UNIVERSIDADE FEDERAL DE PELOTAS

FACUDADE DE AGRONOMIA ELISEU MACIEL PROGRAMA DE PÓS-GRADUAÇÃO EM AGRONOMIA

Dissertação

Qualidade de luz na micropropagação de mirtileiro 'Woodard'

Jéssica Gonsalez Cruz

Jéssica Gonsalez Cruz

Engenheira Agrônoma

Qualidade de luz na micropropagação de mirtileiro 'Woodard'

Dissertação apresentada ao Programa de Pós-Graduação em Agronomia, da Faculdade de Agronomia – Eliseu Maciel da Universidade Federal de Pelotas, como requisito parcial à obtenção do título de Mestre em Ciências, área do conhecimento: Fruticultura de Clima Temperado.

Orientadora: Prof^a. Dr^a. Márcia Wulff Schuch

Coorientadora: Prof^a. Dr^a. Adriane Marinho de Assis

Universidade Federal de Pelotas / Sistema de Bibliotecas Catalogação na Publicação

C955q Cruz, Jéssica Gonsalez

Qualidade de luz na micropropagação de mirtileiro 'Woodard' / Jéssica Gonsalez Cruz ; Márcia Wulff Schuch, orientadora ; Adriane Marinho de Assis, coorientadora. — Pelotas, 2017.

64 f.: il.

Dissertação (Mestrado) — Programa de Pós-Graduação em Agronomia, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas, 2017.

1. Vaccinium spp.. 2. Multiplicação. 3. Enraizamento. 4. Cultivo in vitro. I. Schuch, Márcia Wulff, orient. II. Assis, Adriane Marinho de, coorient. III. Título.

CDD: 634.38

Elaborada por Gabriela Machado Lopes CRB: 10/1842

Banca Examinadora:

Prof^a. Dr^a. Márcia Wullf Schuch (Orientadora) – Universidade Federal de Pelotas. Doutora em Agronomia, área de concentração em Fruticultura de Clima temperado pela Universidade Federal de Pelotas (2000), e pós-doutorado pela Universidade de Bologna, Itália (2008).

Prof^a. Dr^a. Aline Ritter Curti- Universidade Federal de Pelotas. Doutora em Engenharia Florestal pela Universidade Federal de Santa Maria.

Dr^a. Josiane Vergara Casarin- Doutora em Agronomia pela Universidade Federal de Pelotas, área de concentração em Fruticultura de Clima Temperado.

Agradecimentos

A Ele que sempre me rege, me guarda, me governa, me ilumina.

A minha família (pais e irmãos), minha estrutura, meu alicerce.

Mais do que agradecer, quero também dedicar essa conquista ao meu companheiro, Welcsoner Cunha que participou efetivamente desta conquista. Nunca esquecerei aquele 31/12/2015, um calor de 30 e tantos graus e lá estávamos na casa de vegetação irrigando os experimentos antes de viajar para comemorar a virada do ano. Este é só um exemplo dos muitos que poderia citar onde fostes minha base forte, meu maior apoiador e incentivador para concluir o quanto antes este processo. Essa conquista também é tua. Serei eternamente grata!

A equipe do laboratório de propagação de plantas frutíferas da Universidade Federal de Pelotas, agradeço a todos que de alguma forma contribuíram para a execução deste trabalho. Em especial não posso deixar de agradecer a Zeni Tomaz, pós-doc deste laboratório que foi a primeira pessoa que me recebeu e auxiliou da melhor maneira possível. Em seguida, deixo registrado o carinho e eterna gratidão ao "Meu time", sem vocês: Andrio Copatti, Flávia Loy, Camila Schwartz, Laura Sommer, Filipe Lessa, nada disso seria possível. Vocês tornaram meus dias mais leves e o trabalho muito mais fácil. Deixo o agradecimento a minha caroneira e amiga Juliana Padilha e a Mariana Larrondo pelos momentos de descontração e amizade.

Em tempo, gostaria de ressaltar a ajuda do Andrio. Meu amigo, não tenho palavras para agradecer toda dedicação e auxílio que me deste na realização deste trabalho. Seja com uma palavra de incentivo até as inúmeras vezes que tivesse que ler e reler para me ajudar nas correções. Minha gratidão e amizade eterna.

Ao laboratório de fisiologia vegetal desta mesma universidade, em especial ao professor Sidnei Deuner, meus agradecimentos pelos ensinamentos e por ter me auxiliado, bem como cedido os laboratórios para avaliações dos experimentos.

Agradeço a orientação da professora Dra. Márcia Wullf Schuch e a coorientação da professora Dra. Adriane Marinho. A vocês sou grata pelas oportunidades de aprendizado, pelas orientações nas pesquisas e pela parceria estabelecida neste processo.

Agradeço a Universidade Federal de Pelotas (UFPel), bem como a Faculdade de Agronomia Eliseu Maciel (FAEM) por ter me proporcionado a formação de

Engenheira Agrônoma e por possibilitar a continuidade dos estudos no Programa de pós-graduação em Agronomia (PPGA).

À Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), pela concessão da bolsa de estudos.

Resumo

CRUZ, Jéssica Gonsalez. **Qualidade de luz na micropropagação de mirtileiro 'Woodard'.** Dissertação (Mestrado) – Programa de Pós-Graduação em Agronomia. Universidade Federal de Pelotas, Pelotas, RS, Brasil, 2017.

Objetivou-se com o presente estudo verificar a influência dos fitorreguladores 2-Isopenteniladenina (2ip) e ácido indolbutírico (AIB), aliados à qualidade de luz, na multiplicação e enraizamento in vitro, de mirtileiro 'Woodard'. Os experimentos foram realizados de maio a novembro de 2016. No Laboratório de Micropropagação de Plantas Frutíferas, do Departamento de Fitotecnia da Faculdade de Agronomia Eliseu Maciel (FAEM), e algumas avaliações foram realizadas no Laboratório de Metabolismo Vegetal, do departamento de botânica do Instituto de biologia, da Universidade Federal de Pelotas (UFPel), no município Capão do Leão, RS. Foram avaliadas variáveis referentes à porcentagem de sobrevivência, número de brotações, comprimento da maior brotação (cm) comprimento de parte aérea (cm), número de folhas (gemas), taxa de multiplicação (números absolutos), área foliar (AF), número de raízes, porcentagem de enraizamento (%) e comprimento da maior raiz (cm). Os resultados obtidos demonstram que a presença de 2ip associado a luz branca fluorescente proporciona melhores resultados ao comprimento da parte aérea dos explantes, além de proporcionar maior número de folhas e de brotações. Com relação as clorofilas e carotenoides, nota-se que os maiores valores ocorreram na ausência do fitorregulador. Os maiores índices de área foliar puderam ser verificados na presenca de luz fluorescente branca. Na presenca de AIB foi observado maior número de brotações quando utilizado o filtro de luz azul e a lâmpada fluorescente. Entretanto, para o número de folhas e de raízes, porcentagem de enraizamento e área foliar foram obtidas maiores médias na condição de luz fluorescente branca. Os carotenoides tiveram resultados superiores nos filtros azul e vermelho. As variáveis comprimento da maior brotação (cm), comprimento da maior raiz (cm), número de raízes e taxa de crescimento (%) apresentaram maiores médias na presença de AIB. A presença de 2-Isopenteniladenina (2ip), bem como a presença de Ácido Indolbutírico (AIB) associado a luz branca fluorescente proporciona melhores resultados a multiplicação e ao enraizamento in vitro de mirtileiro 'Woodard' respectivamente.

Palavras-chave: Vaccinium spp., multiplicação, enraizamento, cultivo in vitro.

Abstract

CRUZ, Jéssica Gonsalez. Light quality in the micropropagation of blue-eyed 'Woodard'. Dissertation (Master degree) - Postgraduate Program in Agronomy. Federal University of Pelotas, Pelotas, RS, Brazil, 2017.

The objective of this study was to verify the influence of the 2-Isopentenyladenine (2ip) and indolbutyric acid (IBA) phytorregulators, allied to the light quality, in the in vitro multiplication and rooting of the Woodard myrtle. The experiments were carried out from May to November of 2016. In the Laboratory of Micropropagation of Fruit Plants, from the Department of Phytotechnology of the Faculty of Agronomy Eliseu Maciel (FAEM), and some evaluations were carried out in the Laboratory of Plant Metabolism, botanical department of the Institute of Biology, Federal University of Pelotas (UFPel), in Capão do Leão, RS. Variables related to survival percentage, shoot number, shoot length (cm), shoot length (cm), number of leaves (gems), multiplication rate (absolute numbers), leaf area of roots, rooting percentage (%) and length of the largest root (cm). The results obtained demonstrate that the presence of 2ip associated with white fluorescent light gives better results to shoot length of the explants, besides providing a greater number of leaves and shoots. With regard to chlorophyll and carotenoids, it is observed that the highest values occurred in the absence of the phytoregulator. The highest indexes of leaf area could be verified in the presence of white fluorescent light. In the presence of IBA a greater number of shoots were observed when using the blue light filter and the fluorescent lamp. However, for the number of leaves and roots, percentage of rooting and leaf area were obtained higher averages in the condition of white fluorescent light. Carotenoids had superior results on the blue and red filters. The variables length of the highest sprouting (cm), length of the largest root (cm), number of roots and growth rate (%) presented higher averages in the presence of IBA. The presence of 2-Isopentenyladenine (2ip) as well as the presence of Indolbutyric Acid (IBA) associated with fluorescent white light results in better multiplication and in vitro rooting of Woody Goldfish, respectively.

Key words: Vaccinium spp., Multiplication, rooting, in vitro culture.

Lista de Figuras

Figura 1 – Mirtileiro do grupo Rabbiteye. Imagem demonstrativa de seu porte ereto e hábito arbustivo. Fonte: Flávia Loy. Centro Agropecuário da Palma, área didática experimental da Universidade Federal de Pelotas, 2016.	
2010.	19
Figura 2 – Frascos envolvidos com os filtros de luz, com a cor do seu respectivo tratamento. Fonte: Acervo da autora. Sala de crescimento do laboratório de propagação de plantas da Universidade Federal de Pelotas, 2016.	30
Figura 3 – Avaliações de quantificação dos pigmentos fotossintéticos. a) Integrador de área foliar. b) Tecido foliar fresco sendo macerado em almofariz com auxílio de pistilo e com acetona 80%. c) Centrífuga. d) Espectrofotômetro. Fonte: Acervo da autora. Laboratório de Metabolismo Vegetal da Universidade Federal de Pelotas, 2016.	32

32

Lista de Tabelas

Qualidade da luz e fitorreguladores na multiplicação *in vitro* de mirtileiro 'Woodard'

Tabela 1 – Comprimento de parte aérea de mirtileiro 'Woodard' em meio de cultura, com (100mg L ⁻¹) e sem a adição de 2-isopenteniladenina (2ip) e diferentes filtros de luz. Pelotas/RS, 2017.	33
Tabela 2 – Número de brotações, Número de folhas, Taxa de Multiplicação, Clorofila a, Clorofila b, Clorofilas Totais e Carotenóides Totais de mirtileiro 'Woodard' em meio de cultura WPM, com (100mg L ⁻¹) e sem a adição de 2-isopenteniladenina (2ip) e diferentes filtros de luz. Pelotas/RS, 2017.	34
Tabela 3 – Área foliar de mirtileiro 'Woodard' em meio de cultura WPM, com e sem a adição de 2-isopenteniladenina (2ip) e diferentes filtros de luz. Pelotas/RS, 2017.	36
Qualidade de luz e fitorreguladores no enraizamento <i>in vitro</i> de mirtileiro 'Woodard')
Tabela 4 – Número de brotações, folhas e raízes, taxa de enraizamento, área foliar e carotenoides totais em microestacas de mirtileiro 'Woodard' cultivadas em meio WPM e filtros de luz. Universidade Federal de Pelotas,	

Tabela 5 – Comprimento da maior brotação e da maior raiz, número de raízes, e taxa de enraizamento alcançadas sem e com a adição de AIB (Ácido indolbutírico) (0,5mg L-1) em meio de cultivo WPM. Influência no enraizamento *in vitro* de mirtileiros 'Woodard'. Universidade Federal de Pelotas, Pelotas/RS, 2017.

45

Pelotas/RS, 2017.

Lista de abreviaturas e siglas

AIA - ácido indolacético

AIB- Ácido Indolbutírico

AF - área foliar

atm - atmosfera

BAP - 6-benzilaminopurina

^oC – grau Celsius

cm - centímetro

cm⁻² – centímetro quadrado

g L⁻¹ – grama por litro

Ha - hectare

HCI - ácido cloridrico

IAF – índice de área foliar IBGE- Instituto Brasileiro

de Geografia e Estatística Kg - quilograma

Lm m⁻² – lumens por metro quadrado

mg - miligrama

mg L⁻¹ – miligrama por litro

mL - mililitro

MS - Murashige e Skoog

Nm - nanometro

NaOH - hidroxido de sódio

pH – potencial de hidrogênio

PVC - policloreto de vinila

rpm- rotação por minuto

WPM - Wood Plant Medium

 $\mu mol\ m^{-2}\ s^{-1}$ – micromol por metro quadrado por

segundo 2ip- 2- Isopenteniladenina

Sumário

Qualidade de luz e fitorreguladores na micropropagação de mirtileiro 'Woodard'

1 Int	rodução	12
2 Re	evisão bibliográfica	16
2.1	Origem e botânica	16
2.2	Descrição botânica	17
2.3	Propagação de mirtileiro	19
2.4	Meio de cultura e reguladores de crescimento	20
2.5	Qualidade da luz na micropropagação	22
3 C <i>F</i>	APÍTULO I	25
Qua	lidade da luz e fitorreguladores na multiplicação in vitro de mirtileiro 'Woodard'	25
3.1 I	ntrodução	26
3.2 I	Material e métodos	29
3.3	Resultados e discussão	33
3.4 (Conclusão	37
4 CA	APÍTULO II	38
Qua	lidade da luz e fitorreguladores no enraizamento in vitro de mirtileiro 'Woodard	'38
4.1	Introdução	. 39
4.2	Material e métodos	. 43
4.3	Resultados e discussão	. 45
4.4	Conclusão	. 50
5 (Considerações finais	. 51
6	Referências Bibliográficas	53

1. Introdução

O Brasil é um dos três maiores produtores mundiais de frutas, com uma produção que supera os 40,0 milhões de toneladas. A base agrícola da cadeia produtiva das frutas abrange 2,6 milhões de hectares e gera 6,0 milhões de empregos diretos (ANDRADE,2017).

No ano de 2017, a estimativa é de que as frutas que ocuparam as maiores áreas foram: laranja (*Citrus sinensis* (L.)) (665.174 hectares), castanha de caju (*Anacardium orcidentale*) (586.523 hectares), banana (*Musa* spp) (475.976 hectares) e coco-da-baía (*Cocos nucifera*) (251.665 hectares). Os maiores rendimentos médios foram de mamão (*Carica papaya*) (48.333 kg ha⁻¹) e maçã (*Malus domestica*) (35.284 kg ha⁻¹). Produtividades entre 25.000 kg ha⁻¹ e 26.000 kg ha⁻¹ foram obtidas para laranja, limão, melão e abacaxi (CARVALHO, 2017).

A presença brasileira no mercado externo, com a oferta de frutas tropicais e de clima temperado durante boa parte do ano, é possível pela extensão territorial do país, posição geográfica e condições de clima e solo privilegiadas. No entanto, mesmo tendo uma ampla gama de espécies cultivadas, apresenta um rol das principais frutas produzidas restrito, tanto nos âmbitos mundiais, como nacionais (ANDRADE,2017), logo, cabe ressaltar a importância da inserção de novas espécies de frutas no mercado, como por exemplo as pequenas frutas.

No grupo das pequenas frutas estão inseridas espécies típicas de clima temperado, como o morango (*Fragaria x ananassa*), a amora-preta (*Rubus* spp.), o mirtilo (*Vaccinium* spp.), a framboesa (*Rubus idaeus*), a physalis (*Physalis peruviana*) e a uva muscadínea (*Vitis rotundifolia*) (ANTUNES; HOFFMANN, 2012). Estas representam uma oportunidade para o produtor diversificar a produção e obter bons lucros.

