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RESUMO 

 

SANTOS, Cristiano Flores dos. Compressão de Nuvens de Pontos Dinâmicas: Uma Abor-
dagem Eficiente para a Etapa de Predição. 2020. 152 f. Tese (Doutorado em Ciência da 
Computação) – Programa de Pós-Graduação em Computação, Centro de Desenvolvimento 
Tecnológico, Universidade Federal de Pelotas, Pelotas, 2020. 

 
 Atualmente, novas tecnologias para representação de cenas com maior rea-

lismo estão sendo alvo de intensas pesquisas. Nesse contexto, os conteúdos multi-
mídia em 3D estão ganhando foco e possibilitando aplicações como vídeos tele-imer-
sivos, realidade virtual, aumentada e mista, mapeamento de objetos históricos e mo-
numentos arquitetônicos, entre outras. As nuvens de pontos têm atraído a atenção de 
pesquisas atuais como forma de representação de conteúdos 3D diante do seu baixo 
custo computacional considerando aspectos como geração e manipulação dos dados, 
destacando-se assim frente a outras alternativas, como malhas (meshes). Porém, as-
sim como em vídeos digitais 2D, o volume de dados gerados por nuvem de pontos sem 
compressão se torna proibitivo para a sua transmissão e armazenamento. No cenário de 
compressão de vídeo são exploradas redundâncias, entre elas, a redundância espa-
cial (intra), e a redundância temporal (inter). No entanto, características inerentes às 
nuvens de pontos, como diferentes limites das caixas delimitadoras entre nuvens tem-
poralmente vizinhas, assim como a presença de regiões oclusas ou esparsas, tornam 
desafiadora a exploração dessas predições na compressão de nuvens de pontos. 
Nesse sentido, a compressão de nuvem de pontos dinâmica, em especial as etapas 
de predição intra e inter nuvens, é um tema ativo e desafiador, ainda pouco explorado 
na literatura. Os trabalhos encontrados na literatura que tratam da predição inter nu-
vens a partir de macroblocos, exploram apenas tamanho fixo e/ou exploram somente 
macroblocos colocalizados. Propostas mais recentes sugerem ainda planificar as nu-
vens de pontos e utilizar codificadores de vídeos. No entanto, com essa abordagem 
a exploração do espaço tridimensional acaba sendo desprezada na etapa de predição 
inter nuvens. Esta tese tem como objetivo apresentar uma abordagem eficiente para 
predição na compressão de nuvens de pontos dinâmicas. A solução proposta con-
templa uma estimação de movimento baseada em macroblocos no espaço 3D, além 
da capacidade de operar sobre diferentes configurações de tamanhos de blocos, as-
sim como um algoritmo de decisão de modo para escolher a melhor configuração 
baseada na relação entre taxa de bits e qualidade. A solução foi implementada e ava-
liada seguindo as condições comuns de testes propostas pelo MPEG, que contempla 
a avaliação de cinco sequências de nuvens de pontos dinâmicas, cada uma com 
aproximadamente 300 nuvens de pontos. Os resultados de taxa e qualidade foram 
comparados com os obtidos no software âncora para compressão de nuvem de pon-
tos dinâmica. As abordagens desenvolvidas apresentam ganho significativo, tanto em 
termos de qualidade como em taxa de compressão. 

 
Palavras-Chave: compressão; nuvens de pontos; predição, estimação de movimento 
3D. 

 



 
 

ABSTRACT 

SANTOS, Cristiano Flores dos. Compression of Dynamic Point Clouds: An Effi-
cient Approach for the Prediction Step. 2020. 152 f. Tese (Doutorado em Ciência 
da Computação) – Programa de Pós-Graduação em Computação, Centro de Desen-
volvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, 2020. 

 

Currently, new technologies for representing scenes with greater realism are 
the subject of intense research. In this context, 3D multimedia content is gaining focus 
and enabling applications such as tele-immersive videos, virtual, augmented and 
mixed reality, mapping of historical objects and architectural monuments, among other 
possibilities. Point clouds have attracted the attention of current research as a way of 
representing 3D content because of its low computational cost considering aspects 
such as data generation and manipulation, thus standing out against alternatives such 
as meshes. However, as in 2D digital videos, the volume of data generated by point 
clouds without compression becomes prohibitive for transmission and storage. In the 
video compression scenario, redundancies are explored, including spatial redundancy, 
called intra-frame prediction and temporal redundancy, called inter-frame. The 
temporal redundancy present in the videos, for example, allows the most significant 
gains in compression. However, characteristics inherent to the point cloud as different 
boundaries of the bounding boxes between temporally neighboring clouds, as well as 
the presence of occluded or sparse regions, makes it difficult to explore these 
predictions in compression. In this sense, dynamic point cloud compression, especially 
the intra and inter-cloud prediction stages, is an active and challenging topic, still little 
explored in the literature. The works found in the literature that deal with inter-cloud 
prediction through macroblocks, for example, explore only fixed size and/or explore 
only colocalized macroblocks. More recent proposals also suggest planning point 
clouds and using video encoders. However, with this approach, the exploration of 
three-dimensional space ends up being neglected in the inter-cloud prediction stage. 
This thesis aims to present an efficient approach to predict the compression of 
dynamic point clouds. The proposed solution includes a motion estimation based on 
macroblocks in 3D space, in addition to the ability to operate on different block size 
configurations, as well as a mode decision algorithm to choose the best configuration 
based on the relationship between bit rate and quality. The solution was implemented 
and evaluated following the common test conditions proposed by MPEG, which 
include the evaluation of five dynamic point cloud sequences, each with approximately 
300 point clouds. The rate and quality results were compared with those obtained in 
the anchor software for dynamic point cloud compression. The approaches developed 
show significant gains, both in terms of quality and in compression rate. 

 
Keywords: compression; point clouds; prediction, 3D motion estimation. 
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1 INTRODUÇÃO 
 

Nos últimos anos houve um aumento na demanda por vídeos e imagens em 

três dimensões (3D). Isso ocorreu devido ao surgimento de novas tecnologias que 

possibilitaram a captura e visualização desse tipo de mídia, tais como os sensores do 

tipo RGB-D (canais de textura de cor vermelha (R), verde (G) e azul (B) com 

informação de profundidade (D)), óculos de realidade virtual ou mista, entre outros 

dispositivos. 

Os vídeos e as imagens 3D proporcionam aos usuários maior realismo e 

interação com cenários ou objetos capturados. Além disso, podem beneficiar diversas 

outras áreas do conhecimento como, por exemplo, a arquitetura, por meio da captura 

(mapeamento) de prédios, casas e centros urbanos para conceber projetos 

arquitetônicos, a preservação da história, a partir do registro e estudo de artefatos e 

monumentos históricos e culturais, ou ainda a área da robótica, para prover a 

autonomia de dispositivos robóticos ou veículos. 

Os conteúdos 3D se popularizaram principalmente por meio dos filmes de 

animações e jogos eletrônicos, onde a forma mais utilizada para representação são 

as malhas (meshes). Uma malha é composta por um conjunto de vértices, arestas e 

faces, que formam um polígono, que por sua vez constituem superfícies, e assim 

formam o objeto 3D conforme ilustrado na Figura 1. Porém, o procedimento de 

geração de uma malha demanda muito esforço computacional para realizar cálculos 

para unir os pontos. Além disso, é necessário armazenar informações tanto dos 

pontos, quanto informações adicionais para geração das superfícies. Assim, a malha 

é mais adequada para aplicações de computação gráfica.
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As nuvens de pontos surgiram como alternativa mais viável especialmente por 

possibilitar a captura ou mapeamento 3D de cenários em tempo real (QUEIROZ; 

CHOU, 2016). Além disso, é uma forma de representação 3D simplificada que oferece 

realismo e qualidade com baixo custo computacional em comparação às malhas. 

Uma nuvem de pontos é um conjunto de pontos compostos por informação 

geométrica em um espaço 3D, ou seja, coordenadas X, Y e Z, e podem conter ainda 

atributos de cor. Uma nuvem de pontos pode ser classificada como voxelizada quando 

possuir uma distribuição regular dos pontos constituindo uma grade 3D (D’EON et al., 

2016). Nesse contexto, cada elemento da grade é chamado de voxel (unidades 

similares aos pixels de uma imagem).  

A Figura 2, ilustra dois exemplos de nuvens de pontos. A nuvem de pontos 

denominada Bunny (Figura 2 (a)) possui uma representação esparsa dos pontos e 

sem informação de cor (textura). A nuvem de pontos Ricardo (Figura 2(b)) apresenta 

uma estrutura de pontos densa com atributos de cor.  

 
Figura 1: Exemplo de geração de malha. 

 
 
 

 
 

Figura 2: Exemplos de nuvem de pontos, Bunny (a) e Ricardo (b).  
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A geração de conteúdos 3D por meio de nuvem de pontos tornou-se mais 

atrativa devido à popularização e baixo custo de dispositivos de captura do tipo RGB-

D, como, por exemplo, do sensor kinect da Microsoft (MORELL, et al., 2014), que pode 

ser utilizado para realizar mapeamento 3D de objetos, pessoas ou mesmo cenários 

(MORENO; CHEN; LI, 2017). Aliado a isso, a nuvem de pontos é mais vantajosa frente 

à malha, por possuir um processo de geração de conteúdos 3D mais simplificado 

(TULVAN; MEKURIA; LI, 2016). 

A nuvem de pontos pode ser caracterizada como estática, dinâmica ou de 

captura dinâmica. Nuvens estáticas representam um instante de tempo, assim como 

uma foto. As nuvens dinâmicas são compostas por um conjunto de nuvens estáticas 

capturadas em diferentes instantes de tempo, de forma análoga aos vídeos digitais 

(2D). Já as nuvens de captura dinâmica são geradas durante a navegação e 

mapeamento de ambientes (TULVAN; MEKURIA; LI, 2016). 

Uma nuvem de pontos pode conter milhares ou até bilhões de pontos, 

dependendo do nível de detalhamento ou tamanho do cenário que se pretende 

representar (TULVAN; MEKURIA; LI, 2016). Porém, apesar de possibilitar a 

representação com melhor qualidade e realismo, o número elevado de pontos é um 

aspecto negativo devido ao alto custo de armazenamento e transmissão. Uma nuvem 

de pontos dinâmica, como, por exemplo, as nuvens de pontos sugeridas nas 

condições comuns de teste (Common Test Conditions - CTC) para compressão 

conforme o (Moving Picture Experts Group – MPEG), tem em média 800 mil pontos 

por nuvem (quadro) (SCHWARZ; CHOU; SINHAROY, 2018). Cada ponto demanda 10 

bits por componente de geometria (X, Y e Z) e 8 bits por canal de cor RGB. Assim, 

para armazenar 10 minutos de vídeo são necessários aproximadamente 90 Gigabytes 

(GBs). Para transmitir essa mesma nuvem a uma taxa de 30 nuvens por segundo 

(nps), seriam necessários 1.3 Gigabits por segundo (Gbps). 

Nesse contexto, diante do volume de dados gerados por uma nuvem de pontos 

dinâmica, a compressão se torna fundamental principalmente para aplicações que 

necessitam transmissão. Os principais codificadores de vídeo exploram diferentes 

tipos de redundâncias para reduzir o volume de dados. Embora existam propostas de 

compressores para nuvens de pontos dinâmicas, as taxas de compressão ainda 

podem alcançar melhores resultados.
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1.1 Aplicações 

 

As nuvens de pontos são promissoras para diversas aplicações 3D que 

necessitam transmissão em tempo real, tais como, videoconferências e holoportation 

(aplicação que possibilita rever momentos registrados no passado de forma mais 

realista e interativa). Dentre as possibilidades de uso das nuvens de pontos conforme 

(TULVAN; MEKURIA; LI, 2016), podem-se destacar: 

• Vídeos 3D tele-imersivos em tempo real: Permitem uma convergência 

entre realidade e realidade virtual, onde as nuvens de pontos são 

capturadas, comprimidas, transmitidas e renderizadas em tempo real 

similarmente a uma videoconferência. 

• Realidade virtual: Fornece aos usuários, equipados com óculos de 

realidade virtual, uma experiência imersiva com um amplo campo de visão 

para conteúdos específicos, como filmes ou jogos digitais. 

• Free Viewpoint Television: É a captura de nuvens de pontos de eventos 

esportivos, como basquete e beisebol, ou ainda de filmes para reprodução e 

interação tanto em dispositivos móveis quanto TVs. Isso requer um padrão 

de codificação e transmissão de maneira interoperável. 

• Sistemas de informação geográfica: Por meio das nuvens de pontos é 

possível representar informações geográficas capturadas de sensores como 

Light Detection And Ranging (Lidar) e Synthetic Aperture Radar (SAR). 

Esses dados geralmente são armazenados em servidores que fornecem um 

serviço de renderização remota ou consultas baseadas em informações 

geográficas específicas. 

• Patrimônio cultural: As nuvens de pontos podem ser usadas para viabilizar 

o armazenamento e a visualização de coleções de objetos de patrimônio 

cultural. A compactação e a transmissão de nuvens de pontos representando 

esses objetos podem torná-los disponíveis para o público em geral. 

• Navegação autônoma baseada em mapas 3D de grande escala: 

Possibilita navegação a partir de mapas 3D gerados por dispositivos que 

fornecem informação de profundidade juntamente com sensores de 

localização. Sistemas de mapeamento já estão comercialmente disponíveis 
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em várias formas, a exemplo de drones ou ainda smartphones/tablets que 

realizam o mapeamento 3D. 

Considerando as possibilidades de aplicações citadas, pode-se perceber que 

este novo tipo de mídia é relevante para diversas áreas e contextos. Todas essas 

aplicações práticas de nuvens de pontos dependem da compressão eficiente dessas 

informações. No entanto, as nuvens de pontos apresentam características que trazem 

inúmeros desafios para a sua compressão de forma eficiente. Com isso, existe um 

vasto campo de pesquisa a ser explorado, onde os principais desafios (apresentados 

na próxima seção) devem ser atacados e resolvidos. 

 

1.2 Desafios 

 

Em nuvens de pontos dinâmicas, assim como em vídeos 2D, sucessivos 

quadros compartilham similaridades. Neste sentido, a estimação de movimento 

presente na predição inter-nuvens é essencial para a compressão efetiva das nuvens 

de pontos dinâmicas (THANOU; CHOU; FROSSARD, 2016) (Li; Li et al.; 2019).  

A Estimação de Movimento (Motion Estimation - ME) tem como objetivo 

encontrar a melhor correspondência entre blocos de nuvens temporalmente vizinhas 

por meio de uma métrica de similaridade. Para cada bloco da nuvem corrente são 

avaliados blocos candidatos em uma área de busca e, para o bloco de melhor 

correspondência na nuvem de referência, é calculado o vetor de movimento. Na 

reconstrução da nuvem, esse vetor tem como objetivo compensar o movimento do 

bloco predito. Em codificação de nuvens de pontos dinâmicas existe a necessidade 

de calcular o vetor de movimento antes de calcular a similaridade dos blocos 

candidatos. Isso porque as coordenadas dos pontos dos blocos avaliados devem 

assumir as mesmas posições do bloco atual. Somente dessa forma é possível avaliar 

a qualidade da informação de geometria desses blocos, já que as métricas de 

avaliação de nuvens de pontos consideram a distância entre os pontos. Nesse 

sentido, o principal desafio é calcular o vetor de movimento de forma eficiente, pois 

esse é responsável por determinar a melhor correspondência e também deve ser 

utilizado na etapa de reconstrução da nuvem. 

Para nuvens de pontos dinâmicas, a predição inter-nuvens é um problema 

ainda em aberto, principalmente em consequência das características dos dados (Li; 

Li et al.; 2019). Diferentemente dos vídeos 2D, que podem ser representados por uma 
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matriz de pixels de tamanho fixo, as nuvens de pontos possuem uma estrutura 

irregular como pode ser visto na Figura 3(a), onde são ilustradas duas nuvens de 

pontos temporalmente vizinhas sobrepostas. Cada uma dessas nuvens de pontos 

possui uma caixa delimitadora (bounding box) que é constituída por arestas que 

respeitam os limites mínimos e máximos da nuvem nos seus eixos (X, Y e Z) 

(MEKURIA; BLOM; CESAR, 2017). Através das caixas delimitadoras ilustradas na 

Figura 3(a), é possível notar que nuvens temporalmente vizinhas podem não possuir 

as mesmas dimensões.  

Outra característica distinta das nuvens de pontos é a possibilidade de 

existirem regiões descontínuas, ou seja, voxels não ocupados, como pode ser visto 

no exemplo da Figura 3(b). A região destacada na Figura 3(b) não possui informações 

de geometria (coordenadas X, Y e Z), nem mesmo atributos de cor.  

As características das nuvens de pontos destacadas podem gerar problemas 

para a predição inter em nuvens de pontos, em especial para a ME, já que é 

necessário considerar a variação do número de pontos entre blocos de nuvens 

temporalmente vizinhas.  

Outro aspecto importante, tratado na ME em codificadores de vídeo como 

H.264/AVC (Advanced Video Coding) e HEVC (High Efficient Video Coding), é a 

possibilidade de usar blocos de tamanho variável (RAO; HWANG; KIM, 2017) 

(SULLIVAN et al., 2012) (SULLIVAN; WIEGAND, 2005).  A escolha do melhor bloco é 

realizada a partir de alguma métrica que conduza a uma codificação mais eficiente, 

de acordo com o conteúdo da região do quadro a ser codificado. O uso de diferentes 

tamanhos de bloco possibilita uma predição mais eficiente. Nesse contexto, a predição 

 

 
Figura 3: Problemas das caixas delimitadoras (a) e voxels não ocupados (b). 

Diferenças 
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de regiões homogêneas pode ser mais eficiente a partir do uso de blocos grandes, e 

a utilização de blocos menores tende a ser mais eficiente para regiões compostas por 

um maior nível de textura ou bordas. 

No cenário atual, o codec denominado V-PCC (Video-based Point Cloud 

Compression) tem sido utilizado pelo MPEG como base para experimentação, o qual 

tem apresentado excelentes resultados para codificação (MAMMOU, 2018). Outro 

codec de destaque é o denominado PCC-âncora (Point Cloud Compression), proposto 

por (MEKURIA; BLOM; CESAR, 2017). O PCC-âncora foi utilizado pelo MPEG como 

âncora para comparações de novas estratégias de compressão de nuvens de pontos 

dinâmicas. Ambos codificadores não exploram os aspectos levantados, como blocos 

de tamanho variável ou predição inter-quadros considerando os aspectos 3D 

presentes nas nuvens de pontos. A predição inter-nuvens explorada no PCC-âncora 

é limitada a blocos colocalizados e dependente do alinhamento perfeito das caixas 

delimitadoras. O V-PCC realiza a mesma predição inter-quadros aplicada na 

codificação de vídeos 2D do padrão HEVC, sendo que ela é aplicada às nuvens de 

pontos depois de uma etapa de planificação, onde a nuvem de pontos 3D é 

transformada em uma imagem em 2D. O MPEG inclusive realizou uma chamada por 

novas estratégias de ME que contemplem as caraterísticas dos dados 3D das nuvens 

de pontos (ZAKHARCHENKO; KIM, 2018). No entanto, a solução atual que visa tratar 

desse aspecto ainda apresenta limitações como ME 3D em blocos colocalizados (LI, 

et al., 2019). 

 

1.3 Principais Hipóteses 

 

Dado o que foi exposto como problemas ou desafios para compressão de 

nuvens de pontos dinâmicas, como hipótese que norteia esta tese está a ideia de que 

a exploração eficiente da predição pode aumentar a eficiência do processo de 

compressão. Em especial, a predição inter-nuvens pode ser muito beneficiada ao 

explorar a ME no espaço 3D. Outra hipótese é a exploração do particionamento de 

blocos durante o processo de predição, tanto intra quanto inter-nuvens. Esta 

abordagem deve prover redução de taxa em regiões homogêneas, onde blocos 

maiores podem ser utilizados na codificação, bem como possibilitar o refinamento da 

predição, tanto intra como inter, em regiões com maior variação de texturas. Para que 
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estas opções de codificação sejam utilizadas de maneira eficiente pelo codificador, 

uma decisão de modo também será necessária, para garantir a escolha da opção mais 

eficiente dentre as possibilidades de codificação, levando em conta os impactos tanto 

nas informações de geometria quando de textura. 

 

1.4 Objetivos 

 

O objetivo principal deste trabalho é o desenvolvimento de um novo esquema 

de predição para a codificação de nuvem de pontos dinâmica, visando o aumento da 

eficiência de codificação do codificador PCC-âncora.  

Como objetivos específicos estão: 

• Desenvolver e avaliar diferentes possibilidades de algoritmos rápidos para 

a ME; 

• Propor uma nova ME baseada no espaço tridimensional para melhor 

explorar a correlação temporal; 

• Desenvolver uma abordagem de particionamento de blocos para viabilizar 

a exploração de correlação; 

• Propor uma decisão de modo que viabilize a escolha da melhor opção entre 

as possibilidades de modo de predição e tamanho de blocos; 

• Apresentar os resultados tendo em vista as CTC propostas pelo MPEG. 

 

1.5 Principais Contribuições 

 

Dentre as principais contribuições deste trabalho estão: 

• Alinhamento das caixas delimitadoras: Para explorar a correlação 

temporal, foi proposto um alinhamento das caixas delimitadoras para 

possibilitar uma correspondência mais eficiente para blocos colocalizados, 

bem como para viabilizar que blocos presentes nas bordas possam ter 

blocos candidatos colocalizados e sejam melhor avaliados.  

• Avaliação da correlação temporal em nuvens de pontos dinâmicas: Foi 

proposta uma avaliação da correlação por meio de um algoritmo de busca 

completa para obter um melhor entendimento das correlações temporais em 

nuvens de pontos dinâmicas.  
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• Uso de ME em 3D: A ME 3D para nuvens de pontos possibilita ganhos em 

eficiência de compressão. No entanto, a ME possui um alto custo 

computacional. Nesse sentido, algoritmos rápidos de ME, (DS -Diamond 

Search) e (NSS - N-Step Search), clássicos na compressão de vídeos 2D, 

foram adaptados e avaliados para o contexto de nuvem de pontos 3D.  

• Predição com múltiplos tamanhos de bloco: Foi desenvolvida uma 

abordagem de subparticionamento de blocos para proporcionar juntamente 

com a ME ganhos em compressão principalmente para grandes regiões da 

nuvem que não possuam ou ainda que possuíam pouca alteração entre 

nuvens temporalmente vizinhas. O subparticionamento proposto também 

beneficiou a qualidade em regiões de blocos menores que possuem grande 

variação espacial e temporal. Além disso, essa abordagem pode ser uma 

alternativa para o problema de variação do número de pontos entre blocos 

de nuvens temporalmente vizinhas, já que os blocos com grande diferença 

puderam ser particionados e, assim, serem bons candidatos para a predição 

inter. 

• Decisão de modo com ponderação entre geometria e textura: Foi 

proposto um algoritmo de decisão de modo que possibilita viabilizar a melhor 

escolha dentre as opções macrobloco ou bloco subparticionado, assim como 

o modo de codificação (intra ou inter). A decisão de modo pode avaliar 

aspectos como qualidade da geometria, textura e taxa, para viabilizar maior 

eficiência e garantir a melhor relação entre taxa e qualidade. 

• Análise comparativa dos resultados de eficiência de compressão em 

relação ao PCC: Para avaliação comparativa, cinco sequências de nuvem 

de pontos dinâmicas sugeridas pelo MPEG foram utilizadas para avaliar a 

solução proposta. Os resultados que medem a qualidade e taxa de 

codificação foram calculados de acordo com as CTC propostas pelo MPEG 

e foram utilizados para comparar com o software PCC-âncora.  

 

1.6 Estrutura do texto 

 

O capítulo 2 desta tese apresenta fundamentos básicos de compressão de 

nuvens de pontos. Estes conceitos são importantes para o entendimento do restante 
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do texto. O capítulo 3 apresenta as principais soluções de compressão de nuvens de 

pontos dinâmicas adotadas pelo MPEG. No Capítulo 4 são apresentados alguns 

conceitos sobre predição inter-nuvens, em especial a estimação de movimento. Nesse 

capítulo é apresentada também uma avaliação da correlação temporal para as nuvens 

de pontos dinâmicas para uma compreensão sobre as peculiaridades do espaço 3D. 

O capítulo 5 apresenta uma avaliação dos algoritmos de estimação de movimento, o 

DS (Diamond Search) e NSS (N-Step Search), clássicos em compressão de vídeos, 

desenvolvidos e adaptados neste trabalho para nuvens de pontos dinâmicas. O 

capítulo 6 apresenta a descrição das soluções algorítmicas desenvolvidas. No capítulo 

7 são apresentados os resultados das soluções desenvolvidas nesta tese. Por fim, o 

capítulo 8 apresenta as conclusões do trabalho destacando algumas frentes de 

pesquisas para trabalhos futuros. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

2 FUNDAMENTOS DE COMPRESSÃO DE NUVENS DE 
PONTOS 

Neste capítulo serão apresentados os principais conceitos sobre nuvens de 

pontos, bem como os aspectos fundamentais da sua codificação. Além disso, serão 

apresentados os principais trabalhos encontrados na literatura para a codificação de 

nuvens de pontos. Este capítulo primeiramente apresentará as características das 

nuvens de pontos. Na sequência, serão tratados alguns conceitos de compressão de 

dados digitais de forma mais abrangente e, posteriormente, no âmbito da compressão 

de nuvens de pontos. Também serão apresentados alguns conceitos em relação à 

avaliação da qualidade de nuvens de pontos codificadas. Por fim, serão apresentados 

os principais trabalhos relacionados à compressão de nuvens de pontos. 

 

2.1 Conceitos Básicos de Nuvens de Pontos 

Uma nuvem de pontos é composta por um conjunto de pontos no espaço 3D 

que constituem uma representação tridimensional da superfície de um objeto ou 

cenário. Os pontos possuem informações geométricas que são as coordenadas dos 

pontos num sistema ortogonal X, Y e Z e podem conter também atributos como cor, 

transparência e tipo de material. As cores podem ser representadas nos espaços de 

cor RGB ou YCbCr (luminância, crominância azul e crominância vermelha).  Na Figura 

4 é ilustrada uma nuvem de pontos densa e um zoom de aproximação para 

visualização dos pontos. 

As nuvens de pontos podem ser geradas a partir de sensores do tipo RGB-D 

(sensores que capturam informação de textura mais profundidade) como o Kinect da 

Microsoft (LOOP et al., 2016), por meio de sensores LIDAR (que capturam somente a 

distância entre o sensor e os pontos de reflexão do feixe na superfície dos objetos) 

(BRIDGET, 2016) ou ainda por meio de múltiplas câmeras e sensores  (D’EON et al., 

2016). 
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As nuvens de pontos ou as sequências de nuvens de pontos que contemplam 

as CTC, são armazenadas no formato conhecido como (Polygon File Format – PLY). 

Esses arquivos possuem um cabeçalho com informações auxiliares e informações dos 

pontos, onde cada linha compreende um ponto com as informações das coordenadas 

dos eixos X, Y e Z seguidas dos atributos de cor separado em três canais (RGB), 

conforme ilustra a Figura 5. 

A Figura 5 ilustra um exemplo de arquivo de uma nuvem de pontos no formato 

PLY, onde segue em destaque a parte do arquivo referente ao cabeçalho e a parte do 

arquivo com as coordenadas dos pontos com seus respectivos atributos. 

As nuvens de pontos, conforme sugere o MPEG, são classificadas de acordo 

com as características de captura e de aplicação pretendida, sendo divididas em três 

categorias: nuvens estáticas, dinâmicas e de aquisição dinâmica (TULVAN; MEKURIA; 

LI, 2016). É importante destacar que uma nuvem de pontos do tipo dinâmica, que será 

apresentada em detalhes na Seção 2.1.1, contempla uma sequência de quadros 

análoga ao vídeo. Essa classificação de nuvem de pontos é composta por arquivos 

de quadros individuais no formato PLY. 

