represented by
street points, only cells that contained georeferenced street points were used, and cells
that covered areas such as lakes and forests without streets or roads were removed
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Figure 9 — A grid data structure with size 80 x 80 over Rio de Janeiro territory. Each
cell can be accessed by their (line, column) coordinates and are labeled according to
the total latent variable found inside their boundaries. All streets points are labeled
according to their cell’s labels.
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from the map. Each distribution varies from 0, i.e., no dengue occurrences, to a max-
imum of total dengue cases per cell. Shades of blue are used to denote low values
of notifications in the area; shades of green and orange represent average incidence
rates and higher rates by shades of red. Very high incidence rates in Rio de Janeiro
were highlighted using shades of magenta.

For each hot-spot map, a histogram of the data presents the total number of cells
per dengue occurrences intervals, depicted in in Figures 10(b), 11(b) and 12(b). It
is noticeable that the vast majority of values fall in low and medium rates, with few
cells showing high and very high dengue rates. Figures 10(c), 11(c) and 12(c) shows
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Figure 10 — (a) The 80 x 80 grid data structure with dengue fever notification cases
in Rio de Janeiro. (b) Histogram depicting the distribution of total occurrences by cell,
in absolute values. (c) The total number of street location points regarding the total
dengue occurrences distribution.
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Table 6 — Dengue fever distribution statistics for each city grid structure.

Statistics x City Rio de Janeiro Sao Paulo Salvador
Maximum Dengue Value 1,280 404 80
Mean Dengue Distribution 83.63 16.83 1.23

Std. Deviation 128.9 32.3 5.92
10% Maximum Dengue Value 128.0 40.4 8.0

the distribution of streets regarding the total dengue occurrences per cell distribution,
showing a similar relation between the number of street points and dengue occurrences
labels.

Parameters used for creating the 80 x 80 grid structures for Rio de Janeiro, Sao
Paulo and Salvador are summarized in Appendix A. Finally, Table 6 summarizes the
dengue occurrences in each structure and overall statistics for each dengue distribution
per cell.
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Figure 11 — (a) The 80 x 80 grid data structure with dengue fever notification cases
in Sao Paulo. (b) Histogram depicting the distribution of total occurrences by cell,
in absolute values. (c) The total number of street location points regarding the total
dengue occurrences distribution.
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4.2 Problem Formulation

In the present Thesis, the problem of estimating dengue fever rates from urban im-
agery is proposed as a regression problem, where a model receives as input images
from specific geographic locations and predicts a dengue fever rate corresponding to
a real positive number or zero. The approach chosen was regression because in pre-
vious methodological steps, the results from the categorization of latent variables over
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Figure 12 — (a) The 80 x 80 grid data structure with dengue fever notification cases in
Salvador. (b) Histogram depicting the distribution of total occurrences by cell, in abso-
lute values. (c) The total number of street location points regarding the total dengue
occurrences distribution.
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the territory, with “low” and “high” labels using classification, presented in ANDERS-
SON; BIRCK; ARAUJO (2017), does not yield significant gains to the model’s perfor-
mance. Similarly, the normalization of values was proposed in ANDERSSON; BIRCK;
ARAUJO (2018), where it was concluded that using this approach presents a problem
to infer values from cities whose dengue distribution is different or unknown.

From the presented regression problem, given a set of m location points L =
{(lat,lon,Y),} 7>, associated with a dengue incidence rate value Y = {y.}7,,y €
IR | y > 0, being a set of aerial images X = {z(i,j)x}7-, and a set of street-level
images X*® = {[z°(i,j)1, ..., 2°(4, j)ar } ., cOrrespondent to each point L, the proposed
approaches takes the relation set D = {(X“, X*, L)} = {(X“, X*,Y),} and learns the
functions A, S and F in Equations 4, 5 and 6 respectively, parameterized by a set of
weights Wa, s, f1,

A(XT) = A(W,, X (4)
S(X*) = S(Ws, X?) (5)
F(X* X*) = F(W;, A(W,, X%), S(W,, X*)) (6)

where A(X®) = Y*, S(X*) = Y* and F(X* X*) = Y, that satisfies | Y — Y% |= 0
and | Y — Y |= 0 for the maximum number of location points in L.

Figure 13 shows the proposed conceptual models for A (Eq. 4), S (Eq. 5) and F
(Eq. 6) functions to estimate dengue rates Y from location points L using aerial urban
imagery X® and street-level imagery X°.

4.3 Proposed Models

In order to satisfy the problem of estimating dengue incidence values given a set
of urban images from location points, presented in Section 4.2, Equations 4-6, it is
proposed in the present work the general approach depicted in Figure 14.

The overall model is composed of a feature extraction layer and a regression layer.
The feature extraction layer is responsible for obtaining attributes from image data to be
processed as input in learning algorithms. The regression layer is a multiple regression
estimator that uses the image features as predictors of dengue incidence rates. In this
work, two types of models were investigated: (i) Deep Convolutional Neural Network
(Deep ConvNet) as feature extractors, with fully-connected neural networks as multi-
ple regression estimators, and (ii) designed descriptors in the feature extraction layer,
together with fully-connected neural networks as multiple regression estimator. The
models with designed descriptors represent a basic model concept for the proposed
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problem and were built in order to compare the ability of dense features and designed
descriptors as predictors for dengue rate estimates. The next Sections 4.3.1 and 4.3.2
describes the methodology involved in obtaining such models.
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Figure 13 — Conceptual models for the presented problem of, given a set of urban im-
ages, Iparn a function capable of returning a real positive number or zero that satisfies
| Y — Y |= 0 for a maximum number of locations.
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. Estimated
rate

Neural
Networks
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Figure 14 — Overall model for estimating dengue incidence values from urban images.



60

4.3.1 Baseline Models

Architectures composed of GISTs and HOGs descriptors (Sections 2.1.1 and 2.1.2)
were proposed to evaluate the ability of designed descriptors in provide sufficient char-
acteristics for the problem. These designed descriptors were placed in the feature
extraction layer with fully-connected neural networks as multiple regressors. These
models are presented to estimate dengue fever occurrences from images of a given
geographic location point. Those models are a representation of a straight forward ap-
proach, where HOGs are used as global feature descriptors, providing a single feature
vector from the original image to be input in the regression model.

The proposed baseline models for aerial images are: (l) a single layer neural net-
work linear regressor with an aerial HOG descriptor as input, and alternatively a GIST
descriptor, named “Aerial HOG/GIST-LR”, and (IlI) a fully-connected neural network
model named “Aerial HOG” as multiple regressors. For street-level images, it is pro-
posed, as baseline models, a (lll) single-layer neural network as a linear regressor
for HOG feature inputs “Street HOG-LR” and (V) a fully-connected neural network as
multiple regressors named Street HOG-NN. The next paragraphs present each model
for estimating dengue rates from aerial and street-level images.

l. Aerial-HOG/GIST-LR. This model, depicted in Figure 15a, use the designed de-
scriptor HOG and a fully-connected layer for multiple linear regression, composed of
one fully-connected layer, with the input of same feature size and the output with one
node, to retrieve a real positive number or zero. In this approach, HOG features were
calculated using 8 orientation directions, a block of the size of 2 x 2, and resolution
of cell equal to 12 x 12 in aerial images resized to 224 x 224 x 3, resulting in a fea-
ture vector of 9248 positions. Alternatively, a multiple linear regression using a GIST
descriptor, depicted in Figure 15b, is proposed, computed with 8 x 8 orientations per
scale, sampled at 4 x 4 spatial locations, resulting in a feature vector of 960 positions.

Il. Aerial HOG-NN. Figure 16 depicts the use of a designed descriptor HOG and a
Neural Network composed of fully-connected layers for multiple regression. The HOG
descriptors were calculated using 8 orientation directions, a block of size 2 x 2, and
resolution of cell 12 x 12 in aerial images with resolution 224 x 224 x 3, similar to Aerial-
HOG-LR model. This network is built with four FC layers, including the output, being
each layer output half the size of the previous layer, together with ReLU activation units,
to output one real positive value or zero.

lll. Street HOG-LR. Figure 17 presents the basic approach of HOG designed de-
scriptors from street-level images as predictors of a linear regression model. The model
is composed of the feature vectors calculated using 8 orientation directions, block size
of 2 x 2 cells, and cell resolution equal 12 x 12 in images with resolution 112 x 112 x 3.
The features from camera directions 0 and 90 are combined through the mean average
of each feature vector position, the same way that features from camera views of 180
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and 270. Each combined feature results in the same size vector. Next, the feature
vectors of 2,048 positions are concatenated in a 4,096 feature vector (FV Input) to be

input in a single fully-connected layer (FC1) to predict a real positive number or zero
as output.

IV. Street HOG-NN. Figure 18 depicts the second baseline model to apply in street-
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Figure 15 — Baseline Aerial-HOG/GIST-LR: HOG (a) and GIST (b) features are input in

a linear regressor built with a fully-connected (FC1) layer with one node for output real
positive number or zero as output.
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Figure 16 — Baseline Aerial HOG-NN proposed model for estimating dengue fever

rates from aerial images using HOG designed descriptors and a fully-connected neural
network.
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level images, with a neural network as multiple regressor. This model follows the latter
approach, in which the HOG feature vectors are calculated using 8 orientation direc-
tions, block size of 2 x 2 cells, and cell resolution equal 12 x 12 in images with increased
resolution of 224 x 224 x 3. Here, each feature vector of 9, 248 positions are averaged to
compose a same size 9, 248 feature vector input (FV Input). Next, the neural network
follows four fully-connected layers (FC) of 4,624, 2,312, 1, 156 and 1 nodes, respectively,
and ReLu activation units to output a real positive number or zero.
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Figure 17 — Baseline Street HOG-LR basic model for estimating dengue fever rates
from street-level images using HOG designed descriptors and a single fully-connected
layer.
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Figure 18 — Baseline Street HOG-NN proposed model for estimating dengue fever
rates from street-level images using HOG designed descriptors and a fully-connected

neural network.
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4.3.2 Deep Convolutional Neural Network Models

To estimate dengue rates from aerial and street-level images using a Deep Convo-
lutional Neural Networks (Deep ConvNets) (Section 2.2) in the feature extraction layer,
it is proposed in this work the use of image features obtained from DenseNet (HUANG
et al., 2017) architecture, specifically the DenseNet 161 implementation. These fea-
tures are extracted by the networks, using transfer-learning techniques or training with-
out initialization, and their feature outputs are used in fully-connected neural networks
as predictors to estimate dengue rates. In what follows, we detail each of the three
models: (l) “Sat”, which uses aerial images as input; (Il) “Street”, which uses four
cardinal street-level images as input; (lll) “StreetSat”, which combines both aerial and
street-level images.

I. Sat. The Sat Neural Network using DenseNet-161 feature learning layers, re-
placing the original classifier block with an fully-connected neural network as multiple
regression estimator, connecting the output feature vector of 2, 208 positions with four
fully-connected (FC) layer including the output. Each FC1 to FC3 layers has its output
with half the size of their input, and ReLU activation functions placed in the outputs
of each layer. The last layer has one output node, to return zero or non-negative real
number values, as depicted in Figure 19.

Il. Street. The Street model, depicted in Figure 20, was built to estimate real pos-
itive numbers or zero from street-level images at a specific location, using as feature
extractor the outputs of DenseNet161 pretrained with Places365 (ZHOU et al., 2018b)
dataset, identified as DenseNet161-Places. The output feature vectors are obtained
from the set of dense blocks followed by the last BatchNorm layer “Norm5” and an Av-
erage Pooling 2D operation, that compose the feature learning layers. The street-level
dense features obtained from the DenseNet161-Places feature extractor, as depicted
in 20, have 2,208 positions, which are concatenated to form a 8,832 feature vector.
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Figure 19 — Sat Neural Network to estimate real positive values or zero from aerial
images.
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Next, the input features (FV input) are feeded to a multiple regression estimator com-
posed of four fully-connected layers (FCs and Output). Each FC1 to FC3 layer has
the output half the size of their input, and the last layer with one node output, to return
a real value positive number or zero. Activation functions of type RelLU are placed in
each output layer.

lll. StreetSat. To evaluate the use of aerial and street-level image features as
complementary estimators, it is proposed the StreetSat model to estimate real pos-
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Figure 20 — Street Neural Network to estimate real positive values or zero from street-
level images.
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itive value numbers or zero from aerial and street-level images, depicted in Figure
21. The network uses aerial dense features obtained from DenseNet161 pretrained
within the Sat model (Subsection 4.3.2.1.), identified as the feature extraction block
DenseNet161-Sat, and street-level dense features, obtained from DenseNet161 pre-
trained with pretrained with Places365 dataset (DenseNet161-Places). All features
are extracted from the DenseNet networks with the same feature extraction method-
ology explained in Street model (Subsection 4.3.2.11.), which of it having a vector size
of 2,208 positions. Each dense feature vector (FV Input) is input to a fully-connected
(FC1) layer with output of 1000 nodes, equipped with a 1 dimension batch normaliza-
tion (BatchNorm) layer and ReLu activation units, and an output fully-connected (FC2)
with one output node. Next, the FC2 outputs for each image are concatenated in a 5 di-
mension feature vector (FV CAT) and then input to the final output node of the network,
with one node to estimate zero or non-negative real number values.

4.4 Evaluation Methods

4.4.1 Training and Test methodologies

To compose train and test sets for evaluation of the proposed models, the hold-out
validation set (HASTIE; TIBSHIRANI; FRIEDMAN, 2008; NG, 2018) technique was
used, consisting of randomly dividing the available dataset in three parts: the training
set, the validation (or development) set, and a test set with a specific portion related to
whole dataset, e.g. train = 50%, validation = 25%, test = 25%. After the split, the train-
ing set is used for learning weights and fit the model, while the validation set is used for
evaluating the model performance at the learning process in each epoch. According to
the authors, the test set should be kept aside and should not be used in any hyperpa-
rameter selection process for the model, and used only to evaluate the performance of
the final model. The hold-out was applied in the works of KRIZHEVSKY; SUTSKEVER,;
HINTON (2012); SIMONYAN; ZISSERMAN (2015); HUANG et al. (2017), with datasets
such as CIFAR (KRIZHEVSKY, 2009) with more than 60, 000 examples.

4.4.2 Train, validation and test sets distribution

Following the described hold-out methodology, the datasets for each city were split
based on the distribution of the grid cells labeled with dengue incidence rates de-
scribed in Section 4.1.3. In this approach, the proportional stratified sampling (HIRZEL;
GUISAN, 2002) method was used to ensure the representativeness of the dengue val-
ues found in the territory in all train, validation, and test sets. Each city dengue cell
distribution was arranged in bins, where samples from each bin are randomly drawn in
each stratum, following a specific proportion set.

For Rio de Janeiro, from a distribution of bins = 6, the cell samples were drawn
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Table 7 — Train gap calculated for train sets which uses aerial images with zoom =
{20, 19}, with the result of imageMeters distance and testGap = 50m. For zoom = 21,
no necessary train gap to be set.

Zoom20 Zoom19
City tmageMeters Train Gap imageMeters Train Gap
Rio de Janeiro 88.0m 38.0m 176.2m 126.0 m
Sao Paulo 87.4m 38.0m 1749 m 126.0 m
Salvador 93.0m 43.0m 186.2 m 136.0 m

from the bins and placed in the train, validation, and test strata following a proportion of
75% — 05% — 25% split. For Sao Paulo and Salvador, a proportion of 70% — 15% — 15%
was used. For all cities, in validation and test cells, were discarded points where their
location was less than 50 meters from the cell borders for test cells, to avoid possible
overlap of points in training, validation and test datasets. Furthermore, different train-
ing sets were arranged for different aerial zoom levels in order to maintain the same
validation and test set for all experiments and avoid the overlap of information between
aerial images from train, validation, and test sets. The safe distances for different aerial
zooms were calculated based on the Equations 7, 8,

I
metersPerPizel = 156543.03392 _Coséfojmmo) (7)
imageMeters = metersPer Pizel x download Resolution[height] (8)

where ¢ is equal the latitude of the aerial image central point, zoom the zoom level
and downloadResolution the height or width resolution of the Google Static Maps API
requested image, in pixels, using the earth’s radius 6378137m and Google’s pixel per
meters ratio 156, 543.03392 (BROADFOOT; GOOGLE, 2011; Answer from StackEx-
change, 2016).