Plantios de espécies como amora-preta, mirtilo e framboesa podem representar alto retorno em pequenas áreas, existindo ainda grandes empresas empenhadas em produzir e exportar estas frutas. Existe ainda grande procura por produtos à base destas frutas por parte dos consumidores, incentivados por pesquisas que apontam seu valor como alimento funcional (ANTUNES, 2013).

Dentre as frutas com alto potencial nutracêutico, podemos destacar o mirtilo, muito apreciado pelo seu sabor exótico, pelo valor econômico e por suas propriedades medicinais antioxidantes que conferem a denominação de "fonte da

longevidade". Este representa uma alternativa para as pequenas propriedades, devido o mercado bastante promissor.

O mirtileiro, nativo da América do Norte, pertence à família *Ericaceae* e ao gênero *Vaccinium*, cresce naturalmente em algumas regiões da Europa e América do Norte, onde também é cultivado em grande escala (MADAIL; SANTOS, 2004). No Brasil, as plantações de mirtileiro estão concentradas nos Estados do Rio Grande de Sul, Santa Catarina, e também no Paraná, São Paulo e Minas Gerais. Apesar de não estarem disponibilizadas estatísticas oficiais atualizadas, estima-se que a área plantada com mirtilos no Brasil seja de 400 hectares aproximadamente. A produção de mirtilos no Brasil ocorre principalmente em pequenas propriedades, com poucos empreendimentos em grande escala. Por se tratar de uma cultura pouco difundida no País, o pacote tecnológico utilizado pelos produtores brasileiros tem sido adaptado de outros países e adequado às condições locais (CANTUARIAS-AVILÉS, 2014).

A lucratividade na comercialização dessa frutífera pode alcançar valores bastante significativos, na ordem de sete reais o quilo (LAZZAROTTO, 2014). A exportação, ocorre principalmente no Hemisfério Sul, uma vez que este tem elevada oferta mundial de frutos na meia-estação, colhidos entre dezembro e março, e são exportados aos EUA, Europa e países asiáticos na entressafra do Hemisfério Norte (CANTUARIAS-AVILÉS, 2014). Na maioria das plantas frutíferas, a produção comercial de mudas é realizada por propagação vegetativa, que, além de proporcionar mudas de qualidade, fixa características agronômicas desejáveis de forma eficiente (BASTOS et al., 2005). Com o mirtileiro não é diferente; no entanto o resultado pode ser variável de acordo com as cultivares. Assim, a multiplicação pode ser feita por estaquia ou por micropropagação. A propagação por estacas, ou estaquia, é um método muito importante e bastante difundido na multiplicação de plantas, apresentando grande aplicação na fruticultura (HOFFMANN, 1994).

O uso da micropropagação, além da produção de grande quantidade de plantas em curto período de tempo, permite a obtenção de mudas com qualidade fitossanitária, plantas livres de doenças e a propagação de espécies difíceis de serem multiplicadas por outros métodos. Outra vantagem do ponto de vista prático da micropropagação está relacionada ao enraizamento e ao rejuvenescimento obtido pelos sucessivos subcultivos e pelo uso de reguladores de crescimento (GRATTAPAGLIA; MACHADO,1998).

No que diz respeito à micropropagação de mirtileiro, o meio de cultura utilizado nas fases de multiplicação e enraizamento *in vitro* é o WPM- 'Wood Plant Media' (LLOYD; MCCOWN, 1980), acrescido de 100 mg. L⁻¹ de mio-inositol, 30 g. L⁻¹ de sacarose e 6g. L⁻¹ de ágar.

Além do meio de cultura, na micropropagação a qualidade da luz, ou seja, o comprimento de onda específico, a densidade de fluxo de fótons e o fotoperíodo influenciam a morfogênese das plantas cultivadas *in vitro* (LIAN et al., 2002). O mirtileiro é altamente influenciado pela intensidade da luz, embora os efeitos da qualidade de luz não tenham ainda sido previamente elucidados. Fontes de luz artificiais comumente utilizadas para o cultivo de mirtilo, bem como outras espécies de plantas são lâmpadas fluorescentes, lâmpadas de sódio de alta pressão, lâmpadas incandescentes e lâmpadas de haletos metálicos, todas com baixa qualidade e comprimentos desnecessários para melhorar o crescimento e o desenvolvimento de plantas (ISUTSA et al. 1994; CAO; HAMMERSCHLAG, 2000; GRUPTA; JATOTHU, 2013).

Como alternativa as fontes de luz utilizadas tradicionalmente, foram introduzidos na propagação de plantas os diodos emissores de luz (LEDs), mais especificamente no cultivo de plantas micropropagadas (NHUT et al., 2003). Estes vêm despertando o interesse de pesquisadores, que realizaram estudos sobre a qualidade da luz fornecida por LEDs em crisântemo (*Chrysanthemum* Spp.) (SILVA; DEBERG, 1997), bananeira (*Musa* Spp.) (DUONG et al., 2002) e copo-de-leite (*Zantedeschia aethiopica*) (CHANG et al., 2003).

Na busca pelo aprimoramento das informações sobre a qualidade de luz, ao invés do uso de LEDs como fonte de energia luminosa, um novo artifício para a modificação do espectro luminoso das luzes brancas frias pode ser adotado, mediante o uso de filtros coloridos de acetato celulose, do tipo Lee Filters (Walworth Ind. Estate, Andover, England).

Diante do exposto, este trabalho será apresentado em dois capítulos. O primeiro estudo teve como objetivo avaliar os efeitos do fitorregulador 2-lsopenteniladenina (2ip) associado à aplicação de diferentes espectros luminosos, enquanto no segundo estudo o objetivo foi avaliar os efeitos do fitorregulador Ácido Indolbutírico (AIB) também associado à qualidade de luz. A modificações do espectro luminoso citada, foi obtida através da utilização de filtros coloridos de acetato celulose azul (número 118 Light blue), vermelho (número 106 Primary red), e

luz fluorescente branca em ambos os experimentos, de multiplicação e de enraizamento *in vitro* de mirtileiro 'woodard' respectivamente.

2. Revisão bibliográfica

2.1 Origem e botânica

O mirtilo pertence à família *Ericacea*e, subfamília *Vaccinoideae* e gênero *Vaccinium.* É nativo de bosques do Norte da Europa e América do Norte, Estados Unidos, Canadá, onde é denominado "blueberry". Há relatos do consumo pelo homem destes frutos desde a pré-história (SEVERO et al., 2008).

O gênero *Vaccinium* compreende cerca de 400 espécies, sendo 40% nativas do Sudoeste da Ásia, 25% da América do Norte e 10% das Américas Central e do Sul com o restante espalhadas pelo mundo (DARNEL, 2006). A maior parte da produção de mirtilos origina-se de cultivares derivadas principalmente de quatro grupos: Highbush, Lowbush, Habbiteye e de seus híbridos (ROWLAND et al., 2012).

Galleta; Ballington (1996) relatam que Coville iniciou a domesticação do mirtilo em 1906. Este pesquisador estudou desde a germinação da semente até a maturação da fruta. Verificou que a espécie requer solo ácido (pH 4,5 a 5,2) e drenagem permanente. No entanto, no final do século XIX, em Maine, Rhode Island, New York e Michigan, Card iniciou o programa de Rhode Island em 1898, selecionando as melhores plantas nativas para estudo de propagação e capacidade de transplante. Foi então que em 1906 Coville iniciou os trabalhos de seleção e propagação de plantas que produziam frutas maiores e sua primeira seleção foi 'Brooks', que era do tipo Highbush. Após, em 1911, o mesmo cruzou 'Brooks' com 'Russel', seleção do tipo Lowbush, realizada em 1909 e este foi seu primeiro cruzamento de sucesso com mirtilo. Quando Coville faleceu em 1937, cerca de 70.000 híbridos já haviam sido produzidos e 15 cultivares lançadas (GALLETA, 1975).

As primeiras introduções do mirtilo no Brasil datam de 1983, através da Embrapa Clima Temperado (Pelotas – RS), que implantou uma coleção de cultivares oriundas da Universidade americana da Flórida, sendo que, a prática comercial iniciou em 1990 na cidade de Vacaria (RS) (MADAIL; SANTOS, 2004).

2.2 Descrição botânica

O mirtileiro é um arbusto de hábito ereto (Highbush e Habbiteye) ou rasteiro (Lowbush) (RODRIGUES et al., 2007). Seu crescimento é basitônico, ou seja, o crescimento ocorre nas gemas basais e esse fator define o porte da planta.

Esta cultura adapta-se às mais variadas condições climáticas, que vão desde as regiões com 300 horas de frio abaixo de 7,2 °C, até regiões com mais de 1.100 horas. Porém, a falta de frio causa brotação e floração deficiente e, por consequência, produção deficiente (RASEIRA; ANTUNES, 2004). Quando comparado com outras frutíferas, esta apresenta a particularidade de exigir solos com pH ácido (4,8 a 5,2), sendo que em solo com pH superior as plantas não se desenvolvem e apresentam sérios problemas de deficiência de Fe (STRIK, 2007).

Na região de Pelotas/ RS, a floração do mirtileiro ocorre em meados de agosto ao início de setembro. A colheita vai da segunda quinzena de dezembro a janeiro. A frutificação se dá em ramos de um ano de idade e a colheita deve ser feita semanalmente, ou preferencialmente duas vezes por semana. A colheita deve ser efetuada quando a epiderme da fruta está escura (azulada), estes são considerados macios e, portanto, inadequados para transporte em longas distâncias, seu peso médio pode variar entre 1,0 a 1,2 g, enquanto o diâmetro varia de 1,1 a 1,5cm. Na coleção da Embrapa Clima Temperado, o teor de sólidos solúveis tem sido superior a 12° Brix, podendo chegar a 13,9°Brix (RASEIRA; ANTUNES, 2004).

Galletta e Ballington (1996) classificam os tipos de mirtilo, comercialmente plantados, em cinco grupos importantes, descritos a seguir:

Highbush: (arbusto alto) São plantas de dois ou mais metros de altura. A necessidade em frio hibernal das plantas deste grupo está geralmente entre 650 e 850 horas.

Half high: (arbusto de médio porte): Este grupo tem plantas de 0,5 a 1,0 m de altura. Presentemente, este grupo envolve híbridos de *V. angustifolium e V. corymbosum*. Tem menor exigência em frio do que o grupo anterior.

Southern highbush: (arbusto de porte alto, originário do sul dos Estados Unidos da América (EUA): Neste grupo também predomina a espécie *V. corymbosum.* Este grupo também é conhecido como "highbush" de baixa necessidade em frio (GALLETTA; BALLINGTON, 1996). Tem melhor desempenho nos planaltos, solos pobres em matéria orgânica, melhor resistência a doenças. Mas

são mais exigentes em água, qualidade de solo, drenagem e quantidade de matéria orgânica que as cultivares do tipo "rabbiteye" (VILELLA, 2003).

Rabbiteye -"olho de coelho" (espécie hexaplóide): As plantas deste grupo podem alcançar de dois a quatro metros de altura. Algumas das características da espécie *V. ashei* são: vigor, longevidade, produtividade, tolerância ao calor e à seca, problemas com fungos e variações de solo, baixa necessidade em frio, produzindo frutos ácidos, firmes e de longa conservação.

Entre as limitações dessa espécie, estão o fato de desenvolver a cor completa das frutas antes do ponto ideal de colheita e de alcançar a melhor qualidade em termos de sabor, tendência a rachar a película em períodos úmidos, longo período até alcançar o máximo de produtividade, cor escura da película correlacionada com frutas mais doces e auto-esterilidade. Muitos desses defeitos já foram solucionados através de melhoramento genético. Por exemplo, as cvs, Beckyblue e Premier produzem frutas de tamanho, cor e qualidade competitivas com as cultivares do grupo "highbush" (GALLETTA; BALLIGTON, 1996).

Lowbush (arbusto de pequeno porte): As plantas têm menos de meio metro de altura. A maioria delas pertence à espécie *V. angustifolium*, embora esteja neste grupo, o mirtilo do Canadá (*V. myrtilloides e V. boreale*), (GALLETTA; BALLIGTON, 1996). No Brasil, os mirtileiros originam-se predominantemente do grupo rabbiteye, do qual as variedades mais plantadas são Aliceblue, Bluebelle, Bluegem, Briteblue, Climax, Delite, Powderblue e Woodard, e do grupo souttherm highbush, onde as variedades mais plantadas são Misty, O'Neal, Georgiagem (CANTUARIAS- AVILÉS, 2010).

A cultivar Woodard, objeto deste estudo, é originária de Tifton, Geórgia, sendo oriunda do cruzamento 'Ethel' e 'Callaway'.

Os frutos têm boa aparência, possuem uma película azul-clara, são considerados macios, o que torna inadequado transportes a longas distâncias. A maturação é pouco mais tardia que 'Clímax' (Cultivar do mesmo grupo) (RASEIRA; ANTUNES, 2004).

Figura 1: Mirtileiro do grupo Rabbiteye. Imagem demonstrativa de seu porte ereto e hábito arbustivo. **Fonte:** Flávia Loy. Centro Agropecuário da Palma, área didática experimental da Universidade Federal de Pelotas, 2016.

2.3 Propagação de mirtileiro

As principais técnicas para a obtenção de mudas de mirtileiro são: propagação por sementes, estaquia (herbácea, lenhosa e semilenhosa) e micropropagação (MAINLAND, 2006). No entanto, de acordo com Wagner Junior et al., (2004) as dificuldades nas técnicas de propagação têm limitado a disponibilidade de mudas e também é um dos principais fatores que restringem a expansão da cultura.

Apesar do grande número de sementes por fruto, a propagação comercial através de sementes não é utilizada, uma vez que neste processo ocorre segregação genética, que origina descendentes com caracteres distintos aos da planta-mãe (HOFFMANN et al., 1995), visto que há alogamia no processo de reprodução e isto não é desejado.

A estaquia é uma técnica que também possui limitações, por ser um processo que confere resultados diferentes de acordo com as cultivares, baixo rendimento e não há garantia de sanidade. Além disso, existem alguns problemas que necessitam ser superados, especialmente no que se refere a pouca produção de ramos adequados nas plantas matrizes e à dificuldade de enraizamento (HOFFMANN et al., 1995). Recomenda-se que no mirtileiro tipo Highbush, a propagação seja por

meio de estacas lenhosas, obtidas durante o período de repouso hibernal ou até mesmo de descartes da poda, enquanto para as cultivares do grupo Rabbiteye, mais indicadas as condições do Rio Grande do Sul, melhores resultados são obtidos com estacas herbáceas (SANTOS; RASEIRA, 2002).

A micropropagação, sob condições adequadas de assepsia, nutrição e fatores ambientais, possibilita a propagação em larga escala de plantas de qualidade superior (CID, 2001; OLIVEIRA, 2000), como já realizado para propagar diversas espécies frutíferas, arbóreas, ornamentais, medicinais e aromáticas. No entanto, a técnica é influenciada por vários fatores como o genótipo, reguladores de crescimento, meio de cultivo, concentrações de sacarose, luz, temperatura, dentre outros (REIS et al., 2009).

2.4 Meio de cultura e reguladores de crescimento

A expressão cultivo *in vitro* de plantas, significa cultivar plantas dentro de um frasco de vidro em um ambiente artificial. Esta forma de cultivar plantas tem duas características fundamentais: a assepsia e o controle dos fatores que afetam o crescimento sendo que, este processo ocorre através da utilização de um fragmento (explante) de uma planta mãe, se obtém uma descendência uniforme, com plantas geneticamente idênticas, denominadas clones. O explante mais utilizado para a micropropagação são as gemas vegetativas das plantas, as quais são inseridas em frascos que permanecem em estantes com iluminação artificial em uma sala de crescimento, onde a temperatura fixa oscila entre 21 e 24°C e as horas de luz são controladas, o meio de cultura, por sua vez é composto por uma mistura de sais minerais, vitaminas, hormônios reguladores de crescimento, açúcar, água e ágar. A composição do meio depende da espécie vegetal e da finalidade do processo de micropropagação (CASTILLO, 2004). Além das formulações básicas dos meios de cultura, no caso do mirtilo, o meio básico é o WPM- Wood Plant Medium (LLOYD; MCCOWM, 1980; SILVA, 2006).