 

 
Figura 4: Exemplo de nuvem de pontos da sequência Red and Black (D’EON 
et al., 2016). 
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2.1.1 Nuvens de Pontos Estáticas 

 

Uma nuvem de pontos estática, assim como uma imagem 2D, é uma captura 

de um dado objeto ou cenário em um instante de tempo, no entanto, com informações 

em 3D. Como exemplo de aplicação de nuvem de pontos estática é possível destacar 

o mapeamento 3D de patrimônios culturais históricos, conforme ilustra a Figura 6.    

Os datasets disponíveis desse tipo de nuvens de pontos, em geral, 

representam somente um objeto com um número de pontos relativamente grande 

(centenas de milhares ou até dezenas de milhões). Muitos desses objetos são nuvens 

de pontos adquiridas para os mapeamentos de monumentos históricos, estátuas, ou 

também prédios. 

As nuvens de pontos estáticas são classificadas como Categoria 1 conforme o 

MPEG. Para a categoria 1 existe uma proposta de codificador voltado a explorar 

Figura 5: Arquivo de nuvens de pontos. 

Figura 6: Exemplo de nuvem de pontos estática: Egyptian mask (a) e Arco Valentino (b). 

(a) (b) 
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soluções de compressão juntamente com a Categoria 3, que será apresentada na 

Seção 2.1.3. Esse codificador é denominado Test Model Category 13 (TMC13). O 

TMC13 nas últimas iterações do MPEG passou a ser chamado (Geometry-based 

Point Cloud Compression - G-PCC) (CAO; PREDA; ZAHARIA, 2019).  

 

2.1.2 Nuvens de Pontos Dinâmicas 

 

Nuvens de pontos dinâmicas são sequências temporais de nuvens de pontos 

estáticas. As nuvens de pontos dinâmicas podem ser adquiridas a partir de sensores 

do tipo RGB-D que habilitam a aquisição simultânea de geometria e cor (MORENO; 

CHEN; LI, 2017). 

As nuvens de pontos podem ser adquiridas também com a combinação de 

sensores RGB e RGB-D, assim como encontrado no dataset proposto por (D’EON et 

al., 2016). Um exemplo de nuvem de pontos dinâmicas pode ser visto na Figura 7 em 

que cada imagem representa uma nuvem de pontos e as setas indicam a ordem 

temporal. 

As nuvens de pontos dinâmicas se destacam devido às possibilidades de 

aplicações futuras, em especial a utilização em videoconferência, proporcionando 

uma melhor interação entre os usuários. Outra aplicação é denominada Holoportation, 

que empresas como a Microsoft tem investido esforços para viabilizar não só a 

experiência de aproximar usuário fisicamente distantes, mas também com a 

possibilidade de proporcionar aos utilizadores rever cenas, como reuniões, ou ainda, 

reviver momentos em família de forma mais realística. Essas aplicações, podem ser 

Figura 7: Exemplo de nuvem de pontos dinâmica, representada com a sequência Soldier 
(D’EON et al., 2016). 
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melhor exploradas por meio de tecnologias como óculos de realidade mista, ou seja, 

realidade aumentada juntamente com realidade virtual. 

As nuvens de pontos do tipo dinâmica conforme o MPEG, pertencem à 

Categoria 2. Essa categoria possui como proposta de codificador, o software 

denominado Video-based Point Cloud Compression (V-PCC), também referenciado 

em alguns documentos do MPEG como Test Model Category 2 (TMC2) (SCHWARZ 

et al, 2018). Além do V-PCC, o software denominado Point Cloud Compression (PCC) 

foi adotado previamente pelo MPEG como âncora para o desenvolvimento e 

experimentação de abordagens para compressão de nuvens de pontos dinâmicas 

(MEKURIA; CESAR, 2016) (MEKURIA; BLOM; CESAR, 2017).  

 

2.1.3 Nuvens de Pontos de Aquisição Dinâmica 

 

As nuvens de pontos de aquisição dinâmica são adquiridas por sensores do 

tipo Light Detection And Ranging (LIDAR) durante uma determinada navegação. Esse 

tipo de nuvem de pontos tem como principal aplicação o mapeamento de ambientes 

externos para proporcionar autonomia de dispositivos robóticos ou mesmo veículos. 

A Figura 8(a) apresenta um sistema de captura montado sobre um automóvel para 

realizar o mapeamento de um ambiente urbano, onde o resultado do mapeamento 

pode ser visto na Figura 8(b). O dataset proposto por (PANDEY; MCBRIDE; EUSTICE, 

2011) disponibiliza nuvens de pontos de mapeamentos de alguns ambientes através 

de aquisição dinâmica.    

As nuvens de pontos de aquisição dinâmicas são classificadas como de 

Categoria 3 pelo MPEG. Esse tipo de nuvens de pontos tem como codificador o 

software G-PCC. As nuvens de pontos de aquisição dinâmica que contemplam as 

CTC, são disponibilizadas em arquivos no formato PLY como as nuvens de pontos 

das outras categorias apresentadas. A nuvem do tipo aquisição dinâmica é uma 

nuvem estática, ou seja, é constituída de um único arquivo para mapeamento de um 

cenário completo. Nesse contexto, soluções para compressão desse tipo de conteúdo 

tendem a explorar redundância espacial na codificação, como na codificação de 

nuvens estáticas. Dessa forma, o MPEG propõe uma única solução para compressão 

que contempla as duas categorias, categoria 1 e 3 (SCHWARZ et al, 2018). 
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2.2 Redundância de Informação em Nuvens de Pontos 

De modo geral, a compressão busca diminuir a quantidade de dados 

considerados redundantes ou irrelevantes na representação das informações, tais 

como textos, áudios, imagens, vídeos, entre outros. Dessa forma, é possível transmitir 

este tipo de informação com uma menor taxa de bits e/ou ainda armazenar a 

informação com uma menor demanda de espaço de armazenamento. Considera-se 

redundante aquele dado que não contribui (ou contribui muito pouco) para a 

representação da informação. As redundâncias presentes nos vídeos digitais, e que 

também podem ser encontradas nas nuvens de pontos, podem ser divididas 

basicamente em três diferentes tipos: 

• Redundância Espacial – A redundância espacial,  também chamada de 

redundância intra-quadro advém da correlação existente entre os pontos 

espacialmente distribuídos em um quadro ou uma nuvem de pontos. 

• Redundância Temporal – A redundância temporal, também chamada de 

redundância inter-quadros ou inter-nuvens, é causada pela correlação 

existente entre nuvens temporalmente vizinhas. Muitos blocos de pontos de 

nuvens temporalmente vizinhas permanecem estáticos como por exemplo, um 

fundo que não é alterado em uma sequência de nuvens. Outros pontos 

apresentam uma pequena alteração causada, por exemplo, por uma variação 

de iluminação. Por fim, também é possível que o bloco de pontos 

simplesmente tenha se deslocado em relação a uma nuvem temporalmente 

Figura 8: Sistema de aquisição das nuvens de pontos (a) e nuvens de pontos geradas (b) (TULVAN; 
MEKURIA; LI,2016). 
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vizinha, como em um movimento de um objeto de uma cena. A exploração 

eficiente da redundância temporal conduz a elevadas taxas de compressão, o 

que é fundamental para o sucesso dos codificadores. 

• Redundância Entrópica – A redundância entrópica está relacionada com as 

probabilidades de ocorrência dos símbolos. A entropia é uma medida da 

quantidade média de informação transmitida por símbolo  (SHI; SUN, 1999). A 

quantidade de informação nova transmitida por um símbolo diminui na medida 

em que a probabilidade de ocorrência deste símbolo aumenta. Então, os 

codificadores que exploram a redundância entrópica têm por objetivo 

transmitir o máximo de informação possível por símbolo codificado e, desse 

modo, representar mais informações com um número menor de bits. Isto é 

feito a partir da atribuição de códigos menores (menos bits) para símbolos de 

maior ocorrência e códigos maiores para símbolos de menor ocorrência, ao 

invés do uso de um número fixo de bits para qualquer símbolo. 

 

Neste sentido, este trabalho apresenta uma solução que trata da correlação 

temporal por meio de uma ME que considera a informação tridimensional das nuvens 

de pontos. Além disso, este trabalho também propõe um subparticionamento de 

blocos que contribui com uma predição intra mais flexível, oferecendo a possibilidade 

de refinar regiões mais complexas, como regiões com mais texturas/bordas, por meio 

de blocos de tamanhos menores. Além disso, também é apresentado um algoritmo 

para a decisão de modo, que escolhe entre a melhor predição inter/intra, além de 

definir a melhor opção de particionamento para cada macrobloco codificado. 

 

2.3 Compressão com Perdas e sem Perdas 

 

Os codificadores de nuvens de pontos podem ser classificados entre os que 

fazem a compressão sem perdas (lossless) e os que geram perdas durante o processo 

de compressão (lossy) (SCHWARZ; CHOU; SINHAROY, 2018). Na compressão sem 

perdas, os codificadores utilizam apenas técnicas de compressão que não eliminam 

informações, garantindo que o arquivo resultante do processo de decodificação seja 

idêntico ao arquivo original. Esse tipo de compressão pode ser muito eficiente para 

diferentes tipos de dados, principalmente para os que apresentam grande quantidade 

de redundância. Um exemplo de compressão sem perdas muito utilizado é o 
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compressor de arquivos ZIP (SALOMON, 2008). Esse algoritmo reestrutura o arquivo 

atribuindo códigos menores para símbolos com maior ocorrência e códigos maiores 

para símbolos de menor ocorrência, reduzindo assim o tamanho do arquivo sem perda 

de informação. No entanto, imagens e vídeos digitais possuem uma distribuição de 

probabilidade muito próxima entre os símbolos (valores dos pixels). Compressores de 

imagens sem perdas atingem limitadas taxas de compressão  e o mesmo ocorre em 

vídeos (GHANBARI, 2017).  Além da relativa ineficiência dos compressores sem 

perdas neste contexto, o volume de dados a ser processado, armazenado ou 

transmitido, principalmente em vídeos é muito elevado e requer taxas de compressão 

maiores. A compressão com perdas é a mais utilizada neste tipo de aplicação. 

A compressão sem perda é importante, por exemplo, para conteúdos como 

imagens/vídeos para aplicações na área de medicina. Já em nuvens de pontos a 

compressão sem perda tem sido aplicada em mapeamentos de artefatos históricos. 

Em ambas aplicações é importante preservar os detalhes originais do conteúdo diante 

da importância desses (SCHWARZ; CHOU; SINHAROY, 2018). 

Na compressão com perdas as informações de menor relevância podem ser 

eliminadas. Assim, é possível obter elevadas taxas de compressão com pouca 

redução de qualidade visual. Um exemplo é a operação chamada de subamostragem 

de cores, que é realizada sobre o espaço de cores YCbCr (componente luminância 

(Y), crominância azul (Cb) e crominância vermelha (Cr)) e aplicada nos codificadores 

de vídeo. Este processo consiste em reduzir a taxa de amostragem dos componentes 

crominância em relação ao de luminância, diante do fato do sistema visual humano 

ser mais sensível à informação de luminância do que às informações de crominância. 

A compressão com perdas é a forma mais comum, pois apresenta taxas de 

compressão muito superiores às obtidas com a compressão sem perdas. Além disso, 

a grande maioria das aplicações de áudio e vídeo, de streaming, como por exemplo, 

vídeo conferência, são tolerantes a pequenas perdas de qualidade onde a taxa/s e 

volume de armazenamento são mais relevantes.  

 

2.4 Octree 

 

A decomposição ou particionamento através de octree é uma abordagem muito 

utilizada no âmbito de compressão de nuvens de pontos, especialmente se tratando 
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de métodos que exploram compressão na perspectiva de codificação intra-nuvem. A 

decomposição por meio de octree possibilita representar uma nuvem de pontos de 

forma mais compacta através de uma árvore constituída de dados binários. Uma 

octree é uma estrutura de dados em árvore em que cada nó contém oito filhos, 

também denominados octantes. As octree são frequentemente usadas para 

particionar espaços tridimensionais através de subdivisões recursivas (SCHNABEL; 

KLEIN, 2006). 

No exemplo da Figura 9, é mostrada uma octree com seis níveis de 

decomposição, iniciando da esquerda (parte superior) até a direita (parte inferior) da 

Figura 9. Em cada nível da árvore, o espaço é subdividido por um fator 2, o que resulta 

em um incremento da resolução de voxels. A resolução pode ser especificada como 

critério de parada da decomposição, também chamado nível de detalhe (Level of 

Detail – LoD) da octree.  No exemplo ilustrado na Figura 9, o nível seis é o último nível 

e, nesse caso, a octree tem LoD de 6 bits, ou ainda, resolução de 26 voxels em cada 

eixo (X, Y, Z). 

Figura 9: Seis níveis de octree aplicado na nuvem Long Dress (D’EON et al., 2016). 

1 Nível

4 Níveis

2 Níveis 3 Níveis

5 Níveis 6 Níveis
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Dessa forma, a nuvem de pontos pode ser subamostrada preservando o ponto 

central de cada voxel. O ponto central em uma octante pode ser obtido por meio do 

cálculo do ponto médio, ou ainda, pode ser representado pela coordenada do centro 

da octante. Além disso, a octree pode ser representada de forma compacta, a partir 

de uma serialização, que pode ser chamada de mapa de ocupação.  

Na Figura 10, um conjunto de bits pode ser utilizado para representar uma 

octree, sendo assim, o particionamento de cada nó é representado por um byte, como 

exemplificado pela raiz (“00000100”), onde o voxel ou octante que possuir pontos é 

representado pelo bit de valor 1 e o que não possuir é representado pelo valor 0. Na 

Figura 10 (lado direito) é ilustrada a representação de forma serializada (mapa de 

ocupação) da octree. 

 
Figura 10: Esquema de serialização da octree (Figura adaptada de (Kammerl, 

2012)). 
 

O conceito de octree é amplamente aplicado para compressão de nuvens de 

pontos, devido à forma compacta de representação por meio dos mapas de ocupação, 

que favorecem a exploração de codificação entrópica (KAMMERL et al., 2012). 

 

2.5 Avaliação de Qualidade de Nuvens de Pontos 

 
Os algoritmos de compressão de nuvens de pontos, assim como os de vídeos 

2D, exploram diferentes tipos de redundâncias para viabilizar menor demanda de 

armazenamento ou transmissão de dados. Porém, o resultado deste processo de 

compressão precisa manter qualidade satisfatória para visualização, mesmo que a 

exigência de qualidade possa variar dependendo do tipo de aplicação. Dessa forma, 

é preciso avaliar o impacto da compressão na qualidade das nuvens de pontos. 
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Os métodos de avaliação são classificados em duas categorias: subjetivos e 

objetivos. Os métodos subjetivos se baseiam na opinião de espectadores que devem 

observar as nuvens de pontos e responder um questionário elaborado de acordo com 

normativas de avaliação (MELO, 2017). Nesse sentido, a avaliação subjetiva 

demanda tempo, espaço físico e pessoas para sua aplicação. Os métodos objetivos 

utilizam equações calculadas por meio computacional (ALEXIOU; EBRAHIMI, 2017). 

Assim, tem como vantagem uma menor demanda de tempo e não necessitam 

pessoas e espaço físico. Além disso, as métricas de qualidade objetivas são 

indispensáveis diante da necessidade de os codificadores tomarem decisões sobre 

quais ferramentas devem ou não ser utilizadas durante o processo de codificação, 

tendo como base a avaliação de qualidade. Cabe destacar que o escopo desse 

trabalho se limita às métricas de qualidade objetivas. 

A qualidade objetiva de nuvem de pontos é calculada para geometria e textura 

de forma separada. As métricas PSNR (Peak Signal-to-Noise Ratio) e MSE (Mean 

Squared Error), muito utilizadas em codificação de vídeo, são aplicadas para avaliar 

a qualidade tanto de geometria como de textura. Para a geometria existem duas 

formas mais comuns de calcular a qualidade, a abordagem ponto-a-ponto e a ponto-

a-plano. Na ponto-a-ponto são calculadas as distâncias entre os pontos da nuvem 

original e os pontos mais próximos na nuvem reconstruída (após o processo de 

compressão e descompressão). No método ponto-a-plano, a qualidade é medida com 

base na distância entre cada ponto da nuvem reconstruída e um dado plano na nuvem 

original. 

Nas próximas seções serão tratados maiores detalhes da aplicação dessas 

métricas para nuvens de pontos. Primeiramente serão apresentadas as métricas para 

avaliação de qualidade de geometria e posteriormente as métricas para textura. 

 

2.5.1 Qualidade de Geometria 

 

A avaliação de qualidade de geometria de acordo com documentos do MPEG 

possui duas principais formas de avaliação: ponto-a-ponto (Point to Point - P2P) e a 

ponto-a-plano (Point to Plane – P2Plane). A abordagem ponto-a-ponto é também 

denominada D1 e a abordagem ponto-a-plano denominada D2 (SCHWARZ; CHOU; 

SINHAROY, 2018). No entanto, neste trabalho serão utilizadas as denominações P2P 

e P2Plane.  
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Ambas as abordagens, P2P e P2Plane, são calculadas com a métrica MSE. O 

PSNR também pode ser calculado para obtenção do resultado final de qualidade. As 

métricas podem ser aplicadas considerando uma nuvem de pontos completa ou partes 

da nuvem, como por exemplo, blocos (SCHWARZ; CHOU; SINHAROY, 2018). 

O cálculo da qualidade das nuvens de pontos após compressão considera uma 

nuvem de pontos original em relação a uma nuvem reconstruída (isto é, após o 

processo de compressão e descompressão). No entanto, na etapa de compressão 

com perda, os pontos são subamostrados, gerando uma redução do número de 

pontos da nuvem. Dessa forma, para que o MSE e o PSNR possam ser calculados é 

necessário obter o vizinho mais próximo (correspondente) para cada ponto da nuvem 

reconstruída na nuvem original. Somente através da obtenção dos pontos mais 

próximos é possível calcular as distâncias dos pontos (vetor de erro). 

 

2.5.1.1 Ponto-a-Ponto (P2P) 

 

A abordagem ponto-a-ponto (Point to Point - P2P), calcula as distâncias entre 

os pontos da nuvem reconstruída e os pontos mais próximos na nuvem original. Para 

isso, é necessário primeiramente encontrar pontos mais próximos (correspondentes). 

Para que esses pontos sejam obtidos, é aplicada uma busca por meio do algoritmo k-

dimensional tree (Kd-tree). A Kd-tree 3D assim como em vídeos 2D, é uma estrutura 

usada para organizar um número de pontos/pixels no espaço com k dimensões, e se 

caracteriza por ser uma árvore binária de pesquisa. 

Na construção da Kd-tree 3D, para cada nível da árvore um eixo é selecionado 

para criar um plano de corte (particionamento do espaço 3D). O corte é baseado no 

ponto que corresponde à mediana dos pontos no eixo selecionado. A Figura 11 (b), 

ilustra um exemplo onde o nó raiz da árvore corresponde a mediana do eixo X, e 

consiste na criação do plano destacado na cor vermelha conforme ilustrado na Figura 

11 (a). Os nós filhos dessa árvore consistem em planos de corte baseados no valor 

da mediana das coordenadas no eixo Y. Os nós netos são formados por planos no 

eixo Z e dessa forma a sequência se repete novamente até K dimensões. A partir do 

nó raiz, os pontos que possuem menor valor serão inseridos à esquerda da árvore e, 

consequentemente, os pontos de maior valor serão inseridos à direita. 
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Para pesquisar o vizinho mais próximo de um dado ponto da nuvem de pontos 

reconstruída na nuvem de pontos original, são realizadas comparações entre o ponto 

que se pretende encontrar e os nós da árvore da nuvem original (SCHWARZ; CHOU; 

SINHAROY, 2018). Para isso, no início somente uma coordenada é considerada, por 

exemplo, a coordenada X. O procedimento varre apenas os nós que possivelmente 

levam ao encontro do ponto, tendo em vista que é uma árvore que possui valores 

ordenados. A busca termina ao encontrar um nó folha mais semelhante de valor igual 

ao da coordenada. Posteriormente, a métrica denominada quadrado da distância 

euclidiana (QE) é utilizada para calcular a distância entre o ponto encontrado e o ponto 

pesquisado (Sinal de “+”, Figura 11 (a)). O valor da distância é guardado juntamente 

com as coordenadas do ponto encontrado como o melhor candidato. A árvore é 

pesquisada novamente onde são avaliados o nó pai por meio da distância QE, assim 

como os nós folhas, como no exemplo ilustrado na Figura 11 (b) em que segue em 

destaque o nó B. 

A partir da obtenção do ponto mais próximo para cada ponto da nuvem 

reconstruída B na nuvem original A, é possível calcular o vetor de erro 𝐸(𝑖, 𝑗) conforme 

apresentado na Equação 1. 

𝑒B,A
D1 (𝑖) = ‖𝐸(𝑖, 𝑗)‖2

2  (1) 

Na Equação 1, D1 representa o cálculo da distância por meio de P2P para cada 

ponto de B em A, E é o vetor de erro ou distância entre os pontos, i é a coordenada 

do ponto na nuvem B enquanto j é a coordenada do ponto mais próximo na nuvem A. 

 

 

 
Figura 11: Exemplo de pesquisa do vizinho mais próximo na Kd-tree. 
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O cálculo da distância P2P para nuvem completa é realizado por meio da média da 

distância de todos os pontos, como apresenta a Equação 2. 

𝑒B,A
D1 =

1

𝑁𝐵
∑ 𝑒B,A

D1 (𝑖)∀𝑖∈𝐵   (2) 

Na Equação 2, é calculada a média das distâncias de todos os pontos da nuvem 

B, onde 𝑁𝐵 é o número de pontos da nuvem B. Essa média dos vetores de erro para 

a nuvem completa é utilizada para calcular o PSNR da nuvem de pontos como será 

descrito na Seção 2.5.1.3. 

 

2.5.1.2 Ponto-a-Plano (P2Plane) 

A abordagem ponto-a-plano (Point to Plane - P2Plane), também referida como (D2) 

pelo MPEG, mede a distância entre um ponto e um plano (modelo de superfície). Para 

calcular a métrica P2plane para a nuvem de pontos degradada B, é necessário encontrar 

o vizinho mais próximo na nuvem de pontos A. A etapa para calcular os pontos 

correspondentes entre as nuvens ocorre como na abordagem P2P. No entanto, para 

a abordagem P2plane o vetor de erro 𝐸(𝑖, 𝑗) é projetado na direção do vetor normal 𝑁𝑗 

do ponto correspondente na nuvem A, gerando assim um novo vetor de erro 𝐸̂(𝑖, 𝑗), 

como segue a Equação 3. 

 

𝑒B,A
D2 (𝑖) = ‖𝐸̂(𝑖, 𝑗)‖2

2 = (𝐸(𝑖, 𝑗) ∙ 𝑁𝑗)2  (3) 

 

Na Equação (3), Ê(i,j) é o novo vetor de erro calculado a partir do produto pelo 

vetor normal. Nj, é o vetor normal para o ponto correspondente. O vetor normal ou 

superfície de um ponto é um vetor perpendicular ao plano tangente da superfície 

desse mesmo ponto. As normais em geral são dados intrínsecos incluídos nas nuvens 

de pontos utilizadas nas CTC propostas pelo MPEG. 

A média dos vetores de erro 𝐸̂(𝑖, 𝑗) para todos os pontos é calculada como 

mostra a Equação 4. O resultado é utilizado para o cálculo do PSNR da nuvem 

completa. 

𝑒B,A
D2 =

1

𝑁𝐵
∑ 𝑒B,A

D2 (𝑖)∀𝑏𝑖∈𝐵   (4) 
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Na Equação 4, é calculada a média das distâncias de todos os pontos da nuvem 

B, onde 𝑁𝐵 é o número de pontos da nuvem B e 𝑒B,A
D2 (𝑖) é distância P2Plane de cada 

ponto. 

A Figura 12 ilustra um exemplo de ponto da nuvem B (ponto preto) que tem 

como ponto mais próximo ou correspondente na nuvem A o ponto vermelho e, entre 

eles é calculado o vetor de erro. Posteriormente esse vetor é projetado como produto 

do vetor normal. 

O MPEG sugere ambas as abordagens, P2P e P2Plane, nas CTC. No entanto, 

conforme estudos apresentados em JAVAHERI (2017) e ALEXIOU (2017), a 

abordagem P2Plane apresenta resultados de qualidade mais correlacionados com a 

avaliação subjetiva, ou seja, essa é uma forma computacional de avaliar as nuvens 

de pontos mais fiel e aproximada de uma avaliação feita por meio da observação de 

pessoas. Conforme JAVAHERU (2017), as métricas P2Plane têm maior correlação 

com as avaliações subjetivas, uma vez que essas métricas modelam a superfície 

subjacente da nuvem de pontos e as distorções típicas para as nuvens de pontos 

reconstruídas correspondem a leves deslocamentos na superfície subjacente, que 

podem levar a erros significativos nas métricas do P2P, sem um impacto perceptivo 

significativo após a renderização. Neste sentido, neste trabalho serão apresentados 

os valores de ambas as abordagens, porém será dada maior relevância para 

resultados adquiridos por meio da P2Plane. 

 

 
Figura 12: Exemplo da abordagem ponto-a-plano 
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2.5.1.3 Métricas de similaridade 

 

O cálculo do MSE para nuvens de pontos é a média das distâncias quadráticas 

dos pontos da nuvem degradada B e os vizinhos mais próximos da nuvem de pontos 

de referência A. Para o cálculo do vetor de erro é aplicada a distância quadrática dos 

pontos e posteriormente é calculada a média desses vetores de erro. Dessa forma, o 

MSE já é calculado tanto através da abordagem P2P como para P2plane, 

apresentadas nas seções 2.5.1.1 e 2.5.1.2, respectivamente.  A equivalência entre as 

equações é apresentada na Equação 5 (SCHWARZ; CHOU; SINHAROY, 2018). 

 

𝑀𝑆𝐸 = 𝑒B,A
D1 =

1

𝑁𝐵
∑ 𝑒B,A

D1 (𝑖)∀𝑖∈𝐵   (5) 

 

Onde 𝑒B,A
D1  é a distância P2P média para os pontos da nuvem de pontos B em 

relação à nuvem A, calculada conforme apresentado na Equação 2. O MSE pode ser 

ainda calculado por meio da Equação 4 para obtenção de resultados para a 

abordagem P2Plane. 

Os valores de PSNR são medidos em decibéis (dB), sendo que para nuvens 

idênticas que resultam em um valor de MSE igual a 0, o valor de PSNR será indefinido. 

Valores altos de PSNR indicam qualidade relativamente alta e valores baixos indicam 

qualidade relativamente baixa (SCHWARZ; CHOU; SINHAROY, 2018). 

O PSNR é apresentado na Equação 6, onde p corresponde ao valor máximo 

que pode ser assumido por uma amostra. Para a nuvens de pontos dinâmicas o valor 

de p deve ser 1024 conforme estabelecido pela CTC (SCHWARZ; CHOU; SINHAROY, 

2018). 

𝑃𝑆𝑁𝑅 = 10𝑙𝑜𝑔10(
𝑝2

𝑀𝑆𝐸
)  (6) 

A nuvem de pontos reconstruída por meio de compressão com perdas pode ter 

seus pontos subamostrados. Como resultado disso, pode haver uma diferença de 

número de pontos entre a nuvem reconstruída e a nuvem original. Para compensar 

estas diferenças, as abordagens P2P e P2plane devem ser calculados de forma 

simétrica. Nesse contexto, quando realizado o cálculo de P2P ou P2plane entre a 

nuvem reconstruída e a nuvem original, o MSE deve ser calculado entre a nuvem 

original e a reconstruída, e também na ordem contrária (SCHWARZ; CHOU; 
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SINHAROY, 2018). Isso porque para os pontos subamostrados devem existir pontos 

vizinhos mais próximos na nuvem de referência do que quando realizado o cálculo 

inverso (nuvem de referência em relação a reconstruída), em que os pontos próximos 

tendem estar mais distantes.  Assim, o cálculo de forma simétrica tem como objetivo 

garantir uma maior robustez para a avaliação de qualidade. Nesse contexto, o PSNR 

utiliza o maior valor de MSE conforme a Equação 7. 

