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Introdução de Russell:
A Introdução de Todas as Introduções que Não se

Introduzem

No volume anterior, Textos Selecionados de Paradoxos I, acompanhamos paradoxos
que percorriam diferentes territórios: da cognoscibilidade e da vagueza à tradição eleática e
às tensões lógico-matemáticas contemporâneas. A cada passo, víamos como esses enig-
mas funcionam como espelhos que revelam fissuras em conceitos fundamentais e exigem
da filosofia a coragem de revisar pressupostos.

O presente volume, entretanto, volta-se para um domínio específico e especialmente
instigante: os paradoxos semânticos e autorreferenciais, aqueles que não se apoiam em
fronteiras imprecisas da experiência ou em intuições sobre movimento e conhecimento, mas
que emergem da própria linguagem com que raciocinamos. Aqui, as tensões não são exter-
nas, mas internas: ligam-se diretamente ao uso do predicado de verdade, aos princípios de
compreensão, à autorreferência e às regras formais de inferência.

Esses paradoxos ocupam lugar central na lógica e na filosofia contemporâneas. Foi
diante deles que Tarski formulou sua hierarquia de linguagens para definir a verdade sem
contradição; que Kripke e Gupta–Belnap buscaram alternativas não hierárquicas com pontos
fixos e teorias da revisão; que Russell expôs a insuficiência da teoria ingênua dos conjuntos,
conduzindo a Zermelo–Fraenkel, tipos e sistemas alternativos; e que lógicas não clássicas
– paraconsistentes, paracompletas, relevantes – passaram a ser consideradas não apenas
como curiosidades, mas como respostas possíveis a dilemas semânticos genuínos.

O que está em jogo, portanto, é a própria estabilidade das nossas noções de verdade,
definição e inferência. Ao contrário de paradoxos como os de Zenão ou Fitch, que nos
desafiam a repensar o espaço-tempo ou a relação entre conhecimento e possibilidade, aqui
o desafio é mais profundo: são as próprias engrenagens da coerência lógica que parecem se
desajustar. Como observa Barwise e Etchemendy, a importância de um paradoxo nunca está
nele mesmo, mas naquilo de que ele é um sintoma – e, neste caso, os sintomas apontam



para rachaduras na arquitetura formal que sustenta nossa linguagem e nosso pensamento.1
É nesse cenário que se distribuem os capítulos que seguem. Cada um deles examina

um ponto nodal dessa constelação de paradoxos semânticos e autorreferenciais, mostrando
como raciocínios aparentemente inofensivos podem se converter em dilemas que desafiam
a lógica, a semântica e a própria filosofia.

No capítulo (I) (p. 19–84), Paradoxos e a Lógica Contemporânea, mapeia-se como as
antinomias do fim do século XIX e início do XX (especialmente na teoria dos conjuntos) im-
pulsionaram a viradametateórica da lógica: de “quebras” locais de intuição para diagnósticos
estruturais sobre linguagem, prova, verdade e definição. O texto organiza o panorama em
fases históricas, apresenta as famílias paradigmáticas (autorreferência e verdade – como
Mentiroso e Grelling; tamanho/definibilidade – como Russell, Berry e Richard; e variantes
“termais” como o Barbeiro), e reconstrói as respostas clássicas: hierarquias de tipos e de
linguagem (Tarski), restrições à formação de conjuntos, e esquemas que evitam a diagonali-
zação direta. A partir daí, delineia as lições das antinomias (fixpoints, diagonal, fechamento e
contagiosidade), e abre o leque das estratégias não clássicas: soluções por gluts (paracon-
sistência), por gaps (paracompletude, supervalorações), modelos de pontos fixos (Kripke)
e teorias revisionalistas da verdade. Em seguida, contrasta “lógicas conceituais” – que to-
mam os paradoxos como guias de engenharia conceitual – com abordagens revisionalistas
que ajustam regras/axiomas, e esboça uma perspectiva “geométrica” que classifica famílias
paradoxais por eixos semânticos e inferenciais. O resultado é um retrato de como a lógica
contemporânea transformou os paradoxos em ferramentas para calibrar a fronteira entre
linguagem e mundo, e para medir o custo – técnico e filosófico – de cada rota de solução.