Para o sucesso da propagação de culturas *in vitro*, o uso de reguladores de crescimento é de suma importância. Estes são adicionados ao meio de cultura em concentrações específicas e desempenham um papel fundamental no crescimento e na morfogênese em cultura de tecidos (PIERIK, 1990; FLORES et al., 1998).

O tipo de citocinina e sua concentração são os principais fatores que influenciam o sucesso da multiplicação *in vitro*. Testes com combinações de

citocinina com outros reguladores de crescimento são comuns nos meios de cultura (GRATTAPAGLIA; MACHADO, 1998). O 2ip está entre as citocininas mais utilizadas e tem sido muito eficiente na multiplicação de partes aéreas e indução de gemas adventícias em diversas espécies (HU; WANG, 1983).

Na fase de enraizamento *in vitro*, o tipo de meio de cultura, de auxina e suas concentrações são as variáveis que, em geral, variam conforme a espécie e a cultivar. As auxinas compreendem uma grande família de substâncias que têm em comum a capacidade de promover o crescimento e a divisão celular em cultura de tecidos (KRIKORIAN, 1991) e têm sido utilizadas na estimulação de raízes adventícias. Dentre elas, o AIB tem sido usado por não causar fitotoxicidade aos explantes em uma larga faixa de concentração e ser eficiente em uma grande variedade de espécies (HARTMANN et al., 1997).

Para o preparo deste meio, são utilizadas soluções-estoque armazenadas em frascos de vidro âmbar. O pH do meio de cultura é normalmente ajustado para 5,0 com hidróxido de sódio (NaOH 0,1 N) ou, ácido clorídrico (HCl 0,1N) antes da adição do ágar. Após o preparo os meios são autoclavados a temperatura de 121ºC e 1,5 atm de pressão, por 20 minutos.

O material vegetal é manuseado em ambiente asséptico proporcionado pela utilização de câmera de fluxo laminar higienizada com álcool (etanol) 70%. Os instrumentos como pinças e bisturis, que anteriormente ao uso devem ser autoclavados a temperatura de 121°C e 1,5 atm de pressão, por 20 minutos e durante o uso são periodicamente flambados, esterilizados com etanol 92,8 %. O manuseio dos explantes é realizado sobre placas de Petri também autoclavadas. Após o manuseio, os frascos, contendo os explantes, são transferidos para sala de crescimento com 16 horas de fotoperíodo, com intensidade luminosa de 299 lm m-² (243 nm de comprimento de onda) na luz branca fluorescente e temperatura de 25°± 2°C. Os frascos de vidro utilizados como recipientes de cultivo são fechados com papel alumínio e selados com filme plástico de PVC. Cada experimento tem um período específico, no qual as explantes ficam em sala de crescimento, após seu desenvolvimento são avaliadas (FERRI, 2008).

Trabalhos de micropropagação com a utilização de fitorreguladores também foram realizados por outros pesquisadores como, Rocha et al., (2010), que pesquisaram a influência de Diodos emissores de luz e concentrações de BAP na multiplicação *in vitro* de morangueiro e observaram que concentrações de BAP no

meio de cultura entre 0,82 e 1,22mg L-1, dependendo da fonte de luz, proporcionaram maior multiplicação in vitro de brotações. Além disso, Pasa et al., (2012) ao pesquisarem sobre a qualidade de luz e fitorreguladores na multiplicação e enraizamento in vitro da amoreira-preta'Xavante', verificaram que utilização de BAP aumenta o número de brotações, gemas e folhas da amoreira preta 'Xavante'. Erig; Schuch (2006), observaram em seu experimento de multiplicação *in vitro* de mirtilo, que houve interação entre o tipo de citocinina e a qualidade de luz no número médio de gemas, onde, o maior número médio de brotos (1,27) foi obtido utilizando-se a zeatina.

2.5 Qualidade da luz na micropropagação

A luz é a fonte de energia para o processo de fotossíntese, sendo que os pigmentos, como as clorofilas são importantes na captação da energia luminosa e em sua transformação em energia química (NHUT et al., 2003).

A qualidade de luz influencia na multiplicação e no enraizamento (IACONA; MULEO, 2010) de explantes *in vitro*. Segundo Erig; Schuch (2005), ela também afeta a eficiência biológica dos fitorreguladores adicionados ao meio de cultura, bem como o balanço hormonal nos tecidos. Consequentemente, esta surge como uma ferramenta na manipulação da indução de balanços fisiológicos favoráveis a respostas específicas no crescimento das plantas.

Entre os diversos componentes do ambiente, a luz é primordial para o crescimento das plantas, não só por fornecer energia para a fotossíntese, mas, também, por fornecer sinais que regulam seu desenvolvimento por meio de receptores de luz sensíveis a diferentes intensidades de qualidade espectral e estado de polarização. Dessa forma, modificações nos níveis de luminosidade aos quais uma espécie está adaptada podem condicionar diferentes respostas fisiológicas em suas características bioquímicas, anatômicas e de crescimento (ATROCH et al., 2001).

Diversas características são utilizadas para avaliar as respostas de crescimento de plantas à intensidade luminosa. Entre essas, a altura da planta é uma das mais usadas, visto que a capacidade em crescer rapidamente em altura quando sombreadas é um mecanismo importante de adaptação das espécies que procuram por uma taxa luminosa maior, além da área foliar, que permite analisar a

tolerância da planta à sombra, por correlacionar-se diretamente com a área da superfície fotossintetizante útil (ENGEL, 1989). Poucos estudos têm sido realizados buscando compreender o efeito da qualidade da luz no crescimento e desenvolvimento dos tecidos de plantas cultivadas *in vitro*. Logo, entende-se a necessidade do desenvolvimento de novas técnicas e pesquisas com relação ao assunto. Para tanto, neste trabalho o artifício de modificação do espectro luminoso foi realizado através de filtros de acetato de celulose da marca Lee Filters, nas cores: azul (número 118 Light blue), e vermelho (número 106 Primary red) (Walworth Ind. Estate, Andover, England). Em outros trabalhos foram verificados diferentes resultados, como por exemplo os de Erig; Schuch (2005), estes verificaram que na framboeseira (*Rubus idaeus* L.) 'Batum' a multiplicação é aumentada com a utilização da luz verde e a luz vermelha incrementa o número médio de brotos.

2.6 Área foliar e produtos de fotossíntese

O índice de área foliar (IAF) é uma medida necessária para a maioria dos estudos agronômicos e fisiológicos envolvendo crescimento vegetal (BLANCO; FOLEGATTI, 2003) e na avaliação de várias práticas culturais (FAVARIN et al., 2002; TAVARES-JÚNIOR et al., 2002). Segundo Adami et al.(2008), a determinação de área foliar pode ser realizada por métodos diretos ou indiretos, destrutivos ou não-destrutivos. Os métodos diretos são aqueles que utilizam medições realizadas diretamente nas folhas. Os métodos indiretos baseiam-se na correlação conhecida entre a variável medida e área foliar.

Os métodos destrutivos exigem a retirada da folha ou outras estruturas, o que muitas vezes não é possível devido à limitação do número de plantas na parcela experimental. Nos métodos não-destrutivos, as medidas são tomadas na planta, sem necessidade de remoção de estruturas, preservando sua integridade e permitindo a continuidade das medições na mesma planta. Existem na literatura vários métodos de determinação de área foliar, sendo os mais utilizados: o método por discos foliares, o método de dimensões foliares e o método por equipamento medidor LI-COR®, o último destaca-se e, portanto foi utilizado neste trabalho (ADAMI, 2008).

A área foliar é uma característica para se analisar a tolerância à sombra das diferentes espécies, pois ela está diretamente correlacionada com a área da superfície fotossintetizante útil (ENGEL, 1989). Um dos fatores ligados à eficiência

fotossintética de plantas e, consequentemente, ao crescimento e à adaptabilidade a diversos ambientes é o conteúdo de clorofila e carotenoides. De forma geral, a clorofila e os carotenoides tendem a aumentar com a redução da intensidade luminosa (FERRAZ; SILVA, 2001).

O conteúdo de clorofila nas folhas frequentemente é utilizado para estimar o potencial fotossintético das plantas, pela sua ligação direta com a absorção e transferência de energia luminosa. Uma planta com alta concentração de clorofila e capaz de atingir taxas fotossintéticas mais altas, pelo seu valor potencial de captação de "quanta" na unidade de tempo. Entretanto, nem sempre esta relação existe, pois a etapa bioquímica da fotossíntese (fase do escuro) pode limitar o processo (CHAPPELLE; KIM,1992). Para que a energia luminosa produza seu efeito, depende da sua absorção por determinadas substâncias, que são os pigmentos vegetais. Os sistemas de pigmentos são moléculas que contém um grupo cromofórico responsável pelas suas cores, sendo os principais pigmentos vegetais as clorofilas, fito cromos, flavinas carotenoides e a antocianina. Dentre estes, o grupo das clorofilas é o mais importante, por estar envolvido diretamente na fotossíntese, junto com alguns carotenoides em menor escala (ENGEL; POGGIANI, 1991).

3. CAPÍTULO I

Qualidade da luz e fitorreguladores na multiplicação *in vitro* de mirtileiro 'Woodard'

3.1 Introdução

O mirtileiro (*Vaccinium* spp.) é uma espécie frutífera de clima temperado, que apresenta grande importância comercial em países da Europa e nos Estados Unidos, este é muito apreciado pelo seu sabor exótico e, principalmente por suas propriedades nutracêuticas. A cultura do mirtileiro no Brasil encontra-se em fase de intensa expansão, no entanto, ainda busca-se um sistema de produção eficiente e competitivo, que garanta seu ingresso no mercado mundial (RASEIRA; ANTUNES, 2004), sendo este um dos principais entraves para o desenvolvimento desta cultura a produção de mudas.

A produção de mudas de mirtileiro pode ser realizada por meio de sementes ou propagação vegetativa. Fachinello et al. (2005), afirmam que as principais limitações do uso comercial da propagação sexuada são a juvenilidade, o vigor elevado e a variabilidade genética, mesmo entre plantas originadas da mesma planta-matriz. Portanto, a forma mais utilizada para a propagação de mirtileiro no Brasil é a estaquia, mas os resultados são variáveis, em função da cultivar (FACHINELLO et al., 1995). Fator verificado no trabalho de Fischer et al. (2008), que em sua pesquisa relacionada ao efeito do ácido indolbutírico e da cultivar no enraizamento de estacas lenhosas de mirtilo, encontraram resultados variáveis, obtendo, dependendo da cultivar, de 55,5% a 92,5% de enraizamento.

Outro método de propagação vegetativa é a micropropagação, técnica que permite a obtenção de grande quantidade de plantas utilizando pequena quantidade de material vegetal original, e restringe ou minimiza as limitações que a baixa oferta de mudas de mirtileiros constitui para a expansão da cultura (CASTILLO et al., 2004). Além disso, possibilita o rejuvenescimento do material vegetal (TITON et al., 2003), que pode aumentar o vigor e auxiliar no desenvolvimento vegetativo das plantas (SOUZA et al., 2011).

Durante o processo de micropropagação, vários fatores podem influenciar no potencial regenerativo de uma espécie, como o genótipo utilizado, os tipos e dosagens de reguladores vegetais, os tipos e tamanhos de explantes, os meios de cultura utilizados e as condições de cultivo (BERED et al.,1998).

O meio de cultura mais utilizado na micropropagação de mirtileiro, segundo Tetsumura et al. (2008), é o WPM (Wood Plant Medium) de Loyd & McCown (1980).

No processo de estabelecimento *in vitro* de mirtileiro, comumente se observa que alguns explantes apresentam ativo crescimento, emitindo brotos alongados com várias gemas, fato verificado por Eccher; Noè (1989) em *Vaccinium corymbosum*.

Os explantes podem ser submetidos a tratamentos para estimular uma maior proliferação de brotações laterais durante a multiplicação *in vitro* (GRATTAPAGLIA; MACHADO, 1998), um exemplo é a quebra da dominância apical e indução de proliferação de gemas axilares na multiplicação *in vitro*, onde as citocininas são indispensáveis, e o seu tipo e concentração são os fatores que mais influenciam o sucesso nesta fase (GRATTAPAGLIA; MACHADO, 1998). As citocininas comumente utilizadas são o 2ip (2-isopenteniladenina) e a zeatina, como demonstram os trabalhos de Gonzales *et al.*, (2000); Esquivel (1991); Jaakola et al., (2001); Debnath Mcrae (2001) e Popowich; Filipenya (1997), estes são adicionados ao meio de cultura.

Na micropropagação vários fatores podem influenciar na propagação de uma espécie, a intensidade e a qualidade espectral da radiação são exemplos estes desempenham um papel fundamental no desenvolvimento morfológico das plantas, visando uma melhor eficiência do aparato fotossintético na captação e na utilização da energia radiante. As respostas morfofisiológicas das plantas não dependem apenas da presença, atenuação ou ausência da luz, mas também da qualidade espectral da radiação (TAIZ; ZEIGER, 2004) e neste sentido preconiza-se a avaliação da resposta das plantas sob diferentes condições de luz.

A luz é um fator ambiental de fundamental importância para as plantas, devido à ação direta ou indireta na regulação do crescimento e desenvolvimento vegetal. As adaptações sofridas pelas plantas na maquinaria fotossintética em resposta às condições de luminosidade ambiental refletem em seu crescimento global (ENGEL; POGGIANI,1991).

Em função desses aspectos, a análise de área foliar deve ser levada em consideração, uma vez que as folhas assumem funções muito importantes nas plantas, tais como a interceptação e absorção da luz para realização da fotossíntese, trocas gasosas e transpiração (FAHN, 1974). A magnitude da área foliar (AF) é um indicativo de produtividade (FAVARIN et al., 2002), além de ser requerida para a maioria dos estudos agronômicos e fisiológicos (BLANCO; FOLEGATTI, 2003). A anatomia foliar pode ser grandemente influenciada pela radiação recebida durante o crescimento, uma vez que a folha é um órgão plástico e

sua estrutura interna adapta-se às condições externas do ambiente (HANBA et al., 2002; SCHLUTER et al., 2003).

Um dos fatores ligados ao crescimento, adaptabilidade de plantas a diversos ambientes e consequentemente à eficiência fotossintética é a clorofila, presente em todos os vegetais verdes. Segundo Kramer; Kozlowski (1979), a clorofila é constantemente sintetizada e destruída (foto- oxidação) em presença de luz, mas sob intensidades luminosas muito altas a velocidade de decomposição é maior, sendo o equilíbrio estabelecido a uma concentração mais baixa de luminosidade.

Apesar da confirmação dos efeitos da qualidade espectral sobre as plantas, as respostas são muito variáveis em função da espécie (KIM et al., 2004). Portanto, a utilização de reguladores do crescimento de plantas depende do conhecimento de quais faixas do espectro estão envolvidas nas respostas de crescimento de cada planta (MCMAHON; KELLY, 1995). Podem-se estabelecer diferentes condições de cultivo pela manipulação da intensidade e qualidade espectral através da utilização de filtros coloridos, sendo que a utilização de filtros com cores diferenciadas modifica a intensidade e a composição da luz transmitida para as plantas (OREN-SHAMIR et al., 2001).

Na cultura de tecidos de plantas, a fonte de luz geralmente utilizada na sala de crescimento é a lâmpada fluorescente branca-fria (KIM et al., 2004), citada em 90% dos trabalhos científicos (KODYM; ZAPATA-ARIAS, 1999). Poucos estudos têm sido realizados buscando compreender o efeito da qualidade da luz no crescimento e desenvolvimento dos tecidos de espécies lenhosas cultivados *in vitro* (MORINI; MULEO, 2003).