𝑃𝑆𝑁𝑅 = 10𝑙𝑜𝑔10(
𝑝2

𝑚𝑎𝑥(𝑒B,A
Dx ,𝑒A,B

Dx )
) (7) 

Na Equação 7, p2 representa o pico de sinal e 𝑚𝑎𝑥(𝑒B,A
Dx , 𝑒A,B

Dx ) define o MSE 

simétrico, ou seja, deve-se utilizar o maior MSE entre a nuvem B e A e entre A e B. 

 

2.5.2 Qualidade de Cor 

 

A avaliação de qualidade de cor é baseada na métrica P2P, ou seja, para cada 

ponto da nuvem reconstruída são pesquisados os vizinhos mais próximos 

(correspondentes) na nuvem de referência. Para a obtenção dos pontos 

correspondentes entre as nuvens de pontos é considerada somente a informação de 

geometria dos pontos, ou seja, a distância entre os pontos. Com a obtenção dos 

pontos correspondentes para a nuvem reconstruída é calculada a qualidade da 

textura. O vetor de erro passa a ser baseado nos atributos de cor e a médias desses 

contemplam o MSE.  

O cálculo dos atributos de cor para nuvens de pontos é realizado por meio do 

sistema de cor YUV. Assim, é necessário converter as informações do sistema RGB 

para YUV. O MSE e o PSNR são calculados de forma individualizada para cada canal, 

conforme SCHWARZ (2018). 

Como feito para a avaliação de geometria, na avaliação da textura também é 

utilizado o MSE simétrico para calcular o PSNR. Segue de forma geral na Equação 8, 

o cálculo do PSNR para os atributos de cor. 

𝑃𝑆𝑁𝑅 = 10log10(
𝑝2

𝑀𝑆𝐸𝑠𝑖𝑚𝑒𝑡𝑟𝑖𝑐𝑜
),  (8) 

Conforme a Equação 8, p2 representa o pico de sinal e MSEsimétrico é o maior 

MSE entre nuvem de referência e nuvem corrente. 
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2.6 Trabalhos relacionados 

 

Nesta seção será apresentado um breve relato dos principais trabalhos 

encontrados na literatura que tratam da compressão de nuvens de pontos. Esses 

trabalhos podem ser classificados em duas classes, a que contempla exploração 3D, 

seja por meio de grafos ou árvores, e a que explora a projeção da informação 3D para 

2D para realizar a compressão. Além disso, dentro dessas duas classes, existem 

ainda os trabalhos focados somente em compressão de geometria ou em compressão 

de textura, como também trabalhos que contribuem para compressão de ambas as 

informações. É interessante destacar que na literatura atual também são encontrados 

trabalhos que propõem codificadores completos que abordam tanto aspectos de 

predição intra como inter-nuvens e tratam informação de geometria e textura. 

Como propostas de trabalhos que exploram 3D com a utilização de árvores, é 

possível destacar abordagens como (GARCIA; QUEIROZ, 2018), (SMITH; PETROVA; 

SCHAEFER, 2012) e (HUANG, 2006), em que é explorada somente informação de 

geometria. Propostas que exploram tanto geometria quanto textura são abordadas em 

(GOLLA; KLEIN, 2015), (HUANG, 2008), (SCHNABEL; KLEIN, 2006), e (QUEIROZ; 

CHOU, 2016). 

Como trabalhos que propõem uso de grafos para compressão de geometria e 

textura se enquadram as propostas de (THANOU; CHOU; FROSSARD, 2015) e 

(THANOU; CHOU; FROSSARD, 2016). Abordagens que tratam somente textura são 

encontradas em (ZHANG; FLORENCIO; LOOP, 2014), (ZHANG; FLORÊNCIO, 2012) 

e (SHAO et al, 2017). 

No grupo de abordagens que propõem codificar nuvens de pontos por meio de 

projeções 2D são encontradas propostas de soluções em (MORELL et al., 2014) e 

(LOOP; ZHANG; ZHANG, 2013). 

A exploração da predição inter-nuvens, ou seja, para a categoria de nuvens de 

pontos dinâmicas, utilizando de técnicas que exploram 3D com a aplicação de árvores 

como, por exemplo, octree, são encontradas em (GARCIA; QUEIROZ, 2017) e 

(QUEIROZ; CHOU, 2017). 

Soluções que propõem codificadores completos são encontradas em 

(MAMMOU, 2018), (MEKURIA; BLOM; CESAR, 2017), (QUEIROZ; CHOU, 2016) e 
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(KAMMERL et al., 2012). Entre os codificadores completos é possível destacar as 

soluções adotadas pelo MPEG para constituir ferramentas de exploração e servir de 

base comparativa para novas abordagens. Essas soluções são tratadas em 

(MEKURIA; BLOM; CESAR, 2017) e (MAMMOU, 2018) e serão apresentadas com 

maiores detalhes no Capítulo 3. Além disso, no Capítulo 4 serão discutidos, com maior 

profundidade, os trabalhos que tratam especificamente da exploração dos modos de 

predição intra e inter-nuvens de pontos para nuvens de pontos dinâmicas.



 
 

3 CODIFICADORES MPEG 
 

Neste capítulo serão apresentados dois dos mais importantes codecs (codifica-

dores e decodificadores) de nuvens de pontos dinâmicas encontrados na literatura 

atual, o Point Cloud Compression (PCC-Anchor) (MEKURIA; BLOM; CESAR, 2017) e 

o Video-Based Point Cloud Compression (V-PCC) (MAMMOU, 2018). Esses codifica-

dores foram abordagens adotadas pelo MPEG após algumas chamadas de propostas 

do grupo. A apresentação desses codificadores tem como objetivo descrever as prin-

cipais técnicas utilizadas para comprimir nuvens de pontos dinâmicas, além de desta-

car características importantes das predições. O conhecimento dessas soluções via-

biliza uma melhor compreensão dos conceitos fundamentais, bem como o levanta-

mento de aspectos relevantes para a contribuição deste trabalho. 

 

3.1 Point Cloud Compression (PCC-âncora) 

 
O codec proposto por (MEKURIA; BLOM; CESAR, 2017) aborda tanto aspectos 

de predição intra como inter-nuvens. Esse codec foi utilizado como base para avalia-

ção e desenvolvimento de novas abordagens para compressão de nuvens de pontos 

pelo MPEG, sendo denominado MPEG-PCC (Point Cloud Compression) (MEKURIA; 

CESAR,2016). Porém, neste trabalho, ele será referido como PCC-âncora.  

A Figura 13 ilustra uma visão geral do fluxo de codificação do PCC-âncora. Aqui 

as nuvens de pontos são primeiramente normalizadas para que se obtenha um ali-

nhamento das caixas delimitadores (caixa número 1 da Figura 13), posteriormente é 

realizada a decomposição por meio de octree (caixa número 2 da Figura 13) como 

apresentado na Seção 2.4. Para a nuvem de pontos de referência é aplicada a codifi-

cação entrópica sobre os mapas de ocupação para os dados de geometria gerados 

pela octree (caixa número 3 da Figura 13). 

Na compressão dos atributos de cor é realizada uma varredura na árvore onde 
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os pontos são mapeados para uma matriz 2D e, posteriormente é codificada com o 

algoritmo JPEG clássico (WALLACE, 1992) (caixa número 4 da Figura 13). A nuvem 

corrente, ou seja, a segunda nuvem de entrada, sofre uma decomposição por meio 

de octree, com o objetivo de gerar macroblocos (caixa número 5 da Figura 13). Cada 

macrobloco deve ser avaliado se será codificado como intra ou inter mediante a ava-

liação de alguns critérios. Aos blocos selecionados para serem codificados como inter, 

é aplicada uma quantização para os vetores de movimento (caixa número 6 da Figura 

13), conforme será explicado na Seção 3.1.1.2. Por outro lado, os blocos que serão 

codificados como intra seguem o mesmo caminho de codificação que a nuvem de 

referência. Ao final é realizada a geração do cabeçalho e codificação entrópica para o 

bitstream (caixa número 7 da Figura 13).  

 

 

3.1.1 Predição Inter-nuvens 

 

Na etapa de predição inter-nuvens, primeiramente é realizada uma normaliza-

ção das coordenadas das nuvens de pontos. Essa normalização também tem função 

de alinhar as nuvens de pontos, pois insere as nuvens temporalmente vizinhas em 

intervalos conhecidos e iguais, isto é, intervalo 0 e 1 (MEKURIA; BLOM; CESAR, 

2017). O alinhamento é importante devido às características de irregularidade dos ta-

manhos de nuvens temporalmente vizinhas. Nesse sentido, para calcular a normali-

zação são obtidas as coordenadas mínimas e máximas nos três eixos considerando 

as duas nuvens. Obtendo esses limites de cada eixo, os valores são usados para 

Figura 13: Visão geral do codec PCC-âncora (adaptado de (MEKURIA; BLOM; CESAR, 
2017)). 
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normalizar as nuvens de pontos (MEKURIA; BLOM; CESAR, 2017). A Figura 14, mos-

tra duas nuvens de pontos de entrada (parte superior da figura) e as nuvens de pontos 

após o alinhamento e normalização (parte inferior).  

Figura 14:  Normalização e alinhamento das caixas delimitadoras. 
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A predição inter-nuvens prevê a geração de blocos de tamanho N×N×N voxels, 

onde N é definido previamente como parâmetro de configuração do codec. Os resul-

tados apresentados na proposta de (MEKURIA; BLOM; CESAR, 2017) utilizam N=16. 

Segundo o autor, esse tamanho de macrobloco habilitou os melhores resultados para 

os experimentos realizados. 

Diferentemente do que ocorre na codificação de vídeos, nesse codec os blocos 

não são particionados em macroblocos menores, ou seja, uma vez definido o tamanho 

para os blocos, esses são inalteráveis. A ME é realizada a partir da comparação do 

macrobloco atual da nuvem corrente com o macrobloco colocalizado na nuvem tem-

poralmente vizinha anterior (nuvem de referência).  

 

3.1.1.1 Algoritmo ICP 

 

O algoritmo ICP (Iterative Closest Point) é aplicado para calcular a matriz de 

translações e rotações para cada macrobloco, equivalente ao vetor de movimento pro-

duzido pelos codificadores de vídeo. Portanto, o algoritmo de ICP tem como objetivo 

estimar movimentos que um dado macrobloco possa ter sofrido na nuvem corrente 

visando minimiza a distância entre os dois blocos.  

Para isso, o ICP tem como etapas: 

1. Calcular correspondência dos pontos por meio do algoritmo k-Nearest 

Neighbors (k-NN) para selecionar os pontos vizinhos mais próximos; 

2. Calcular a transformação para informação de geometria (rotação ou 

translação) e posteriormente é calculada a distância quadrática (Square 

Distance) entre um bloco da nuvem atual e a nuvem temporalmente anterior; 

3. Aplicar a transformação (rotação ou translação) ao bloco se o resultado da 

distância quadrática respeitar um determinado limiar a ser definido;  

4. Repetir todo o processo novamente. 

 

Nesse sentido, o algoritmo realiza transformações (combinação de translação 

e rotação) necessárias para minimizar uma métrica de erro, ou seja, a distância do 

bloco atual e o bloco da nuvem de referência de forma iterativa. Para isso, primeira-

mente são selecionados alguns pontos correspondentes entre os blocos. A seleção 

desses pontos pode ser baseada na avaliação de características ou por meio de uma 

amostragem aleatória.  
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É importante destacar que o ICP estima o movimento do bloco considerando 

somente a informação de geometria dos pontos. Dessa forma, não é realizada avali-

ação de similaridade de textura dos pontos que compõem os macroblocos. 

Como critério de parada do ICP são utilizados o número máximo de iterações, 

o valor máximo permitido para rotação e translação e o limiar para a distância quadrá-

tica, também chamado de fitness score. No trabalho proposto em (MEKURIA; BLOM; 

CESAR, 2017) foi utilizado um limite de 20 iterações e como valor de fitness score foi 

calculado o produto do LoD da octree em bits por quatro, ou seja, quatro vezes a 

quantidade de bits da representação octree. 

 

3.1.1.2 Fluxo da Predição Inter-Nuvens 

 

A matriz calculada pelo ICP é quantizada. Para isso, primeiramente são calcu-

lados os quaterniões (ADAMI; TREGLIA, 2002) para os valores de rotação. O cálculo 

de quaterniões consiste basicamente em gerar uma representação mais compacta da 

matriz de rotação, em que a matriz de 3x3 é representada por um vetor de 4 compo-

nentes. Posteriormente, é realizada uma quantização que converte os quatro compo-

nentes dos quaterniões em três valores. Assim, ao final da quantização dos quaterni-

ões, os nove valores da matriz referentes às rotações são convertidos em um vetor 

de três posições. Ao final do processo de quantização, o vetor de movimento é cons-

tituído por três componentes de translação, três componentes de rotação e três com-

ponentes das coordenadas do macrobloco na nuvem de referência, também chama-

das de keys. A Tabela I apresenta a estrutura do vetor de movimento para codificação 

inter-nuvens proposta por (MEKURIA; BLOM; CESAR, 2017). Cada componente é 

armazenado em uma variável inteira de 16 bits, assim cada linha da Tabela I, utiliza 6 

bytes, totalizando 18 bytes o vetor completo.   

 

Tabela I: A estrutura dos dados que compõem o vetor de movimento. 

Coordenada X Coordenada Y Coordenada Z 

Quaternião 1 Quaternião 2 Quaternião 3 

Translação X Translação Y Translação Z 

 

A utilização das keys é justificada pela possibilidade de exploração de parale-

lismo no processo de decodificação e as características inerentes as nuvens de 



52 
 

pontos como a falta de regularidade de voxels ocupados, conforme descrito em (ME-

KURIA; BLOM; CESAR, 2017). 

 

3.1.1.3 Decisão de Modo 

 

A decisão do melhor modo de predição, inter ou intra-nuvem, segue um con-

junto de testes com seus respectivos critérios:  

• Número de pontos: o macrobloco corrente não deve ter um número de pontos 

menor que cinquenta por cento dos pontos da nuvem de referência, nem 

mesmo pode ter um número de pontos cinquenta por cento maior que os pontos 

da nuvem de referência. 

• Variância de cor: para cada macrobloco é calculada a variância de cor. Se-

gundo (MEKURIA; BLOM; CESAR, 2017), macroblocos codificados como inter 

com alta variância de cor podem gerar artefatos visíveis em regiões da nuvem. 

• Convergência do ICP: É verificado se algoritmo ICP obteve sucesso no cálculo 

da matriz de rotações e translações e, posteriormente o resultado é verificado 

por meio de um nível de aptidão alcançado (fitness score).  

 

O fitness score é calculado por meio da média das distâncias quadráticas do 

macrobloco do bloco da nuvem de referência em relação ao macrobloco da nuvem 

corrente. Para isso, através da matriz gerada pelo ICP é aplicada a transformação do 

bloco na nuvem de referência e posteriormente é avaliada a distância em relação ao 

macrobloco corrente. O valor da distância é confrontado com o fitness score definido 

por (MEKURIA; BLOM; CESAR, 2017), que tem como valor a resolução dos pontos 

após subamostragem por octree, multiplicado por quatro. Dessa forma, se o valor es-

tiver abaixo do fitness score, o bloco será codificado como inter; caso contrário, o 

macrobloco será codificado como intra.  

A predição inter-nuvens corresponde ao bloco seis da Figura 15 e o seletor se 

refere aos critérios citados (bloco cinco da Figura 15). O fluxo é melhor representado 

através da Figura 15, primeiramente são gerados macroblocos para a nuvem de refe-

rência e nuvem corrente (bloco número 1). Para cada macrobloco da nuvem corrente 

é verificada a existência de pontos na nuvem de referência (bloco número 2 e 3 da 

Figura 15). Além disso, é realizada a verificação do número de pontos conforme crité-

rios apresentados (bloco 4), assim como a variância de cor (bloco 5). O ICP é 
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calculado (bloco 6) e é verificada a convergência e o fitness score para o macrobloco 

(bloco de número 7 e 8). Se todos os critérios forem satisfeitos para codificar o ma-

crobloco como inter, a matriz de rotação e translação é codificada (bloco 9), ou seja, 

são calculados os quaterniões e é aplicada uma quantização sobre os componentes, 

conforme já descrito. Dessa forma, é enviado ao bitstream a coordenada do macro-

bloco (key), a matriz de rotação e translação do macrobloco já codificada (rigid tf). 

Caso algum dos critérios não seja satisfeito, o macrobloco é codificado como intra.  

 

 
Figura 15: Fluxo da predição inter-nuvens e decisão de modo (adaptado de (MEKURIA; BLOM; 
CESAR, 2017)). 

 

3.1.2  Predição Intra-nuvens 

 

Para a etapa de predição intra-nuvem é realizado o processo de decomposição 

por octree (KAMMERL et al., 2012). Os mapas de ocupação gerados são enviados 

para o codificador entrópico proposto por (HUANG et al., 2006). Para a codificação de 

atributos de textura, é calculada a média de todos os pontos pertencentes à região 
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que contempla um voxel gerado da decomposição por octree. Posteriormente, é rea-

lizada uma busca em profundidade na árvore para mapear todos os atributos de cor e 

inseri-los em uma matriz para construir uma imagem 2D. Através dessa imagem, a 

textura é codificada com o algoritmo JPEG. Na Figura 13, os blocos dois, três e quatro 

se referem às etapas da predição intra-nuvem. 

 A codificação intra para nuvem de pontos corrente é realizada por meio da 

união de todos os pontos pertencentes aos macroblocos que não atenderam aos cri-

térios para predição inter. Esses pontos formam uma nova nuvem que é codificada da 

mesma forma que a nuvem intra de referência, ou seja, através da decomposição por 

octree para a geometria e a aplicação do JPEG clássico para os atributos de cor. 

 

3.2 Video-Based Point Cloud Compression (V-PCC) 

 

O V-PCC (Video-based Point Cloud Compression) foi o codec âncora/base de 

teste selecionado pelo MPEG após a chamada de propostas realizada em outubro de 

2017 (SCHWARZ et al., 2018). O V-PCC apresenta uma abordagem baseada em ví-

deo, onde as nuvens de pontos passam por um processo de planificação e então são 

comprimidas pelo codificador de vídeo 2D HEVC (SULLIVAN et al., 2012). O objetivo 

do V-PCC é explorar as elevadas taxas de compressão obtidas com o HEVC para 

comprimir tanto as informações de geometria quanto de textura de nuvens de pontos 

dinâmicas. Esse também é referenciado na literatura como TMC2 (Test Model Cate-

gory 2), conforme sugerido pelos documentos do MPEG (MAMMOU, 2018).  

O processo de compressão inicia com a conversão da nuvem de pontos em 

duas sequências de imagens planificadas, uma para geometria e outra para textura 

(MAMMOU, 2018). Adicionalmente, metadados que são necessários para interpretar 

as duas sequências, isto é, os códigos de ocupação e informações auxiliares também 

são gerados e comprimidos separadamente. O bitstream gerado e os metadados são 

multiplexados para gerar o bitstream final, como segue ilustrado na Figura 16. 

Na Figura 16, é ilustrada a estrutura do bitstream gerado pelo V-PCC, que mos-

tra o grupo de quadros (Group of Frames - GOF) podendo ser chamado também de 

grupo de nuvens (Group of Clouds - GOC), composto pelo vídeo de geometria, infor-

mações auxiliares, códigos/mapas de ocupação e vídeo de textura (MAMMOU, 2018). 
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Figura 16: Estrutura do bitstream (MAMMOU, 2018). 

 

Uma visão geral do processo de codificação pode ser vista na Figura 17. As 

maiores inovações desse codec estão nas etapas de geração de fragmentos (Patch 

generation), empacotamento (Packing) e o preenchimento (Padding). Essas etapas 

têm basicamente como objetivo tratar da geração de sequências de imagens 2D a 

partir das nuvens de pontos. Sequências distintas para textura e geometria são cons-

truídas, permitindo codificá-las em fluxos separados pelo HEVC (etapa denominada 

video compression) (MAMMOU, 2018).  

 

 

Figura 17: Visão geral do processo de codificação do V-PCC (MAMMOU, 2018). 

 

A Figura 18 ilustra a visão geral do processo de decodificação do V-PCC. Na 

decodificação, as informações dos mapas de ocupação, assim como as informações 

auxiliares são imprescindíveis para a reconstrução das nuvens de pontos, conside-

rando que estes dois fluxos carregam as informações para reconstrução do 3D. 
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Figura 18: Visão geral do processo de decodificação do V-PCC (MAMMOU, 2018). 

 

Para codificar as nuvens, o V-PCC prevê, primeiramente, a geração de frag-

mentos (patches) que são obtidos a partir do cálculo das normais de todos os pontos, 

conforme a abordagem apresentada em (HOPPE et al., 1992). O agrupamento é ob-

tido associando cada ponto com um dos seis planos orientados, definidos por suas 

normais: (1.0, 0.0, 0.0), (0.0, 1.0, 0.0), (0.0, 0.0, 1.0), (-1.0, 0.0, 0.0), (0.0, -1.0, 0.0), e 

(0.0, 0.0, -1.0).  Mais precisamente, cada ponto é associado ao plano que tem a normal 

mais próxima. Na Figura 19 são ilustradas as projeções desses fragmentos nos pla-

nos.  

Figura 19: Nuvem de pontos projetada para 
os planos (ZAKHARCHENKO, 2018). 
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O processo de empacotamento (Packing) visa mapear os fragmentos extraídos 

em uma matriz 2D, enquanto tenta minimizar o espaço não utilizado garantindo que 

cada bloco T×T (onde T é o tamanho do bloco, por exemplo, 16x16) da matriz esteja 

associado a um único fragmento. Posteriormente, o processo de preenchimento (Pa-

dding) visa preencher o espaço vazio entre os patches, a fim de gerar uma imagem 

mais adequada para a compressão de vídeo. Entre os passos do preenchimento es-

tão: 

• Um processo independente para cada bloco T×T (por exemplo 16x16); 

• Se o bloco é vazio, então os pixels do bloco são preenchidos pela última linha 

ou coluna de bloco anterior; 

• Se o bloco tiver pixels vazios e preenchidos, os pixels vazios serão preenchi-

dos iterativamente com o valor médio de seus vizinhos não vazios. 

 

O processo de geração de imagem explora o mapeamento 3D para 2D, calcu-

lado durante o processo de empacotamento, para armazenar a geometria e a textura 

da nuvem de pontos como imagem. Para lidar melhor com o caso de vários pontos 

que são projetados para o mesmo pixel, cada fragmento é projetado em duas imagens 

ou quadros. Basicamente, o processo consiste em inserir fragmentos que possuam 

maior profundidade para o quadro temporalmente sucessor, enquanto os fragmentos 

de menor profundidade devem ser inseridos no atual (MAMMOU, 2018). A Figura 20 

ilustra uma nuvem de pontos após a etapa de geração de imagem.  

(a)                                             (b) 

 
Figura 20: Exemplo de imagem de projeção para geometria (a) e cor (b) (ZAKHARCHENKO, 2018). 
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3.3 Considerações sobre os codificadores do MPEG 

 

Os codificadores apresentados seguem abordagens distintas para realizar a 

compressão de nuvens de pontos dinâmicas. O PCC-âncora é focado em comprimir 

a informação de geometria por meio de octree e utiliza uma abordagem para predição 

inter-nuvens que explora redundância no espaço 3D. Por outro lado, o V-PCC utiliza 

uma abordagem baseada na conversão da nuvem de pontos em um vídeo 2D, usando 

o codificador de vídeo HEVC para comprimir tanto informação de geometria como 

textura. Nesse sentido, o V-PCC não explora as redundâncias temporais no espaço 

3D original. A importância dessa exploração é comprovada diante da chamada para 

experimento de novas abordagens para ME 3D realizada pelo próprio MPEG, con-

forme documento (ZAKHARCHENKO; KIM, 2018). Uma abordagem recente, com foco 

na ME em 3D, foi proposta por (LI, et al., 2019) e implementada no codificador V-PCC. 

Porém, o método se limita a encontrar blocos colocalizados na nuvem de pontos 3D 

com o objetivo de auxiliar a ME 2D realizada no codificador HEVC. Para isso, a nuvem 

de pontos é reconstruída e a coordenada de um determinado patch 2D é convertida 

para 3D. Assim, por meio do bloco colocalizado, é possível obter a coordenada de um 

outro patch 2D que pode fornecer uma melhor correspondência. Essa abordagem tem 

como objetivo auxiliar a ME 2D, já que a divisão por patch pode inviabilizar a ME 2D, 

mesmo em blocos 3D espacialmente próximos ou colocalizados como pode ser visto 

na Figura 21. 

Embora a proposta de (LI, et al., 2019) tenha como objetivo corrigir possíveis 

problemas da ausência de exploração do espaço 3D no V-PCC, essa abordagem 

ainda não explora, de forma satisfatória, as possibilidades em uma área de pesquisa 

tridimensional. 

O V-PCC pode facilmente atingir menores taxas de bits de geometria na com-

paração com o PCC-âncora, no entanto, pode também apresentar resultados de qua-

lidade de geometria inferiores (GONÇALVES, et al., 2019). Na Figura 22 são apresen-

tados os gráficos de taxa e distorção (Rate and Distortion - RD) para a sequência Loot 

avaliada em (GONÇALVES, et al., 2019). Na Figura 22 são apresentados cinco LoD, 

representados pelos pontos das curvas, onde quanto maior o LoD maior a resolução 

das nuvens de pontos e consequentemente maior qualidade. Na Figura 22 (a) é pos-

sível ver que o PCC atinge níveis de qualidade de geometria mais altos para os LoD 
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maiores em comparação ao V-PCC, enquanto o V-PCC só atinge resultados satisfa-

tórios para resoluções baixas.  

Em relação à textura, os resultados obtidos pelo V-PCC são superiores em am-

bos os eixos, taxa e qualidade da nuvem codificada, como pode ser visto na Figura 

22 (b) conforme apresentado em (GONÇALVES, et al., 2019). Estes resultados são 

esperados, uma vez que o V-PCC utiliza os algoritmos avançados do codificador 

HEVC, que é especializado na codificação de textura, enquanto o PCC utiliza um co-

dificador JPEG para a compressão das informações de textura.  

Neste trabalho, o codificador PCC-âncora será usado como base para o desen-

volvimento das soluções propostas para a predição inter-nuvens no espaço 3D, visto 

que este codificador opera sobre os dados originais das nuvens de pontos, ou seja, 

no espaço 3D. Além disso, cabe destacar que a etapa de predição inter do V-PCC é 

exatamente a mesma utilizada no padrão HEVC, sem nenhuma inovação no cenário 

Figura 21: Problema na ME no V-PCC (adaptado de (LI, et al., 
2019)). 
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da compressão de nuvens de pontos dinâmicas. É importante destacar também que 

a proposta desenvolvida nesta tese pode ser adaptada para o V-PCC em trabalhos 

futuros, diante da ausência desse tipo de solução e do potencial ganho de eficiência 

na predição que ela pode trazer. 
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4 PREDIÇÃO INTER-NUVENS 
 

Nos compressores de vídeo, a eficiência de codificação é obtida por meio da 

exploração de redundâncias, tais como: redundância temporal, espacial e entrópica 

(SULLIVAN et al., 2012). As correlações temporais em nuvens de pontos dinâmicas 

ainda não são exploradas de forma satisfatória, e a eficiência da compressão não é 

significativamente aprimorada devido ao tamanho fixo de blocos, segundo Li (2019). 

A ME é responsável por explorar a redundância temporal presente entre 

quadros temporalmente vizinhos em uma cena. Para isto, os quadros são divididos 

em blocos e uma busca é realizada comparando cada bloco do quadro atual (quadro 

sendo codificado) com blocos de um quadro de referência (previamente codificado). 

