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RESUMO 

ALCÁZAR, José Carlos Bernedo. “Revestimentos biomiméticos para superfícies 
de titânio em aplicações biomédicas”. 217 p. Tese (Doutorado) – Programa de Pós-
Graduação em Odontologia. Universidade Federal de Pelotas, Pelotas, 2017. 

A osteointegração produto de próteses ósseas de titânio, continua sendo um ponto 
crítico e problemático recorrente no processo de reabilitação. Esforços para 
aperfeiçoar a resposta na interface "superfície-célula" dos implanto-materiais, têm sido 
direcionados para melhorar as propriedades físico-químicas das superfícies e induzir 
a adesão, proliferação, diferenciação ou apoptose celular. Revestimentos 
biomiméticos com superfícies sensíveis em titânio representam alternativas com 
resultados promissores para a resposta celular promovendo a formação de uma 
conexão funcional entre a superfície do material e o tecido ósseo. Para abordar esse 
tema foram realizados uma revisão sistemática relacionado ao tema e um estudo 
laboratorial para determinar as características de revestimentos de superfície 
biomiméticas (biomoléculas) em titânio e respostas celulares em relação à. No 
primeiro artigo foi realizada uma revisão sistemática para to avaliar a resposta celular 
produzida pelo tratamento de superfícies de titânio mediante o uso da técnica de 
polarização catódica.Treze estudos foram cumpriram com os critérios de inclusão e 
foram incluídos na revisão. Os resultados in vitro e in vivo relataram que o uso de 
polarização catódica promoveu superfícies com hidride e deposição efetiva e adesão 
das biomoléculas revestidas. O método eletroquímico, promoveu maior ou comparável 
viabilidade celular, proliferação, adesão, diferenciação ou crescimento ósseo. Para os 
artigos 2 e 3, foram desenvolvidos revestimentos de superfícies biomiméticas pelas 
técnicas de sol-gel dip-coating e polarização eletroquímica com diferentes 
configurações de superfícies estimulo responsivas multicamada e combinação de 
biomoléculas em titânio. O desenvolvimento das superfícies foi realizado e as 
amostras foram caracterizadas mediante microscopia de Força Atômica, Análise de 
Raios X de Energia Dispersa e citotoxicidade. A análise estatística foi descritiva e 
analítica (Stata 11.0). Os resultados foram submetidos a análise de variância ANOVA 
e/ou teste de Kruskall Wallis com nível de significância de 5% (p ≤ 0.05). No artigo 2, 
os resultados demonstraram que o grupo de superfícies modificadas com TiO2: Li+ 
(15%): Zr (15%)/PEG mediante o método sol-gel dip coating, promoveu maior 
crescimento celular (p>0,05) comparado ao resto dos grupos experimentais. No artigo 
3, os resultados demonstraram que o grupo de superfícies modificadas com Indium 
tin oxide (In2O5Sn) mediante o método sol-gel dip coating, promoveu alto crescimento 
celular comparável estatisticamente ao grupo controle (p>0,05) e que o grupo que 
usou a técnica de polarização catódica promoveu crescimento celular. A polarização 
catódica promove alta viabilidade celular. In vitro, a técnica sol-gel e de polarização 
eletroquímica modificaram as superfícies de titânio. Entre as biomoléculas ativas, 
In2O5Sn e TiO2: Li+(15%):Zr(15%)/PEG aumentaram a viabilidade celular. 

Palavras chave: titânio; revestimento de superfícies biomiméticas, sol-gel dip coating; 
polarização catódica eletroquímica  
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ALCÁZAR, José Carlos Bernedo. "Biomimetic coatings of titanium surfaces for 
biomedical applications” 217 p. Thesis project (Doctorate) - Post- Graduate Program 
of Dentistry. Federal University of Pelotas, Pelotas, 2017. 
 
 
Osseointegration product of titanium bone prostheses continues to be a recurring and 
problematic point in the rehabilitation process. Efforts to improve the response in the 
interface "surface-cell" of implant-materials have been address to enhance 
physicochemical properties of the surfaces and induce cellular adhesion, proliferation, 
differentiation or apoptosis. Biomimetic coatings with titanium sensitive surfaces 
represent alternatives with promising results for the cellular response to 
osseointegration and can stimulate positive biological responses, promoting the 
formation of a functional connection between the surface of the material and the bone 
tissue, producing sufficient stimuli in the vascularization for the performance of tissue 
metabolic changes. To address this theme, a systematic review on the subject and a 
laboratory study were carried out to determine the characteristics of titanium 
biomimetic surface coatings (biomolecules) and the cellular responses. In the first 
article, a systematic review was carried out to evaluate the cellular response produced 
by the treatment of titanium surfaces using the cathodic polarization technique. 
Thirteen studies accomplished the inclusion criteria and were included in the review. 
In vitro and in vivo results reported that the use of cathodic polarization promoted 
surfaces with hydride and effective deposition and adhesion of the coated 
biomolecules. The electrochemical method promoted higher or comparable cellular 
viability, proliferation, adhesion, differentiation or bone growth than the group’s control. 
For articles 2 and 3, biomimetic surface coatings were developed by integrated dip-
coating sol-gel techniques and electrochemical polarization with different 
configurations of multilayer responsive stimulus surfaces and combination of 
biomolecules in titanium. Surface development was performed and Atomic Force 
Microscopy, Dispersed Energy X-ray Analysis and cytotoxicity, characterized the 
samples. The statistical analysis was descriptive and analytical (Stata 11.0). The 
results were submitted to the analysis of variance ANOVA and/or Kruskal Wallis test 
to determine possible differences between the groups with a significance level of 5% 
(p ≤ 0.05). In article 2, the results showed that the group of modified surfaces with 
TiO2: Li + (15%): Zr (15%)/ PEG by the sol-gel dipcoating method, promoted higher 
cell growth (p> 0.05) than the rest of the experimental groups.  In article 3, the results 
showed that the group of surfaces modified with Indium tin oxide (In2O5Sn) by the sol-
gel dip coating method promoted high cell growth statistically comparable to the control 
group (p> 0.05) and the group that used the cathodic polarization technique promoted 
cell growth. Cathodic polarization promotes high cell viability and bone growth. In vitro, 
the sol-gel dip coating technique and electrochemical polarization modified titanium 
surfaces. Among the active biomolecules, In2O5Sn and TiO2: Li+ (15%): Zr (15%) / 
PEG increased cell viability.  
 
Key words: titanium; coating of biomimetic surfaces; sol-gel dip coating; electrochemic 
cathodic polarization. 
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1. Introdução 
 

Atualmente, 85% da população mundial apresenta necessidade de algum tipo 

de reparo ou restituições na região craniofacial (SCHELLER; VILLA-DIAZ; 

KREBSBACH, 2012). A perda dental,  doença periodontal (GAMONAL; LOPEZ; 

ARANDA, 1998), trauma dental (AWS; RUPERT; SERPIL, 2012), doença cárie, 

desordens fisiológicos ósseos, osteoporoses e câncer são alguns dos fatores 

responsáveis de desordens craniomaxilofaciais (BEPPU et al., 2011). Desordens 

craniomaxilofaciais podem afetar uma porção significativa de população, de diferentes 

faixas etárias (EASTOE, 1968, GHADA et al., 2008, INES et al., 2010). Na área 

odontológica, estima-se que 35% da população mundial é desdentada (PETERSEN; 

YAMAMOTO, 2005). Na população brasileira a necessidade de prótese dental foi 

identificada em 86,3% aos 15 anos e 29,7% aos 24 anos de idade (CORREA et al., 

2010, SB, 2012). Soma-se a isto, a crescente tendência mundial projetada da 

população idosa e a prevalência de osteoporose nesta população  (EMAMI et al., 

2012). Na população adulta (35 - 44 anos) e idosa (65- 74 anos), 68,8% e 54,7% 

respectivamente, necessitam da reposição de um ou mais dentes ou são edêntulos 

(EMAMI, et al., 2012, SB, 2010). Apesar do edentulismo não ser uma condição que 

represente risco de morte, exerce um impacto crucial na qualidade de vida dos 

indivíduos afetados. Além do prejuízo na função mastigatória, a perda dental 

proporciona problemas desordem nutricional, afeta a fonação, a estética (ELENI, 

2009, GUIDO et al., 2003), e promove limitações de interação social (GUIDO, et al., 

2003, INES, et al., 2010). Os implanto-dispositivos de ligas metálicas, materiais 

sintéticos restauradores e protéticos utilizados atualmente, apesar de apresentarem 

uma considerável taxa de sucesso e possuírem relativo baixo custo, estes não são 

capazes de induzir a regeneração da parte afetada tais como ossos maxilares, 

próteses do quadril ou vasos sanguíneos do organismo receptor em cenários onde 

existem mudanças como quantidade e qualidade óssea, doenças sistêmicas, 

periodontite crônica ou tabagismo especialmente em pessoas com idades avançadas, 

sendo que estes fatores são determinantes na falha ou rejeição dos implanto-

dispositivos (ALSAADI; QUIRYNEN; KOMÁREK, 2008, DVORAK; ARNHART; 

HEUBERER, 2011, FABBRO et al., 2005, GHADA, et al., 2008, VASCONCELOS et 

al., 2016). 
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Uma teoria revolucionária trouxe a possibilidade da regeneração de tecido 

ósseo. A engenharia tecidual óssea funde os princípios e inovações interdisciplinares 

das áreas de Engenharia e das Ciências Biológicas, que tem por objetivo desenvolver 

substitutos para o tecido ósseo danificado (BALAZIC et al., 2007, DE WILD et al., 

2013). Para restaurar, manter e melhorar a função do tecido ósseo, três elementos 

são os pilares fundamentais: o “Scaffold” ou estrutura veículo combinado com células 

e/ou, moléculas bioativas que induzem o crescimento de tecido ósseo - Fatores de 

crescimento (FC). Os “Scaffolds” ou estruturas veículo proporcionam suporte 

mecânico e proveem um substrato que estimula a adesão celular, proliferação e 

diferenciação. Os implanto-dispositivos de ligas metálicas como SUS316L aço 

inoxidável, ligas de Co-Cr-Mo, titânio e ligas, utilizados na cirurgia plástica e 

reconstrutiva, cirurgia ortopédica, cirurgia craniofacial e implantodontia oral podem ser 

considerados como “scaffolds” ou estrutura veículo para as aplicações de implanto 

contato-substituição óssea, como a substituição da articulação e dente, cura das 

fraturas e reconstrução das anormalidades esqueléticas congênitas (BALAZIC, et al., 

2007, NIINOMI, 2008, X; P; C, 2004).  

Na medicina e odontologia, o desenvolvimento de implanto-dispositivos 

baseados em ligas metálicas, principalmente titânio e ligas, elementos altamente 

utilizados, continuam sendo de interesse entre os pesquisadores da área medica-

odontológica (GEETHA et al., 2009).  

Os materiais considerados padrão-ouro dentro dos implanto-dispositivos para 

o reparo e substituição óssea na área da saúde, são as ligas de titânio, nióbio, zircônia, 

ligas de Ti-6Al-4V, e cerâmicas como hidroxiapatita (HA), oxido de alumínio ou β-

fosfato tricálcico. Estes implanto-dispositivos a base de Titânio e ligas são 

considerados  dispositivos que revolucionaram a saúde bucal e medicina 

reconstrutiva, devido as suas propriedades mecânicas, resistência a corrosão, e 

biocompatibilidade (FARIA et al., 2008, TOMAS; LARS; ANN, 2008). Evidências 

demonstram que a relação da adesão, proliferação, diferenciação ou apoptose sob 

uma superfície sólida, incluindo implantes de ligas metálicas, depende diretamente 

das propriedades físico-químicas da superfície, as que incluem elasticidade, 

morfologia e rugosidade, porosidade e molhabilidade  (MASSARO et al., 2002, 

SJÖSTRÖM et al., 2013). Após a implantação, a superfície do implante está em 

contato com fluidos corporais e interagem com uma serie de proteínas e diferentes 
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tipos de células (ALLYSON et al., 2010). Assim também, a resposta de células 

especializadas em contato com a superfície do implante resulta no complexo sistema 

biológico que inclui absorção de proteínas, recepto-ligações e transdução de sinal, 

conhecida como osteointegração (ALLYSON, et al., 2010). Estas evidências 

relacionando as propriedades físico-químicas da superfície dos implanto-materiais e 

a resposta biológica do tecido ósseo permitem e conduzem as estratégias atualmente 

utilizadas no âmbito clínico. Melhoras nas superfícies tem promovido também 

observar taxas de sobrevida média de 94.4% para implantes dentários depois de 

acompanhamentos de 2 até 16 anos (DAVID; NADINE; RAY, 2006), assim como 

falhas globais de 1.9 % a 3.6% (ALSAADI; QUIRYNEN; KOMÁREK, 2008).  

A existencia de falhas nos implantes resultam na necessidade do 

desenvolvimento da seguinte geração de implantes de ligas metálicas com 

revestimentos de superfícies biomiméticas, com o objetivo de imobilizar proteínas, 

fatores de crescimento, enzimas ou peptidios em biomateriais com a finalidade de 

induzir respostas de células e tecidos específicos ou para controlar a interface do 

tecido-implante atravez do envio de moléculas diretamente para a interface de forma 

controlando-se a exposição, a concentração, e a retenção e/ou liberação detas 

biomoléculas (DAVID et al., 2010). Assim, com o desenvolvendo de revestimentos de 

superfícies biomiméticas, seria possível controlar a taxa de falhas associadas a 

doenças sistêmicas, perda óssea, doenças metabólicas crônicas ou danos devido a 

trauma degenerativo, má práxis nas cirúgias de implantes, entre outros. Algumas 

ténicas recentes permitem a inclusão de agentes ativos na superfície do implante 

como óxidos metálicos por exemplo TiO2, ZrO2, e Al2O entre outros (JIN et al., 2012, 

RICHARDS et al., 2012, ANSELME, 2000). Poucos estudos têm usado biomoléculas 

como agentes modificadores da superfície dos implantes de titânio e ligas, sendo que 

os resultados obtidos são positivos (RICHARDS, et al., 2012, ANSELME, 2000, 

HONKALA, 2014, MCLAUGHLIN; BENNETT; TREVISI, 2001, VASCONCELOS et al., 

2016). 
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1.1. Objetivos  
 

1.1.1. Objetivo geral 
 

Estabelecer a eficácia de revestimentos biomiméticos com superfície de 

interface sensível a estímulos (células-biomoléculas) para a resposta celular  

mediante a realização de uma revisão sistemática e testes laboratoriais in vitro.  

1.1.2. Objetivos específicos 
 

1.1.2.1  Avaliar e analisar sistematicamente a literatura disponível para determinar a 

resposta celular de superfícies de titânio tratadas pela técnica de polarização catódica.  

1.1.2.2 Avaliar as técnicas integradas de sol-gel dip-coating e polarização 

eletroquímica na preparação de revestimentos de superfície biomiméticos em titânio 

1.1.2.3 Avaliar a integridade das superfícies de Titânio após pré-tratamento mediante 

metalografia 

1.1.2.4 Desenvolver biomoléculas ativas inovadoras na forma de sol.  

1.1.2.5 Realizar, in vitro, a caracterização biomoléculas no revestimento e a avaliação 

de resposta biológica dos revestimentos biomiméticos em superfícies de titânio em 

contato com as células. 

1.1.2.6 Comparar o crescimento celular nas superfícies de titânio entre os grupos 

experimentais com diferentes biomoléculas ativas. 

1.1.2.7 Comparar a viabilidade celular entre as técnicas de modificação de superfícies 

usadas. 

 

1.2. Hipótese 
 

1.2.1 Superfícies de titânio tratadas mediante jateamento com nanopartículas e 

ataque ácido proporcionarão substratos apropriados para a ligação e fixação livre das 

biomoléculas sob o processo integrado de polarização eletroquímico e sol-gel dip-

coating, mantendo a biocompatibilidade e bioatividade das biomoléculas na superfície 

do implante. 

1.2.2 As técnicas de polarização eletroquímica e sol-gel dip-coating promoverão a 

deposição de biomoléculas e modificação das superfícies de titânio in vitro. 
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1.2.3 A presença das biomoléculas ativas nas superfícies tratadas promoverão maior 

crescimento celular in vitro 

1.2.4 O tratamento de superfícies de titânio mediante a técnica eletroquímica de 

polarização catódica aumentará a viabilidade celular in vitro e promoverá crescimento 

ósseo. 
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2. Revisão de Literatura 
 

2.1.1. Biomateriais, titânio e suas propriedades na osseointegração 
 

O titânio é um elemento químico representado pelo símbolo Ti. O titânio 

apresenta número atômico 22 (representando 22 prótons e 22 elétrons), massa 

atômica igual a 47.90 u, densidade relativamente baixa (4,5 g/cm3), alto ponto de fusão 

(1668 °C) e módulo de elasticidade da ordem de 107 GPa (CALLISTER, 2007, 

NOORT, 2013).Possui duas formas cristalográficas, uma estrutura cristalina de fase 

alfa (α) e fase beta (β) a temperatura ambiente e acima da 883°C, respectivamente 

(CALLISTER, 2007). 

O Titânio desempenha um papel importante na tecnologia moderna. É utilizado 

em formas diferentes, numa vasta gama de aplicações. Na forma de dióxido de titânio 

é usado em pigmentos brancos em alimentos, medicamentos, protetor solar, creme 

dental, papel, tintas ou plásticos. O titânio também é utilizado como elemento de ligas, 

promovendo maior resistência à tração, dureza, resistência à corrosão e capacidade 

de suportar temperaturas extremas. O titânio e suas ligas são essenciais na 

engenharia de alta tecnologia para a indústria aeroespacial, naval, energia e médicas 

(BOYER, 1995, SCHUTZ; WATKINS, 1998). 

Nas aplicações médicas e odontológicas, os metais puros como titânio, tântalo, 

nióbio, zircónio, ligas cobalto-crómio, e cerâmicas (JUNG et al., 2001) são utilizados 

como biomateriais e são encontradas como parte de parafusos e pinos, implantes 

dentários e próteses craniofaciais(NIINOMI, 2008, PARR; GARDNER; TOTH, 1985, 

X; P; C, 2004). O desempenho destes biomateriais está relacionado com a 

biocompatibilidade -  abilidade do material para obter respostas apropriadas no local 

da implantação - e com a  biofuncionalidade -   transferência de carga mecânica entre 

osso/implante e o desgaste - que são os principais requisitos exigidos dos biomateriais 

utilizados em implantes ósseos (BORN et al., 1998, LILJA et al., 2011, STEINEMANN, 

1998) de forma que promove-se uma  interação favorável com sistemas biológicos 

(NIINOMI, 2008, NOORT, 2013, ZINK, 2013).  

Esta interação biológica favorável é devido às propriedades físico-químicas do 

material como a liberação controlada de íons, estabilidade dos compostos que são 

formados e os efeitos biológicos limitados destes íons(RAIKAR, 1995). Assim também 
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lhes é atribuída a formação de uma camada de óxido estável, com uma espessura de 

3-10 nm, a qual forma-se espontaneamente quando o titânio é exposto ao oxigênio 

(KASEMO, 1983, SUL et al., 2002). Esta camada quimicamente inerte de dióxido de 

titânio é o principal responsável pelas propriedades biológicas do titânio em um 

organismo vivo (KAUS; PRÖBSTER; WEBER, 1996, ZINK, 2013), permitindo a 

osteointegração do implante-tecido ósseo, a conexão funcional e estrutural direta 

entre a superfície óssea e a superfície do implante sem o crescimento de tecido fibroso 

na interface osso-implante (ALBREKTSSON; JOHANSSON, 2001, GOTO, 2014). 

Por tanto, a taxa de biocompatibilidade e a qualidade da osteointegração 

(interação célula-material) dos implantes de titânio estão interligados diretamente com 

as suas propriedades físicas e mecânicas, assim como com a sua  hidrofílicidade e 

propriedades química-topográficas da superfície (DE JONGE et al., 2008, GITTENS 

et al., 2014, GRASSI et al., 2006, LE GUÉHENNEC et al., 2007). 

Os biomateriais utilizados na fabricação de tecnologias médicas podem ser 

classificados, segundo sua composição química, em metais, cerâmicos e polímeros. 

Segundo a sua atividade, podem ser classificados como biotolerante, bioinerte ou 

bioativos, que é a interligação da resposta biológica em relação aos 

tecidos(DONARUMA, 1988). 

A resposta típica do tecido ósseo com relação a materiais bioinertes e 

biotolerantes é a encapsulação do implante por uma camada de tecido fibroso. Como 

resultado não formam uma ligação química com o organismo receptor (HENCH; 

WILSON, 1998). Em contraste, os materiais bioativos permitem a formação de um 

novo osso e a troca de íons com o tecido, conduzindo as ligações químicas na 

interface osso-implante, sem que ocorra o encapsulamento fibroso (HENCH; 

ETHRIDGE, 1982, HENCH; WILSON, 1998). 

No entanto, o titânio e as ligas de titânio têm algumas deficiências associadas à 

relação da biocompatibilidade e a osteogenesis, que ainda são matéria de debate 

(MAURER; MERRITT; BROWN, 1994). A incapacidade da liga de titânio para a total 

osteointegração pode ser atribuída à liberação de íons de vanádio e alumínio (YORUC 

et al., 2007, YOSHIMITSU; EMIKO, 2005), o que leva a uma pobre osteointegração e 

falha do implante (RAJWANT et al., 2009). O titânio não melhora ou aumenta a 

osteogênese e carece de osteocondutividade (RAHAL; BRANEMARK; OSMOND, 
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1993). Outra limitação são os aspectos estéticos relacionados à cor (HEYDECKE; 

KOHAL; GLÄSER, 1999). 

 

2.1.2. Fisiologia óssea, células ósseas e células tronco dentárias 
 

O tecido ósseo é uma estrutura mineralizada complexa formada por uma fase 

mineral incorporada numa matriz orgânica (CLARKE, 2008; MARTIN, 2006). O osso 

é um nano-compósito com propriedades únicas, determinada pela composição físico-

química (LINß; FANGHÄNEL, 1998; WEINER; TRAUB, 1992). A matriz óssea é 

composta por substâncias inorgânicas e orgânicas (LINß; FANGHÄNEL, 1998), 

podendo ser descrito como um composto biocerâmica (OLSZTA et al., 2007). A 

matéria seca no tecido ósseo está composta por 70% de fase inorgânica ou mineral e 

por 30% de matriz ou fase orgânica (CLARKE, 2008; WINFIELD; MIMURA, 1992). A 

fase inorgânica do osso está composta por hidroxiapatita e apatita CaP (EASTOE, 

1968; TZAPHLIDOU, 2008). A Hidroxiapatita óssea é pouco cristalina e apresenta 

uma rede complexa, devido à heterogeneidade do seu sistema estrutural. A relação 

Ca / P do mineral do osso pode variar de 1,50 a 1,90 dependendo da idade e da 

localização do ósseo. Esta relação Ca / P é afetada durante o envelhecimento ou 

por doenças ósseas, sugerindo que as quantidades de espécies de carbonato podem 

mudar de acordo com o estado do osso (STAUBER; MÜLLER, 2005). Apatitas 

biológicas são apatitas carbonatadas, e contêm diversos íons, incorporados na 

estrutura de cristais da apatita. Por tanto, as fases minerais do osso, esmalte e dentina 

apresentam ligeira diferença na composição iônica (RACQUEL ZAPANTA, 2008). A 

fase orgânica do tecido ósseo compreende uma matriz de fibras de proteína. Estas 

fibras estão dispostas em camadas e contém cristais minerais (BURR, 2002).   

Existem três tipos distintos de células ósseas: osteoblastos, osteoclastos e 

osteócito. Os osteócitos são considerados osteoblastos totalmente diferenciadas. 

Osteoblastos têm mostrado ser uma forma mais avançada de fibroblastos (DUCY et 

al., 2000). Os osteoblastos são responsáveis pela formação da matriz de colágeno, 

de regular a diferenciação dos osteoclastos e tem um importante papel no processo 

de mineralização (CURREY, 2002). Fibroblastos, osteoblastos, osteócitos e 

adipócitos, são originados a partir das células-tronco mesenquimais pluripotentes 

(CHRISTINE; TATIANA, 2012). 
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As células tronco são definidas como um grupo especial de células clonogênicas 

que são caracterizadas pela capacidade de auto renovação e diferenciação 

multilinhagem. Estas células são responsáveis pela renovação dos tecidos, e para a 

cura e regeneração após lesões (SU-MIN; QUNZHOU; ANH, 2014; VAN DER KOOY; 

WEISS, 2000). As células-tronco podem ser divididas principalmente em três tipos: 

células-tronco embrionárias (ESCs), células-tronco pós-natal ou adultas (ASCs), e as 

células-tronco pluripotentes induzidas (iPSCs). ESCs são encontrados na massa 

celular interior de blastocistos de mamíferos durante as fases iniciais do 

desenvolvimento do embrião e tem expansão ilimitada e pluripotência para diferenciar-

se em todos os tipos de células somáticas (THOMSON et al., 1998). 

 

2.1.3. Biomoléculas 
 

O termino biomolécula é muito amplo, pois pode ser adaptado segundo o 

contexto de estudo. Uma biomolécula, no caso da engenharia tecidual, refere-se a 

todo material biológico, tais como as proteínas ou de oligonucleotídeos, excluindo as 

células e as proteínas estruturais celulares, passiveis de serem incluídos nas células.  

Essa definição inclui agentes biológicos com grande diversidade de funções 

"chaves" tanto para a montagem da integridade estrutural de constructs de tecidos 

quanto para os parâmetros funcionais desse construct. 

Desde uma perspectiva de uso na engenharia tecidual, a população de 

biomoléculas pode ser classificada em fatores de crescimento, fatores de 

diferenciação, fatores angiogênicos e proteínas morfogênicas ósseas (MCINTIRE; 

CENTER, 2003). Segundo o seu peso molecular (5 kDa), as biomoléculas podem ser 

classificadas em dois grupos: (a) moléculas grandes, que incluem fatores de 

crescimento, citocinas e as suas correspondentes codificações de ácidos nucleicos; e 

(b) moléculas pequenas que incluem drogas, peptídeos e oligonucleotideos (PETER; 

SPYRIDON; GEORGE, 2007). 

As biomoléculas desempenham um papel importante para aplicações 

terapêuticas na regeneração do osso e constituem uma terapia promissora para a 

reconstrução, que induzem a regeneração óssea no local de defeito (BARRÈRE et al., 

2008). Os processos de regeneração óssea na região crâniomaxilofacial são iniciados 
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em resposta a uma lesão, seguida do desenvolvimento do osso, coordenado por 

células derivadas de periósteo, osso e tecidos externos ao redor do local do defeito 

(BARRÈRE, et al., 2008, ELEFTHERIOS; NEIL; PETER, 2007). 