Table 7 enumerates the resulted distances from the application of Equation 7 for
different zoom levels in each city, and the train gap applied in each case using rounded
values from trainGap = imageMeters — testGap, with testGap = 50m. Tables 8, 9
and 10 presents the total train, validation and test points available for each set after
removing possible overlapping points, with the final resulting frain-validation-test set
proportion. In addition, for the cities of Sdo Paulo and Salvador, a test set was con-
structed with valid points without the restriction of borders, in order to evaluate models
trained with different cities. Table 11 shows the number of points used in the total test
set for each city.
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Table 8 — Train, test and validation datasets for use with aerial images zoom = 21.

City Train points Test points Validation points Total
Rio de Janeiro 151,458 (~ 83%) 24,329 (~ 13%) 7,115 (~ 4%) 182,902
Sé&o Paulo 198,000 (~ 77%) 31,174 (~12%) 29,089 (~ 11%) 258,263
Salvador 58,736 (~ 79%) 7,739 (~11%) 7,670 (~ 10%) 74,145

Table 9 — Train, test and validation datasets for use with aerial images zoom = 20.

City Train points Test points Validation points Total
Rio de Janeiro 140,294 (~ 82%) 24,329 (~ 14%) 7,115 (~ 4%) 171,738
Sé&o Paulo 184,381 (~ 75%) 31,174 (~ 13%) 29,089 (~ 12%) 244,644
Salvador 52,051 (~ 77%) 7,739 (~ 12%) 7,670 (~ 11%) 67,460

Table 10 — Train, test and validation datasets for use with aerial images zoom = 19.

City Train points Test points Validation points Total
Rio de Janeiro 117,600 (~ 79%) 24,329 (~ 16%) 7,115 (~ 5%) 149,044
Sé&o Paulo 156,633 (~ 72%) 31,174 (~ 14%) 29,089 (~ 14%) 216,896
Salvador 39,517 (~ 72%) 7,739 (~ 14%) 7,670 (~ 14%) 54,926

Table 11 — Composition of location points sets and cells for testing with models from
different cities.

City Total test points ~ Total test cells
Sao Paulo 281,184 1,718
Salvador 84,192 834

4.4.3 Accuracy measurements

For all proposed models, the Mean Squared Error (MSE) loss function was used as
main criterion for estimation of dengue fever values, as presented in Equation 9,

MSE — Z?ﬂ (yi — @)2 (9)

n
for each example [(y, y) composed of a true value y and a value y predicted by the
models, in a set of L = {l4,...[,,} of a total of n examples. The Root Mean Squared
Error (RMSE) and Mean Absolute Error (MAE), as presented in Equations 10 and 11,

RMSE = \/Z?l %‘ 9" _ /MSE (10)

MAE = 2z v =] (11)

n
were also used to allow a better comparison of the actual and estimated values
when evaluating the models, where y; are actual values, and ¢ estimated values.
In addition, the Pearson Product Moment Correlation, Pearson r, that measures
how two variables are proportional to each other and can be predicted with linear
regression, is used to measure the linear association between actual and estimated
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values, given by the Equation 12,

D > R (12)

Vi (@i = T)2(yi — 7)?
where 7 is the mean average of actual values, and y the mean average of estimated
values, with —1 < r < 1. When r = —1 there is total opposite correlation, r = 1
total positive correlation and » = 0 no correlation. In this work, the letter p is used to
represent the Pearson r correlation, considering test dataset examples as a population.

4.5 Experiments

Baseline models were trained in Rio de Janeiro city, while Deep Convolutional
Neural Networks models were trained in Rio de Janeiro and S&o Paulo cities, using
the same proposed architectures without network topology modifications, sometimes
with different hyper-parameters. Salvador was used only when evaluating the models
for geographic portability. The next Section 4.5.1 presents the overall methodology
for obtaining the architecture of proposed models, and in choosing the best hyper-
parameters and final models. Particularities from baseline and Deep Convolutional
Neural Network models and hyper-parameters selection are presented in Subsections
4.5.1.1and 4.5.1.2.

4.5.1 Network, Hyper-parameter and Model Selection

Network Topology Setup. The overall topology of the proposed networks is based
on works of ZAGORUYKO; KOMODAKIS (2015) for the siamese-like input of differ-
ent domain images, and LIEMAN-SIFRY (2016) for the multiple camera views idea.
Baselines models with Linear regression were built with a linear transformation of type
y = wAT +bwhere AT represents the input designed descriptor feature vector, w equal
weights to be learned, and b an additive bias. For the topology selection for complex
regressors with Neural Networks, in all models, the number of nodes in each hidden
layer was set using a rule of the mean average between input size and output size
layers, considering the output with 1 node. The hidden layers were iteratively added,
using the same average rule for setting the number of nodes, while tracking the model’s
performance changes with the modifications.

Optimizer Algorithm. All models were trained using Mini-Batch Gradient Descent
optimizer algorithm, a variant of Stochastic Gradient Descent (SGD), also referred as
Mini-Batch SGD (BOTTOU, 2010; LIN et al., 2018) where weights are updated with
a mini-batch of examples with size 1 < k < N, where k is the mini-batch size and
N is total number of examples. The optimizer takes, as hyper-parameters inputs the
learning rate Ir, momentum m, Nesterov momentum nesterov and a regularization L2
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weight decay wd.

Model Selection. To select the best model, for all proposed architectures, early
stopping was used during the training stage, where the resulting M SE loss of the
validation set in each training epoch is tracked, and the model selected when the lowest
validation M SE is achieved. The training process is stopped when there is no progress
in validation loss during the next epochs.

4.5.1.1 Baseline Models

The selection of HOG hyper-parameters was performed using random search tech-
niqgue (BERGSTRA; BENGIO, 2012), which consists of randomly drawing values for
hyper-parameters from a uniform distribution. The hyper-parameters set that leads the
model to the best result, during a number of epochs, is chosen.

The possibilities for HOG hyper-parameters sets were gathered from the best re-
sults of DALAL; TRIGGS (2005), with block size = (2,2) cells, varying the cell size
= {(8,8),(10,10), (12,12)} pixels, two possible orientations = {8,9} and clipped block
normalization block,orm = L2-Hys. For GIST designed descriptor, it was used the pa-
rameters number of blocks = 4 and orientations per scale = [8,8,8, 8] as proposed
by DOUZE et al. (2009). The concatenation of descriptors using the mean average
between feature vector positions is based on (HOFFMANN et al., 2019) proposed
methodology.

The multiple linear regression models Aerial HOG/GIST-LR and Street HOG-LR
were set as a linear transformation. The neural network approaches Aerial HOG-NN
and Street HOG-NN neural networks where set up with similar architectures from the
proposed deep neural network models (Subsection 4.5.1.2). The number of nodes in
each hidden layer was chosen using the rule of the mean average between input and
output number of nodes. For Aerial HOG-NN, the layer’s nodes size was calculated
considering the same input size as Sat Neural Network FC1 layer (2, 208), and in Street
HOG-NN the size of the HOG feature vector (9, 248) used in this model.

The Mini-batch SGD optimizer hyper-parameters were selected using random
search (BERGSTRA; BENGIO, 2012), with learning rates drawn from a uniform dis-
tribution of ir = wuniform(min = le — 10,max = le — 5,10), momentum from m =
uni form([0.999,0.995,0.99,0.98,0.9,0.0], 10), nesterov = wuniform(|[True, False],10)
and weight decay regularization from wd = uniform(min = le™",mazx = le*,10).
Specifically, for Aerial GIST-LR and Street HOG-LR models, optimizer parameters were
selected from KRIZHEVSKY; SUTSKEVER; HINTON (2012); HUANG et al. (2017) re-
lated works.
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4.5.1.2 Deep Convolutional Neural Network Models

Architectures Sat, Street and StreetSat were constructed based on transfer learn-
ing methodologies, where a previous pretrained architecture, designed for a differ-
ent task, is used for training another domain-related task (GOODFELLOW; BENGIO;
COURVILLE, 2016). Transfer learning approaches used in the proposed models were
the use of the architecture definition, specifically the feature extractor layers, and fine-
tuning with previously trained weights from a related domain in all layers.

The DenseNet architecture (HUANG et al., 2017) was chosen as the model for
feature extraction due to its state of the art performance in learning features for sev-
eral different domain tasks. The specific version of the Deep ConvNet implementa-
tion DenseNet-161 was used due to the availability of pretrained models with Places
dataset (ZHOU et al., 2018b), a domain similar to urban street-level imagery data used
in this work.

In the construction of the proposed Sat architecture, the transfer learning technique
applied was to use the defined feature extraction layers from DenseNet161, composed
of “dense blocks” of n dense layers, containing BatchNorm2D, Convolution2D and
RelL U activations (see Section 2.2), finishing with a global average pooling operation.
Then, the feature vector output is connected to the proposed neural network. In Sat, no
previous weights were used to fine-tune, and the training process was made by initial-
izing the network with random weights. The hidden layers were iteratively added to find
the most appropriate setting for the task, using the same average rule for the number
of nodes, while tracking the models’ performance changes with the modifications.

For Street architecture, the transfer learning technique applied was to use the de-
fined feature extraction layers from DenseNet161, similar to the previous model, but
instead of training from scratch, the model was initialized with pretrained weights from
Places dataset, and all dense layers were fixed (“frozen”) to prevent Places weights
from being updated during gradient descent. This is the standard methodology of a
feature extractor with transfer learning. Each 4-camera view street-level image is prop-
agated through the DenseNet161-Places. The outputs are concatenated to obtain a
feature vector of 8, 832 positions to be connected to the proposed Street architecture.
Similar to the previous model, hidden layers number of nodes were dimensioned us-
ing the mean average between input size and output size layers, that were iteratively
added tracking the model’s performance changes with the modifications.

Next, StreetSat architecture, similar to the previous model, uses feature extraction
transfer learning technique, by propagating images in DenseNet models with frozen
layers, i.e., without gradient update, for both aerial and street-level images. Street-level
dense features were obtained from DenseNet161-Places, with Places dataset, and
aerial dense features were obtained from DenseNet161-Sat, with pretrained weights
from aerial images labeled with dengue fever rates, proposed in this work. The topology
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of StreetSat was obtained by initially adopting the number of layers and nodes from
the other proposed models and progressively reducing the number of units and layers,
and tracking the obtained results. The BatchNorm1D layer was added to different
FC outputs, tracking the model’s performance, until a reasonably satisfactory position
was found. Similarly, the CAT FV layer, for features concatenation, was also tested at
different levels of the proposed network, until the best position was found.

The Mini-batch SGD optimizer hyper-parameter selection was performed using a
ad-hoc grid search methodology, by tracking the models through training and validation
using MSE loss as accuracy measure, for a range of initial learning rates 1e™® < Ir <
le~3. The momentum m = 0.9, nesterov = True and regularization L-2 weight decay
wd = le—4 were set according to previous related work (KRIZHEVSKY; SUTSKEVER,;
HINTON, 2012; HUANG et al., 2017).

4.5.2 Dengue Estimation with Baseline Experiments

For models Aerial HOG/GIST-LR, Aerial HOG-NN and Street HOG-NN, images
were resized to 224 x 224 x 3 resolution. In model Street HOG-LR, images were resized
to 112 x 112 x 3 to obtain a smaller feature vector size. No normalization was performed
in aerial or street-level images. The chosen HOG parameters for both aerial and street-
level baseline models were block size = (2, 2), cell size = (12,12) and orientations = 8,
resulting in a feature vector of 2,048 positions for images with 112 x 112 x 3 and 9, 248
positions for images with 224 x 224 x 3. The GIST descriptor resulted in a feature vector
of 960 positions.

In Aerial GIST-LR model, mini-batch size was set to k£ = 32 examples, initial learning
rate was set to [r = 1le — 3, reducing it by a factor of f = 0.1 when validation loss values
reaches a plateau between 5 epochs, momentum = 0.9, Nesterov = True and L-2
regularization to reduce overfitting with weight decay equal wd = 1le — 4. For Aerial
HOG-LR and Aerial HOG-NN models, mini-batch size was set to & = 32 examples,
initial learning rate as Ir = 1.02878¢~% with exponential decay of f = 0.2 at every 16
epochs, momentum = 0.99, Nesterov = True and L-2 regularization with weight decay
equal wd = 2.9358¢75. Model Street HOG-LR was trained with mini-batch size k£ = 128
examples, initial learning rate as Ir = 1e~* decaying through inverse scaling by a factor
of f = 0.25 and L-2 regularization with weight decay equal wd = le — 4.

For Aerial HOG-NN and Street HOG-NN models, mini-batch size was set to k =
32 examples, initial learning rate as Ir = 1.02878¢~% with exponential decay of f =
0.2 at every 16 epochs, momentum = 0.99, Nesterov = True and L-2 regularization
with weight decay equal wd = 2.9358¢~6. All linear layers from baseline models were
initialized with LeCun initialization method (LECUN et al., 1998).
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4.5.3 Dengue Estimation with Deep ConvNets Experiments

In Sat models, aerial images were resized to 224 x 224 x 3 and no normalization was
made in the aerial before network input. Mini-batch size was set to £ = 32 examples,
initial learning rate Ir = 1e7%, reducing it by a factor of f = 0.1 when validation loss
values reaches a plateau between 5 epochs, momentum = 0.9 and Nesterov = True.
Regularization techniques were applied to reduce overfitting: L-2 regularization with
weight decay of le~*; data augmentation with probability of execution p = 0.5 in
each mini-batch, with random horizontal flip, random vertical flip and color jitter with
hue = 0.05 and saturation = 0.05; and random dropout of nodes with probability of
[0.6,0.5,0.3] for FC1, FC2 and FC3 layers respectively. For Sat models trained in Rio
de Janeiro, convolutional layers were initialized using Kaiming Normal initialization, the
DenseNet161 default initialization.

For Street models, image features were obtained by propagating street-level im-
ages with resized resolution of 224 x 224 x 3 and normalization with values for average
mean and standard deviation mean = [0.485,0.456,0.406], std = [0.229,0.224,0.225]
following DenseNet161-Places methodology (CSAILVision, 2015). For Street model
trained in Rio de Janeiro city (RioStreet), mini-batch size was set to £ = 128 exam-
ples, linear layers initialized with LeCun initialization method and initial learning rate
Ir = 1le”7, reducing it by a factor of f = 0.1 when validation loss values reaches a
plateau between 5 epochs. For Sdo Paulo Street model, linear layers were initialized
with pretrained weights from RioStreet, and initial learning rate ir = 4.13¢7°.

In both models, it was applied momentum = 0.9, Nesterov = True and regular-
ization techniques used to reduce overfitting were L-2 regularization with weight decay
wd = 1le~*, shuffling the order of concatenation of feature vectors and random dropout
of nodes with probability of [0.5,0.5,0.5, None] in FV Input, FC1, FC2 and FC3 layers
respectively.

Models StreetSat were trained using mini-batch & = 32, initial learning rate Ir =
1e7, reducing it by a factor of f = 0.1 when validation loss values reaches a plateau
between 5 epochs, momentum = 0.9 and Nesterov = True. Regularization techniques
applied to avoid overfitting were L-2 penalty with weight decay wd = 1le~*, random
dropout of nodes with probability of p = 0.8 for feature vector concatenation layer (FV
Cat) and F1 layers respectively.