O bloco mais similar é selecionado e posteriormente é calculado o vetor de 

movimento, que contempla o deslocamento do bloco no quadro corrente em relação 

à posição de maior similaridade no quadro de referência. Para realização da busca 

pelo melhor bloco pode ser aplicado o algoritmo de busca completa (Full Search – FS) 

que apresenta o melhor resultado em termos de qualidade. O FS testa todas as 

possibilidades em uma determinada área de busca. Logo, sempre encontra o bloco 

de maior similaridade com o bloco do quadro atual. Porém, o custo computacional 

deste algoritmo pode, em muitos casos, ser proibitivo devido à grande quantidade de 

blocos candidatos que costumam estar presentes numa área de busca, especialmente 

quando aplicados à compressão de vídeos de alta resolução. Assim, na literatura são 

encontradas diferentes propostas de algoritmos rápidos de ME com o objetivo de 

reduzir o número de comparações realizadas e, consequentemente, reduzir o custo 

computacional da ME, mas mantendo a qualidade mais próxima possível do algoritmo 

FS. 

Outro aspecto importante e tratado na predição inter-quadros em codificadores 

de vídeo como o H.264/AVC (Advanced Video Coding) e o HEVC (High Efficiency 

Video Coding) é a possibilidade do uso de blocos de tamanho variável durante a 
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predição (SULLIVAN; WIEGAND, 2005). Assim, macroblocos de tamanho 16x16 

amostras, por exemplo, podem ser particionados em blocos de 8x8 e até mesmo 

subparticionados em blocos ainda menores, como 4x4. Os cálculos da estimação de 

movimento são realizados para vários tamanhos de blocos e assim a melhor 

combinação de tamanhos é escolhida. Essa escolha é realizada a partir da análise 

dos resultados de taxa (em bits) e distorção (qualidade objetiva) de cada tamanho de 

bloco visando sempre a opção que gere a codificação mais eficiente (SULLIVAN et 

al., 2012).  

Assim como os avanços na etapa de predição inter-quadros trouxeram ganhos 

expressivos nas taxas de compressão dos compressores de vídeo, a exploração 

eficiente da ME em 3D pode viabilizar ganhos significativos para o aumento da 

eficiência de codificação de nuvens de pontos. Porém, devido ao acréscimo de uma 

dimensão em relação aos vídeos, a ME em 3D para nuvens de pontos apresenta uma 

complexidade ainda maior. 

A variação dos tamanhos de blocos presente em codificadores de vídeos 

permite explorar, de maneira mais eficiente, as diferentes características de conteúdo 

presentes dentro dos quadros de um vídeo. Grandes regiões homogêneas e com 

pouca ou nenhuma variação podem ser mais eficientemente codificadas com blocos 

grandes. Já os blocos menores podem ser usados em regiões com maiores detalhes 

de textura, bordas e movimentos, auxiliando numa predição mais precisa. O uso de 

diversos tamanhos de bloco na ME para a codificação de nuvens de pontos pode, 

igualmente, beneficiar a compressão, principalmente porque uma das características 

das nuvens de pontos é a variação do número de pontos entre nuvens temporalmente 

vizinhas. Nesse contexto, a possibilidade o uso de blocos grandes, bem como do seu 

particionamento de diferentes tamanhos de bloco menores, pode viabilizar a seleção 

de blocos que possibilitem uma codificação com a melhor relação entre qualidade e 

taxa. 

 

4.1 Estado da Arte na Predição Inter-nuvens 

 

As abordagens que tratam de nuvem de pontos dinâmica, também chamada 

de categoria 2 pelo MPEG, são soluções voltadas à correlação temporal (predição 
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inter-nuvens). Na literatura atual, essa categoria de nuvem de pontos ainda é pouco 

explorada. 

O trabalho proposto em (KAMMERL et al., 2012) emprega uma octree modifi-

cada denominada double octree. Esta double octree é construída para aplicar uma 

operação de ou exclusivo sobre duas nuvens temporalmente vizinhas, reduzindo as-

sim a entropia dos dados de geometria. No entanto, essa abordagem é limitada a 

nuvens de pontos que possuam pouco deslocamento entre nuvens temporalmente 

vizinhas. 

O codificador proposto por (QUEIROZ; CHOU, 2017) explora correlação tem-

poral com base em (DOU et al., 2015) que propõe uma malha triangular de pequenos 

conjuntos de pontos contíguos para constituir blocos. Cada bloco é codificado como 

intra ou inter-nuvens, por meio de uma decisão de modo que considera distorção de 

geometria e de textura, assim como taxa de bits, similarmente aos codificadores de 

vídeo.  Para a codificação intra-nuvem de textura foi utilizada a abordagem chamada 

Region-Adaptive Hierarchical Transform (RAHT) (QUEIROZ; CHOU, 2016). Essa con-

siste em compactar informações de textura com base em uma transformação hierár-

quica usando wavelet Haar. Para a compactação da geometria, uma decomposição 

de octree é aplicada e posteriormente é aplicada uma codificação entrópica. Um algo-

ritmo de filtragem baseado na morfologia matemática (operações de erosão/expan-

são) é proposto para suavizar aspectos de codificação. 

O método proposto em (THANOU; CHOU; FROSSARD, 2015) realiza uma pre-

dição inter considerando informações de geometria e textura. As nuvens de pontos 

são representadas por uma sequência de grafos ponderados não direcionados. Para 

cada nuvem de pontos, um grafo ponderado é gerado e a correspondência entre os 

grafos é calculada. A predição inter considera a correspondência entre conjuntos de 

nós em cada grafo, que é primeiramente determinada por características esparsas 

usando o descritor chamado Spectral Graph Wavelet (SGW). Para refinar o processo, 

uma predição inter-nuvens densa é realizada usando uma interpolação dos nós cor-

respondentes. A compressão de textura é realizada também através da exploração de 

correlação temporal. Para isso, são calculados resíduos entre a nuvem de referência 

e a corrente, posteriormente é aplicada a transformada de Fourier, conforme proposta 

de (ZHANG; FLORÊNCIO, 2013). Os coeficientes de Fourier são quantizados envia-

dos para o codificador entrópico proposto por (MALVAR, 2006). 
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Uma predição inter-nuvens baseada em árvore binária, denominada k-dimen-

sional tree (Kd-tree) é proposta por (KATHARIYA et al., 2017).  A Kd-tree possibilita 

um particionamento do espaço dependente dos dados, ou seja, divide o espaço em 

duas metades em cada nível. Cada metade contém o mesmo número de pontos, di-

ferente do que realizado na decomposição por meio de octree. A estrutura em árvore 

é construída para a primeira nuvem de um determinado grupo de nuvens (GOC) e, 

assim, a mesma estrutura é procurada no restante das nuvens GOC. De acordo com 

(KATHARIYA et al., 2017), considerando que todas as nuvens GOC têm a mesma 

estrutura de árvore Kd-tree, as correspondências entre a nuvem de ponto de referên-

cia e a corrente são implícitas. A correspondência entre o bloco de nuvens de pontos 

atual e a referência é corrigida para obter uma correspondência individual entre os 

pontos. Isso é feito através da construção de um grafo bipartido em que o vizinho mais 

próximo na nuvem de referência é estimado. Embora esse trabalho apresente uma 

geração de macroblocos com base no número de pontos, as nuvens de pontos podem 

ter voxels ocupados ou não. Portanto, essa abordagem garante que o macrobloco 

selecionado tenha o mesmo número de pontos, mas pode não ser necessariamente 

o mais semelhante. Além disso, a correlação temporal é explorada avaliando apenas 

o bloco colocalizado. 

A abordagem de (DOREA; QUEIROZ, 2018) propõe um método para reduzir o 

custo computacional para a predição inter-nuvens através da adição de informações 

para o mapa de ocupação, como tamanho do bloco, estatísticas do bloco local e nú-

mero de voxels ocupados. Ao consultar o mapa é possível atingir uma redução signi-

ficativa no espaço de pesquisa, evitando avaliações dispendiosas da correspondência 

de blocos. Para construir os mapas, descritores 3D são gerados através da contagem 

de voxels ocupados. Esse trabalho apresenta resultados de tempo e qualidade da 

estimação de movimento, sem apresentar resultados específicos para compressão 

como, por exemplo, o quanto efetivamente é possível atingir de redução de taxa de 

bits. 

Nenhum dos trabalhos relacionados apresenta uma exploração da ME em 3D, 

nem mesmo o particionamento de blocos para refinar a ME. Conforme apresentado, 

os trabalhos encontrados na literatura consideram macroblocos colocalizados ou de 

tamanho fixo dentro de uma área de pesquisa. Diante disso, os aspectos mencionados 

no início deste capítulo apresentam novas possibilidades, ainda não exploradas, para 

a compressão de nuvem de pontos dinâmica. Nesse sentido, uma avaliação da 
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correlação temporal entre as nuvens temporalmente vizinhas, fundamental para uma 

exploração eficiente da ME em 3D, é apresentada na Seção 4.2. 

 

4.2 Avaliação da Correlação Temporal em Nuvens de Pontos 

 

Conforme apresentado nas Seções 2.6 e 4.1, as abordagens existentes, em 

geral, tratam somente blocos colocalizados na nuvem de referência ou, a exemplo do 

V-PCC, converte as nuvens para o espaço bidimensional, desprezando a exploração 

de correlação temporal no espaço 3D.  Para isso, primeiramente é proposta uma 

avaliação da correlação temporal sobre informação de geometria das nuvens de 

pontos, a fim de obter um melhor entendimento das distribuições das redundâncias e 

permitir uma melhor exploração da predição inter-nuvens. 

Para realizar essa avaliação, o algoritmo de estimação de movimento Full 

Search (FS) foi desenvolvido e aplicado para a informação de geometria das nuvens 

de pontos 3D. Na Figura 23 é apresentada a adaptação realizada do algoritmo FS 

para o espaço 3D. Para cada bloco da nuvem corrente é realizada uma pesquisa 

considerando uma área de busca (região em amarelo) ao redor do bloco colocalizado 

(bloco em azul) na nuvem de referência. Todos os blocos candidatos (com precisão 

de um ponto para cada eixo) são avaliados por meio do MSE. No entanto, para avaliar 

a similaridade de cada bloco primeiramente é calculado o vetor de movimento através 

do algoritmo ICP, conforme apresentado na Seção 3.1. Somente após a compensação 

de movimento do bloco candidato, é calculado o MSE. Assim, o bloco que tiver o 

menor valor de MSE é selecionado como a melhor correspondência. 

Através da avaliação do algoritmo FS em 3D é possível construir um mapa de 

calor com as ocorrências das melhores correspondências na área de busca para todas 

nuvens que compõem uma sequência de nuvem dinâmica. Além disso, o mapa de 

calor também é importante para que seja descoberta a melhor configuração de 

tamanho de área de busca para encontrar a melhor correspondência. Neste sentido, 

o algoritmo FS foi avaliado com macroblocos de tamanho 32×32×32 voxels  

considerando para duas diferentes área de busca, sendo uma com [-7, +7] e outra 

com [-15, +15] voxels em cada eixo (X, Y, Z), gerando uma área de busca de 46×46×46 

e 62×62×62 voxels, respectivamente. 
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A Figura 24 ilustra os mapas de calor resultantes de quatro sequências de 

nuvem de pontos dinâmicas recomendadas pelas condições comuns de teste 

(Common Test Conditions - CTC) do MPEG (SCHWARZ; CHOU; SINHAROY, 2018). 

Esses mapas de calor foram construídos considerando as melhores correspondências 

do algoritmo FS para os primeiros 30 quadros de cada sequência de teste. Os pontos 

azuis escuros no mapa de calor representam menores ocorrências de melhor 

correspondência daquele determinado bloco candidato, enquanto pontos vermelhos 

representam maior número de ocorrências. 

Como pode ser visto na Figura 24 (os mapas de calor do lado esquerdo, (a), 

(c), (e) e (g)), o intervalo de pesquisa [-7, +7] apresentou mapas de calor distribuídos 

para quase todas as regiões da nuvem. Somente a nuvem de pontos Red and Black 

teve a maioria de seus melhores casamentos concentrados na região central da área 

de pesquisa. Ao analisar esses resultados, é possível concluir que intervalos de 

pesquisa mais amplos devem ser usados, uma vez que diversos blocos candidatos 

com elevada ocorrência de escolha estão sendo encontrados próximo das bordas do 

intervalo de pesquisa [-7, +7]. Portanto, isto indica que pode ser possível encontrar 

correspondências ainda melhores além das bordas desse intervalo. 

A Figura 24 também apresenta, no lado direito (b), (d), (f) e (h), os mapas de 

calor para o intervalo de pesquisa [-15, +15]. Nesse cenário, as ocorrências das 

 

Figura 23: Visão geral da estimação de movimento baseada em bloco para nuvem de pontos. 
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melhores correspondências estão mais concentradas no centro da área de busca, 

onde a maioria dos pontos vermelhos podem ser encontrados para todas as 

sequências de nuvens de pontos. No entanto, há também uma distribuição mais alta 

nos eixos X, Y e Z, que pode atingir a borda da área de pesquisa em alguns casos. 

Esse comportamento pode ser observado para a nuvem de pontos Long Dress, que 

apresenta algumas posições vermelhas no mapa de calor em todo o eixo Y até o limite 

da borda da área de pesquisa. 

Essa avaliação mostra que os melhores resultados de similaridade entre os 

blocos de nuvens vizinhas podem, muitas vezes, estar localizados longe da região 

colocalizada. Portanto, isso destaca a necessidade de uma maneira mais eficiente de 

explorar a correlação temporal durante a codificação das nuvens de pontos do que a 

solução encontrada no PCC-âncora proposta em (MEKURIA; BLOM; CESAR, 2017). 

Além disso, os resultados apresentados mostram que um intervalo de pesquisa de [-

15, +15] pode fornecer bons resultados para a ME, por fornecer uma área de busca 

mais adequada para a ME de nuvens de pontos dinâmicas. Portanto, esse intervalo 

será usado para as próximas avaliações neste trabalho. 

Diante dos bons resultados apresentados pelo intervalo de pesquisa de [-15, 

+15] e também devido ao elevado tempo de simulação necessário, neste trabalho não 

foram exploradas áreas de busca maiores. Áreas de buscas menores também pode 

ser assunto para exploração futura, no entanto, como os resultados para intervalo de 

pesquisa de [-7, +7] mostram uma grande quantidade de ocorrência de seus melhores 

casamentos concentrados na região próximas aos limites da área de busca, optou-se, 

no primeiro momento, por desconsiderar avaliações em configurações de áreas de 

busca menores. 

A avaliação da ME para diferentes tamanhos de macroblocos também pode ser 

interessante para que seja selecionada uma configuração que viabilize melhor 

eficiência de codificação. Assim, foi avaliada a ME para macroblocos de tamanho 

16×16×16 voxels. Essas avaliações foram usadas com o objetivo de confrontar 

resultados de qualidade da ME para macroblocos de 16×16×16 voxels em relação a 

macroblocos de tamanho 32×32×32 voxels. Os mapas de calor para macroblocos de 

tamanho de 16×16×16 voxels podem ser visualizados no Apêndice A, Figura 47. 
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(a) Long Dress (FS ±7) 

(e) Red and Black (FS ±7) 

(c) Loot (FS ±7) 

(b) Long Dress (FS ±15) 

(d) Loot (FS ±15) 

(f) Red and Black (FS ±15) 

(e) Soldier (FS ±7) (e) Soldier (FS ±15) 

baixa alta 

ocorrência 

Figura 24: Resultados dos mapas de calor para o algoritmo FS com área de pesquisa [-7, +7] e 
[-15, +15]. 



69 
 

Na Tabela II são apresentados valores de PSNR com P2Plane, assim como 

P2P para a ME de macroblocos 32×32×32 voxels (M32) em comparação com a ME 

macroblocos 16×16×16 voxels (M16), ambos com deslocamento [-15, +15].  Os 

valores de PSNR P2Plane para FS com M32 em todas as nuvens são inferiores aos 

valores obtidos por meio do FS com M16 e o mesmo ocorre nos resultados de PSNR 

P2P.  

Tabela II: Avaliação comparativa de PSNR entre o algoritmo FS 
com blocos de 32×32×32 e 16×16×16 voxels. 

  

 

 

 

 

 

 

 A Tabela III apresenta resultados de tempo para FS com M32 em comparação 

ao FS com M16. Os valores de tempo para FS com M32 são superiores aos tempos 

de codificação apresentados pelo FS com M16, onde o FS com M32 resulta em um 

aumento médio próximo de 60%. Essa maior demanda de tempo do FS com M32 em 

relação ao M16 ocorre principalmente, devido a necessidade de maior consumo de 

tempo para calcular o MSE de blocos candidatos no FS com M32 em relação ao FS 

com M16. Além disso, em média com FS M32 são avaliados 23356 blocos candidatos 

por bloco corrente, enquanto que FS com M16 avalia em média 17051 blocos candi-

datos por bloco corrente. Isso porque blocos de tamanho 16x16x16 são mais suscetí-

veis a contemplar regiões de voxels não ocupados. Outro aspecto importante para o 

custo computacional elevado do FS com M32 em relação ao FS M16 pode estar rela-

cionado a realização do cálculo do vetor de movimento por meio do algoritmo ICP, 

que com maior número de pontos tende a desprender maior esforço computacional. 

No entanto, embora o FS com M16 apresente melhores resultados em termos 

de qualidade e menor tempo, o FS com M32 pode habilitar maiores ganhos em 

compressão, devido a uma maior quantidade de voxels que podem ser representadas 

por um único vetor de movimento.  

 

 

Sequência 
P2Plane (dB) P2p (dB) 

M32 M16 M32 M16 

Long Dress 68,47 71,64 59,85 61,44 

Loot 74,10 76,03 69,49 71,67 

Red and Black 69,18 71,61 62,48 69,18 

Soldier 75,62 76,44 71,62 72,18 

Média 71,84 73,93 65,86 68,62 
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Tabela III: Avaliação comparativa de 
tempo (minutos) do algoritmo FS.  

Sequências FS M32 FS M16 

Long Dress 6161 3701 

Loot 7922 7441 

Red and Black 7212 3542 

Soldier 12386 6941 

Média 8420 4731 

 

O uso de tamanhos diferentes de blocos, ou seja, a abordagem de 

subparticionamento proposta neste trabalho pode trazer ganhos em taxa de bits e 

viabilizar qualidade em blocos menores com maior nível de detalhes. Uma exploração 

mais detalhada será apresentada no Capítulo 7, comparando resultados de qualidade 

e taxa de compressão.  

Além disso, diante do alto custo computacional apresentado pelo FS, a 

exploração de algoritmos rápidos de ME é imprescindível para a redução de 

complexidade, assim como em compressão de vídeo 2D. Neste sentido, o Capítulo 5 

apresenta uma avaliação considerando alguns algoritmos rápidos clássicos da 

codificação de vídeos adaptados para compressão de nuvens de pontos dinâmicas. 

O objetivo é encontrar o algoritmo mais adequado para redução de complexidade da 

ME e que apresente a qualidade objetiva mais próxima possível do algoritmo FS. 

 



 
 

5 AVALIAÇÃO DE ALGORITMOS DE ESTIMAÇÃO DE 
MOVIMENTO 3D EM NUVENS DE PONTOS 

 

O algoritmo FS fornece resultados de referência para a ME, uma vez que en-

contra o resultado ideal em uma determinada área de busca. No entanto, apresenta 

um alto custo computacional devido à pesquisa exaustiva realizada na área de busca 

(LI, 2004). O alto custo computacional do algoritmo FS é bem conhecido na codifica-

ção de vídeo, mas considerando o espaço em 3D das nuvens de pontos, sua comple-

xidade se torna ainda maior. O algoritmo FS com uma busca de [-15, +15] (para cada 

um dos três eixos) e trabalhando com blocos 32×32×32, pode exigir a avaliação de 

até 29.791 blocos candidatos para encontrar a melhor correspondência para um único 

bloco (esse valor é variável já que as nuvens de pontos podem possuir voxels ocupa-

dos e não ocupados). Considerando uma nuvem de pontos dinâmica típica das CTC 

que possui em média 3700 blocos, com uma taxa de 30 nuvens por segundo, deve 

ser necessário executar até 3,3 bilhões de avaliações de blocos candidatos por se-

gundo para permitir seu processamento em tempo real. 

Portanto, a avaliação de algoritmos rápidos de ME sobre as informações da 

nuvem de pontos 3D pode ser uma maneira interessante de explorar sua correlação 

temporal, no entanto, com um custo computacional reduzido. Dessa forma, nesta tese 

os algoritmos rápidos de ME N-Step Search (NSS) e Diamond Search (DS) são im-

plementados de forma adaptada para operar sobre dados em 3D, aplicados às nuvens 

de pontos dinâmicas, e seus resultados de qualidade e custo computacional são com-

parados aos obtidos pelo algoritmo FS. Esses algoritmos foram selecionados por 

apresentarem baixa complexidade computacional, mas com resultados de qualidade 

aceitáveis em comparação ao FS. 
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5.1 Algoritmo N-Step Search (NSS) 

 

O N-Step Search (NSS) é um algoritmo clássico de ME, proposto inicialmente 

para a compressão de vídeo 2D. A Figura 25 mostra um exemplo da pesquisa reali-

zada pelo algoritmo NSS, considerando N igual a três. Os cubos se referem às posi-

ções iniciais de cada um dos blocos candidatos. Esta versão do NSS também é co-

nhecida como algoritmo de pesquisa em três etapas (Three-Step Search - TSS) 

(KOGA, 1981).  

Na Figura 25 cada bloco se refere a um candidato na área de busca. Na pri-

meira etapa do algoritmo TSS 2D original, nove blocos candidatos devem ser avalia-

dos. No entanto, considerando o espaço 3D (incluindo o eixo z), um total de 27 blocos 

candidatos devem ser avaliados: a posição central (bloco colocalizado) e os 26 blocos 

(a) Etapa 1 (b) Etapa 2 

(c) Etapa 3 

Figura 25: Exemplo de pesquisa com a adaptação do algoritmo TSS para operar no 
espaço tridimensional. 
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ao redor do centro, com a distância D = 4, como mostrado na Figura 25 (a). Na se-

gunda etapa, 26 blocos ao redor do melhor bloco candidato encontrado na primeira 

etapa devem ser avaliados, desta vez com D = 2. A Figura 25 (c) apresenta o terceiro 

passo, que é muito semelhante ao segundo, mas com distância D = 1 entre o centro 

(melhor resultado no passo dois) e os 26 novos blocos candidatos.  

No algoritmo NSS, considerando N = 4, para melhor cobrir a área de busca de 

deslocamentos [-15, +15], um total 105 blocos candidatos são avaliados, sendo que 

no FS seriam necessários 29.791 blocos candidatos. Além disso, esse número de blo-

cos candidatos do algoritmo NSS terá um valor máximo dependente de N.  

O NSS pode gerar resultados de qualidade próximos ao FS, porém, esse é 

propenso a cair em mínimos locais. Mínimo local é um bloco candidato que é selecio-

nado como melhor correspondência (em uma dada região), no entanto não apresenta 

a melhor correspondência global, que ainda pode possuir melhor correspondência em 

uma outra região. 

 

5.2 Algoritmo Diamond Search (DS) 

 

O algoritmo Diamond Search (DS) é outro algoritmo rápido clássico de ME 

(ZHU, 2000). O algoritmo DS emprega dois padrões de pesquisa chamados Large 

Diamond Search Pattern (LDSP) e Small Diamond Search Pattern (SDSP). A adapta-

ção do LDSP para operar sobre nuvens de pontos 3D é apresentada na Figura 26 (a), 

que mostra 26 blocos candidatos ao redor do bloco central (colocalizado), destacado 

em amarelo. Na versão 3D do LDSP foi adotado deslocamento de um ponto do bloco 

central para os blocos candidatos diagonais entre os eixos X e Y e dois pontos para 

os demais blocos candidatos. O SDSP avalia 14 blocos candidatos ao redor do centro, 

todos com deslocamento de um ponto do bloco central. 

O LDSP é aplicado ao bloco colocalizado na área de pesquisa, avaliando seus 

27 blocos candidatos, conforme apresentado na Figura 26 (a). O padrão é repetido 

até que o melhor resultado seja encontrado no centro do padrão. Nesse caso, o pa-

drão SDSP é aplicado como uma etapa final de refinamento, avaliando 14 blocos can-

didatos adicionais, conforme ilustrado na Figura 26 (b). Caso a melhor correspondên-

cia durante a aplicação do padrão LSDP seja encontrada em um vértice, 15 novos 

blocos candidatos serão avaliados, formando um novo LDSP em torno do melhor 
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resultado da última etapa, conforme apresentado na Figura 26  (c). Quando o melhor 

resultado é encontrado em uma aresta do LDSP, nove novos blocos candidatos adici-

onais são avaliados, conforme ilustrado na Figura 26  (d), formando novamente um 

novo LSDP. É impossível determinar o número total de blocos candidatos avaliados 

no algoritmo DS, pois isto dependerá do número de iterações do LSDP e do tipo de 

pesquisa (vértice ou borda) de cada iteração LDSP. No melhor cenário, apenas 41 

blocos candidatos devem ser avaliados (27 comparações para LDSP e 14 para 

SDSP).  

 

5.3 Avaliação Comparativa 

 

Os algoritmos de FS, NSS e DS foram implementados na linguagem C++ e 

avaliados considerando o custo computacional e a qualidade de geometria quando 

(a) LDSP   (b) SDSP  

(c) Pesquisa em vértice (d) Pesquisa em aresta 

Figura 26: Adaptações do DS para nuvens de pontos. 
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aplicados à nuvem de pontos dinâmicas. A avaliação usa a implementação do PCC-

âncora como base. Todos os algoritmos de ME executam o ICP, conforme descrito na 

Seção 3.1, para cada bloco candidato avaliado. Os blocos candidatos são avaliados 

por meio do MSE simétrico P2P, conforme apresentado no Capítulo 2. Assim, o bloco 

que possuir o menor MSE resultante do cálculo simétrico é escolhido como melhor 

correspondência. A abordagem P2P foi escolhida para avaliar os blocos por ser mais 

facilmente aplicada à avaliação de blocos, já que a abordagem P2Plane exige a rea-

lização do cálculo dos vetores normais das nuvens de pontos, o que demanda alto 

esforço computacional. Para essa avaliação foram considerados macroblocos de ta-

manho 32×32×32, com área de busca com deslocamento de [-15, +15] voxels em 

cada eixo (X, Y, Z), gerando uma área de busca de 62×62×62 voxels. 

Para melhor cobrir o intervalo de pesquisa [-15, +15], nesta tese é considerada 

a pesquisa NSS, com N igual a quatro. Assim, é denominada pesquisa em quatro 

etapas (Four-Step Search - 4SS). As simulações têm inicialmente D = 8, sendo que o 

D é dividido por 2 até o quarto passo (D = 1). Nesse caso, até 105 blocos candidatos 

podem ser comparados ao bloco atual em cada área de busca. 

Os testes foram realizados para as 30 primeiras nuvens das quatro sequências 

de nuvens de pontos (Long Dress, Loot, Red and Black e Soldier) recomendadas pe-

las Common Test Conditions (CTC) (SCHWARZ; CHOU; SINHAROY, 2018). Os re-

sultados de qualidade para cada algoritmo foram medidos em termos de PSNR 

P2Plane e P2P (SCHWARZ; CHOU; SINHAROY, 2018), enquanto o custo computa-

cional foi medido como o número médio de blocos candidatos avaliados, número mé-

dio de iterações de ICP e o tempo total de codificação. Os experimentos foram reali-

zados em um servidor com processador Intel Xeon E5-2650 de 2,20 GHz e 48 GB de 

RAM. 

Na Tabela IV, é possível ver que os melhores resultados de PSNR para as abor-

dagens P2Plane e P2P foram alcançados pelo algoritmo FS, conforme o esperado. O 

algoritmo FS pode alcançar resultados médios de PSNR P2Plane próximo a 1,8dB e 

até 2,5dB para PNSR P2P maiores que os algoritmos rápidos. É importante destacar 

que, o resultado do P2Plane está mais correlacionado com a qualidade subjetiva (JA-

VAHERI, et al., 2017), por isso o PSNR P2plano deve ser considerado o principal 

resultado no aspecto da qualidade. 
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A Tabela V mostra os resultados de custo computacional para os algoritmos de 

ME avaliados. A coluna “Blocos” e a coluna “ICP” apresenta o número médio de itera-

ções para cada bloco candidato avaliado. Já a coluna “Tempo” total apresenta o tempo 

total, em minutos, para processar cada nuvem de pontos. 