No capítulo (II) (p. 85–135), o tema é a autorreferência como motor de paradoxos clás-
sicos e contemporâneos. O texto percorre as principais famílias: os paradoxos semânticos
(Mentiroso e suas variantes fortalecidas, Grelling–Nelson, além dos problemas de defini-
bilidade à la Berry e Richard), os paradoxos em teoria dos conjuntos (com destaque para
Russell e o papel da compreensão irrestrita) e os paradoxos algorítmicos/computacionais
(diagonalização, quines e o teorema da recursão de Kleene). Uma seção especial discute o
paradoxo de Yablo, mostrando como estruturas bem-fundadas – sem laços autorreferenciais
1“a importância de um paradoxo nunca está no paradoxo em si, mas naquilo de que ele é um sintoma. Pois um
paradoxo demonstra que a nossa compreensão de algum conceito básico ou de um conjunto de conceitos está
crucialmente falha, que os conceitos se rompem em casos-limite. [...] Se os conceitos forem importantes, isso
não é motivo de riso.” em BARWISE, Jon; ETCHEMENDY, John. The Liar: An Essay on Truth and Circularity.
New York; Oxford: Oxford University Press, 1987, pp. 4–5. ISBN 0195059441.
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explícitos – também produzem contradições. Em paralelo, o capítulo apresenta os mecanis-
mos geradores por trás dessas construções (lema do ponto fixo/diagonalização, quinação,
codificação aritmética) e, na sequência, mapeia as respostas de fundo: hierarquias e res-
trições tipadas à maneira de Tarski e Russell, teorias não clássicas de verdade (como os
pontos fixos de Kripke) e abordagens revisionistas (Gupta–Belnap), além de limitações axi-
omáticas a esquemas de compreensão. O resultado é um panorama integrado: da forma
lógica comum que viabiliza as antinomias à variedade de estratégias – semânticas, axiomá-
ticas e lógicas – para contê-las sem perder de vista o que elas revelam sobre linguagem,
verdade e referência.

No capítulo (III) (p. 136–187), o foco recai sobre o Paradoxo do Mentiroso e seu “fe-
nômeno ampliado”. O texto inicia com versões canônicas – a sentença que diz de si mesma
ser falsa, bem como variações como “não-verdadeira”, ciclos e cadeias sem fim – e mos-
tra como princípios muito naturais sobre o predicado de verdade (instâncias do esquema-T,
introdução/eliminação de “é verdadeiro/falso”) bastam para gerar contradição. Em seguida,
apresenta o arsenal de respostas contemporâneas, cada qual preservando diferentes fatias
do raciocínio ingênuo sobre a verdade. O capítulo também discute contextualismo, a questão
do poder expressivo e os argumentos de revanche (que reaparecem quando fortalecemos
o aparato semântico), além de estender a moldura para outros predicados semânticos (de-
finição, referência) e construções auto-aplicativas aparentadas, mapeando com cuidado o
que precisamos ceder – na semântica, na lógica ou na arquitetura do idioma – para domar
o Mentiroso sem trivializar a teoria.

No capítulo (IV) (p. 188–206), encontramos o Paradoxo de Russell, um dos mais céle-
bres e influentes paradoxos da lógica contemporânea. O texto parte da formulação canônica
– a classe de todos os conjuntos que não são membros de si mesmos – e mostra como a
aplicação irrestrita do princípio de compreensão na teoria ingênua de conjuntos conduz a
uma contradição inevitável. Em seguida, o capítulo apresenta o impacto histórico imediato:
o colapso do sistema de Frege, as primeiras tentativas de resposta de Zermelo por meio
da axiomatização e a teoria dos tipos proposta pelo próprio Russell. São então discutidas
as soluções posteriores, desde os sistemas axiomáticos que moldaram a teoria de conjun-
tos moderna (ZFC, von Neumann–Bernays–Gödel) até alternativas em lógicas não clássicas
que procuram preservar versões ampliadas da compreensão. Por fim, o capítulo evidencia
como o paradoxo não é apenas uma curiosidade técnica, mas um ponto de inflexão que re-
definiu o estudo dos fundamentos da matemática, a semântica formal e a própria noção de
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coleção.
No capítulo (V) (p. 207–244), o foco recai sobre o Paradoxo de Curry, apresentado nas