4.5.4 Geographic Portability of Models

To verify the ability of trained models in a specific city to estimate dengue incidence
in other cities, whose model has not been exposed to images examples, each proposed
Deep Convolutional Neural Network trained and validated in Rio de Janeiro and Sao
Paulo were tested for every other city, crossing the models between cities. Salvador
is used exclusively to test the portability of models trained in other cities. Moreover, a
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Table 12 — Combination of proposed models trained in each city and tested in their
respective geographic limits (test set) and in the other studied cities, with each aerial
and street features used.

Model Aerial input Street input Rio de Janeiro Sao Paulo  Salvador
Aerial HOG-LR zoom = 21 - Test set - -
Aerial GIST-LR zoom = 21 - Test set - -
Aerial HOG-NN zoom = 21 - Test set - -
Street HOG-LR - Street HOG Test set - -
Street HOG-NN - Street HOG Test set - -
RioSat21 zoom = 21 - Test set Whole city Whole city
RioSat20 zoom = 20 - Test set Whole city Whole city
RioSat19 zoom = 19 - Test set Whole city Whole city
RioStreet - DenseNet-Places Test set Whole city Whole city
RioStreetSat21 RioSat21 DenseNet-Places Test set Whole city Whole city
RioStreetSat19 RioSat19  DenseNet-Places Test set Whole city Whole city
RioStreetSat19 SpSat19  DenseNet-Places Test set Whole city Whole city
SpSat19 zoom = 19 - Test set Testset  Whole city
SpStreet - DenseNet-Places Test set Testset  Whole city
SpStreetSat19 RioSat19  DenseNet-Places Test set Testset  Whole city
SpStreetSat19 SpSat19 DenseNet-Places Test set Testset  Whole city
MultiCity-StreetSat19  RioSat19  DenseNet-Places Test set Testset  Whole city
MultiCity-StreetSat19  SpSat19  DenseNet-Places Test set Testset  Whole city

StreetSat model trained with Rio de Janeiro and S&o Paulo dengue data all together is
evaluated for each city test set and in Salvador, across all city location points.

To simplify the Deep ConvNet models identification, the format “CityArchitecture”
and “CityArchitectureZoom” are used to denote models trained in specific cities using
one of the proposed architectures, with certain zoom level, when applied. In StreetSat
architecture that uses DenseNet161-Sat features and DenseNet161-Places features,
specifically for aerial features, the Sat model that generates the features is also spec-
ified. The StreetSat model trained and validated using multiple cities dengue data is
identified as MultiCity-StreetSatZoom.

All models trained in Rio de Janeiro were tested in the whole city of Sdo Paulo and
Salvador. Models trained and validated in Sdo Paulo were tested in the whole city of
Salvador and in the test set of Rio de Janeiro, due to the pretrained weights initialization
with Rio de Janeiro models. Furthermore, StreetSat models, including the trained with
multiple cities, were tested using as aerial input features resulted from Sat models from
Rio de Janeiro and Sao Paulo, respectively.

Table 12 lists the possible combinations between each model trained in Rio de
Janeiro (prefix Rio) and Sao Paulo (prefix Sp) when applied at their geographic limits
test set, and in the other cities studied. All Sat models are capable of generating
features for all cities, as well as street features are generated from the DenseNet161-
Places model for all studied cities.
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4.5.5 Model Evaluation Methods

The evaluation of each trained model for Rio de Janeiro and Sao Paulo cities was
conducted over the location points of their test sets and in the test sets of other evalu-
ated cities, in three different ways, presented in the next Subsections.

4.5.5.1 Overall Location Points

In overall location points, evaluation is conducted over individual location data
points, i.e., Mean Absolute Error (MAE) is computed individually for each location
point. The overall Pearson Correlation p is computed between actual values and esti-
mated values for all evaluated test points. The number of location points that reached
MAFE < 1.0, MAE < 10% maximum dengue value distribution, and M AE < dengue
distribution were set as auxiliary measures for the performance evaluation of the mod-
els.

4.5.5.2 Cell Region Estimation

Evaluation by cell region estimation aggregates location points into cells, with MAE
being calculated at the cell level by taking the average estimation from overall points
inside the cell. Similarly to the previous method, the Pearson Correlation p is computed
between actual cell values and estimated cell values for all evaluated test cells. The
number of cell regions that reached MAE < 10.0, MAE < 10% maximum dengue
value distribution, and M AE < mean average dengue distribution were set as auxiliary
measures for the performance evaluation of the models.

4.5.5.3 Risk Ranking Estimations

The dengue incidence risk ranking estimations are applied using Risk-biased over-
lap (RBO) (WEBBER; MOFFAT; ZOBEL, 2010) in ranked lists of actual values and
predicted values over administrative sectors of each city, such as neighborhoods or
districts. For the city of Rio de Janeiro, the shapefiles of neighborhoods’ polygons
were obtained from the city data portal (DATARIO, 2018). For S&o Paulo and Salvador,
the administrative districts were used for RBO evaluation, obtained from the city’s data
portal and from Database of Global Administrative Areas (GADM) respectively (SMDU,
2018; GADM, 2018).

The RBO is a rank similarity measure that evaluates system retrieved lists at a
specific top-k depth, i.e., at a k£ depth, with the possibility of lists being disjoint. The
metric is based on agreement measure, which measures the proportion of overlap (the
size of intersection) items, at a specific depth, and the average overlap that calculates
the average between the agreement at k& depth. Roughly speaking, the RBO adds
weights to the agreement at each position, by geometric progression, regulated by a
parameter p that indicates how abrupt the decline in weights is.
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According to WEBBER; MOFFAT; ZOBEL (2010), RBO parameter p represents the
user persistance, with a probability p of continuing visiting the next rank item. The
RBO returns lower bound, and upper bound estimates, RBO,;;y and RBOj;4x, With
the maximum bound being the minimal added to a residual RBOy;ax = RBOyn +
RBOgrgs. RBO also returns a score for observing the lists beyond the depth &, i.e., an
extrapolated score, with RBOgxr. All RBO scores values are 0 < RBO < 1.0, with
0 indicating disjoint lists and 1.0 identical lists. Following the authors’ methodology for
the metric, the RBO could be reported as RBOgxr followed by the Residual.

To compute the RBO in proposed models results, actual values are taken from
the centroid of each cell’s true values and distributed between the polygons of each
administrative sectors, and predicted values are taken from the centroid of each cell’s
predicted values, totaling, in both cases, the dengue incidence values to get a single
rate per administrative sector. Next, the RBO scores are computed between each
ranked list from neighborhoods or districts with more dengue incidence risk to low
incidence risk, using the parameters persistence p = 0.9 and depth &£ = 10 for Top-
10 neighborhoods (Rio de Janeiro) or districts (Sdo Paulo and Salvador). The scores
for Agreement, RBOgxr = RBO and Residual are reported for the best performance
models.



5 RESULTS

This Chapter presents the results obtained during the training process of the pro-
posed models, using the train and validation sets, in Section 5.1, and the results of
their evaluations using test sets, in Section 5.2. Supplementary material from training
and validation results can be found in Appendix B, for baseline models evaluation in
Appendix C, and for Deep ConvNet models evaluation in Appendix D.

5.1 Train and Validation of Proposed Models

5.1.1 Baseline Models

The proposed linear regression models Aerial HOG-LR and Aerial GIST-LR trained
over 50 epochs, reaching their best validation loss at 15¢h epoch. Next, Street HOG-LR
model trained up to 48 epochs, reached its best validation loss at 43th epoch. The
neural network baselines Aerial HOG-NN and Street HOG-NN models trained over
120 epochs in Rio de Janeiro train dataset, and reached the best validation loss at 17th
and 10th epochs respectively. Table 13 summarizes the Mean Square Error (MSE)
and Root Mean Square Error (RMSE) and Pearson Correlation p achieved for best
validation loss during training process of all baseline models.

Figures 48, 49 and 50 in Appendix B presents the training process of baseline
models with loss curves for each model.

Table 13 — Validation results during Aerial HOG/GIST-LR training in Rio de Janeiro. All
p-values for correlation coefficient equal to < 0.001

Model MSE RMSE Pearson p BestLoss Epoch
Aerial HOG-LR 16,216.44 127.34 0.20 15
Aerial GIST-LR  14,736.89 121.39 0.35 12
Street HOG-LR 14,001.72 118.32 0.42 43
Aerial HOG-NN  15,664.30 125.15 0.26 17

Street HOG-NN  14,216.18 119.23 0.41 10
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5.1.2 Deep Convolutional Neural Network Models
5.1.2.1 Training and validating models in Rio de Janeiro

The Deep ConvNet models Sat with different zoom levels zoom = {21, 20, 19} were
trained in Rio de Janeiro over 60 epochs, reaching the best validation loss at 21st
epoch for zoom = 21, at 17th epoch for zoom = 20 and at 13th epoch for zoom = 19.
Training the Street model up to 100 epochs achieved the best validation loss of at
38th epoch. Figure 52 show the training, validation and pearson correlations resulting
during training epochs. Table 14 enumerates all validation results from Deep ConvNet
Sat and Street models in Rio de Janeiro.

The proposed StreetSat model was trained and tested with aerial features from Sat
model with zoom levels zoom = {21,19} and street-level features from DenseNet161-
Places over 50th epochs, achieving the best validation loss at the 8th epoch for
RioStreetSat21. Table 14 enumerates validation results from Deep ConvNet RioStreet-
Sat21 and RioStreetSat19 in Rio de Janeiro.

In Appendix B are presented Figures 51a, 51b and 51c that depicts train and val-
idation loss curves during training epochs for each Sat model. Figures 53a and 53b
depicts the training process, with Pearson correlations at best validation loss being
p = 0.68 for both models.

5.1.2.2 Training and validating models in S&o Paulo

The Sat model in the city of Sdo Paulo, using pretrained network weights from
RioSat19 in Rio de Janeiro as initializations, trained up to 40 epochs, whose continuity
showed no improvement, and reached the best validation loss at 7th epoch. The best
Street model for Sdo Paulo, fine-tuned from Rio de Janeiro RioStreet model weights,
trained over 100 epochs, achieved at early 9th epoch the best validation loss.

For StreetSat model, using aerial features from Sat19 trained in Sao Paulo and
street-level features from Densenet161-Places, training was over 50 epochs, achieving
the best validation loss at 16th epoch. Table 15 enumerates enumerates all validation
results from Deep ConvNet Sat, Street and StreetSat models in S&o Paulo.

Figures 54, 55 and 56 in Appendix B shows the loss curves in the training process

Table 14 — Validation results during training Deep ConvNet models in Rio de Janeiro.
All p-values for correlation coefficient equal to < 0.001

Model MSE RMSE Pearsonp BestLoss Epoch
RioSat21 9,892.10 99.45 0.67 21
RioSat20 11,219.02 105.91 0.65 17
RioSat19 9,608.20 98.02 0.71 13
RioStreet 10,560.60 102.76 0.61 38

RioStreetSat21 9,304.02 96.45 0.68 8

RioStreetSat19 11,780.45 108.53 0.68 20
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for each model trained and validated in Sao Paulo.

5.1.2.3 Training and validating a multiple city model

Aerial features for both cities used to train the multiple city model were ex-
tracted from pretrained Sat zoom = 19 (Sat19) models and street-level features from
DenseNet161-Places. The model trained for over 50 epochs, achieving the best loss
for validation set with data from both cities at 27¢h epoch. Table 16 presents the best
validation results achieved while training the model.

The loss curves obtained during the process of training a StreetSat model using
aerial and street-level features from different cities (“MultiCity”) are depicted in Ap-
pendix B, Figure 57.

5.2 Evaluation of Proposed Models

The Subsection 5.2.1 presents the overall location points evaluation results, and for
cell region estimation evaluation, obtained with baseline and Deep ConvNet models
applied in Rio de Janeiro and Sao Paulo test sets. Next, Subsection 5.2.2 presents
results from geographic portability of the models, i.e., results obtained with the appli-
cation of the trained models in different cities, whose image examples were not seen
during the training phase.

Additionally, the best resulting models were evaluated by dengue incidence risk
ranking in districts, at Subsection 5.2.3. For the highlighted models, in each group, is
presented the correlation plot between actual and estimated values, depicted with a
tendency line, and the dengue incidence rates hot-spot map produced by the model.

5.2.1 Summary of Evaluations Results

Table 17 enumerates the evaluation of all trained and tested Sat, Street and Street-
Sat models with the city of Rio de Janeiro, from a total of 24, 320 test set location points,

Table 15 — Validation results during training Deep ConvNet models in Sao Paulo. All
p-values for correlation coefficient equal to < 0.001

Model MSE RMSE Pearsonp BestLoss Epoch
SpSat19 1,058.00 32.52 0.46 7
SpStreet 1,037.80 32.21 0.36 9

SpStreetSat19 1,421.98 37.70 0.44 16

Table 16 — Validation results during training Deep ConvNet models in Rio de Janeiro
and Sao Paulo with a “MultiCity” approach. All p-values for correlation coefficient equal
to < 0.001

Model MSE RMSE Pearsonp BestLoss Epoch
MultiCity-StreetSat19 6,646.01 81.52 0.78 27
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presenting the mean squared error (MSE) and their root mean squared error (RMSE),
the mean absolute error (MAE), the estimations that had their absolute error < 1.0 and
Pearson Correlation coefficient for each model. Table 18 presents the evaluation of
all trained and tested models for the city of Sdo Paulo, from a total of 31, 168 test set
location points.

Table 19 enumerates the evaluation of all trained and tested Sat, Street and Street-
Sat models with the city of Rio de Janeiro for cell region estimation, from a total of 352
test set cells, presenting the mean squared error (MSE) and their root mean squared
error (RMSE), the mean absolute error (MAE), the estimations that had their absolute
error < 10.0 and Pearson Correlation coefficient for each model. Table 20 presents the
evaluation of all trained and tested models for the city of Sdo Paulo, from a total of 252
test set location points.

Figure 22 depicts the results obtained when estimating dengue rates for location
points in test data set for the highlighted StreetSat models evaluated in Rio de Janeiro,
with actual versus estimated plots. The correlation from overall location points between
actual and estimated values for dengue incidence rates with SpSat19 and SpStreet-
Sat19 for Sao Paulo test data set are depicted in Figure 23. The plots shows locations
points that obtained absolute estimation errors < 1.0 in red, and absolute errors > 1.0.
Pearson correlation plots and hot-spot maps for baseline and other Deep ConvNet
models evaluated in Rio de Janeiro are enumerated in Appendix C and D respectively.

Figure 24 depicts the results obtained for StreetSat highlighted models when es-

Table 17 — Results for Rio de Janeiro model, for a total of 24, 320 test set location points.
All Pearson Correlation with p-value < 0.001.

Model Aerial Features MSE RMSE MAE MAFE <1.0 Pearsonp
Aerial HOG-LR zoom = 21 19,378.88 139.20 106.12 124 (0.5%) 0.19
Aerial GIST-LR zoom = 21 17,656.26 132.87 101.60 109 (0.4%) 0.36
Aerial HOG-NN zoom = 21 19,176.39 138.47 107.70 110 (0.4%) 0.26
Street HOG-LR - 16,225.00 127.37 93.56 120 (0.4%) 0.44
Street HOG-NN - 15,987.72 126.44 9258 142 (0.5%) 0.46

RioSat21 zoom = 21 12,204.40 11047 71.58 252 (1%) 0.64
RioSat20 zoom = 20 12,71450 112.75 72.13 285 (1%) 0.64
RioSat19 zoom =19 13,524.16 116.29 72.72 285 (1%) 0.61
RioStreet - 13,258.24 115.14 77.76 258 (1%) 0.58
RioStreetSat21 RioSat21 11,677.62 108.06 69.16 357 (1%) 0.65
RioStreetSat19 RioSat19 14,073.05 118.62 78.32 1,252 (5%) 0.62
MultiCity-StreetSat19 RioSat19 15,460.42 12433 77.08 465 (1%) 0.59

Table 18 — Results for Sao Paulo models, for a total of 31, 168 test set location points.
All Pearson Correlation with p-value < 0.001.