Embora os algoritmos FS e 4SS sejam determinísticos em relação ao número 

de blocos candidatos avaliados, o número médio de candidatos realmente avaliados 

durante os experimentos é significativamente menor. Isso ocorre por duas razões prin-

cipais: 1) os blocos atuais das bordas têm um número limitado de blocos candidatos 

a serem avaliados, uma vez que a área de pesquisa é limitada na borda e 2) devido 

aos voxels não ocupados, pode ocorrer a inexistência de alguns blocos candidatos, 

logo, algumas posições de blocos candidatos podem não ser comparados. Isso é com-

provado por meio da Tabela V, na coluna “Nº Blocos Comparados”, que apresenta o 

número médio de blocos candidatos avaliados por cada bloco a ser codificado da nu-

vem atual. Sendo que, o número médio de candidatos avaliados por bloco no algo-

ritmo FS considerando a média de todas sequência é de 23.356 blocos, enquanto para 

4SS e DS o valor médio é de 53,81 e 63,09 respectivamente. Esses resultados mos-

tram que em média são avaliados em torno de 78% dos blocos candidatos no caso do 

FS e 48,7% no caso 4SS. Além disso, por meio desses resultados é possível verificar 

que os algoritmos rápidos de ME atingem uma redução de 97,7% de blocos candida-

tos avaliados em relação ao FS.  

Na Tabela V a coluna “ICP” mostra os valores referentes ao número médio de 

iterações do ICP por bloco candidato avaliado, na média para todas as sequência o 

FS resulta em 18,46, o que representa o maior número de iterações em comparação 

ao 4SS e o DS. Esse último possui o menor número de iterações, sendo em média 

10,78 iterações por bloco candidato avaliado. Os resultados do número de iterações 

Tabela IV: Comparação de qualidade (PSNR) entre algoritmos de ME 
avaliados 

Sequências 
P2Plane (PSNR (dB)) P2P (PSNR (dB)) 

FS 4SS DS FS 4SS DS 

Long Dress 68,47 65,82 65,34 59,85 54,60 56,11 

Loot 74,10 73,51 72,85 69,49 66,64 68,75 

Red and Back 69,18 66,53 66,58 62,48 57,29 59,02 

Soldier 75,62 73,93 75,61 71,62 69,34 69,34 

Média 71,84 69,95 70,10 65,86 61,97 63,31 
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do ICP (coluna ICP) juntamente com o número média de blocos avaliados (coluna Nro 

Bloco), impactam diretamente no resultado de tempo de codificação. 

O menor número médio de iterações do ICP por bloco candidato obtido através 

do algoritmo DS pode ser resultado da configuração adotada para o padrão de busca 

(formato diamante). A configuração adotada avalia blocos candidatos mais próximos 

ao bloco central, na comparação com o 4SS, onde no DS o deslocamento dos blocos 

candidatos que compõem as diagonais nos eixos X e Y possuem deslocamentos de 

um ponto em relação a posição central, e os demais candidatos apresentam um des-

locamento de dois pontos. Já no 4SS, para a primeira etapa, são avaliados blocos 

candidatos com deslocamentos de oito pontos em cada eixo (X, Y e Z). Assim, a dis-

tância entre os blocos candidatos usado no DS pode ter viabilizado um menor número 

de iterações do ICP e, consequentemente, impactaram em um menor tempo de exe-

cução. 

Os experimentos mostram que os algoritmos 4SS e DS podem reduzir, em mé-

dia, o tempo total de ME em 111 e 117 vezes, respectivamente. O algoritmo FS pre-

cisa, em média, de 8.420 minutos para processar uma única nuvem de pontos, en-

quanto os algoritmos rápidos podem fazê-lo em cerca de 74 minutos. Nesse sentido, 

os algoritmos 4SS e DS apresentam um enorme impacto na redução da complexidade 

quando comparados ao algoritmo FS, como também esperado. No entanto, devido ao 

espaço 3D, essa redução é muito maior do que a obtida nos vídeos 2D, por exemplo.  

 

Tabela V: Comparação de complexidade entre os algoritmos de ME avaliados. 

Sequências 

Nº Blocos Comparados  

(media por bloco) 
ICP (media por bloco) Tempo (minutos) 

FS 4SS DS FS 4SS DS FS 4SS DS 

Long Dress 21.733 51,69 86,98 20,41 22,67 17,56 6.161 72 89 

Loot 24.086 56,70 56,36 17,79 15,12 9,11 7.922 69 59 

Red and Black 23.002 52,30 68,80 17,37 17,00 12,39 7.212 66 71 

Soldier 24.605 54,54 40,21 18,29 14,04 4,05 12.386 96 70 

Média 23.356 53,81 63,09 18,46 17,21 10,78 8.420 76 72 

 

Considerando o tempo proibitivo do algoritmo FS, os algoritmos 4SS e DS tor-

nam-se alternativas interessantes para a ME 3D aplicada a nuvens de pontos. Mesmo 

com um número maior de blocos candidatos avaliados por bloco atual, o algoritmo DS 

apresenta um resultado muito semelhante no tempo total de execução, com uma 



78 
 

vantagem marginal no resultado médio de tempo, quando comparado ao algoritmo 

4SS. O resultado pode ser justificado porque o DS apresenta um número médio menor 

de iterações do ICP para cada bloco candidato em comparação com o 4SS, conforme 

presente na coluna “ICP”. Além disso, o DS também obteve ganhos no PSNR P2Plane 

e no PSNR P2P na comparação com o algoritmo 4SS. 

As Tabela IV e Tabela V  mostram que os algoritmos rápidos têm uma boa re-

lação entre qualidade e custo computacional quando aplicados às nuvens de pontos. 

Devido aos resultados semelhantes para o PSNR P2Plane e o tempo, o 4SS e o DS 

apresentam-se como boas opções para serem usadas na ME de nuvem de pontos 

dinâmica. Neste trabalho, será utilizado o DS, devido a melhores resultados presentes 

tanto na qualidade quanto no tempo de codificação. 

 

5.4 Avaliação do impacto do ICP 

 

Os algoritmos de ME avaliados na Seção 5.3, utilizam o algoritmo ICP para 

calcular o vetor de movimento, que contempla rotações e translações no espaço 3D. 

Os vetores de movimento, conforme o codificador PCC-âncora, demandam 3 compo-

nentes de 16 bits para translação e 3 componentes de 16 bits para rotação, totalizando 

assim 12 bytes (MEKURIA; BLOM; CESAR, 2017). No entanto, neste trabalho foram 

realizados experimentos para explorar a possibilidade de redução desse número de 

componentes, com o objetivo de reduzir a demanda por taxa de bits. Para isso, foi 

avaliado o impacto da remoção do algoritmo ICP da ME, passando assim a ser calcu-

lado somente movimentos de translação entre os blocos candidatos e bloco atual. 

Dessa forma, o movimento do bloco candidato é compensado considerando a sua 

posição em relação ao bloco atual, ou seja, se o bloco candidato estiver localizado a 

dois pontos de distância no eixo X em relação ao bloco atual, esse bloco candidato é 

transladado em dois pontos no eixo X em direção ao bloco atual. 

Para esse experimento foi utilizado o algoritmo DS, pelo fato desse ter sido 

selecionado para compor a proposta deste trabalho, diante dos bons resultados apre-

sentados em relação aos 4SS e FS conforme Seção 5.3 Dessa forma, é realizado um 

comparativo entre o DS com a utilização do ICP e o DS sem a utilização. 

A Tabela VI apresenta resultados de custo computacional e, qualidade calcula-

dos por meio dos valores de PNSR P2Plane e o PSNR P2P, para as 60 primeiras 

nuvens de pontos das quatro sequências de nuvens de pontos dinâmicas que 
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compõem as CTC, sendo elas, Long Dress, Loot, Red and Black e Soldier. Além disso, 

foi utilizada uma área de busca com deslocamentos de [-15, +15] e macroblocos de 

tamanho 32×32×32 voxels. 

Como pode ser visto na Tabela VI, os resultados de qualidade de PSNR 

P2Plane do DS com a utilização do ICP são superiores ao DS sem ICP. Por outro lado, 

os resultados apresentados com a utilização de PSNR P2p para o algoritmo DS sem 

ICP são superiores ao DS com ICP. Porém, como o PSNR P2Plane é correlacionado 

com a avaliação subjetiva, esse se torna mais relevante para a comparação. Além 

disso, o DS com ICP tem uma superioridade de qualidade de PSNR P2Plane de 

2,11dB na média para as quatro sequências. Embora o PSNR P2P resulte em uma 

melhor qualidade para o DS sem ICP, essa diferença é de 0,11 dB. 

 
Tabela VI: Comparativo entre o algoritmo DS com ICP e sem ICP. 

Sequência 
P2Plane P2p Tempo(min) 

Com ICP Sem ICP Com ICP Sem ICP Com ICP Sem ICP 

Long Dress 65,34 62,33 56,11 56,94 89 44 

Loot 72,85 71,54 68,75 68,42 60 47 

Red and Back 66,58 63,23 59,02 59,35 72 53 

Soldier 75,61 74,88 71,63 71,25 71 61 

Média 70,10 67,99 63,88 63,99 73 51 

 

Em termos de custo computacional, a Tabela VI coluna “Tempo” confirmou o 

que era esperado, o DS sem ICP apresenta o menor tempo médio de execução para 

as sequências em relação ao DS com ICP.  

Neste sentido, é possível concluir que o algoritmo ICP é fundamental para a 

qualidade do DS. Sendo assim, a proposta deste trabalho utiliza o DS como algoritmo 

de ME juntamente com o ICP para calcular os vetores de movimento. 



 
 

6 ESQUEMA DE PREDIÇÃO DESENVOLVIDO 
 

 

Este capítulo apresenta o novo esquema de predição proposto que engloba 

estimação de movimento sobre o espaço tridimensional, subparticionamento de ma-

croblocos e decisão de modo que define a melhor opção de codificação, levando em 

conta tanto as informações de geometria quanto de textura. Este esquema proposto 

possui como características principais: 

 

• Alinhamento das caixas delimitadoras: O ajuste do alinhamento visa uma 

correspondência mais eficiente para blocos colocalizados, bem como viabiliza 

que blocos presentes nas bordas possam ter blocos candidatos colocalizados 

e sejam melhor avaliados pela ME. 

• Estimação de Movimento 3D: O método aplica o algoritmo DS sobre infor-

mações de geometria para ME no espaço 3D das nuvens de pontos dinâmi-

cas.  

• Subparticionamento de macroblocos: Para melhorar a eficiência das pre-

dições, tanto intra como inter-nuvens, também é proposto o subparticiona-

mento de macroblocos. O método de subparticionamento permite partir de 

macroblocos 32×32×32 ou de 16×16×16 voxels. Esse macroblocos podem 

ser subdivididos em blocos menores como 16×16×16 e/ou de 8×8×8 voxels, 

sendo possível codificar cada bloco com inter ou intra.  

• Decisão de modo: Propõe-se também um algoritmo de decisão de modo 

para escolher a melhor opção de codificação baseada na relação entre taxa 

de bits e qualidade, tanto para as informações de geometria quanto de textura, 

considerando as diferentes possibilidades dos modos de subparticionamento 

e tipo de predição para os macroblocos. 
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O esquema proposto foi desenvolvido em C++ e integrado ao codificador PCC-

âncora (MEKURIA; BLOM; CESAR, 2017). A modificação no fluxo original do codifica-

dor PCC-âncora é mostrada na Figura 27, com um novo bloco de “ME”, contemplando 

ME por meio do algoritmo DS, bem como o bloco “Subparticionamento de macroblo-

cos” e a “Decisão de modo”. Além disso, há contribuições de melhorias na etapa de 

“Alinhamento das caixas delimitadoras”. Esses novos blocos para o esquema pro-

posto encontram-se destacados na cor amarela.  

O novo esquema de ME utiliza o algoritmo ICP para calcular o vetor de movi-

mento para cada bloco candidato avaliado pelo algoritmo de ME. Além disso, o vetor 

de movimento obtido através da ME do maior macrobloco do subparticionamento, é 

utilizado também para os blocos menores. Dessa forma, os blocos menores não rea-

lizam ME, somente herdam o vetor de movimento, por exemplo, do macrobloco 

32×32×32 conforme ilustra a Figura 27. Nesse sentido, é possível refinar a predição 

inter através de blocos menores, provendo uma melhor eficiência de codificação em 

algumas regiões da nuvem, já os blocos menores que compõem a região do macro-

bloco podem possuir uma melhor correlação, e não necessitam de vetor es de movi-

mento adicionais. As etapas do esquema proposto serão descritas em detalhes nas 

próximas seções desse capítulo. 
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6.1 Alinhamento das caixas delimitadoras 

 

No PCC-âncora, a etapa inicial e fundamental para a estimação de movimento 

é denominada normalização das caixas delimitadoras (bounding box normalization). 

Essa etapa visa alinhar nuvens de pontos temporalmente vizinhas por meio de uma 

normalização. Para isso, são obtidos os maiores e menores limites em cada eixo (X, 

Y e Z) considerando duas nuvens de pontos temporalmente vizinhas e esses limites 

são usados para realizar a normalização.  

A normalização é importante principalmente para a abordagem de predição in-

ter-nuvens considerando macroblocos colocalizados, conforme proposta original do 

PCC-âncora (MEKURIA; BLOM; CESAR, 2017). No entanto, por meio de experimen-

tos realizados previamente a este trabalho, foram detectados problemas de alinha-

mentos entre nuvens de pontos temporalmente vizinhas. Em especial o problema de 

alinhamento resulta na ausência de macroblocos colocalizados em regiões próximas 

às bordas das nuvens causando impacto na eficiência da codificação.  

O problema de alinhamento e normalização das caixas delimitadoras ocorre 

porque nuvens temporalmente vizinhas possuem diferentes limites mínimos e máxi-

mos. Essa diferença é devida as nuvens de pontos possuírem estruturas irregulares 

(voxels ocupados e não ocupados), e porque o objeto da cena pode sofrer deforma-

ções de nuvem para nuvem.  Embora a normalização utilize os maiores e menores 

limites entre as duas nuvens de pontos temporais, esses limites, após a etapa de nor-

malização, passam a ter valores diferentes, ainda que em casas decimais. Nesse con-

texto, no processo de geração de macroblocos por meio de octree, as coordenadas 

desses macroblocos podem ser diferentes para nuvens de pontos temporalmente vi-

zinhas.  

O problema de alinhamento das caixas delimitadoras do método original do 

PCC-âncora pode ser visto na Figura 28, onde são ilustradas duas nuvens temporal-

mente vizinhas sobrepostas. Na Figura 28 as linhas em verde representam os macro-

blocos de duas nuvens de pontos sobrepostas e através desses macroblocos é pos-

sível perceber o desalinhamento. As bordas das caixas delimitadores das nuvens de 

pontos sobrepostas estão ilustradas em linhas pretas. Por meio das bordas é possível 

ver que as caixas delimitadoras estão desalinhadas. Embora os macroblocos de duas 
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estruturas de octree estejam sobrepostas, existe um desalinhamento ou desloca-

mento entre os macroblocos.  

Neste sentido, foi proposto fixar os limites das nuvens em coordenadas 0 e 1. 

Esse ajuste possibilitou uma decomposição por meio de octree, como já detalhado na 

Seção 2.4, respeitando esses limites fixados e forçando a subamostragem dos pontos 

para o mesmo intervalo, consequentemente as coordenadas dos macroblocos pas-

sam a ter as coordenadas dos pontos mais semelhantes.  

A Figura 29 mostra o resultado da proposta de correção do alinhamento dos 

macroblocos, em que é possível ver os blocos perfeitamente sobrepostos e alinhados. 

Além disso, é possível perceber que as bordas das caixas delimitadoras das nuvens 

de pontos estão completamente sobrepostas.  

Figura 28: Problema de alinhamento das caixas 
delimitadoras (adaptado de (Santos, et al., 2018)) 

Figura 29: Ajuste das caixas delimitadoras (adaptado de 
(Santos, et al., 2018)). 
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Dessa forma, nesta tese é definido o intervalo de limites das caixas delimitado-

ras entre 0 e 1. Assim, os macroblocos gerados por meio da octree proporcionam um 

melhor alinhamento dos macroblocos. Essa solução viabiliza encontrar blocos coloca-

lizados em regiões próximas às bordas das nuvens e, consequentemente, habilita 

maior eficiência de codificação, conforme resultados que serão apresentados no Ca-

pítulo 7. 

 

6.2 Estimação de Movimento 3D 

 

A correlação temporal de nuvens de pontos dinâmicas é muito maior que a cor-

relação espacial de uma única nuvem de pontos (Li; Li, 2019). Diante disso, a ME é 

essencial para a eficiência de compressão de nuvens de pontos dinâmicas conforme 

destacado em (THANOU; CHOU; FROSSARD, 2016). 

Neste trabalho foi proposta uma ME que aplica o algoritmo DS forma adaptada 

para nuvens de pontos conforme descrito Seção 5.2. Esse algoritmo de ME foi seleci-

onado pelo bom desempenho apresentado diante das avaliações descritas na Seção 

5.3. Além disso, é proposta a utilização de uma área de busca que contemple deslo-

camentos [-15, +15] como discutido nos resultados comparativos na Seção 5.3.  

A ME 3D proposta utiliza o algoritmo ICP para o cálculo dos vetores de movi-

mento (MV – Motion Vector) que, conforme avaliação apresentada na Seção 5.4, é 

uma abordagem indispensável para que se adquira qualidade de geometria na re-

construção das nuvens de pontos na etapa de decodificação. A métrica de similaridade 

utilizada no algoritmo DS é o MSE,  por meio da abordagem P2P, como descrito na 

Seção 5.4.  

A ME em 3D contempla um bloco novo no fluxo do PCC-âncora, que imple-

menta o algoritmo DS sobre macroblocos de tamanho 32×32×32 ou 16x16x16, sendo 

o tamanho do macrobloco inicial um parâmetro configurável. Na  Figura 30 é ilustrado 

o fluxo da ME proposta. Conforme exposto pelo fluxo, o macrobloco de 32×32×32 da 

nuvem corrente é um dado de entrada que deve passar pelo algoritmo DS. Para cada 

candidato avaliado no algoritmo DS, primeiramente é calculado o vetor de movimento 

por meio do algoritmo ICP. Assim, é possível compensar o movimento do macrobloco 

na nuvem de referência em relação ao macrobloco atual. Posteriormente, para cada 

macrobloco candidato é calculado o MSE em relação ao macrobloco atual. O 
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macrobloco que obtiver o menor MSE entre todos os macroblocos candidatos avalia-

dos é selecionado como melhor correspondência. Esse macrobloco selecionado tem 

o seu vetor de movimento quantizado e juntamente com as suas coordenadas consti-

tuí um macrobloco 32×32×32 inter (MB-32). 

O MB-32 é utilizado pelo subparticionamento que gera macroblocos menores 

como, por exemplo, macroblocos de 16×16×16 e 8×8×8. Cada bloco menor deve ser 

avaliado por meio de uma decisão de modo para determinar se o bloco será codificado 

com a predição inter ou intra. Todos esses blocos menores devem constituir um ma-

crobloco de tamanho 32×32×32, onde os blocos subparticionados em 16×16×16 irão 

consolidar um único macrobloco 32×32×32 (MBS-16), podendo conter os modos intra 

e inter, definido pela decisão de modo. Os blocos subparticionados em 8×8×8, inter 

ou intra, conforme a decisão de modo, irão consolidar um outro macrobloco 32×32×32 

(MBS-8). O subparticionamento de macroblocos será tratado com maiores detalhes 

na Seção 6.4. 

Na Figura 30 os blocos “DS”, “ICP” e “MSE”, juntamente com a seleção do me-

nor MSE, constituem o fluxo principal da ME 3D proposta neste trabalho.  Conforme o 

fluxo a ME é calculada somente para os macroblocos de tamanho 32×32×32. Os ma-

croblocos MBS-16 e MBS-8 herdam o vetor de movimento do MB-32.  

Figura 30: Fluxo da ME 3D. 
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6.3 Discretização das coordenadas do macroblocos 

 

No esquema desenvolvido neste trabalho, mais especificamente na ME, as co-

ordenadas dos macroblocos escolhidos como a melhor correspondência são utiliza-

das juntamente com o vetor de movimento para que possam viabilizar a compensação 

de movimento na decodificação. A necessidade de transmissão das coordenadas dos 

macroblocos para o bitstream é justificada pela possibilidade de exploração de para-

lelismo no processo de decodificação, pois dessa forma possibilita a decodificação 

dos macroblocos sem uma ordem definida. Além disso, as características inerentes 

às nuvens de pontos, como a irregularidade de voxels ocupados, inviabiliza um cálculo 

diferencial de vetores de movimento entre macroblocos de posições vizinhas, já que 

nem sempre existem macroblocos vizinhos. 

O PCC-âncora apresenta uma etapa de normalização das caixas delimitadoras. 

Essa normalização tem como objetivo alinhar nuvens de pontos temporalmente vizi-

nhas e permitir uma melhor similaridade em macroblocos colocalizados. Mesmo com 

a proposta de ajuste de alinhamento discutido na Seção 6.1, ainda é realizada uma 

normalização que consequentemente resulta em coordenadas em ponto flutuante. No 

entanto, essas coordenadas demandam alta taxa de bits para sua representação. As-

sim, neste trabalho é proposta a normalização inversa das coordenadas, resultando 

assim em coordenadas em intervalos discretos, reduzindo dessa forma a demanda 

por bits a serem transmitidos.  

Na etapa de normalização os intervalos zeros e uns são amostrados para uma 

determinada resolução, ou seja, LoD da octree. Na Figura 31 é apresentado um exem-

plo dessa etapa onde são ilustrados graficamente dois intervalos, o primeiro mais 

acima representa o intervalo discreto e o intervalo gráfico abaixo referente ao intervalo 

normalizado (ponto flutuante). Nesse exemplo, é ilustrado como o valor discreto (valor 

de x) é obtido para a coordenada 0,015625. Com uma resolução geométrica de 10 

bits, é obtido como resultado 1024 amostras (intervalos), como ilustra a Figura 31 

(linha 1). Considerando 1 como limite do intervalo amostrado, cada amostra tem como 

resolução o intervalo dividido pelo número de amostras, conforme mostrado na Figura 

31 (linha 2). A partir do quociente entre a coordenada de um determinado macrobloco, 

por exemplo, a coordenada cuja o valor de X é 0,015625, e a resolução das amostras, 
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nesse exemplo, 0,0009765625, é possível obter 16 como valor discreto da coorde-

nada (Figura 31, linha 3).  

Nesse sentido, por meio dessa operação aplicada sobre cada um dos eixos que 

formam a coordenada de um macrobloco (X, Y e Z), é possível transmitir coordenadas 

discretas para o bitstream. Nesse contexto, uma menor quantidade de bits é neces-

sária para representar a nuvem codificada. Além disso, essa abordagem também fa-

vorece a representação binária e a exploração de codificação de entropia. 

 

6.4 M todo de Subparticionamento de Macroblocos 

 

O fluxo original do codificador PCC-âncora permite a codificação de um macro-

bloco 16×16×16, onde esses podem ser codificados como intra ou inter, tendo em 

vista alguns critérios como convergência do ICP.  

O novo esquema de predição proposto neste trabalho possibilita macroblocos 

com tamanhos variáveis, ou seja, o subparticionamento de macroblocos. Assim, é 

possível que o particionamento inicie por macroblocos de tamanho 16×16×16 e dessa 

forma o algoritmo DS é aplicado sobre esses macroblocos, que podem posteriormente 

ser particionados em blocos de tamanho 8×8×8. Os blocos particionados herdam o 

vetor de movimento calculado pelo DS por meio do macrobloco inicial de tamanho 

16×16×16 conforme ilustra a Figura 32.  

Também é suportado pelo esquema proposto iniciar o particionamento com ma-

croblocos de 32×32×32, onde através desses será aplicada a ME com DS, os quais 

posteriormente serão particionados em blocos de 16×16×16 e ainda em 8×8×8 voxels. 

Com a utilização de macroblocos de tamanho 32×32×32, por exemplo, o 

Figura 31: Discretização das coordenadas 
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subparticionamento em 16×16×16 voxels é chamado Macrobloco Subparticionado de 

16 (MBS-16) e quando particionado em blocos 8×8×8 é denominado macrobloco sub-

particionado de 8 (MBS-8). O MBS-16 e o  MBS-8 podem ser comparados diretamente 

com o macrobloco 32×32×32 (MB-32) em termos de taxa de bits e MSE, uma vez que 

eles têm a mesma quantidade de voxels, ou seja, contemplam a mesma área, como 

pode ser visto na Figura 33.  

 

Os blocos internos do MBS-16, bem como os do MBS-8 podem ser codificados 

como inter ou intra, sendo assim possível que um macrobloco MBS-16 ou MBS-8 seja 

composto de blocos intra e inter. Para determinar o melhor particionamento de macro-

blocos e seu respectivo modo de predição, é necessária uma decisão de modo que 

atue internamente sobre os blocos. Essa decisão de modo leva em consideração taxa 

de bits e distorção (MSE) de cada opção. 

O método de subparticionamento proposto é capaz de lidar com regiões homo-

gêneas, aplicando macroblocos maiores. Além disso, também pode lidar com regiões 

mais complexas, como regiões com mais texturas/bordas/movimentos, refinando a 

predição inter ou intra com o uso de tamanhos de bloco menores, proporcionando 

maior flexibilidade na predição em comparação ao PCC-âncora. 

No exemplo ilustrado na Figura 33, o particionamento inicia com macrobloco 

de tamanho 32×32×32 voxels (MB-32). Para esse tamanho de macrobloco é calculado 

o vetor de movimento por meio do algoritmo de ME, ou seja, através do algoritmo DS. 

Posteriormente, esse macrobloco é particionado em blocos de tamanho 16×16×16 

voxels, que herdam o vetor de movimento calculado para o MB-32. Os blocos de 

16×16×16 podem ser preditos como inter ou intra, decisão que é tomada pela decisão 

de modo que considera qual a melhor opção tendo em vista qualidade e taxa, 

Figura 32: Subparticionamento em 2 níveis. 
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conforme será apresentado em maiores detalhes na Seção 6.5. Esses blocos devem 

constituir novamente um macrobloco de 32×32×32 voxels (MBS-16), porém com blo-

cos 16×16×16 que podem ser inter ou intra. Os blocos de 16×16×16 voxels podem 

ainda serem particionados em blocos de 8×8×8, que assim como os blocos 16×16×16 

podem ser preditos como intra ou inter. Esses blocos devem constituir um macrobloco 

de 32×32×32 voxels (MBS-8). 

Neste trabalho o algoritmo de ME é aplicado somente ao maior macrobloco, 

sendo possível definir o tamanho deste como, 32×32×32 ou 16×16×16 voxels, a partir 

de um arquivo de configuração na codificação. A aplicação do algoritmo de ME so-

mente para o maior macrobloco é justificada pelo fato de viabilizar a menor demanda 

de bits, já que assim o vetor de movimento (Rotação e Translação obtidos pelo ICP) 

pode ser utilizado por todos os sub-blocos, demandando menos bits em relação à 

alternativa de calcular e transmitir o vetor de movimento para cada bloco menor. Além 

disso, a aplicação da ME em blocos menores tende a impactar em um maior custo 

computacional. Cabe destacar que para trabalhos é previsto uma exploração de es-

tratégias de ME em blocos menores. 

 

Figura 33: Visão geral da proposta de subparticionamento de macroblocos. 
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6.5 Decisão de Modo 

 

O esquema proposto para compressão de nuvens de pontos dinâmicas oferece 

muitas possibilidades para codificar um único macrobloco, por exemplo, de tamanho 

32×32×32 voxels. Essas possibilidades incluem o modo de predição inter ou intra e 

opções de subparticionamento, tornando assim necessário escolher o modo que con-

sidera a melhor relação entre taxa de bits e qualidade objetiva. Se apenas a taxa de 

bits for considerada, o codificador sempre escolherá o modo de predição inter-nuvens 

para macroblocos 32×32×32 voxels, pois nesses casos é necessário transmitir so-

mente o vetor de movimento. Além disso, com a predição operando sobre macroblo-

cos maiores existe um número menor de vetores de movimento a serem transmitidos 

no bitstream da nuvem codificada. No entanto, esta opção pode levar a resultados de 

qualidade insatisfatórios, como ilustrado na Figura 34 (a) (mais resultados subjetivos 

estão disponíveis no Apêndice B). Na Figura 34 (a) é apresentada uma nuvem de 

pontos reconstruída por meio de uma codificação que utiliza decisão de modo base-

ada em taxa de bits do macrobloco inter em relação a taxa de bits do bloco predito 

como intra (taxa de bits da informação de geometria e textura). 