suas duas faces canônicas: a versão semântica, com um enunciado que diz de si mesmo que
“se é verdadeiro, então 𝜋”, e a versão em teoria ingênua dos conjuntos, via compreensão,
que constrói um conjunto 𝐶𝜋 tal que “se 𝐶𝜋 ∈ 𝐶𝜋, então 𝜋”. O texto mostra passo a passo
como, a partir de princípios mínimos – identidade, modus ponens e contração –, obtém-
se 𝜋 arbitrária, sem usar negação: uma rota para a trivialidade que difere do Mentiroso
por não requerer contradição explícita. Em seguida, o capítulo enuncia o Lema de Curry
e a Afirmação Problemática, introduz a noção de teoria Curry-completa (e o corolário de
trivialidade) e mapeia as estratégias de contenção em três frentes: (i) respostas livres de
contração; (ii) respostas livres de desprendimento; e (iii) respostas livres de transitividade.
O capítulo também discute como princípios de definição e de diluição/afrouxamento podem
reativar o esquema curryano, e estende a análise a predicados como validade (a chamada
“Curry-validade”). O balanço final explica por que Curry é, em certo sentido, mais exigente
que o Mentiroso: para manter verdades ingênuas ou compreensão ingênua sem colapso,
é preciso pagar um preço claro – enfraquecer regras estruturais, limitar o desprendimento,
rever a transitividade ou regrar estritamente os esquemas ingênuos.

O percurso deste volume reflete a centralidade dos paradoxos autorreferenciais na filo-
sofia e na lógica contemporânea. Iniciamos com uma visão geral sobre o modo como tais
enigmas moldaram a própria disciplina lógica, passando à análise da autorreferência como
mecanismo gerador de inconsistências. Em seguida, examinamos o Paradoxo do Menti-
roso, talvez o mais emblemático da tradição, para então avançar aos paradoxos de Russell
eCurry, que desestabilizam tanto a teoria ingênua dos conjuntos quanto noções elementares
de implicação e consequência.

Reunidos, esses capítulos mostram que os paradoxos semânticos não são meras curi-
osidades de linguagem, mas forças estruturantes que definem a fronteira entre o aceitável
e o insustentável em nossas teorias formais. Eles evidenciam que não basta falar em ver-
dade, definição ou inferência de modo ingênuo: cada passo exige escolhas delicadas sobre
hierarquias, restrições e revisões lógicas. Ao desafiar os alicerces do raciocínio formal, os
paradoxos aqui estudados não apenas testam os limites da coerência, mas também impul-
sionam a contínua reinvenção da lógica e da filosofia da linguagem.

Kherian Gracher
Organizador



(I) Paradoxos e a Lógica Contemporânea1

Título Original: Paradoxes and Contemporary Logic
Autor: Andrea Cantini e Riccardo Bruni

Tradução: Caio Cezar Silva
Revisão: Annelyze Reis

Por “paradoxo” comumente se entende uma declaração que afirma algo que vai além
(ou mesmo contra) a ‘opinião comum’ (o que geralmente é acreditado ou mantido). Parado-
xos constituem um objeto natural da investigação filosófica desde as origens do pensamento
racional; eles foram inventados como parte de argumentos complexos e ferramentas para
refutar teses filosóficas (pense nos célebres paradoxos creditados a Zenão de Eleia, so-
bre o movimento, o continuum, a oposição entre unidade e pluralidade, ou dos argumentos
envolvendo as noções de verdade e vagueza, creditados a Escola Megárica, e Eubulides
de Mileto). Paradoxos — denominados como Insolubilia — constituem também uma parte
substancial das investigações lógicas e filosóficas durante a Idade Média.