Model Aerial Features MSE RMSE MAE MAFE <1.0 Pearsonp
SpSat19 zoom = 19 2,261.35 47.55 22.70 1,726 (5%) 0.51
SpStreet - 2,739.88 52.34 2583 921 (2%) 0.32

SpStreetSat19 SpSat19 2,293.74 47.89 2443 2,999 (9%) 0.52

MultiCity-StreetSat19 SpSat19 5,623.55 7432 4414 869 (2%) 0.48
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Figure 22 — Overall individual correlation, from results of Rio de Janeiro highlighted
models, between actual and estimated values for each location point in test set with

aerial images with zoom = 21 and (b) for zoom = 19. All Pearson correlation p with
p —value < 0.001

timating dengue rates for aggregated estimations in test data set cells for Rio de
Janeiro, with actual versus estimated plots, with features from RioSat models trained
with zoom = {21,19}. The plot shows test cells that obtained absolute estimation er-
rors < 10.0 (highlighted) and absolute errors > 10.0. The standard deviation of each
incidence average in the cell is shown as an error bar.

Table 19 — Results for Rio de Janeiro models, for a total of 352 test set cells. All Pearson
Correlation with p-value < 0.001.

Model Aerial Features MSE RMSE MAE MAFE <10.0 Pearsonp
Aerial HOG-LR zoom = 21 22,604.94 150.34 123.34 12 (0.5%) 0.29
Aerial GIST-LR zoom = 21 20,120.58 141.84 116.20 8 (0.2%) 0.46
Aerial HOG-NN zoom = 21 23,386.37 152,92 128.23 10 (0.2%) 0.38
Street HOG-LR - 17,027.95 130.49 101.93 11 (0.3%) 0.57
Street HOG-NN - 16,302.85 127.68 98.59 14 (0.3%) 0.59

RioSat21 zoom = 21 9,342.54  96.65 60.80 34 (9%) 0.76
RioSat20 zoom = 20 9,183.5 95.83 56.3 49 (14%) 0.76
RioSat19 zoom = 19 10,343.67 101.70 57.72 75 (21%) 0.72
RioStreet - 11,607.13 107.73 70.75 40 (11%) 0.70
RioStreetSat21 RioSat21 8,946.21 94.58 51.21 52 (15 %) 0.78
RioStreetSat19 RioSat19 8,925.93 94.47 51.25 112 (32%) 0.76
MultiCity-StreetSat19 RioSat19 10,519.52 102.56 52.97 104 (29%) 0.75

Table 20 — Results for Sao Paulo models, for a total of 252 test set cells. All Pearson
Correlation with p-value < 0.001.

Model Aerial Features MSE RMSE MAE MAFE <10.0 Pearsonp
SpSat19 zoom =19 1,369.96  37.01 17.09 133 (52%) 0.57
SpStreet - 1,672.77 40.89 20.00 87 (34%) 0.40

SpStreetSat19 SpSat19 1,247.75 35.32 15.34 149 (59%) 0.61

MultiCity-StreetSat19 SpSat19 2,613.49 51.12 34.61 41 (16%) 0.54
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Figure 23 — Overall individual correlation, from results of Sdo Paulo highlighted mod-
els, between actual and estimated values for each location point in test set. Pearson
correlation with p-value < 0.001.
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Figure 24 — Cell estimation overall correlation for StreetSat models trained and tested
in Rio de Janeiro. All Pearson correlation p with p-value < 0.001

Figure 25 depicts the results obtained from SpSat19 and SpStreetSat19 models
trained and tested with Sdo Paulo dengue fever data, for cell region estimates aggre-
gated using the mean average of all predictions per cell, with actual versus estimated
plots. For aerial imagery models, the zoom level applied was zoom = {19}. The plots
highlight locations points that obtained the estimated absolute error of < 10.0.

In Figure 26 it is presented the hot-spots maps of dengue fever estimations for cell
region in Rio de Janeiro, computed with RioStreetSat21 and RioStreetSat21 models
using Sat features from zoom = {21, 19} as aerial inputs. Actual values of dengue are
depicted in 26a for comparison. Figure 26b depicts the estimations for cell region with
RioStreetSat21, with minimum estimation equal to 4.27 and maximum prediction equal
to 461.87 dengue incidence rate. In RioStreetSat19 (Figure 26¢), minimum dengue
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Figure 25 — Cell region estimation correlation, from results of Sdo Paulo highlighted

models, between actual and estimated values for each location point. Pearson corre-
lation with p-value < 0.001.

estimated value equal 0 and maximum dengue estimated value equal 441.77.

Figure 27 presents the hot-spots maps of dengue fever estimations for cell region
for all models trained and evaluated in Sdo Paulo with SpSat19 and SpStreetSat19
models. Actual values of dengue are depicted in 27a for comparison. Figure 27b
depicts the estimations for cell region with SpSat19, with minimum estimation equal to
8.29 and maximum prediction equal to 108.53 dengue incidence rate. In SpStreetSat19
minimum dengue estimated value equal 0 and maximum dengue estimated value equal
160.10.

5.2.2 Geographic Portability Of Models
5.2.2.1 Rio de Janeiro Models applied in Sdo Paulo and Salvador

Table 21 presents the results while evaluating the models trained in Rio de Janeiro
in 281, 184 location points from Sao Paulo city, and Table 22 presents the results by cell
region estimation, for 1,718 cells. For each model result, the column “Aerial Features”
denote which network model produced the features to be used in the evaluation, when
applicable.

For the highlighted RioSat19, RioStreet and RioStreetSat19 models evaluated in
Sao Paulo, Figure 28 depicts the results obtained when estimating dengue rates for
all location points from Sao Paulo, in actual versus estimated plots. The plots shows
locations points that obtained absolute estimation errors < 1.0 in red, and absolute
errors > 1.0.

Figure 29 depicts the results obtained from RioSat19, RioStreet and RioStreet-
Sat19 models trained in Rio de Janeiro applied in whole city of Sdo Paulo, considering
the cell region estimations, with actual versus estimated plots. The plots highlight loca-
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(a) Actual

(c) RioStreetSat19

Figure 26 — Cell estimation hot-spot maps with StreetSat models (a) actual values for
dengue fever rates and (b), (c) resulting estimated dengue values for Rio de Janeiro
test set cells. Dengue rates ranges from 0 to a maximum of 1,280, with maximum

prediction range equal 461.87, depicted with shades of yellow.
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Figure 27 — Cell estimation maps with Sdo Paulo models (a) actual values for dengue
fever rates and (b), (c) resulting estimated dengue values for test set cells. Dengue
rates ranges from 0 to a maximum of 404, with maximum prediction range equal 160,
depicted with shades of green.
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tions points that obtained the estimated absolute error of < 10.0.

Figure 30 presents the hot-spots maps created with Rio de Janeiro models
RioSat19, RioStreet and RioStreetSat19 with RioSat19 aerial features while evalu-
ating dengue fever cell region estimations in whole city of Sdo Paulo. Actual values
of dengue are depicted in 30a for comparison. All models’ estimated ranges are con-
tained within the actual city dengue incidence rate spectrum.

Next, for Salvador city, Table 23 summarizes the results of applying Rio de Janeiro
models for 84, 192 location points, and Table 24 shows the results by cell region estima-
tion, for 834 cells over the territory. For each model result, the column “Aerial Features”
denote which network model produced the features to be used in the evaluation, when
applicable.

Table 21 — Results from Rio de Janeiro models applied in Sao Paulo, for 281,184 lo-
cation points. For RioStreetSat19 with SpSat19 aerial features, results are computed
over Sao Paulo 31, 168 test set location points only. All Pearson correlation with p-value
< 0.001.

Model Aerial Features MSE RMSE MAE MAE<1.0 Pearsonp
RioSat21 zoom = 21 21,494.95 146.61 129.31 606 (0.2%) 0.07
RioSat20 zoom = 20 34,854.67 186.69 152.72 718 (0.2%) 0.14
RioSat19 zoom =19 18,788.87 137.07 123.08 1,010 (0.3%) 0.18
RioStreet - 28,662.16 169.29 157.42 234 (0.08%) 0.24

RioStreetSat21 RioSat21 24,184.25 155,51 125.8 889 (0.3%) 0.06
RioStreetSat19 RioSat19 26,780.5 163.65 131.32 9,508 (3%) 0.17
RioStreetSat19 SpSat19 22,344.84 149.48 113.57 1,558 (4%) 0.30

Table 22 — Results from Rio de Janeiro models applied in Sao Paulo, for 1,718 cells.
For RioStreetSat19 with SpSat19 aerial features, results are computed over Sdo Paulo
252 test set cells only. All Pearson correlation with p-value < 0.001.

Model Aerial Features MSE RMSE MAE MAFE <10.0 Pearsonp
RioSat21 zoom = 21 18,080.65 134.46 127.49 10 (0.5%) 0.18
RioSat20 zoom = 20 25,155.56 158.60 143.83 7 (0.4%) 0.19
RioSat19 zoom =19 15,321.93 123.78 114.51 32 (1.8%) 0.31
RioStreet - 24,321.66 155.95 146.45 38 (2%) 0.38

RioStreetSat21 RioSat21 17,145.21 130.93 121.06 16 (0.9%) 0.21
RioStreetSat19 RioSat19 16,765.59 129.48 109.91 163 (9%) 0.30
RioStreetSat19 SpSat19 14,501.37 120.42 99.15 16 (0.6%) 0.52

Table 23 — Results from Rio de Janeiro models applied in Salvador, for 84,192 city
points. All Pearson correlation with p-value < 0.001.

Model Aerial Features MSE RMSE MAE MAE <1.0 Pearsonp
RioSat21 zoom = 21 39,372.54 198.42 172.61 4 (0.004%) 0.20
RioSat20 zoom = 20 46,316.61 215.21 177.62 7 (0.008%) 0.11
RioSat19 zoom = 19 17,028.74 130.49 115.32 5 (0.005%) 0.19
RioStreet - 31,631.38 177.85 163.08 0 (0%) 0.18

RioStreetSat21 RioSat21 32,323.36 179.79 151.065 16 (0.01%) 0.05
RioStreetSat19 RioSat19 32,757.88 180.99 143.48 12,703 (15%) 0.16
RioStreetSat19 SpSat19 32,907.00 181.40 142.42 10,886 (13%) 0.18

MultiCity-StreetSat19 RioSat19 19,146.15 138.37 97.06 111 (0.1%) 0.17
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Figure 28 — Overall individual estimations for Rio de Janeiro models applied in the
whole city of Sdo Paulo. All Pearson correlation p with p-value < 0.001
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Figure 31 depicts the results obtained from the highlighted RioSat21, RioSat19,
RioStreetSat19 and MultiCity-StreetSat19 models when evaluated in whole city of Sal-
vador, for location points in all city examples, in actual versus estimated plots. The
plots shows locations points that obtained absolute estimation errors < 1.0 in red, and

Table 24 — Results from Rio de Janeiro models applied in Salvador, for 834 cells region
estimations. All Pearson correlation with p-value < 0.001.

Model Aerial Features MSE RMSE MAE MAFE <10.0 Pearsonp
RioSat21 zoom = 21 28,053.99 167.49 155.61 0 (0%) 0.33
RioSat20 zoom = 20 34,832.33 186.63 168.00 0 (0%) 0.17
RioSat19 zoom = 19 14,318.29 119.65 109.64 4 (0.4%) 0.25
RioStreet - 24,750.95 157.32 143.76 7 (0.8%) 0.24

RioStreetSat21 RioSat21 28,267.46 168.13 155.18 0 (0%) 0.06
RioStreetSat19 RioSat19 23,940.75 154.73 130.62 55 (6%) 0.23
RioStreetSat19 SpSat19 20,198.89 14212 117.69 75 (8%) 0.29
MultiCity-StreetSat19 RioSat19 13,921.70 117.99 94.36 32 (3%) 0.22
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Figure 29 — Cell region estimations for Rio de Janeiro models applied in the whole city
of S&o Paulo. All Pearson correlation p with p-value < 0.001

absolute errors > 1.0.

Figure 32 depicts the results obtained from RioSat21, RioStreetSat19 using Sp-
Sat19 aerial features and MultiCity-StreetSat19 with RioSat19 aerial features, the mod-
els trained in Rio de Janeiro with highlighted results for cell region estimations, when
applied in whole city of Salvador. Plots depict actual versus estimated correlation, with
locations points that obtained the estimated absolute error of < 10.0 selected in red.

5.2.2.2 Sao Paulo Models applied in Salvador and Rio de Janeiro

Table 25 presents the results while evaluating the models trained in Sdo Paulo
with 84,192 location points from Salvador city, and Table 26 presents the results by
cell region estimation, for the 834 cells of Salvador. Column “Aerial Features” denote
which network model produced the aerial features to be used in the evaluation, when
applicable.

Figure 33 depicts the correlation between actual and estimated overall location point
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Figure 30 — Cell estimation maps with Rio de Janeiro models applied in whole city
of Sdo Paulo: (a) actual values for dengue fever rates and (b)-(d) resulting estimated
dengue values for cells.
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Figure 31 — Overall individual estimations with Rio de Janeiro models applied in the

features.

whole city of Salvador. All Pearson correlation p with p-value < 0.001

results, obtained from the highlighted models SpStreet and SpStreetSat19 with Sp-
Sat19 aerial features, when evaluated in whole city of Salvador. The plots shows loca-
tions points that obtained absolute estimation errors < 1.0 in red, and absolute errors

> 1.0.

Figure 34 depicts the results obtained from SpStreet and SpStreetSat19 with Sp-
Sat19 aerial features, the models trained in Sdo Paulo with highlighted results for cell

Table 25 — Results from Sdo Paulo models applied in Salvador, for 84,192 location

points. All Pearson correlation with p-value < 0.001.

Model Aerial Features MSE  RMSE MAE MAE<1.0 Pearsonp
SpSat19 zoom = 19 2,025.66 45.00 31.63 102 (0.1%) 0.20
SpStreet - 825.51 28.73 25.39 87 (0.1%) 0.22

SpStreetSat19 SpSat19 1,489.57 3859 2498 18,539 (22%) 0.19
SpStreetSat19 RioSat19 1,146.91 33.87 24.21 20,211 (24%) 0.18

MultiCity-StreetSat19 SpSat19 8,071.25

89.84 60.69 391 (0.4%) 0.21
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region estimations, when applied in whole city of Salvador. Plots depict actual versus
estimated correlation, with locations points that obtained the estimated absolute error
of < 10.0 selected in red.

Figure 35 presents the hot-spots maps created with Sdo Paulo models SpStreet,

Table 26 — Results from Sao Paulo models applied in Salvador, for 834 cells region
estimations. All Pearson correlation with p-value < 0.001.

SpStreetSat19 with SpSat19 aerial features while evaluating dengue fever cell region
estimations in whole city of Salvador. Actual values of dengue are depicted in 35a for

Model Aerial Features MSE RMSE MAE MAE <10.0 Pearsonp
SpSat19 zoom = 19 1,098.04 33.13 26.86 146 (17%) 0.33
SpStreet - 683.53 26.14 23.87 93 (11%) 0.28

SpStreetSat19 SpSat19 726.75 26.96 20.52 277 (33%) 0.31
SpStreetSat19 RioSat19 847.25 29.11  23.05 257 (30%) 0.23

MultiCity-StreetSat19 SpSat19 4564.49 67.56 54.11 36 (0.4%) 0.33
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Figure 34 — Cell region estimations with Sao Paulo models applied in the whole city of
Salvador. All Pearson correlation p with p-value < 0.001

comparison.