Nesta mesma perspectiva, na última década, surgiram novas estratégias para 

promover a imunomodulação, regeneração osseas e a cura com base nas 

propriedades únicas dos óxidos metálicos - íons metálicos, tais como TiO2, ZrO2 e 

Al2O5, MnO2, ZnO, Fe3O4, e WO3 entre outros (VASCONCELOS et al., 2016). O 

conhecimento sobre reações toxicológicas e imunológicas das partículas e íons 

metálicos avançou consideravelmente, de fato, as células são capazes de interagir 

com íons metálicos em concentrações não tóxicas no microambiente de tecido, mas 

também a nível sistêmico (VASCONCELOS et al., 2016, SKORB; ANDREEVA, 2013). 

As células são sensíveis aos íons e seus mecanismos e comportamento podem, pelo 

menos em parte, ser modulados por essas espécies inorgânicas. Estes agentes são 

baratos, estáveis e podem ser integrados em biomateriais, o que pode abrir novos 

caminhos para uma nova geração de dispositivos médicos (VASCONCELOS et al., 

2016, SKORB; ANDREEVA, 2013, KENRY; LIM, 2017).  

 

 

 

2.1.4. Técnicas de tratamento de superfície de implantes de titânio 
 

Vários tratamentos físicos e químicos para o Titânio foram propostos na literatura 

com a finalidade da obtenção de superfícies físico-químicas com melhor 

biocompatibilidade (X; P; C, 2004). Estas técnicas incluem a imersão e soluções 

ácidas, jateamentos, revestimento com fosfatos de cálcio, filmes obtidos por técnicas 

sol-gel, tratamentos alcalinos com condensação térmica, tratamentos térmicos, 

eletroquímicos, deposições química e física por vapor, deposições por feixe iônico e 

implantação de íons, cobertura com plasma spray, deposição de fosfato de cálcio e 

hidroxiapatita (OSHIDA, 2006, PULEO; NANCI, 1999). 

Estes métodos para alterar a energia, a carga e a composição da superfície no 

titânio resultam em superfícies com rugosidade e morfologia modificada. A energia da 

superfície desempenha um papel importante, não só na adsorção de proteínas, mas 
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também na adesão e proliferação das células (AUBLIN, 1999, BAIER; MEYER, 1988, 

SYKARAS et al., 2000). A carga da superfície também influencia na orientação 

molecular e celular e as atividades metabólicas das células (SCHWARTZ et al., 2003). 

A rugosidade da superfície do implante desempenha um papel significativo no 

processo de fixação das células e a união entre elas e o tecido circundante, levando 

a uma cicatrização mais eficiente. Estes métodos -   jateamentos, soluções ácidas e 

plasma spray - no titânio são típicos para o desenvolvimento de superfícies rugosas e 

tem sido documentadas em trabalhos “In Vitro” e “In Vivo”(BOYAN et al., 1998, BUSER 

et al., 1991).  

Para aumentar a rugosidade da superfície solida, uma série de técnicas 

baseadas em laser tem sido usadas na última década (BÄUERLE, 2000). A inclusão  

de alguns elementos como nitrogênio no Ti  tem permitido minimizar o desgaste 

significativamente (WINFIELD; MIMURA, 1992). Para melhorar a qualidade das 

propriedades mecânicas e correção do implante, estudos têm usado alguns métodos 

para incluir íons na estrutura (BUCHANAN; LEE; WILLIAMS, 1990). 

Materiais, como o revestimento com reativos de fosfato de cálcio (CaP) ou 

hidroxiapatita (HA), têm sido utilizados devido a semelhança química com os minerais 

do osso (LIMIN et al., 2001). Vários estudos têm mostrado que os revestimentos de 

CaP e HA alcançaram uma resposta aceitável ao contato íntimo entre o implante e o 

osso (LIMIN, et al., 2001, ROHANIZADEH et al., 2005). Outros estudos de 

revestimentos de HA em implantes mostraram sinais de descamação do material de 

revestimento da superfície do implante, o qual pode induzir reações negativas para o 

corpo (MATSUI et al., 1994). 

O desenvolvimento de futuras técnicas de revestimento de superfície serão 

influenciadas por tecnologias e inovações emergentes que incluirão terapias 

biomoleculares,  fatores como BMP-2, TGF-b1,   para controlar as funções biológicas 

específicas concomitantes a agentes de controle de infecção (HAYES; RICHARDS, 

2010, HAYES; RICHARDS, 2010, PEARCE et al., 2008). 

 

2.1.5. Técnicas de caracterização 
 

2.1.5.1. Microscopia eletrônica de varredura 
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A microscopia eletrônica de varredura é uma técnica muito versátil e utilizada 

rotineiramente para a análise microestrutural e morfológica de superfícies de 

materiais, onde o feixe de elétrons induz a uma maior profundidade do foco que um 

feixe de luz regular resultando em imagens de altíssima resolução que podem ser 

gravadas. 

A coluna, mantida sob vácuo inferior a 10-4 Torr, contêm em sua porção superior 

um canhão de elétrons e, abaixo deste, lentes magnéticas para a focalização de um 

fino feixe de elétrons sobre a amostra. A quantidade de corrente no feixe de elétrons 

incidente sobre a amostra determina a intensidade dos sinais a serem emitidos, a qual, 

por sua vez, Ø diretamente proporcional ao diâmetro do feixe, implicando no ajuste 

dos controles do microscópio para a otimização da condição de operação desejada: 

alta resolução (φ feixe de 3 a 10 nm), elevada profundidade de foco ou microanálise 

(φ feixe de 0,2 a 1µm). A fonte mais usual de elétrons corresponde à emissão 

termiônica gerada a partir de um filamento de tungstênio aquecido a 2700° 

K(GOLDSTEIN, 2003). 

A câmara de amostras conta com diferentes tipos de detectores para captar os 

sinais gerados na interação elétrons-amostra e um suporte, motorizado ou não, que 

possibilita a movimentação das amostras em três eixos (x, y e z), além de rotação e 

inclinação lateral. Duas concepções construtivas são adotadas referentes às 

condições de vácuo: alto vácuo equivalente àquele existente na coluna, e de baixo 

vácuo (10-2 Torr) esta última necessitando o emprego de um detector especial para a 

coleta de imagens de topografia (PONZ; LADAGA; BONETTO, 2006). A versatilidade 

do microscópio eletrônico de varredura, deve-se à diversidade de interações que 

ocorrem quando o feixe de elétrons atinge a amostra. Estas interações, avaliadas por 

diferentes detectores, fornecem informações sobre a composição, topografia, 

cristalografia, potencial elétrico e campos magnéticos locais, dentre outras 

(GOLDSTEIN, 2003). 

 

2.1.5.2. Microanálise de raios-X por espectroscopia de energia dispersiva 
 

A microanálise é um dos mais importantes instrumentos para a análise química 

de materiais orgânicos e inorgânicos. Através da identificação dos raios-X emitidos 
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pela amostra, quando há interação com o feixe eletrônico, é possível determinar a 

composição de regiões com até 1 μm de diâmetro. É uma técnica não destrutiva, 

permitindo determinar quantidades de até 1-2% dos elementos presentes na amostra 

(GOLDSTEIN, 2003).  

 

2.1.5.3. Difração de Raios-X 
 

A difratometria de raios X corresponde a uma das principais técnicas de 

caracterização microestrutural de materiais cristalinos, encontrando aplicações em 

diversos campos do conhecimento, particularmente na engenharia e ciências de 

materiais, engenharias metalúrgica, química e de minas, geociências, dentre outros.  

Os raios X ao atingirem um material podem ser espalhados elasticamente, sem 

perda de energia pelos elétrons de um átomo (dispersão ou espalhamento coerente). 

O fóton de raios X após a colisão com o elétron muda sua trajetória, mantendo, porém, 

a mesma fase e energia do fóton incidente. Sob o ponto de vista da física ondulatória, 

pode se dizer que a onda eletromagnética é instantaneamente absorvida pelo elétron 

e reemitida,  onde cada elétron vai atuar. 

Se os átomos que geram este espalhamento estiverem arranjados de maneira 

sistemática, como em uma estrutura cristalina, apresentando entre eles distâncias 

próximas ao do comprimento de onda da radiação incidente, pode-se verificar que as 

relações de fase entre os espalhamentos tornam-se periódicas e que efeitos de 

difração dos raios X podem ser observados em vários ângulos. 
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3. Projeto de Pesquisa 
 

3.1. Introdução/Justificativa 
 

O tecido ósseo é um tecido de estrutura mineralizada complexa e de 

propriedades únicas na sua composição físico-química, que está estreitamente co-

ligada a uma matriz orgânica (HADJIDAKIS; ANDROULAKIS, 2006, JOHN, 2005, 

MARY, 2003). Este tecido possui um complexo mecanismo de defesa que tem a 

capacidade de regeneração em caso de trauma e perda parcial do tecido (AI-AQL et 

al., 2008). Evidências demonstram que a mineralização óssea é um processo 

regulado por células especializadas, desencadeado pela secreção de moléculas 

bioativas específicas (PHAN; XU; ZHENG, 2004). Estas células ósseas 

especializadas (osteoblastos, osteoclastos, osteócitos e células de revestimento 

ósseo) estão fortemente reguladas e coordenadas para vários eventos de reabsorção 

e formação, que ocorrem para a formação, preservação e adaptação da estrutura e 

propriedades do tecido ósseo (MARKS; POPOFF, 1988, RAGGATT; PARTRIDGE, 

2010), assim também na osteointegração (GOTO, 2014, RAGGATT; PARTRIDGE, 

2010). Quando o tecido ósseo é submetido a uma injúria - como trauma, implanto-

cirurgia , perda óssea ou eventos que proporcionam a destruição do tecido 

óssea(VINCENT et al., 2004) ocorre um processo de sinalização para as células 

progenitoras presentes no tecido ósseo, de forma que estas migram para o sítio da 

injúria. Neste processo de migração, as células iniciam a diferenciação em células 

ósseas especializadas sob a secreção de moléculas bioativas (HADJIDAKIS; 

ANDROULAKIS, 2006, MILLER; JEE, 1987).  

A diferenciação celular é fundamental para que o reparo do tecido ósseo ocorra. 

Esta diferenciação é conduzida por moléculas bioativas (TGFβ e BMP) que induzem 

a células indiferenciadas se tornarem estruturas altamente especializadas, com 

capacidade de secretar matriz extracelular óssea (MEC), e recentemente pesquisas 

com tem reportada que o uso de óxidos metálicos têm colaborado com  esse processo 

(GENTILI; CANCEDDA, 2009, SKORB; ANDREEVA, 2013, NOURI; WEN, 2015). Em 

casos extremos, como perda óssea, doenças metabólicas crônicas, danos devido a 

trauma degenerativo, esta capacidade de regeneração osteogênica pode não ocorrer 

devido a anomalias na fisiologia óssea (YAIR et al., 2008). Estas anomalias estão 

relacionadas a mudanças na quantidade e qualidade óssea, o que significa um desafio 
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nos tratamentos com implantes na medicina nas diversas áreas como implantes orais, 

cirurgia plástica e reconstrutiva, cirurgia ortopédica, cirurgia craniofacial (BALAZIC, et 

al., 2007, JEFFCOAT, 2005). Soma-se a estes desafios, as diversas problemáticas 

biomecânicas e biológicas da tecnologia atual em implantologia. Estes fatores em 

conjunção com a necessidade de reabilitação óssea de um indivíduo podem interferir 

na qualidade de vida dos individuos (PETERSEN, 2003, QUIRYNEN et al., 2006).  

A possibilidade de desenvolver materiais com revestimentos de superfície 

biomiméticos que desencadeiem uma interface sensível e induzam multiestímulos e 

respostas para a rápida osteointegração, tratamento terapêutico de doenças 

sistêmicas, tratamento e prevenção de infecções, resposta ao pH e temperatura são  

alvos de estudo de centros de pesquisa no mundo (BALAZIC, et al., 2007, GLADIUS, 

2013). Materiais utilizados com este intuito poderiam também ser empregados em 

áreas diversas, onde os tecidos encontram-se cercados por tecido mineralizado 

(ósseo). Resultados promissores obtidos previamente indicam grande potencial no 

desenvolvimento de materiais inovadores e na aplicação biológica destes de forma 

eficaz e eficiente.  

 

3.2. Objetivos 
 

3.2.1. Objetivos geral 
 

Desenvolver e investigar a eficácia de revestimentos biomiméticos com 

superfície de interface sensíveis a estímulos (células-biomoléculas) para a rápida 

osteointegração, e comparar o potencial dos revestimentos de superfícies 

biomiméticas ao dos revestimentos de superfícies não-biomiméticas no tecido ósseo.  

 

3.2.2. Objetivos específicos  
 

 Avaliar as técnicas integradas de sol-gel dip-coating e polarização 

eletroquímica na preparação de revestimentos de superfície biomiméticos em 

titânio, e avaliar a integridade das biomoléculas no revestimento após 

deposição. 
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 Realizar, in vitro, a avaliação de resposta das biomoléculas, a 

biodisponibilidade e a resposta biológica dos revestimentos biomiméticos em 

superfícies de titânio, em contato com as células osteoblasticas e células-

tronco. 

 
 Avaliar a morfologia celular por Microscopia Eletrônica de Varredura (MEV). 

 
 Avaliar a capacidade de adesão, diferenciação e proliferação nos 

revestimentos biomiméticos das células tronco e osteoblastos, in vitro. 

 
 Avaliar e pesquisar o comportamento de células-tronco e osteoblastos quando 

estão associadas com revestimentos de superfícies biomiméticos 

nanoestruturados. 

 
 Elucidar a influência, do revestimento de superfície biomimética nas células, 

sobre a capacidade de adesão, proliferação, diferenciação ou apoptose dessas 

nanoestruturas. 

 
 

3.3. Hipótese 
 

A hipótese a ser testada será de que a superfície de titânio tratada com 

jateamento com nanopartículase ataque ácido poderia proporcionar um substrato 

apropriado para a ligação e fixação livre das biomoléculas sob o processo integrado 

de polarização eletroquímico e sol-gel dip-coating, mantendo a biocompatibilidade e 

bioatividade das biomoléculas na superfície do implante. 

 

3.4. Material e Métodos 
 

3.4.1. Preparação das amostras e caracterizações 
 

Discos de titânio comercialmente puro (ASTM grau IV) da empresa Conexão 

Sistema de Próteses (SP, Brasil) serão utilizados para esta pesquisa. Os espécimes 
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serão tratados em 3 fases e receberão 2 tipos de técnicas integradas sol-gel dip-

coating e polarização eletroquímica, descritos na figura 1.  

Na etapa 1, a divisão de grupos está descrita na figura 2. O grupo controle será 

a superfície de titânio. Os grupos experimentais receberão polarização eletroquímica 

em diversas configurações. Na etapa 2, baseadas nos resultados das configurações 

obtidas para a modificação físico-química da etapa 1, serão aplicadas estas 

configurações nas técnicas integradas sol-gel dip-coating e polarização eletroquímica. 

A divisão de grupos desta etapa pode ser observada na figura 2. Na etapa 3, o produto 

final, com as configurações obtidas na fase 1 e 2, será realizada a polarização 

eletroquímica biomimética. A divisão dos grupos está descrita na figura 2.  

 

3.4.1.1. Método sol-gel dip-coating 
 

A deposição de camadas será realizada mediante o processo de sol-gel dip 

coating. O processo sol-gel permite o preparo de biomateriais se controlando a taxa 

das reações de hidrólise e condensação de alcóxidos, durante a transição sol-

gel(GUPTA; KUMAR, 2008, HADDOW et al., 1996). Esse processo permite a 

obtenção de materiais inorgânicos ou híbridos orgânico-inorgânicos na qual ocorrem 

reações de hidrólise e condensação do precursor para a formação de partículas de 

tamanho coloidal (sol) na sequência da rede tridimensional (gel) (BALAMURUGAN et 

al., 2006, GUPTA; CHAUDHURY, 2007). 

O processo de sol-gel aplicado na tecnologia moderna é considerado como um 

método de síntese econômico, sustentável, de baixo custo, com a capacidade de 

preparar revestimentos de alta qualidade e com a possibilidade de serem aplicados 

em áreas de superficiais mais extensas, otimizando o resultado e promovendo, alta 

homogeneidade, com um controle preciso da composição, da morfologia em nano-

escala, da porosidade, da espessura e de parâmetros que influenciam na cinética do 

filme, além de durabilidade e eficiência de coloração do caso de dispositivos 

eletrocrômicos. Permite, ainda, a geração revestimentos com ótimas propriedades 

físicas-químicas e bioativas adaptadas (H. PODBIELSKA, 2005, XIHUA et al., 2005). 
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3.4.1.2. Método Eletroquímico 
 

O processo de polarização eletroquímica tem atraído atenção devido às 

propriedades geradas como resultado das modificações de superfície no biomaterial 

tratado (BRUNETTE, 2001, YOUNG-TAEG et al., 2002). 

No processo de polarização eletroquímica o substrato metálico será imerso em 

um eletrólito sob a aplicação do um potencial de baixa voltagem. Dessa forma, serão 

obtidas películas de óxidos com características e propriedades controladas por 

parâmetros eletroquímicos como potencial (E), corrente (i), velocidade de varredura 

(v), entre outros. Este tipo de modificação superficial promoverá melhor resistência à 

corrosão e um aumento da bioatividade do material (CHIH-YAO et al., 2009, YAO; 

SLAMOVICH; WEBSTER, 2008). 

 

3.4.1.3. Caracterização química e microestrutural das amostras 
 

A Espectrometria de massas de íons secundários (SIMS) permitirá analisar 

elementos presentes nas superfícies em baixas concentrações ou para obter razões 

isotópicas de uma pequena parte das amostras. A morfologia e topografia da 

superfície serão analisadas por microscopia eletrônica de varredura (MEV)  e por 

difração de Raios-X(DRX).  A dureza e o modulo de elasticidade serão medidas com 

o durômetro para ensaio de dureza Vickers com aumento de até 500x (Figura 1).  

A eficiência de bioatividade será analisada pelas técnicas de MEV, 

Espectroscopia de raios-X por energia dispersiva (EDS), DRX e Infravermelho (IV), 

após os ensaios in vitro com células osteoblasticas e células tronco nas superfícies 

biomiméticas (Figura 1). 

 

3.4.2. Avaliação da biocompatibilidade “In Vitro” 
 

As avaliações de biocompatibilidade dos materiais serão em “in vitro” utilizando 

cultura de células e modelos biológicos (DAVIES, 2003). A análise na 

biocompatibilidade “in vitro” engloba geralmente cultura de células com objetivo da 

avaliação dos aspectos morfológico, capacidade de crescimento, estado de 
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diferenciação, viabilidade e adesão dos osteoblastos em contato com diferentes 

superfícies de titânio(ANSELME et al., 2000). Diferentes modelos de cultura de 

osteoblastos são utilizados para avaliar a interação célula-superfície, que comumente 

utilizam  culturas primárias derivadas de osteoblastos humanos normais (explantes 

ósseos, células da medula óssea) e fragmentos ósseos, ou linhagens de osteoblastos 

e células tronco provenientes de osteosarcoma humano(LIU et al., 2007, 

SUBRAMANIAM et al., 2002). 

As caracterizações in vitro serão atraves de cultura de células utilizada para 

determinar a expressão de marcadores fenotípicos de osteoblastos que mineralizarem 

sua matriz extracelular (BERNHARD et al., 2009). A viabilidade celular será 

determinada por meio de ensaios de citotoxicidade, adesão e proliferação celular, 

avaliação da morfologia celular por MEV. Para determinar a expressão genética será 

utilizada a reação em cadeia da polimerase quantitativo em Tempo Real (q-PCR) e 

eletroforeses, nas camadas de células aderidas sobre a superfície de titânio (Figura 

1). 
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Figura1 - Fluxograma da preparação e caracterizações de superfícies biomiméticos-titânio 
Fonte: O autor



41 
 

 

Figura 2 - Grupos experimentais das etapas do estudo 
Fonte: O autor



42 
 

3.5. Orçamento 
 

 

Quadro 2 – Orçamento de materiais e reagentes 

 

 

 

Matarial Quantidade Valor toral R$

Reagentes  total de reagentes 58025

Luvas  12 caixas 100

Óculos de segurança 1 unidade 10

Fitas de teflon 1 unidade 50

Roupa de proteção  1 unidade 120

Cartuchos para impressora 5 kids 150

Folhas A4 5 unidade 240

58695

 Orçamento Materiais  e Reagentes

Reagentes e insumos químicos e outros

Total
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3.6. Cronograma 
 

Quadro 1 – Cronograma previsto projeto de Doutorado 

 

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12

2015 2016 2017
% de avance 

0%

0%

0%

0%

0%

0%

0%

0%

0%

2014

0%

0%

0%

Execução de testes pi loto e ajsutes do experimento Fase 1

Preparação e aplicação da metodologia e proposta Fase 1 

Caracterização química e topografica

Preparação e aplicação da metodologia e proposta 1,2 e 3 Fase 2 

Testes In vitro

Análise dos resultados obtidos nos ensaios preliminares Fase 1 e Fase 2

Preparação e aplicação da metodologia e proposta 1,2 e 3 Fase 3 (biomolecule)

Defesa da Tese

Entrega da Versão Final da Tese de Doutorado

Redação da Tese 0%

0%

Testes In vitro

análise de resutlados e redação dos artigo científico Fase 1

Orientação bolsistas de Iniciação Científica

Actividades / Meses ‐Anos

95%

50%

0%

0%

Elaboração do projeto (Novembro e dezembro 2013)

Revisão Bibl iográfica 

Qualificação do projeto

Treinamento para o desempenho das técnicas  in vitro

Caracterização química e topografica

Submissão dos artigos científicos Fase 1

Congresos e Eventos e Apresentação de trabalhos

análise de resutlados e redação dos artigos científicos Fase 3 0%

Submissão dos artigos científicos Fase 3 0%

Compra de reagentes e produtos

0%

0%

0%

Caracterização química e topografica

análise de resutlados e redação dos artigos científicos 1, 2 e 3 Fase 2

Submissão dos artigos científicos Fase 2

0%

0%

0%

Desenho e planemento da execução da parte experimental Doutorado

0%
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3.7. Descrição em detalhe do orçamento dos reagentes do trabalho laboratorial 
 

   Quadro 3 – Orçamento detalhado de reagentes do trabalho laboratorial 

 

 

 

Material Valor Aprox. (R$) Quantidade

Célula eletroquímica. Volume de 400 mL. METROHM 29,372.85 1

Vidraria e frascos parte experimental ‐ ‐

Soro Fetal US Definido Hyclone (500 ml) 1.900,00 2

Frascos e garrafas de Cultivo Celular (25 e 75 cm
3
) ‐ ‐

Células endoteliais adultas da microvasculatura dérmica humana  2.640,00 1

Discos de titânio Kg 19.39 2

Discos de TiZr Kg 25.5 2

Partículas de óxido de silício 1480 1

Partículas de óxido de alumínio 556 1

Ácido clorídrico HCl 643 2

Ácido sulfúrico H2SO4 481 2

Ácido acético C2H4O2 452 3

Acetato de sódio C2H3NaO2 276 3

Reagente Sigma‐Aldrich, utilizados como modificador químico e nanoestruturadas da superfície para o desenvolvimento do

revestimento biomiméticos

Capital – Material Permanente

Sub ‐Total Capital: R$ 

Custeio – Material de Consumo

Reagentes viabilidade Celular

Preparo os revestimentos nas superfícies biomiméticas
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Hidroxiapatita base metalica 481 1

Nitrato de cálcio Ca(NO3)2.4H2O 208 1

Nitrato de estrôncio Sr(NO3)2 491 1

Pentóxido de fósforo P2O5 118 1

Cloreto de estrôncio 499 1

Acetato de estrôncio –Sr (C2H3O2)2 735 1

Cloreto de sódio ‐ NaCl 124 1

Fluoreto de sódio ‐ NaF 280 1

Solução de ácido clorídrico – HFp 566 1

Ácido acético 452 3

Acetato de sódio 276 3

Hidreto de lítio LiH 323 1

Cloreto de lítio LiCl 458 1

Acetato de lítio  CH3COOLi 654 1

perclorato de lítio LiClO4 877 1

Solução de fosfato tamponada 493 3

pamidronate 590 1

Zoledronate 750 1

ibandronate  882 1

enamel matrix derivative powder EMD 5516 1

Tobramycin C18H37N5O9  442 1

Doxy Hyclate ‐ Doxycycline C22H24N2O8∙H2O 462.45 211 2

TGF 2,516 1

Reagente Sigma‐ utilizados como modificador químico e nanoestruturadas da superfície para desenvolver um ambiente 3D

utilizado para deposição do revestimento biomimético pelas técnicas sol‐gel dip‐coating e polarização eletroquímica catódica
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3.8. Grupos experimentais 
 

Quadro 4 – Definição de grupos experimentais 

 

Indium tin oxide  ITO

Dióxido de titânio : Lítio: Estrôncio [TiO2]:[Li+ 15%]:[Sr 15%]

Dióxido de titânio [TiO2] 

Dióxido de titânio: Lítio: zircónio [TiO2]:[Li
+
 15%]:[Zr 15%]

Dióxido de titânio: Lítio [TiO2]:[Li
+
 15%]

O processo de eletro‐revestimento pelo processo de polarização catódica

Dióxido de zircónio [ZrO2]

[Ácido acético]– [Acetato de sódio] ‐[Cloreto de sodio] ‐[Doxycycline] [C2H4O2] – [Sr(C2H3O2)2] – [NaCl] – [C22H24N2O8•H2O 462.45] 3

Temperatura 20 ‐ 21 °C    

Polarização catódica galvânica  

0.7 mA/cm2  &   1 hora  

1.6 mA/cm2  &  6 horas  

3.9 mA/cm2 &  6 horas 

O processo Sol‐gel & Dip‐coating 

[Ácido acético]– [Acetato de estrôncio ] ‐[Cloreto de sodio] [C2H4O2] – [Sr(C2H3O2)2] – [NaCl]  5

[Ácido acético]– [Acetato de estrôncio ] ‐[Fluoreto de sódio] [C2H4O2] – [Sr(C2H3O2)2] – [NaF]  5

[Ácido acético]– [Acetato de sódio] [C2H4O2] – [C2H3NaO2] 3

[Ácido acético]– [Acetato de sódio] ‐ [enamel matrix derivative powder] [C2H4O2] – [C2H3NaO2] ‐ [EMD]  3

[Ácido acético]– [Acetato de estrôncio] [C2H4O2] – [Sr(C2H3O2)2] 5

Tampão (buffer) composição Formulação   pH  Especificações do processo 
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4. Relatório do trabalho de campo 
 

4.1. Modificações no Projeto de Pesquisa 
 

O projeto foi apresentado junho 2014 sob a orientação do Prof. Dr. Rodrigo Varella 

de Carvalho sob a modalidade de Defesa Fechada (Patente), posteriormente em agosto 

de 2014 foi solicitada a substituição de orientador por afastamento do Prof. Dr. Rodrigo 

Varella de Carvalho à Universidade de Passo Fundo por motivos de trabalho, assumindo 

a orientação o Prof. Dr. Neftali Lenin Villarreal Carreño. 