O modo de predição intra pode ser a melhor opção para fornecer melhores 

resultados de qualidade, uma vez que avaliações realizadas em um trabalho de mes-

trado do nosso grupo de pesquisa, mas ainda não publicado, mostraram que o valor 

do MSE tende a ser 10 vezes menor do que o obtido na predição inter-nuvens para 

octree com LoD de 10 bits. Porém, macroblocos codificados com a predição intra exi-

gem taxa de bits consideravelmente maiores. 

Além disso, o impacto nas informações de textura deve ser considerado, pois 

uma decisão somente sobre o MSE geometria pode afetar negativamente a textura, 

conforme ilustra a Figura 34 (b)  (resultados subjetivos disponíveis no Apêndice B). 

Por outro lado, a decisão baseada somente em MSE de textura, pode produzir resul-

tados insatisfatórios para a geometria, como mostrado na Figura 34 (c). Esses resul-

tados são provocados em especial nas regiões de texturas homogêneas, em que a 

distância entre os pontos vizinhos não afeta o MSE de textura. Porém, a diferença 

entre o número ou disposição dos pontos pode resultar em regiões de buracos. 

Neste sentido, devido às diferentes possibilidades de codificação de um único 

macrobloco 32×32×32 pelo esquema proposto, é necessária uma decisão de modo 

que permita a codificação eficiente com uma relação entre a taxa de bits e a qualidade 
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objetiva. A decisão de modo deve escolher a melhor opção de codificação conside-

rando: macrobloco inter de tamanho 32×32×32; macrobloco intra de tamanho 

32×32×32; macrobloco MBS-16, incluindo a decisão interna para predição inter ou 

intra de cada bloco 16×16×16; ou MBS-8, incluindo a decisão interna para predição 

inter ou intra de cada bloco 8×8×8. Considerando todos estes aspectos, é apresentado 

na Figura 35 o fluxo da decisão de modo proposta neste trabalho.    

A Figura 35 mostra um exemplo do fluxo da decisão de modo iniciando por um 

macrobloco de tamanho 32×32×32 voxels. Na etapa de ME, o macrobloco 32×32×32 

é subparticionado em blocos de tamanho 16×16×16. Cada um desses blocos é avali-

ado considerando taxa e qualidade objetiva para predição intra e também inter. A de-

cisão de modo deve selecionar a melhor opção, e o modo selecionado deve constituir 

parte do macrobloco MBS-16 (macrobloco 32×32×32 formado por blocos 16×16×16). 

(a) 
Decisão de modo  
baseada somente  

taxa 

 

(c) 
Decisão de modo  
baseada somente  

em MSE de textura 

 

(b) 
Decisão de modo  
baseada somente  

em MSE de geometria 

Figura 34: Resultados para diferentes possibilidades de decisão de modo. 
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O mesmo caminho é percorrido pelos blocos 8×8×8 obtido pelo subparticionamento 

dos blocos 16×16×16. Esses blocos (8×8×8) são avaliados considerando taxa e qua-

lidade objetiva para predição intra e inter. A decisão de modo deve selecionar a melhor 

opção e o modo de predição selecionado é separado para constituir o macrobloco 

MBS-8. A decisão de modo para os blocos de MBS-16 e de MBS-8 é considerada uma 

decisão de modo interna, isso porque a decisão de modo externa é responsável por 

avaliar qual a melhor opção entre os macroblocos de tamanho 32×32×32 voxels, ou 

seja, o MBS-8 (constituído de blocos 8×8×8 inter ou intra), MBS-16 (constituído de 

blocos 16×16×16 inter ou intra) e o macrobloco 32×32×32 inteiramente intra ou intei-

ramente predito como inter. 

 

Devido à diferença nas faixas de valores de MSE entre a predição intra e inter, 

foi proposto um fator multiplicador λ para MSE de geometria e textura. A decisão de 

modo tem um multiplicador λ para MSE de textura intra (λ1) e também um multiplicador 

λ para MSE de geometria intra (λ2). Neste contexto, foram propostas funções de custo 

para qualidade e taxa, para que assim possa constituir uma decisão de modo mais 

concisa. Para isso, é proposta uma função de custo de qualidade para macroblocos 

intra 32×32×32 como mostrado na Equação 9.  

 

𝑀𝑆𝐸𝑖𝑛𝑡𝑟𝑎32
= 𝑀𝑆𝐸𝑡𝑒𝑥 × 𝜆1  +  𝑀𝑆𝐸𝑔𝑒𝑜 × 𝜆2     (9) 

 

Na Equação 9, o 𝑀𝑆𝐸𝑖𝑛𝑡𝑟𝑎32
 representa a função custo do MSE para macroblo-

cos intra 32×32×32, onde 𝜆1  e  𝜆2  são os fatores multiplicadores de peso para textura 

e geometria respectivamente. 

Figura 35: Fluxo da decisão de modo. 
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Com relação aos macroblocos inter 32×32×32, MBS-16 e MBS-8, o cálculo da 

função custo para MSE é realizado como nas Equações (10), (11) e (12), respectiva-

mente. 

 

𝑀𝑆𝐸𝑖𝑛𝑡𝑒𝑟32
= 𝑀𝑆𝐸𝑡𝑒𝑥  +  𝑀𝑆𝐸𝑔𝑒𝑜  (10) 

 

𝑀𝑆𝐸𝑆𝑀𝐵−16 = 𝑀𝑆𝐸𝑡𝑒𝑥  + 𝑀𝑆𝐸𝑔𝑒𝑜  (11) 

 

𝑀𝑆𝐸𝑆𝑀𝐵−8 = 𝑀𝑆𝐸𝑡𝑒𝑥  + 𝑀𝑆𝐸𝑔𝑒𝑜  (12) 

 

A função de custo de taxa de bits para o macrobloco intra 32x32x32 é calculada 

com base na estimativa de bits por ponto (bpp) da nuvem de pontos atual e no número 

de pontos no macrobloco atual, conforme mostrado na Equação 13. 

 

𝑟𝑎𝑡𝑒𝑖𝑛𝑡𝑟𝑎32
=  𝑏𝑝𝑝 ∙  𝑛𝑟𝑜_𝑝𝑡𝑜𝑠    (13) 

 

A estimativa de bpp é obtida por meio da decomposição por octree da nuvem 

de pontos corrente. Na octree a quantidade de pontos da nuvem pode ser alterada 

diante da subamostragem realizada.  

A subamostragem da nuvem de pontos corrente é realizada antes da etapa de 

ME, pois a quantidade de pontos pode influenciar o cálculo do vetor de movimento. 

Diante disso, a partir da decomposição por octree antes da ME torna possível calcular 

o vetor de movimento para que o bloco possa ser eficientemente compensado na de-

codificação. 

Neste trabalho a estimativa de bpp é calculada por meio da aplicação da octree 

na nuvem de pontos corrente para ser utilizada na decisão de modo. 

A estimativa de bpp é mostrada na Equação (14), onde 𝑡𝑜𝑡𝑎𝑙𝑏𝑖𝑡𝑠 é a taxa total 

em bits estimada para a nuvem de pontos atual e  𝑁𝑠𝑢𝑏𝑎𝑚𝑜𝑠𝑡𝑟𝑎𝑑𝑜𝑠 é o número de pontos 

da nuvem após a subamostragem. 

 

𝑏𝑝𝑝 =  𝑡𝑜𝑡𝑎𝑙𝑏𝑖𝑡𝑠  𝑁𝑠𝑢𝑏𝑎𝑚𝑜𝑠𝑡𝑟𝑎𝑑𝑜𝑠⁄   (14) 
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Os macroblocos codificados como inter têm um custo fixo de 18 bytes que re-

presentam o vetor de movimento e as coordenadas do macrobloco. O vetor de movi-

mento possui três componentes de 16 bits cada para a translação e mais três compo-

nentes de 16 bits cada para rotação, conforme apresentado em (MEKURIA; BLOM; 

CESAR, 2017). As coordenadas do macrobloco, denominadas Keys, demandam três 

componentes de 16 bits. 

O custo da taxa de bits para macroblocos MBS-8 e MBS-16 inclui o somatório 

de todos os vetores de movimento dos blocos da predição-inter constituídos unica-

mente pelas informações das respectivas Keys, representados por (𝑀𝑉𝑆𝑀𝐵−x), bem 

como os dados referentes aos blocos preditos como intra, calculados como na Equa-

ção 13. As equações (15) e (16) representam o cálculo do custo da taxa de bits para 

macroblocos MBS-8 e MBS-16, respectivamente. 

 

rate𝑀𝐵𝑆−8 =  ∑ 𝑀𝑉𝑀𝐵𝑆−8
𝑛 
𝑖=0 (𝑖) + 𝑏𝑝𝑝 ∙ 𝑁𝑀𝐵𝑆−8  (15) 

 

rate𝑀𝐵𝑆−16 =  ∑ 𝑀𝑉𝑀𝐵𝑆−16
𝑛 
𝑖=0 (𝑖) + 𝑏𝑝𝑝 ∙ 𝑁𝑀𝐵𝑆−16 (16) 

 

É importante destacar que os blocos menores inter que constituem os macro-

blocos, tanto MBS-8 ou MBS-16, herdam o vetor de movimento de rotação e transla-

ção do macrobloco de tamanho 32, assim, somente a informação das Keys de cada 

bloco é considerada para calcular o custo por meio de 𝑀𝑉𝑆𝑀𝐵−x. 

 A função custo da taxa de bits e a função custo de MSE são usados para de-

cidir qual o modo de predição ou opção de subparticionamento é a melhor opção de 

codificação do macrobloco. Essa avaliação compara uma determinada combinação 

de modo/subparticionamento na relação do modo de predição intra para o macrobloco 

32×32×32, como apresentado no Algoritmo 1. 

Em primeiro lugar é confrontado o macrobloco inter 32×32×32 (inter32) com o 

intra também 32×32×32 (intra32) (linha 1 do algoritmo 1). Se o inter32 tiver MSE e taxa 

menor, esse é escolhido para codificação. Por outro lado, é comparado o macrobloco 

MBS-16 em relação intra32 (linha 3 no algoritmo 1). Se o MBS-16 tiver MSE e taxa 

menor, será codificado o subparticionamento. Caso contrário, é comparado o MBS-8 

com o intra32 (linha 5). Se os modos de predição (inter32, MBS-16 ou MBS-8) não forem 

selecionados quando comparados com o intra32, o macrobloco será codificado como 

intra (linhas 7 e 8 do algoritmo 1). 
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Algoritmo 1: Pseudocódigo de decisão de modo. 

1. Se (MSEinter32 <  MSEintra32  e taxainter32 <  taxaintra32) então 

2.        codificação inter 

3. Senão Se (MSEMBS-16 <  MSEintra32  e taxaMBS-16 <  taxaintra32)   então 

4.        codificação do subparticionamento MBS-16  

5. Senão Se (MSEMBS-8 <  MSEintra32  e taxaMBS-8 <  taxaintra32) então 

6.        codificação do subparticionamento MBS-8  

7. Senão 

8.        codificação intra 

9. Fim Se 

 
Após concluídas as definições das funções de custo para taxa e qualidade ob-

jetiva e o fluxo da decisão de modo, foram realizadas experimentações para definir 

valores adequados para λ1 e λ2. Inicialmente o fator multiplicador selecionado teve 

como base a razão média entre o MSE de geometria para predição inter e intra. Abor-

dagem semelhante também foi aplicada para as informações de textura. Posterior-

mente para determinar os melhores valores multiplicadores de λ foram realizadas ava-

liações com diferentes valores de λ, tendo como ponto inicial a razão média do MSE 

de inter e intra de geometria e também de textura. Para essa experimentação foi usada 

a sequência de nuvens de pontos Loot, onde foi obtido o valor 10 para razão média 

de geometria e 6 para informações de textura. As experimentações com diferentes 

variações de valores são apresentadas na Figura 36. 

Na Figura 36 são ilustradas as curvas RD da decisão de modo proposta com 

diferentes valores de λ1 e λ2 (em torno da razão média), cada ponto nas curvas repre-

senta o resultado RD de um LoD de decomposição de octree, sendo os cinco pontos 

representando g6, g7, g8, g9 e g10, respectivamente (resultados PSNR mais baixos 

para os mais altos). Nessa avaliação foi utilizado o PSNR P2Plane. 

Dado o pequeno número de sequências de testes disponíveis (apenas cinco), 

foi utilizada apenas uma delas para definir os lambdas, a sequência Loot, para evitar 

viés para as sequências de teste que serão usadas para a avaliação dos resultados 

finais. 

As curvas na Figura 36 (a) mostram que a decisão de modo proposta para va-

lores λ2= 8 e λ2= 6 sem multiplicador λ1, ou seja, a decisão de modo considerando 
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somente qualidade de geometria obtém melhor qualidade e taxa para os resultados 

de geometria. Por outro lado, tem o pior resultado para curvas de textura conforme 

Figura 36 (b). Nesse sentido, é possível perceber a necessidade de usar o MSE de 

geometria juntamente com o MSE de textura na decisão de modo.  

Os resultados das opções que consideram tanto geometria quanto textura para 

o gráfico RD de geometria Figura 36 (a), apresentam curvas muito similares, podendo 

ser consideradas pouco conclusivas. Porém, se confrontadas as curvas RD de geo-

metria com as RD de textura, é possível perceber que os resultados para λ1 = 4 e λ2 = 

8 apresentam os melhores resultados para o gráfico RD de textura Figura 36 (b), bem 

como atinge maior qualidade final na curva apresentada pelo RD de geometria. Neste 

sentido, λ1 = 8 e λ2 = 4 foi selecionado para constituir a decisão de modo utilizada no 

esquema de predição proposto neste trabalho. 

 

Figura 36: Experimentações para definição do valor de λ1 e λ2. 

(a) RD para geometria da sequência Loot. 

 

(b) RD para textura da sequência Loot. 

 



 
 

7 RESULTADOS EXPERIMENTAIS 
 

Neste capítulo serão descritos os resultados obtidos pelo esquema de predição 

proposto nesta tese. Primeiramente será descrita a base experimental utilizada. Na 

sequência, serão apresentados os resultados, de forma isolada, para algumas das 

abordagens propostas e, na seção 7.4, são apresentados os resultados finais, consi-

derando a solução completa proposta.  

 

7.1 Base Experimental Utilizada 

 

O esquema de predição proposto foi implementado no software do PCC-âncora 

e avaliado de acordo com as condições comuns de teste (CTC) (SCHWARZ; CHOU; 

SINHAROY, 2018). Assim foram usadas as sequências de nuvens de pontos dinâmi-

cas “Long Dress”, “Red and Black”, “Loot” e “Soldier” que compõem o dataset descrito 

em (D’EON et al., 2016), e a sequência denominada Queen. Segue na Figura 37 a 

primeira nuvem de pontos de cada uma dessas sequências. 

A avaliação foi realizada para todas as nuvens de pontos de cada sequência 

com cinco LoD, variando de 6 (g6) a 10 bits (g10). Os resultados objetivos de quali-

dade foram gerados usando as abordagens P2Plano e P2P, conforme definido em 

(SCHWARZ; CHOU; SINHAROY, 2018). Os resultados foram gerados por meio de um 

servidor Intel XEON E5-2650 de 2,20 GHz com 48 GBytes de RAM. 
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Figura 37: Sequências de nuvens de pontos, Long Dress (a), Loot  (b), Red and Black  (c), 
Soldier (d) e Queen (e). 

(a)         (b)          (c) 
   

      (d)                              (e) 
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7.2 Resultados do Ajuste das Caixas Delimitadoras 

 

O alinhamento das caixas delimitadoras conforme apresentado na Seção 6.1, 

viabiliza a ME de blocos colocalizados, principalmente em regiões próximas às bordas 

das nuvens e, consequentemente, habilita ganhos em compressão. Neste sentido, o 

ajuste proposto para o alinhamento possibilita aumentar o número de macroblocos 

colocalizados em relação à proposta do PCC-âncora.  

Os resultados deste experimento consideram um comparativo entre o codifica-

dor PCC-âncora original e a versão com do alinhamento das caixas delimitadoras pro-

posto neste trabalho. Para coleta desses resultados foram utilizados macroblocos de 

tamanho 16×16×16 para ambas as abordagens. A avaliação de qualidade objetiva de 

geometria foi realizada por meio do PSNR P2Plane e P2P. 

Na Figura 38 é apresentado o gráfico de taxa de bits e qualidade de geometria 

(Rate and Distortion - RD) média considerando as sequências de nuvens de pontos 

avaliadas. O gráfico possibilita uma visualização mais intuitiva dos resultados das 

duas propostas de codificação. As curvas do gráfico relacionam taxa e qualidade 

(PSNR P2Plane) para os diferentes LoD, onde os maiores LoD apresentam maior 

qualidade, mas também as maiores taxas. Diante desse gráfico RD é concluir que o 

alinhamento das caixas delimitadoras apresenta uma maior eficiência de codificação 

em relação ao PCC-âncora. Os resultados completos desse experimento estão dispo-

níveis no Apêndice A, Figura 55, que apresenta todos os gráficos RD para as sequên-

cias avaliadas. 

 Figura 38: Gráfico RD de geometria para a proposta de alinhamento 
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Na Figura 39 é apresentado um gráfico RD de textura com resultados médios 

para as sequências utilizadas neste experimento. Essa figura mostra que de modo 

geral, como esperado, a proposta de alinhamento apresenta bons resultados tanto em 

qualidade como em taxa, em comparação com o PCC-âncora. 

A  Tabela XI apresenta resultados comparativos para a porcentagem do número 

de pontos preditos como inter para a proposta alinhamento em relação ao PCC-ân-

cora. Os valores são discriminados por sequência de nuvens de pontos, assim como 

para a média por LoD. Optou-se por apresentar o percentual de pontos preditos como 

inter com o objetivo de viabilizar também a comparação da proposta de alinhamento 

com outras abordagens, como o subparticionamento de macroblocos que será apre-

sentada na Seção 7.3. Poderia também ser utilizado o percentual de blocos codifica-

dos com a predição inter-nuvens. No entanto, o percentual do número de blocos invi-

abiliza a comparação com a abordagem de subparticionamento, uma vez que os blo-

cos podem ter diferentes tamanhos. 

Por meio da Tabela VII é possível concluir que, o alinhamento proposto possi-

bilita o encontro de uma maior quantidade de pontos codificados através da predição 

inter-nuvens. O resultado da média dos LoD mostra que o alinhamento apresenta en-

tre 4% e 19% mais pontos codificados como inter em relação ao PCC-âncora em g6 

e g10 respectivamente. O percentual é maior à medida que o LoD cresce, isso porque 

os maiores LoD possuem maior quantidade de blocos. 

Figura 39: Gráfico RD de textura para a proposta de alinhamento 



102 
 

 
 
 

Tabela VII: Percentual médio de pontos codificados por meio da 
predição inter-nuvens. 

Sequências Abordagens 
LoD 

g6 g7 g8 g9 g10 

Long Dress 
PCC-âncora 0,00 0,10 1,51 4,21 5,35 

Alinhamento 0,02 0,35 3,77 9,52 13,53 

Loot 
PCC-âncora 0,98 9,60 13,98 11,75 23,38 

Alinhamento 12,64 29,00 45,96 54,81 52,23 

Red and Black 
PCC-âncora 1,07 5,34 7,66 13,81 15,79 

Alinhamento 2,02 13,63 26,82 35,05 34,44 

Soldier 
PCC-âncora 0,00 0,56 2,68 7,15 4,97 

Alinhamento 1,07 1,78 10,16 28,57 53,27 

Queen 
PCC-âncora 1,82 7,87 15,93 22,83 36,71 

Alinhamento 6,57 22,83 50,33 69,26 78,98 

Média 
PCC-âncora 0,77 4,70 8,35 11,95 17,24 

Alinhamento 4,42 13,27 25,74 34,52 36,96 

 

Na Tabela VIII são apresentados os resultados obtidos por meio da métrica 

Bjontegaard-Delta (BD) para taxa de bits (BD-Rate) e PSNR (BD-PSNR) de geometria 

e textura. A métrica BD foi calculada para a proposta alinhamento, em relação ao PCC-

âncora para cada uma das nuvens de pontos em g7, g8, g9 e g10. Na Tabela VIII o 

"geo.BD-PSNR" e o "geo.BD-RATE" referem-se ao BD-PSNR e ao BD-Rate das infor-

mações da geometria, considerando as abordagens P2Point (D1) e P2Plane (D2). 

A partir dos resultados da Tabela VIII, é possível concluir que o alinhamento 

proposto pode obter ganhos consideráveis em termos de eficiência de compressão. 

Os resultados médios de BD-Rate de geometria mostram uma redução de 16,56% e 

31,77% para D1 e D2 em relação ao PCC-âncora. Os resultados da geometria BD-

PSNR mostram ainda um aumento de 0,87 dB para D1 e 2,04 dB para D2. O "attr.BD-

PSNR" e o "attr.BD-RATE" apresentam os valores de BD-PSNR e BD-Rate das infor-

mações de textura. Para os atributos de textura, a redução de BD-RATE foi de 29,83%, 

9,96% e 12,56% para os componentes Luminância (Luma), Crominância Azul (Cb) e 

Crominância Vermelha (Cr), respectivamente. Além disso, o BD-PSNR para textura 

apresentou ganho de 1,29 dB, 0,22 dB e 0,31 dB para os canais Luma, Cb e Cr, res-

pectivamente. 
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Tabela VIII: Resultados de Bjontegaard-Delta para esquema de alinhamento desenvolvido em relação 
ao PCC-âncora. 

 

7.3 Resultados do Subparticionamento de Macroblocos 

 

O subparticionamento de macroblocos proposto tem como objetivo viabilizar 

maior flexibilidade nas predições intra ou inter de macroblocos. Essa abordagem é 

capaz de lidar com regiões homogêneas, aplicando macroblocos maiores. Além disso, 

também pode lidar com regiões mais complexas, como regiões com mais texturas ou 

bordas, refinando a predição inter ou intra com o uso de tamanhos de blocos menores. 

Os resultados do experimento para o subparticionamento de macroblocos apre-

sentado nessa seção foram realizados para duas configurações: 1) subparticiona-

mento partindo de macroblocos de tamanho 32×32×32, que podem ser particionados 

em blocos de 16×16×16 e que podem ainda ser particionados em blocos de 8×8×8 

voxels, e 2) subparticionamento iniciando por macroblocos de tamanho 16×16×16 vo-

xels, que podem ainda ser particionados em blocos de 8×8×8. Os resultados do es-

quema de subparticionamento avaliado foi implementado tendo como base a versão 

do PCC-âncora com o esquema de alinhamento das caixas delimitadoras proposto 

neste trabalho. Além disso, foi desenvolvida uma decisão de modo para que o codifi-

cador possa escolher qual das opções de tamanho de bloco e qual modo de predição 

será utilizado. Como este experimento tinha como objetivo mostrar os resultados do 

subparticionamento para o codificador, optou-se por uma decisão de modo baseada 

somente em taxa de bits. No entanto, os demais critérios de decisão de modo do PCC-

âncora ainda foram preservados, conforme apresentado na Seção 3.1. Porém, expe-

rimentos preliminares mostram que o critério de variância de cor presente no PCC-

âncora excluía praticamente todos os macroblocos inter de tamanho 32×32×32, assim 

foi necessária a remoção desse critério. Diante da avaliação dos critérios na decisão 

Sequência 
geo.BD-RATE (%) geo.BD-PSNR (dB) attr.BD-RATE (%) attr.BD-PSNR (dB) 

D1 D2 D1 D2 Luma Cb Cr Luma Cb Cr 

Long Dress -14,57 -33,89 0,80 2,33 -30,26 -4,08 -6,51 1,29 0,06 0,11 

Loot -19,02 -31,29 1,00 1,99 -26,50 -3,57 -5,19 0,95 0,07 0,11 

Red and Black -16,19 -26,11 0,86 1,64 -25,86 -6,13 -12,48 0,99 0,10 0,24 

Soldier -15,35 -33,96 0,79 2,19 -31,22 -1,93 -0,77 1,27 0,02 0,00 

Queen -17,68 -33,59 0,90 2,03 -35,32 -34,07 -37,87 1,95 0,85 1,07 

Média -16,56 -31,77 0,87 2,04 -29,83 -9,96 -12,56 1,29 0,22 0,31 
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de modo, originalmente presentes no PCC-âncora, como similaridade do número de 

pontos em os blocos e o fitness score, é esperado que os blocos sejam codificados 

com uma das opções de subparticionamento.  

Na Figura 40 é ilustrado o gráficos RD com valores médios de geometria para 

as cinco sequências de nuvens de pontos utilizadas nesse experimento (resultados 

completos estão disponíveis no Apêndice B). No gráfico RD é possível concluir que o 

Subparticionamento iniciando com macroblocos de tamanho 32 (Subparticionamento 

32) alcança as maiores reduções em taxa de bits em relação ao PCC-âncora e tam-

bém em relação a opção de subparticionamento iniciando por macroblocos de tama-

nho 16 (Subparticionamento 16). No entanto, o Subparticionamento 16 apresenta re-

sultados mais equilibrados entre taxa e qualidade mostrando melhores resultados em 

relação ao PCC-âncora. 

Na Figura 41 são mostrados os resultados médios de qualidade e taxa para as 

nuvens testadas considerando a informação de textura. Os resultados médios mos-

tram o Subparticionamento 16 tem uma curva RD superior as demais abordagens. O 

Subparticionamento 32 apresentou a maior redução de taxa, porém para os últimos 

LoD apresenta perdas significativas de qualidade em relação ao PCC-âncora. É im-

portante destacar que essa perda de qualidade pode estar relacionada a falta de uma 

decisão de modo mais eficiente. Por outro lado, os resultados, em especial para o 

Subparticionamento 32, mostram que o esquema de subparticionamento é promissor 

para a obtenção de ganhos de redução de taxa. 

Figura 40: Gráfico RD de geometria para a proposta de subparticionamento. 
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Na Tabela IX são mostrados os resultados percentuais médio de pontos codifi-

cados por meio da predição inter-nuvens. Os resultados apresentados mostram que 

a proposta de subparticionamento alcança o maior percentual de pontos inter para 

ambas as configurações, Subparticionamento 32 (Sub 32) e Subparticionamento 16 

(Sub 16). Esses resultados são mais expressivos para o SUB 32, mas é importante 

salientar que a maior quantidade de blocos/pontos preditos como inter não significa 

maior eficiência de compressão, pois é necessária uma decisão de modo que garanta 

a melhor escolha tendo em vista qualidade e taxa. 

Os resultados da métrica Bjontegaard-Delta (BD) para taxa de bits (BD-Rate) e 

PSNR (BD-PSNR) de geometria são apresentados na Tabela X. A métrica BD foi cal-

culada para a solução proposta nas configurações subparticionamento 32 (Sub 32) e 

subparticionamento 16 (Sub 16), em relação ao PCC-âncora para cada uma das nu-

vens de pontos em g7, g8, g9 e g10. Na Tabela X o "geo.BD-PSNR" e o "geo.BD-

RATE" referem-se ao BD-PSNR e ao BD-Rate das informações da geometria, consi-

derando as abordagens P2Point (D1) e P2Plane (D2).  

A partir dos resultados da Tabela X, é possível perceber que o esquema pro-

posto obteve ganhos consideráveis em termos de eficiência de compressão para am-

bas as configurações de subparticionamento. Os resultados médios de BD-Rate de 

geometria mostram uma redução de 32,14% e 33,05% para D1 e D2 para a configu-

ração Sub 32, em relação ao PCC-âncora. Os resultados da geometria BD-PSNR 

mostram ainda um aumento de 1,80 dB para D1 e 2,11 dB para D2. 