Table 27 summarizes the results of applying Sdo Paulo models in the test set from
Rio de Janeiro, for 24, 320 location points, and Table 28 shows the results by cell region
estimation, for 352 test cells over Rio de Janeiro territory. Column “Aerial Features”
denote which network model produced the aerial features to be used in the evaluation,
when applicable.

Figure 36 depicts the results obtained from SpStreetSat19 with RioSat19 aerial
features, trained in Sdo Paulo with highlighted results for overall location points and
cell region estimations, when applied in the test set of Rio de Janeiro. Plots depict
actual versus estimated correlation, with locations points that obtained the estimated
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tions are withing the original range, while estimations from SpStreetSat19 extrapolate
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absolute error of < 1.0, for overall correlation, and absolute error of < 10.0 for cell
estimation selected in red.

5.2.3 Districts Risk Ranking Evaluation Results

The next Subsections present the resulting dengue risk ranking evaluation with
Risk-biased Overlap (RBO) metric, for proposed models from Rio de Janeiro and Séo
Paulo that presented better results in cell region estimation evaluation, from the appli-
cation of models on same cities and the portability of the models to other cities. The
next Subsections presents the risk ranking lists evaluations for each studied city.

Table 27 — Results from Sao Paulo models applied in Rio de Janeiro test set, for 24, 320

location points. All Pearson correlation with p-value < 0.001.

Model

Aerial Features

MSE RMSE MAE MAE <1.0 Pearsonp
SpSat19 zoom = 19 39,5681.79 198.95 143.33 192 (0.7%) 0.09
SpStreet - 38,316.95 195.74 141.56 234 (0.9%) 0.45
SpStreetSat19 RioSat19 36,894.51 192.08 141.55 1,133 (4.6%) 0.58
SpStreetSat19 SpSat19 39,559.62 198.90 143.36 860 (3.5%) 0.10

Table 28 — Results from Sdo Paulo models applied in Rio de Janeiro, for 352 test cells
region estimations. All Pearson correlation with p-value < 0.001.

Model Aerial Features MSE RMSE MAE MAE <10.0 Pearsonp
SpSat19 zoom =19 29,786.61 17259 104.43 85 (24%) 0.34
SpStreet - 28,875.57 169.92 102.10 97 (27%) 0.55

SpStreetSat19 RioSat19 27,964.97 167.23 101.87 102 (28%) 0.70
SpStreetSat19 SpSat19 29,698.15 172.33 104.15 86 (24%) 0.31
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5.2.3.1 Dengue Risk Ranking Estimations in Rio de Janeiro

Table 29 presents the output list of higher dengue estimations neighborhoods in
Rio de Janeiro, from the models that presented the best results for this city. They are
compared to their actual value risk neighborhoods rank, from higher incidence to lower
incidence, including the resulting dengue risk neighborhood list from the application
of Sao Paulo StreetSat model in Rio de Janeiro using aerial features from RioSat19.
Table 30 enumerates the RBO scores between the actual value ranked lists and each
estimated list, considering the weights of the positions of neighborhoods in the list.

5.2.3.2 Dengue Risk Ranking Estimations in S&o Paulo

Table 31 presents the output list of higher dengue estimations districts in Sao Paulo,
from models that presented the best results for this city compared to their true value
dengue risk district rank, from higher incidence to lower incidence. Table 32 enumer-
ates the RBO scores between the two ranked lists. Next, the estimated risks ranked
lists from 281,184 city points of whole Sdo Paulo, obtained with StreetSat models
trained in Rio de Janeiro, are presented in Table 33 for comparison. The aerial features
from SpSat19 were also tested using RioStreetSat19, and evaluation was performed
only in the test set. Table 34 enumerated the resulting RBO metric from the compar-
ison of the actual ranked list from all Sdo Paulo and estimated lists for the city by the
proposed models.

Table 29 — Dengue risk neighborhood ranking for Rio de Janeiro city, applied in the test
set of same city.

Risk Ranking True Values RioStreetSat21  RioStreetSat19 SpStreetSat (RioSat19)

1 Campo Grande Campo Grande Campo Grande Campo Grande
2 Bangu Santa Cruz Santa Cruz Santa Cruz

3 Copacabana Bangu Realengo Bangu

4 Realengo Realengo Bangu Olaria

5 Iraja Guaratiba Copacabana Realengo

6 Rocinha Padre Miguel Iraja Bras de Pina
7 Padre Miguel Iraja Olaria Iraja

8 Santa Cruz Cosmos Padre Miguel Guaratiba

9 Guaratiba Copacabana Bras de Pina Cavalcanti
10 Cosmos Olaria Tijuca Tijuca

Table 30 — Rank-biased Overlap (RBO) applied in true values dengue risk neighbor-
hoods list and estimated dengue risk neighborhoods from Rio de Janeiro and Sao
Paulo models, applied in Rio de Janeiro test set.

Model Features Agreement RBO Residual
RioStreetSat21 RioSat21 0.90 0.74 2.68¢7?
RioStreetSat19 RioSat19 0.70 0.72  2.68¢7°
SpStreetSat19  RioSat19 0.60 0.67 2.68¢7?
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5.2.3.3 Dengue Risk Ranking Estimations in Salvador

Table 35 presents the estimated risk ranked lists from Salvador districts using Rio
de Janeiro models that returned the best results for Salvador cell region estimation.
Next, Table 36 shows the estimated dengue risk list from S&o Paulo models applied
to Salvador. Risk rankings returned from MultiCity-StreetSat19 model evaluated with
Salvador using aerial features are enumerated in 37. Table 38 enumerates RBO metric
results for actual dengue risk ranked list and each estimated list.

Table 31 — Dengue risk district ranking for Sdo Paulo city, applied in the test set of

same city.

Risk Ranking True Values SpStreetSat19
1 BRASILANDIA BRASILANDIA
2 RAPOSO TAVARES ITAQUERA
3 ITAQUERA ARTUR ALVIM
4 SE FREGUESIA DO O
5 ITAIM PAULISTA JABAQUARA
6 FREGUESIADO O  CACHOEIRINHA
7 ARTUR ALVIM JOSE BONIFACIO
8 ARICANDUVA GRAJAU
9 JABAQUARA PEDREIRA
10 PENHA CAMPO LIMPO

Table 32 — Rank-biased Overalap (RBO) applied in true values dengue risk neighbor-
hoods list and estimated for Sdo Paulo models, in Sao Paulo.

Model Features Agreement RBO Residual
SpStreetSat19 SpSat19 0.50 0.62 3.99¢7°

Table 33 — Dengue risk district ranking for whole Sao Paulo city, estimated from Rio
de Janeiro models using aerial features from RioSat21 and RioSat19. For SpSat19
features, only test set is evaluated.

Risk Ranking True Values RioSat19 RioStreet RioStreetSat19
1 BRASILANDIA GRAJAU GRAJAU GRAJAU
2 ITAQUERA PARELHEIROS JARAGUA JARAGUA
3 RAPOSO TAVARES JARAGUA JD ANGELA  SAPOPEMBA
4 RIO PEQUENO TREMEMBE  JD SAO LUIS PIRITUBA
5 CID ADEMAR JD ANGELA CID DUTRA  BRASILANDIA
6 CANGAIBA CID DUTRA TREMEMBE JD ANGELA
7 CID LIDER SAPOPEMBA SAPOPEMBA CID ADEMAR
8 SACOMA PIRITUBA PIRITUBA CID DUTRA
9 JABAQUARA ITAQUERA ITAQUERA TREMEMBE

FREGUESIADOO JDSAOLUIS JABAQUARA  JABAQUARA

—_
o

Table 34 — Rank-biased Overalap (RBO) applied in true values dengue risk neighbor-
hoods list and estimated for whole Sao Paulo city, with Rio de Janeiro models.

Model Features  Agreement RBO Residual
RioSat19 zoom = 19 0.10 0.14 3.99¢°°©
RioStreet - 0.20 0.17  3.99¢6

RioStreetSat19 RioSat19 0.30 0.24 3.99¢° 6
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Table 35 — Dengue risk district ranking for whole Salvador city, estimated from Rio de
Janeiro models.

Risk Ranking True Values RioSat21 RioStreetSat19 (SpSat19)
1 SANTO ANTONIO PIRAJA PIRAJA
2 SAO CAETANO SAO CAETANO ITAPOA
3 PIRAJA ITAPOA SAO CAETANO
4 BROTAS VALERIA AMARALINA
5 S. TOME/PARIPE  SAO CRISTOVAO VALERIA
6 ITAPOA AMARALINA BROTAS
7 PENHA S. TOME/PARIPE SAO CRISTOVAO
8 PERIPERI BROTAS SANTO ANTONIO
9 AMARALINA VITORIA VITORIA
10 VITORIA SANTO ANTONIO PENHA

Table 36 — Dengue risk district ranking for whole Salvador city, estimated from Sao
Paulo models, with model SpStreetSat19 using aerial features from SpSat19.

Risk Ranking True Values SpSat19 SpStreet SpStreetSat19
1 SANTO ANTONIO ITAPOA PIRAJA ITAPOA
2 SAO CAETANO SAO CAETANO VALERIA SAO CAETANO
3 PIRAJA PIRAJA SAO CAETANO PIRAJA
4 BROTAS SAO CRISTOVAO ITAPOA SAO CRISTOVAO
5 S. TOME/PARIPE AMARALINA SAO CRISTOVAO BROTAS
6 ITAPOA BROTAS AMARALINA VALERIA
7 PENHA VALERIA BROTAS AMARALINA
8 PERIPERI SANTO ANTONIO  S. TOME/PARIPE ~ SANTO ANTONIO
9 AMARALINA PENHA SANTO ANTONIO PENHA
10 VITORIA VITORIA VITORIA VITORIA

Table 37 — Dengue risk district ranking for whole Salvador city, estimated from MultiCity-
StreetSat19 model using aerial features from RioSat19 and SpSat19.

Risk Ranking True Values MultiCity (RioSat19) MultiCity (SpSat19)

1 SANTO ANTONIO ITAPOA ITAPOA

2 SAO CAETANO PIRAJA PIRAJA

3 PIRAJA VALERIA SAO CAETANO
4 BROTAS SAO CAETANO SAO CRISTOVAO
5 S. TOME/PARIPE  SAO CRISTOVAO VALERIA

6 ITAPOA SANTO ANTONIO BROTAS

7 PENHA BROTAS AMARALINA

8 PERIPERI S. TOME/PARIPE ~ SANTO ANTONIO
9 AMARALINA PENHA PENHA

10 VITORIA AMARALINA VITORIA

Table 38 — Rank-biased Overalap (RBO) between Salvador districts lists with Rio de
Janeiro and Sao Paulo models.

Model Features  Agreement RBO Residual
RioSat21 zoom = 21 0.80 0.64 0.02
RioStreetSat19 SpSat19 0.80 0.60 0.02
MultiCity-StreetSat19  RioSat19 0.80 0.59 0.02
SpSat19 zoom =19 0.80 0.65 0.02
SpStreet - 0.80 0.60 0.02
SpStreetSat19 SpSat19 0.80 0.66 0.02

MultiCity-StreetSat19  SpSat19 0.80 0.61 0.02




6 ANALYSIS AND DISCUSSION

This Chapter presents an analysis of the results obtained from the evaluation of
the proposed models for dengue incidence rates estimation using urban images and
computer vision models for Rio de Janeiro, Sdo Paulo, and Salvador, for both modalities
in the city itself or with the portability of the models. Section 6.1 discusses the results
obtained between the models, reviewing the enrolled hypotheses presented in Chapter
3 and arguing the evidence by which the models presented better results among all the
proposed ones. Section 6.2 presents a comparison of the performance of the proposed
models and the results reported in of dengue prediction models related works, and
for inferring latent variables using urban images within the area of visual computing
sociology. The last Section 6.3 discuss the possibilities of using the proposed models
within the context of public policies and methods to prevent and combat dengue fever
epidemics in Brazilian urban centers.

6.1 Comparison of Proposed Models

The proposed models for Rio de Janeiro city, trained and evaluated with dengue
autochthonous cases from 2010 to 2014 geographically distributed and aggregated
by cell with a 80 x 80 grid data structure, using as input street-level and urban aerial
images, presented as results Pearson Correlation varying from p = 0.19 to p = 0.65,
including baseline and Deep ConvNet models, for overall location points evaluation
and Pearson Correlation varying from p = 0.29 to p = 0.78 for cell region estimation
evaluation methodology.

6.1.1 Baseline Models Comparison

In baseline aerial feature models, with results presented in Table 17, Aerial HOG-
LR, Aerial GIST-LR and Aerial HOG-NN presented low Pearson Correlations p = 0.19,
p = 36 and p = 26 for overall location points evaluation, and p = 0.29, p = 0.46 and
p = 0.38 for cell region estimation. This results indicates low correlations between
actual and estimated values using HOG designed descriptors, and with GIST, a near
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noticeable correlation, for both evaluation methods.

The use of Neural Network slightly improves Pearson p when compared with a lin-
ear model in regressor block using HOG descriptors, although the number of evaluated
location points that the model Aerial HOG-LR achieved M AFE < 1.0 is 14 points ahead
than the Aerial HOG-NN. The model Aerial GIST-LR with GIST designed descriptor
presented better results than models with HOG descriptors for aerial approaches.
The GISTs are global descriptors, i.e., they are computed over the entire input im-
age and were designed for scene recognition problems, and their feature has fewer
hyper-parameters to adjust when compared with HOG descriptors. On the other hand,
HOG designed descriptors were designed for object recognition, specifically human
detection, and can be classified as a region or local descriptor. Compared to GIST,
HOG descriptors have more hyper-parameters to adjust and bigger feature size when
used for a whole scene. The fact that HOGs have a higher number of hyper-parameters
to adjust, and the different purposes of use may have influenced the obtained results.

Baseline street-level feature models Street HOG-LR and Street HOG-NN presented
Pearson correlation p = 0.44 and p = 0.46 for overall location points evaluation and
p = 0.57 and p = 0.59 for cell region estimation evaluation. The Neural Network multi-
ple regressor approach presented better results when compared to linear regression,
for both evaluation methods, including the number of location points evaluation that
achieved M AFE < 1.0 = 142, with a difference of 22 points ahead of linear model. The
different methods of combining street-level descriptors resulted from different camera
views may have influenced the obtained results and should be further investigated.

Between baseline proposed models, the use of street-level features as input entails
better results when compared to models with aerial features. This indicates that street-
level images, when combined with different camera views, leads to better results than
single aerial imagery models. On the other hand, the results obtained from all baseline
models, and the hot-spot maps produced by the baseline models with cell region es-
timations, depicted in Appendix C, Figures 58 and Figure 61, indicates that designed
descriptors, specially HOG descriptors, are insufficient to estimate dengue incidence
rates. Also, designed descriptors were unable to estimate a broader range of estimated
values, unable to infer values close to 0 or ahead of 270 dengue occurrences.

6.1.2 Deep Convolutional Neural Network Models Comparison

Deep ConvNets for aerial images proposed models achieved Perason Correlation
p = 64 for RioSat21 and RioSat20, and p = 0.61 for RioSat19 in overall location points
evaluation (Table 17), and p = 0.76 for RioSat21 and RioSat20, and p = 0.72 for for
RioSat19 in cell region estimations (Table 19). In RioSat20 and RioSat19, location
points evaluation with M AE < 1.0 are 33 points ahead of RioSat21. Between exclu-
sively aerial models for Rio de Janeiro, RioSat21 achieved the lowest absolute errors



99

MAE = 7158, RMSE = 110.47 for overall location points evaluation, and RioStreet20
achieved the lowest absolute errors M AE = 56.3, RMSE = 95.83 for cell region esti-
mations. Overall, the RioSat with zoom levels zoom = {21, 20, 19} models have roughly
similar performance when applied to Rio de Janeiro, with zoom = 20 in RioSat20 being
able to estimate values with a wider range of dengue occurrences values, between all
proposed models, as depicted in Appendix D, Figure 66c.