Este verbete concentra-se no surgimento de temas e noções lógicas não triviais a partir
da discussão sobre paradoxos do início do século XX até 1945, e tentativas de avaliar a
sua importância para o desenvolvimento da lógica contemporânea. Paradoxos envolvendo
vagueza, conhecimento, crença, e o espaço e o tempo são tratados em verbetes próprios.

1CANTINI, Andrea; BRUNI, Riccardo, “Paradoxes and Contemporary Logic”, In: ZALTA, E. N.; NO-
DELMAN, U. (eds.). The Stanford Encyclopedia of Philosophy (Summer 2025 Edition). Stanford, CA:
The Metaphysics Research Lab, 2025. Disponível em: https://plato.stanford.edu/archives/sum2025/entries/
paradoxes-contemporary-logic/.
A seguir está a tradução da entrada sobre Paradoxos e a Lógica Contemporânea de Andrea Cantini e Riccardo
Bruni na Stanford Encyclopedia of Philosophy. A tradução segue a versão da entrada nos arquivos da SEP
em https://plato.stanford.edu/archives/sum2025/entries/paradoxes-contemporary-logic/. Esta versão traduzida
pode diferir da versão atual da entrada, que pode ter sido atualizada desde o momento desta tradução. A
versão atual está localizada em https://plato.stanford.edu/entries/paradoxes-contemporary-logic/. Agradecemos
aos editores Edward N. Zalta e Uri Nodelman pela permissão para traduzir e publicar esta entrada.

https://plato.stanford.edu/archives/sum2025/entries/paradoxes-contemporary-logic/
https://plato.stanford.edu/archives/sum2025/entries/paradoxes-contemporary-logic/
https://plato.stanford.edu/archives/sum2025/entries/paradoxes-contemporary-logic/
https://plato.stanford.edu/entries/paradoxes-contemporary-logic/


Uma advertência terminológica faz-se necessária. A palavra “antinomia” é usada abaixo
como uma alternativa para, e como um sinônimo de, “paradoxo”. A maioria dos paradoxos
— mas não todos — envolvem contradições; em tais casos, frequentemente se emprega a
palavra “contradição”.2

1. Introdução

Entre o fim do século XIX e o início do século XX, os fundamentos da lógica e damatemá-
tica foram afetados pela descoberta de uma série de dificuldades— os chamados paradoxos
— envolvendo noções fundamentais e métodos básicos de definição e inferência, os quais
eram comumente aceitos como não problemáticos. Desde então, paradoxos adquiriram um
novo papel na lógica contemporânea: na verdade, eles levaram a teoremas (geralmente
resultados negativos, tais como improvabilidade e indecidibilidade) e não estão confinados
apenas ao reino da dialética estéril. Diversas noções básicas de lógica, tal como corrente-
mente ensinadas, alcançaram sua forma atual ao final de um processo que foi desencadeado
mediante várias tentativas de resolver paradoxos. Isto é especialmente verdade para noções
como conjuntos e coleções em geral, para os conceitos semânticos e sintáticos básicos da
lógica clássica padrão (linguagens lógicas de uma dada ordem, a noção de satisfatibilidade,
definibilidade). Após os primeiros quarenta anos, os subprodutos dos paradoxos incluíam
axiomatizações da teoria dos conjuntos, um desenvolvimento sistemático da teoria dos tipos,
os fundamentos da semântica, uma teoria de sistemas formais (pelo menos em sua fase em-
brionária), bem como a introdução da dicotomia predicativa/impredicativa que foi importante
por razões conceituais, mas também para o futuro dos métodos prova-teórica. 3

2. Paradoxos: primeiros desenvolvimentos (1897–1917)

Os primeiros trabalhos sobre paradoxos de particular importância tratavam das seguin-
tes noções:

2Não menos importante, com vistas a facilitar a leitura deste verbete, documentos suplementares, tais como os
links que aparecerão nas notas de rodapé abaixo, são usados livremente para explorar questões secundárias ou
primárias em maior detalhe. As notas de rodapé destinam-se a breves considerações, explicações notacionais
ou terminológicas e esclarecimentos quanto à tradução.
3N.T.: “proof-theoretic”.
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1. Números ordinais e cardinais (Burali-Forti, Cantor);