Neste contexto foram consideradas algumas mudanças no planejamento do 

trabalho laboratorial em relação às caracterizações, microestruturas e preparação das 

soluções para as deposições, que serão descritas e apresentadas no relatório de campo. 

Foram também incluídas e definidas a elaboração de uma revisão sistemática da 

literatura relacionada com a técnica de deposição de polarização catódica eletroquímica. 

 

4.2. Relatório do Trabalho de Campo 
 

O presente relatório é parte integrante da Tese de doutorado apresentado ao 

programa de pós-graduação em Odontologia da Universidade Federal de Pelotas, 

UFPel, intitulado “Revestimentos biomiméticos para superfície de titânio em aplicações 

biomédicas”. 

Este trabalho faz parte integrante do estudo multidisciplinar da Faculdade de 

Odontologia da UFPel e obteve no ano de 2015 financiamento através do edital 

CHAMADA UNIVERSAL MCTI/CNPq Nº 14/2014- Processo: 458332/2014-3, Faixa B - 

de R$60.00,00 e valor aprovado de R$42.000,00, através do projeto intitulado 

“Revestimentos biomiméticos para superfície de titânio em aplicações biomédicas”. 

Proponente: Profa. Dra. Sandra Beatriz Chaves Tarquínio 
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Co-proponentes: Prof. Dr. Flávio Fernando Demarco, Prof. Dr. Neftali Lenin Villarreal 

Carreño, Prof. Dr. César O. Avellaneda, Prof. Dr. Vinicius Farias Campos, e Prof. Dr. 

Rodrigo Varella de Carvalho. 

 

4.2.1. Desenvolvimento da Pesquisa laboratorial 
 

Com base na definição do projeto foram reestruturados os fluxogramas da 

preparação e caracterizações de superfícies biomiméticos- titânio, figura 1, e os grupos 

experimentais das etapas do estudo, figura 2, do projeto, com base principalmente, na 

disponibilidade de equipamentos para a realização das caracterizações, material do 

Laboratório e a reagentes para a preparação das amostras, na medida em que se 

realizaram os pedidos dos reagentes. 

Os fluxogramas foram redefinidos e estão apresentados na figura 1 e figura 2 do 

capitulo 4 relatórios de campo.  

Os grupos experimentais, com as características metodológicas e reagentes 

usados estão apresentados na tabela 1.  
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Figura 1 - Fluxograma da preparação e caracterizações de superfícies biomiméticos. Fonte: Autor 
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Figura 2 - Grupos experimentais das etapas do estudo. Fonte: Autor 
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Tabela 1 - Resumo dos grupos experimentais e as condições de deposição dos revestimentos pelo processo sol-gel dip-coating e polarização catódica 
sobre superfícies de Ti. 

Grupo 

Pré-tratamento de 
superfícies 

Síntese do gel/Tampão 

Parâmetros de configuração dos 
equipamentos 

 N° de 
figura 

Polimento 
mecânico 

Ataque 
ácido 

Configuração 
equipamento 

Tratamento 
térmico 

Técnica de 
deposição 

Fluxogram
a de 

síntese 

Etapa 1  

G1  Com Com ZrO2/PEG [0,2 M] 35 cm/min 45°C / 24 horas Dip-coating Figura 10 

G2  Com Com TiO2/PEG [0,2 M] 35 cm/min 45°C / 24 horas Dip-coating Figura 13 

G3  Com Com 
TiO2 [0,2 M]: Li+ (15%): Zr 
(15%)/PEG

35 cm/min 45°C / 24 horas Dip-coating Figura 14 

G4  Com Com TiO2 [0,2 M]: Li+ (15%)/PEG 35 cm/min 45°C / 24 horas Dip-coating Figura 15 

Etapa 2  

G2-V2  Com Com ZrO2/PEG [0,2 M] 35 cm/min 40°C / 24 horas Dip-coating Figura 10 

G5  Com 
Sem NaCl-

0,9% 
ITO[0,25 M] 38 cm/min 150°C/ 30 min Dip-coating Figura 16 

G6  Com 
Com NaCl-

0,9% 
ITO[0,25 M] 20 cm/min 150°C/ 30 min Dip-coating Figura 16 

P1 Com Com Tampão CH3COOH - C2H3NaO2 3 pH / 8 horas / 1,6 mA/cm2 
Polarização 

catódica 
Figura 21 

Etapa 3  

G0 Com - Polimento mecânico - - - Figura 5 

G1 Com 
Sem NaCl-

0,9% 
Polimento mecânico/ Ataque 
ácido 

- - - - 

G2 - Com Ataque ácido - - - Figura 6 

G3 Com 
Com NaCl-

0,9% 
Polimento mecânico/ Ataque 
ácido 

- - - - 

G4 - - Sem tratamento - - - - 

G5 Com Com Polimento mecânico/Ataque ácido - - - 
Figura 4 e 

6 
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Grupo 

Pré-tratamento de 
superfícies 

Síntese do gel/Tampão 

Parâmetros de configuração 
dos equipamentos 

 N° de figura 

Polimento 
mecânico 

Ataque 
ácido 

Configuração 
equipamento 

Tratamento 
térmico 

Técnica de 
deposição 

Fluxograma de 
síntese 

Etapa 4  

GHOP1 Sim Sim ZrO2/PEG [0,2 M] 15 cm/min 40°C / 24 horas Dip-coating Figura 10 

GHOP2  Sim Sim ZrO2 [0,2 M]: Li+ (15%)/PEG 25 cm/min  40°C / 24 horas  Dip-coating  Figura 18 

GHOP3 Sim Sim 
ZrO2 [0,2 M]: Li+ (15%): Sr 
(15%)/PEG 

35 cm/min 40°C / 24 horas Dip-coating  Figura 19 
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4.2.1. Preparação corpos de prova de titânio pelo pré-tratamento de polimento 

mecânico 

 

Os corpos de prova foram obtidos a partir de TI F67 GR2 #2,25 MM - UNS R50400 

na forma original de chapas retangulares, cortados em dimensões de 1x1 cm2 e 2,25 mm 

de espessura (Figura 3). 

 

Figura 3 - Confecção dos corpos de prova de titânio. Fonte: O autor 

 

Todos os corpos de prova foram medidos e uma das superfícies tratadas por 

polimento mecânico gradual mediante uso de lixas com granulações diferentes, como 

pode ser observado na Tabela 2. O polimento mecânico é um método que permite a 

remoção de parte do material da superfície ou impurezas geralmente usando um 

abrasivo duro (ELLINGSEN; THOMSEN; LYNGSTADAAS, 2006). O polimento da 

superfície em titânio precisou da utilização de um material abrasivo fino como papel 

abrasivo que é aplicado a uma roda flexível ou uma correia e então o corpo de prova de 

titânio é colocado em contato direto com a superfície abrasiva. O polimento é sempre 

realizado na presença de lubrificante (WENNERBERG; ALBREKTSSON; LAUSMAA, 

1996).  
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Tabela 2 - Materiais utilizados no pré-tratamento polimento mecânico 

Reagentes Fórmula molecular Marca 
Alumina desaglomerada Granulação 1 µm Allied High Tech 

Lixas de carbeto de silício 
600, 1200, e 2000 

mesh 
Sigma aldrich 

Gás Nitrogênio N2 Sigma aldrich 
Água destilada H2O - 

Acetona C3H6O Sigma aldrich 
Álcool etílico C2H6O Sigma aldrich 

 

Durante a fase de produção ou análise de materiais, torna-se necessário analisar 

a sua microestrutura. Esta análise microestrutural é importante, pois permite entender as 

correlações entre a microestrutura e defeitos e as propriedades mecânicas e biológicas 

e ainda predizer as propriedades do material quando estas correlações são 

estabelecidas. 

As fases do processo de polimento estão apresentadas na Figura 4.  Como 

descrito na figura 4, na fase-1 os corpos de prova foram selecionados baseados nos 

grupos definidos segundo as técnicas de deposição programadas. Para a análise 

micrográfica foram realizadas metalografias em três direções na liga de titânio, com o 

intuito de certificar a direção de laminação dos materiais recebido e eliminar a rugosidade 

do produto original. Assim, primeiramente foi parametrizado o equipamento Politriz / 

Lixadeira metalográfica modelo Aropol-E marca ARATEC, com avelocidade da roda de 

rotação de 200 rpm, e polidas em lixas ou papel abrasivo de lixas de carbeto de silício 

na sequência 200, 400, 600, 800, 1200 e 2000, na sequência mais adequada de lixas 

para o trabalho metalográfico para corpos de prova de titânio (LAUSMAA, 2001), para 

cada 4 corpos de prova foram trocadas as lixas, cada amostra foram submetidas ao 

polimento mecânico com lixas de carbeto de silício com granulações de 200, 400, 600, 

800, 1200 e 2000 mesh respectivamente por 2 minutos cada, e com acabamento 

(polimento ou polimento e lustragem) sob Alumina desaglomerada de granulação 1 µm, 

5 minuto cada.  
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Figura 4 - Fluxograma de pré-tratamento polimento mecânico. Fonte: O autor 
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Após o procedimento de polimento mecânico, todos os corpos de prova foram 

lavados com acetona, álcool a 75% e água destilada por um período de tempo de 15 

minutos cada grupo de corpos de prova, e finalmente as amostras foram submetidas à 

secagem numa câmara de vácuo sob gás nitrogênio durante 4 horas. Este procedimento 

permitiu obter uma superfície plana e polida, adequada para proceder aos diversos 

ensaios, como pode ser observado na Figura 5 e Figura 6. 

 

Figura 5 - Corpos de prova após pré-tratamento de polimento mecânico e revestimento  
Fonte: O autor 

 
 

4.2.2. Preparação amostras de titânio pelo pré-tratamento correção ácida 
 

O titânio por natureza é resistente à corrosão, contudo, submetido a ataque ácido 

pode criar porosidade removendo quantidades pequenas de material, resultando na 

modificação da superfície (KOHLES et al., 2004, LAUSMAA, 2001).  

Foi realizado o pré-tratamento ácido das amostras mediante o uso de diversos 

àcidos, apresentados na Tabela 3.  Um pré-tratamento ácido é frequentemente utilizado 

para a remoção de óxidos e contaminantes, com o intuito de se obter uma superfície 

limpa e uniforme. O tratamento de superfície por ataque ácido é realizado por subtração, 

sob a aplicação de diferentes ácidos principalmente (Sulfúrico, clorídrico, nítrico, 

fluorídrico e combinações) sobre a superfícies de titânio, promove-se rugosidade 
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micrométrica ~1,3 µm (microporosidade), que por sua vez promove a osseointegração 

(KOHLES, et al., 2004). Na técnica de ataque ácido a concentração, temperatura e o 

tempo de aplicação do ácido determinam o grau de rugosidade (KOHLES, et al., 2004, 

SITTIG et al., 1999, WENNERBERG; ALBREKTSSON; ANDERSSON, 1996). Neste 

sentido, os procedimentos de ataques ácidos com a combinação de ácidos 

compostos(KOHLES, et al., 2004, SITTIG, et al., 1999) proporcionam e promovem a 

formação de rugosidades e topografias específicas com a capacidade de estimular a 

adesão de células osteogênicas e consequentemente promover a aposição óssea  (LE 

GUÉHENNEC et al., 2007). 

 

Tabela 3 - Materiais utilizadas no pré-tratamento correção ácida. 

Reagentes  Formula Marca
Ácido clorídrico HCl Sigma aldrich 
Ácido sulfúrico H2SO4 Sigma aldrich 
Gás Nitrogênio  N2 Sigma aldrich 
Cloreto de sódio NaCl 0,9% Sigma aldrich 
Água destilada  H2O - 

 

A figura 6 apresenta as fases referente aos processos de tratamento ácido. Como 

descrito no fluxograma da figura 6 na fase 2, foram preparados numa placa petri de vidro 

uma mistura aquosa de 0,1 mL de Ácido clorídrico (HCl 18%) e 0,1 mL Ácido sulfúrico 

H2SO4 (48%), diversas concentrações de ácidos preparados previamente. Os corpos de 

prova foram extraídos da câmara de vácuo sob gás nitrogênio (marca Plas-Lab Quimis 

Q216-21), e posteriormente imersos na placa petri com a mistura de ácidos, e 

introduzidos imediatamente na mufla EDG Equipamentos 3000, a temperatura de 125°C 

~ 130°C por 6 minutos. Após o tratamento térmico, a placa petri com os corpos de prova 

foram extraídos da mufla e imersos rapidamente em água destilada e colocados na 

câmara de vácuo sob gás nitrogênio. Os corpos de prova foram extraídos da água 

destilada após 10 minutos e mergulhados e armazenados em cloreto de sódio 0,9 % 

NaCl por 6 horas, e finalmente retiradas do NaCl e expostas a secagem por 4 horas 

como descrito na figura 9.  



74 
 

 

 

Figura 6 - Fluxograma de pré-tratamento de superfícies por ataque ácido.  Fonte: O autor 
 

As microestruturas foram observadas nas direções longitudinal (L), transversal (T) 

e de topo (S), e fotografadas em um microscópio óptico Olympus Modelo BX41M-LED, 

com câmara acoplada digital de alta resolução (10.6 megapixels digital), com programa 

integrado para a montagem tridimensional das micrografias. As Figuras 7, 8, e 8-B 

mostram as micrografias de cada uma das amostras, sem tratamento, após lixamento e 

tratamento ácido; e polarização catódica 0,5 horas sem tratamento, respectivamente. 
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Figura 7 - Micrografia da liga titânio sem tratamento à magnificação de 1500X. 

Fonte: O autor 
 

Figura 8 - Micrografia da liga titânio polimento mecânico e ataque ácido - magnificação de 1200X. 
Fonte: O autor 
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Figura 9 - Manipulação dos corpos de prova sob gás N após ataque ácido 
Fonte: O autor 
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4.2.3. Síntese dos Sóis para a obtenção dos revestimentos biomiméticos 
 

Na presente seção serão apresentados os métodos de síntese, preparação e 

deposição dos revestimentos biomiméticos nas superfícies de titânio que foram 

estudados.  

 

4.2.3.1. A Síntese e o Processo Sol-Gel 
 

A tecnologia Sol-gel sofreu uma grande transformação durante as duas últimas 

décadas. Novas descobertas, particularmente aqueles referentes a silicatos, 

desenvolvimento de blocos de nanopartículas híbridas, permitiram novas oportunidades 

em pesquisas biológicas abertas pelos nanocompósitos híbridos de sol-gel. Atualmente, 

a tecnologia sol-gel é considerada um método versátil e útil de modificação para vários 

campos de pesquisa (LEV; SAMPATH, 2010). 

As peculiaridades do processo sol-gel (precursores organometálicos, solventes 

orgânicos) permitem a introdução de moléculas ou polímeros na rede inorgânica, com 

reações químicas a temperatura ambiente. Como os compostos orgânicos geralmente 

se decompõem acima de 250°C, impossibilita-se a sínteses de alguns materiais. Neste 

contexto, o processo sol-gel minimiza estes inconvenientes e tornam a composição 

química dos materiais mais bioativa (JUDEINSTEIN et al., 2010, RODRIGUES et al., 

1992). 

Sol é definido como partículas pequenas dispersas num meio, enquanto que o gel 

é uma rede relativamente rígida interligada contendo poros de tamanhos diferentes 

ligados por cadeias poliméricas. O gel úmido pode resultar num xerogel se os 

componentes voláteis forem removidos sob condições ambientais, enquanto que tornar-

se-á um aerogel quando os constituintes voláteis são removidos sob condições 

supercríticas de um solvente. O processo sol-gel apresenta as seguintes fases hidrólise, 

condensação, dissolução, sol e formação de partículas, e gelificação e secagem 

(CATAURO; BOLLINO; PAPALE, 2014, LEV; SAMPATH, 2010). O processo sol-gel, os 

parâmetros associados a ele e as consequentes estruturas são especificações 



78 
 

importantes que são consideradas durante o processo de síntese. A formação de um gel 

a partir de alcóxidos pode ser pensada como formada por hidrólise de um precursor, 

seguido por condensação para dar polímeros e a formação de redes subsequentes ou o 

crescimento de pequenas partículas discretas que se ligam para dar uma rede sólida. 

 

4.2.3.2. Fundamentos do processo de Dip-Coating 
 

O dip coating ou revestimento por imersão é um processo no qual o substrato é 

imerso verticalmente num sol contendo o precursor, catalisador e o solvente que é 

retirado ou puxado com uma velocidade constante, controlada, e claramente definida, 

resultando em uma película onde a remoção do excesso de solvente por evaporação é 

retirado. O tratamento térmico subsequente produz o produto desejado (BRINKER; 

CLARK; ULRICH, 1986, LEV; SAMPATH, 2010). Para obtenção de um revestimento com 

espessura específica e uniforme, é necessário que a técnica de recobrimento seja 

executada com equipamentos livres de vibração e movimentos suaves no substrato 

(BRINKER, 2013).  

Este processo de dip coating está dividido em 5 etapas: imersão do corpo de prova 

na precursor, emersão, deposição, drenagem e evaporação (BRINKER, 2013). 

 

4.2.3.3. Materiais para a síntese dos sois e a deposição dip coating 
 

A deposição do revestimento (dip-coating) para todos os experimentos foram 

executadas e padronizadas a temperatura controlada do ambiente de 15°C. 
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Tabela 4 - Materiais utilizados para preparação dos sóis para os revestimentos-Ti 

Reagentes  Formula molecular Marca 
Água destilada  H2O Laboratório  
Propóxido de zircónio (IV) Zr(OCH2CH2CH3)4 Sigma aldrich 
Isopropóxido de titânio (IV) Ti[OCH(CH3)2]4 Sigma aldrich 
ETOH - Álcool etílico CH3CH2OH Sigma aldrich 
Acac - Acetilacetona CH3COCH2COCH3 Sigma aldrich 
PEG - Polietileno glicol (BioUltra)400 H(OCH2CH2)nOH Sigma aldrich 
Hidróxido de lítio monohidratado LiOH.H2O Vetec 
Nitrato de indium Hidrato III 99.99% In(NO3)3 · xH2O Sigma aldrich 
Cloreto de estanho (IV) anidro SnCl4 Sigma aldrich 
Etilenoglicol HOCH2CH2OH Sigma aldrich 
Hidróxido de estrôncio 94% Sr(OH)2  Sigma aldrich 

 

 

4.2.3.3.1. Síntese do Sol de ZrO2/PEG e dip coating 
 

A figura 10 ilustra o fluxograma do processo de síntese e revestimento do sol 

híbrido de ZrO2/PEG [0,2 Molar]. A forma de solubilização utilizada durante todo o 

processo de síntese foi através de agitação magnética e pelo controle da velocidade, 

que foi ajustada à velocidade de agitação de 4 rpm e com temperatura de 45°C. O 

processo iniciou através da solubilização de propóxido de zircônio (IV) (2,5 mL) em álcool 

etílico (ETOH) (10 mL) e Acetilacetona (Acac) (3,7 mL) por 5 minutos. Como resultado 

obteve-se uma solução branca e leitosa (figura 11-A). Em seguida foi agregada à mistura, 

água destilada de forma continua e lenta na proporção de 20 mL e deixar sob agitação 

por mais 5 minutos, após foi acrescentada à solução a mistura de 10 mL de álcool etílico 

(ETOH) e polietileno glicol (PEG) previamente preparado nas proporciones de 10 mL 

ETOH + 2mL PEG por 5 minutos adicionais. Como resultado, obteve-se uma solução 

amarela e transparente (Figura 11-B). 
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Figura 10 - Fluxograma da síntese do sol-gel de ZrO2/PEG e dip coating 
Fonte: O autor 

 

 

Figura 11 -  Processo de preparação de sol de ZrO2 / PEG 
Fonte: O autor 
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Como ilustra o fluxograma da Figura 11, o processo de revestimento para o sol 

ZrO2 /PEG [0,2 Molar], nos corpos de prova de titânio TI F67 GR2 com dimensão 1x1 

cm2 e 2,25 mm de espessura, os que foram previamente pré-tratadas como descrito 

(Fase 1) figura 4 e (fase 2) figura 6, os revestimentos foram fabricados usando a técnica 

de dip-coating, onde estes corpos de prova de titânio foram usados como substrato, 

utilizando o equipamento por imersão (dip-coating) da marca Marconi modelo MA765, 

com um sistema de elevação para emulsificação das placas. Os corpos de prova de 

titânio foram colocados na porta amostras com capacidade para 3 corpos de prova. Cada 

porta amostras foi dotada de um pino para facilitar a conexão com a abraçadeira do 

equipamento por imersão. Subsequentemente, os substratos foram revestidos com as 

soluções híbridas ZrO2/PEG [0,2 Molar]. A velocidade de extração foi ajustada para 35 

cm/min. Os substratos revestidos foram gelificados e secos no ar a temperatura ambiente 

dentro do equipamento do dip-coating por 1 minuto. Os substratos revestidos foram 

submetidos a tratamento térmico (Mufla: EDG Equipamentos 3000) a 45°C durante 24 

horas para promover a densificação do filme. Após tratamento térmico, os substratos 

revestidos foram armazenados na câmara de vácuo sob gás nitrogênio (marca Plas-Lab 

Quimis Q216-21) por 8 horas até serem embalados e encaminhados para as diversas 

caracterizações como ilustrado na figura 12. 

 

Figura 12 - Corpos de prova de TI F67 GR2 substratos revestidos ZrO2/PEG 
Fonte: O autor 
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4.2.3.3.2. Síntese do sol TiO2/PEG e dip coating 
 

A figura 13 ilustra o fluxograma do processo de síntese e revestimento, do sol 

híbrido de TiO2/PEG [0,2 Molar]. O modo de solubilização utilizado durante todo o 

processo de síntese foi através de agitação magnética e controle de velocidade, que foi 

ajustada a uma velocidade de agitação de 4 rpm e a temperatura de 50°C, e que iniciou 

através da solubilização de Isopropóxido de Titânio (IV) (2,4 mL) em álcool etílico (ETOH) 

(10 mL) e Acetilacetona (Acac) (3,7 mL) por 10 minutos. Em seguida foi agregada à 

mistura água destilada de forma continua e lenta na proporção de 20 mL  e deixado sob 

agitação por 5 minutos. Após foi acrescentada à solução a mistura de álcool etílico 

(ETOH) 10 mL e polietileno glicol (PEG) previamente preparada, nas proporções de 10 

mL ETOH + 2mL PEG por 10 minutos adicionais. Como resultado foi obtida uma solução 

translúcida de cor amarela (figura 17). 

 

 

Figura 13 - Fluxograma da síntese do sol-gel de TiO2/PEG e dip coating 
Fonte: O autor 

 

O fluxograma da Figura 13 ilustra o processo de revestimento para o sol TiO2 

/PEG [0,2 Molar], nos corpos de prova de titânio TI F67 GR2 com dimensão 1x1 cm2 e 



83 
 

2,25 mm de espessura, pré-tratados como descrito previamente (Fase 1 da Figura 4 e 

fase 2 da Figura 6). Os revestimentos foram fabricados usando a técnica de dip-coating, 

onde os corpos de prova de titânio foram usados como substrato, utilizando o 

equipamento por imersão (dip-coating) da marca Marconi modelo MA765, com um 

sistema de elevação para emulsificação das placas. Os corpos de prova de titânio foram 

colocados no porta amostras com capacidade para 3 corpos de prova. Os porta amostras 

foram dotados de um pino para facilitar a conexão com a braçadeira do equipamento por 

imersão. Subsequentemente, os substratos foram revestidos com as soluções híbridas 

TiO2/PEG [0,2 Molar]. A velocidade de extração foi ajustada para 35 cm/min. Os 

substratos revestidos foram gelificados e secos no ar a temperatura ambiente dentro do 

equipamento do dip-coating por 1 minuto. Após os substratos revestidos foram 

submetidos a tratamento térmico (Mufla: EDG Equipamentos 3000) à temperatura de 

50°C durante 24 horas para promover a densificação do filme. Após tratamento térmico 

os substratos revestidos foram armazenados na câmara de vácuo sob gás nitrogênio 

(marca Plas-Lab Quimis Q216-21) por 8 horas até serem embalados e encaminhados 

para as diversas caracterizações. 

 

4.2.3.3.3. Síntese do Sol de TiO2: Li+ (15%): Zr (15%)/PEG e dip coating 
 

A figura 14 ilustra o fluxograma do processo de síntese e revestimento, do sol 

híbrido de TiO2 [2 M]: Li (15%): Zr (15%)/PEG. O modo de solubilização utilizado durante 

todo o processo de síntese foi através de agitação magnética e pelo controle de 

velocidade, que foi ajustada à velocidade de agitação de 4 rpm e a temperatura de 50°C. 

Iniciou-se o processo através da solubilização de Isopropóxido de Titânio (IV) (2,4 mL) 

em álcool etílico (ETOH) (10 mL) e Acetilacetona (Acac) (3,7 mL) por 10 minutos. Em 

seguida foi agregada à mistura os dopantes na proporção de 15%, primeiro o propóxido 

de zircônio (IV) na proporção de 0,38 mL sob agitação magnética por mais 10 minutos, 

imediatamente depois, o segundo dopante foi acrescentado à mistura previamente 

preparada de 20 mL de H20 e 0,05 g de L+ (Hidróxido de lítio monohidratado), sob 

agitação magnética por mais 5 minutos, e finalmente foi acrescentado à solução de álcool 

etílico (ETOH) 10 mL e polietileno glicol (PEG) previamente preparado nas proporciones 
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de 10 mL ETOH + 2mL PEG por 10 minutos. Como resultado, obteve-se uma solução 

translúcida de cor marrom claro (Figura 17). 

 

Figura 14 - Fluxograma da síntese do sol-gel de TiO2: Li+ (15%): Zr (15%)/PEG 
Fonte: O autor 

 

O  fluxograma da Figura 14 ilustra o processo de revestimento para o sol TiO2 [2 

M]: Li (15%): Zr (15%)/PEG, nos corpos de prova de titânio TI F67 GR2 com dimensão 

1x1 cm2 e 2,25 mm de espessura, previamente tratados como descrito na figura 4 e figura 

6. Os revestimentos foram fabricados usando a técnica de dip-coating, onde estes corpos 

de prova de titânio foram usados como substrato, utilizando o equipamento por imersão 

(dip-coating) da marca Marconi modelo MA765, com um sistema de elevação para 

emulsificação as placas. Os corpos de prova de titânio foram colocados no porta 

amostras com capacidade para 3 corpos de prova. O porta amostras foi dotado de um 

pino para facilitar a conexão com a abraçadeira do equipamento por imersão. 