For Sao Paulo (Table 18), aerial SpSat19 model with zoom zoom = 19 presented
lower Pearson Correlation p = 0.51 when compared with Rio de Janeiro Sat models,
albeit the number of location points evaluated with M AE < 1.0 are significant more,
totaling 1,726 examples. The overall absolute errors M AE = 22.70, RMSE = 47.55
are lower than Rio de Janeiro Sat models, which can be explained by the fact that
dengue distribution values are lower than in Rio de Janeiro.

From all Rio de Janeiro Deep ConvNet models, RioStreet presented the lower Pear-
son p = 0.58 for location points estimations and p = 0.70 for cell region estimation when
compared to aerial imagery models. When comparing the total location points that
achieved M AE < 1.0, RioStreet presented 258 points with 6 points ahead of RioSat21,
but 27 points below RioStreet20 and RioStreet19. Since the street-level baseline mod-
els presented better results compared to aerial baseline models, there are evidences
that, in the case of Deep ConvNet models, the feature concatenation approach for
street-level images chosen for Street architecture may not be the best choice for this
task, and should be further investigated.

The fusion StreetSat models that combine street-level and aerial features as inputs,
for Rio de Janeiro, achieved Pearson Correlation from p = 0.59 to p = 0.65 for overall
location points estimation, and p = 0.75 to p = 0.78 in cell region estimations. The
lowest correlation p = 59 , for overall location points, and p = 0.75 for cell region es-
timationis, is resulted from MultiCity-StreetSat19 model, that uses features extracted
from RioSat19 model. The best StreetSat model for Rio de Janeiro, and between
all proposed models, is RioStreetSat21, when considering absolute errors and Pear-
son Correlation as metrics, with M AE = 69.16 for overall location points estimation,
MAE = 51.21 for cell region estimation and Pearson Correlation p = 0.65, p = 0.78 as
metrics. Model RioStreetSat19 obtained the highest number of location points and cell
regions that achieved M AE < 1.0 = 1,252 and M AFE < 10.0 = 112 respectively.

The use of aerial image features together with street-level features increased the
correlation between the actual and estimated dengue occurrences values, as pre-
sented in Table 17 and 19, for both overall and cell region estimation. While mantaining
correlation, StreetSat models were able to estimate lower values than their original Sat
models, although the maximum dengue occurrence estimated values slightly reduced,
for cell region estimations, presented in Figure 26.

With Sdo Paulo, the SpStreet model reflects the same behaviour of RioStreet when
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evaluated with Rio de Janeiro, whose Pearson Correlation p = 0.32 for overall location
points evaluation and p = 0.40 for cell region estimation, are lower than SpSat19 model
for the same city, contradicting the results obtained in the experiments with baseline
models. Again, when combining the two features - aerial and street-level - as inputs
in SpStreetSat19 model, the Pearson Correlation for overall location points evaluation
and cell region estimation presents a small increase with p = 0.52 for location points
evaluation and p = 0.61 for cell region evaluation. A somewhat significant rise in lo-
cation points estimations is perceived, with M AE < 1.0, totaling 2,999(9%) of all test
examples, and 149(59%) with M AE < 10.0 for cell estimation of all test cells in Sao
Paulo.

When combining both imagery datasets labeled with dengue incidence rates, from
Rio de Janeiro and Sao Paulo, obtaining the model MultiCity-StreetSat19, the perfor-
mance of this model, in both cities, is somewhat smaller than their StreetSat19 counter-
parts. For Rio de Janeiro, the multiple city model presents Pearson Correlation p = 0.59
for overall location points evaluation and p = 0.54 for cell region estimation, lower than
Sat models, but higher than Street models for this city. In Sdo Paulo, the model re-
sults in Pearson p = 0.48 and p = 0.54 for location points and cell region evaluations,
respectively. In general, the MultiCity-StreetSat19 does not present any performance
addition to the proposed Sat and StreetSat models, only increases Pearson p when
compared with Street models.

When applying the Rank-Biased Overlap (RBO) metric in best models of Rio de
Janeiro RioStreetSat21 and RioStreetSat19 (Table 30), using test set cell estimations,
the resulted agreement, i.e., the size of the intersection between the two ranked lists,
between actual and estimated dengue risk ranking neighborhoods is agreement = 0.90
and agreement = 0.70 respectively, with 0 equal no intersection elements and 1 equal
total intersection. The RBO weighs the position of each estimated neighborhood com-
pared with the actual rank list, and returned RBO = 0.74, residual = 2.687° and
RBO = 0.72, residual = 2.68¢° for each model, meaning that the actual and esti-
mated ranks for each model are similar in 73% and 72%, considering the relevance of
position in which they were placed.

For Sao Paulo (Table 32), the best model SpStreetSat19 presented an agreement
of agreement = 0.50, meaning that there is an intersection in 50% of the actual and
estimated districts, and RBO = 0.62, residual = 3.99¢~°, which indicates that the simi-
larity between the two ranked list districts, considering the relevance of their positions,
is 62%.

6.1.3 Portability of Models

When analyzing the results from Rio de Janeiro models applied in the whole city of
Sao Paulo, presented in Tables 21 and 22, the model that presented better generaliza-
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tion for this city was RioStreet, with Pearson Correlation p = 0.24 for overall location
points estimation and Pearson p = 0.38 for cell region estimations. Moreover, the mod-
els RioSat19 and RioStreetSat19 with RioSat19 aerial features resulted in 1,010(0.3%)
of location points estimations with M/ AE < 1.0 and 9,508(3%) location points estima-
tions with MAE < 1.0. From hot-spots maps produced with those models in Séao
Paulo, depicted in Figure 30, it is possible to visualize that the all models extend the
heat zones to adjacent regions, bearing little resemblance to the original areas, being
RioStreetSat19 with RioSat19 the model closest to the original hot-spots map.

In Salvador (Table 23, 24), when considering the Pearson Correlation p, the Rio
de Janeiro model that generalizes better is RioSat21 with Pearson p = 0.20 for overall
location points estimation and Pearson p = 0.33 for cell region estimations. From
Figures 31 and 32 it is possible to visualize that estimations from Rio de Janeiro models
in Salvador extrapolate the actual values to higher rates, including high values for the
standard deviations of the estimated average incidence per cell region. The worst
model performance is RioStreetSat21 using RioSat21 features, with Pearson p = 0.05,
close to nonexistent correlation between actual and estimated results.

Models from Sao Paulo, when applied in the whole city of Salvador, enumerated
in Tables 25 and 26, presented somewhat better results when compared with their
counterparts in Rio de Janeiro models. For instance, SpStreet performed better than
RioStreet, with Pearson p = 0.22 for SpStreet, against Pearson p = 0.18 for overall loca-
tion points evaluation and p = 0.28 against p = 0.24. SpSat19 performs slightly better
than RioSat19, with Pearson p = 0.20 against Pearson p = 0.19. StreetSat models
from Sao Paulo, including MultiCity-StreetSat19 performed better than StreetSat Rio
de Janeiro models when using aerial features from SpSat19, with Pearson p = 0.21
against p = 0.17 for overall location points evaluation and Pearson p = 0.33 against
p = 0.22 for cell region estimation.

From Figures 33 and 34 it is possible to observe that the maximum overall esti-
mations from Sao Paulo models applied in Salvador are lower than ranges estimated
from Rio de Janeiro, although the standard deviations from average incidence estima-
tions per cell region are similar to Rio de Janeiro models. From the hot-spots pre-
sented in Figure 35, SpStreet model’'s estimation maintain the actual dengue range
from Salvador, while SpStreetSat19, with aerial features from SpSat19, extrapolates
to a higher range. The produced hot-spot maps preserve somewhat the original heat
area, although it has estimated other adjacent areas with higher dengue rates.

Overall, Sao Paulo models performed slightly better than Rio de Janeiro models
when applied in Salvador, including the number of evaluations with M AE < 1.0 for
location points and M AE < 10.0 for cell region estimations. This could be attributed
to the transfer learning technique used, with Sdo Paulo models initialized with Rio
de Janeiro pretrained information. The fact that the model contains adjusted weights
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from more than one city could generalize better for unseen city examples. When Sao
Paulo models are applied back to the original city, Rio de Janeiro, the results maintain
certain significative correlation, as seen in SpStreet when applied in Rio de Janeiro,
with Pearson p = 0.45 and SpStretSat19 with RioSat19 aerial features, with Pearson
p = 0.58 for overall location points correlation and p = 0.55 and p = 0.70 for cell region
estimation.

The application of the RBO similarity metric between actual dengue risk ranking
and estimated dengue risk ranking between districts for the best resulting models in
Salvador (Table 38) resulted in an intersection agreement of agreement = 0.80 for all
models. The best RBO similarity risk rank equal RBO = 0.66, residual = 0.02, meaning
that the similarity between the two actual and estimated ranked lists are 66% similar,
considering the position in which the districts appear and their original position.

In general, models trained in only one city generalize poorly to unseen cities. There
are indications, considering all the scenarios of the presented results, that Sao Paulo
models that use transfer learning with initialization from pretrained Rio de Janeiro
weights generalize better to Salvador than Rio de Janeiro models.

6.1.4 Best Estimations and Attributes Discovering

The best estimations made by the proposed models with absolute error values
< 1.0, in each studied city, were grouped to investigate the possible visual attributes,
i.e., urban elements, that contributed to the results. Figure 37 depicts some aerial and
street-level images examples from estimations with M AE < 1.0 for low dengue inci-
dence rate values, evaluated individually during test stage for the city of Rio de Janeiro,
with the best-resulting model RioStreetSat21. Next, Figure 38 depicts examples of es-
timations with M AE < 1.0 with high dengue incidence rate values, among the best
predictions from the model.

Figure 37 allows the visualization of typical scenarios with low dengue incidence
rates, that can be predicted by the proposed models, in the city of Rio de Janeiro.
From the depicted samples, it is possible to infer that typically green areas, with little
presence of human urban elements, with possible low demographic concentration, are
indicatives of low dengue incidence rates. In Figure 38, the presence of human urban
elements is somewhat higher than in low estimates, with the presence of apartment
buildings.

The same investigation was made in Sdo Paulo and Salvador city. In S&o Paulo,
results were obtained with the best-resulting model SpStreetSat19, and in Salvador
with the test results from SpStreetSat19 using aerial features from SpSat19. Figures
39 and 41 depicts the best predictions, with M AE < 1.0 among the lowest dengue
incidence rates for that city. Figure 40 and 42 shows the best estimations performed
with the proposed model for higher dengue incidence rates.



Figure 37 — Sample of best estimations among the lowest dengue incidence rates in
Rio de Janeiro.

Figure 38 — Sample of best estimations among the highest dengue incidence rates in
Rio de Janeiro.
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Figure 39 — Sample of best estimations among the lowest dengue incidence rates
Séao Paulo.
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Figure 40 — Sample of best estimations among the highest dengue incidence rates in
S&o Paulo.
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Figure 41 — Sample of best estimations among the lowest dengue incidence rates
Salvador.
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Sao Paulo presents more urban elements than Rio de Janeiro in lower dengue
incidence rates examples. In this city, “trees and roads” combination appears at street-
level images among correct lower estimations, even when the aerial images indicate
the presence of near habitations, indicating human activity. The number of dengue in-
cidence rates gradually increases as the number of habitation grows near the analyzed
location point.

In Salvador, the green nature elements, together with roads and a somewhat quan-
tity of habitations near the location point, are the elements present in the sample im-
ages, from the best predictions among lower dengue incidence rates. As Sao Paulo,
the highest correct estimated values present a significant concentration of houses and
apartment buildings near the tested location point surroundings.

In order to quantify these assumptions, the classification labels from Places dataset
from the best results of low and high dengue incidence rates were aggregated by labels
that appear with a higher frequency in low or high dengue incidence rates estimates.
This is a preliminary approach that explores the fact that the street-level features used
to train the proposed models were obtained with DenseNet161-Places network, and
their classification by this network might help understand the attributes that may con-
tribute to the results.

For the city of Rio de Janeiro, Figure 43a presents Places labels that occoured with
more frequency in correct low dengue estimations. Next, Figure 43b shows the Places
labels that where more present in the classification of street-level images from high inci-
dence rates correct estimations. Labels such as “desert-road”, “field-road” and “forest-
road” appears among the first 10 labels for low dengue rates, while “slum”, “loading-
dock”, “promenade”, “street”, “beach-house” and “alley” appears among the top labels
for high dengue rates. Some labels appears in both distributions, e.g., “residential-
neighborhood”, “highway”, “industrial-area’, with high occurrence.

For Sao Paulo, Figures 45a and 45b depicts the Places labels that appeared with
more frequency in low and high dengue estimations, respectively. As presented in Rio
de Janeiro, common labels such as “residential-neighborhood” and “industrial-area’
appears in both high and low distributions. Also similar to Rio de Janeiro, “field-road”,
“desert-road” and “forest-road” labels appears between the most frequent labels in low
dengue incidence. The label “slum” appears in the highest rated labels for high dengue
incidence, but also between the 10 most frequent labels in low dengue rates. The labels
“loading-dock”, “alley” and “street” appears appears between the most frequent labels
in high incidence rates.

In Salvador, low and high dengue incidence rate localities presented the class labels

“residential-neighborhood”, “industrial-area”, “slum” and “highway”. Again, as in Rio de

Janeiro and Sao Paulo, the labels “desert-road”, “forest-road” and “field-road” appears
with high frequency among the top-10 Places classes in low dengue incidence rate



107

Using street-level urban imagery is as effective as using urban satellite
imagery for estimating dengue-associated rates.

Following the specific enrolled hypotheses, presented in Chapter 3:
1.

correct estimations. Other labels appear in both low and high estimations, without any
o H.

conclusive significance for the different distributions.

6.1.5 Enrolled Hypotheses Discussion
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e H. 2. The combination of street-level and urban aerial imagery contributes to bet-
ter results in estimating dengue-associated indices compared to the independent
use of each image domain.

as inputs are useful as much as the use of aerial images, performing somewhat worse
than models with aerial imagery only. This observed behavior from street-level models
using deep features could be explained by choice of Street architecture topology, rather

According to the Deep ConvNet models trained and evaluated in Rio de Janeiro and
Sao Paulo, the use of both aerial and street-level features slightly increase the reported

than the ability of urban images as predictors itself, and needs further investigation.
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175001
15000

e H. 3. Dengue estimation models trained in a single city are able to generalize
estimation to other cities.

From the evaluations made with the proposed models, trained in a single city, and
models using transfer learning and multiple cities image data, it was shown that models
that have weights from more than one city generalize better to unseen cities. The Deep
ConvNets were able to extract visual features, while training in one city, that could be

Pearson Correlation p, M AE and evaluations with MAFE < 1.0 when compared with
transferred to a certain extent, for other unseen cities.

their counterparts using only aerial and street-level images.
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e H. 4. It is possible to extract, from the models that use street-level and aerial im-
ages data, informative attributes for dengue prevention not yet explored in urban
areas that correlate with the occurrence of dengue.

Preliminary experiments on elements present in street-level images did not yield
any significant results for the causality of correct low or high predictions. An investiga-
tion using methodologies for visualization and interpretation of deep learning models is
needed, to understand which elements in urban images influence high or low dengue
estimates. The interpretability of Deep Neural Networks models is difficult, mostly due
to the high number of hyperparameters compared to simple linear approaches, giving
these models a “black box” reputation. Methods for interpretability of deep learning
models are still an open problem (MONTAVON; SAMEK; MULLER, 2018).

e H. 5. Deep Convolutional Neural Networks (Deep ConvNet) are suitable for use
in the proposed models because they can learn and extract attributes from urban
images, and estimate dengue-associated rates using these attributes.