2. Propriedade, conjunto, classe (Russell, Zermelo);

3. Proposição e verdade (Russell);

4. Definibilidade e o continuum aritmético (ou atomista) (Richard, König, Bernstein, Berry,
Grelling).

Algumas dessas contradições já são tratadas em verbetes próprios nesta enciclopédia (como
o Paradoxo do Mentiroso e o Paradoxo de Russell); a ênfase aqui será nos problemas de
fundo, seus vínculos, suas inter-relações e a interação desses paradoxos com questões
fundacionais e filosóficas.4

2.1 Dificuldades envolvendo números ordinais e cardinais
Os primeiros paradoxos modernos diziam respeito às noções de número ordinal e car-

dinal. Burali-Forti, um matemático da Escola de Peano, tentou provar que os números ordi-
nais não são linearmente ordenados. Assumindo por contradição que a classe ON de todos
os ordinais poderia ser linearmente ordenada, ele observou então que ON em si mesma
seria bem ordenada e que ela possuiria um ordinal Ω ∈ ON. Portanto, ON seria similar
(ordem-isomórfica) a um segmento inicial próprio de si mesma, aquele determinado por Ω,
contradizendo um teorema bem conhecido sobre conjuntos bem ordenados. O resultado foi
publicado em 1897 e, embora o objetivo original de Burali-Forti seja impossível de ser alcan-
çado, seu argumento mostrou que a coleção ON é problemática na melhor das hipóteses
(Moore-Garciadiego 1981).

O pai da teoria dos conjuntos, Cantor, já percebera dificuldades semelhantes em 1895
(como testemunhado por Bernstein e em cartas a Hilbert e Dedekind). Na verdade, em uma
segunda carta a Dedekind, de 31 de agosto de 1899, Cantor apontou um outro problema,
envolvendo a noção de número cardinal e sugerindo que não se pode pensar consistente-
mente em um “conjunto de todos os conjuntos concebíveis”, 𝑀 . Se 𝑀 fosse um conjunto
genuíno, então possuiria um número cardinal 𝑚, que seria o número cardinal máximo. Po-
rém, pode-se considerar também o conjunto ℘(𝑀 ) de todos os subconjuntos de 𝑀 e, de
4N.T.: https://plato.stanford.edu/entries/liar-paradox/

https://plato.stanford.edu/entries/russell-paradox/
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acordo com o teorema de Cantor, a cardinalidade de ℘𝑀 deveria ser estritamente maior
que o suposto 𝑚 máximo: contradição.

Consequentemente, Cantor sugeriu uma distinção crucial — ainda considerada como
“subjetiva”, isto é, matematicamente imprecisa, por Hilbert (até 1904, veja van Heijenoort
1967, p. 131 — entre totalidades que não podem ser concebidas como um todo (as in-
consistentes) e aquelas que podem ser consideradas como completas (fertige Menge). De
forma aproximada, a primeira é uma coleção que não pode ser um elemento de outras cole-
ções, ao passo que a segunda é uma coleção pequena, que pode ser um elemento de outras
coleções. Para mais detalhes, consulte o verbete The Early Development of Set Theory.5
Isso corresponde à distinção entre classes e conjuntos, mais tarde tornada precisa e axio-
matizada na abordagem classe-teórica6 (von Neumann, Bernays, Gödel); trata-se de uma
formulação que remete à doutrina de limitação de tamanho de Russell (ver seção 3.1; mas
veja também Garciadiego 1992).

No caso da dificuldade descoberta por Burali-Forti, a consequência para Cantor foi que a
multiplicidade (Mannigfaltigkeit) de números ordinais é ela própria bem-ordenada, mas não
é um conjunto: portanto, nenhum ordinal pode ser atribuído a ela e a antinomia é assim
resolvida.