Subsequentemente, os substratos foram revestidos com as soluções híbridas TiO2 [2 M]: 

Li (15%): Zr (15%)/PEG. A velocidade de extração foi ajustada para 35 cm/min. Os 

substratos revestidos foram gelificados e secos no ar a temperatura ambiente dentro do 

equipamento do dip-coating por 1 minutos. Após, os substratos revestidos foram 
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submetidos a tratamento térmico (Mufla: EDG Equipamentos 3000) à temperatura de 

45°C durante 24 horas para promover a densificação do filme. Após tratamento térmico, 

os substratos revestidos foram armazenados na câmara de vácuo sob gás nitrogênio 

(marca Plas-Lab Quimis Q216-21) por 8 horas até serem embalados e encaminhados 

para as diversas caracterizações. 

 

4.2.3.3.4. Síntese de Sol de TiO2: Li+ (15%)/PEG e dip coating 
 

A figura 15 ilustra o fluxograma do processo de síntese e revestimento, do sol 

híbrido de TiO2 [2 M]: Li (15%)/PEG. O modo de solubilização utilizado durante todo o 

processo de síntese foi através de agitação magnética e pelo controle de velocidade, 

que foi ajustada à velocidade de agitação de 4 rpm e com temperatura de 50°C. Iniciou-

se o processo através da solubilização de Isopropóxido de Titânio (IV) (2,4 mL) em álcool 

etílico (ETOH) (10 mL) e Acetilacetona (Acac) (3,7 mL) por 10 minutos. Em seguida foi 

agregada à solução o dopante 15% previamente preparada de (20 mL) de H20 e 0,05 g 

de L+ (Hidróxido de lítio monohidratado), sob agitação magnética por mais 5 minutos, e 

finalmente foi acrescentado a mistura de álcool etílico (ETOH) 10 mL e polietileno glicol 

(PEG) previamente preparada nas proporciones de 10 mL ETOH + 2mL PEG por mais 

10 minutos. Como resultado, obteve-se uma solução translúcida de cor marrom claro 

(Figura 17-C). 
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  Figura 15 - Fluxograma da síntese do sol-gel de TiO2: Li+ (15%)/PEG e dip coating 

Fonte: O autor 
 

O fluxograma da Figura 15 ilustra o processo de revestimento para o sol TiO2 [2 

M]: Li (15%)/PEG, nos corpos de prova de titânio TI F67 GR2 com dimensão 1x1 cm2 e 

2,25 mm de espessura, pré-tratadas como descrito figura 4 e figura 6. Os revestimentos 

foram fabricados usando a técnica de dip-coating, onde os corpos de prova de titânio 

foram usados como substrato, utilizando o equipamento por imersão (dip-coating) da 

marca Marconi modelo MA765, com um sistema de elevação para emulsificação das 

placas. Os corpos de prova de titânio foram colocados no porta amostras com 

capacidade para 3 corpos de prova. O porta amostras foi dotada de um pino para facilitar 

a conexão com a braçadeira do equipamento por imersão. Subsequentemente, os 

substratos foram revestidos com as soluções híbridas TiO2 [2 M]: Li (15%)/PEG. A 

velocidade de extração foi ajustada para 35 cm/min. Os substratos revestidos foram 

gelificados e secos no ar a temperatura ambiente dentro do equipamento do dip-coating 

por 1 minuto. Após, os substratos revestidos foram submetidos a tratamento térmico 

(Mufla: EDG Equipamentos 3000) à temperatura de 50°C durante 24 horas para 

promover a densificação do filme. Após tratamento térmico os substratos revestidos 

foram armazenados na câmara de vácuo sob gás nitrogênio (marca Plas-Lab Quimis 
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Q216-21) por 8 horas até serem embalados e encaminhados para as diversas 

caracterizações. 

 

4.2.3.3.5. Síntese de Sol de ITO e dip coating 
 

A figura 16 ilustra o fluxograma do processo de síntese e revestimento do sol de 

ITO. O modo de solubilização utilizado durante todo o processo de síntese foi através de 

agitação magnética e pelo controle de velocidade de agitação que foi ajustada a 10 rpm, 

e com temperatura de ~15°C. O processo iniciou através da solubilização de Nitrato de 

índio (III) hidratado 99.99% (2,42 gr) e cloreto de estanho (IV) anidro (4µL) em álcool 

etílico (ETOH) por 24 horas. Após 24 horas, em seguida foi agregada à solução Etileno 

glicol (0,84 mL), após 1 minuto foi agregada à solução Acetilacetona (Acac) (0,03 mL) 

por 1 minuto. Depois desse processo, foi reajustada a velocidade de agitação para 8 rpm 

por 30 minutos adicionais. Como resultado, obteve-se uma solução translúcida clara 

como observado na figura 17-D. 
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Figura 16 -  Fluxograma da síntese de sol-gel de ITO e dip coating 
Fonte: O autor 

 

No fluxograma da Figura 16 ilustra-se o processo de revestimento para o sol ITO, 

nos corpos de prova de titânio TI F67 GR2 com dimensão 1x1 cm2 e 2,25 mm de 

espessura, previamente tratadas como descrito figura 4 e figura 6.Os revestimentos 

foram fabricados usando a técnica de dip-coating, onde estes corpos de prova de titânio 

foram usados como substrato, utilizando o equipamento por imersão (dip-coating) da 

marca Marconi modelo MA765. Os corpos de prova de titânio foram colocados no porta 

amostras com capacidade para 3 corpos de prova. O porta amostras foi dotado de um 

pino para facilitar a conexão com a abraçadeira do equipamento por imersão. 

Subsequentemente, os substratos foram revestidos com o sol de ITO. A velocidade de 

extração foi ajustada para 38 cm/min (G5) e 20 cm/min (G6), respectivamente. Os 

substratos revestidos foram gelificados e secos no ar a temperatura ambiente dentro do 
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equipamento do dip-coating por 2 minutos. Os substratos revestidos foram submetidos 

a tratamento térmico (Mufla: EDG Equipamentos 3000) à temperatura de 150°C durante 

30 minutos. Após tratamento térmico, os substratos revestidos foram armazenados na 

câmara de vácuo sob gás nitrogênio (marca Plas-Lab Quimis Q216-21) por 4 horas até 

serem embalados e encaminhados para as diversas caracterizações. 

 

 

Figura 17 - Sóis para preparação dos revestimentos biomiméticos 
Fonte: O autor 

 

4.2.3.3.6. Síntese de Sol de ZrO2 [2 M]: Li+ (15%)/PEG e dip coating 
 

A figura 18 ilustra o fluxograma do processo de síntese e revestimento, do sol 

híbrido de ZrO2/PEG [0,2 Molar]. O modo de solubilização utilizado durante todo o 

processo de síntese foi através de agitação magnética, e pelo controle da velocidade 

agitação que foi ajustada a 4 rpm e com temperatura entre ~40-45°C.Iniciou-se o 

processo através da solubilização de Isopropóxido de Zircônio (IV) (2,4 mL) em álcool 

etílico (ETOH) (10 mL) e Acetilacetona (Acac) (3,7 mL) por 5 minutos. Em seguida foi 

agregada à solução o dopante 15% previamente preparada de (20 mL) de H20 e (0,05 g) 

L+ (Hidróxido de lítio monohidratado), sob agitação magnética por mais 10 minutos, e 

finalmente foi acrescentado à mistura de álcool etílico (ETOH) e polietileno glicol (PEG) 
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previamente preparado nas proporciones de 10 mL ETOH + 2mL PEG por mais 10 

minutos.  

 

 

Figura 18 Fluxograma da síntese de sol-gel de ZrO2 [2 M]: Li+ (15%)/PEG e dip coating 
Fonte: O autor 

 

 O fluxograma da Figura 18 ilustra o processo de revestimento para o sol ZrO2 [2 

M]: Li+ (15%)/PEG, nos corpos de prova de titânio TI F67 GR2 com dimensão 1x1 cm2 e 

2,25 mm de espessura, que foram pré-tratadas como descrito (Fase 1) figura 4 (fase 2) 

e figura 6.Os revestimentos foram fabricados usando a técnica de dip-coating, onde estes 

corpos de prova de titânio foram usados como substrato, utilizando o equipamento por 

imersão (dip-coating) da marca Marconi modelo MA765, com um sistema de elevação 

para emulsificação as placas. Os corpos de prova de titânio foram colocados no porta 

amostras com capacidade para 3 corpos de prova.O porta amostras foi dotado de um 

pino para facilitar a conexão com a abraçadeira do equipamento por imersão. 

Subsequentemente, os substratos foram revestidos com as soluções híbridas ZrO2 [2 M]: 

Li+ (15%)/PEG.A velocidade de extração foi ajustada para 25 cm/min. Os substratos 

revestidos foram gelificados e secos no ar a temperatura ambiente dentro do 

equipamento dip-coating por 1 minutos. Após, os substratos revestidos foram submetidos 

a tratamento térmico (Mufla: EDG Equipamentos 3000) a 40°C durante 24 horas para 
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promover a densificação do filme. Após tratamento térmico, os substratos revestidos 

foram armazenados na câmara de vácuo sob gás nitrogênio (marca Plas-Lab Quimis 

Q216-21) por 8 horas até serem embalados e encaminhados para as diversas 

caracterizações. 

 

4.2.3.3.7. Síntese de Sol de ZrO2 [2 M]: Li+ (15%): Sr (15%)/PEG e dip coating 
 

A figura 19 ilustra o fluxograma do processo de síntese e revestimento, do sol 

híbrido de ZrO2 [2 M]: Li+(15%): Sr (15%)/PEG. O modo de solubilização utilizado durante 

todo o processo de síntese foi através de agitação magnética, e pelo controle de 

velocidade de agitação que foi ajustada a 4 rpm e com temperatura de ~40-45°C, iniciou-

se o processo através da solubilização de Isopropóxido de Zircônia (IV) (2,5 mL) em 

álcool etílico (ETOH) (10 mL) e Acetilacetona (Acac) (3,7 mL) por 5 minutos. Em seguida 

foi agregada à solução os dopantes nas proporções de Li+ (15%) e Sr (15%) 

respectivamente, primeiro, foi acrescentada, a mistura previamente preparada de H20 

(10 mL) e L+ (Hidróxido de lítio monohidratado) (0,05 g), após 10 minutos foi 

acrescentada à solução 10 mL de H20  e Hidróxido de estrôncio (Sr) (0,05 g) sob agitação 

magnética por 10 minutos, e finalmente foi acrescentado á solução 10 mL álcool etílico 

(ETOH) e 2mL de polietileno glicol (PEG) previamente preparado por 10 minutos. 
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Figura 19 - Fluxograma da síntese de sol-gel de ZrO2 [2 M]: Li+ (15%): Sr (15%)/PEG e dip coating 
Fonte: O autor 

 

O fluxograma da Figura 19 ilustra o processo de revestimento para o sol ZrO2 [2 

M]: Li+ (15%): Sr (15%)/PEG, nos corpos de prova de titânio TI F67 GR2 com dimensão 

1x1 cm2 e 2,25 mm de espessura, os que foram previamente tratadas como descrito na 

figura 4 (Fase 1) e na figura 6 (fase 2). Os revestimentos foram fabricados usando a 

técnica de dip-coating, onde estes corpos de prova de titânio foram usados como 

substrato, utilizando o equipamento por imersão (dip-coating) da marca Marconi modelo 

MA765, com um sistema de elevação para emulsificação as placas. Os corpos de prova 

de titânio foram colocados no porta amostras com capacidade para 3 corpos de prova. 

O porta amostras foi dotado de um pino para facilitar a conexão com a abraçadeira do 

equipamento por imersão. Subsequentemente, os substratos foram revestidos com as 

soluções híbridas ZrO2 [2 M]: Li+ (15%): Sr (15%)/PEG. A velocidade de extração foi 

ajustada para 35 cm/min. Os substratos revestidos foram gelificados e secos no ar a 

temperatura ambiente dentro do equipamento dip-coating por 1 minuto. Após, os 

substratos revestidos foram submetidos a tratamento térmico (Mufla: EDG Equipamentos 

3000) a 40°C durante 24 horas para promover a densificação do filme. Após tratamento 

térmico, os substratos revestidos foram armazenados na câmara de vácuo sob gás 
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nitrogênio (marca Plas-Lab Quimis Q216-21) por 8 horas até ser embalados e 

encaminhados para as diversas caracterizações. 

 

4.2.4. Técnicas eletroquímicas 
 

Diversos métodos eletroquímicos podem ser utilizados para se obter películas de 

óxidos sobre a superfície dos biomateriais principalmente em diversas ligas de titânio. O 

presente estudo visou o estudo do comportamento do Ti F67 GR2 #2,25 MM, utilizando 

a técnica de polarização catódica. Estas técnicas são utilizadas para estudos de corrosão 

e biocorrosão de materiais mecânicos para biomateriais (LEWANDOWSKI; BEYENAL, 

2013). 

 

4.2.4.1. Polarização Catódica 
 

As reações catódicas envolvem a redução de oxigênio e a liberação de hidrogênio 

e podem ocorrer em médio ácido ou em meio básico (PHILIP A. SCHWEITZER, 2009). 

Na reação catódica em meio ácido, o hidrogênio pode estar acessível na superfície do 

metal de várias fontes, incluindo a redução catódica do hidrogênio da água (SINGH; 

DAHOTRE, 2007). 

ାܪ2 ൅ 2݁ →  ଶ         (1)ܪ

ଶܱܪ2 ൅ 2݁ → 		ଶܪ ൅  (2)       ିܪ2ܱ

Estas reações catódicas podem ocorrer por corrosão, proteção catódica, 

decapagem ácida, ou outro processo de limpeza. O hidrogênio penetra na rede como 

hidrogênio nascente, ou atômico, que é uma forma intermediária na formação da 

molécula de H2 na superfície pelas equações 1 ou 2. Processos que envolvem 

polarização catódica aceleram a formação de hidrogênio. Alguns elementos, quando 

dissolvidos na liga, retardam a formação do H2 aumentando o tempo de residência do 

hidrogênio nascente na superfície (MCCAFFERTY, 2010, SZABO et al., 2001). Desta 

forma há o favorecimento da difusão do hidrogênio para o interior da liga causando danos 
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por hidrogênio. Os elementos mais comuns que retardam a saída do hidrogênio são P, 

Sb, As, S, Se, Te e CN. O mais comum é o enxofre, por estar presente em fluidos como 

o petróleo, gás natural, águas de poços e vapores geotérmicos(LEWANDOWSKI; 

BEYENAL, 2013). Na polarização catódica de corrente continua ou impressa a 

configuração usada consiste numa fonte em um equipamento eletroquímico ligado ao 

cátodo da amostra e um ânodo de platina, sob meio ácido (Fórmulas 1 e 2). 

 

4.2.4.2. Parte experimental polarização catódica 
 

Esta seção visa a descrição do procedimento experimental de polarização 

catódica realizada no ambiente do presente trabalho para uma melhor compreensão dos 

resultados experimentais. Os materiais utilizados estão apresentados na tabela 5. 

Tabela 5 - Materiais utilizados para do processo de polarização catódica 

Reagentes  Fórmula molecular Marca 

Ácido acético CH3COOH Sigma aldrich 

Acetato de sódio C2H3NaO2 Sigma aldrich 

Papel indicador de pH (0-14) - MColorpHast 

Água Destilada H2O Laboratório 

 

 

4.2.4.3. Ensaio eletroquímico polarização catódica 
 

No ensaio eletroquímico (Polarização catódica) utilizou-se uma célula de vidro de 

três elétrodos com dupla parede (Figura 20). 
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Figura 20 - Características da célula Eletroquímica para 5 eléctrodos 
Fonte: O autor 

 

O elétrodo cátodo utilizado nos ensaios realizados foi um corpo de prova de liga 

de titânio TI F67 GR2 - UNS R50400, com dimensão de 1x1 cm2 e 2,25 mm de 

espessura. 

De modo a remover a rugosidade do produto original e substâncias pudessem ser 

adsorvidas na superfície do elétrodo, houve a necessidade de realizar um pré-tratamento 

nos corpos de prova como descrito nos fluxogramas da figura 4 e figura 6 

respectivamente, que são os pré-tratamentos sob procedimentos de polimento mecânico 

e pré-tratamento por ataque ácido. 

Como ilustra o fluxograma da figura 21 e a esquematização da figura 23, os corpos 

de prova foram montados e inseridos no porta amostras de costas do lado sem pré-

tratamento e lado com pré-tratamento mecânico e ataque ácido, foram colocados em 

frente da platina retangular cobrindo toda a superfície dos corpos de prova numa 

distância de 1,5 cm, sob um agitador magnético a 5 rpm e com uma temperatura de 

21°C. O elétrodo de platina apresentou forma retangular-semicircular e as amostras 

foram sempre colocadas no centro do eletrodo de platina para assegurar uma distância 

horizontal 1,5 cm e vertical igual entre os dois eletrodos para todos os corpos de prova.  
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O pH 3 foi monitorado a cada 30 minutos com papel indicador de pH (0-14) 

MColorpHast. A temperatura foi controlada com um termômetro de lado da célula 

eletroquímica com um Becker e água. A tabela 6 descreve as polarizações que foram 

realizadas em 200 ml de uma solução tampão 2 M de ácido acético e acetato de sódio a 

pH 3 e pH 5. No setup as amostras de titânio são o catodo e durante a redução catódica. 

A solução tampão foi mantida a 21°C durante todo o ensaio experimental. Após o 

processo todas as amostras foram secas numa câmara de vácuo sob gás nitrogênio 

(marca Plas-Lab Quimis Q216-21) por 2 horas até ser embaladas em tubos eppendorf 

para as diversas caracterizações. 

 

Figura 21 - Fluxograma do processo de polarização catódica pH 3/ 1,6 mA/cm2 

Fonte: O autor 
 

O equipamento utilizado para a realização dos ensaios eletroquímicos foi o 

potencióstato marca e modelo (AUTOLAB Metrohm, AUT85833) apresentado na figura 

23 que usa o software Nova versão 1.1 o qual controla parâmetros como tempo do ensaio 

laboratorial e corrente. Os corpos de prova funcionaram como cátodo durante a redução 

catódica, enquanto um elétrodo de platina retangular foi utilizado como ânodo. Os corpos 
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de prova foram processados durante 4 e 1 hora (Figura 21) respectivamente conforme a 

tabela 6. A figura 22 apresenta as micrografias da liga titânio após polarização catódica. 

Tabela 6 - Descrição dos grupos experimentais pelo processo eletroquímico. 
Grupo  Solução tampão pH Tempo  Densidades de corrente 

P1 

200 mL 

2M 

Ácido acético 

Acetato de sódio 

3 8 horas 1,6 mA/cm2 

P0 

200 mL 

2M 

Ácido acético 

Acetato de sódio 

5 1 hora 1,4 mA/cm2 

 

Figura 22 - Micrografia da liga titânio após polarização catódica diferentes pH à magnificação de 
1000XO2 e 1500XOI2(Ph: Fase de contraste) Fonte: O autor 
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Figura 23 - Esquematização dos ensaios de polarização catódica 
Fonte: O autor 
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4.2.5. Espectrometria de fluorescência de raios X por energia dispersiva 
 

Espectrômetro de dispersão de energia de raios X (EDX) é uma técnica que 

permite a caracterização da composição elementar de um microvolume de material que 

tem por base a análise do respectivo espectro de emissão de raios-X. O equipamento 

modelo e maca (EDX-720 – SHIMADZU) é um instrumento que determina 

qualitativamente e quantitativamente os elementos presentes em uma determinada 

amostra. Isto é possível através da aplicação de raios X na superfície da amostra e a 

posterior análise dos fluorescentes raios X emitidos. A técnica de fluorescência de raios 

X é não-destrutiva para todos os tipos de amostras, incluindo sólidos, líquidos e pós.  

As análises foram realizadas após a calibração do equipamento. O porta amostra 

foi montado conforme especificação do fabricante do equipamento, utilizando a porta 

adequado, com fundo de filme 3520 POLYPROPYLENE 0,2mil (5 μ), específico para 

análise de XRF e EDX. O método utilizado foi de [quali-quant] easy-metal que determina 

os elementos e/ou metais presentes na superfície do material e os quantifica. As análises 

foram realizadas com o feixe do raio X operando em 1mm, analisando o material em 

duas faixas, Ti-U e Na-Sc (Tabela 7). 
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Tabela 7 - Análise quantitativa de EDX dos elementos presentes nas superfícies de titânio revestidas com materiais híbridos 
 

Grupos 
Elementos presentes na superfície do material Faixas (Ti-U e Na-Sc) 

% TiO2 %ZrO2 % SO3 % P2O5 %CaO %CuO %K2O %In2O3 %Fe2O3 %SiO2 %SrO 

G1 79.47 0.045 25.07 1.71 0.19 - - - - - - 

G2 73.93 - 24.00 1.78 0.28 0.02 - - - - - 

G3 73.11 0.012 24.99 1.57 0.27 0.02 - - - - - 

G4 76.24 - 22.39 1.10 0.25 0.01 - - - - - 

G2-V2 72.54 0.045 18.70 2.14 28.93       

G5 73.04 - 24.15 1.61 0.09 0.02 0.97 0.16 - - - 

G6  72.67 - 24.80 1.39 0.08 0.02 0.95 0.10 - - - 

P1 67.59 - 31.00 1.28 0.10 0.02 - - 0.01 - - 

P0 65.01 - 33.05 1.79 0.12 0.03 - - -   

GHOP1 99.966 - - - 0 0.034 - - 0 0 0 

GHOP2 98.438 - - - 0 0.04 - - 0 1.522 0 

GHOP3 99.43 - - - 0.148 0.042 - - 0.078 0 0.303 

 



101 
 

4.2.6. Microscopia de Força Atômica, rugosidade e Topografia 
 

A microscopia de força atômica (AFM) permite obter imagens reais da 

topografia de superfícies, em três dimensões e em escala atômica. Foi utilizado o 

equipamento da SHIMADZU modelo SPM-9600 utilizando o modo de força lateral 

(LFM). 

Na operação do Microscópio de força atômica (AFM) uma sonda de dimensões 

atômicas é montada sobre um braço em movimento que percorre a amostra a ser 

analisada. À medida que a ponta se aproxima da superfície ocorrem deflexões do 

braço que são causadas pelas interações entre os átomos da sonda e da amostra. A 

sonda de AFM segue os contornos da superfície. Durante o deslocamento da ponta, 

o computador analisa, em cada ponto, a força de interação entre a ponta e a amostra 

e traça o diagrama das alturas, construindo a topografia (BOWEN; HILAL, 2009). 

A técnica de AFM pode operar em dois modos de forças distintas: não-contato 

e contato. No modo de não-contato, a separação entre a ponta e a superfície da 

amostra é da ordem de 10 a 100 nm. Com separações menores, da ordem de Å, a 

ponta está em contato com a superfície da amostra (BOWEN; HILAL, 2009). 

Para o presente trabalho o AFM (AutoProbe CP, Thermomicroscopes) foi 

operado em modo de contato intermitente em condições ambientais (25 °C e umidade 

relativa 50%). Para obter imagens topográficas, utilizou-se uma ponta de silício (UL 

2.0), operando a uma frequência de ressonância de aproximadamente 320 kHz e taxa 

de varredura de 1 Hz. 

A topografia das amostras de titânio com rugosidade tratadas pelas técnicas 

combinação das técnicas de tratamento mecânico, tratamento ácido, sol-gel dip-

coating e polarização eletroquímica catódica foram avaliadas por microscopia de força 

atômica. A imagem 3D foi adquirida no modo de não contato. As figuras 24 até 27 

apresentam as amostras tratadas pelo processo polarização eletroquímica catódica e 

as figuras 28 até 48 aquelas tratadas pelo processo sol-gel dip-coating. 
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Figura 24 - P1 - AFM (1µm) polarização catódica (CH3COOH- C2H3NaO2) /1,6 mA/cm2 

Fonte: O autor 
 

 

 

Figura 25 - P1 - AFM (2µm) polarização catódica (CH3COOH- C2H3NaO2) /1,6 mA/cm2 

Fonte: O autor 
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Figura 26 - P1- AFM (1µm) polarização catódica (CH3COOH- C2H3NaO2) /1,6 mA/cm2 

Fonte: O autor 
 

 

 

Figura 27 - P1- AFM 2µm solução tampão (CH3COOH- C2H3NaO2) /1,6 mA/cm2 

Fonte: O autor 
 

 



104 
 

 

Figura 28 - G1- AFM 1µm do revestimento de ZrO2/PEG [0,2 M] 
Fonte: O autor 

 

 

Figura 29 - G1- AFM 2µm do revestimento de ZrO2/PEG [0,2 M] 
Fonte: O autor 
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Figura 30 - G2- AFM 1µm do revestimento de TiO2/PEG [0,2 M] 
Fonte: O autor 

 

Figura 31 - G2- AFM 2µm do revestimento de TiO2/PEG [0,2 M] 
Fonte: O autor 
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Figura 32 - G2- AFM 1µm do revestimento de TiO2/PEG [0,2 M] 
Fonte: O autor 

 

 

Figura 33 - G2- AFM 2µm do revestimento de TiO2/PEG [0,2 M] 
Fonte: O autor 
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Figura 34 - G3- AFM 1µm do revestimento de TiO2 [0,2 M]: Li+ (15%): Zr (15%)/PEG 
Fonte: O autor 

 

 

 

Figura 35 - G3- AFM 2µm do revestimento de TiO2 [0,2 M]: Li+ (15%): Zr (15%)/PEG 
Fonte: O autor 
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Figura 36 - G3- AFM 1µm do revestimento de TiO2 [0,2 M]: Li+ (15%): Zr (15%)/PEG 
Fonte: O autor 

 

 

 

Figura 37 - G3- AFM 2µm do revestimento de TiO2 [0,2 M]: Li+ (15%): Zr (15%)/PEG 
Fonte: O autor 
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Figura 38 - G4- AFM 1µm do revestimento de TiO2 [0,2 M]: Li+(15%)/PEG 
Fonte: O autor 

 

 

Figura 39 - G4- AFM 2µm do revestimento de TiO2 [0,2 M]: Li+(15%)/PEG 
Fonte: O autor 
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Figura 40 - G4- AFM 1µm do revestimento de TiO2 [0,2 M]: Li+(15%)/PEG 
Fonte: O autor 

 

 

Figura 41 - G4- AFM 2µm do revestimento de TiO2 [0,2 M]: Li+(15%)/PEG 
Fonte: O autor 
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Figura 42 - G2-V2 - AFM 1µm do revestimento de ZrO2/PEG [2 M] 
Fonte: O autor 

 

 

 

Figura 43 - G2-V2 - AFM 2µm do revestimento de ZrO2/PEG [2 M] 
Fonte: O autor 
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Figura 44 - GHOP1- AFM 1µm do revestimento de ZrO2/PEG [2 M] 
Fonte: O autor 

 

 

Figura 45 - GHOP2- AFM 1µm do revestimento de ZrO2 [2 M]: Li+ (15%)/PEG 
Fonte: O autor 
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Figura 46 - GHOP2- AFM 2µm do revestimento de ZrO2 [2 M]: Li+ (15%)/PEG  
Fonte: O autor 

 

 

Figura 47 - GHOP3- AFM 1µm do revestimento de ZrO2 [2 M]: Li+ (15%): Sr (15%)/PEG 
Fonte: O autor 
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Figura 48 - GHOP3- AFM 2µm do revestimento de ZrO2 [2 M]: Li+ (15%): Sr (15%)/PEG 
Fonte: O autor 

 

 

4.2.7. Testes de citotoxicidade 
 

4.2.7.1. Cultura de células 
 

Uma linha de fibroblastos imortalizados (3T3/NIH) foram cultivadas em meio 

DMeM (Dulbecco’s modified eagle’s medium), suplementado com 10% de soro fetal 

bovino (SFB) (Cultilab®), 2% de l-glutamina, penicilina (100 U/mL) e estreptomicina 

(100 mg/mL) (giBco-Brl). As células foram mantidas em 75 cm3 cultura celular em 

ambiente controlado (37°C, 5% CO2), até alcançar a subconfluência (80%), sendo 

lavadas com solução salina tamponada com fosfato (PBS) (Gibco®), para remover os 

metabolitos das células. Após, 5 ml de tripsina / EDTA a 0,25% (Gibco®) foi aplicado 

nas células durante 5 minutos para desprendimento celular. Após foi realizada a 

inativação da tripsina com DMeM, e as células foram transferidas para tubos de falcão 

e centrifugadas durante 5 minutos sob 1000 rpm. O sobrenadante foi removido e o 

sedimento celular foi suspenso em 3 mL de meio (DMem / FBS 90:10). Assim, foram 

tomados 20 μL de suspensão para contagem celular num hemocitómetro. Todos os 

materiais encontram-se descritos na Tabela 8. 
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Tabela 8 - Materiais utilizados para cultura celular e Ensaio MTT 

Reagentes e/ou célula Abreviação Marca 

Fibroblastos imortalizados 3T3/NIH - 

Dulbecco’s modified eagle’s medium DMeM Cultilab® 

Solução salina tamponada com fosfato PBS Gibco® 

Soro fetal bovino SFB Cultilab® 

l-glutamina - giBco-Brl 

Penicilina (100 U/mL) - giBco-Brl 

Estreptomicina (100 mg/mL) - giBco-Brl 

Tripsina/EDTA 0,25%  Gibco® 

3-(4,5- dimethyl-2-thiazolyl)-2,5-diphenyl-2H-

tetrazolium bromide 
MTT - 

Placa de 48 poços - - 

Garrafas para cultivo celular - - 

 

4.2.7.2. Adesão Celular em Ensaio MTT 
 

Para o ensaio de adesão celular, os corpos de prova de titânio esterilizados (TI 

F67 GR2, 1x1 cm2 e 2,25 mm de espessura) (N = 10 por grupo) foram inseridos em 

placas de 48 poços com a superfície tratada voltada para cima (figura 49). 