According to the performed evaluations, Deep ConvNet models surpassed the re-
sults from baseline proposed models, indicating that deep features are more suitable
for dengue estimation rates, considering the metrics of Pearson Correlation p, M AE
and with evaluations with M AE < 1.0. This corroborates with related works results that
showed the deep features advantages compared to designed descriptors in different
tasks since the convolutional neural network layers can learn the best features for the
specific problem.

6.2 Comparison with Related Works

After the evaluation of the models and the analysis of the results, RioStreetSat21,
the model that presented the best Pearson Correlation p, applied in Rio de Janeiro
for dengue incidence rates estimation, was compared with related works of the fields
Visual Computational Sociology and dengue fever prediction models. From visual com-
putational sociology models, only the best results from related regression works that
reported Pearson p and p? (R?) were compared with the present proposed model.

Table 39 presents the results from computer vision models in related works that infer
socioeconomic variables and health-related indexes. Results are sorted by decreas-
ing Pearson p. The proposed model RioStreetSat21 performs somewhat worse than
LIU et al. (2017); JEAN et al. (2016); NAIK (2017) proposed models. When compared
with SUEL et al. (2019) works, the proposed RioStreetSat21 model performs worse
than the authors’ model when compared to the Mean Income latent variable. However,
the proposed model performs relatively equal to the authors’” model when compared
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Table 39 — Results from the best proposed model compared with Visual Computational
Sociology related works reported Pearson p and R? values. All Pearson p with p-value

< 0.001
Author Model Goal Attributes Pearsonp R?
Incention V3 House Attributes,
(BENCY et al., 2017) base% House Pricing Points of interest, 0.95 0.91
Aerial Images
. Double-column CNN  Perceived .
(KANG; KANG, 2016) (AlexNet based) Safety Score Street-level images 0.90 0.81
(LIU et al., 2017) &llje'\:;\ﬁ{et based) Crime Rates Street-level images 0.90 0.81
(JEAN et al., 2016) AlexNet based IEZSQ(}‘_I,apita Aerial images 0.87 0.75
(SUEL et al., 2019) VGG16 based Mean Income Street-level images 0.86 0.74
StreetScore Perceived .
(NAIK, 2017) (AlexNet based) Safety Score Street-level images 0.85 0.72
Linear Hedonic Model Hedonic Attributes
(LAW; PAIGE; RUSSELL, 2018) Deep ConvNet House Pricing Aerial Images ’ 0.84 0.70
with 4 to 12 layers. 9
(SUEL et al., 2019) VGG16 based Health dep_nvatlon Street level images 0.79 0.62
and disability
RioStreetSat21 DenseNet161 based Dengue Incidence Rates Stre:et-_level and 0.78 0.61
Aerial images
) Bag of Features
(NAIK et al., 2014) StreetScore Perceived of Designed 073 054
(AlexNet based) Safety Score ”
Descriptors
Human Judments
(ORDONEZ; BERG, 2014) DeCaf Sﬁgﬁ:ﬂfg;:afe”ess’ Strect-level images 072 052
and whealth.
(SUEL et al., 2019) VGG16 based Self Reported Health Street-level images 0.66 0.44
Linear Hedonic Model
; ; , eep ConvNet ouse Pricing erial images . .
LAW; PAIGE; RUSSELL, 2018) D ConvN H Prici Aerial i 0.40 0.16
with 4 to 12 layers.
Linear Hedonic Model
(LAW; PAIGE; RUSSELL, 2018) Deep ConvNet House Pricing Street-level images 0.24 0.06

with 4 to 12 layers.

to health deprivation and disability, and better than SUEL et al. (2019) model, when
compared to “self reported health” latent variable. Also, the proposed model RioStreet-
Sat21 performs worse than house pricing proposed that use house hedonic attributes
together with street-level and aerial images, and better when the same models use
only street-level or aerial images as inputs.

Table 40 enumerates the results from dengue incidence rates prediction and fore-
casting related works compared with the best result proposed model RioStreetSat21,
with results are sorted by decreasing Pearson p. When comparing RioSatStreet21
with dengue incidence rates week and year forecasting models, the proposed model
RioStreetSat21 performs worst than works from GUO et al. (2017); ASHBY et al.
(2017); SCAVUZZO et al. (2017), that use satellite clime-related attributes. With mod-
els that use socioeconomic attributes, such as unemployment and household density,
RioStreetSat21 performs somewhat better than TEURLAI et al. (2015); ANGGRAENI
et al. (2017); LAUREANO-ROSARIO et al. (2017) related works.
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Table 40 — Results from the best proposed model compared with dengue incidence
rates prediction and forecasting models from related works, with reported Pearson p
and R? values. All Pearson p with p-value < 0.001

Author Model Goal Attributes Pearsonp R?
Meteorological Data,
Dengue Week
(GUO et al., 2017) Support Vector Incidence Search Query 099  0.98
egression Forecasting Gov. Survellle}nce
Data from Baidu
Land Surface
Temperature (LST),
Poisson Model, Dengue Annual Surface
(ASHBY et al., 2017) Boosted Incidence Reflectance Daily, 0.99 0.97
Regression Trees Forecasting Enhanced
Vegetation Index,
Tropical Rainfall
Normalized Difference
of Vegetation Index
Oviposition of (NDVI),
(SCAVUZZO et al., 2017) Neural Networks Aedes Aegipty Normalized Difference 0.98 0.97
Water Index (NDWI),
Land Surface
Temperature (LST)
. Der]gue Street-level and
RioStreetSat21 DenseNet161 based Incidence Aerial images 0.78 0.61
Rates
Support Vector Depgue .
(TEURLAI et al., 2015) . Incidence Activity Unenployment 0.76 0.58
Regression
Rates
Dengue
(TEURLAI et al., 2015) Support Vector Incidence Number of people 0.74 055
Regression R per household.
ates
Dengue Rainfall and
(ANGGRAENI et al., 2017) Linear Regression Incidence Ti 0.66 0.44
imelLag
Rates
Precipitation,
Minimum Air
Dengue Temperature,
(LAUREANO-ROSARIO et al., 2017) Linear Regression Incidence Humidity, 0.65 0.42
Rates and SST
(Sea Surface
Temperature)
Support Vector Depgue
(TEURLAI et al., 2015) R . Incidence Mean Temperature 0.62 0.38
egression
Rates
Dengue Temperature
(ANGGRAENI et al., 2017) Linear Regression Incidence . 0.54 0.29
Rates and Timelag

6.3 Feasibility of the proposed model

The proposed models were designed to be used in dengue incidence estimation
in specific locations, with location point predictions, and in micro-regions, using cell
region estimations. The obtained results showed that, when training a model in a spe-
cific city, aerial images with zoom = 21 are more suitable for dengue estimation in the
same city. Models trained in one city, with transfer learning from other trained cities,
or trained in a multiple-city way, could estimate risk dengue incidence rates with rea-
sonable correlation, for different Brazilian cities. Trained models also can help increase
the estimation and the application of public policies. For the latter, aerial images with
zoom = 19 generalize better to unseen cities.
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Furthermore, using the proposed models with the cell region estimation method-
ology, it is possible to observe hot-spot estimated maps, as well as obtain a ranked
list of neighborhoods or districts that need immediate attention from health agents for
guidance and prevention of dengue epidemics. To illustrate this approach, Figure 46
presents a hot-spot map of dengue incidence rates within cell regions for the city of
Salvador, created with a S4o Paulo model SpStreetSat19 with aerial features from Sp-
Sat19. Although estimations are scaled with a higher maximum rate, it is possible to
observe remnants of the original hot-spot at the same cell region locations. The high
dengue rated cells could be targeted for local public policies in order to prevent a local
outbreak of dengue fever.

Figure 47 exemplify a utility of the proposed models, with the use of resulted risk
ranked lists in Salvador, with the application of S&do Paulo model SpStreetSat19 with
aerial features from SpSat19. On the left, the actual risk ranking of dengue incidence
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Figure 46 — Salvador original hot-spot map (left) of dengue incidence rates, and esti-
mated values (right) with SpStreetSat19 with aerial features from SpSat19.
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Figure 47 — Salvador actual risk ranked list (left) of districts with dengue incidence
rates, and estimated values (right) risk ranked list, with SpStreetSat19 with aerial fea-
tures from SpSat19.
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for districts of Salvador, in the right, the estimated risk ranking of dengue incidence
rates, from the results presented in Table 38. Although the model cannot estimate the
exact number of dengue incidence, two high-risk districts,“S4o Caetano” and “Piraja”
appears in the estimated list, which could be set as target regions by health profes-
sionals and public health policies.



7 CONCLUSION

Identifying places where intervention would be more productive is a central part of
any public policy aiming at preventing dengue from spreading in urban centers. Moti-
vated by this, and leveraged by the recent research area Visual Computational Sociol-
ogy, this Thesis proposed Deep Neural Network models aimed at estimating dengue
incidence rates automatically from urban images. Experiments were carried out with
street-level and aerial images obtained from Google Street View and Maps API ser-
vices, together with historical dengue fever data collected from the Brazilian capitals
Rio de Janeiro (RJ), Sao Paulo (SP), and Salvador (BA).

The next sections enumerates the conclusions and considerations from evaluating
the models, and possible future works related to this research field, as well as methods
that may contribute to better results and topics that need further investigation.

7.1 Evaluation of Models

From the models’ evaluation results, it was possible to conclude that there is in-
formation in street-level and aerial images that makes it possible to estimate dengue
incidence rates in urban centers using these image categories solely as predictors.
The use of combined information from both aerial and street-level domains as inputs
adds more information to the model, allowing better results than their separated use.

It should be observed that models trained and validated in regions of a specific city
perform better in other areas of the same city than in another distinct city. This leads to
the conclusion that the potential of proposed models is restricted to the cities to which
they were fitted. For better results when applied in other cities, one must expose the
model to examples from more than one city or initializing it with weights from models
trained in other cities.

The proposed models are limited to a few exact estimates, i.e., with the absolute
error between actual and estimated values near zero. Even when the correlation be-
tween actual and estimated values is relatively strong, considering all tested examples,
there are only a fraction of absolute errors near zero. Better results are obtained when
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the evaluation is done considering regions larger than a single locality, through cell
regions estimations or ranked lists of administrative districts with high to low dengue
risk. In addition, the proposed models are also limited to estimations without consider-
ing periods of dengue occurrences, i.e., predictions and forecasting, because it is not
possible to specify the date of the images used, nor to choose specific dates and years
to compose blocks of images from a certain period.

Specifically, regarding aspects of the design of proposed models, this Thesis
showed evidence that to extract information from urban imagery, the Deep Convolu-
tional Neural Networks are more suitable than designed descriptors, since it produces
more representative features than descriptors itself. Considering the zoom level of
aerial images, for models trained and tested in the same city, input features from aerial
images with zoom = 21 performed better than aerial images with other zoom values,
and for generalization for other cities, zoom = 19 yielded the best results.

Overall, there is a relative advantage of using urban images when compared to
demographic data, because images are a ubiquitous data domain that, in developing
countries, can be less costly and straightforward to obtain than data collected directly
from the inhabitants of the regions studied, such as in the census research. Street-
level and aerial urban images can be used as a proxy for socioeconomic data, as
demonstrated in related works, and specifically, with dengue incidence rates, with the
results obtained in the experiments performed in the present work. Finally, this work
adds to the Visual Computational Sociology research area by showing that it is possible
to infer more than aesthetics, demographics, and socioeconomic factors from urban
images.

7.2 Future Works

The following presents some possible future works related to the materials and
methods used in this present Thesis.

7.2.1 Aerial and Street-view imagery

Google Street View and Static Maps imagery are continually being updated, and
previously accessed images may become outdated from current ones. To this date,
query for specific date images using the Street and Static APls is not possible. While
this functionality is not available, manually cataloging the date of the images and the
impact that the use of images from different periods has on dengue estimated values
should be considered as future work.

In addition, updating images that could not be accessed because they were un-
available at the time of download should be considered to increase the number of valid
images available in the dataset.



117

7.2.2 Data distribution

This work presented the use of “Quadrat Thematic Mapping” in a grid data structure,
forming a grid map. The following items show possibilities for the grid map exploitation
related to the structure composition:

¢ Different grid data structures shapes (resolution), e.g. 100 x 100, 80 x 80, 40 x
40, resulting in different dengue incidence cell distribution, and their impact in
estimation models.

e Grid maps structure is instantiated using a naive approach, where the resulting
cell aspect ratio is a function of arbitrary lower and upper corners latitude and
longitude coordinates. Composing a grid structure with a specific aspect ratio
should be evaluated and compared with arbitrary grids, for the specific problem
of dengue incidence rates and related problems.

e The results obtain using equal grid resolutions for different cities.

e The performance of grid data structure maps compared to different data distri-
bution methods, i.e., by census sectors, districts or neighborhoods, and different
ranges of covered areas, i.g., circle areas, ellipses, hexagons, perfect squares.

7.2.3 Designed Descriptors

A more extent investigation using the proposed baseline designed descriptors -
Histogram of Oriented Gradients (HOGs) compared with Spatial Envelopes (GIST)
- and the possible hyperparameter tuning involved in the optimization of the models
should be considered, for street-level imagery, since the slightly better results achieved
from GIST descriptors compared with HOGs for aerial feature models.

The different approaches in combining features in Street-level baseline models
should be investigated, evaluating the impact of input image resolution and proposed
an architecture in the obtained results. Furthermore, the GIST descriptor should be
used in place of HOG descriptors, and both results compared.

7.2.4 Deep Convolutional Neural Networks Features
7.2.4.1 Transfer Learning from different architectures and datasets

In this work, it was proposed the use of DenseNet161 using pretrained weights from
Places dataset, as feature extractor for street-level images. The use of different state of
the art architectures for fine-tuning models and using pretrained weights from different
datasets, such as ImageNet, compared to the proposed models in this Thesis, should
be evaluated.
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7.2.4.2 Interpretability of proposed models

A preliminary investigation of which information in urban images is more present
in location points estimations with low or high dengue incidence rates was performed
in this work. Only street-level imagery was investigated due to the feature extraction
technique from DenseNet161 architecture pretrained with the Places dataset. From
this approach, no significant information related to the causality of urban attributes in
correct estimations were found while inspecting Places labels assigned to the street-
level images.

Visualization and interpretation of deep learning models methods should be applied
to extract information from street-level and aerial images according to the resulting
estimated values, such as Gradient-weighted Class Activation Mapping (Grad-CAM)
(SELVARAJU et al., 2017), or more specific for regression problems, the Regression
Activation Map (RAM) (WANG; YANG, 2017).

7.2.5 Regression Neural Network Module

The proposed fully-connected neural networks placed at the regressor model
should be compared with existents models from related works that propose regres-
sion problems using Deep ConvNets as feature extractors. The method applied should
use the proposed models with related work latent variables data and comparing the
results obtained from the author’s proposed model with the present regression models
in this Thesis.

7.2.6 Train and Test Metodology

Finally, a different approach in training and testing the proposed models, such as a
k-fold cross-validation methodology, should be considered. In this method, the valida-
tion set is included in the training set, at each fold model, to increase models’ general-
ization capacity for unseen images in the test set, leveraging the validation set images
also in the model training. This may contribute to better results than those achieved in
this present Thesis.
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Appendix A GRID DATA STRUCTURE PARAMETERS

The developed grid data structure API, named GridMapAPI, to map street lo-
cation points to urban latent variables is available for download and use at https:
//github.com/Vortander/GridMapAPI. The API also includes routines for distributing
and creating train, validation and test datasets.

Tables 41, 42 and 43 enumerate the parameters used for creating the 80 x 80
grid structures for Rio de Janeiro, Sdo Paulo and Salvador respectively, and the geo-
graphic characteristics for each city grid data structure. The territory dimensions were
calculated using the grid data structure map by multiplying the cell area by the number
of cells within the territory, and values from the Brazilian Institute of Geography and
Statistics - IBGE' are provided to verify the calculated dimensions.