2.2 A contradição de Russell

A segunda antinomia famosa publicada (Russell 1903, §§ 78, 101–106; Frege 1903,
Apêndice, Outubro de 1902); veja Klement 2010 e o verbete Russell’s Paradox)7 nos leva
do paraíso de Cantor para o reino dos fundamentos da lógica e da filosofia da matemática.
É surpreendentemente simples, envolve apenas a aplicação de predicados, e possui um
caráter autorreferencial (reflexivo) explícito. Nas palavras do próprio Russell (em carta para
Frege, de 16 de Junho de 1902),

seja𝑤 o predicado: ser um predicado que não pode ser predicado de si mesmo.
Pode 𝑤 ser predicado de si mesmo? De cada resposta, o oposto se segue.
Do mesmo modo, não há classe (como uma totalidade) daquelas classes que,
cada uma tomada como uma totalidade, não pertencem a si mesmas. Disto eu

5N.T.: https://plato.stanford.edu/entries/settheory-early/
6N.T.: “class-theoretic”.
7N.T.: https://plato.stanford.edu/entries/russell-paradox/
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concluo que, sob certas circunstâncias, uma coleção definível não forma uma
totalidade. (van Heijenoort 1967, p. 124–125)

Russell estava inicialmente envolvido no estudo das “contradições na relação da quantidade
contínua com o número e o continuum” (Moore 1995, p. 219), tendo obtido a sua contradição
(Maio 1901) como um resultado da reflexão acerca da antinomia que surge com o teorema
de Cantor (Russell 1903, nota 7, § 344; § 100, p. 101). Russell provavelmente percebeu
a importância da descoberta somente após a resposta de Frege. O efeito da antinomia
é que é impossível ter uma operação de abstração 𝜙 ↦ {𝑥 | 𝜙} injetivamente mapeando
qualquer conceito 𝜙 (propriedade) em sua extensão (a classe de todos os 𝑥 tal que 𝜙(𝑥))
(ou seja, se as classes definidas por 𝜙 e 𝜓 são iguais, então 𝜙(𝑎) ↔ 𝜓(𝑏), para todo objeto
𝑎). Consequentemente, também é impossível estabelecer os fundamentos da teoria dos
conjuntos a partir de uma noção puramente lógica dos conjuntos onde a pertinência espelha
fielmente a aplicação de predicados, no sentido em que, à luz de Frege, 𝑥 ∈ 𝑦 significa que
(1) 𝑦 = {𝑥 | 𝜙(𝑥)} para algum conceito 𝜙, e (2) 𝜙 realmente se aplica a 𝑥 (para detalhes
históricos sobre a descoberta do paradoxo por Russell, veja Moore 1995).

2.3 O paradoxo de Russell envolvendo proposições e verdade: o surgimento
da teoria dos tipos

Em seu Principles of Mathematics, Russell (1903) apresenta discussões estendidas dos
paradoxos de Russell e Burali-Forti em várias formas nas seções 78, 84–85, 101, 301. O
paradoxo de Russell é adaptado para mostrar que uma função proposicional 𝜙 não pode
ser um sujeito lógico (isto é, como separada de seu argumento; é insaturada em termos
fregeanos); de outro modo, 𝜙 se aplicaria a si mesma,¬𝜙(𝜙) seria uma função proposicional
e seria possível reproduzir a inconsistência.

No Capítulo 10, seção 102, Russell também apresenta uma forma do teorema de Cantor,
que captura a essência lógica da diagonalização (essa versão já é folclórica): nenhuma
relação binária pode parametrizar todos os predicados unários sobre um dado domínio 𝑈
(ou seja, não existe uma relação binária 𝑅 tal que para todo predicado unário 𝑃 sobre 𝑈 ,
há um objeto 𝑎 em 𝑈 para o qual se tem: para todo 𝑥 em 𝑈 , 𝑅(𝑎,𝑥) ↔ 𝑃 (𝑥)).

Em suma, a contradição de Russell evidencia o estado crítico de princípios lógicos apa-
rentemente seguros: ou se desiste da hipótese de que “qualquer função proposicional con-
tendo apenas uma variável é equivalente a afirmar a pertinência a uma classe definida pela

23



função proposicional” (em outros termos, o princípio da compreensão); ou se rejeita a ideia
de que “toda classe pode ser tomada como um termo” (p. 102–103).