Inicialmente, 10x104 células suspensas em 800 μL de meio foram semeadas em cada 

poço. Para o controle positivo, a mesma quantidade de células foi semeada em poço 

sem os corpos de prova de titânio (N = 10), e para o controle negativo, foram 

depositados 800 μL de meio nos poços sem células.A placa foi mantida numa 

incubadora com atmosfera controlada (37 °C, 5% CO2) durante 24 horas com o intuito 

de promover e ocorrer a adesão celular. Subsequentemente, os corpos de prova de 

titânio foram transferidos delicadamente, com o auxílio de uma pinça estéril, para uma 

nova placa de 48 poços, com o objetivo de transferir apenas as células de titânio 

aderidas. Seguidamente, um meio fresco (800 μL) era depositado acima da placa de 

titânio e os meios dos controles positivos e negativos também foram trocados. A placa 

permaneceu durante mais 24 horas numa incubadora. Depois disso, o meio foi 

suavemente removido e os corpos de prova de titânio e os controles dos poços foram 

lavados com 800 μL de PBS. 
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Figura 49 - Fluxograma de adesão Celular em Ensaio MTT sob superfície de titânio. 
Fonte: O autor 

 

O meio foi depositado em cada poço (800 μL) com a adição de MTT (3-(4,5-

dimetiltiazol-2-il)-2,5-difeniltetrazólio) na concentração de 0,5 mg/mL(Sigma Aldrisch®) 

e mantidos em contato com as células durante 4 h (37 ° C e 5% de CO2). Após a 
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incubação, o meio foi removido e os cristais de formazano presentes nas superfícies 

tratadas dos corpos de prova de titânio foram suspensos em 800 μL de 

dimetilsulfóxido a 10% (DMSO) durante 15 minutos e mantidos num agitador durante 

mais cinco minutos (150 rpm). Os resultados foram avaliados por espectrofotometria 

(Universal ELISA reader- wavelength of 540 nm), sendo os valores de absorbância 

considerados como indicadores de proliferação celular. 

A descrição dos dados provenientes do teste in vitro foi feito mediante análise 

descritiva e analítica. Foi usado o software SigmaPlot software versão 12.0 (Systat 

Software, Inc ). Inicialmente foi realizado o teste de normalidade pelo teste Shapiro-

Wilk. A análise de variância de comparação entre grupos foi mediante ANOVA ou 

Kruskall Wallis (dependendo da distribuição) e comparação múltipla mediante o teste 

de Tuckey ou Dunnet com nível de significância 5% (p<0.05) 

A figura 45 apresenta as medias de celulas presentes por grupo obtidas pelo 

teste de proliferação celular dos revestimentos biomiméticos de titânio. Na tabela 9 

podem ser observados os dados descritivos referentes às medias e desvios padrão 

referentes à viabilidade celular de acordo com cada grupo e etapa estudados. De 

forma geral pode ser observado que todos os grupos promoveram proliferação celular, 

sendo que os grupos 1 e 2 permitiram maior crescimento celular.  

Na Etapa 1, o grupo G3 apresentou a maior media de crescimento celular 

seguido do grupo G1 (Figura 51). Houve diferenças estatísticas entre os grupos 

controle e todos os grupos experimentais. Os grupos G4 e G1 não foram diferentes 

estatisticamente, mas foram diferentes aos grupos G2 (Tabela 10). Na etapa 2, o 

grupo G6 apresentou a maior media de crescimento celular seguido do grupo G2 

(Figura 52). Houve diferenças estatísticas entre o grupo controle e os grupos 

experimentais P1, G5 e G2. Os grupos G6 e G2 não foram diferentes estatisticamente, 

mas foram diferentes aos grupos G5 e P1 (Tabela 12).  Na etapa 3, o grupo G4 

apresentou a maior media de crescimento celular seguido do grupo G2 (Figura 53). 

Houve diferenças estatísticas entre o grupo controle e todos os grupos experimentais. 

Os grupos G4 e G2 não foram diferentes estatisticamente, mas foram diferentes aos 

grupos G0, G1, G3 e G5 (Tabela 14). 
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Figura 50 - Teste de citotoxicidade com amostras de revestimentos biomiméticos-Ti com diferentes técnicas. 
Fonte: O autor 

 

Tabela 9 - Dados descritivos de acordo com cada grupo e etapa estudada 

Grupo de 
Estudo 

Etapa 1  Etapa 2 Etapa 3
G1  

Mean 
(SD) 

G2 
Mean 
(SD) 

G3 
Mean 
(SD) 

G4 
Mean 
(SD) 

GC
Mean 
(SD) 

G2
Mean 
(SD) 

G5
Mean 
(SD) 

G6
Mean 
(SD) 

P1
Mean 
(SD) 

GC   
Mean 
(SD) 

G0
Mean 
(SD) 

G1
Mean 
(SD) 

G2
Mean 
(SD) 

G3
Mean 
(SD) 

G4  
Mean 
(SD) 

G5 
Mean 
(SD) 

GC  
Mean 
(SD) 

Viabilidade 
celular 

2.300 
(0.176) 

2.249 
(0.139) 

2.402 
(0.096) 

2.385 
(0.156) 

2.983 
(0.170) 

2.085 
(0.358) 

1.793 
(0.690) 

2.589 
(0.278) 

1.254 
(0.182) 

2.930 
(0.240) 

0.620 
(0.061) 

0.579 
(0.070) 

0.615 
(0.063) 

0.539 
(0.100) 

0.665 
(0.062) 

0.439 
(0.031) 

1.252 
(0.078) 

SD: Desvio padrão, PM=Polimento mecânico, AC=Ataque ácido, Etapa1 [GC= grupo controle, G1= ZrO2/PEG [2 M], G2 = TiO2/PEG [2 M]. G3 = TiO2 
[2 M]: Li (15%): Zr (15%)/PEG, G4 = TiO2 [2 M]: Li (15%)/PEG] Etapa2[ GC= grupo controle, G2= ZrO2/PEG [2 M], G5= ITO (Sim NaCl a 0,9%), G6 = 
ITO (Com NaCl a 0,9%), P1 = Solução tampão (CH3COOH‐C2H3NaO2) ], Etapa 3[GC= grupo controle, G0= Polimento mecânico, G1= PM/AC (Sim NaCl 
a 0,9%), G2= Ataque ácido, G3 = PM/AC (Com NaCl a 0,9%), G4 = sim tratamento, G5= PM/AC]   
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Figura 51 - Teste de citotoxicidade dos revestimentos pelo processo sol-gel dip coating com 
diferentes sóis. Fonte: O autor 

 
Tabela 10 - ANOVA para comparações entre os grupos experimentais Etapa 1 
Grupo de 

Estudo  

Etapa 1 

G1  

Mean 

(SD) 

G2 

Mean 

(SD) 

G3 

Mean 

(SD) 

G4 

Mean 

(SD) 

GC  

Mean 

(SD) 

Viabilidade 

celular 

2.300 

(0.176)bc

2.249 

(0.139)c

2.402 

(0.096)b

2.385 

(0.156)b

2.983 

(0.170)a 

SD: Desvio padrão, diferentes letras e símbolos, significa diferença estatística 
(p<0.05) 

Tabela 11 – Descrição dos grupos experimentais da etapa 1 
Nome do Grupo Descrição do Grupo 

GC Grupo controle 

G1 ZrO2/PEG [2 M] 

G2 TiO2/PEG [2 M] 

G3 TiO2 [2 M]: Li+ (15%): Zr (15%)/PEG 

G4 TiO2 [2 M]: Li+ (15%)/PEG 
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Figura 52 - Teste de citotoxicidade dos revestimentos pelo processo sol-gel dip coating e polarização 
eletroquímica 
Fonte: O autor 

 
 

Tabela 12 - Kruskal-Wallis para comparações entre os grupos G experimentais (GC, G2, G5, G6, P1) 
e teste de Dunn para comparações entre grupos da etapa 2 

 
Grupo de 

Estudo  

Etapa 2 

G2 

Median 

(SD) 

G5 

Median 

(SD) 

G6 

Median 

(SD) 

P1 

Median 

(SD) 

GC  

Median 

(SD) 

Viabilidade 

celular 

2.241 

(0.358)b

1.459 

(0.690)c

2.493 

(0.278)ab

1.240 

(0.182)d

2.987 

(0.240)a 

SD: Desvio padrão, diferentes letras e símbolos, significa diferença estatística 
(p<0.05) 

Tabela 13 Descrição dos grupos experimentais da etapa 2 
Nome do Grupo Descrição do Grupo 

GC Grupo controle 

G2 ZrO2/PEG [2 M] 

G5 ITO (Sim NaCl a 0,9%) 

G6 ITO (Com NaCl a 0,9%) 

P1 Solução tampão (CH3COOH- C2H3NaO2) 
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Figura 53 - Teste de citotoxicidade dos corpos de prova pelo pré-tratamentos 
Fonte: O autor 

 
Tabela 14 - ANOVA para comparações entre os diferentes grupos estudados etapa 3 G (G0, G1, G2, 

G3, G4, G5) 
Grupo de 

Estudo  

Etapa 3 

 G0 

Mean 

(SD) 

G1 

Mean 

(SD) 

G2 

Mean 

(SD) 

G3 

Mean 

(SD) 

G4 

Mean 

(SD) 

G5 

Mean 

(SD) 

GC 

Mean 

(SD) 

Viabilidade 

celular 

0.639 

(0.061)b 

0.569 

(0.070)b

0.601 

(0.063)d

0.550 

(0.100)c

0.663 

(0.062)d 

0.439 

(0.031)c 

1.252 

(0.078)a

SD: Desvio padrão, diferentes letras e símbolos, significa diferença 
estatística (p<0.05) 

Tabela 15 – Descrição dos grupos experimentais da etapa 3 
Nome do Grupo Descrição do Grupo 

GC Grupo controle 

G0 Polimento mecânico 

G1 PM e AC (Sim NaCl a 0,9%) 

G2 Ataque ácido 

G3 PM e AC (Com NaCl a 0,9%) 

G4 Sim tratamento 

G5 Polimento mecânico/Ataque ácido 

PM: Polimento mecânico, AC: Ataque ácido 
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Abstract 

Background. The cathodic polarization seems to be an electrochemical method 

capable of modifying and coat biomolecules on titanium surfaces, improving the 

surface activity and promoting better biological responses. 

Objective. The aim of the systematic review is to assess the scientific literature to 

evaluate the cellular response produced by treatment of titanium surfaces by applying 

the cathodic polarization technique.  Data, sources, and selection. The literature 

search was performed in several databases including PubMed, Web of Science, 

Scopus, Science Direct, Scielo and  EBSCO Host, until June 2016, with no limits used. 

Eligibility criteria were used and quality assessment was performed following slightly 

modified ARRIVE and SYRCLE guidelines for cellular studies and animal research. 

Results. Thirteen studies accomplished the inclusion criteria and were considered in 

the review. The quality of reporting studies in animal models was low and for the in 

vitro studies it was high. The in vitro and in vivo results reported that the use of cathodic 

polarization promoted hydride surfaces, effective deposition, and adhesion of the 

coated biomolecules. In the experimental groups that used the electrochemical 

method, cellular viability, proliferation, adhesion, differentiation, or bone growthwere 

better or comparable with the control groups. Conclusions. The use of the cathodic 

polarization method to modify titanium surfaces seems to be an interesting method 

that could produce active layers and consequently enhance cellular response, in vitro 

and in vivo animal model studies. 

 

Keywords. Cathodic polarization, electrochemical methods, medical titanium, cellular 

response, osseointegration, animal model 

Introduction 

The use of dental implants has increased in the last decades and they are 

currently widely used to provide good clinical results and high survival rates of 94.4% 

[1, 2]. Titanium-based materials are employed for medical purposes in implants for 

plastic and reconstructive surgeries and orthopaedic and craniofacial reconstructions, 

and also in dental implantology [3]. 

Titanium is a highly biocompatible material, showing adequate mechanical 

properties, chemical stability and corrosion resistance[4]. The biocompatibility of 

titanium implants  is attributed to the stable oxide layer[3], and  together with their 
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excellent mechanical characteristics, allow satisfactory tissue reaction, bone matrix 

formation, and low immune responses[1]. Even though they have a wide spectrum of 

advantages implant can fail,  especially in patients with poor bone remnants, poor 

wound healing, or the presence of systemic problems such as osteoporosis and 

diabetes, which could reduce cellular response [5]. 

In order to improve the biological activity of the titanium surfaces and to promote 

better osteointegration and bone healing, modifications on the titanium implant surface 

are being used and tested, trying to preserve the titanium mechanical properties and 

bioinertness [6]. Electrochemical treatment is one of the surface treatments that have 

been indicated to be relatively simple and cheap, capable of maintaining titanium’s 

mechanical properties and enhancing cellular responses [6]. Anodic polarization is the 

electrochemical treatment widely used to deposit molecules on the surfaces, showing 

the improved biocompatibility of titanium due to the increasing roughness and the 

oxide layer of the titanium surface [7]. Cathodic polarization is an alternative of 

electrochemical treatment that has recently been more investigated [6]. This 

electrochemical treatment is a method that has been reported as a simpler method 

that does not need higher temperatures to be performed and can activate titanium 

surfaces promoting roughness and depositing biomolecules [8]. The cathodic process 

could produce hydride layers, turning the possible charging of biomolecules [9], 

including the hydroxyapatite formation, with its capability of inducing a calcium 

phosphate formation in supersaturated aqueous solutions [10]. Even though the 

cathodic electrochemical option seems to be an interesting and simplified method to 

modify titanium surfaces that could enhance cellular activity and bone deposition, the 

literature is limited and is not consistent regarding the cellular responses. 

The purpose of the present review was to systematically analyze systematically the 

existing studies that used the cathodic polarization technique to modify titanium 

surfaces to produce biological active titanium surfaces in vitro and in vivo. 

Methods 

This systematic review followed the PRISMA statement and the ARRIVE 

statements for reporting animal researches.  

Our research question was formulated using the P.I.C.O. principle to determine 

if the use of cathodic polarization can produce biologically active medical titanium 
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surfaces in terms of cellular response (proliferation, adhesion, or differentiation) in vitro 

(cells) or in vivo (animal model).  

Search Strategy  

The search was conducted in PubMed, Web of Science, Scopus, Science 

Direct, Scielo and EBSCOHost databases until June 2016. Google Scholar and 

doctoral theses related to the research questions were also searched and reviewed. 

No restrictions on publication data or languages were used.  

Mesh terms, commonly used terms, and synonyms were included as part of the 

search. An extensive combination of keywords was performed, and in order to include 

all the studies of interest [11], final keywords used included the following terms: 

("dental implants" OR implants, dental OR dental implant OR medical implants OR 

implants OR prostheses, surgical OR dental prosthesis, surgical OR surgical 

prostheses OR surgical dental prosthesis OR prostheses, surgical dental OR 

prosthesis, surgical dental OR discs) AND titanium AND (cathodic polarization OR 

hydride formation OR "surface deposition" OR "surface modification" OR "surface 

treatment") 

The sequence of the keywords were adapted according to databases 

requirements, for instance the Web of Science included “TS=" at the beginning of each 

item.  

Search results were uploaded to EndNote software (version 7.0, Thompson 

Reuters, 1988-2013) to facilitate and standardized the literature revision and analysis. 

 

Study Selection 

Inclusion criteria  

Studies that used medical pure titanium or titanium implants modified by the 

cathodic polarization treatment, at least in one group, were included. Cathodic 

polarization method was considered when it was used the experimental titanium as 

working electrode (cathode) and a platinum electrode as anode,  an acidic electrolyte 

solution , a controlled current density, a controlled temperature, a controlled time  and 

galvanostatic technique. 
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Biological response, including cellular proliferation, adhesion, and 

differentiation; by in vitro cellular essays, animal models, or human clinical trials had 

to be tested to be included in our sample. 

 

Exclusion criteria 

Researches that evaluated titanium alloys, other material types different from 

titanium and orthodontic titanium appliances by mechanical or physical tests were 

excluded. Studies without control groups were also excluded. Modifications of the 

cathodic polarization standard method, literature reviews, patents, comments, editor 

letters, abstracts, or posters presentations were also excluded.  

 

Selecting method 

The selection was performed by two reviewers (MMSS and JCBA) 

independently and in duplicate, using the same eligibility criteria. The training and 

calibration process was performed prior to the formal literature analysis. For title and 

abstract analysis, inter-rater kappa values ranged from 0.88 to 0.93 and from 0.91 to 

0.97 respectively.   The selection was carried out in four stages. In a first stage, 

duplicated records were excluded and the titles of the remaining studies were 

screened to identify studies related to our research question. In the second stage, 

abstracts were read to localize and include studies that fulfilled the selection criteria. 

In the third stage, the full text was read and in the fourth stage the quality assessment 

was done. Differences in data extraction between the reviewers were discussed and 

consensus was reached. 

Crosschecked bibliographies of the eligible papers for additional references 

were reviewed according to the eligibility criteria, and newfound studies were added if 

accomplished the eligibility criteria.  

 

Data extraction  

Data extracted were sample size; material, design and diameters of the titanium 

specimens; pre-treatment; studied groups; coating molecule; deposition methods 

used, characteristics of the cellular essay and/or animal models, cellular responses 

(proliferation, adhesion, and differentiation) or bone deposition as primary outcome, 
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other mechanical or physical characterization performed, statistical analysis, and other 

results. Standard deviation and means were also extracted if reported.  

Pre-defined data-collection worksheets were employed for the assessment of 

the collected records and for each selected publication. Data was organized in tables 

and categorized to be analyzed for systematic synthesis. Descriptive analysis 

(absolute and relative numbers) were performed using the software STATA 12.0 

(StataCorp, College Station, TX, USA). 

 

Quality assessment  

Each study was evaluated according to ARRIVE and SYRCLE statements for 

animal model studies. The ARRIVE criteria was modified to assess the quality of the 

in vitro studies. 

ARRIVE guidelines for reporting in vivo experiments in animal research present 

a checklist of 20 items to evaluate and have been developed using the CONSORT 

statement as their foundation. The SYRCLE statement had 10 items and attempted to 

report if the studies were low bias, high bias, or unclear bias. 

 

Results  

The initial search yielded 3,807 records. After the exclusion of duplicate records 

and the use of the eligibility criteria, 13 studies remained [9, 10, 12-23]. The 

identification of the papers and the selection process are presented in Fig1. The 

exclusion of the studies in the last selection phase was mainly due to the use of a 

modified version of cathodic polarization and the used of other methods different from 

cathodic polarization as main outcome. Detailed reasons for exclusion are presented 

in S1 Table. The thirteen studies that accomplished the full eligibility criteria were 

selected as final sample. 

 

Fig 1. Flowchart information of the different phases of papers search and 

selection. 
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Sensitivity analysis  

Quality criteria of the studies are described in Table 1. According to the arrive 

criteria, 20 items were evaluated in the animal model in vivo studies. The in vivo animal 

model studies presented high or unclear risk of bias. The studies did not report 

information regarding selection method, sampling and allocation process, 

randomization, animal allocation and hostelling, blinding and dropouts, or replacement 

of the animals. Control of any confounders was also not reported. Overall results from 

seven studies with animal model showed that information was unclear (n=15(10.7%)) 

or partially reported (n=41 (29.3%)). The overall results of “No” (high risk) was 27 

(21.0%), and "Yes"(low risk) was 57 (40.7%). 

Only 16 items from the ARRIVE criteria fit in the in vitro studies and could be 

evaluated. According to the criteria, in vitro cellular model studies showed medium 

bias. Studies presented incomplete (n=9 (10.7%)) or unclear information (n=9 

(10.7%)). Information that accomplish “Yes" (low risk) criteria was 55 (65.5%) and "No" 

was 11 (13.1%) in the overall sample of in vitro studies.  

Quantitative assessment according the ARRIVE criteria is presented in Table 2 

and qualitative data are present in S1 Fig.  

 

Data Obtained 

All studies used pure titanium-grade 2 or 4 (100.0%). Pure titanium and also 

titanium alloys were used in two studies (15.4%).Titanium shapes were used in the 

studies in the form of coins (53.9%), sheets (15.4%), implants (23.1%), and bars 

(7.7%). 

To increase the surface energy, eleven studies (84.6%) prepared the 

experimental titanium surfaces by grinding, polishing, etching, washing, and drying [9, 

10, 13, 15-20, 22, 23]. Cathodic polarization technique was similar in all studies. It was 

used platinum as anode, the titanium sample as cathode and the control electrode 

was calomel (SCE) or silver. The technique included in all cases, the use of acidic 

solutions as a conduction medium. 

The main results of the studies are presented in table 3. Cathodic polarization 

was mainly used to coat biomolecules in eight [9, 10, 12, 15, 16, 18, 21, 22] studies 

(61.6%) three studies (23.1%) used the cathodic polarization for hydration of the 

titanium surfaces [17, 19, 23], and two studies (15.4%) used acid electrolytes[13, 20]. 
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The deposited biomolecules included calcium phosphate derivate in five studies 

(38.5%), such as hydroxyapatite and brushite. Other molecules such as enamel matrix 

derivate, Magnesium, Strontium were also used in three studies (23.1%). Acids such 

as Pyrrole-3-acetic modified, oxalic acetic or tartaric acids were used to promote 

surface modifications in five investigations (38.5%). 

Titanium characterization was performed in all studies. The tests included 

surface morphology by scanning electron microscopy (SEM) or transmission electron 

microscopy (TEM);surface chemistry by X-ray photoelectron spectroscopy (XPS) or 

secondary ion mass spectrometry (SIMS),blue light laser profilometer, UV–vis 

spectroscopy, field emission scanning electron microscopy(FE-SEM), X-ray 

diffraction, and contact angle measurement.  

Biocompatibility and cellular response tests performed were cytotoxicity, cell 

proliferation, adhesion and differentiation, cell morphology observation, and RNA 

isolation-reverse transcriptase (RT)-PCR amplification. For bone growth assessment, 

Rx and bone mineral density, micro-computed tomography (Micro-CT), confocal laser 

microscopy, osseointegration histological analysis, and pull-out tests were conducted. 

Studies performed in vitro cellular tests (46.2%), six studies opted by the in vivo 

animal model (46.2%) and one study (7.7%) was performed in vitro and in vivo essay. 

The cellular types used were MC3T3-E1osteoblast-like cells (71.4%), human gingival 

fibroblast (14.3%), NIH3T3, and fibroblasts (14.3%).  

Studies showed that the cathodic polarization method promoted incorporation 

of the biomolecules, such as phosphate hydroxyapatite derivate, antibiotics, and 

enamel matrix derivate, on the titanium surfaces. 

In vitro cellular tests showed significantly higher cellular proliferation [13, 16, 

20]or adhesion[13, 15, 19] after 3-7 days in the experimental (hydrided or coated) 

groups than in control groups. Cytotoxicity was similar in all groups [20]and gene 

expression of Coll-1mRNA and alkaline phosphatase was increased in the coating 

groups compared to the control groups [9]. 

In vivo animal model studies reported no toxic effect enhancement on bone 

formation [12, 18, 22], showing balance in gene expression  between some biological 

factors such as osteocalcin, collagen-I or TRAP[23], and bone retention [17]in the 

groups of titanium hydrided or with biomolecule coatings[10, 21] compared to control 

groups after 3 -12 weeks of experiment. 
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Discussion 

To the best of our knowledge, this review is the first to systematically collect the 

existing evidence in relation to the cell response to the titanium surfaces modified by 

the cathodic polarization technique 

Indeed, there are several different techniques of deposition to modify medical 

titanium surfaces including plasma, sputter-deposition, sol–gel coatings, 

electrochemical deposition, or biomimetic precipitation. Plasma-spraying is widely 

used [24], as well as the anodic method to coat molecules. Even though there are 

advantages of these last two techniques, they present some drawbacks, such as low 

adhesion and thicker coating, respectively. These problems were attributed to 

technique issues produced essentially by the temperature used.  