Figura 41: Gráfico RD de textura para a proposta de subparticionamento. 
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Tabela IX: Percentual médio de pontos codificados por meio da 
predição inter-nuvens para os esquemas de subparticionamento de 
macroblocos em relação ao PCC-âncora. 

Sequências Abordagens 
LoD 

g6 g7 g8 g9 g10 

Long Dress 

PCC 0,00 0,10 1,51 4,21 5,35 

Sub 16 0,36 4,15 11,22 16,54 14,10 

SUB 32 94,84 96,04 93,67 86,00 69,70 

Loot 

PCC 0,98 9,60 13,98 11,75 23,38 

Sub 16 35,18 52,77 63,39 63,94 51,34 

SUB 32 97,67 98,04 97,01 93,25 84,14 

Red and Black 

PCC 1,07 5,34 7,66 13,81 15,79 

Sub 16 15,00 29,03 40,36 42,50 33,76 

SUB 32 96,38 96,03 93,96 88,34 75,49 

Soldier 

PCC 0,00 0,56 2,68 7,15 4,97 

Sub 16 4,00 12,96 29,07 48,92 51,31 

SUB 32 99,75 99,89 99,62 98,84 96,49 

Queen 

PCC 1,82 7,87 15,93 22,83 36,71 

Sub 16 24,48 51,90 68,87 77,16 76,66 

SUB 32 99,76 99,93 99,89 99,65 98,81 

Média 

PCC 0,77 4,70 8,35 11,95 17,24 

Sub 16 15,80 30,16 42,58 49,81 45,43 

SUB 32 97,68 97,99 96,83 93,22 84,93 

 

 
 

Tabela X: Resultados de Bjontegaard-Delta de geometria para esquema de subparticionamento 
desenvolvido em relação ao PCC-âncora. 

 

 

Sequência 

geo.BD-RATE (%) geo.BD-PSNR (dB) 

Sub 16 Sub 32 Sub 16 Sub 32 

D1 D2 D1 D2 D1 D2 D1 D2 

Long Dress -13,29 -31,47 -17,69 -12,55 0,73 2,14 0,87 0,62 

Loot -18,55 -29,92 -34,93 -37,42 0,98 1,89 1,89 2,29 

Red and Black -13,49 -21,81 -16,95 -12,24 0,71 1,35 0,79 0,56 

Soldier -17,64 -34,72 -49,66 -54,55 0,91 2,25 3,02 3,88 

Queen -21,89 -36,50 -41,49 -48,52 1,16 2,27 2,40 3,20 

Média -16,97 -30,88 -32,14 -33,05 0,90 1,98 1,80 2,11 
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Para a configuração de subparticionamento 16 (Sub 16), o BD-Rate de geome-

tria obteve uma redução de 16,97% e 30,88% para D1 e D2, em relação ao PCC-

âncora. Os resultados de BD-PSNR de geometria mostram aumento de 0,90 dB para 

D1 e 1,98 dB para D2. Neste sentido, os ganhos em BD-PSNR de Sub 16 foram um 

pouco inferiores em relação aos resultados obtidos pela configuração Sub 32. 

Os resultados para textura são apresentados na Tabela XI. O "attr.BD-PSNR" 

e o "attr.BD-RATE" apresentam os valores de BD-PSNR e BD-Rate das informações 

de textura. Na Tabela XI, considerando a configuração Sub 32 a redução da taxa BD 

foi de 23,32%, 32,89% e 28,06% para os componentes Luminância (Luma), Cromi-

nância Azul (Cb) e Crominância Vermelha (Cr), respectivamente. Além disso, o BD-

PSNR para textura apresentou ganho de 0,93 dB, 0,66 dB e 0,60 dB para os canais 

Luma, Cb e Cr, respectivamente. 

Considerando a configuração Sub 16 também foram alcançados excelentes re-

sultados, com uma redução da taxa de BD-Rate 31,77%, 11,30% e 13,92% para os 

canais Luma, Cb e Cr, respectivamente. Além disso, o BD-PSNR de textura apresen-

tou um aumento de 1,40 dB, 0,21 dB e 0,29 dB para os mesmos canais.  

 

 Tabela XI: Resultados de Bjontegaard-Delta de textura para esquema de subparticionamento 
desenvolvido em relação ao PCC-âncora. 

 

Através desse experimento pode-se concluir que, o esquema de subparticiona-

mento é promissor e pode trazer ganhos expressivos para eficiência de compressão 

de nuvens de pontos dinâmicas. Todavia, se faz necessário uma decisão de modo 

para realizar a escolha do melhor modo de predição e opção de tamanho de bloco, 

dessa forma viabilizando a obtenção uma melhor eficiência de codificação.  

 

 

Sequências 

Attr.BD-RATE (%) Attr.BD-PSNR (dB) 

Sub 16 Sub 32 Sub 16 Sub 32 

Luma Cb Cr Luma Cb Cr Luma Cb Cr Luma Cb Cr 

Long Dress -30,04 -5,16 -7,28 7,06 -9,78 -0,99 1,28 0,08 0,12 -0,17 0,08 -0,04 

Loot -25,92 -11,00 -12,62 -22,54 -36,35 -38,48 0,91 0,24 0,29 0,54 0,88 0,98 

Red and Black -23,21 -8,99 -14,84 -6,83 -32,25 -17,08 0,88 0,15 0,29 0,05 0,54 0,22 

Soldier -37,70 -14,70 -13,68 -52,30 -50,90 -52,45 1,58 0,21 0,21 2,11 0,91 1,03 

Queen -41,97 -16,66 -21,16 -41,99 -35,15 -31,31 2,34 0,38 0,55 2,11 0,88 0,83 

Média -31,77 -11,30 -13,92 -23,32 -32,89 -28,06 1,40 0,21 0,29 0,93 0,66 0,60 
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7.4 Resultados da Solução Completa 

 

A solução completa proposta neste trabalho inclui o alinhamento das caixas 

delimitadoras (apresentado na Seção 6.1), a etapa de estimação de movimento 3D, 

por meio do algoritmo DS (descrita na Seção 6.2), a decisão de modo (apresentada 

na Seção 6.5) e o subparticionamento que permite iniciar por macroblocos de tamanho 

32×32×32 voxels ou 16×16×16 (conforme a Seção 6.4). Neste sentido, os resultados 

finais serão apresentados para estas duas configurações de tamanho máximo de ma-

crobloco. Além disso, a discretização das coordenadas dos macroblocos, apresentada 

na Seção 6.3, também compõem esta solução.  

Nas Figura 42 e Figura 43 são apresentadas as curvas RD, para informação de 

geometria, resultantes das simulações da solução completa com subparticionamento 

iniciando com macroblocos 32×32×32, assim como subparticionamento iniciando com 

macroblocos de tamanho 16×16×16, referenciados nos gráficos como Solução 32-16-

8 e Solução 16-8, respectivamente. Além disso, são apresentados os resultados do 

PCC-âncora (MEKURIA; BLOM; CESAR, 2017), para serem confrontados com o es-

quema proposto. Nos gráficos RD os resultados de qualidade de geometria são apre-

sentados por meio do PNSR P2Plane. Cada ponto das curvas representa um LoD de 

octree, onde o maior (g10), apresenta maior qualidade e consequentemente demanda 

maior taxa. 

Os gráficos (a),(b) e (c) da Figura 42, mostram resultados individuais para três 

das cinco sequência de nuvens de pontos utilizadas. Por meio dos resultados dos 

gráficos de cada sequência, é possível concluir que os esquemas de predição pro-

posto apresentam resultados superiores em relação ao PCC-âncora em ambas as 

configurações de subparticionamento, tanto em qualidade como em taxa de bits. Isso 

também pode ser visto nos gráficos (a) e (b) da Figura 43. Os resultados obtidos por 

ambas as configurações da solução proposta neste trabalho apresentam resultados 

muito similares, como pode ser visto pela sobreposição das curvas. No entanto, cabe 

destacar que nos gráficos (b) e (c) da Figura 42 e o gráfico (b) da Figura 43, a solução 

proposta de configuração 32-16-8 atinge uma menor taxa de bits e resultados de qua-

lidade bastante semelhantes à solução 16-8. A solução 32-16-8 possui de modo geral 

ganhos em taxa. Porém, o preço pago por essa redução de taxa são perdas em qua-

lidade mais notoriamente em g10 como é possível ver por meio do gráfico (b) da Figura 
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42 e o gráfico (a) da Figura 43. As diferenças entre as curvas RD tendem a ser menos 

perceptíveis em direção aos menores LoD. 

 

 

(b) Red and Black 

(a) Long Dress 

(c) Queen 

Figura 42: Gráficos RD para geometria. 
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(a) Loot 

(b) Soldier 

(c) Média para todas as sequências 

Figura 43: Gráficos RD para geometria. 



111 
 

Na Figura 43 (c) são apresentadas as curvas para os resultados médios de 

todas as sequências. É possível concluir que, a solução 16-8 consegue obter maior 

qualidade para os últimos LoD, mas também apresentam uma maior demanda de taxa 

de bits.  Os resultados médios também comprovam a eficiência de codificação da 

solução proposta em relação ao PCC-âncora. Em especial a solução 32-16-8 atingem 

uma redução bastante significativa em taxa sem perdas em qualidade. 

Na Figura 44 e 45 são apresentados gráficos RD para qualidade de textura e 

taxa de bits, onde os gráficos (a), (b) e (c) Figura 44  e os gráficos (a) e (b) da Figura 

45 mostram resultados individuais para cada sequência de nuvens de pontos utiliza-

das. Esses gráficos comprovam que o esquema proposto também é muito superior ao 

PCC-âncora considerando a codificação de textura. Além disso, no gráfico (c) da Fi-

gura 45 são apresentados os resultados da média de todas as sequências para ambas 

as configurações, 32-16-8 e 16-8, em relação ao PCC-âncora. As configurações do 

esquema proposto apresentam resultados muito semelhantes, como pode ser visto 

pelas respectivas curvas RD. Por meio dos gráficos RD de textura fica ainda menos 

notória diferença entre a solução 32-16-8 e a solução 16-8. No entanto, no gráfico (c) 

da Figura 44 e o gráfico (b) da Figura 45 são mostrados melhores resultados obtidos 

pela solução proposta, onde é possível observar um aumento considerável de quali-

dade de textura com taxas muito inferiores ao PCC-âncora. 

Resultados quantitativos mais detalhados são apresentados no apêndice A, Ta-

bela XXIX (dados de geometria) e Tabela XXX (dados de textura). Além disso, no 

Apêndice B, da Figura 59 até à  Figura 63 são apresentadas imagens de nuvens de 

pontos reconstruídas a partir da solução 32-16-8 em relação ao PCC-âncora. 
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(a) Long Dress 

(b) Red and Black 

(c) Queen 

Figura 44: Gráficos RD para textura. 
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(a) Loot 

(b) Soldier 

(c) Média para todas as sequências 

Figura 45: Gráficos RD para textura. 
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Na Tabela XII são mostrados os tempos de codificação em minutos para ambas 

as configurações da solução proposta Solução 32-16-8 e Solução 16-8. Os resultados 

de tempo são valores médios para codificar uma nuvem de pontos da sequência de 

nuvens de pontos. Na tabela são apresentados também os tempos médios de cada 

sequência avaliada em cada LoD. Os resultados de tempo de codificação mostram 

que a configuração de subparticionamento 16-8 (Sol. 16) consome em média um 

tempo 340% maior que o tempo da configuração 32-16-8 (Sol. 32) para g10, o que 

representa um custo 4 vezes maior. Para o menor nível de detalhes (g6), essa dife-

rença é menor, mas ainda se mantém elevada, com um tempo 202% maior que a “Sol. 

32”. 

O alto custo computacional da solução de subparticionamento 16-8, ocorre de-

vido a utilização de macroblocos de menor tamanho em relação a configuração 32-

16-8. Dessa forma, há um número maior de comparações na ME para a solução 16-

8. Isso ocorre porquê a ME é realizada somente sobre o maior macrobloco, ou seja, 

na solução 32-16-8 a ME é realizada somente sobre macroblocos de tamanho 

32×32×32 voxels.  Se for considerada a configuração g10, para as nuvens de pontos 

constituem as sequências utilizadas neste trabalho, em média existem 3800 blocos 

de tamanho 32×32×32 voxels. Se for considerado blocos de tamanho 16×16×16 vo-

xels, o número médio de blocos passa para 16000, ou seja, são 4 vezes mais blocos 

a serem considerados pela ME. A relação de grandeza se assemelha ao resultado no 

aumento do tempo médio em g10 para a solução 16-8 em relação à solução 32-16-8, 

onde a solução 32-16-8 possui um tempo médio de 66 minutos para codificar uma 

nuvem de pontos enquanto a solução 16-8 demanda em torno de 291 minutos.  

Na Tabela XII são ainda mostrados os tempos de codificação em minutos para 

o PCC. Como pode ser visto na tabela, a medida em que a qualidade aumenta (maior 

LoD) maior é a diferença de tempo de codificação da “Sol. 32” e a “Sol. 16” em relação 

ao PCC. Esses resultados eram esperados devido à complexidade das ferramentas 

adicionadas ao codificador, como ME em 3D e subparticionamento de macroblocos. 

Para o resultado de tempo médio das sequências avaliadas para g10, considerando 

a “Sol. 32”, a diferença atinge um aumento de aproximadamente 700 vezes o tempo 

consumido pelo PCC. Para o g6 a diferença é em torno de 130 vezes. 
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 Tabela XII: Resultados de tempo (em minutos) para diferentes LoD das diferentes configurações do 
esquema proposto em relação ao PCC-âncora. 

 

Devido à similaridade dos resultados apresentados pelos gráficos RD da Figura 

42 à Figura 45 e com o custo computacional avaliado por meio do tempo consumido 

conforme apresentado na Tabela XII, é possível concluir que a configuração de sub-

particionamento 32-16-8 apresenta a melhor relação entre custo computacional e efi-

ciência de codificação, frente a configuração 16-8.  

Os resultados da métrica Bjontegaard-Delta (BD) para taxa de bits (BD-Rate) e 

PSNR (BD-PSNR) de geometria são apresentados na Tabela XIII. A métrica BD foi 

calculada para a solução proposta nas configurações 32-16-8 e 16-8, em relação ao 

PCC-âncora para cada uma das nuvens de pontos em g7, g8, g9 e g10. Na Tabela 

XIII o "geo.BD-PSNR" e o "geo.BD-RATE" referem-se ao BD-PSNR e ao BD-Rate das 

informações da geometria, considerando as abordagens P2Point (D1) e P2Plane (D2).  

Sequências 

LoD 

g  g  g  g  g 0 

PCC Sol.   Sol.32 PCC Sol.   Sol.32 PCC Sol.   Sol.32 PCC Sol.   Sol.32 PCC Sol.   Sol.32 

Long 0,004 1,30 0,43 0,007 5,26 1,72 0,02 22,39 10,59 0,04 64,38 29,53 0,07 183,56 78,97 

Loot 0,004 0,86 0,35 0,009 3,53 0,99 0,03 15,35 4,64 0,07 53,97 16,48 0,12 259,65 52,12 

Red 0,003 1,23 0,35 0,007 4,63 1,25 0,03 17,81 7,28 0,06 48,50 20,80 0,10 249,06 58,74 

Soldier 0,005 1,57 0,42 0,008 4,26 0,78 0,02 14,79 2,94 0,06 68,22 13,76 0,10 407,77 72,79 

Queen 0,003 1,21 0,40 0,007 3,75 0,71 0,02 15,30 2,63 0,06 53,70 10,71 0,10 357,08 70,18 

M dia 0,003  ,23 0,3  0,00   ,2   ,0  0,02    , 2  ,   0,0    ,     ,2  0,0  2  , 2   ,   

Tabela XIII: Resultados de Bjontegaard-Delta de geometria da solução completa 
desenvolvida em relação ao PCC-âncora. 

Sequência 

geo.BD-RATE (%) geo.BD-PSNR (dB) 

Sub 16-8 Sub 32-16-8 Sub 16-8 Sub 32-16-8 

D1 D2 D1 D2 D1 D2 D1 D2 

Long Dress -25,03 -38,11 -25,47 -33,89 1,41 2,66 1,4 2,26 

Loot -30,34 -41,75 -38,35 -43,74 1,68 2,77 2,21 2,92 

Red and Black -28,25 -39,18 -31,5 -36,38 1,57 2,62 1,77 2,36 

Soldier -39,70 -53,13 -49,31 -57,7 2,30 3,81 3,06 4,35 

Queen -43,92 -54,30 -45,07 -53,94 2,52 3,63 2,71 3,75 

Média -33,45 -45,30 -37,94 -45,13 1,89 3,10 2,23 3,13 
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A partir dos resultados da Tabela XIII, é possível perceber que o esquema pro-

posto pode obter ganhos consideráveis em termos de eficiência de compressão para 

ambas as configurações de subparticionamento. Os resultados médios de BD-Rate 

de geometria mostram uma redução de 37,94% e 45,13% para D1 e D2 para a confi-

guração 32-16-8, em relação ao PCC-âncora. Os resultados da geometria BD-PSNR 

mostram ainda um aumento de 2,23dB para D1 e 3,13 dB para D2. 

Para a configuração de subparticionamento de 16-8, o BD-Rate de geometria 

obteve uma redução de 33,45% e 45,30% para D1 e D2, quando comparado os resul-

tados do PCC-âncora. Os resultados de BD-PSNR de geometria mostram aumento 

de 1,89 dB para D1 e 3,10 dB para D2. Neste sentido, os ganhos em BD-PSNR foram 

um pouco inferiores em relação aos resultados obtidos pela configuração 32-16-8. 

Os resultados para textura são apresentados na Tabela XIV. O "attr.BD-PSNR" 

e o "attr.BD-RATE" apresentam os valores de BD-PSNR e BD-Rate das informações 

de textura. Na Tabela XIV, considerando a configuração 32-16-8, para os atributos de 

textura, a redução da taxa BD foi de 41,55%, 34,85% e 33,08% para os componentes 

Luminância (Luma), Crominância Azul (Cb) e Crominância Vermelha (Cr), respectiva-

mente. Além disso, o BD-PSNR para textura apresentou ganho de 1,90 dB, 0,69 dB e 

0,72 dB para os canais Luma, Cb e Cr, respectivamente. 

Considerando a configuração de subparticionamento 16-8, também foram al-

cançados excelentes resultados, com uma redução da taxa de BD-Rate 42,44%, 

30,17% e 26,78% para os canais Luma, Cb e Cr, respectivamente. Além disso, o BD-

PSNR de textura apresentou um aumento de 1,97 dB, 0,59 dB e 0,59 dB para os 

mesmos canais.  

 

Tabela XIV: Resultados de Bjontegaard-Delta em textura para a solução completa desenvolvida 
em relação ao PCC-âncora. 

Sequências 

attr.BD-RATE (%) attr.BD-PSNR (dB) 

Sub 16-8 Sub 32-16-8 Sub 16-8 Sub 32-16-8 

Luma Cb Cr Luma Cb Cr Luma Cb Cr Luma Cb Cr 

Long  -34,29 -21,16 -24,28 -30,53 -20,27 -20,74 1,45 0,32 0,41 1,26 0,3 0,33 

Loot -35,22 -25,61 -27,99 -35,64 -33,64 -35,95 1,28 0,54 0,62 1,3 0,75 0,84 

Red -30,69 -16,53 4,62 -33,33 -30,7 -17,99 1,13 0,23 -0,09 1,25 0,5 0,32 

Soldier -58,15 -47,62 -45,84 -56,43 -49,43 -49,47 2,80 0,84 0,86 2,65 0,87 0.94 

Queen -53,83 -39,94 -40,40 -51,83 -40,21 -41,26 3,18 1,02 1,15 3,02 1,05 1,2 

Média -42,44 -30,17 -26,78 -41,55 -34,85 -33,08 1,97 0,59 0,59 1,90 0,69 0,72 
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Esta melhora na eficiência de codificação da solução proposta era esperada, 

uma vez que o PCC-âncora não explora de maneira eficiente ferramentas como a ME, 

nem mesmo apresenta blocos de tamanho variáveis. 

A eficiência da solução de predição também pode ser vista pelo número de 

pontos preditos como inter. A Tabela XV mostra a porcentagem média de pontos pre-

ditos como inter para todas as cinco sequências de nuvens de pontos avaliadas, con-

siderando o esquema proposto e o PCC-âncora para cada LoD. 

 

 

A solução proposta aumenta o número médio de pontos codificados como inter 

para todos os LoD, com uma variação de 94,6% a 36.1%, demonstrando ter uma pre-

dição inter-nuvens mais eficiente, suportada pela ME 3D e pelo subparticionamento 

de macroblocos. 

A Figura 46 apresenta duas das cinco nuvens de pontos avaliadas, onde são 

destacados, em verde, os pontos preditos com a predição inter. Na Figura 46 (a) e (b) 

é apresentada a nuvem de pontos de número 1052 da sequência Long Dress, codifi-

cada com o PCC-âncora (a) e com a solução completa proposta com a configuração 

32-16-8 (b) e LoD g10. Na Figura 46 (c) e (d) é apresentada a nuvem de ponto de 

número 1477 da sequência Red and Black, codificada com o PCC-âncora (c) e com a 

solução completa proposta com a configuração 32-16-8 (d). Por meio dos pontos em 

destaque conclui-se que a solução de predição proposta atinge uma maior porção da 

nuvem como inter, o que favorece a redução da taxa de bits da nuvem codificada. 

Tabela XV: Número médio de pontos preditos como 
inter, separado por LoD. 

LoD PCC- âncora (%) Solução completa (%) 

g6 0,6 94,6 

g7 4,7 87,5 

g8 8,7 68,3 

g9 11,6 51,9 

g10 17,7 36,1 
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Conforme resultados apresentados para a solução completa do esquema de 

predição desenvolvido neste trabalho, é possível concluir que a solução proposta atin-

giu ganhos relevantes em eficiência de compressão em relação ao PCC-âncora. Além 

disso, os resultados individuais para o esquema de alinhamento das caixas delimita-

doras, apresentados na Seção 7.2, assim como o subparticionamento de macroblocos 

discutidos na Seção 7.3, apresentaram ganhos relevantes em eficiência de codifica-

ção que contribuíram com a solução final.

Figura 46: Avaliação visual da quantidade de blocos preditos com a predição inter (blocos 
em verde). 

(a)       (b)       (c)       (d)         



 
 

8 CONCLUSÕES 
 

Este trabalho apresentou uma exploração de novos esquemas para aumentar 

a eficiência da predição na compressão de nuvem de pontos dinâmicas. A solução 

completa utiliza um esquema de alinhamento das caixas delimitadoras e também em-

prega uma estimação de movimento (ME) 3D baseada em macroblocos, bem como 

um esquema de subparticionamento de em blocos menores. A solução proposta per-

mite o uso de macroblocos com tamanho máximo de 32x32x32 ou 16x16x16, e sub-

particionamento de 32-16-8 ou 16-8, respectivamente. Neste trabalho também foi 

apresentado um algoritmo de decisão de modo, que define o melhor modo de codifi-

cação de cada bloco, levando em conta a eficiência de codificação tanto das informa-

ções de geometria quando de textura.   

Além disso, a revisão da literatura realizada demonstrou que, até o momento 

da elaboração deste texto, não há nenhum trabalho publicado com solução que utilize 

subparticionamento de macroblocos e tão pouco uma solução de ME em 3D para 

compressão de nuvens de pontos dinâmicas. 

Neste sentido, o trabalho apresentou uma avaliação de correlação temporal de 

nuvens de pontos, como objetivo de verificar as regiões de maior ocorrência de blocos 

similares. Na sequência, foram implementados e adaptados dois algoritmos clássicos 

de ME utilizados em vídeos 2D, o Diamond Search (DS) e o N-Step-Search (NSS). 

Assim esses algoritmos foram avaliados sobre a perspectiva de informação de geo-

metria 3D. A partir dessa avaliação o DS foi selecionado para constituir o esquema de 

predição proposto neste trabalho. 

O esquema de predição proposto, empregou uma estimação de movimento 3D 

por meio de uma versão adaptada do algoritmo DS, com a possibilidade de operação 

sobre macroblocos de tamanho 32×32×32 ou ainda sobre macroblocos de tamanho 

16×16×16.  
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Além disso, uma abordagem de subparticionamento foi proposta, onde viabiliza 

o particionamento de um macrobloco 32×32×32 em blocos 16×16×16 e 8×8× 8, que 

podem ser preditos individualmente com os modos inter ou intra. Uma decisão de 

modo também foi desenvolvida para definir a melhor opção de codificação, levando 

em consideração a melhor relação entre a taxa de bits e a distorção.  

As avaliações foram realizadas para as cinco sequências de nuvens de pontos 

que contemplam as condições comuns de testes (CTC) propostas pelo MPEG. Para 

cada sequência cinco níveis de detalhes da octree foram avaliados, onde esses va-

riam de 6 (g6) a 10 bits (g10). Os resultados objetivos de qualidade foram gerados 

usando as abordagens ponto-a-ponto (P2P) e ponto-a-plano (P2Plane) por meio de 

PSNR e MSE, seguindo as CTC. 

Os resultados mostram que o esquema proposto é capaz de obter redução no 

BD-Rate de aproximadamente 41% para textura e até 45% para a informação de ge-

ometria, quando comparado com o codificador PCC-Âncora. Além disso, o esquema 

proposto obteve resultados superiores de qualidade em comparação ao PCC-âncora, 

com aumento médio de BD-PSNR de 3,13 dB em geometria e 1,9 dB na textura (para 

o canal de luminância). 

 

8.1 Trabalhos Futuros 

 

Algumas linhas de pesquisas já estão sendo desenvolvidas como continuação 

deste trabalho. Entre as possibilidades a serem desenvolvidas cabe destacar a explo-

ração de diferentes configurações de grupo de nuvens de pontos (group of clouds - 

GoC), já que os resultados desta proposta tratam somente GoC de tamanho 2. Assim, 

o uso de um GoC maior pode beneficiar a redução na taxa de bits já que, dessa forma, 

um maior número de nuvens de pontos pode ser codificada com predição inter-nu-

vens. 

Ferramenta como filtro de deblocagem também pode ser uma abordagem ex-

plorada em trabalhos futuros. Como pode ser visto através de algumas imagens re-

construídas a partir da compressão de nuvem de pontos dinâmica com aplicação da 

ME 3D, são gerados artefatos principalmente nas regiões de bordas das nuvens de 

pontos, gerados possivelmente por pontos de blocos de diferentes números de voxels. 

Dessa forma, uma abordagem de filtragem desses pontos poderia contribuir para 
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geração de nuvens de pontos com melhores aspectos tanto em qualidade subjetiva 

como também de qualidade objetiva. 

A compressão dos atributos de textura por meio do PCC-âncora, utiliza o algo-

ritmo JPEG clássico. Uma contribuição interessante pode ser a utilização de algorit-

mos ou codificadores de textura mais eficientes, como até mesmo a aplicação do 

HEVC para codificar somente textura. Essa adequação para o codificador pode con-

tribuir tanto para redução de taxa como para uma melhor qualidade de textura para as 

nuvens de pontos reconstruídas. 

A adequação e aplicação da ME 3D sugerido neste trabalho, também pode ser 

aplicada no codificador V-PCC proposto atualmente pelo MPEG. O codificador V-PCC 

utiliza somente informações das nuvens planificadas para realizar a ME. Neste con-

texto, uma ME 3D pode melhorar a eficiência de compressão para essa abordagem, 

diante da exploração mais específica para esse tipo de conteúdo. 

Estudos mais aprofundados em relação as regiões de maior ocorrência de blo-

cos selecionados na ME, visto por meio dos mapas de calor, podem auxiliar no de-

senvolvimento de algoritmo de ME mais otimizado para os possíveis padrões de ocor-

rências. Além disso, técnicas de machine learning podem contribuir para a redução de 

complexidade da ME, principalmente a partir do treinamento de redes neurais em fun-

ção das posições das maiores ocorrência de blocos correlacionados, e assim viabilizar 

melhores resultados de qualidade.
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APÊNDICE A – RESULTADOS DE EXPERIMENTOS NA 

AVALIAÇÃO DOS ALGORITMOS DE ME 

DESENVOLVIDOS 
 

Este apêndice apresenta os resultados completos da avaliação dos algoritmos 

de ME apresentados, de modo resumido, na Seção 7.  