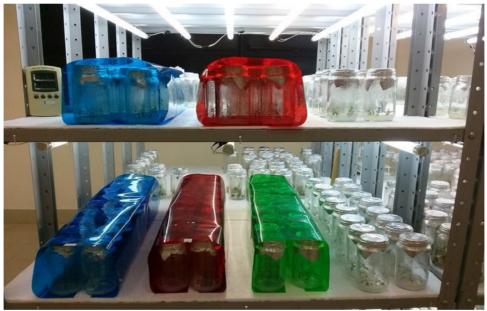
Com relação a escolha da cultivar, esta é realizada a partir de estudos fenológicos da cultura que podem tornar disponíveis informações necessárias para determinar quais cultivares são mais adaptadas às condições edafoclimáticas locais (SILVA et al., 2006). NeSmith (2006), ao estudar a fenologia de variedades de mirtilo em diferentes locais, concluiu que a depender da cultivar, do acúmulo de horas de frio do local e do ano de avaliação, o período de florescimento pode variar em até 24 dias. Partindo deste pressuposto, e a partir de pesquisas, pode-se constatar que a cultivar 'Woodard' está entre as principais cultivares existentes no Brasil e com melhor adaptação, além de Aliceblue, Bluebelle, Bluegen, BriteBlue, Climax, Delite e PowderBlue (HOFFMANN; ANTUNES, 2006).

Neste contexto, considerando que a qualidade da luz surge como uma ferramenta na manipulação da indução de balanços fisiológicos favoráveis a respostas específicas no crescimento das plantas e que os estudos em busca da compreensão com relação aos efeitos da qualidade da luz no crescimento e desenvolvimento dos tecidos de espécies lenhosas cultivados *in vitro* são escassos, o objetivo deste trabalho é avaliar os efeitos de fitorreguladores e da qualidade de luz na multiplicação *in vitro* de mirtileiro 'Woodard'.

3.2 Material e métodos

O trabalho foi conduzido de agosto a novembro de 2016. No Laboratório de Micropropagação de Plantas Frutíferas, do Departamento de Fitotecnia da Faculdade de Agronomia Eliseu Maciel (FAEM), e no Laboratório de Metabolismo Vegetal, do departamento de botânica do Instituto de biologia, da Universidade Federal de Pelotas (UFPel), no município Capão do Leão, RS. Foram utilizadas plantas matrizes de mirtileiro 'Woodard' cultivadas *in vitro* pertencentes ao laboratório da Universidade.

O delineamento experimental utilizado foi o inteiramente casualizado, em esquema fatorial 3x2 (três tipos de espectro de luz (filtros de acetato de celulose vermelho, azul e luz branca) e duas concentrações de 2ip (2-isopenteniladenina) (sem 2-IP e 100 mg L⁻¹ de 2-IP, totalizando seis tratamentos, com quatro repetições por tratamento. Cada repetição constituiu-se de um frasco com cinco explantes.


A variação no tipo de luz foi fornecida por meio do uso de filtros coloridos de acetato celulose, do tipo Lee Filters (Walworth Ind. Estate, Andover, England), com as seguintes especificações: azul (número 118 Light blue) com transmitância de 79 lm m⁻² (64,2 nm de comprimento de onda), e vermelho (número 106 Primary red) com 26 lm m⁻² (21,13 nm de comprimento de onda), bem como de lâmpada fluorescente branca fria, com 299 lux.

Como explante, foram utilizados segmentos nodais de mirtileiro cultivados em meio nutritivo WPM (Wood Plant media – Lloyd; McCown, 1980), adicionado de sacarose (30 g L⁻¹), mio-inositol (100 mg L⁻¹), 2-isopeniladenina (2ip) (100mg L⁻¹), conforme o tratamento e ágar (6 g L⁻¹). O pH foi ajustado para 5,0 antes da adição do ágar. O meio de cultura foi distribuído em frascos de vidro com capacidade para 200 mL, contendo 30 mL de meio cada, os mesmos foram vedados com papel

alumínio e selados com filme plástico de PVC e posteriormente autoclavado à 120 °C e 1, 5 atm por 20 minutos.

O meio de cultura foi confeccionado no dia 31 de agosto de 2016, a distribuição do mesmo nos frascos e a devida instalação do experimento foi realizada no dia 2 de setembro de 2016. Após ter autoclavado o meio de cultura foi foi feita a distribuição dos explantes nos frascos de cultivo.

Posteriormente, em sala de crescimento, os frascos foram separados entre os tratamentos que consistiam em envolvê-los com os filtros luminosos com a cor do seu respectivo tratamento. Estes frascos com os filtros de luz foram mantidos em sala de crescimento com 16 horas de fotoperíodo, além da temperatura de 25 [±] 2 °C, os quais foram conduzidos até este momento no laboratório de microprogação de plantas frutíferas.

Figura 2: Frascos envolvidos com os filtros de luz, com a cor do seu respectivo tratamento. **Fonte:** Acervo da autora. Sala de crescimento do laboratório de propagação de plantas da Universidade Federal de Pelotas, 2016.

Após 60 dias, foram avaliados: porcentagem de sobrevivência, número de brotações, comprimento da maior brotação (cm) e da parte aérea (cm), número de folhas (gemas), taxa de multiplicação (números absolutos) e área foliar (AF). Posteriormente os explantes foram submetidos à análise de área foliar e extração e quantificação de pigmentos fotossintéticos (Clorofila a, Clorofila b, Clorofilas totais e Carotenoides).

No laboratório de Metabolismo Vegetal, a avaliação de área foliar foi realizada por um integrador de área foliar da marca LI-COR[®], modelo LI 3100 (Figura 3-a). A

extração e quantificação dos pigmentos fotossintéticos (clorofilas a, b e carotenoides) foram obtidas pela aplicação do método de Arnon (ARNON, 1945). Para tanto, em sala escura para evitar a fotodegradação, amostras de aproximadamente 100 mg de tecido foliar fresco foram maceradas em almofariz com auxílio de pistilo com acetona 80% (Figura 3-b), onde após verter o conteúdo em um pequeno tubo de polipropileno com formato cilíndrico e fundo cônico, com tampa acoplada denominado tubo de eppendorf de 2,0 mL, os mesmos foram centrifugados a 3.000 rpm por 10 min (Figura 3-c). Completou-se o volume para 10 mL em tubo falcon com acetona 80%. As absorbâncias para carotenoides, clorofilas a e b foram lidas em espectrofotômetro a 470, 663 e 647 nm, respectivamente (Figura 3-d), sendo as leituras utilizadas em fórmulas, segundo Lichtenthaler (1987). O resultado foi corrigido de acordo com o volume final do extrato e peso fresco utilizado, e a quantidade de clorofila a, b, total ou carotenoides totais presentes no material vegetal foi expressa em mg g⁻¹.

Verificaram-se os dados quanto ao atendimento dos pressupostos da análise de variância, por meio da aplicação dos testes de Barlett (homogeneidade) e Shapiro-Wilk (normalidade). Atendendo esses requisitos, os dados foram avaliados quanto a significância dos efeitos dos tratamentos pelo teste F, constatando-se significância estatística as médias dos tratamentos foram comparadas pelos testes de Waller-Duncan (p<0,05%) para as diferentes qualidades de luz e pelo teste T (p<0,05%) para presença ou ausência de regulador de crescimento 2ip.

Figura 3: Avaliações de quantificação dos pigmentos fotossintéticos. a) Integrador de área foliar. b) Tecido foliar fresco sendo macerado em almofariz com auxílio de pistilo e com acetona 80%. c) Centrífuga. d) Espectrofotômetro. **Fonte:** Acervo da autora. Laboratório de Metabolismo Vegetal da Universidade Federal de Pelotas, 2016.

3.3 Resultados e discussão

Para as variáveis porcentagem de sobrevivência (97,27%) e comprimento da maior brotação (média de 1,57) não foram observadas diferenças significativas entre os tratamentos. Ocorreu interação entre os fatores qualidade de luz e fitorreguladores apenas para o fator comprimento de parte aérea (Tabela 1).

Na ausência de 2ip, apenas o filtro de luz vermelho foi o que proporcionou comprimento de parte aérea menor, no entanto não diferiu estatisticamente da luz fluorescente branca. Entretanto, na presença de 2ip, as médias obtidas para os explantes envoltos pelo filtro vermelho bem como os expostos a luz fluorescente foram superiores ao filtro azul, enquanto na ausência deste fitorregulador, destacaram-se o filtro azul e lâmpada fluorescente (Tabela 1).

Tabela 1 – Comprimento de parte aérea de mirtileiro 'Woodard' em meio de cultura (WPM), com (100 mg L⁻¹) e sem a adição de 2-isopenteniladenina (2ip) e diferentes filtros de luz. Pelotas/RS, 2017.

Tratamento	Filtro azul	Filtro vermelho	Lâmpada fluorescente		
	<u>1</u>				
Sem 2ip	0,78 a /	* 0,65 b*	0,69 ab*		
Com 2ip	0,65 b	2,17 A	2,18 A		

Médias seguidas da mesma letra minúscula na linha não diferem entre si pelo teste de Waller-Duncan (p<0,05); * na coluna significativo pelo teste de T (p<0,05).

Pasa et al. (2012), ao trabalharem com amoreira preta 'Xavante' observaram o contrário na presença de citocinina benzilaminopurina (BAP) visto que os explantes submetidos a luz azul foram os que apresentaram comprimento das brotações superior e na ausência deste fitorregulador, destacou-se a luz vermelha. Camargo et al. (2015), verificaram com *Oncidium baueri* Lindl, que os explantes mantidos sob luz verde, sem BAP, e também em luz verde e vermelha com 2mg L⁻¹ de BAP foram os que apresentaram as maiores médias, corroborando com este trabalho no qual foram observados maior comprimento de parte aérea na presença de citocinina e com filtro de luz vermelho.

Para os fatores avaliados número de brotações, número de folhas, taxa de multiplicação, clorofila a, clorofila b, clorofilas totais e carotenoides totais apenas foram observados diferenças com relação a adição ou ausência de 2ip no meio de

cultivo WPM. Por outro lado, em relação a área foliar, apenas os filtros de luz surtiram diferenças nas microestacas de mirtileiro 'Woodard' (Tabela 3).

Quanto ao número de brotações e de folhas no meio de cultivo WPM acrescido de 100 mg L⁻ 2ip as médias foram superiores (Tabela 2). De acordo com Muleo; Morini (2006), o aumento da concentração de citocininas nos tecidos promove o crescimento de gemas laterais, reduzindo o efeito inibitório das auxinas, de acordo com a hipótese de que a dominância apical é regulada pela razão auxina/citocinina. No entanto, Erig: Schuch (2006), não observaram na multiplicação in vitro de mirtilo maior número médio de brotações utilizando 2ip no meio de cultura. Diferentemente de Camargo et al. (2015) que pesquisando Oncidium baueri Lindl, observaram que o uso de 2,0mg L⁻¹ de BAP e do filtro azul, assim como o tratamento testemunha (sem filtro e sem BAP), favorecem a emissão de maior número brotações, coincidindo com este trabalho, o qual na presença de 2ip apresentou um aumento no número de brotações na luz branca fluorescente. Além disso, Camargo et al. (2015), puderam observar que os explantes com maior número de folhas foram verificadas na ausência de BAP e na concentração de 2,0mg L⁻¹, e ainda, sem a necessidade de uso de filtros modificadores da luz natural, e desta forma difere dos resultados encontrados neste trabalho, o qual o maior número de folhas foi verificado na presença de citocinina.

Tabela 2 – Número de brotações, Número de folhas, Taxa de Multiplicação, Clorofila a, Clorofila b, Clorofilas Totais e Carotenóides Totais de mirtileiro 'Woodard' em meio de cultura WPM, com (100mg L⁻¹) e sem a adição de 2-isopenteniladenina (2ip) e diferentes filtros de luz. Pelotas/RS, 2017.

Tratamento	Sem 2ip	Com 2ip
Número de brotações	1,145 b¹,	2,412 a
Número de folhas	8,818 b	20,600 a
Taxa de Multiplicação	1,764 b	4,120 a
Clorofila a (mg g ⁻¹)	1,678 a	0,779 b
Clorofila b (mg g ⁻¹)	0,932 a	0,488 b
Clorofilas totais (mg g ⁻¹)	2,611 a	1,267 b
Carotenoides totais (mg g ⁻¹)	165,44 a	84,98 b

^{1/} Médias seguidas da mesma letra minúscula na linha não diferem entre si pelo teste de T (p<0,05).

Avaliando a resposta das brotações de morangueiro 'Akihime' cultivadas sob diferentes fontes de luz, Nhut et al. (2003) verificaram que o comprimento das brotações cultivadas sob os LEDs vermelhos (7,9 cm) foi superior ao comprimento das brotações mantidas sob as lâmpadas fluorescentes (6,5 cm). Heo et al. (2006)

mostram em seu trabalho com a qualidade da luz no porta-enxerto de videira 'Teleki 5BB' que as brotações cultivadas *in vitro* sob o LEDs vermelhos apresentaram o dobro do comprimento daquelas mantidas sob as lâmpadas fluorescentes.

De modo geral, as brotações de maior comprimento são as mais desejáveis, não só por facilitarem a separação dos explantes multiplicados, como também por enraizarem mais facilmente quando induzidas em meio de cultura apropriado, podendo assim dispensar uma fase de cultivo para alongamento das brotações (ROCHA et al., 2010).

Com relação a Clorofila a, Clorofila b e Clorofilas totais, nota-se que os maiores valores ocorrem na ausência do fitorregulador (Tabela 2), fato que evidencia que a qualidade de luz não influenciou no resultado. Oliveira et al. (2007), pesquisando *Annona glabra* L, observaram que aos nove dias de tratamento, as plantas cultivadas na presença de citocininas apresentaram teores de clorofila "a + b" praticamente iguais sendo, em média, 17,44%; 30,82% e 39,67% superiores em relação aos resultados obtidos nas plantas submetidas aos tratamentos sem adição de citocinina.

Quanto ao teor de carotenoides totais, este foi superior na ausência de 2ip. O inverso ocorreu com Oliveira et al. (2007), que relatam que o teor de carotenoides totais em *Annona glabra* L foi afetado positivamente pela presença de citocinina no meio de cultura durante todo o período de indução da senescência foliar. Com nove dias, as plantas cultivadas na presença de cinetina (KIN), zeatina (ZEA), thidiazuron (TDZ) e 6- benzilaminopurina (BAP) (citocininas) apresentaram teores de carotenoides superiores em 101,79%; 83,23%; 73,65% e 47,30%, em relação às plantas cultivadas em meio sem adição de citocinina, respectivamente. Para Sing et al. (1992), com relação a cultura anterior (*Annona glabra* L), a maior atividade dessa fonte de citocinina decorre de sua maior capacidade de conjugação com açúcares, tornando-as mais resistentes à clivagem enzimática. Em experimento com cenouras (*Daucus carota*. L.), Bevilaqua et al. (1998) relataram que a concentração de cinetina (citocinina) mostrou efeito linear nos conteúdos de clorofila a+b, nas folhas, com aumento dos teores à medida que se aumentou a dose de cinetina até 100 mg L⁻¹.

A análise de quantificação da área foliar demonstrou diferenças entre os diferentes filtros de luz, onde podemos destacar as microestacas oriundas do tratamento com lâmpada fluorescente, seguida pelo filtro azul e pelo vermelho, respectivamente (Tabela 3).

Tabela 3 – Área foliar de mirtileiro 'Woodard' em meio de cultura WPM, com (100mg L⁻¹) e sem a adição de 2-isopenteniladenina (2ip) e diferentes filtros de luz. Pelotas/RS, 2017.

Tratamento	Filtro azul	Filtro vermelho	Lâmpada fluorescente
Área foliar (cm ²)	3,327 ab [⊥] ,	2,197 b	4,517 a

½ Médias seguidas da mesma letra minúscula na linha não diferem entre si pelo teste de Waller-Duncan (p<0,05).

Muitos estudos com o uso de malhas coloridas foram realizados com plantas medicinais e floríferas, como *Ocimum gratissimum*, *Artemisia vulgaris* (L.), *Catharanthus roseus* (L.) e *Anthurium* spp, no entanto, a maioria deles foi feito em ambiente protegido (MARTINS et al. (2009), OLIVEIRA et al (2009), MELO et al. (2009), SHIGUEAKI et al. (2009)). Os resultados de Martins et al. (2009) coincidem com o obtido neste experimento, uma vez que as plantas de *Ocimum gratissimum* submetidas ao sombreamento com malha azul tiveram maior área foliar (cm²) que as plantas cultivadas sob outras colorações de malhas.