Electrodeposition using titanium as a cathode is usually conducted in acidic 

electrolytes, organic or inorganic, in order to modify surfaces of titanium for hydridation 

or deposition of molecules. The techniques make it possible to control the thickness 

of the coating deposit on all kinds of surfaces and reduce the time required for coating, 

as the process is highly reproducible and efficient[12]. 

Results from our included studies  indicated that the use of the cathodic 

polarization as surface treatment in acid solutions induced the hydride layers’ 

formation on titanium, increasing positive cellular responses regarding proliferation, 

adhesion, and differentiation [17, 22, 23].Other studies that used this technique 

reported the reduction of the mechanical properties of titanium due to hydrogen 

embrittlement produced by the hydride layers, which could possible cause implant 

fractures [25, 26]. Recent studies showed that the presence of the hydride layer 

obtained using cathodic polarization offers the potential for attaching biomolecules, 

such as antibiotics and hydroxyapatites in ambient temperatures, on pure titanium, 

titanium alloys [9], or other metal types. In fact, this has been the main advantage of 

the cathodic polarization so far [12]. 

In the present review, most of the investigation have deposited biomolecules 

on titanium and they observed positive deposition in terms of integrity, adhesion and 

thickness, also detecting enhanced cell adhesion.  Biomolecules deposited on the 

surface were observed to maintain their integrity, presenting good interaction with the 

metal surface and having binding strength [18]. The layers generated were mostly thin 

(100um min) but dense enough to promote good strength of the coatings [10]. 
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Bioactive molecules can be adsorbed, affecting cell attachment to the surface 

and tissue response. Several molecules could be deposited to improve titanium 

surfaces in terms of biological responses such as magnesium, strontium, or bone 

proteins [9, 21, 27]. For instance, the electrochemical deposition of calcium-

phosphate-derivate molecules can increase fixation of implants to bone tissue, 

promoting better adhesion and activation of bone cells on the implant surfaces [12]. 

Another advantage is the possibility to deposit drugs on the active surfaces, which 

could be released over a period of time, enhancing the cellular responses [28].  

Some factors related to the method of the cathodic technique deposition can 

influence the film characteristics and consequently cellular response [6]. In this review, 

the eligibility criteria attempted to include studies presenting similar characteristics 

regarding the cathodic method used.   

Most of the studies used room temperatures to performed the test in the range 

of 20ºC to 25ºC.  The technique of deposition is performed at ambient temperatures, 

being that such characteristics are probably responsible for the good conformability to 

the shape of the molecules’ components on titanium surfaces, the thickness of the 

films (less than 1 µm), and the increased resistance to delamination for the coating 

homogeneity and the stronger adhesion of the coating[6]. Lower temperatures during 

deposition of the film can decrease the presence of defects or pores on hidroxyapatite 

crystals [29].  

Cathodic polarization in acid can optimize titanium implant surfaces for 

improved osseointegration. In the present review, most of the studies opted to use 

electrolytes with lower pH (2-6). It was reported that baths with pH of 4.11 produce the 

deposition of hydroxyapatite films on titanium alloy [30]. Studies have observed that 

increasing the pH to 5 [31]or  nearly neutral (7.2)[32] produce mono grain phases.  

Hydrofluoric acid has been shown to increase the hydride and fluoride amount on Ti 

surfaces, changing the porosity of the surface and consequently the surface 

roughness [20]. These alterations were positively correlated within vivo bone retention 

and peri-implant bone mineralization [17] 

Cell adhesion, growth, and biocompatibility between osteoblast-like cells and 

treated surfaces have increased, preserving osteoblastic phenotype [13]. The 

expression of proteins such as Coll-1 mRNA and alkaline phosphatase activity 

indicated the bone proliferation activity promoted by the modified surface [9]. 
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The current density is another factor that can influence the films in relation to 

mechanical, physical and biological characteristics. In our review, studies used current 

densities in the range of 0.4-20mA/cm2 or -2.0 -2.5V  during  30 to 60 minutes . The 

density current determinates the format and the adhesion of the deposit. It has been 

shown that decreasing the current density produced deposits with needle forms and 

increasing it can produce blunt forms of the particles of hydroxiapatite [33]. When 

associate with lower pH and/or with stirrings - ultrasonic or magnetic- the size of the 

particle could be reduced. The size of the particle is also important since smaller 

particles were found to enhance the cellular adhesion on the surface [30]. On the other 

hand, lower current densities in the range of 0.2-15mA/cm2 increased bond strengths 

of the coating [34].  

In our study, the sample was composed of investigation using galvanostatic 

technique. The galvanostatic technique allowed to work in acid or near physiological 

pH at body temperature and doesn`t require post-treatment, which is required in the 

pulse electrochemical method where a post-treatment at high temperatures in the 

range of 300ºC-800ºC is needed. Higher temperatures could negatively have affected 

the mechanical properties of the coated surface as aforementioned.   

The studies included were composed of in vitro cellular essays and in vivo 

animal model experiments that used cathodic polarization method to modified titanium 

surfaces. In vitro results reported significant higher cellular proliferation, gene 

expression of bone formation genes and low cytotoxicity. Animal experiments reported 

no toxic effect, enhancement of bone formation and bone retention in the groups with 

modified surface of titanium by the cathodic technique. In fact, all the studies with 

animal models were performed after an in vitro essay. For instance, in vitro 

observation of titanium surfaces showed needle-like carbonate apatite, this new 

composite enhance the mechanical bonding strength in early stages of implantation in 

the animal model, increasing the filling of the gap between the implant and the surface 

with new bone compared to those without the treatment [12]. The surface 

modifications, in macro and micro level can efficiently increase biological events in 

vitro and in vivo [8].  In the study of Young-Taeg et al., 2009 [21], the treatments 

performed on titanium modified the topographies regarding the roughness and also 

produce chemistry changes on surfaces. These changes were associated with 

improvement of osseointegration since the oxidized groups by cathodic polarization 

presented better stability and bone density [21]. The author also sustained that when 
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implants stability in early stages is low, subsequent resonance values increased 

rapidly over the time, possibly due to difference in bone properties between the 

animals and humans [21]. 

The hydrophilicity is an important factor in the enhancement of the bone 

response [6, 8, 24] . Hydrophilicity was demonstrated to increased osseointegration 

when using in vitro and in vivo animal models [35]. This situation was also detected 

by Lamolle et al., 2009, where a positive correlation was found between high bone 

retention and high amounts of Fluoride and the hydride in the surface in the group with 

lower concentration of electrolyte. The author explained that this could be due to the 

aggressive conditions produced by the high electrolyte concentration, once at low  

hydrofluoric acid concentrations  the surfaces were weakly etched, and consequently, 

kept higher amounts of fluoride, oxide, and hydride  .Also a correlation was observed 

between some roughness parameters regarding positive surface skewness that 

means elevations on flat surfaces, kurtosis higher than 3 that is  rounded peaks and 

high core fluid retention (more spaces between the peaks) with high bone retention of 

implants. Studies showed the importance of the roughness and its relation with higher 

bond strength [36] and the before mention study showed that a conjunct of surface 

parameters can predict the in vivo performance of bone retention [17]. 

It is clear that in vitro controlled methods allowed to obtain more objective 

results, nevertheless is difficult to extrapolated such findings directly to the in vivo 

animal models, since several factors cannot be controlled in animal experimentation 

as opposite to the the in vitro condition[37].  The strengths of the animal experiments 

include the possibility of learning about some biological mechanism in an living 

organism, turning their results more representative to the clinical situation than those 

obtained in vitro [38].  

It was suggested that systematic reviews and meta-analyses on animal 

experiments can be conducted in order to model relevant clinical problems since some 

treatments are currently being offered to vulnerable groups of patients without much 

evidence of their beneficial effects [39, 40]. 

Some limitations should be considered. We did not find any in vivo clinical trials 

using prosthetic appliances obtained by cathodic polarization, making the clinical 

effect of this technique unclear. Additionally, systematic reviews including animal 

experiments or cellular responses are different situations from the in vivo clinical 

reality; however, it allows a more objective appraisal of the research evidence from 
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the traditional narrative reviews, and also offer a sensible and rational approach to 

assessing the translational potential of promising experimental interventions before 

decisions are made to proceed with clinical trials [39, 40]. 

Our findings should be considered with caution, since according to the ARRIVE  

quality criteria the  studies with animal experiments showed medium or high risk of 

bias due to the incomplete or lack of data reported. It has been discussed the 

importance to report information such as the study design, animal characteristics , 

housing and husbandry, allocation of the animal, eventual exclusions or adverse 

events in the studies with animal models, which could influence  the results, especially 

when is testing new medicines or drugs[38, 41].   

However, since there is no evidence testing titanium surfaces modified by 

cathodic polarization  in human clinical trials,  the results obtained from our sample of 

studies using animal experiments can generate contribution firstable with the necessity 

and importance of a good quality reporting of results when an animal model study is 

performed, and second, because of the clear necessity of more evidence using animal 

model before thinking in  human clinical trials.  

This systematic review showed that the use of cathodic polarization produced 

adequate cellular response promoting proliferation, differentiation, and bone 

development in vitro and in animal experiments. The cathodic polarization seems to 

be a feasible alternative to successfully modified surfaces, maintaining adequate 

mechanical and biologic properties, allowing deposit of biomolecules and promoting 

activity on the surface by hydrided formation. 

 

Conclusion 

Cathodic polarization promotes titanium surface modifications, increasing the 

adhesion of active biomolecules and hydridation of titanium surfaces. Modified 

surfaces enhance cellular response in vitro and in vivo-animal models. 
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Table 1. Quality assessment according to ARRIVE and SYRCLE criteria. 
Quality Criteria statements   Authors 

SYRCLE  
(Bias) 

 ARRIVE statements Tao et 
al., 
2016 

Liang 
et al., 
2014 

Lamolle 
et al., 
2010 

Lamolle 
et al., 
2009 

Zhang et 
al., 2009 

Young-Taeg 
et al., 2009 

Ban et 
al., 
1996 

Frank 
et al., 
2014 

Xing et 
al., 2014 

Huang 
et al., 
2013 

Ou et 
al., 
2008 

De 
Giglio et 
al., 2007 

Hosaka 
et al., 
2006 

 
  

AM AM and 
CM 

AM AM AM AM AM CM CM CM CM CM CM 

 1 TITLE* 3 1 1 1 3 1 1 1 1 1 3 1 1 

 2 ABSTRACT 1 3 1 1 3 3 3 1 1 3 3 1 1 

   Summary of the background, research 
objectives* 

1 1 3 3 1 3 0 1 1 0 0 1 1 

   Details of the species or strain of animal used  1 0 1 1 0 3 1 4 4 4 4 4 4 

   Key methods, principal findings and conclusions 
* 

1 1 1 1 1 1 1 1 1 1 3 1 1 

 3 INTRODUCTION 1 1 3 3 1 1 3 1 1 1 3 1 1 

   Background information * 1 1 1 1 1 1 1 1 1 1 1 1 1 

   Experimental approach * 1 1 1 1 1 1 1 1 1 1 3 1 1 

   Relevance to human biology* 1 1 2 0 1 1 3 1 1 1 1 1 1 

 4 Objectives * 1 1 1 1 2 1 1 1 1 1 2 2 1 

   METHODS   

 5 Ethical statement/ guidelines for animals 
care/used 

1 1 1 1 2 1 1 4 4 4 4 4 4 

 6 Study design*  2 2 2 2 3 2 2 2 2 2 2 2 2 

   Experimental and control groups* 1 1 1 1 1 1 1 1 1 1 1 3 1 

Selection   Allocation samples* 1 0 0 0 1 0 0 0 0 0 0 0 0 
Detection   Randomization samples* 1 0 1 0 2 0 0 0 0 0 0 0 0 
Performan
ce/ 
detection 

  Blinding (Researchers, caregivers, assessors) 0 0 0 0 0 0 0 0 0 0 0 0 0 

 7 Experimental procedure  3 1 3 3 3 3 3 1 1 1 1 1 1 

 in vitro cellular detail method* 4 1 4 4 4 4 4 1 1 1 1 1 1 

 
 

Specimens characteristics and preparations * 1 1 1 1 1 2 1 1 1 1 1 1 1 

 
 

Coating procedures* 1 1 1 1 1 1 1 1 1 1 1 1 1 

   Anesthesia  0 1 0 0 1 1 0 4 4 4 4 4 4 

   Antibiotics  0 1 0 0 0 0 0 4 4 4 4 4 4 

   Analgesia  0 1 0 0 0 1 0 4 4 4 4 4 4 

   Surgical procedure  1 1 1 1 1 1 1 4 4 4 4 4 4 
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 8 Experimental animals   3 3 1 1 3 3 3 4 4 4 4 4 4 

Selection   Species 1 1 1 1 1 1 1 4 4 4 4 4 4 
   strain, sex, developmental stage, weight 1 1 1 1 1 1 3 4 4 4 4 4 4 
   source of animals 0 0 1 1 0 0 0 4 4 4 4 4 4 

Performan
ce 

9 Housing and husbandry  1 3 1 3 0 0 3 4 4 4 4 4 4 

 
 

Housing and husbandry – conditions and 
welfare- 

1 0 1 1 0 3 0 4 4 4 4 4 4 

   Related assessments and interventions 1 1 1 0 0 0 1 4 4 4 4 4 4 

 10 Sample size* –  3 3 3 3 2 0 2 0 3 0 0 0 0 

 
 

Sample size* –  1 1 1 1 2 0 2 0 1 0 0 0 0 

   Sample size calculation* 0 0 0 0 0 0 0 0 0 0 0 0 0 

   Number of animals in each experimental group 1 2 1 2 2 0 0 4 4 4 4 4 4 
 

 
Number of samples  in each experimental group* 1 1 1 0 1 0 1 0 1 0 0 0 2 

         
11 

Allocation animals 3 0 3 0 2 0 0 
 

 Allocation animals to experimental groups   1 0 1 0 1 0 0 4 4 4 4 4 4 

   Randomization or matching  1 0 1 0 0 0 0 4 4 4 4 4 4 

   Order in which animals were treated and 
assessed 

0 0 0 0 0 0 0 4 4 4 4 4 4 

 12 Experimental outcomes –primary and 
secondary * 

1 1 1 1 1 1 1 1 1 1 1 1 1 

 13 Statistical methods* – details and unit of 
analysis 

1 1 1 1 1 1 3 1 1 1 2 1 1 

   RESULTS   

Attrition 14 Baseline data – characteristics /health status 
of animals 

1 0 0 0 0 0 0 4 4 4 4 4 4 

Attrition 15 Numbers analyzed –  3 3 3 3 3 3 3 1 1 1 1 1 1 

 Absolute numbers in each group included in 
each analysis* 

1 1 1 1 1 1 1 1 1 1 1 1 1 

Other   Explanation for exclusion 0 0 0 0 0 0 0 4 4 4 4 4 4 

Reporting 16 Outcomes and estimation – results for each 
analysis with a measure of precision* 

1 1 1 1 1 1 1 1 1 1 1 1 1 

Other 17 Adverse events – details and modifications 
for reduction 

0 0 0 0 0 0 0 4 4 4 4 4 4 

   DISCUSSION   
  

 18 Interpretation 3 2 2 2 3 3 2 3 1 3 3 1 3 

 
 

scientific implications* 1 1 1 1 1 1 1 1 1 1 1 1 1 
   Study limitations* , bias, limitations of animal 

model 
1 0 0 0 1 1 0 0 1 0 0 1 0 

   Implications/ n animal reduction 0 0 0 0 0 0 0 4 4 4 4 4 4 
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 19 Generalisability/translation/ relevance to 
human biology* 

0 0 0 0 0 1 0 0 0 0 1 0 0 

 20 Funding * 0 1 1 1 1 1 1 1 0 1 1 1 1 

*items assess also for in vitro cellular tests 0=No (high risk of bias), 1=Yes (low risk of bias) 2=Unclear (unclear risk of bias) 3= partial reported 4= not applicable; AM=animal model CM=cellular 
model 
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Table 2.  Quantitative results of ARRIVE according to the 20 evaluated items  

Variables/Category No(high) Yes(low) Unclear  Partial report Total Risk bias 
 n (%) n (%) n (%) n (%)   

1. Tao et al., 2016 3 15.5 9 45.0 1 5.0 7 35.0 20 Unclear/high 
2. Liang  et al., 2014 4      20.0 9     45.0 2     10.0 5     25.0 20 Unclear/high 
3. Lamolle et al., 2010 3 15.0 10 50.0 2 10.0 5 25.0 20 Medium 
4. Lamolle et al., 2009 4      20.0 9     45.0 2     10.0 5     25.0 20 Unclear/high 
5. Zhang et al., 2009 4      20.0 5     25.0 4     20.0 7     35.0 20 High 
6. Young-Taeg et al., 

2009 
5      25.0 9     45.0 1     5.0 5     25.0 20 Unclear/high 

7. Ban et al., 1997 4      20.0 6     30.0 3     15.0 7     35.0 20 High 
8. Frank et al., 2014* 2      14.3 10    71.4 1     7.1 1     7.1 14 Medium 
9. Xing et al., 2014* 2      14.3 10    71.4 1     7.1 1     7.1 14 Medium 
10. Huang et al., 2013* 2      14.3 9     64.3 1     7.1 2     14.3 14 Medium 
11. Ou et al., 2008* 1      7.1 6     42.9  3     21.4 4     28.6 14 Unclear/high 
12. De Giglio et al., 2007* 2      14.3 10    71.4 2     14.3 ‐  ‐  14 Medium 

13. Hosaka et al., 2006* 2      14.3 10    71.4 1     7.1 1     7.1 14 Medium 
*in vitro cellular test 

 

 

 

 

 

 

 

Table 3. Surface properties and cellular responses from in vitro and in vivo-animal model studies 
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AUTORS EXPERIMENTAL 
PROCEDURE 

SURFACE CHEMISTRY 
AFTER TREATMENT 

SURFACE MORPHOLOGY OR FILM 
COMPOSITION 

STRENGHT RESISTENCE:  PULL-OUT, 
REMOVAL TORQUE, STABILITY. 

BONE GROWN /CELL ADHESION

IN VIVO-ANIMAL MODEL 

Ban et al. 1997 Hydroxyapatite 
(HA)deposition 

Basic elements of Apatite 
were present on the titanium 
surface.  

HA surface only had Spherical particles 
of HA. Surface with HA 
electrochemically coated is covered by 
needle-like precipitates. 

Higher strength resistance from pull-out 
test was observed in the titanium treated 
by electrochemical methods than the 
control samples, after 3 and 6 weeks of 
implantation  

The formation of new bone was enhanced in the 
electrochemical treated surface compared to the control 
surfaces. 

Lamolle et al., 
2009 

Hydrofluoric acid 
(HF)  

Hydride, Fluoride and Oxide 
were present.  

The oxide concentration was higher in 
the 0.001% HF at 30nm. Low 
concentration of HF increased 
hydrophobicity. 

Implants modified by cathodic reduction 
with 0.01 vol % hydrofluoric acid showed 
the highest pull out  strength (p< 0.05) 
followed by the 0.1vol%. 

The concentrations of the fluoride and hydride in the 
titanium implant modified surfaces was correlated to the 
in vivo bone retention(r=0.94).  

Lamolle et al., 
2010 

Hydrofluoric acid 
(HF)  

Hydride, Fluoride and Oxide 
were present.  

Groups of implants with 0.001% and 
0.01% HF showed the highest fluoride 
content at their surface structure 

- All experiment groups showed new peri-implant cortical 
bone, but implants treated with 0.01% HF  showed higher 
osteocalcin, collagen-I and TRAP, revealing an advanced 
osseointegration process. Implants modified with 0.001% 
and 0.01% HF presented a statistically significant 
increased  newly formed bone. Lower presence of blood 
was observed at the interface after removal of the implant 
in the groups of implants (0.001% and 0.01% HF). The 
control group scored higher LDH activity than all the test 
groups. 

Liang et al., 2014 Pure brushite and 
modified brushite 
with 5%, 10%, and 
20% Strontium 
(Sr) deposition 

Basic elements of Brushite 
and Strontium were present on 
the titanium surface. 

Brushite coating, presence of crystals, 
some arranged in clusters. Brushite 
coating containing 20% Sr showed an 
irregular surface morphology 

Removal torque strength  in 5% Sr and 
10% Sr groups was significantly increased 
compared with the other three groups 
without cathodic treatment (p < 0.01) 

After  24, 48, or 72h the number of the proliferating cells 
on the brushite-coated and Sr-doped brushite groups 
were higher than in the control group (p < 0.01), 
especially in the 10% Sr-doped coating.  
Modified surfaces with 5% and 10% Sr-doped brushite 
coatings were associated with increased 3D bone 
volume(p < 0.05), especially around the 10% Sr-doped 
brushite-coated implants. 

Tao et al., 2016 Electrochemical 
deposition of 
Zinc(Zn), 
Strontium, 
Magnesium(Mg), 
and HA. 

Coatings composed of  
hydroxyapatite containing 10% 
Zn, Mg and Sr ions on 
titanium. 

- Push-out force of group Sr-HA was 
significantly higher than that of groups Zn-
HA and Mg-HA. Group Sr-HA showed the 
strongest effects on all micro-CT 
parameters (bone volume, trabecular 
thickness, connective density, trabecular 
number; trabecular separation) 
significantly (p<0.05).  

After 12 weeks, new bone was formed. Within the 
circumference of marrow cavities of cortical bone, there 
were osteoblast-like cells, suggesting the beginning of 
new bone formation. There was more bone tissue on 
implant surfaces of Zn-HA, Mg-HA, Sr-HA-coated 
implants than in those of HA-coated. 

Young et al.,2009 Electrochemical 
deposition of 
Magnesium, 
Phosphate  

Magnesium, P, and Ti were 
identified in the composition.  

The implants had moderate roughness 
of 0.7–1.4 mm. Oxidized implants had 
crystal structures consisting of a mixture 
of Anatase and rutile phase. 
 

After 6 weeks of healing, all surfaces 
increased implant stability but it was 
higher in the modified surfaces than in the 
control surfaces. 

New bone formation occurred in all surfaces, but it was 
increased in the Mg-MP implant group.  
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Zhang et al., 2009 Solution of calcium 
phosphates as 
medium 

Titanium hydride was 
identified. Calcium and 
Phosphates were present on 
the titanium surface.  
 

Metal surface were rough and had fine 
granular appearance. A thin layer of CaP 
(100nm thick) was deposited and had 
higher resistance to displacement.  

- Bone growth was fast in the electrochemical-treated 
specimens.  After 4weeks bone formation and the amount 
of bone in electrochemical titanium and stainless steel 
samples were significantly higher than that in control 
without cathodic treatment (p < 0.01).  
 

IN VITRO STUDIES 

Franck et al., 2014 Enamel Matrix 
Derivate (EMD) 
deposition 

EMD was coated.  
Characteristic elements were 
identified in the composition.  

Electrochemical EMD coated samples 
presented larger spherical structures 
attached to the surface. 
Sandblasted and acid-etched revealed 
nano-nodules and small spherical 
structures on the surface. 

- No cytotoxicity was observed in any group. For 
Electrochemical treated groups the expression of Coll-1 
mRNA levels and the alkaline phosphatase activity was 
significantly higher compared to control.  

Xing et al., 2014  Acids (oxalic : 
OA)as medium 

Presence of Hydride. 
Characteristic elements were 
identified in the composition.  

OA created the roughest surface and 
thin layers. 

- At day 3, cells grown in all groups faster than in the 
control. The proliferation rate on acetic acid was 
significantly higher than others groups. Hydrogen amount 
on the surfaces was correlated with proliferation rate at 
day 3 (r 5 0.973, p <0.05). 
At day 6, proliferation of cells was higher in tartaric and 
control groups only.  

 Huang et al., 
2013 

Hydroxyapatite 
(HA) deposition 

Deposition of HA. HA surface 
was mainly composed of O, P, 
Ca, and Si. Si content was 
7.77 wt.%±0.39. 

HA and HA/CS films formed uniform 
layers on the Ti substrate. The HA/CS 
coating had a porous structure and the 
HA coating had a dense surface 
structure.   

- After 7 days, cell proliferation on the HA/Cathodic coated 
surfaces was higher (p < 0.05) than those on HA coating. 

Ou et al., 2008 Electrochemical  
treatment 

Promote the presence of 
Hydride. O2 concentration 
following electrochemical 
treatment was higher than in 
polished Ti.  

Titania film with cathodic pre-treatment 
and anodization was thicker than other 
groups Porosity was higher in ACTi 
samples 

- Cathodic pre-treatment followed by anodization at 24h 
significantly more cells attached than controls (cathodic 
and anodization treatment only).  
Cells on AC-Ti were more spread out and had more, 
longer filopods than other groups. 

De Giglio et al., 
2007 

Pyrrole-3-acetic 
acid, 4-fluoro-
phenylalanine 
deposition  

Promote deposition of 4-
fluoro-phenylalanine modified 
PPy-3-acetic film.  

    Cell Adhesion, growth, and viability of osteoblast-like cells 
onto PPy-3-acetic modified titanium substrates were 
comparable to the control groups. Cell phenotype was 
similar in all groups.  
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Fig 1. Flowchart information of the different phases of papers search and selection. 
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Fig 2. Risk according to the study design 
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Abstract 

 

 

Surface modification to improve clinical efficacy of biomedical devices increase 

attention into dentistry field. The present article presented different doped and undoped 

organic-inorganic experimental nanocomposite materials synthesized via sol-gel dip 

coating. The sols consist of an inorganic-organic matrix based on ZrO2, TiO2, Li+ and 

polyethylene glycol (PEG), which could be used in the biomedical field. The obtained 

hybrid-coated titanium samples have been characterized using atomic force 

microscope (AFM), and Energy Dispersive X-Ray Analysis (EDX) and cytotoxicity. 

AFM analysis detailed that the obtained materials were rough nanostructured hybrids. 

The EDX data allowed to know the quantitative percentage of the elements present on 

the surface of the hybrid-coated titanium samples. To evaluate the biocompatibility of 

the hybrid coatings in biomedical field have been evaluated by cytotoxicity test. The 

MTT cytotoxicity tests were carried out exposing a line of immortalized fibroblasts 

(3T3/NIH) for 48 h to extracts from the investigated hybrid coatings. The results 

showed that all the hybrid-coated titanium samples had a non-cytotoxic effect on target 

cells. 