Nas mãos de Russell, o paradoxo se aplica a predicados, classes, e funções proposicio-
nais, e leva a uma nova imagem do universo lógico-matemático, que é delineada na primeira
exposição da doutrina dos tipos: para cada função proposicional 𝜙 é associado um alcance
de significância8, ou seja, uma classe de objetos para os quais um dado 𝜙 se aplica para pro-
duzir uma proposição; ademais, são precisamente os alcances de significância que formam
os tipos. No entanto, há objetos que não são alcances de significância; estes são apenas
átomos (isto é, urelemente ou indivíduos)9 e eles formam o tipo mais baixo. O próximo tipo
consiste em classes ou alcance de indivíduos; então, tem-se classes de classes de objetos
do tipo mais baixo, e assim por diante (veja também o verbete Type Theory).10

Novas dificuldades surgem se se aceita que proposições formam um tipo (pois são os
únicos objetos dos quais se pode afirmar significativamente que são verdadeiros ou falsos).
Primeiro, há obviamente pelo menos tantas proposições quanto objetos (basta considerar o
mapa associando 𝑥 à proposição expressa por (𝑥 = 𝑥); p. 527). De outro lado, se é possível
formar tipos de proposições, há mais tipos de proposições do que proposições, segundo o
argumento de Cantor. Logo, podemos injetar tipos de proposições em proposições através
da noção de produto lógico. Seja 𝑚 uma classe de proposições e seja Π𝑚 a proposição
“toda proposição de 𝑚 é verdadeira” (tomada como uma conjunção possivelmente infinitá-
ria); então, se 𝑚 e 𝑛 são classes diferentes, as proposições Π𝑚 e Π𝑛 são diferentes, ou
seja, o mapa associando 𝑚 ao seu produto Π𝑚 é injetivo. Portanto, se consideramos a
classe

{𝑝 ∣ ∃ 𝑚 (Π𝑚 = 𝑝 & 𝑝 ∉ 𝑚)} = 𝑅

temos, por injetividade, uma contradição.
Claro, caso se adote a abordagem extensional, e, portanto, se identificasse proposições

equivalentes, a contradição acima não poderia ser derivada. Russell, porém, mantém uma
8N.T.: “range of significance”.
9N.T.: urelemente são objetos que não são conjuntos — na medida em que não possuem elementos — e podem
ser elementos de um conjunto. Em seu célebre trabalho de 1908, Zermelo incluiu os urelemente na primeira
versão da sua teoria axiomática de conjuntos, ZFA (Zermelo-Fraenkel com átomos). Na medida em que os
desenvolvimentos da lógica foram se consolidando, constatou-se que era possível desenvolver uma teoria axi-
omática de conjuntos sem o recurso aos átomos.
10N.T.: https://plato.stanford.edu/entries/type-theory/
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abordagem intensional, enfatizando que proposições equivalentes muitas vezes podem ser
bem diferentes. Assim, somos aparentemente forçados a rejeitar a hipótese de que pro-
posições formam um tipo e exigir, portanto, que elas devem ter vários tipos, enquanto os
produtos lógicos devem ter proposições de apenas um tipo enquanto fatores.

Esta foi eventualmente a base da teoria ramificada dos tipos, mas em 1903 Russell
ainda considerava a sugestão como dura e artificial. Como uma nota de rodapé na página
527 evidencia, ele acreditava que o conjunto de todas as proposições é um contraexemplo
ao teorema de Cantor.

2.4 Os matemáticos e as contradições: Hilbert e Zermelo
Zermelo descobriu independentemente o paradoxo de Russell em Göttingen (como tes-

temunhado por Hilbert e Husserl) da seguinte forma: um conjunto𝑀 que compreende como
elementos todos os seus subconjuntos é inconsistente. De fato, considere que o conjunto
𝑀0 de todos os elementos de 𝑀 que não são elementos de si mesmos (por exemplo, o
conjunto vazio está em 𝑀 0). Este conjunto é um subconjunto de 𝑀 e, portanto, com base
em 𝑀 , 𝑀0 ∈ 𝑀 . Se 𝑀 0 ∈ 𝑀0, então 𝑀0 não é membro de si mesmo. Portanto, 𝑀0
∉ 𝑀0 e uma vez que 𝑀0 ∈ 𝑀 , 𝑀0 ∈ 𝑀0: contradição.