Em condições *in vitro* também foram encontrados trabalhos, um exemplo é o de Heo et al. (2002), estes utilizaram tubos fluorescentes associados com diodo emissor de luz nas cores azul, vermelho e vermelho distante e determinaram características de crescimento em agerato (*Ageratum houstonianum* Mill.), cravo-dedefunto (*Tagetes erecta* L.) e sálvia (*Salvia splenders* F.). Concluíram que características qualitativas ou quantitativas do crescimento e morfogênese são influenciadas pela qualidade de luz. Os LEDs foram usados como luz suplementar na iluminação convencional de agerato, cravo-de-defunto e sálvia, provocando o aumento do crescimento e da morfogênese das plantas cultivadas *in vitro* com baixo consumo de energia. A partir desses estudos, verifica-se uma variação interespecífica no cultivo *in vitro* sob LEDs.

3.4 Conclusão

A presença de 100mg L⁻¹ de 2-Isopenteniladenina (2ip) associado a luz branca fluorescente proporciona melhores resultados a multiplicação *in vitro* de mirtileiro 'Woodard', nas condições avaliadas.

4. CAPÍTULO II

Qualidade da luz e fitorreguladores no enraizamento *in vitro* de mirtileiro 'Woodard'

4.1 Introdução

A fruticultura brasileira direcionada para os mercados interno e externo tem proporcionado ao país negócios que envolvem alguns milhões de dólares, milhares de empregos, inclusão social de homens e mulheres ao longo da cadeia produtiva, aproveitando-se do cenário mercadológico altamente promissor. A cultura do mirtilo no Brasil ainda encontra-se em fase de desenvolvimento, ocasião em que se busca um sistema de produção eficiente e competitivo, para inserir o País no rol dos grandes produtores mundiais. Os primeiros experimentos para a implantação do cultivo de mirtilos no País datam de 1983, realizados pela Embrapa Clima Temperado (Pelotas, RS), que introduziu uma coleção de cultivares oriundas da Universidade da Flórida (Estados Unidos), sendo que a prática comercial iniciou-se em 1990, na cidade de Vacaria (RS) (RUFATO; ANTUNES, 2016).

O mirtileiro (*Vaccinium* spp.) é uma espécie frutífera originária de regiões da Europa e América do Norte, onde é muito apreciada por seu sabor exótico, pelo valor econômico e por seus poderes medicinais, sendo considerada como "fonte de longevidade", devendo-se especialmente ao alto conteúdo de antocianinas contidas nos pigmentos de cor azul-púrpura. Esta substância favorece a visão, oferece enormes benefícios à pele, aos vasos sanguíneos, aos casos de varizes, hemorroidas, problemas circulatórios, transtornos cardíacos, feridas externas e internas, edema, artrites e artroses. Por suas propriedades nutracêuticas e, principalmente, pelas oportunidades de negócio que a fruta apresenta, tem despertado a atenção de técnicos e produtores de frutas do Brasil (RUFATO; ANTUNES, 2016).

Os Estados Unidos da América, juntamente com o Canadá são responsáveis pela produção de cerca de 87% dos mirtilos produzidos no mundo, enquanto o continente Europeu é responsável pela produção de cerca de 12% da produção mundial (FAOSTAT, 2014). O Brasil apresenta potencial de produção durante quase todo o ano, o que economicamente é relevante se considerar que a produção brasileira dessas frutas ocorre de dezembro a fevereiro, período de entressafra dos Estados Unidos e União Européia, os principais centros consumidores. No entanto, esse fato não é devidamente explorado e um dos motivos disso, é a falta de mudas em quantidade e em qualidade, pois a cultura é altamente rentável.

Na maioria das plantas frutíferas, a propagação é realizada pelo método de estaquia, que, além de proporcionar muda de qualidade, fixa as características agronômicas desejáveis de forma eficiente (BASTOS et al., 2005). A propagação do mirtilo se dá basicamente através de estaquia, embora com resultados variáveis e insatisfatórios (MAINLAND, 1966). Embora esses métodos tradicionais sejam comumente usados, a propagação vegetativa *in vitro*, também denominada de micropropagação em função do tamanho dos propágulos utilizados, é a aplicação mais prática da cultura de tecidos, especialmente quando se trata de plantas de difícil propagação por métodos convencionais (MOREIRA, 2001), permitindo a obtenção de inúmeras plantas isentas de vírus, geneticamente uniformes e em curto espaço de tempo (PASQUAL et al., 1991), representando um método alternativo de propagação vegetativa para essas espécies.

O meio de cultura mais utilizado na micropropagação de mirtileiro *in vitro*, segundo Tetsumura et al. (2008), tem sido o WPM (Wood Plant Medium) de Loyd & McCown (1980), que de acordo com Bered et al. (1998) pode influenciar no potencial regenerativo da espécie, bem como no genótipo utilizado, nos tipos e dosagens de reguladores vegetais, nos tipos e tamanhos de explantes e nas condições de cultivo.

No processo de micropropagação, as fases de multiplicação e enraizamento são de fundamental importância, uma vez que são indispensáveis para a obtenção das novas plantas. O controle dessas fases é dependente de vários fatores, como características intrínsecas da espécie, disponibilidade de luz, meio nutritivo utilizado e balanço hormonal, dentre os quais o último é um dos fatores mais relevantes para o sucesso dessa técnica. De acordo com Schuch et al. (2005), além das formulações básicas dos meios de cultura normalmente utilizados, o emprego de fitorreguladores é imprescindível para que se obtenha sucesso na propagação de culturas in vitro. Na fase de enraizamento, uma das maneiras de favorecer o adequado balanço hormonal é a aplicação exógena de auxinas, tais como o AIB, que elevam seu teor nos tecidos. Embora o ácido indolacético (AIA) seja considerado a principal auxina envolvida no processo de enraizamento, o AIB é o mais utilizado, pelo fato de essa auxina não causar fitotoxicidade aos explantes em uma larga faixa de concentração (IACONA; MULEO, 2010). A vantagem deste tipo de enraizamento é o melhor controle das condições em que se trabalha e, com isso, a obtenção de um alto percentual de enraizamento, sendo uma das etapas mais difíceis da propagação. O tipo de meio de cultura, de auxina e suas concentrações

são as variáveis que, em geral mais influenciam no enraizamento, e variam conforme a espécie e a cultivar (FETT NETO et al., 1992).

Há demonstrações de que a qualidade da luz influência a eficiência biológica dos fitorreguladores adicionados ao meio de cultura, bem como o balanço hormonal nos tecidos. Consequentemente, a qualidade da luz surge como uma ferramenta na manipulação da indução de balanços fisiológicos favoráveis a respostas específicas no crescimento das plantas (MORINI; MULEO, 2003). É sabido, que habitualmente é utilizada na cultura de tecidos como fonte de luz, na sala de crescimento, a lâmpada fluorescente branca-fria (KIM et al., 2004). Neste sentido, buscando compreender o efeito da qualidade da luz no crescimento e desenvolvimento dos tecidos de espécies cultivados *in vitro*, outros pesquisadores realizaram alguns trabalhos de avaliação do uso dos LEDs como fonte de luz alternativa às lâmpadas tradicionais usadas na sala de cultivo *in vitro* de plantas, como por exemplo o morangueiro (ROCHA et al., 2010) e orquídea (SKIN et al., 2008), entre outras.

Heo et al. (2002) utilizaram tubos fluorescentes associados com diodo emissor de luz nas cores azul, vermelho e vermelho distante e determinaram características de crescimento em agerato (*Ageratum houstonianum* Mill.), cravo-dedefunto (*Tagetes erecta* L.) e sálvia (*Salvia splenders* F.). Concluíram que características qualitativas ou quantitativas do crescimento e morfogênese são influenciadas pela qualidade de luz. Rocha et al. (2013), trabalhando com a amoreira-preta Tupy, obtiveram diferença no número de raízes formadas nas brotações cultivadas sob os LEDs vermelhos (6,03 raízes por brotação) e lâmpadas fluorescentes (4,67 raízes por brotação). Esse resultado difere dos obtidos por Chang et al. (2003), que trabalhando no enraizamento de brotações cultivadas sob lâmpada fluorescente e sob os LEDs vermelhos apenas 1,7 raízes por brotação.

De acordo com Rocha et al. (2010) e Skin et al. (2008), os LEDs têm contribuído para o aumento da quantidade de clorofila e carotenóides. As clorofilas e os carotenóides são pigmentos presentes nos vegetais, capazes de absorver a radiação visível, desencadeando as reações fotoquímicas da fotossíntese, processo essencial para a sobrevivência vegetal e por isso denominado metabolismo primário (SEIFERMAN-HARMS,1987). Conforme o pigmento, diferente é a faixa espectral absorvida para desencadear o processo fotossintético. A clorofila tem absorção máxima na faixa do azul e vermelho, onde está o espectro de ação para a

fotossíntese (HALL; RAO, 1980). Os pigmentos acessórios, como os carotenoides, absorvem na faixa do azul e ultravioleta (WELBURN, 1994). As respostas morfofisiológicas das plantas não dependem apenas da presença ou ausência da luz, mas também da variação da intensidade e qualidade luminosa (MARTINS, 2006).

Segundo Monteiro et al. (2005), a área foliar é um indicador de grande importância, sendo utilizada para investigar adaptação e os efeitos do manejo da planta, além de ser usada para a determinação do índice de área foliar, que pode estimar a produtividade, o crescimento e o desenvolvimento das folhas. A luminosidade é um dos principais fatores que limita o desenvolvimento vegetal. Considerando a folha, o principal órgão fotossintetizante das plantas, a luz interfere diretamente no crescimento da mesma (LULU; PEDRO JÚNIOR 2006). Zhang et al. (2009) observaram em brotos de *Momordica grosvenori*, cultivados *in vitro* com 25, 50, 100, ou 200 µmol m⁻²s⁻¹, que a intensidade de luz mais alta (200 µmol m⁻²s⁻¹) promoveu um aumento na massa seca e fresca total das plântulas.Portanto, surge a necessidade de avaliar a influência da qualidade luminosa (utilizando filtros coloridos de acetato celulose, do tipo Lee Filters), no enraizamento, bem como na produção de pigmentos fotossintéticos de microestacas de mirtileiro. Assim, o objetivo deste trabalho, foi verificar a influência das condições luminosas, bem como do fitorregulador AIB no enraizamento *in vitro* de mirtileiro 'Woodard'.

4.2 Material e métodos

O trabalho foi realizado no Laboratório de Micropropagação de Plantas Frutíferas, do Departamento de Fitotecnia da Faculdade de Agronomia Eliseu Maciel (FAEM), e no Laboratório de Metabolismo Vegetal, do departamento de botânica do Instituto de biologia, da Universidade Federal de Pelotas (UFPel), no município Capão do Leão, RS. Foram utilizadas plantas matrizes de mirtileiro 'Woodard' cultivadas *in vitro* pertencentes ao laboratório da Universidade. Os mesmos foram conduzidos de maio a julho de 2016.

Os tratamentos foram constituídos da cultivar de mirtileiro 'Woodard', com ou sem AIB), com diferentes filtros de luz (vermelho, azul e luz branca). O delineamento experimental utilizado foi inteiramente casualizado, os tratamentos foram arranjados em um esquema fatorial 3x2, totalizando seis tratamentos, com quatro repetições por tratamento. Cada repetição constituiu-se de um frasco com cinco explantes.

Neste experimento de enraizamento *in vitro* de plantas de mirtileiro da cultivar "Woodard", foram utilizados como explantes, segmentos nodais com 2 gemas. O meio de cultura utillizado foi WPM (Wood Plant media – Lloyd; McCown, 1980), adicionado de sacarose (30 g L⁻¹), mio-inositol (100 mg L⁻¹), ácido indolbutírico (AIB) (0,5mg L-1) e ágar (6 g L⁻¹). O pH foi ajustado para 5,0 antes da adição do ágar. O meio de cultura foi distribuído em frascos de vidro com capacidade para 200 mL, contendo 30 mL de meio cada, autoclavado à 120°C e 1,5 atm de pressão, por 20 minutos.

O meio de cultura foi confeccionado no dia 24 de maio de 2016, a distribuição do mesmo nos frascos e a devida instalação do experimento foi realizada no dia 2 de junho de 2016. Os mesmos foram separados por tratamentos e envolvido com o filtro com a cor do seu respectivo tratamento. Estes frascos com os filtros de luz foram mantidos em sala de crescimento com 16 horas de fotoperíodo, com intensidade luminosa de 299 lm m⁻² (243 nm de comprimento de onda) na luz branca fluorescente, 79 lm m⁻² (64,2 nm de comprimento de onda) no filtro de luz azul e 26 lm m⁻² (21,13 nm de comprimento de onda) no filtro de luz vermelha, além da temperatura de 25 [±] 2°C, onde permaneceram por aproximadamente 60 dias até a avaliação.

É importante frizar que neste trabalho a variação no tipo de luz foi fornecida por meio da modificação do espectro luminoso das lâmpadas fluorescentes brancas

frias tradicionalmente utilizadas, fazendo uso de filtros coloridos de acetato celulose, do tipo Lee Filters (Walworth Ind. Estate, Andover, England), com as seguintes especificações: azul (número 118 Light blue), e vermelho (número 106 Primary red).

Após 60 dias em sala de crescimento, os explantes foram avaliados quanto à porcentagem de sobrevivência, número de brotações, comprimento da maior brotação (cm), comprimento de parte aérea cm), número de folhas (em números absolutos), número de raízes, porcentagem de enraizamento (%) e comprimento da maior raiz (cm). Posteriormente a essas avaliações, os mesmos explantes foram submetidos à análise de área foliar e extração e quantificação de pigmentos fotossintéticos (Clorofila a, Clorofila b, Clorofilas totais e Carotenoides).

A avaliação de área foliar foi realizada por um integrador de área foliar da marca LI-COR[®], modelo LI 3100. Os folíolos foram passados pelo aparelho, um a um e os valores de área foliar foram devidamente anotados em uma tabela.

O processo de extração e quantificação dos pigmentos fotossintéticos (clorofilas a, b e carotenoides) foram realizados posteriormente, onde a extração foi feita pelo método de Arnon (ARNON, 1945). Para tal, em sala escura para evitar a fotodegradação, amostras de aproximadamente 100 mg de tecido foliar fresco foram maceradas em almofariz com auxílio de pistilo com acetona 80%, onde após verter o conteúdo em eppendorf de 2,0 mL, foram levados para centrifugar a 3.000 rpm por 10 min. Completou-se o volume para 10 mL em tubo falcon com acetona 80%. As absorbâncias para carotenoides, clorofilas a e b foram lidas em espectrofotômetro a 470, 663 e 647 nm, respectivamente, sendo as leituras utilizadas em fórmulas, segundo Lichtenthaler (1987).

O resultado foi corrigido de acordo com o volume final do extrato e peso fresco utilizado, e a quantidade de clorofila a, b, total ou carotenoides totais presentes no material vegetal foi expressa em mg g⁻¹.

Verificaram-se os dados quanto ao atendimento dos pressupostos da análise de variância, por meio da aplicação dos testes de Barlett (homogeneidade) e Shapiro-Wilk (normalidade). Atendendo esses requisitos, os dados foram avaliados quanto a significância dos efeitos dos tratamentos pelo teste F, constatando-se significância estatística as médias dos tratamentos foram comparadas pelos testes de Waller-Duncan (p<0,05%) para as diferentes qualidades de luz e pelo teste T (p<0,05%) para presença ou ausência de regulador de crescimento AIB.

4.3 Resultados e discussão

A variável porcentagem de sobrevivência não apresentou diferenças significativas entre os tratamentos, apresentando 100% de sobrevivência em todos os tratamentos. A qualidade de luz teve efeito significativo no número de brotações por explante. O número de brotações foi superior quando utilizado o filtro de luz azul e a lâmpada fluorescente, que não diferiram estatisticamente (Tabela 4).

Tabela 4 – Número de brotações, folhas e raízes, taxa de enraizamento, área foliar e carotenoides totais em microestacas de mirtileiro 'Woodard' cultivadas em meio WPM e filtros de luz. Universidade Federal de Pelotas, Pelotas/RS, 2017.