A tabelas que segue apresenta resultados de experimentos do FS em relação 

ao 4SS e DS para macroblocos que tamanho 32. 

 
Tabela XVI: Avaliação dos algoritmos de ME para macroblocos de tamanho 32. 

Sequências 
P2plane P2p 

FS15 4SS DS FS15 4SS DS 

Long Dress 68,47 67,31 66,55 59,85 56,87 58,24 

Loot 74,10 71,96 71,13 69,49 63,26 65,18 

Red and Black 69,18 66,04 65,73 62,48 56,93 58,39 

Soldier 75,62 73,90 75,62 71,62 69,39 71,63 

Média 71,84 69,80 69,76 65,86 61,61 63,36 

 
A Tabela XVII apresenta resultados de experimentos do FS em relação ao 4SS 

e DS para macroblocos que tamanho 16. 

 
Tabela XVII: Avaliação dos algoritmos de ME para macroblocos de tamanho 16. 

Sequências 
P2plane P2p 

FS15 TSS DS FS15 TSS DS 

Long Dress 71,64 66,94 64,85 61,44 54,84 53,04 

Loot 76,03 72,29 71,33 71,67 62,55 61,66 

Red and Black 71,61 65,88 64,40 69,18 56,18 55,11 

Soldier 76,44 74,28 76,15 72,18 68,77 71,84 

Média 73,93 69,84 69,18 68,62 60,59 60,41 

 

A Tabela XVIII apresenta resultados de experimentos do FS em relação ao 4SS 

e DS sem a utilização do algoritmo ICP para macroblocos que tamanho 32. 
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Tabela XVIII: Avaliação dos algoritmos de ME SEM ICP para macroblocos de tamanho 32. 

Sequências 
P2plane P2p 

FS15 TSS DS FS15 TSS DS 

Long Dress 65,24 58,93 61,94 60,40 53,66 51,22 

Loot 75,55 72,62 72,35 71,72 69,26 66,67 

Red and Black 67,89 63,00 63,88 61,98 57,45 55,76 

Soldier 76,01 75,87 75,36 72,07 71,96 71,57 

Média 71,17 67,60 68,38 66,54 63,08 61,30 

 

A Tabela XIX apresenta resultados de experimentos do FS em relação ao 4SS 

e DS sem a utilização do algoritmo ICP para macroblocos que tamanho 16. 

 
Tabela XIX: Avaliação dos algoritmos de ME SEM ICP para macroblocos de tamanho 16. 

Sequências 
P2plane P2p 

FS15 TSS DS FS15 TSS DS 

Long Dress 65,24 58,93 61,94 60,40 53,66 51,22 

Loot 75,55 72,62 72,35 71,72 69,26 66,67 

Red and Black 67,89 63,00 63,88 61,98 57,45 55,76 

Soldier 76,01 75,87 75,36 72,07 71,96 71,57 

Média 71,17 67,60 68,38 66,54 63,08 61,30 

 

A Tabela XX apresenta resultados comparativos de tempo do FS e do DS para 

macroblocos de tamanho 32x32x32 com e sem ICP. 

 
Tabela XX: Avaliação comparativa de tempo (minutos) dos algoritmos entre FS e DS com ICP 
e tamanho de macroblocos 32x32x32 voxels em comparação aos respectivos algoritmos sem 
o ICP. 

Sequências  
Sem ICP Com ICP 

FS M32 DS M32 FS M32 DS M32 

Long Dress 1247 44 6161 89  

Loot 1387 47 7922 60 

Red and Black 1124 53 7212 72 

Soldier 1864 61 12386 71 

Média 1406 51 8420 73 
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A Tabela XX apresenta resultados comparativos de tempo do FS e do DS para 

macroblocos de tamanho 16x16x16 com e sem ICP. 

 
Tabela XXI: Avaliação comparativa de tempo (minutos) dos algoritmos entre FS e DS com ICP 
e tamanho de macroblocos 16x16x16 voxels em comparação aos respectivos algoritmos sem 
o ICP. 

Sequências  
Sem ICP Com ICP 

FS M32 DS M32 FS M32 DS M32 

Long Dress 1328 161 3701 172  

Loot 1471 145 4741 167  

Red and Black 1382 153 3542 246  

Soldier 2520 248 6941 325  

Média 1675 177 4731 228 

 

A Tabela XXII apresenta resultados comparativos de qualidade de geometria 

do FS e do DS para macroblocos de tamanho 16x16x16 com e sem ICP. 

 
Tabela XXII: Avaliação comparativa de qualidade de geometria dos algoritmos entre FS e DS com 
ICP e também sem ICP para macroblocos 16x16x16. 

 

A Figura 47 apresenta os mapas de calor gerados para o algoritmo FS com 

macroblocos de tamanho 16x16x16.  

Na Figura 48 são apresentados os mapas de calor gerados para o algoritmo FS 

com macroblocos de tamanho 32x32x32 sem o uso do ICP.  

 

 

  

Sequências 

P2plane P2p 

FS15 DS FS15 DS 

Com ICP Sem ICP Com ICP Sem ICP Com ICP Sem ICP Com ICP Sem ICP 

Long Dress 68,47 62,78 65,34 62,33 59,85 60,43 56,11 56,94 

Loot 74,10 73,66 72,85 71,54 69,49 70,57 68,75 68,42 

Red and Black 69,18 65,21 66,58 63,23 62,48 62,14 59,02 59,35 

Soldier 75,76 74,88 75,61 74,88 71,62 71,25 71,63 71,25 

Média 71,88 69,13 70,10 67,99 65,86 66,10 63,88 63,99 
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(b) Long Dress (FS ±7) 

(e) Red and Black (FS ±7) 

(c) Loot (FS ±7) 

(b) Long Dress (FS ±15) 

(d) Loot (FS ±15) 

(g) Red and Black (FS ±15) 

(e) Soldier (FS ±7) (e) Soldier (FS ±15) 

baixa alta 

ocorrência 

Figura 47: Mapas de calor para macroblocos de tamanho 16×16×16 voxels e algoritmo FS com 
deslocamento ±7 e ±15. 
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(c) Long Dress (FS ±7) 

(e) Red and Black (FS ±7) 

(c) Loot (FS ±7) 

(b) Long Dress (FS ±15) 

(d) Loot (FS ±15) 

(h) Red and Black (FS ±15) 

(e) Soldier (FS ±7) (e) Soldier (FS ±15) 

baixa alta 

ocorrência 

Figura 48: Mapas de calor para macroblocos de tamanho 32×32×32 voxels e algoritmo FS com 
deslocamento ±7 e ±15 sem o algoritmo ICP. 



134 
 

Variações da solução desenvolvida também foram avaliadas com o objetivo de 

comprovar que a solução proposta com macroblocos de tamanho 32x32x32 (Proposta 

DS) e também a solução proposta com macroblocos de tamanho 16x16x16 (Proposta 

DS), apresenta maior eficiência entre outras possibilidades apresentadas. Neste sen-

tido, a Figura 49 mostra um gráfico RD de geometria e também um gráfico RD de 

textura para os resultados médios de todas as sequências. Nesses são apresentados 

resultados de abordagens tais como: a solução proposta com uma ME que considera 

MSE tanto de geometria como de textura com mesmo peso (Solução geo-tex), e a 

solução proposta com N-Step Search (NSS), que nesse caso é 4SS (Solução NSS).  

 
  
 
 
 

 

 

Figura 49: Resultados de variantes da abordagem proposta. 
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As figuras que seguem apresentam gráficos RD individuas para as 

sequências testadas. 

  

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

   

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figura 50: Resultados para sequência Long Dress de variações da 
proposta desenvolvida neste trabalho. 

Figura 51: Resultados para sequência Loot de variações da proposta 
desenvolvida neste trabalho. 



136 
 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Figura 52: Resultados para sequência Soldier de variações da 
proposta desenvolvida neste trabalho. 

Figura 53: Resultados para sequência Red and Black de variações da 
proposta desenvolvida neste trabalho. 
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As Tabela XXIII e a Tabela XXIV apresentam resultados de BD-Rate e BD-

PSNR da solução de subparticionamento e alinhamento das caixas delimitadoras 

publicada na Visual Communications and Image Processing Conference 2018 

(Santos et al., 2018) em comparação com a solução completa apresenta nesta tese. 

 

 

 

Tabela XXIII: Resultados de Bjontegaard-Delta da abordagem desenvolvida, e o 
trabalho anterior em relação ao PCC-âncora. 

Sequências 

geo.BD-RATE (%) geo.BD-PSNR (dB) 

SUB(VCIP) Solução 32 SUB(VCIP) Solução 32 

D1 D2 D1 D2 D1 D2 D1 D2 

Long Dress -13,29 -31,47 -25,47 -33,89 0,73 2,14 1,4 2,26 

Loot -18,55 -29,92 -38,35 -43,74 0,98 1,89 2,21 2,92 

Red and Black -13,49 -21,81 -3,5 -36,38 0,71 1,35 1,77 2,36 

Soldier -17,64 -34,72 -49,31 -57,7 0,91 2,25 3,06 4,35 

Queen -21,89 -36,50 -45,07 -53,94 1,16 2,27 2,71 3,75 

Média -16,97 -30,88 -37,94 -45,13 0,90 1,98 2,23 3,13 

 

Figura 54: Resultados para sequência Queen de variações da proposta 
desenvolvida neste trabalho. 
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Tabela XXIV: Resultados de Bjontegaard-Delta da abordagem desenvolvida, e o trabalho 
anterior em relação ao PCC-âncora. 

Sequências 

Attr.BD-RATE (%) Attr.BD-PSNR (dB) 

SUB(VCIP) Solução 32 SUB(VCIP) Solução 32 

Luma Cb Cr Luma Cb Cr Luma Cb Cr Luma Cb Cr 

Long -30.04 -5.16 -7.28 -30.53 -20.27 -20.74 1.28 0.08 0.12 1.26 0.3 0.33 

Loot -25.92 -11.00 -12.62 -35.64 -33.64 -35.95 0.91 0.24 0.29 1.3 0.75 0.84 

Red  -23.21 -8.99 -14.84 -33.33 -30.7 -17.99 0.88 0.15 0.29 1.25 0.5 0.32 

Soldier -37.70 -14.70 -13.68 -56.43 -49.43 -49.47 1.58 0.21 0.21 2.65 0.87 0.94 

Queen -41.97 -16.66 -21.16 -51.83 -40.21 -41.26 2.34 0.38 0.55 3.02 1.05 1.2 

Média -31.77 -11.30 -13.92 -41.55 -34.85 -33.08 1.40 0.21 0.29 1.90 0.69 0.72 

 

 

As figuras que seguem apresentam resultados completos para o esquema de 

alinhamento em relação ao PCC-âncora. 

 

 

 

(a) Long Dress (b) Loot 

(d) Soldier (c) Red and Black 

(e) Queen (f) Média para todas as sequências 

Figura 55: Gráficos RD de geometria para a proposta de alinhamento das caixas delimitadoras. 
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(a) Long Dress (b) Loot 

(d) Soldier (c) Red and Black 

(e) Queen (f) Média para todas as sequências 

Figura 56: Gráficos RD para textura para a proposta de alinhamento das caixas delimitadoras. 
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(a) Long Dress (b) Loot 

(d) Soldier (c) Red and Black 

(f) Média para todas as sequências (e) Queen 

Figura 57: Gráficos RD para geometria para a proposta de Subparticionamento. 

(a) Long Dress (b) Loot 

(d) Soldier (c) Red and Black 

(f) Média para todas as sequências (e) Queen 

Figura 58: Gráficos RD para textura para a proposta de Subparticionamento. 
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Tabela XXV: Resultados para os dados de geometria do alinhamento 
das caixas delimitadoras em comparação ao PCC-âncora. 

LoD Sequências 
PSNR (dB) Taxa (Mbits/s) 

PCC Alinhamento 
 

PCC Alinhamento 
 

g6 

Long 53,52 55,70 1,25 1,24 

Loot 53,13 55,24 1,08 1,04 

Red 53,37 55,48 1,12 1,11 

Soldier 52,09 54,20 1,29 1,27 

Queen 55,45 57,45 1,13 1,15 

 Média 53,51 55,61 1,17 1,16 

g7 

Long 59,96 62,36 4,41 4,39 

Loot 59,59 61,51 13,16 3,33 

Red 59,75 61,78 14,48 3,65 

Soldier 58,43 60,82 17,43 4,52 

Queen 62,06 64,11 14,64 3,82 

 Média 59,96 62,12 12,83 3,94 

g8 

Long 66,65 69,04 17,04 16,85 

Loot 66,31 67,85 47,89 11,74 

Red 66,35 67,74 49,54 13,29 

Soldier 65,21 67,65 65,08 16,99 

Queen 68,91 70,73 51,39 13,44 

 Média 66,69 68,60 46,19 14,46 

g9 

Long 73,12 75,21 55,97 54,53 

Loot 72,54 73,55 47,89 40,81 

Red 72,56 73,17 49,54 44,73 

Soldier 71,82 73,87 65,08 60,12 

Queen 75,17 76,47 51,39 45,25 

 Média 73,04 74,45 53,98 49,09 

g10 

Long 78,89 80,31 116,25 113,26 

Loot 78,04 78,60 103,05 93,66 

Red 77,80 78,51 103,87 97,21 

Soldier 77,46 78,49 148,49 130,37 

Queen 79,31 79,54 112,88 99,86 

 Média 78,30 79,09 116,91 106,87 
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Tabela XXVI: Resultados para os dados de textura do alinhamento 
das caixas delimitadoras em comparação ao PCC-âncora. 

LoD Sequências 
PSNR (dB) Taxa (Mbits/s) 

PCC Alinhamento 
 

PCC Alinhamento 
 

g6 

Long 21,53 22,46 2,06 2,06 

Loot 27,46 28,58 1,27 1,26 

Red 27,04 28,15 1,41 1,39 

Soldier 24,14 25,38 1,79 1,79 

Queen 24,36 25,89 1,54 1,61 

 Média 24,90 26,09 1,61 1,62 

g7 

Long 23,26 24,33 6,35 6,38 

Loot 29,67 30,66 3,15 3,09 

Red 29,37 30,45 3,69 3,56 

Soldier 26,30 27,60 5,39 5,41 

Queen 26,85 28,78 4,17 4,32 

 Média 27,09 28,36 4,55 4,55 

g8 

Long 25,56 26,90 19,54 19,46 

Loot 32,13 32,94 8,96 8,35 

Red 31,89 32,80 10,53 9,93 

Soldier 28,87 30,21 16,80 16,54 

Queen 29,64 31,65 12,43 12,33 

 Média 29,62 30,90 13,65 13,32 

g9 

Long 28,37 29,74 37,12 36,67 

Loot 34,48 34,73 17,77 15,31 

Red 34,20 34,65 18,63 17,52 

Soldier 31,73 32,95 35,49 33,48 

Queen 33,14 34,47 22,89 20,94 

 Média 32,39 33,31 26,38 24,79 

g10 

Long 30,81 31,62 54,69 53,50 

Loot 36,07 35,88 24,69 21,94 

Red 35,68 35,68 25,85 24,63 

Soldier 33,98 34,53 50,66 42,74 

Queen 35,45 35,94 33,09 28,54 

 Média 34,40 34,73 37,79 34,27 
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Tabela XXVII: Resultados para os dados de geometria do 
subparticionamento de macroblocos em comparação ao PCC-âncora. 

LoD Sequências 
PSNR(dB) Taxa (Mbits/s) 

PCC SUB 16 SUB 32 PCC SUB 16 SUB 32 

g6 

Long  53,52 55,70 54,15 1,25 1,24 0,78 

Loot 53,13 55,13 54,36 1,08 1,03 0,68 

Red  53,37 55,37 53,97 1,12 1,12 0,71 

Soldier 52,09 54,19 53,80 1,29 1,21 0,71 

Queen 55,45 57,44 57,32 1,13 1,11 0,72 

 Média 53,51 55,57 54,72 1,17 1,14 0,72 

g7 

Long  59,96 62,31 59,59 4,41 4,42 2,53 

Loot 59,59 61,38 60,36 13,16 3,31 2,11 

Red  59,75 61,54 59,44 14,48 3,71 2,21 

Soldier 58,43 60,80 60,04 17,43 4,31 2,24 

Queen 62,06 64,08 63,73 14,64 3,66 2,30 

 Média 59,96 62,02 60,63 12,83 3,88 2,28 

g8 

Long  66,65 68,88 64,91 17,04 16,96 9,72 

Loot 66,31 67,71 66,45 47,89 11,66 7,81 

Red  66,35 67,47 64,70 49,54 13,55 8,35 

Soldier 65,21 67,55 66,33 65,08 16,30 8,37 

Queen 68,91 70,68 70,06 51,39 12,75 8,83 

 Média 66,69 68,46 66,49 46,19 14,25 8,62 

g9 

Long  73,12 74,99 70,23 55,97 55,03 34,21 

Loot 72,54 73,43 71,74 47,89 40,73 28,93 

Red  72,56 73,03 69,78 49,54 45,55 30,37 

Soldier 71,82 73,61 71,96 65,08 61,34 32,04 

Queen 75,17 76,42 75,39 51,39 43,16 31,77 

 Média 73,04 74,30 71,82 53,98 49,17 31,47 

g10 

Long  78,89 80,30 75,95 116,25 113,41 81,45 

Loot 78,04 78,62 76,51 103,05 94,22 68,47 

Red  77,80 78,54 75,21 103,87 98,23 71,93 

Soldier 77,46 78,42 76,49 148,49 130,62 85,93 

Queen 79,31 79,13 79,02 112,88 98,49 69,50 

 Média 78,30 79,00 76,64 116,91 106,99 75,46 
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Tabela XXVIII: Resultados para os dados de textura do subparticionamento 
de macroblocos em comparação ao PCC-âncora. 

LoD Sequências 
PSNR(dB) Taxa (Mbits) 

PCC SUB 16 SUB 32 PCC SUB 16 SUB 32 

g6 

Long  21,53 22,46 21,87 2,06 2,05 1,39 

Loot 27,46 28,56 28,45 1,27 1,19 0,91 

Red  27,04 28,14 27,66 1,41 1,37 0,99 

Soldier 24,14 25,38 25,56 1,79 1,69 1,10 

Queen 24,36 25,89 25,78 1,54 1,48 1,10 

 Média 24,90 26,09 25,86 1,61 1,56 1,10 

g7 

Long  23,26 24,32 22,96 6,35 6,32 4,04 

Loot 29,67 30,56 30,07 3,15 2,82 2,12 

Red  29,37 30,37 29,41 3,69 3,46 2,40 

Soldier 26,30 27,61 27,54 5,39 4,92 2,99 

Queen 26,85 28,79 28,11 4,17 3,76 2,79 

 Média 27,09 28,33 27,62 4,55 4,26 2,87 

g8 

Long  25,56 26,85 24,31 19,54 19,11 12,27 

Loot 32,13 32,72 31,79 8,96 7,66 5,87 

Red  31,89 32,58 30,96 10,53 9,59 6,75 

Soldier 28,87 30,19 29,69 16,80 14,61 9,15 

Queen 29,64 31,64 30,38 12,43 10,79 8,31 

 Média 29,62 30,79 29,42 13,65 12,35 8,47 

g9 

Long  28,37 29,57 26,06 37,12 35,94 24,37 

Loot 34,48 34,47 33,11 17,77 14,87 11,42 

Red  34,20 34,37 32,22 18,63 17,00 12,55 

Soldier 31,73 32,85 31,73 35,49 30,17 21,36 

Queen 33,14 34,43 32,95 22,89 19,57 15,12 

 Média 32,39 33,14 31,21 26,38 23,51 16,97 

g10 

Long  30,81 31,59 27,70 54,69 53,43 39,42 

Loot 36,07 35,88 34,01 24,69 22,35 17,39 

Red  35,68 35,70 33,28 25,85 24,54 19,16 

Soldier 33,98 34,47 32,88 50,66 42,64 30,69 

Queen 35,45 35,91 34,23 33,09 28,88 22,12 

 Média 34,40 34,71 32,42 37,79 34,37 25,76 
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Tabela XXIX: Resultados comparativo de qualidade de geometria e taxa de bits para a 
solução proposta iniciando com macroblocos 16x16x16, a solução iniciando com 
macroblocos 32x32x32 e o PCC-âncora. 

LoD Sequências 
PSNR(dB) Taxa (Mbits/s) 

PCC Solução 16 Solução 32 PCC Solução 16 Solução 32 

g6 

Long 53,52 54,41 54,26 1,25 0,83 0,75 

Loot 53,13 54,92 54,15 1,08 0,78 0,74 

Red 53,37 54,50 54,04 1,12 0,80 0,72 

Soldier 52,09 54,43 53,83 1,29 0,87 0,85 

Queen 55,45 58,43 57,02 1,13 0,82 0,76 

 Média 53,51 55,34 54,66 1,17 0,82 0,76 

g7 

Long 59,96 61,01 60,17 4,41 3,04 2,51 

Loot 59,59 61,33 60,62 13,16 2,53 2,12 

Red 59,75 60,90 60,06 14,48 2,72 2,32 

Soldier 58,43 61,04 60,43 17,43 2,94 2,52 

Queen 62,06 65,07 63,80 14,64 2,71 2,35 

 Média 59,96 61,87 61,02 12,83 2,79 2,37 

g8 

Long 66,65 68,36 67,69 17,04 13,87 13,12 

Loot 66,31 68,02 67,28 47,89 10,18 8,26 

Red 66,35 67,88 66,94 49,54 11,37 10,00 

Soldier 65,21 67,69 67,13 65,08 11,47 9,52 

Queen 68,91 71,54 70,44 51,39 10,85 9,14 

 Média 66,69 68,70 67,90 46,19 11,55 10,01 

g9 

Long 73,12 75,10 74,82 55,97 51,21 50,82 

Loot 72,54 74,16 73,52 47,89 40,56 35,40 

Red 72,56 74,28 73,66 49,54 43,50 40,85 

Soldier 71,82 73,64 73,15 65,08 45,08 36,93 

Queen 75,17 77,24 76,26 51,39 40,80 33,90 

 Média 73,04 74,88 74,28 53,98 44,23 39,58 

g10 

Long 78,89 80,95 80,39 116,25 111,95 111,19 

Loot 78,04 79,81 79,22 103,05 100,07 90,20 

Red 77,80 80,07 79,47 103,87 102,02 95,66 

Soldier 77,46 78,58 77,98 148,49 120,26 91,12 

Queen 79,31 80,65 78,01 112,88 104,63 78,30 

 Média 78,30 80,01 79,01 116,91 107,79 93,29 
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Tabela XXX: Resultados comparativo de qualidade de textura e taxa de bits para a 
solução proposta iniciando com macroblocos 16x16x16, a solução iniciando com 
macroblocos 32x32x32 e o PCC-âncora. 

LoD Sequências 
PSNR(dB) Taxa (Mbits/s) 

PCC Solução 16 Solução 32 PCC Solução 16 Solução 32 

g6 

Long 21,53 21,97 21,92 2,06 1,35 1,32 

Loot 27,46 28,55 28,45 1,27 0,94 0,95 

Red 27,04 27,75 27,70 1,41 1,02 1,01 

Soldier 24,14 25,59 25,52 1,79 1,20 1,28 

Queen 24,36 26,21 25,79 1,54 1,12 1,14 

 Média 24,90 26,01 25,87 1,61 1,13 1,14 

g7 

Long 23,26 23,59 23,33 6,35 4,33 3,96 

Loot 29,67 30,34 30,19 3,15 2,20 2,10 

Red 29,37 29,89 29,83 3,69 2,60 2,49 

Soldier 26,30 27,88 27,71 5,39 3,38 3,35 

Queen 26,85 28,92 28,47 4,17 2,86 2,87 

 Média 27,09 28,12 27,90 4,55 3,07 2,95 

g8 

Long 25,56 26,45 26,24 19,54 16,05 15,87 

Loot 32,13 32,55 32,39 8,96 6,63 6,13 

Red 31,89 32,29 32,33 10,53 8,07 7,85 

Soldier 28,87 30,41 30,17 16,80 10,34 10,24 

Queen 29,64 31,78 31,27 12,43 8,76 8,73 

 Média 29,62 30,69 30,48 13,65 9,97 9,76 

g9 

Long 28,37 29,67 29,58 37,12 34,43 34,88 

Loot 34,48 35,01 34,90 17,77 14,35 13,94 

Red 34,20 34,61 34,69 18,63 16,06 15,98 

Soldier 31,73 33,07 32,85 35,49 22,74 22,16 

Queen 33,14 34,49 34,25 22,89 16,69 16,38 

 Média 32,39 33,37 33,25 26,38 20,85 20,67 

g10 

Long 30,81 31,92 31,87 54,69 52,12 53,54 

Loot 36,07 36,85 36,83 24,69 22,96 22,75 

Red 35,68 36,28 36,40 25,85 24,58 24,90 

Soldier 33,98 34,71 34,61 50,66 34,50 32,53 

Queen 35,45 36,12 36,23 33,09 26,63 25,35 

 Média 34,40 35,18 35,19 37,79 32,16 31,82 

 

 

 

 



 
 

APÊNDICE B – RESULTADOS DA RECONSTRUÇÃO 

DAS NUVENS DE PONTOS 

 
Este apêndice apresenta os resultados visuais através de nuvens de pontos 

reconstruídas por meio de algumas explorações realizadas no decorrer da elaboração 

dessa tese, assim como, o resultado final da solução proposta. 

A figuras que seguem apresentam nuvens de pontos reconstruídas com a 

solução proposta iniciando com marcoblocos de tamanho 32 em comparação com a 

ao PCC-âncora e a também a nuvem de pontos original sem codificação. 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Original Solução proposta PCC 

Figura 59: Resultados da solução proposta para a nuvem de número 1052 da sequência Long Dress.  
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Original Solução proposta PCC 

Figura 61: Resultados da solução proposta para a nuvem de número 1451 da sequência Red 
and Black. 

 

Original Solução proposta PCC 

Figura 60: Resultados da solução proposta para a nuvem de número 1001 da sequência Loot. 
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Original Solução proposta PCC 

Figura 63: Resultados da solução proposta para a nuvem de número 0001 da sequência Queen. 
 

Original Solução proposta PCC 

Figura 62: Resultados da solução proposta para a nuvem de número 537 da sequência Soldier.  
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As figuras que seguem são nuvens de pontos reconstruídas para alguns 

experimentos realizados para definição da decisão de modo. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Decisão de modo  
baseada somente taxa 

 

Decisão de modo baseada  
somente textura 

 

Decisão de modo baseada  
somente geometria 

Figura 64: Resultados das decisões de modo testadas para Long Dress 1052.  
 

Decisão de modo  
baseada somente taxa 

 

Decisão de modo baseada  
somente textura 

 

Decisão de modo baseada  
somente geometria 

Figura 65: Resultados das decisões de modo testadas para Loot 1001. 
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Decisão de modo  
baseada somente taxa 

 

Decisão de modo baseada  
somente textura 

 

Decisão de modo baseada  
somente geometria 

Figura 66: Resultados das decisões de modo testadas para Red and Black 1451 

Decisão de modo  
baseada somente taxa 

 

Decisão de modo baseada  
somente textura 

 

Decisão de modo baseada  
somente geometria 

Figura 67 Resultados das decisões de modo testadas para Soldier 537. 
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No QR code abaixo é possível conferir imagens de nuvens de pontos recons-

truídas de experimentos realizados com variações da decisão de modo. Além disso, 

também são disponibilizados pequenos segmentos de vídeos que mostram os ganhos 

em número de pontos codificados pela predição inter-nuvens. Por fim, algumas ima-

gens de nuvens de pontos reconstruídas pela solução proposta são colocadas lado a 

lado com as nuvens reconstruídas pelo PCC-âncora; 

 

 
Figura 68: QR CODE para apresentação de resultados visuais adicionais dos passos do de-

senvolvimento. 

 

URL para a página web:  https://tinyurl.com/sl6czav 

https://tinyurl.com/sl6czav