Table 41 — Parameters used for creating the 80 x 80 grid structure in Rio de Janeiro
and resulting geographic dimensions including, the territory dimension calculated using
the grid structure compared with IBGE values.

Initial Coordinates Latitude Longitude
Lower Left Corner  -23.091585650000013  -43.80890349999994
Upper Right Corner ~ -22.73487665000009  -43.100445999999764

Cells in Territory Used Cells
Number of Cells 2,673 1,855
Width Height
Cell Dimension 907.52 m 496.36 m
Total Grid Dimension 72.60 km 39.71 km
Cell Area Total Grid Area
Grid Areas 450,456.63 m? 2,882.95 km?
Grid Map IBGE
Territory Dimensions 1,204.07 km? 1,200.26 km?

"https://www.ibge.gov.br/cidades-e-estados/


https://github.com/Vortander/GridMapAPI
https://github.com/Vortander/GridMapAPI
https://www.ibge.gov.br/cidades-e-estados/
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Table 42 — Parameters used for creating the 80 x 80 grid structure in Sdo Paulo and
resulting geographic dimensions, including the territory dimension calculated using the
grid structure compared with IBGE values.

Initial Coordinates Latitude Longitude
Lower Left Corner -24.021281 -46.8460877
Upper Right Corner -23.319459 -46.3517027
Cells in Territory Used Cells
Number of Cells 2,495 1,718
Width Height
Cell Dimension 630.48 m 976.58 m
Total Grid Dimension 50.44 km 78.13 km
Cell Area Total Grid Area
Grid Areas 615,714.16 m? 3,940.88 km?
Grid Map IBGE
Territory Dimensions 1,536.21 km? 1.521,11 km?

Table 43 — Parameters used for creating the 80 x 80 grid structure in Salvador and
resulting geographic dimensions, including the territory dimension calculated using the
grid structure, not including maritime areas, compared with IBGE values, with maritime

areas.

Initial Coordinates Latitude Longitude
Lower Left Corner -13.053447 -38.704311
Upper Right Corner -12.715086 -38.237315
Cells in Territory Used Cells
Number of Cells 1,057 834
Width Height
Cell Dimension 633.28 m 470.83 m
Total Grid Dimension 50.66 km 37.67 km
Cell Area Total Grid Area
Grid Areas 298,167.22 m? 1,908.36 km?
Grid Map IBGE
Territory Dimensions 315.16 km? 693.83 km?




Appendix B TRAIN AND VALIDATION LOSS CURVES
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Figure 48 — Aerial-HOG/GIST-LR model trained and validated in Rio de Janeiro. Pear-
son p-value < 0.001.
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Figure 49 — Street HOG-LR train and validation loss for curves in Rio de Janeiro. All

Pearson p-value < 0.001.
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Figure 50 — Aerial HOG-NN and Street HOG-NN neural networks train and validation

loss for Rio de Janeiro. All Pearson correlation with p-value < 0.001.



B.2 Deep ConvNet Models
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Figure 51 — Train and validation loss curves for Sat models with zoom
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B.2.2 Street Model in Rio de Janeiro
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Figure 52 — Train and Validation loss for Street model in
correlation in best validation epoch with p-value < 0.001.

B.2.3 StreetSat Models in Rio de Janeiro
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Figure 53 — Train and validation loss curves for StreetSat models with zoom = {21, 19}

in Rio de Janeiro. All Pearson correlations p-value < 0.001.



140

B.2.4 Sat Model in Sao Paulo
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Figure 54 — Sat model train and validation loss curves in Sao Paulo, with zoom = 19.
Pearson correlation in best validation epoch with p-value < 0.001.

B.2.5 Street Model in Sao Paulo
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Figure 55 — Street model training process for Sdo Paulo with loss curves. Pearson
correlation in best validation epoch with p-value < 0.001.

B.2.6 StreetSat Model in Sao Paulo
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Figure 56 — StreetSat train and validation loss curves for Sdo Paulo, using aerial fea-
tures from Sat19 and street-level features from DenseNet161-Places. Pearson corre-
lation in best validation epoch with p-value < 0.001.
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Figure 57 — StreetSat “MultiCity” model train and validation loss curves using aerial
and street-level features from Rio de Janeiro and S&o Paulo. Pearson correlation in
best validation epoch with p-value < 0.001.



Appendix C SUPPLEMENTARY RESULTS FROM BASE-
LINE MODELS

C.1 Aerial imagery models

Figure 58 depicts the results obtained for the baseline models when estimating
dengue real value rates from aerial images for location points in test data set, in actual
versus estimated plots, for Aerial HOG-LR, Aerial GIST-LR and Aerial HOG neural

network models, respectively. The plot shows locations points that obtained M AE <
1.0and MAFE > 1.0.
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(a) Aerial HOG-LR (b) Aerial GIST-LR (c) Aerial HOG-NN

Figure 58 — Overall location points correlation results for baseline Aerial HOG/GIST
models. All Pearson correlation p with p — value < 0.001.

Figure 59 depicts the results obtained when aggregating estimates at the cell level,
in actual versus estimated plots, for Aerial HOG-LR, Aerial GIST-LR and Aerial HOG-
NN models, respectively. The plot shows test cells that obtained M AE < 10.0 and
MAE > 10.0, with the standard deviation for each cell depicted in error bars for each
cell. Pearson correlation was computed between actual and estimated dengue cell
values, and is depicted with the tendency line for all 352 test cells in Rio de Janeiro.
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Figure 59 — Cell region estimation correlations for baseline Aerial HOG/GIST models.
All Pearson correlation p with p — value < 0.001.

C.2 Street-level imagery models

Figure 60 depicts the results obtained for the baseline models when estimating
dengue real value rates from street-level images for location points in test data set, in
actual versus estimated plots, for Street HOG-LR linear regression model and Street

HOG-NN with a fully-connected neural network regressor. The plot shows locations
points that obtained MAE < 1.0and MAE > 1.0.
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Figure 60 — Overall location points correlation results for baseline Street HOG models.
All Pearson correlation p with p — value < 0.001.

Figure 61 depicts the results obtained when aggregating estimates at the cell level,
in actual versus estimated plots, for baseline Street HOG-LR and Street GIST-LR pro-
posed models. The plots show test cells that obtained M AFE < 10.0 and M AE > 10.0,
with the standard deviation for each cell depicted in error bars for each cell. Pearson
correlation was computed between actual and estimated dengue cell values, and is
depicted with the tendency line for all 352 test cells in Rio de Janeiro.
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Figure 61 — Cell region estimation correlation results for baseline Street HOG models.
All Pearson correlation p with p — value < 0.001.

C.3 Baseline Hot-Spots

(e) Street HOG-LR (f) Street HOG-NN

Figure 62 — Cell region estimation for baseline aerial and street-level proposed models.
Actual dengue values presented in (a) for comparison.
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Figure 62 illustrate the hot-spots maps of dengue estimations for cell region made
by the baseline proposed models. Actual dengue values are depicted in 62a for com-
parison with aerial and street-level models. Figure 62b depicts the estimations for cell
region with Aerial HOG-LR, with minimum estimation equal to 110.44 and maximum
prediction equal to 209.03 dengue incidence rate. In Aerial GIST-LR (Figure 62c), mini-
mum dengue estimated value equal 42.07 and maximum dengue estimated value equal
272.27.

Figure 62d presents the estimations using model Aerial HOG-NN, with minimum
dengue value estimated equal 105.86 and maximum equal 230.29. Cell estimation
maps with baseline street-level models are presented in Figures 62e and 62f, depicting
ranges from minimum dengue estimated value equal 6.9 and maximum equal 264.04
for Street HOG-LR and a minimum dengue estimated value equal 23.87 and maximum
equal 254.43 for Street HOG-NN.



Appendix D SUPPLEMENTARY RESULTS FROM DEEP
CONVNET MODELS

D.1 Models for Rio de Janeiro

Figure 63 depicts the results obtained from Sat model when estimating dengue
rates for location points in Rio de Janeiro test data set, with actual versus estimated
plots, for different zoom levels zoom = 21,20, 19 of aerial imagery. The plots highlight
locations points that obtained MAE < 1.0 and MAE > 1.0. Figure 64 depicts the
results obtained when aggregating estimates at the cell levels. The plots highlight test
cells that obtained M AFE < 10.0 and M AE > 10.0, with the standard deviation for each
cell depicted in error bars for each cell.

Figure 65a depicts the results obtained for the Street proposed model in Rio de
Janeiro (RioStreet), when estimating dengue real value rates for location points in test
data set, in actual versus estimated points. In overall results for locations points, the
plot shows test examples that obtained the estimations absolute error < 1.0 (high-
lighted) and other points that presented error > 1.0. Figure 65b depicts the results
obtained for the Street proposed model when aggregating estimations of dengue rates
per cells, in actual versus estimated points, for Rio de Janeiro (RioStreet). The plot
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(a) RioSat21, zoom = 21 (b) RioSat20, zoom = 20 (c) RioSat19, zoom = 19

Figure 63 — Sat models overall individual correlation between actual and estimated
values, with different zoom levels, for Rio de Janeiro location points test set. All Pearson
correlation p with p — value < 0.001.
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highlights test cells that obtained aggregated estimations with absolute error of < 10.0.
Pearson correlation was computed between actual cell values and aggregated esti-
mated dengue values, and is depicted with the tendency line.

D.1.1 Hot-Spot Maps

Figure 66 illustrate the hot-spots maps of dengue estimations for cell regions, re-
sulting from the Sat proposed models with different zoom levels for Rio de Janeiro.
Actual values of dengue are depicted in 66a for comparison. Figure 66b depicts the
estimations for cell region with RioSat21, with minimum estimation equal to 15.26 and
maximum prediction equal to 475.13 dengue incidence rate. In RioSat20 (Figure 66b),
minimum dengue estimated value equal 12.24 and maximum dengue estimated value
equal 535.72. Figure 66d presents the estimations using model RioSat19, with mini-
mum dengue value estimated equal 7.14 and maximum equal 475.92.

Figure 67 illustrate the hot-spots maps of dengue estimations for cell regions, result-
ing from the Street proposed models trained and evaluated in Rio de Janeiro. Actual
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Figure 64 — Sat models correlation between actual and estimated values for each test
cell in Rio de Janeiro test set, calculated using the mean average between all test
points inside a cell, for different zoom levels. All Pearson correlation p with p — value <
0.001.
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Figure 65 — (a) Overall correlation, from results of RioStreet model, between actual
and estimated values for each location point. (b) Cell region estimation correlation,
from results of RioStreet model, between actual and estimated values for each location
point. All Pearson correlation p with p — value < 0.001.
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values of dengue are depicted in 67a for comparison. Figure 67b depicts the estima-
tions for cell region with RioStreet, with minimum estimation equal to 5.27 and maximum
prediction equal to 304.81 dengue incidences.

D.2 Models for Sao Paulo

Figure 68 depicts the results obtained from Street model trained and tested with
Sao Paulo dengue fever data, when estimating rates for location points in test data set,
and cell region estimation, in Figure 68b, with actual versus estimated plots. The plots
highlight locations points that obtained the estimated absolute error of < 1.0 and < 10.0
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(c) RioSat20 (d) RioSat19

Figure 66 — Cell region estimation from Sat models trained and tested over Rio de
Janeiro: (a) actual dengue values for each test cell, and (b)-(d) the resulting maps
obtained with different zooms levels.
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Figure 67 — Cell region estimation with Street model for Rio de Janeiro test set cells
(a) actual dengue values and (b) predicted.
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(a) Overall Locations (b) Cell Region

Figure 68 — (a) Overall correlation, from results of Sdo Paulo models, between actual
and estimated values for each location point. (b) Cell region estimation correlation,
from results of Sao Paulo models, between actual and estimated values for each loca-
tion point. Pearson correlation with p-value < 0.001.

for cell estimation. Pearson correlation was computed between actual and estimated
dengue values, and is depicted with the tendency line.

D.2.1 Hot-Spot Maps

Figure 70 presents the hot-spots maps of dengue fever estimations for cell region for
all models trained and evaluated in Sdo Paulo Street model. Actual values of dengue
are depicted in 70a for comparison.

D.3 Multiple Cities Model

Figure 69 and 71 depicts the results obtained from StreetSat model trained and
tested with Rio de Janeiro and Sao Paulo dengue fever data (MultiCity-StreetSat19),
when estimating rates for location points and cell region estimations in test data set,
with actual versus estimated plots. The plots highlight locations points that obtained the
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(a) MultiCity-StreetSat19 results (b) MultiCity-StreetSat19 results
in Rio de Janeiro. in Sdo Paulo.
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Figure 69 — Overall correlation from results of MultiCity-StreetSat19, between actual
and estimated values for each location point in Rio de Janeiro and Sao Paulo. Pearson
correlation with p-value < 0.001.
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(a) Actual dengue rates (b) SpStreet

Figure 70 — Cell estimation maps with Sao Paulo Street model (a) actual values for
dengue fever rates and (b) resulting estimated dengue values for test set cells.
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estimated absolute error of < 1.0 and cell estimation regions with absolute error < 10.0.
Pearson correlation was computed between actual and estimated dengue values, and

is depicted with the tendency line.
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(a) MultiCity-StreetSat19 in Rio (b) MultiCity-StreetSat19 in Sao
de Janeiro. Paulo.

Figure 71 — Overall correlation from results of MultiCity-StreetSat19, between actual
and estimated values for each location point in Rio de Janeiro and Sao Paulo. Pearson
correlation with p-value < 0.001.



151

D.3.1 Hot-Spot Maps

Figures 72 and 73 presents the hot-spots maps of dengue fever estimations for
cell region for MultiCity-StreetSat19 model evaluated in Rio de Janeiro and Sao Paulo.
Actual values of dengue for Rio de Janeiro are depicted in Figure 72a, and for Sao
Paulo in Figure 73a for comparisons. Figure 72b depicts the estimations for cell region
with MultiCity-StreetSat19 model in Rio de Janeiro, with minimum estimation equal
to 4.7 and maximum prediction equal to 503.56 dengue incidence rate. In MultiCity-
StreetSat19 model in Sao Paulo (Figure 73b), minimum dengue estimated value equal
5.49 and maximum dengue estimated value equal 303.47.

(a) Actual dengue in Rio de Janeiro (b) MultiCity-StretSat19

Figure 72 — Cell estimation maps with MultiCity model in Rio de Janeiro (a) actual
values for dengue fever rates and (b) resulting estimated dengue values for test set
cells. Actual dengue rates ranges from 0 to 1, 280, and estimated values are within the
actual range, reaching at maximum shades of yellow in the color scale.
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(a) Actual dengue in Sdo Paulo (b) MultiCity-StretSat19

Figure 73 — Cell estimation maps with MultiCity model in Sao Paulo (a) actual values for
dengue fever rates and (b) resulting estimated dengue values for test set cells. Actual
dengue rates ranges from 0 to 404, and estimated values are within the actual range,

reaching at maximum shades of red in the color scale.



Appendix E SOURCE CODES

The developed grid data structure APl, named GridMapAPI, to map street location
points to urban latent variables, including routines for train, validation and test datasets
distribution, is available at:

e https://github.com/Vortander/GridMapAPI

Baseline and Deep Convolutional Neural Networks architectures proposed in this
work, including dataloader classes for different set of images and features, are available
at:

e https://github.com/Vortander/VisualRegressionAPI

Datasets and trained models in Rio de Janeiro and Sao Paulo for dengue incidence
estimation will be avaliable at:

e https://github.com/Vortander/DeepDengue


https://github.com/Vortander/GridMapAPI
https://github.com/Vortander/VisualRegressionAPI
https://github.com/Vortander/DeepDengue
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