Tratamento	Filtro azul	Filtro vermelho	Lâmpada fluorescente
Número de brotações	1,295 a ¹ ,	0,900 b	1,594 a
Número de folhas	12,114 b	10,350 b	16,943 a
Área foliar (cm ²)	3,869 b	2,844 b	7,811 a
Número de raízes	0,286 b	1,100 b	2,793 a
Carotenoides totais (mg g ⁻¹)	146,44 a	160,95 a	99,87 b
Porcentagem de enraizamento	5,00 b	15,00 b	70,00 a
(%)			

Médias seguidas da mesma letra minúscula na linha não diferem entre si pelo teste de Waller-Duncan (p<0,05).

Trabalhando com o porta-enxerto de videira 'Teleki 5BB', Heo et al. (2006) não observaram diferenças no número de brotações formadas por explante cultivado sob os LEDs vermelhos (4,5 brotações), lâmpadas fluorescentes (4,0 brotações) e LEDs azuis (3,9 brotações). Avaliando a multiplicação *in vitro* de framboeseira da cultivar Batum, cultivadas sob folha de filtro de luz de cor amarela, azul, vermelha e verde colocadas sobre os frascos, Erig; Schuch (2005), obtiveram o maior número de brotações formadas com os explantes cultivados sob o filtro verde e filtro vermelho (3,55 e 3,14 brotações explante⁻¹, respectivamente). Estes resultados diferem dos resultados deste trabalho, uma vez que o maior número de brotações do presente experimento foi verificado na presença de luz branca fluorescente. O número de brotações é de suma importância por facilitarem a separação dos explantes multiplicados (ROCHA et al., 2010).

O número de folhas, bem como a área foliar foram influenciados pela qualidade de luz, tendo efeito significativo, onde em ambas as variáveis destacandose a luz fluorescente branca que diferiu estatisticamente dos filtros de luz azul e vermelho (Tabela 4). Plantas de *Platycodon grandiflorum* cultivadas *in vitro*

apresentaram maior área foliar e número de folhas sob LED de espectro azul, quando comparada à LED de espectro vermelho e lâmpadas fluorescentes (LIU et al., 2014). Estes dados diferem do observado neste trabalho, assim pode-se constatar que a dependência das condições luminosas no cultivo *in vitro* variam entre as espécies.

O número de raízes e a porcentagem de enraizamento tiveram efeitos significativos com relação à qualidade de luz destacando-se a luz fluorescente branca que diferiu estatisticamente dos filtros (Tabela 4). Alvarenga et al. (2015) observaram, em explantes de Achillea millefolium L., cultivadas in vitro sob LED's de espectros azul, vermelho, branco, verde e lâmpadas fluorescentes branca fria, que as plântulas cultivadas, sob lâmpada LED com espectro azul, obtiveram maior número e comprimento de raízes e maiores acúmulos de matéria seca da parte aérea, raízes e total. Em um experimento de enraizamento in vitro de amoreira-preta 'Xavante', Pasa et al. (2012), na ausência de AIB no meio de cultura, verificaram que a luz azul propiciou um maior número médio de raízes (2,06), sendo o menor valor observado quando as plantas foram mantidas no escuro (1,07). Por outro lado, na presença de AIB, não houve diferenças entre os níveis de qualidade de luz, o que coincide com o resultado deste experimento. Resultados semelhantes também foram encontrados por Da Rocha et al., (2007) em seu experimento de micropropagação de porta-enxerto de prunus cv. Mr.S. 2/5, onde os diferentes filtros de luz não influenciaram as variáveis de percentagem de enraizamento e número de raízes formadas.

Com relação aos pigmentos fotossintéticos não foram observadas diferenças estatísticas significativas aliados à qualidade de luz, referentes à clorofila a (média 1,18), clorofila b (média 0,34) e clorofilas totais (média 1,83), apenas foram observados resultados significativos para os carotenoides. Os quais apresentaram resultados superiores nos filtros azul e vermelho, diferindo apenas com relação à luz branca oriunda da lâmpada fluorescente (Tabela 4). Os resultados semelhantes foram obtidos por Lee et al. (2007), pois em sua pesquisa com *Withania somnifera*, foram observados maiores teores de pigmentos fotossintéticos em plântulas sob uma combinação de LEDs azul e vermelha, quando comparada a lâmpadas com espectro do vermelho e vermelho distante.

O fato de encontrar resultados positivos com a utilização de filtros azul e vermelho está diretamente relacionado com as condições de estresse que estes

podem ter propiciado para a planta, visto que os carotenoides são pigmentos acessórios que absorvem melhor na faixa do azul e ultravioleta protegendo a planta nessas situações estressantes (OREN-SHAMIR et al., 2001). Resultados contrários foram observados por Yia et al. (2014) em *Cordyceps militaris* que, quando cultivada sob LED vermelho, teve uma redução no conteúdo de carotenoides, quando comparado aos LEDs branco, azul e combinações de azul e vermelho. Assim, o mirtileiro, aparentemente, ajusta sua síntese de pigmentos e, consequentemente, sua atividade fotossintética em função da qualidade de luz.

Vale salientar, que a não significância dos resultados observados para os valores de clorofilas pode estar ligada ao fato de que sob espectro de luz vermelha ocorre um desequilíbrio de energia que interfere no funcionamento dos fotossistemas I e II e, consequentemente, na produção de clorofila nesses fotossistemas (TENNESSEN; SINGSAAS; SHARKEY, 1994). Soma-se a isso o fato de que, sob as condições de luz azul, que apresenta altas quantidades de energia, poderia comprometer a atividade dos fotossistemas. Esses resultados podem estar associados a uma defesa da planta, para evitar prejuízos no aparato fotossintético (COELHO, 2016). Assim, esses resultados indicam que o mirtileiro da cultivar 'Woodard' se adapta, cromaticamente, no sentido de melhorar o seu desempenho fotossintético.

A utilização de reguladores vegetais é uma alternativa para aumentar a taxa de sucesso na propagação da planta. Dentre eles, destacam-se as substâncias pertencentes ao grupo das auxinas, sobretudo o ácido indol-3-butírico (AIB), que é considerado um dos melhores estimuladores do enraizamento (DIAS et. al, 2011). Podendo se afirmar com os resultados obtidos nesse trabalho com o uso do AIB, segundo os dados da Tabela 5, onde o comprimento da maior brotação(cm), o comprimento da maior raiz (cm), o número de raízes, bem como a porcentagem de enraizamento(%) diferiram estatisticamente na ausência e presença de AIB, se destacando na presença deste hormônio vegetal.

Tabela 5 – Comprimento da maior brotação e da maior raiz, número de raízes, e porcentagem de enraizamento alcançadas sem e com a adição de AIB (Ácido indolbutírico) (0,5mg L⁻¹) em meio de cultivo WPM. Influência no enraizamento *in vitro* de mirtileiros 'Woodard'. Universidade Federal de Pelotas, Pelotas/RS, 2017.

Tratamento	Sem AIB	Com AIB
Comprimento da maior brotação (cm)	1,433 b	2,397 a
Comprimento da maior raiz (cm)	0,163 b	0,466 a
Número de raízes	0,791 b	2,055 a
Porcentagem de enraizamento (%)	30,00 b	65,45 a

^{1/} Médias seguidas da mesma letra minúscula na linha não diferem entre si pelo teste de T (p<0,05).

Segundo Grattapaglia; Machado (1998), as auxinas estão presentes em mais de 80% dos meios de enraizamento, podendo ser adicionadas sozinhas ou em combinação. Entretanto, o tipo e a concentração empregada são as variáveis que mais influenciam o processo. A relação concentração de auxina e tempo de exposição do explante pode ser determinante para o desenvolvimento do enraizamento *in vitro* (NEGASH et al., 2000; BOSA et al., 2003). Kotsias; Roussos (2001) realizaram experimentos com Citrus limon e a maior porcentagem de enraizamento (80%) e maior número de brotos foi obtido quando a base desses permaneceram por 5 segundos imersos em 1000 mg L⁻¹ de AIB.

Em plântulas de *Achillea millefolium*, foi observada melhor resposta para comprimento e biomassa seca de raiz em plântulas sob o espectro luminoso azul (ALVARENGA et al., 2015). Para *Jatropha curcas* e *Protea cynaroides*, houve maior formação de raízes sob LEDs com espectro vermelho (DAUD et al., 2013; WU; LIN, 2012). Combinação de LEDs com espectro azul (30%) e vermelho (70%) induziram à maior biomassa seca de morango cultivado *in vitro* (NHUT et al., 2003). Em *Saccharum officinarum* foi observado melhor resultado, para biomassa seca total, quando se utilizou combinação de LEDs azul (30%) e vermelha (70%) (MALUTA et al., 2013). No entanto, no presente trabalho com relação ao enraizamento o espectro de luz não influenciou de forma proporcionar respostas significativas, diferentemente dos trabalhos citados anteriormente.

Por outro lado, o enraizamento foi afetado significativamente pela presença de AIB. Quando não se utilizou o fitorregulador, verificou-se menor número de formação de raízes, indicando a necessidade deste regulador para a formação do sistema radicular. Estes resultados corroboram com os obtidos por outros autores, que apontam a necessidade da utilização de auxina no meio de cultura para induzir a formação e a iniciação de raízes adventícias em porta-enxertos de Prunus

(FOTOPOULOS; SOTIROPOULOS, 2005; VIAGANÓ et al., 2005; MANSSERI-LAMRIOUI et al., 2011). Estes autores observaram a não formação de raízes ou porcentagem de enraizamento muito baixa, aproximadamente 5%, em meio de cultura sem AIB.

4.4 Conclusão

A presença de Ácido indolbutírico (AIB) na concentração de 0,5mg L-1, associado à luz branca fluorescente proporciona melhores resultados ao enraizamento *in vitro* de mirtileiro 'Woodard', nas condições avaliadas.

5 Considerações finais

Os resultados revelados neste trabalho contribuíram significativamente para aumentar o conhecimento relacionado a micropropagação e desenvolvimento vegetativo de mudas de mirtileiro da cultivar 'Wodard' (*Vaccinium* Spp). Principalmente com relação a manipulação de luminosidade, que possibilitou a observação das diferenças como por exemplo, no primeiro experimento, o qual pode-se verificar maiores índices de área foliar de microestacas de mirtileiro 'Woodard' na qualidade de luz fluorescente branca seguido do filtro de luz azul. Já com relação ao segundo experimento, mesmo este sendo de enraizamento, foi observado maior número de brotações quando utilizado o filtro de luz azul e a lâmpada fluorescente. Além disso, os carotenoides também tiveram resultados superiores nos filtros azul e vermelho. Isso demonstra a importância deste experimento, onde o uso da modificação do espectro luminoso pode acarretar mudanças na planta, sendo mais um método que contribui de forma eficiente para o desenvolvimento da planta, e portanto, abre espaço para que mais pesquisas sejam realizadas acerca deste tema.

É evidente que o uso de fitorreguladores proporciona melhores resultados quando adicionados ao meio de cultura, o que se confirmou nesta pesquisa, onde a presença de citocininas (2ip), associado a luz branca proporcionou maior comprimento da parte aérea dos explantes (cm). Também pode-se observar na presença de citocininas maior número de folhas e de brotações. Com relação ao fitorregulador ácido indolbutírico (AIB), destacaram-se em sua presença as variáveis comprimento da maior brotação (cm), comprimento da maior raiz (cm), número de raízes e porcentagem de enraizamento(%).

Os resultados deste trabalho abrem espaço para que novos experimentos sejam realizados a fim de confirmar os efeitos que a qualidade de luz pode proporcionar. Soma-se a isso, o fato de que os espectros de luz obtidos com os filtros possuem comprimentos de onda inferior ao que se deseja para ocasionar mudanças na morfologia da planta, logo, dando uma sequência a este trabalho seria interessante o uso de LEDs no intuito de comparar resultados com a utilização de filtros de luz, quantificando tanto os pigmentos fotossintéticos, como também verificando as modificações que podem causar na planta. Além disso, na sequência

deste, a ideia era de realizar uma avaliação do crescimento dos explantes cultivados, agora *ex vitro* com o uso de substrato e telados coloridos.

6 Referências Bibliográficas

ADAMI, M.; HASTENREITER, F.A.; FLUMIGNAN, D.L.; FARIA, R.T. Estimativa de área de folíolos de soja usando imagens digitais e dimensões foliares. **Bragantia**, v. 67, n. 4, p. 1053-1058. 2008.

ALVARENGA, I. C. A., PACHECO, F. V., SILVA, S. T., BERTOLUCCI, S. K. V.; PINTO, J. E. B. P. *In vitro* culture of *Achillea millefolium* L.: quality and intensity of light on growth and production of volatiles. **Plant Cell Tissue, Organ Culture**, Dordrecht, v. 122, n. 2, p. 299-308. 2015.

ANDRADE, P.F.S. Análise da conjuntura agropecuária, safra 2016/17. **Secretaria de Agricultura e de Abastecimento**. Departamento de economia rural. Estado do Paraná. 9p. 2017.

ANTUNES, L. E.C. Pequenas frutas: Estratégias para o desenvolvimento. **Embrapa Clima Temperado**. 8p. 2003.

ANTUNES, L. E.C.; HOFFMANN, A. Pequenas frutas: O produtor pergunta a Embrapa responde. Brasília, DF: Embrapa, 2012. 194 p. (Coleção 500 perguntas, 500 respostas).

ARNON, D. J. Cooper enzymes in isolated chloroplast: Polyphenoloxidase in *Beta vulgaris*. **Plant Physiology**, v. 24, p. 1-15, 1945.

ATROCH, E. M. A. C.; SOARES, A. M.; ALVARENGA, A. A.; CASTRO, E. M. Crescimento, teor de clorofilas, distribuição de biomassa e características anatômicas de plantas jovens de *Bauhinia forficata* Link submetidas à diferentes condições de sombreamento. **Ciência e Agrotecnologia**, Lavras, v. 25, n. 4, p. 853-862, 2001.

BANÃDOS, M. P. Blueberry production in South América. **Acta Horticulturae**, Nepter, n. 715, p. 165- 172, 2006. (http://www.actahort.org/books/715/715 24.htm).

BASTOS, D. C.; SCARPE FILHO, J. A.; FATINANSI, J. C.; PIO, R. Estiolamento, incisão na base da estaca e uso de AIB no enraizamento de estacas herbáceas de caramboleira. **Revista Brasileira de Fruticultura**, Jaboticabal, v. 27, n. 2, p. 281-284, 2005.

BERED, F.; SERENO, M. J. C. M.; CARVALHO, F.I.F. de; LANGE, C.E.; ANDEL, C.L.; DORNELLES, A.L.C. Regeneração de plantas de aveia a partir de calos embriogênicos e organogênicos. **Pesquisa Agropecuária Brasileira**, v.33, p.1827-1833, 1998.

BEVILAQUA, G. A. P.; PESKE, S. T.; DOS SANTOS FILHO, B. G.; DOS SANTOS, D. S. B. (Efeito do tratamento de sementes de cenoura com reguladores de crescimento. **Pesquisa Agropecuária Brasileira**, *33*(8), 1271-1280, 1998.