 

 

 

 

 

 

 

 

 

 

Key Words: Sol–gel synthesis, Dip coating technique, Organic–inorganic hybrid 

materials, PEG, Cell viability. 
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Introduction 

 

The proportion of older people continue growing worldwide, as a result, the health and 

social policy-makers are facing challenges by the rapid changing burden of general 

and oral chronic diseases1,2. Edentulism influence the quality of life of people, hence 

the used of prosthetic devices and/or dental implants returned successfully the lost 

functionally and aesthetics. Although, implant problems could commonly occurred in 

older adults, due to factor such as reduced bone formation. In this context, the global 

biomedical devices industry especially orthopedic implant are constantly looking for 

the advancements in implant designs, including materials that provide improved 

biocompatibility, durability, and expanded clinical applications 3. Titanium (Ti) and its 

alloy represent the main biomaterial in the production of all kind of biomedical devices, 

and symbolize the gold standard in many fields of medicine, in particular, for 

orthopaedic and dental prosthetic devices into dentistry4-6. The clinical efficacy of these 

biomedical devices could be greatly enhanced by the modifying of nanofeatures onto 

surface that would improve the bioactivity, in order to induce a bioactive behavior and 

to enhance osseointegration between the biomedical devices and the surrounding 

bone or where implantable devices are being applied to reconstruct degraded tissues7-

12. Coating and other surface modification are useful techniques; as they allow us to 

optimize the surface properties while retaining favourable bulk properties 4,7,8,13-15, such 

as chemical vapour deposition16, plasma spray 17, ion beam-assisted deposition18, 

radiofrequency magnetron sputtering19, notwithstanding, these techniques has a 

several drawbacks like expensive, complexity, long-term performance, non-

homogeneity, non-control of thickness, lack of adherence14. A technique to synthesize 

a complex hybrid matrix of ceramic and glass materials, and that allows the doping of 

various inorganic, organic materials and biomolecules during the formation of a glassy 

matrix, is the sol-gel method14,20-22. The sol-gel method uses an alkoxide or aqueous-

based chemical routes, which is based mainly on the hydrolysis and condensation of 

metal alkoxides at low temperature. Thistechnique are supported by different coating 

techniques: spin, dip, and spray coating.The main feature is that allow the producing 

organic–inorganic nanocomposite materials, which makes possible entrapment of 

notorious thermolabile substances into the inorganic matrix, for instance, polymers or 

drugs 23,24. These are considered as biphasic materials, where the organic and 

inorganic phases are mixed at nanometer to micrometer scales, and their properties 
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are derived from a synergy between the individual contributions of both phase 25. The 

sol-gel technique is an environmental friendliness and makes it an attractive 

technology for synthesizing highly bioactive and biocompatible materials21,26. 

The aim of this study was developed and characterized the biological response pf 

biomimetic coatings on titanium surfaces for biomedical applications through the 

synthesis of four experimental oxide/PEG-based hybrid materials. The coatings 

consisting of organic–inorganic hybrid materials which have been prepared by sol–gel 

dip coating technique, consisting of a polymer polyethylene glycol (PEG) matrix 

reinforced with sol–gel synthesized PEG-based hybrid ZrO2/PEG, TiO2/PEG, 

TiO2:Li+:Zr/PEG, and TiO2:Li+/PEG hybrid fillers, using different metal oxide zirconium 

(ZrO2), Titanium (TiO2), Lithium (Li+). 

 

Material and methods 

 

Samples 

 

This study used Titanium (Ti) F67- UNS R50400 (Realum®) square-shape samples 

with diameter 1x1 cm and thickness 2.25 mm,commercially pure grade II Titanium. 

Surfaces were polished under metallographic sander machine (polishing) (model 

Aropol-E, brand ARATEC), was set up the rotation at 200 rpm with silicon carbide 

papers for metallographic grinding in the   sequence of P200, P400, P600, P800, 

P1200, and P2000 and finished (polishing or polishing and brightening)under colloidal 

granular deagglomerated alumina suspension (1μm) were applied. After polishing, Ti 

samples were washed by a succession of different ultrasonic baths using Acetone, 

alcohol at 75%, and distilled water. Samples were afterward dried and stored under 

nitrogen cover gas chamber for 4 h. After drying, Samples surface were acid-etched in 

a mixture of hydrochloric and sulphuric acid at 125–130 °C for 6 min. finally, the 

samples were handled under nitrogen cover gas chamber and stored in 0.9% NaCl 

solution for 6 h, after that the samples were dried for 4 h. 

 

Sol-gel synthesis 

 

The ZrO2/PEG, TiO2/PEG, TiO2:Li+:ZrO2/PEG, and TiO2:Li+/PEG organic–inorganic 

hybrid were synthesized by means of sol-gel process, using Zirconium (IV) propoxide 
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(Sigma-Aldrich), Titanium (IV) isopropoxide (Sigma-Aldrich), and Lithium hydroxide 

monohydrate (Sigma-Aldrich), as a precursor of the inorganic matrix, and Poly 

(ethylene glycol) PEG (BioUltra, 400)as the organic component. Figure 1 shows the 

flow chart of the different hybrids synthesis and coating procedure. The hybrid systems 

were obtained under stirring, Figure 1A, [ZrO2/PEG],a2.5 mL Zirconium(IV) propoxide 

solution (Zr(OCH2CH2CH3)4Sigma Aldrich), was added to a mixture of 3,7 mL-

Acetylacetone (Acac) and10 mL-Ethyl Alcohol (ETOH), afterward was added 20 mL of 

distilled water and finally was added the mixture of 10mL-ETOH and2mL-PEG. Figure 

1B, [TiO2/PEG],a 2.4 mL Titanium (IV) isopropoxide (Ti[OCH(CH3)2]4 Sigma Aldrich), 

was added to a mixture of 3,7 mL-Acetylacetone (Acac) and 10 mL-Ethyl Alcohol 

(ETOH), afterward was added 20 mL of distilled water and finally was added the 

mixture of 10mL-ETOH and2mL-PEG. Figure 1C, [TiO2:Li+:ZrO2/PEG], a 2.4 mL 

Titanium (IV) isopropoxide (Ti[OCH(CH3)2]4 Sigma Aldrich), was added to a mixture of 

3,7 mL-Acetylacetone (Acac) and 10 mL-Ethyl Alcohol(ETOH), afterward was added 

0.38 mL of (Zr(OCH2CH2CH3)4), followed by 20 mL of distilled water mixed with 0.05 g 

of Lithium hydroxide monohydrate (Vetec®) and finally was added the mixture of 10mL-

ETOH and2mL-PEG. Figure 1D, [TiO2:Li+/PEG], a 2.4 mL Titanium (IV) isopropoxide 

(Ti[OCH(CH3)2]4 Sigma Aldrich), was added to a mixture of 3,7 mL-Acetylacetone 

(Acac) and 10 mL-Ethyl Alcohol (ETOH), afterward was added 20 mL of distilled water 

mixed with 0.05 g of Lithium hydroxide monohydrate (Vetec®) and finally was added 

the mixture of 10mL-ETOH and2mL-PEG.The reagent Acetylacetone for all hybrid 

systems was added to controlling the hydrolytic activity toward Zirconium (IV) 

propoxide and Titanium isopropoxide because it acts as a chelating agent. To 

synthesize the hybrid systems, PEG- based solutions with different doped and 

undoped metal oxide were added and four hybrid materials were obtained. 

 

Coating procedure  

 

The hybrid materialsZrO2/PEG, TiO2/PEG, TiO2:Li+:ZrO2/PEG, and TiO2:Li+/PEG 

synthesized by sol-gel process were used in a sol phase, to coats a titanium substrates 

(Ti F67- UNS R50400, Realum®), previously treated by polished and acid-etched. 

As shown figure 1, the coated were obtained by means of the dip-coating technique 

and an MA765 Marconi®dip coater was used.TheTi-gr2 square-shape samples were 

dip-coated with a ZrO2/PEG, TiO2/PEG, TiO2:Li+:ZrO2/PEG, and TiO2:Li+/PEG hybrid 
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synthesized solution. Withdrawal speed of the substrate was 35 mm/min. The coated 

substrate was heat-treated at 45 °C for 24 h to promote the partial densification of the 

coating without any polymer degradation. 

 

Biocompatibility study  

 

Cytotoxicity assessment 

 

Cytotoxicity assays are associated with different parameters of cell adhesion death 

and proliferation, the extracts for investigation was obtained from the surface of 

treatment-coated titanium. The essay was carried out by performing measurements in 

triplicate for each randomized group, which allows representing 100% viability. The 

recorded activities were compared with controls in parallel to the hybrid-coated titanium 

samples. The positive control (wells were seeded at a density of 10 x104 cells/well (800 

μL) without the hybrid-coated titanium samples), and negative controls (wells were 

deposited with 800 μL of media (DMem/FBS 90:10). 

 

Specimens and cell culture medium 

 

An 3T3/NIH immortalized fibroblasts were cultured in Dulbecco’s modified eagle’s 

medium (DMeM) (Cultilab®) supplemented with 10% fetal bovine serum (FBS) 

(Cultilab®), 2% l-glutamine, penicillin (100 U/ml) and streptomycin (100 mg/ml) (giBco-

Brl), at a controlled atmosphere of 37°C in a 5% CO2, at sub-confluence of (80%) were 

washed using phosphate buffered saline (PBS) (Gibco®), and afterward, were 

detached using 5 ml of 0.25% trypsin/EDTA (Gibco®). 

 

MTT assay  

 

The MTT test allows the analysis of cell viability by determining the levels of activity of 

mitochondrial dehydrogenases towards3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium) bromide (MTT) (Sigma Aldrich®), through the formation of 

insoluble formazan crystals. 
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A3T3/NIHcell line were seeded on the hybrid-coated titanium samples into 48 well 

plates at a density of 10x104cells/well (800 μL), at a controlled atmosphere of 37°C in 

5% CO2.At 24h of incubation, the hybrid-coated titanium samples were carefully 

transferred to a new 48 well plates and were again incubated with fresh media (800 

μL) for 24 h., afterward, the hybrid-coated titanium samples were washed with PBS.At 

48 h of incubation, the hybrid-coated titanium samples were treated with800 μL of MTT 

(0.50 mg/ml), for 4h at a controlled atmosphere of 37°C in 5% CO2.The MTT solution 

was then removed and 800 μl of DMSO was added to dissolve the formazan produced 

on the surface of the hybrid-coated titanium samples.Finally, the absorbance at 540 

nm of each well was determined using a spectrophotometry (Universal ELISA reader). 

The cell adhesion viability was expressed by the absorbance values indicators of the 

hybrid-coated titanium samples with the extracts compared to a positive control. 

Descriptive and analytic analisys was perfomed using the SigmaPlot software version 

12.0 (Systat Software, Inc ). Normality test was by the Shapiro-Wilk test and the 

differences between groups were due to the ANOVA and Tuckey test for multiple 

comparisons, considering a significance level of 5% (p<0.05) 

 

Samples characterization 

 

The microstructure of the different hybrid systems-coated titanium samples was 

studied by a Digital Instruments Multimode atomic force microscope AFM (AutoProbe 

CP, Thermo microscopes), at an intermittent contact mode in a relative humidity 50% 

and 25 °C.Thetopographic images was preformatted by silicon tip (UL 2.0), at a 

resonance frequency of approximately 320 kHz and scan rate of 1 Hz. The percentage 

determination of the different elements present in the hybrid systems-coated titanium 

samples was ascertained by Energy Dispersive X-Ray Analysis (EDX - Ray Ny - EDX 

720, Shimadzu), at [quali-quant] easy-metal mode, at two bands (Ti-U and Na-Sc) with 

1mmX-ray beam. 

 

Results  

 

Energy Dispersive X-ray Analysis (EDX) 
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EDX analysis results are shown in table 1. In Group 3, modified Titanium surfaces, 

presented mainly six components:  TiO2, SO3, P2O5 , CaO, CuO and ZrO2. Modified 

Titanium surfaces from group 1 presented  TiO2, SO3, P2O5 , CaO, and ZrO2. In Group 

2, surface components included: TiO2, SO3, P2O5 , CaO and CuO. Modified Titanium 

disks from group 4 were composed by TiO2, SO3, P2O5, CaO and CuO. Between the 

experimental groups, only G1 did not have CuO  and groups 2 and 4 did not present 

ZrO2
 on the surface. G3 presented the lowest percentage of TiO2

 (73.11%) on the 

surface compared to the other groups. 

 

Atomic Force Microscopy (AFM) analysis 

 

AFM analysis of surface are showed in figure 2, 3, 4 and 5. Surfaces showed 

roughness surfaces in all experimental groups. G1 surfaces presented most of the 

peaks and valleys tall with a uniform distribution of them on the surface. G2 showed 

smaller peaks and valleys, relative uniform distribution but with the presence of very 

deep valleys. Titanium modified surfaces in G3 presented a uniform distribution, clearly 

define and regular peaks and valleys. In G4, peaks and valleys are  smaller and 

presented uniform distribution with the presence of slightly deeper valleys than G3. 

 

Cytotoxicity assessment 

 

The description of cell viability due to cytotoxicity is shown in figure 6. In all groups, 

sol-gel dip coating test allowed cellular grown on the treated titanium surfaces. G3 

(TiO2/PEG, TiO2: Li+ (15%): Zr (15%)/PEG) showed higher cellular grown followed by 

G4 and G1. G2 showed the lower cellular viability. Comparison test results are 

presented in table 2. Experimental groups (G1, G2, G3, G4) showed statistically lower 

cellular viability comparing to the control group (p<0.05). Groups G3 and G4 were 

statistically different (p<0.050) from group G2, showing higher cellular grown. 

 

 

Discussion  

 

The present study formed biomimetic titanium surfaces using potential biocompatible 

materials  based on Titania, Zirconia, Lithium oxides by the sol-gel dip coating method. 
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Sol–gel dip-coating technique can modified metal surfaces due to the deposition of 

organic / inorganic elements forming thin films on them. Studies usually used the 

technique to coated  organic materials such as hydroxiapatite, due to the facility of the 

processing method,  the low temperatures required, and the improvements of the 

produced coatings such as reduce thickness and homogeneous and high purity of the 

films 26,27. In fact, the sol-gel method allowed to synthesized materials containing 

organic elements preserving their chemical structure and properties, that can be 

decomposed when exposed to higher temperatures than 250ºC surfaces 28,29. 

Inorganic sol-gel materials are brittle, thus studies included organic components into 

the inorganic network to improved properties and formed hybrid sol-gel coating 30.  The 

final material is considering more bioactive than others with similar compounds 

prepared with different methods and biocompatible 26, therefore the method facilitate 

obtaining new biomaterials with medical applications 5.  

 

This study, synthesized, by the sol-gel method, hybrid bioactive materials: ZrO2/PEG; 

TiO2/PEG; TiO2/PEG, TiO2: Li+(15%): Zr (15%)/PEG and TiO2 [2 M]: Li+ (15%)/PEG) 

as experimental colloids using as precursors Zirconium Isopropoxide 

(Zr(OCH(CH3)2)4(CH3)2CHOH); Polyethylene glycol (H(OCH2CH2)nOH); Titanium 

Isopropoxide (Ti[OCH(CH3)2]4); Lithium hydroxide monohydrate (LiOH.H2O); Ethyl 

alcohol (CH3CH2OH) and Acetylacetone (CH3COCH2COCH3) . After sol- gel process, 

simple observation of the four experimental sols solutions showed to be transparent, 

uniform and homogeneous, being the viscosity of them quite similar between  the sols. 

Basically, differences between the solutions were observed in the colour being the 

ZrO2/PEG and the Li+ (15%)/PEG  yellowish and the TiO2 [2 M]: Li+ (15%)/PEG  and 

TiO2/PEG, TiO2: Li+(15%): Zr (15%)/PEG sols brownish (Fig. 7). Moreover, after dip 

coating procedure, titanium surfaces showed a bright, glassy, transparent, yellowish  

and uniformed disposition of superficial film (Fig.8). Those characteristics were also 

reported by other study 26. Characteristics of the sols can influence the properties of 

the final coatings, for instance the viscosity influence the thickness 26 and homogeneity 

indicates the existence of connections at molecular level between the phases that can 

be weak (class I) or strong (Class II) consequently determining thermal behaviour, 

mechanical properties, stability or dispersion of the solution 31. 
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Pure inorganic crack free sol-gel materials represents a challenge, that`s why the 

introduction of organic components into inorganic networks can improved properties of 

such material 32. Thus, our experiment synthetised new bioactive materials: ZrO2/PEG; 

TiO2/PEG; TiO2/PEG; TiO2/PEG, TiO2: Li+(15%): Zr (15%)/PEG and TiO2 [2 M]: Li+ 

(15%)/PEG, the last ones not ever reported elsewhere. Synthesis and used of 

ZrO2/PEG in different percentages was reported recently in one study. Catauro et al., 

2014, showed that cell viability was higher on ZrO2 10–6-12–24-50 wt % PEG surfaces 

compared to uncoated titanium cells. The cellular viability improvement was attributed 

to the more concentration/percentage of PEG polymer in the hybrids, indicating that 

the sol-gel process preserved the PEG biocompatibility and transmitted the quality at 

hybrids 33.  Polyethylene glycol (PEG) is a biocompatible and biodegradable polymer 

used in the pharmaceutical field, as membrane for medical applications including 

cranial and vascular surgical procedures; and to promote bone grown 34,35. The 

presence of PEG, in inorganic networks, was reported to reduce crack structures in 

the films, which is one more important disadvantages of the sol-gel method that 

happened during the gelification due to the elimination of water 33. Polyethylene glycol  

present low toxicity, excellent solubility in aqueous solutions, extremely low 

immunogenicity and antigenicity. PEG is used as drug delivery due to is excellent 

pharmacokinetic and biodistribution behaviour and in biological systems due to its 

ability to increase hydrophilicity, biocompatibility and intrinsic resistance to protein 

adsorption.36 For instance, hydrophilicity increased osseointegration in vitro and in vivo 

animal models 37. Hydrogels membranes of PEG  are commonly used  in tissue 

engineering and regenerative medicine applications.  PEG based hydrogels presented 

low cell attachment rate as a result of the formation of a hydrated surface layer that 

inhibits adsorption of adhesion proteins such as fibronectin, thus, other materials were 

incorporated to them38. The mechanical strength of PEG hydrogel is determined by the 

molecular weight, cross linking and concentration of polymers. Its elastic modulus can 

be increased by decreasing the molecular weight or increasing the concentration of 

the polymer39. 

 

Bioactive materials such as glasses or glass ceramics promotes strong bond and 

stimulates new bone formation 40. Studies showed that degradation of bioactive glass 

materials promotes increasing ion release compared to HCA minerals 41.  After, cellular 

assays, titanium modified samples were submitted to EDX analysis, showing the 
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presence of Zirconia (ZrO2), titanium dioxide (TiO2), sulfure trioxide (SO3), Phosphoric 

anhydride (P2O5), Calcium oxide (CaO), and Cooper oxide (CuO).  Zirconia (ZrO2) 

present chemical stability, good mechanical properties in terms of resistance, wear and 

corrosion as well as adequate biological properties, enable osseointegration 42 and 

new bone formation observed in animal models 43.  Zirconium present in Zirconia ,  is an 

important ion that induce proliferation and differentiation of primary human osteoblasts through 

the activation of  BMP2, SMAD1 as well as p-SMAD1/5 signaling pathways . Also promote 

growth and  cellular differentiation; directly influencing bone calcification, since it promote the 

activation of bone formation 44 . 

Zinc, present in zirconia, is an important ion that is necessary for DNA replication and 

stimulates protein synthesis. Also promote cellular growth, differentiation, and 

development; and directly influence bone calcification and skeletal growth, since 

activate bone formation and inhibit bone resorption.  Titanium (Ti) is a widely used 

biomaterial for biomedical purposes including orthopaedic and dental due to the great 

mechanical properties, such as  high strength, fatigue resistance, corrosion resistance,  

relatively low elastic modulus and density , and its high biocompatibility. High 

biocompatibility of titanium is attributed to a thin (± 26nm) and stable oxide layer of 

TiO2 mainly, formed on the surface exposed to air or fluids.  Titanium oxide surface 

acidic and basic hydroxide types groups, linked to different bonds between the Ti 

surface cations and basic hydroxide coordinated to one Ti cation, which increased 

polarization and electron transfer from the oxygen atom to the Ti cation 17. The 

isoelectric point (IEP) of TiO2 range from 5-6.7, an in basic body, negative charge 

increase with pH 17,45-47. In the  oxide film, it seems that alloying elements are not 

present, however the passive film is continuously dissolved and reconstructed in 

aqueous solutions, promoting the incorporation of different elements from solution onto 

the titanium oxide, such as calcium and phosphate forming calcium phosphate and 

calcium titanium phosphate at the outermost surface 48; and also release elements, 

such as metal ions from the titanium alloys generating phagocytosis of particles. 

Titanium surfaces coated by Titania were previously performed by sol-gel method, and 

studies have shown that titanium coatings can form calcium phosphate 49 - important 

composite capable to improved bonding to bone-;  precipitate bone-like hydroxyapatite 
10,50  and facilitate osteogenesis of bone precursor cells 51 in a fluid medium.  Also, 

Calcium oxide (CaO) and Phosphoric anhydride (P2O5) were presented on titanium 

surface. The presence of Ti-OH groups on the surface, combined with the Ca2+ ions 
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present,  can increase of positive charge on the surface, combine with the negative 

charge of the phosphate ions may formed an amorphous phosphate, and  

spontaneously transforms into hydroxyl-apatite[Ca10(PO4)6(OH)2] 26,44. Indeed 

studies have reported  that the presence of AOH groups on the material surface, 

positive  Ca2+ ions and negative phosphates from a surface coating could induced 

spontaneously the formation of  bone-like apatite on the implant surface 30,33. Calcium 

and phosphates may regulate the initiation of cellular signals that enhance osteoblasts 

differentiation and influence intracellular signaling molecules in osteoblasts facilitating 

the mineralization process during bone formation. 30 

 

The presence of sulfure trioxide (SO3) and cooper oxide in titanium-modified surfaces, 

in the authors believes, was induced during the acidic pre-treatment and during the dip 

coating process respectively.   Sulfurs as oligoelements are component of the 

aminoacids methionine and cysteine, important to proteins 52 however the inorganic 

form can increased inflamatory cell response and altered cell adhesion53. In bone 

tissue engineering, copper was reported to be an important angiogenic agent, by 

trigger endothelial cells towards angiogenesis. According to some authors, copper and 

angiogenesis growth factor FGF-2 present and synergistic stimulatory effects on 

angiogenesis, stimulating proliferation of human endothelial cells, as well as promote 

differentiation of mesenchymal stem cells towards the osteogenic lineage54 

In our study, all experimental groups showed adequate biocompatibility, promoting 

high cellular viability compared to the control group. Statistical differences were 

observed between the Ti- Zr-Li PEG group, presenting the higher cell grown, and the 

ZrO2 PEG and TiO2-PEG groups, having the lower cellular viability. Our results can be 

attributed to the hybrid coatings composition and to the different superficial 

morphologies of the obtained coatings that can improved cellular grown, since AFM 

results also allowed to observe more regular surfaces with less depressions also in Ti- 

Zr-Li PEG group and TiO2-PEG groups. Cell attachment dependent on the protein that 

adsorbs onto the surface that determinate osteoinduction process, which is the 

recruitment of undifferentiated cells and consequent osteointegration; thus is highly 

influenced on the properties of surface such as chemistry, topography and 

hydrophobicity– hydrophilicity34. In sol-gel materials, biological response depends on 

their surface properties such as topography, hydrophilicity, electronegativity and ionic 

dissolution in body environment. For instance, the contact angle of the surface 
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depends on the surface roughness and the possible presence of hydroxyl groups on 

the surface; and the photocatalytic activity is related to the chemical state of Titania 

and the surface area of the coating. TiO2 present photocatalytic activity, which is 

directly related with the crystal properties, that means that photoinduced charges are 

generated in well-crystallized phases, preferably in the anatase allotropic form32.  

Titania can cristallized in homogeneous mixed of oxides; however the content of TiO2 

is limited to 20 wt%. TiO2 crystallites formed a separate phase when titatium contents 

are high 55. This could be one of the reasons why the presence of other oxides in the 

groups such as Zr and Li in the  Ti- Zr-Li PEG and Ti-  Li PEG showed better surface 

characteristics, since the less percentage of Titanium favoured the accomodations of 

Ti atoms in the network, forming more regular surfaces, more stable, and with regular 

roughness adequate to promoted better cellular grown. Undesirable irregular coating 

layers may modify the surface roughness and produce heterogeneous textures, 

interfering in osseointegration 56,57. Roughness should be preserved even when 

molecules are incorporated to the surfaces 58 since it is well know that represents an 

important factor on surfaces topographies that allowed cell adhesion and enhance 

osteoblast differentiation 59. Osteoinduction is increasing in rough surfaces, due to the 

improvement of the wetting ability of the cells on the treated surfaces58.   

 

On the other hand, the presence of Lithium can be assumed to influence a better 

cellular response, since sol-gel derivated, Zirconia and Titania are poor conductors 

and ionic salts can increase ionic conductivity such as those based on lithium. Lithium 

in sol-gel dip coating methods is likely to be physical incorporated on the coating 

surface generally as part of it, which means that lithium ions adsorb or adjoin to crystals 

and fill in the space between them, and can increases conductivity. 60 Studies 

demonstrated that Lithium ions, used in depressive disorders treatment 61,62, reduced 

the risk of fractures in patients receiving the treatment and induced bone formation in 

animal model 63,64. Lithium  can inhibited the effects of 1,25-dihydroxy vitamin D  

consequently inhibit bone resorption, due to the influence in calcium-sensing receptor 

(CaSR) decreasing  the sensitivity to calcium 64.  Moreover, Lithium ions (Li+) were 

reported to function as a activator of the canonical Wnt signaling pathway, factor 

involved in mesenchimal stem cells differentiation toward osteoblastic lineage in vitro 
65-67. Because of that, studies incorporate Li+ to synthetised biocompatible materials 

and have demonstrated proliferation and differentiation of osteoblast-like cells in vitro 
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60,68-72. After seven and 28 days, titanium lithium treated surfaces showed higher bone-

specific osteocalcin and collagen type-1 alfa 1(COL1A1), as well as canonical Wnt co-

receptors LRP5/6 and the Wnt target gene WISP1 gene expression compared from 

those without Li+65,73. Lithium presence was also found to enhanced MG-63 cell 

attachment and early proliferation of them, maybe due to the stimulation of proliferation 

of human thyrocytes by activating Wnt/betacatenin signaling [17] or maybe due to 

changes in the structure of the film60. 