- BLANCO, F.F.; FOLEGATTI, M.V. A new method for estimating the leaf area index of cucumber and tomato plants. **Horticultura Brasileira**, Brasília, v.21, n.4, p.666-669, 2003.
- BRUM, G. R. Micropropagação da figueira (*Ficus carica* L.) Roxo de Valinhos. 2001. 41 p. **Dissertação** (Mestrado em Fitotecnia) Universidade Federal de Lavras, Lavras, 2001.
- CALDWELL, J.D. Blackberry propagation. **HortScience**, Alexandria, v.19, n.2, p.13-15, 1984.
- CAMARGO, S. S., RODRIGUES, D. B., RODRIGUES, C. M., ASSIS, A. M. D., FARIA, R. T. D.; SCHUCH, M. W. Phytoregulators and light spectrum in micropropagation Oncidium baueri Lindl. **Ciência Rural**, *45*(11). 2015.
- CANTUARIAS- AVILÉS, T. **Cultivo do Mirtileiro**. Série produtor rural, n.48. Piracicaba: ESALQ, 38p. 2010.
- CANTUARIAS-AVILÉS, T.; DA SILVA, S. R.; MEDINA, R. B.; MORAES, A. F. G.; ALBERTI, M. F. Cultivo do mirtilo. Atualizações e desempenho inicial de variedades de baixa exigência em frio no Estado de São Paulo. **Revista Brasileira de Fruticultura**, *36*(1), 139-147. 2014.
- CAO, X.; HAMMERSCHLAG, F. A. Improved shoot organogenesis from leaf explants of highbush blueberry. **HortScience**, v. 35, n. 5, p. 945-947, 2000.
- CARVALHO, C. **Anuário brasileiro da fruticultura** 2017– Santa Cruz do Sul : Editora Gazeta Santa Cruz, 88 p. 2017.
- CASTILLO, A., CARRAU, J., LEONI, C.; PEREIRA, G. Investigación en arandanos en Uruguay: propagación *in vitro* y evaluación de variedades por INIA. In: SIMPÓSIO NACIONAL DO MORANGO, 2.; ENCONTRO DE PEQUENAS FRUTAS E FRUTAS NATIVAS, 2004, Pelotas, RS. **Palestras e Resumos...** Pelotas: Embrapa Clima Temperado. p.225-228. (Documentos 124). 2004.
- CASTILLO, A. Propagación de plantas por cultivo *in vitro*: una biotecnología que nos acompaña hace mucho tiempo. Las Brujas, Uruguay: **AR-VITRO**, INIA. 2004. Disponível em < http://www.inia.org.uy/publicaciones/documentos/lb/ad/2004/ad_382.pdf>.
- CHANG, H. S., CHARKABARTY, D., HAHN, E. J.; PAEK, K. Y. Micropropagation of calla lily (Zantedeschia albomaculata) via *in vitro* shoot tip proliferation. *In vitro* Cellular & Developmental Biology-Plant, v. 39, n. 2, p. 129-134,
- 2003.CHAPPELLE, E. W.; KIM, M. S. Ratio analysis of reflectance spectra (RARS): na algorithm for a remote estimation of the concentracions of clorophyll A, chorophyll B, and carotenoids in soybean leaves. **Remote Sensing of Environment**, New York, v. 39, p. 239- 247, 1992.
- CID, L. P. B. A propagação *in vitro* de plantas: o que é isso? **Biotecnologia Ciência e Desenvolvimento**, Brasília, v. 3, n. 19, p. 16-21, 2001.

- COELHO C. C. R. Crescimento in vitro de Pogostemon cablin sob intensidades luminosas e leds. Dissertação Universidade Federal de Lavras. p. 69, 2016.
- DARNELL, R. L. Blueberry botany/environmental physiology. Blueberries. **Horticultural Publications, Florida, USA**, p. 5-13, 2006.
- DAUD, N.; FAIZAL, A.; DANNY GEELEN, D. Adventitious rooting of Jatropha curcas L. is stimulated by phloroglucinol and by red LED light. *In vitro* Cellular & Developmental Biology Plant, Wallingford, v. 49, n. 2, p. 183-190, Apr. 2013.
- DEBNATH, S.; McRAE, K. An efficient *in vitro* shoot propagation of cranberry (*Vaccinium macrocarpon* Ait.) by axillary bud proliferation. *In vitro* Cellular and Developmental Biology Plant, New York, v.37, p.243-249, 2001.
- DIAS, T.; PAULO, J.; ONO, E. O.; DUARTE FILHO, J. Enraizamento de estacas de brotações oriundas de estacas radiculares de amoreira-preta. **Revista Brasileira de Fruticultura**, 649-653, 2011.
- ECCHER, T.; NOÈ, N. Comparison between 2ip and zeatin in the micropropagation of highbush blueberry (*Vaccinium corymbosum*). **Acta Horticulturae**, Hague, n.241, p.185-190, 1989.
- ENGEL, V. L. Influência do sombreamento sobre o crescimento de mudas de essências nativas, concentração de clorofila nas folhas e aspectos de anatomia. 1989. 202 f. Dissertação (Mestrado em Ciências Florestais) Escola Superior de Agricultura Luiz de Queiroz, Piracicaba, 1989.
- ENGEL, V. L.; POGGIANI, F. Estudo da concentração de clorofila nas folhas e seu espectro de absorção de luz em função do sombreamento em mudas de quatro espécies florestais nativas. **Revista Brasileira de Fisiologia Vegetal**, Londrina, v. 3, n. 1, p. 39-45, 1991.
- ERIG, A.C.; SCHUCH, M.W. Tipo de luz na multiplicação *in vitro* de framboeseira (*Rubus idaeus* L.) 'Batum'. **Revista Brasileira de Fruticultura**, v.27, p.488-490, 2005.
- ERIG, A. C.; SCHUCH, M. W. Fatores que afetam a multiplicação *in vitro* de mirtilo. **Scientia Agraria**, v. 7, n. 1, p. 83-88, 2006.
- FACHINELLO, J. C.; HOFFMANN, A.; NACHTIGAL, J. C.; KERSTEN, E.; FORTES, G. R. de L. **Propagação de plantas frutíferas de clima temperado**. 2. ed. Pelotas: UFPel, 1995. 179 p.
- FAHN, A. Plant anatomy. Oxford, Pergamon Press. 611p, 1974.
- FAOSTAT, 2014. **Food and Agriculture Organization of the United Nations;** FAOSTAT- Production,crops Blueberry. Disponível em: http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=56 7#ancor. Acesso em: 18 dez. 2017.

- FAVARIN, J.L.; NETO, D.D.; GARCÍA, A.G.; NOVA, N.A.V.; FAVARIN, M.G.G.V. Equações para estimativa do índice de área foliar do cafeeiro. **Pesquisa Agropecuária Brasileira**, 37:769-773. 2002.
- FERRAZ, K. K. F.; SILVA, D. M. Avaliação ecofisiológica do crescimento inicial de espécies florestais usadas na recuperação de áreas degradadas: II. *Calliandracalothyrsus* Meisn. In: CONGRESSO BRASILEIRO DE FISIOLOGIA VEGETAL, 8., 2001, Ilhéus. **Anais** Ilhéus:SBFV, 2001.CD-ROM.
- FERRI, J. **Micropropagação e desenvolvimento vegetativo de mirtilo**. 2008. Dissertação de Mestrado. Universidade Federal de Pelotas.
- FETT-NETO, A.G.; TEIXEIRA, S.; SILVA, E.A.M.; SANTANNA, R. Biochemical and morphological changes during *in vitro* rhizogenes in cuttings of *Sequoia sempervirens* (D. Don) Endl. *Journal of Plant Physiology*, Stuttgart, v.140, p.720-728, 1992.
- FIZSMAN, L. Variedades y manejo cultural del arádano en Argentina. In: **SEMINÁRIO BRASILEIRO SOBRE PEQUENAS FRUTAS**, 3. Anais... 2005. Vacaria: Embrapa Uva e Vinho, p.19-23. 2005. (Embrapa Uva e Vinho, Documentos, 53).
- FLORES, R., STEFANELLO, S., FRANCO, E.; MANTOVANI, N. Regeneração *in vitro* de espinheira-santa (*Maytenus ilicifolia* Mart.). **Revista Brasileira de Agrociência**, v.4, n.3, p.201-205, 1998.
- FOTOPOULOS, S.; SOTIROPOULOS, T.E. In vitro rooting of PR 204/84 rootstock (*Prunus pérsica x P. amygdalus*) as influenced by mineral concentration of the culture medium and to darkness for a period. **Agronomy Research**, v.3, n.1, p.3-8, 2005.
- FRECHILLA, S., TALBOTT, L. D., BOGOMOLNI, R. A.; ZEIGER, E. Reversal of blue light-stimulated stomatal opening by green light. **Plant Cell Physiology**, v.41, n.2, p.171-176, 2000.
- GALLETA, G. J. Blueberries. p.155- 185. In: J. JANICK; J. M. MOORE (eds.). **Advances in fruit breeding**. Purdue Univ. Press, West Lafayette, Ind. 1975.
- GALLETTA, G.J.; BALLINGTON, J.R. Blueberry, cranberries, and lingonberries In: JANICK, J.; MOORE, J.N.[Ed]. **Fruit Breeding**. New York: John Wiley & Sons, 1996. p. 1-108.
- GONZALES, M.V.; LOPEZ, M.; VALDES, A.E.; ORDAS, R.J. Micropropagation of three berry fruit species using nodal segments from field-grown plants. **Annals of Applied Biology**, v.137, p.73-78, 2000.
- GRATTAPAGLIA, D.; MACHADO, M.A. Micropropagação. In: Torres, A. C.; Caldas, L. S.; Buso, J. A. **Cultura de tecidos e transformação genética de plantas** (Vol. 1). Embrapa-SPI: Embrapa-CNPH. v.1, p.183-260. 1998.

- GUPTA, S.D.; JATOTHU, B. Fundamentos e aplicações de díodos emissores de luz (LEDs) no crescimento de plantas *in vitro* e morfo-Gênesis. **Planta Biotechnol** Rep 7:211-220, 2013.
- HALL, D.O.; RAO, K.K. Coleção Temas de Biologia: Fotossíntese. Editora Pedagógica e Universitária Ltda, São Paulo. 89p, 1980.
- HANBA, Y. T.; KOGAMI, H.; TERASHIMA, I. The effects of growth irradiance on leaf anatomy and photosynthesis in Acer species differing in light demand. **Plant Cell and Environment**, v.25, n.8, p.1021-1030, 2002.
- HARTMANN, H. T.; KESTER, D. E.; DAVIES, F. T.; GENEVE, R. L. **Plant propagation: principles and practices**. 6. ed. New Jersey: Prentice Hall, 1997. p. 549-622.
- HEO, J.; LEE, C.; CHAKRABARTY, D.; PAEK, K. Growth responses of marigold and salvia bedding plants as affected by monochromic or mixture radiation provided by a light emitting diode (LED). **Plant Growth Regulation**, Dordrecht, v. 38, n. 3, p. 225-230, Nov. 2002.
- HOFFMANN, A. **Propagação de mirtilo (***Vaccinium ashei* **Reade) através de estacas**. 1994. Dissertação (Mestrado em Agronomia)-Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas, 1994.
- HOFFMANN, A.; FACHINELLO, J.C.; SANTOS, A.M. Enraizamento de estacas de duas cultivares de mirtilo (*vaccinium ashei* Reade) em diferentes substratos. **Revista Brasileira de Agrociência**, v.1, n.1, p.7-11, 1995.
- HOFFMANN, A.; ANTUNES, L. E. C. Grande potencial. **Embrapa Uva e Vinho-Artigo em periódico indexado (ALICE)**, 2006.
- HU, C. Y.; WANG, P. J. Meristem, shoot tip and bud culture. In: EVANS, D. A.; SHARP, W. R.; AMMIRATO, P. V.; YAMADA, Y. (Eds.). **Handbook of plant cell culture: techniques for propagation and breeding**. New York: Macmillan, 1983. p. 117-227.
- IACONA, C.; MULEO, R. Light quality affects *in vitro* adventitious rooting and ex vitro performance of cherry rootstock colt. **Scientia Horticulturae**, v.125, p.630-636, 2010. doi:10.1016/j.scienta.2010.05.018.
- ISUTSA DK, PRITTS MP, MUDGE KW. Rápida propagação de mirtilo plantas usando o enraizamento *in vitro* e ex- acclima controlada de micropropagules tization. **Horticulture Science.** V. 29, p.1124-1126, 1994.
- JAAKOLA, L.; TOLVANEN, A.; LAINE, K.; HOHTOLA, A. Effect of N6-isopentenyladenine concentration on growth initiation *in vitro* and rooting of bilberry and lingonberry microshoots. **Plant Cell, Tissue and Organ Culture**, Hague, v.66, p.73-77, 2001.
- KHAN, P. S. V.; KOZAI, T.; NGUYEN, Q. T.; KUBOTA, C.; DHAWAN, V. Growth and net photosynthetic rates of *Eucalyptus tereticornis* Smith under photomixotrophic and

- various photoautotrophic micropropagation conditions. **Plant Cell, Tissue and Organ Culture**, v.71, n.2, p.141-146, 2002.
- KIM, S. J.; HAHN, E. J.; HEO, J. W.; PAEK, K. Y. Effects of LEDs on net photosynthetic rate, growth and leaf stomata of *chrysanthemum* plantlets *in vitro*. **Scientia Horticulturae**, v.101, p.143-51, 2004.
- KINOSHITA, T.; EMI, T.; TOMINAGA, M.; SAKAMOTO, K.; SHIGENAGA, A.; DOI, M.; SHIMAZAKI, K. Blue light and phosphorylation dependent binding of a 14-3-3 protein to phototropins in stomatal guards cells of broad bean. **Plant Physiology**. v. 133. p. 1453-1463. 2003.
- KRAMER, T.; KOZLOWSKI, T. Physiology of woody plants. **Academic Press**. 811p. 1979.
- KRIKORIAN, A. D. Medios de cultivo: generalidades, composición y preparación. In:ROCA, W. R.; MROGINSKI, L. A. **Cultivo de tejidos en la agricultura: fundamentos y aplicaciones**. Cali, Colombia: Centro Internacional de Agricultura Tropical, 1991. p. 41-78.
- LAZZAROTTO, J. J. Importância da gestão econômica e financeira para a tomada de decisão nas propriedades rurais. **VII Seminário Brasileiro sobre Pequenas Frutas**. p.51. 2014.
- LIAN, M. L.; MURTHY, H. N.; PAEK, K. Y. Effects of light emitting diodes (LEDs) on the *in vitro* induction and growth of bulblets of *Lilium oriental* hybrid 'Pesaro'. **Scientia Horticulturae**, Amsterdam, v.94, p.365- 370, 2002
- LICHTENTHALER, H. K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. **Methods in enzimology**, n. 148, p. 350-382, 1987.
- LIU, M.; XU, Z.; GUO, S.; TANG, C.; LIU, X.; JAO, X. Evaluation of leaf morphology, structure and biochemical substanceof balloon flower (*Platycodon grandiflorum* (Jacq.) A. DC.) plantlets *in vitro* under different light spectra. **Scientia Horticulturae**, Amsterdam, n. 174, p. 112-118, 2014.
- LOPES, P. R. C.; OLIVEIRA, I. D. M.; da SILVA, R. R. S. Avaliação do potencial de produção de frutas de clima temperado no Nordeste Brasileiro. In: Embrapa Semiárido-Artigo em anais de congresso (ALICE). In: SEMANA INTERNATIONAL DA FRUTICULTURA, FLORICULTURA E AGROINDÚSTRIA, 16.; AGROFLORES, 11., 2009, Fortaleza. Desafios na exportação e oportunidades no mercado interno: Frutal 2009. Fortaleza: Instituto Frutal, 2009.
- LOYD, G.; McCOWN, B. Commercially-feasible micropropagation of mountain laurel, *Kalmia latifolia*, by use of shoot-tip culture. **International Plant Propagation Society Proceedings**, Washington, v. 30, p. 421-427, 1980.
- LULU, J.; PEDRO JÚNIOR, M. J. Microclima de vinhedos cultivados sob cobertura plástica e a céu aberto. **Revista Brasileira de Agrometeorologia**, 14(1): 106-115, 2006.