In our study, even though G1 and G2 presented lower cellular grown, cellular viability 

canbe considered to be high, and that could be attributed also to the presence of PEG 

that could influenced biological sol-gel properties. In ZrO2 PEG film deposited on 

titanium surfaces lower wt% of PEG, influenced superficial morphology, as 

demonstrated by Catauro , in which surfaces with low wt%ZrO2- PEG presented high 

amount of fractures, different from PEG hybrids with 24–50% that  were free from 

them33. In the study of Ääritalo, it was observed that the presence of PEG highly 

influence crack presence in TiO2 surfaces, being surfaces without PEG cracked32. In 

our study titanium modified with TiO2 PEG showed irregular not homogeneous 

surfaces with the presence of deep depressions. This was observed also in other 

study, in which TiO2 PEG containing surfaces presented a slightly crack surface 

compared with TiO2- Si PEG surfaces crack free, indicating chemical instability and 

problems in adhesion 32.  Also, in the same study, the presence of PEG increased 

Hydrophilicity, reducing the contact angles compared to pure titanium  and  increase 

photocatalytic activity in modified surfaces of TiO2 compared with those without PEG, 

that could be related to a better crystallized phases 32.  

 

Limitations should be discussed. Even though the possible influence of Lithium on 

cellular responses could be assumed, the measure was not performed due to 

limitations of the EDX equipment. Other studies should be conducted in order to 

elucidate the influence of Lithium of the coatings on cellular behaviour and on surfaces 

topography.   

 

As far as we know, the present study is presenting by the first time the combination of 

Titanium, Zirconium, Lithium and PEG were used as bioactive materials to modified 

titanium surfaces for biomedical approaches. Our results indicates that the all-

experimental groups presented adequate biocompatibility. The TiO2 [2 M]: Li+ (15%): 
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Zr (15%)/PEG group promoted significantly better surfaces characteristics and higher 

cellular grown. Further studies must be addressed investigating the cellular responses 

of odontoblastic cells types on TiO2 [2 M]: Li+ (15%): Zr (15%)/PEG modified titanium. 
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Table 1. EDX quantitave analysis of the experimental coated Titanium surfaces. 

Experimental 

Groups 

Percentages (%)  of the elements presented on coated titanium material  

(Ti-U and Na-Sc) 

TiO2 ZrO2 SO3 P2O5 CaO CuO K2O In2O3 Fe2O3 SiO2 SrO 

G1 79.47 0.045 25.07 1.71 0.19 - - - - - - 

G2 73.93 - 24.00 1.78 0.28 0.02 - - - - - 

G3 73.11 0.012 24.99 1.57 0.27 0.02 - - - - - 

G4 76.24 - 22.39 1.10 0.25 0.01 - - - - - 

G1= ZrO2/PEG [2 M], G2 = TiO2/PEG [2 M]. G3 = TiO2 [2 M]: Li (15%): Zr (15%)/PEG, G4 = 
TiO2 [2 M]: Li (15%)/PEG; GC= Control Group. 

 

 

Table 2. ANOVA for comparisons between the experimental groups (G1, G2, G3, G4, 

GC) 

Experimental 

Groups  

G1 

Mean (SD) 

G2 

Mean (SD) 

G3 

Mean (SD) 

G4 

Mean (SD) 

GC 

Mean (SD) 

Celular viability 

2.300 

(0.176)bc 

2.249(0.139)c 2.402 

(0.096)b 

2.385 

(0.156)b 

2.983 

(0.170)a 

  Different letters and symbols, means statistic difference (p<0.05) SD: Standard Deviation 
G1= ZrO2/PEG [2 M], G2 = TiO2/PEG [2 M]. G3 = TiO2 [2 M]: Li (15%): Zr (15%)/PEG, G4 = 
TiO2 [2 M]: Li (15%)/PEG; GC= Control Group. 
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Figure 1 Flow chart of different hybrid systems by sol synthesis. 

 

Figure 2. AFM analysis of experimental modified titanium in-group G1 (ZrO2/PEG [2 M]).   

A. Distance 1µm B. Distance 2µm. 

 

Figure 3. AFM analysis of experimental modified titanium in-group G2 (TiO2/PEG [2 M]).   
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A. Distance 1µm B. Distance 2µm. 

Figure 4. AFM analysis of experimental modified titanium in group G3 (TiO2 [2 M]: Li+ (15%): Zr 
(15%)/PEG).  A. Distance 1µm  B. Distance 2µm. 

 

Figure 5. AFM analysis of experimental modified titanium in group G4 (TiO2 [2 M]: Li+ 
(15%)/PEG).  A. Distance 1µm B. Distance 2µm. 

 
 
Figure6. Cell viability observed in experimental groups of Titanium disks coated by different 
sol solutions using the sol-gel dip coating method (G1,G2,G3,G4) and control group (GC) 
without sol solutions.  
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Figure7. Appearances of sol-gel sols (G1, G2, G3, G4)  
 

 
 
Figure 8. Appearances oftitanium treated after dip coating methods. 
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Abstract 

 

Titanium plays an important role in modern technology. Varieties of titanium based 

bone-level orthopedic implants are available on the market today with different features 

and specific purpose. The aim of this study was assessed the biocompatibility of 

surfaces of Titanium (Ti) modified with active materials (ITO and ZrO2/PEG) by sol-gel 

dip coating and Cathodic Polarization, in order to investigate the potential of such 

processes for further improving surfaces for bone anchored the biomedical implant. 

The obtained coated titanium samples have been characterized using Energy 

Dispersive X-Ray Analysis (EDX). The EDX data allowed us to know the quantitative 

percentage of the element presents on the surface of the hybrid-coated titanium 

samples. To evaluate the biocompatibility of the modified coatings by sol-gel dip-

coating and cathodic polarization in biomedical field have been evaluated by 

cytotoxicity test. The MTT cytotoxicity tests were carried out exposing a line of 

immortalized fibroblasts (3T3/NIH) for 48 h to extracts from the investigated hybrid 

coatings. The results showed that the hybrid-coated titanium samples presented a non-

cytotoxic effect on target cells. The used of ITO by sol-gel dip coating, improved the 

cellular viability of the studied samples.  

 

 

 

 

 

 

 

Key Words: Cathodic Polarization, Hydride, Sol–gel synthesis, Dip coating technique, 

Organic–inorganic hybrid materials, PEG, Cell viability. 
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Introduction 

Biomedical implant devices represent successful alternatives for bone or dental 

substitution in healthy situation. Although implant complications may be present in 

elderly adults with abnormal or reduced bone healing process produced by certain 

health problems such as osteoporosis1. In order to contoured this challenge, medical 

implants have been improved or modified by the inclusion of organic or inorganic 

materials thus it could be enhance bone regeneration 2. Titanium (Ti) and its alloys are 

biocompatible materials considered gold standard for orthopaedic and dental 

prosthetic devices 3-5. Modifications of titanium surfaces were reported in studies, and 

showed to improved the bioactivity and osseointegration between the biomedical 

devices and the surrounding bone depending on the type of method and biomaterial 

used 6-9. Techniques such as chemical vapour deposition, plasma spray, ion beam-

assisted deposition, radiofrequency magnetron sputtering, have demonstrated to  

active titanium surfaces increasing bone regeneration; the high cost, complex 

technique process and difficult control on the final coatings (non-homogeneity, non-

control of thickness, lack of adherence) difficult its acquisition and increased the 

probability of failures10. The sol-gel dip coating is a technique that allowed to 

synthesize complex biphasic hybrid matrix of biomaterials, doping inorganic and/or 

organic materials and biomolecules on a glassy matrix, making also possible 

entrapment of notorious thermolabile substances into the inorganic matrix, such as 

polymers or drugs 11,12. The sol-gel dip coating technique represent a low cost 

alternative, ease technique that facilitated the coated of organic materials in low 13,14. 

Electrochemical techniques by the used of Cathodic polarization represent a saver 

ease method to included elements on surfaces using electropulses in lower 

temperatures. A recent systematic reviewed reported that the cathodic polarization 

method can effectively improved hydridation of titanium surfaces 10,  deposit 

biomolecules 15,16 and enhanced the cellular response of modified titanium surfaces in 

vitro and in vivo-animal models 16. Indeed, studies reported the ability of both methods 

to promote the inclusion of biomaterial on titanium surfaces 15,17. Bioactive materials 

can stimulate beneficial responses from the body; it means that in bone generation 

such materials can stimulates bone grown and regeneration. Thus, novel biomaterials 

are tested in order to not only improved mechanical properties of biomaterials but to 

increased cellular responses in terms of proliferation and differentiation 18.  
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In this context, the aim of the present study was to compare the cellular viability 

using two potential biomaterials (ITO and ZrO2/PEG) by the sol–gel dip coating and 

acidic solution by cathodic reduction on commercially pure grade II Titanium, in order 

to investigate the potential of such a material and process for finding an improved 

surface for bone anchored orthopedic implant. 

 

Material and methods 

 

The ITO and ZrO2/PEG,organic–inorganic hybrid were synthesized by means 

of sol-gel process, using Zirconium (IV) propoxide (Sigma-Aldrich), and indium nitrate 

(III) hydrate –Tin(IV) chloride anhydrous (Sigma-Aldrich), as a precursor of the 

inorganic matrix, and Poly (ethylene glycol) PEG (BioUltra, 400) and Ethylene glycol 

(BioUltra, ≥99.5%) (Sigma-Aldrich), as the organic component. The cathodic 

polarization was performance in acidic solutions of acetic acid and sodium acetate 

(Sigma-Aldrich). 

 

Samples 

 

This study used a Titanium (Ti) F67- UNS R50400 (Realum®) square-shape 

samples with diameter 1x1 cm and thickness 2.25 mm,commercially pure grade II 

Titanium. Surfaces werepolished under metallographic sander machine (polishing) 

(model Aropol-E, brand ARATEC), was set up the rotation at 200 rpm with silicon 

carbide papers for metallographic grinding in the   sequence of P200, P400, P600, 

P800, P1200, and P2000and finished (polishing or polishing and brightening)under 

colloidal granular deagglomerated alumina suspension (1μm) were applied. After 

polishing, Ti samples were washed by a succession of different ultrasonic baths using 

Acetone, alcohol at 75%, and distilled water. Samples were afterward dried and stored 

under nitrogen cover gas chamber for 4 h. After drying, Samples surface were acid-

etched in a mixture of hydrochloric and sulphuric acid at 125–130 °C for 6 min. finally, 

the samples were handled under nitrogen cover gas chamber and stored in 0.9% NaCl 

solution for 6 h, after that the samples were dried for 4 h. 

 

Sol-gel synthesis 
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Figure 1 shows the flow chart of the two hybrids synthesis and coating 

procedure. The hybrid systems were obtained under stirring, Figure 1-A, a mixture of 

2,42 g of Indium nitrate (III) hydrate 99.99% (In(NO3)3 · 3H2O) and 4 µL of Tin (IV) 

chloride anhydrous 99.995% (SnCl4) in in 20 mL of Ethyl Alcohol (ETOH). Ethylene 

glycol (HOCH2CH2OH) - 0.84 mL and acetyl acetone - 0.03 mL were added to the 

mixture, which was stirred at room temperature for 24 h. Afterward, the was obtained 

a clear viscous solution. Figure 1-B[ZrO2/PEG],a2.5 mL Zirconium(IV) propoxide 

solution (Zr(OCH2CH2CH3)4Sigma Aldrich), was added to a mixture of 3,7 mL-

Acetylacetone (Acac) and10 mL-Ethyl Alcohol (ETOH), afterward was added 20 mL of 

distilled water and finally was added the mixture of 10mL-ETOH and2mL-PEG. 

 

Coating procedure  

 

The precursor hybrid composites of ITO and ZrO2/PEG, still in the sol phase, 

was coats on titanium substrates (Ti F67- UNS R50400, Realum®), previously treated 

by polished and acid-etched. 

As shown figure 1-A, the coated were obtained by means of the dip-coating 

technique and an MA765 Marconi®dip coater was used.TheTi-gr2 square-shape 

samples were dip-coated with ITO hybrid synthesized solution. The fist samples was 

not soaking in NaCl-0,9%,and the withdrawal speed of the substrate was 38 mm/min. 

the second was soaking in NaCl-0,9%, and the withdrawal speed of the substrate was 

20 mm/min. The both coated substrate were heat-treated at 150 °C for 30 min.  The 

ZrO2/PEG samples were dip-coated; at withdrawal, speed of the substrate was 35 

mm/min. The coated substrate was heat-treated at 45 °C for 24 h to promote the partial 

densification of the coating without any polymer degradation. 

 

Cathodic Polarization  

 

The setup used for cathodic polarization consisted of a power supply connected 

to the sample cathode and a platinum anode (AUTOLAB Metrohm, AUT85833) and a 

magnetic stirrer with heating at 21°C. The platinum electrode had a semicircular shape 

and the samples were always placed in the center of Pt-electrode to ensure and equal 

horizontal and vertical distance between the two electrodes for all samples. The pH 

was controlled every 30 min by using pH-indicator strips MColorpHast. Polarization 
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was performed in 200 mL of a 2 molar buffer solution mixed of acetic acid and sodium 

acetate at pH3. The software Nova version 1.1 (AUTOLAB Metrohm, AUT85833) 

controlled the experimental parameters like current and duration of experiment. The 

square-shape sample acted as the cathode during cathodic reduction. Samples were 

processed for 1.6 mA/cm2 for 8hr. 

 

Biocompatibility study 

 

Cytotoxicity assessment 

 

Cytotoxicity assays are associated with different parameters of cell adhesion 

death and proliferation, the extracts for investigation was obtained from the surface of 

treatment-coated titanium. The essay was carried out by performing measurements in 

triplicate for each randomized group, which allows representing 100% viability. The 

recorded activities were comparedwith controls in parallel to the hybrid-coated titanium 

samples. The positive control (wells were seeded at a density of 10 x104 cells/well (800 

μL) without the hybrid-coated titanium samples), and negative controls (wells were 

deposited with 800 μL of media (DMem/FBS 90:10). 

 

Specimens and cell culture medium 

 

An 3T3/NIHimmortalized fibroblasts were cultured in Dulbecco’s modified 

eagle’s medium (DMeM) (Cultilab®) supplemented with 10% fetal bovine serum (FBS) 

(Cultilab®), 2% l-glutamine, penicillin (100 U/ml) and streptomycin (100 mg/ml) (giBco-

Brl), at a controlled atmosphere of 37°C in a 5% CO2, at sub-confluence of (80%) were 

washed using phosphate buffered saline (PBS) (Gibco®), and afterward, were 

detached using 5 ml of 0.25% trypsin/EDTA (Gibco®). 

 

MTT cell viability test 

 

The MTT test allows the analysis of cell viability by determining the levels of 

activity of mitochondrial dehydrogenases towards3-(4, 5-dimethylthiazol-2-yl)-2, 5-

diphenyltetrazolium) bromide (MTT)(Sigma Aldrich®), through the formation of 

insoluble formazan crystals. 
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A3T3/NIHcell line were seeded on the hybrid-coated titanium samples into 48 

well plates at a density of 10x104cells/well (800 μL), at a controlled atmosphere of 37°C 

in 5% CO2.At 24h of incubation, the hybrid-coated titanium samples werecarefully 

transferred to a new 48 well plates and were again incubated with freshmedia (800 μL) 

for 24 h., afterward, the hybrid-coated titanium samples were washed with PBS.At 48 

h of incubation, the hybrid-coated titanium samples were treated with800 μL of MTT 

(0.50 mg/ml), for 4h at a controlled atmosphere of 37°C in 5% CO2.The MTT solution 

was then removed and 800 μl of DMSO was added to dissolve the formazan produced 

on the surface of the hybrid-coated titanium samples. Finally, the absorbance at 540 

nm of each well was determined using a spectrophotometry (Universal ELISA reader). 

The cell adhesion viability was expressed by the absorbance values indicators of the 

hybrid-coated titanium samples with the extracts compared to a positive control. 

Descriptive and analytic analisys was perfomed using the SigmaPlot software version 

12.0 (Systat Software, Inc ). Normality test was by the Shapiro-Wilk test and the 

differences between groups were due to the Kruskall Wallis test and Dunnet test for 

multiple comparisons, with a significance level of 5% (p<0.05). 

 

Samples characterization 

 

The percentage determination of the different elements present in the hybrid 

systems-coated titanium samples was ascertained by Energy Dispersive X-Ray 

Analysis (EDX - Ray Ny - EDX 720, Shimadzu), at [quali-quant] easy-metal mode, at 

two bands (Ti-U and Na-Sc) with 1mmX-ray beam. 

 

Results  

Cytotoxicity test 

 

Cytotoxicity test results can be observed in figure 2. Cellular grown on the treated 

titanium surfaces were different in the titanium treated surfaces (Table 1). 

Comparisons between groups allowed to observed that cellular viability in the control 

group and in G6 was not statistical different, however the cellular grown was higher in 

the control group and lower in the groups G2, G5 and P1 (p<0.05). G6 showed the 

highest cellular viability compared to the experimental groups, but there was not 

statistical difference between G6 and G2. Groups G6 and G2 were statistically different 
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from groups G5 and P1 (p<0.050) showing higher cellular grown. P1 presented the 

lowest cellular grown and showed statistical differences with G5 (p<0.05).  

Energy Dispersive X-ray Analysis (EDX) 

 

Results of EDX analysis are shown in table 2. Groups 5 and 6 showed that Titanium 

modified surfaces presented:TiO2, SO3, P2O5 , CaO, CuO,  K2O and In2O3.  In Group 

2, surface components included: TiO2, ZiO2 SO3, P2O5 and CaO. Modified Titanium 

disks from P1 group were composed by TiO2, SO3, P2O5, CaO, CuO and Fe2O3.  

Between the experimental groups, P1 presented the lowest percentage of TiO2 (67.59) 

and  P2O5 (1.28)  and the highest percentage of SO3  (31.00) . Also, G2 presented  the 

highest percentage of CaO (28.03) and  P2O5 (2.14) on the surface compared to the 

other groups. 

 

Discussion 

 

The aim of the present study was to modified titanium surface for medical purposes 

using new bioactive elements (In2O5Sn and ZrO2/PEG [2 M]) by the sol-gel dip coating 

technique and  the cathodic polarization electrochemical method.  

We synthesized, by the sol-gel method, hybrid bioactive materials: ZrO2/PEG and 

In2O5Sn sols. In2O5Sn sol showed to be transparent, uniform and homogeneous 

(Figure 3-A). After dip coating formed glassy, transparent and uniformed disposition 

coatings (Figure 3-C). ZrO2/PEG sol had similar characteristics however was yellowish 

(Figure 3 -B, C). Visual analysis showed similar viscosity in both sols (Figure 3 -A, B).  

Characteristics of the sols, can influence the coating properties, for instance 

homogeneity is associated with the connections at molecular level between the phases 

being weaker or stronger, and viscosity influence the thickness  thus determining 

physical and, mechanical properties 14,19. The high transparency of ITO sol allowed its 

bioapplicability as electrode element in implantable microelectrodes 20. Sol–gel dip 

coating  is a promise ease-technique method to modified titanium surfaces that allowed 

to formed biphasic thin and homogeneous coatings of organic and inorganic elements 

using low temperatures, which is important to preserved the elements characteristics 
14,21. Indeed, temperature influence directly the adhesion and the thickness of the final 

coatings, thus techniques that allowed to used low temperature to modified and/or 

included elements on titanium surfaces are preferable, such as the cathodic 
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polarization electrochemical method 16.  Cathodic polarization treatment is a simpler 

process method that needs low temperatures to modified and activate titanium 

surfaces producing  hydride layers 10, and also allowing to deposit biomolecules on it 
15,16. Studies using both techniques, have shown that surfaces of titanium modified by 

Sol-gel dip coating technique and  Cathodic polarization electrochemical method, can 

enhance cellular response in vitro and in vivo-animal models 16,22,23. In fact, cell 

adhesion is an essential process directly involved in cell growth, migration and 

differentiation. Our results showed that even though the four experimental groups 

promoted cellular grown, the groups that were submitted to the sol-gel dip coating 

technique allowed higher cellular viability. In this study, electrochemical cathodic 

polarization was used to modified titanium by hydridation using CH3COOH - C2H3NaO2 

as buffer and any bioactive material was coated on  surfaces of titanium. In the sol-gel 

dip coating groups, bioactive elements were coated on titanium surfaces and showed 

higher cellular viability. Thus, our findings could be related to the presence of the 

bioactive elements included by the sol-gel dip coating method. Bioactive glasses or 

glass ceramics can stimulate bone formation and increased bone bond to titanium 

surfaces 18.Also ion release can be high due to their degradation process that don`t 

suffered rapid saturation as in hydroxiapatite materials 24.   

In our study, cellular viability was higher in-group G6 (In2O5Sn) and in groups G2 

(ZrO2/PEG [2 M]), being G6 statistically comparable to the Control group, that means 

that the cellular grown was almost the same. This could be related to the Indium tin 

oxide presence. Indium tin oxide (ITO), have been reported to be useful to detect 

fragment ions from proteins 25 and to enhanced photocatalysts as titanium films 17.  

Selvakumaran et al., reported the high biocompatibility of Indium tin oxide and its 

performance to promoted faster rate of protein adsorption in the first 7 days of 

experiment and desorption ocurrence after that period 20. According to authors, protein 

adsorption is an important key that determined biocompatibility of the material and the 

in vivo performance of implants20, since it is the initial event that occurred when a 

foreign material is implant in the body influencing subsequent reactions of adsorption 

of proteins, cells, and microorganisms 26,27.  The better biological response of G6 

(In2O5Sn) can be also attributed to some differences in the processing phases: for acid 

etching washing we used NaCl-0,9% and the dip coating time was reduced to 15 cm 

/minute, different from G5 (In2O5Sn), the other ITO group,  that used 38cm/min during 

the dip coating method. In sol-gel dip coating method, withdrawal speed influence the 
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thickness of the final coating , higher speeds produced thicker coatings and inversely 

lower speeds produced thinner coatings 28. Thickness of coatings is an important 

characteristic for biologic bone response29.  Hence it could be assumed that group G6 

modified titanium surfaces presented thinner thickness.  

On the other hand, high cellular viability of G2 can be attributed to the presence of 

Zirconia (ZrO2). studied have shown that Zirconia (ZrO2) present chemical stability, 

good mechanical properties in terms of resistance, wear and corrosion; and is highly 

biocompatible, enable osseointegration and new bone formation in cellular essays and 

in animal models 30,31.  Zinc, from zirconia, is essential in DNA replication and 

stimulates protein synthesis, participates in cellular development and differentiation; 

and influence bone calcification and skeletal growth, since activate bone formation and 

inhibit bone resorption 32 

The main objective of the study was to test the biocompatibility of the experimental 

modified titanium surfaces, nevertheless some limitations regarding the coating 

characterization - such as  viscosity, thickness, adsorption capacity, secondary ion 

mass spectroscopy, XPS analysis, contact angle measurements, among others - could 

be performed in order to better understand the performance of the experimental groups 

associated to cellular grown. 

The present study showed ITO as an important biocompatible material that can 

promoted high cellular grown on medical titanium. It is the authors believe that even 

though cellular grown was lower by the cathodic polarization, it is feasible to used the 

technique with biomolecules to increased positive reactions. 
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Table 1. Comparisons between the experimental groups and the control group (G1, G2, G3, G4, GC) (Kruskal Wallis test 

and Dunn`s test for comparisons between groups). 

Experimental Groups G2 

Median (SD) 

G5 

Median (SD) 

G6 

Median (SD) 

P1 

Median (SD) 

GC 

Median (SD) 

Viabilidade celular 2.241 (0.358)b 1.459 (0.690)c 2.493 (0.278)ab 1.240 (0.182)d 2.987 (0.240)a 

Different letters and symbols, means statistic difference (p<0.05) SD: Standard Deviation G2= ZrO2/PEG [2 M], G5= ITO G6 

= ITO + NaCl-0,9% treatment, P1 = Hydrided surface by Cathodic polarization , GC= Control Group. 

 

Table 2. EDX quantitave analysis of the experimental coated Titanium surfaces. 

Experimental 

Groups 

Elements presented on coated titanium material (Ti-U e Na-Sc)  

Percentages (%)   

TiO2 ZrO2 SO3 P2O5 CaO CuO K2O In2O3 Fe2O3

G2 72.54 0.045 
18.70 2.14 

28.9

3  
 

  

G5 73.04 - 24.15 1.61 0.09 0.02 0.97 0.16 - 

G6  72.67 - 24.80 1.39 0.08 0.02 0.95 0.10 - 

P1 67.59 - 31.00 1.28 0.10 0.02 - - 0.01 

 

G2= ZrO2/PEG [2 M], G5= ITO G6 = ITO + NaCl-0,9% treatment, P1 = Hydrided surface by Cathodic polarization, GC= Control Group. 
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Figure 1 Flow chart of ITO and ZrO2/PEG coated synthesized by sol-gel Dip-coated and hydride by Cathodic Polarization. 
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Figure 2. Cell viability of the experimental Titanium modified surfaces by sol-gel dip 

coating method and different sol solutions (G2, G5, G6) and cathodic electrochemical 

polarization (P1) and the control group (GC). 

 

Figure 3. A. Sol of ITO, B. Sol of ZrO2/PEG [2 M]   C. Titanium after dip coating method 

with ITO 
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8. Conclusões 
 

Ainda não existe consenso sobre o material ideal na indústria biomédica para 

a fabricação de dispositivos prostéticos e ortopédicos em particular dentários dentro 

da área da odontologia. Entretanto, o Titânio (Ti) e suas ligas, a pesar das taxas de 

rejeição reportadas, representam hoje em dia o padrão-ouro para a produção de 

dispositivos biomédicos. Melhora da eficácia clínica desses dispositivos biomédicos, 

com o intuito de induzir um comportamento bioativo e melhora da osseointegração 

nos locais onde os dispositivos implantáveis estão sendo aplicados para reconstruir 

os tecidos degradados são necessárias. Neste contexto, a principal estratégia para 

aprimorar a interação células/superfície de dispositivos biomédicos é a incorporação 

de sistemas de redes hibridas orgânicas-inorgânicas nas superfícies destes 

dispositivos protéticos e ortopédicos através da inovação nas técnicas de 

revestimento e outras técnicas de modificação de superfície, para tornar a composição 

química do material, mais compatível e parecido ao tecido ósseo. 

O presente estudo permitiu confirmar mediante revisão sistemática que o uso 

da técnica electroquímica de polarização catódica aumenta a viabilidade celular e 

promove crescimento e diferenciação óssea.  

Na realização do trabalho experimental, foi confirmada as nossas hipóteses. 

Os nanocompósitos de sistemas híbridos dopados e não dopados de ZrO2/PEG, 

TiO2/PEG, TiO2: Li+: ZrO2/PEG, TiO2:Li+/PEG, ITO, Ácido acético-Acetato de sódio 

que foram sintetizadas e/ou depositados ou tratadas através da metodologia de sol-

gel dip-coating e eletroquímica, demonstraram ser biocompatíveis e proporcionar uma 

microestrutura adequadas nas superfícies para proliferação e diferenciação celular. 

Este resultado nos permite vislumbrar a confecção e combinação de técnicas-

metodologias de outros sistemas híbridos baseados em polímeros e a dopagem com 

óxidos de metais de transição, que possam ser utilizados em futuras aplicações para 

o desenvolvimento de superfícies biomiméticos na indústria biomédica. 
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