- MADAIL, J.C.M.; SANTOS, A.M. Aspectos econômicos. In: RASEIRA, M.C.B.; ANTUNES, L.E.C. **A cultura do mirtilo**. Pelotas: Embrapa Clima Temperado, 69p. (Embrapa Clima Temperado. Documentos, 121). 2004.
- MAINLAND, C. M. Propagation and planting. In: ECK, P.; CHILDERS, N. F. **Blueberry culture**. New Brunswick: Rutgers University, 1966. p. 111-131.
- MAINLAND, C.M. Propagation Of Blueberries. In: CHILDERS, N.F.; LYRENE, P.M. **Blueberries for growers, gardeners, promoters**. Flórida: E.O. Painter Printing Company, 2006. P. 49-58.
- MALUTA, F. A.; BORDIGNON, S. R.; ROSSI, M. L.; AMBROSANO, G. M. B.; RODRIGUES, P. H. V. Cultivo *in vitro* de cana-de-açúcar exposta a diferentes fontes de luz. **Pesquisa Agropecuária Brasileira**, v. 48, n. 9, p. 1303- 1307. 2013.
- MARTINS, JOEFERSON REIS, et al. "Anatomia foliar de plantas de alfavaca-cravo cultivadas sob malhas coloridas." **Ciência Rural** 39. 82-87. 2009.
- MANSSERI-LAMRIOUI, A.; LOUERGUIOUI, A.; BONALY, J.; YAKOUB-BOUGDAL, S.; ALLILI, N.; GANA-KEBBOUCHE, S. Proliferation and rooting of wild cherry: The influence of cytokinin and auxin types and their concentration. **African Journal of Biotechnology**, v. 10, n.43, p. 8613-8624, 2011.
- MCMAHON, M.J.; KELLY, J.W. Anatomy and pigments of chrysanthemum leaves developed under spectrally selective filters. **Scientia Horticulturae**, v.64, p.203-209,1995.
- MELO, A. A. M.; ALVARENGA, A. D. "Sombreamento de plantas de *Catharanthus roseus* (L.) G. Don 'Pacifica White'por malhas coloridas: desenvolvimento vegetativo." **Ciência e Agrotecnologia** 33.2. 514-520. 2009.
- MONTEIRO, J.E.B.A., SENTELHA, P. C., CHIAVEGATO, E. J., GUISELINI, C., SANTIAGO, A. V.; PRELA, A. Estimação da área foliar do algodoeiro por meio de dimensões e massa das folhas. **Bragantia**, 64(01): 15-24. 2005.
- MOREIRA, M. A. **Produção e aclimatização de mudas micropropagadas de abacaxizeiro Ananas comosus (L.) Merril cv. Pérola**. 81f Tese (Doutorado Agronomia, área de concentração Fitotecnia) Faculdade de Agronomia, Universidade Federal de Lavras. 2001.
- MORINI, S.; MULEO, R. Effects of light quality on micropropagation of woody species. In: JAIN, S.M.; ISHII, K. **Micropropagation of woody trees and fruits**. Dordrecht, Kluwer Academic Publishers, p.3-35, 2003.
- MULEO, R.; MORINI, S. Light quality regulates shoot cluster growth and development of MM106 apple genotype *in vitro* culture. **Scientia Horticulturae**, v.108, p.364-370, 2006
- MURASHIGE, T.; SKOOG, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, Copenhagen, v. 15, p. 473-497, 1962.

- NESMITH, D.S. Fruit development period of several rabbiteye blueberry cultivars. **Acta Horticulturae**, v.715, p.137-142, 2006.
- NHUT, D. T.; HONG, L. T. A.; WATANABE, H.; GOI, M.; TANAKA, M. Growth of banana plantlets cultured *in vitro* under red and blue light-emitting diode (LED) irradiation source. **Acta Horticulturae**, The Hague, n.575, p.117-124, 2002.
- NHUT, D. T.; TAKAMURA, T.; WATANABE, H.; TANAKA, M. Efficiency of a novel culture system by using light-emitting diode (led) on *in vitro* and subsequent growth of micropropagated banana plantlets. **Acta Horticulturae**, The Hague, n. 616, p. 121-127, 2003.
- NHUT, D. T.; TAKAMURA, T.; WATANABE, H.; OKAMOTO, K.; TANAKA, M. Responses of strawberry plantlets cultured *in vitro* under superbright red and blue light-emitting diodes (LEDs). **Plant Cell, Tissue and Organ Culture**, v.73, p.43-52, 2003.
- OLIVEIRA, M. M. Aplicações e avanços na área da biotecnologia vegetal. **Boletim de Biotecnologia**, Porto, n. 66, p. 22-27, 2000.
- OLIVEIRA, L. D.; PAIVA, R.; SANTANA, J. D.; NOGUEIRA, R. C.; SOARES, F. P.; SILVA, L. C. Efeito de citocininas na senescência e abscisão foliar durante o cultivo in vitro de Annona glabra L. **Revista Brasileira de Fruticultura**, 29(1), 25-30. 2007.
- OLIVEIRA, M. I.; CASTRO, E. M.; COSTA, L. C. B.; OLIVEIRA, C. "Características biométricas, anatômicas e fisiológicas de *Artemisia vulgaris* L. cultivada sob telas coloridas." **Revista Brasileira de Plantas Medicinais** 11.1. 56-62. 2009.
- OREN-SHAMIR, M.; GUSSAKOVSKY, E.; EUGENE, E.; NISSIM-LEVI, A.; RATNER, K.; OVADIA, R.; SHAHAK, Y. Coloured shade nets can improve the yield and quality of green decorative branches of *Pittosporum variegatum*. **The Journal of Horticultural Science and Biotechnology**, Ashford, v. 76, n. 3, p. 353-361, 2001.
- PARKS, B. M.; FOLTA, K. M.; SPALDING, E. P. Photocontrol of stem growth. **Current Opinion Plant Biology**, v.4, n.5, p.436-440, 2001.
- PASA, M. D.S.; CARVALHO, G.L.; SCHUCH, M.W.; SCHMITZ, J.D.; TORCHELSEN, M. M.; NICKEL, G.K.; CAMARGO, S, S. Qualidade de luz e fitorreguladores na multiplicação e enraizamento *in vitro* da amoreira-preta'Xavante'. **Ciência Rural**, 42(8), 2012.
- PASQUAL, M.; PEIXOTO, P.H.P.; SANTOS, J.C. do; PINTO, J.E.B.P. Propagação *in vitro* da amora-preta (*Rubus* sp.)cv.Ébano:uso de reguladores de crescimento. **Ciência e Prática**, v.15, n.3, p.282-286,1991.
- PIERIK, R.L.M. **Cultivo** *in vitro* **de las plantas superiores**. Madrid: Ediciones Mudi-Prensa, 1990. 326p.
- POPOWICH, E.A.; FILIPENYA, V.L. Effect of exogenous cytokinin on viability of *Vaccinium corymbosum* explants *in vitro*. **Russian Journal of Plant Physiology**, v.44, n.1, p.90-93, 1997.

- RASEIRA, M. C. B.; ANTUNES, L.E.C. **A cultura do mirtilo**. Pelotas: Embrapa Clima Temperado, 64p. (Documento, 121), 2004.
- REED, B. M.; ABDELNOUR-ESQUIVEL, A. The use of zeatin to initiate *in vitro* cultures of *Vaccinium* species and cultivars. **HortScience**, Alexandria, v.26, p.1320-1322, 1991.
- SOARES, R. É.; BRASIL, P. P. J. E.; DOMICIANO, S. R. L.; MONTEIRO, C. R. Teor e composição química do óleo essencial de *Melissa officinalis in vitro* sob influência do meio de cultura. **Acta Scientiarum Agronomy**, v. 31, n. 2, p. 331-335, jun. 2009.
- ROCHA, P. S. G.; SCHUCH, M. W.; BIANCHI, V. J.; FACHINELLO, J. C. Qualidade da luz na micropropagação do porta-enxerto de Prunus cv. Mr. S. 2/5. **Bioscience Journal**, *23*(3), 2007.
- ROCHA, P. S. R.; OLIVEIRA, R. P.; SCIVITTARO, W. B.; SANTOS, U. L. Diodos emissores de luz e concentrações de BAP na multiplicação *in vitro* de morangueiro. **Ciência Rural**, v. 40, n. 9, p. 1922-1928, 2010.
- ROCHA, P. S. G.; DE OLIVEIRA, R. P.; BASTOS, C. R.; SCIVITTARO, W. B. Diodos emissores de luz e concentrações (LEDs) na micropropagação de amoreira-preta cv. Tupy. **Horticultura Argentina**, v. 32, n. 79, p. 14-19, 2013.
- RODRIGUES, S.A.; GULARTE, M. A.; PEREIRA, E. R. B.; BORGES, C. D.; VENDRUSCOLO, C. T. Influência da cultivar nas características físicas, químicas e sensoriais de *topping* de mirtilo. **Revista Brasileira de Tecnologia Agroindustrial,** v. 01, n. 01: p. 9-29. 2007.
- ROWLAND, L.J.; ALKHAROUF, N.; DARWHISH. D.; OGDEN, E. L.; POLASHOCK, J. J.; BASSIL, N. V.; MAIN, D. Generation and analysis of blueberry transcriptome sequences from leaves, develoing fruit and flower buds from cold acclimation through deacclimation. **BMC Plant Biology**, v. 12. p.46, 2012.
- RUFATO, A, R.; ANTUNES, L, E, C. **Técnicas de produção de framboesa e mirtilo**. Embrapa Clima Temperado, 92 p. 2016.
- SANTOS, A.M. dos; RASEIRA, M. do C.B. **A cultura do mirtilo**. Pelotas: Embrapa Clima Temperado. 23 p.; 2002.
- SCHLÜTER, U.; MUSCHAK, M.; BERGER, D.; ALTMANN, T. Photosyntetic performance of an Arabidopsis mutant with elevated stomatal density (sdd1-1) under different light regimes. **Journal of Experimental Botany**, v.54, n.383, p.867-874, 2003.
- SCHUCH, M. W.; ERIG, A. C. Micropropagação de plantas frutíferas. In: FACHINELLO, J. C. **Propagação de plantas frutíferas**. Brasília: DF: Embrapa Informação Tecnológica. p.155-173. 2005.
- SEIFERMAN-HARMS, D. The light-harvesting and protective functions of carotenoids in photosynbthetic membranes. **Physiology Plantarum**, 69: 561-568, 1987.

- SEVERO, J.; MONTE, F. G.; CASARIL, J.; SCHREINERT, R. S.; ZANATTA, O.; ROMBALDI, C. V.; SILVA, J. A. Avaliação de ocpostos fenólicos, antocioninas e capacidade antioxidante de morango e mirtilo. In: **SIMPÓSIO DO MORANGO, 4.**; **ENCONTRO SOBRE PEQUENAS FRUTAS E FRUTAS NATIVAS DO MERCOSUL**, 3.; 2008, Pelotas. Pelotas; Embrapa Clima Temperado. 2008. p. 103.
- SHIGUEAKI, N.; DOMINGUES, L, J.; RODRIGUES, D.; GARCIA, V. A.; FUZITANI, E. J.; MODENESE-GORLA, S. S. H. Crescimento e produção de antúrio cultivado sob diferentes malhas de sombreamento. **Ciência Rural**, v. 39, n. 5, 2009.
- SILVA, M.H.M.; DEBERGH, P.C. The effect of light quality on the morphogenesis of *in vitro* cultures of *Azorina vidalli* (Wats.) Feer. **Plant Cell, Tissue and Organ Culture**, v.51, p.187-193, 1997.
- SILVA, L.C.; SCHUCH, M.W.; SOUZA, J.A.; ERIG, A.C.; ANTUNES, L.E.C. Meio nutritivo, regulador de crescimento e frio no estabelecimento *in vitro* de mirtilo (*Vaccinium ashei* Reade) cv. Delite. **Revista Brasileira de Agrociência**. v.12, n.4, p.405-408, 2006.
- SILVA, R.P. da; DANTAS, G.G.; NAVES, R.V.; CUNHA, M.G. da. Comportamento fenológico de videira, cultivar Patrícia em diferentes épocas de poda de frutificação em Goiás. v.65, p.399-406, 2006.
- SHIN, K. S.; MURTHY, H. N.; HEO, J. W.; HAHN, E. J.; PAEK, K. Y. The effect of light quality on he growth and development of *in vitro* cultured Doritaenopsis plant. **Acta Physiologia & Plantarum**, Copenhagen, v. 30, n. 3, p. 339-343, 2008.
- SING, S.; LETHAM, D. S.; PALINI, L. M. S. Cytokinin biochemistry in relation to leaf senescence. **Physiologia Plantarum**, v. 86, n. 3, p. 388-397, 1992.
- SOUZA, A. L. K.; SCHUCH, M. W.; ANTUNES, L. E. C.; SCHIMITZ, J.D.; PASA, M. da. S.; CAMARGO, S. S.; CARRA, B. Desempenho de mudas de mirtilo obtidas por micropropagação ou estaquia. **Pesquisa Agropecuária Brasileira**, v.46, n.8, p. 868-874, 2011.
- STRIK, B.C.; CLARK, J.R.; FINN, C.E.; BANADOS, M.P. Worldwide Blackberry Production. **Hortechnology**. v.17, n.2, p. 205-213, 2007.
- TAIZ, L.; ZEIGER, E. Fisiologia vegetal. 3.ed. Porto Alegre: Artmed. 719p. 2004.
- TAVARES-JÚNIOR, J.E.; FAVARIN, J.L.; DOURADO-NETO, D.; MAIA, A.H.N.; FAZUOLI, L.C.; BERNARDES, M.S. Análise comparativa de métodos de estimativa de área foliar em cafeeiro. **Bragantia**, v.61, n.2, p.199-203, 2002.
- TEIXEIRA, C. A nova vedete das frutas tem a cor azul. **O Tempo**. Belo Horizonte. Caderno Agronegócios. Terça-feira. 19/10/1999. p. 3.
- TENNESSEN, D. J.; SINGSAAS, E. L.; SHARKEY, T. D. Light-emitting diodes as a light source for photosynthesis research. **Photosynthesis Research**, **Dordrecht**, v. 39, n. 1, p. 85-92, 1994.

- TETSUMURA,Y.; MATSUMOTO,Y.; SATO, M.; HONSHO,C.; YAMASHITA,K.; KOMATSU,H.; SUGIMOTO,Y.; KUNITAKE,H. Evaluation of basal media for micropopagation of four highbush blueberry cultivars. **Scientia Horticulture**, v. 119, p. 72-74, 2008.
- TITON, M.; XAVIER, A.; OTONI, W. C.; REIS, G. G. dos. Efeitos do AIB no enraizamento de miniestacas e microestacas de clones de *Eucalyptus grandis* W. Hill ex maiden. **Revista Árvore**, v. 27, n.1, p. 1-7, 2003.
- VIAGANÓ, R. C.; BIANCHI, V. J.; DA ROCHA, P. S. G.; SCHUCH, M. W.; FACHINELLO, J. C. Enraizamento in vitro do portaenxerto de Prunus cv. Mr. S. 1/8: concentrações de AIB em meio de cultura acrescido de ágar ou vermiculita. **Bioscience Journal**, v.23, n.3, p.60-65, 2007
- VILELLA, F. CD do In: CURSO DE PRODUCCIÓN Y COMERCIALIZACIÓN DE ARANDANOS, FRAMBUESAS Y MORAS, 2003, Montevideo. Montevideo: **Sociedad Uruguaya de Horticultura**, 2003. 1 CD-Rom. www.smallfruit.org North Caroline Blueberry News, v.8, n. 3, Out. 2003.
- WAGNER JÚNIOR, A.; COUTO, M.; RASEIRA, M. C. B.; FRANZON, R. C. Efeito da lesão basal e do ácido indolbutírico no enraizamento de estacas herbáceas de quatro cultivares de mirtilo. **Revista Brasileira de Agrociência**, v.10, n.2, p.251-253, 2004.
- WELBURN, A.R. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. **Journal of Plant Physiology**, 144: 307-313, 1994.
- WENDLING, I.; XAVIER, A. Gradiente de maturação e de rejuvenescimento aplicado em espécies florestais. **Floresta e Ambiente**, v.8, n.1, p. 187-194, 2001.
- WU, H. C.; LIN, C. C. Red light-emitting diode light irradiation improves root and leaf formation in difficult-to-propagate *Protea cynaroides* L. plantlets *in vitro*. **HortScience**, v. 47, n. 10, p. 1490-1494, 2013.
- YI, Z. L.; HUANG, W. F.; REN, Y.; ONAC, E.; ZHOU, G. F., PENG, S.; LI, H. H. LED lights increase bioactive substances at low energy costs inculturing fruiting bodies of *Cordyceps militaris*. **Scientia Horticulturae**, Amsterdam, n. 175, p. 139-143, 2014.
- ZHANG, M.; ZHAO, D.; MA, Z.; LI, X.; XIAO, Y. Growth and photosynthethetic capability of *Momordica grosvenori* plantlets grownphotoautotrophically in response to light intensity. **HortSciense**, Alexandria, v. 44, n. 3, p. 757-763, 2009.