Além disso, Hilbert notou em um trabalho não publicado (Kahle e Peckhaus, 2002) que
contradições adicionais de natureza matemática podem surgir. A primeira deriva da suposi-
ção de que há um conjunto bem definido 𝐶 que satisfaz as seguintes condições de fecha-
mento: (i) o conjunto 𝑁 dos números naturais é um elemento de 𝐶 ; (ii) 𝑋𝑋 ∈ 𝐶 , sempre
que 𝑋 ∈ 𝐶 (onde 𝑋𝑋 é o conjunto de todas as funções de 𝑋 para 𝑋); (iii) ⋃𝑋 ∈ 𝐶
sempre que 𝑋 ⊆ 𝐶 . Então, por (iii) ⋃𝐶 = 𝑈 ∈ 𝐶 e finalmente 𝐹 = 𝑈𝑈 ∈ 𝐶 . Contudo,
pela definição de união, 𝐹 ⊆ 𝑈 ; portanto, haveria um mapa de 𝑈 em 𝐹 e uma contradição
poderia ser derivada por diagonalização.

Ademais, como testemunhado por Hilbert (1905) em seu não publicado Sommer Vor-
lesung (Kahle 2004), ele descobriu uma versão funcional notável do paradoxo de Russell,
que mais tarde se tornaria popular no contexto da lógica combinatória, do cálculo lambda e
da teoria da recursão. O argumento é baseado na autoaplicação funcional e, portanto, na
autorreferência direta.

A contradição é obtida assumindo que o universo contém tudo, isto é, as variáveis quan-
tificam tanto sobre objetos como funções, e que há pelo menos dois objetos distintos. Então,
introduz-se uma nova operação (aplicação universal em nosso sentido): 𝑥𝑦 é o resultado da
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aplicação de 𝑥 em 𝑦. Dados dois objetos distintos 0 e 1, e partindo do pressuposto de que
o universo é fechado sob definições arbitrárias por casos, existe um objeto 𝑓 tal que 𝑓𝑥 =
0, se 𝑥𝑥 ≠ 0, e 𝑓𝑥 = 1, se 𝑥𝑥 = 0. Então, escolhe-se 𝑥 = 𝑓 (já que 𝑥 quantifica sobre
tudo) e facilmente se deriva uma contradição.

Os resultados da Escola de Hilbert não foram publicados porque contradições e para-
doxos eram considerados como sintomas de crescimento e como dificuldades temporárias.
O diagnóstico era que a lógica tradicional era insuficiente e a teoria de formação e concei-
tos precisava ser aperfeiçoada. Qualquer conceito 𝐶 é dado em uma rede de conceitos
(carta de Hilbert para Frege, 27 de Dezembro de 1899; Frege 1976, p. 79–80) e esta rede
é determinada pelos axiomas. Somente a consistência dos axiomas que definem o conceito
garante a legitimidade de 𝐶 . Em resumo: paradoxos nos dizem que devemos desenvolver
uma análise metamatemática das noções de prova e do método axiomático; sua importância
é metodológica e epistemológica.

2.5 Por volta de 1905: dificuldades oriundas da definibilidade e do continuum
Como as reações do mundo matemático deixaram claro, quando os problemas elemen-

tares da teoria dos conjuntos foram trabalhados, por volta de 1905, os paradoxos foram
crucialmente envolvidos. De fato, as novas contradições não afetaram apenas a concepção
de conjunto e conceitos lógicos, mas também passaram a abranger a noção de definibilidade
e sua relação com uma questão fundamental: a estrutura do continuum matemático e, em
particular, se o continuum pode ser bem-ordenado e se a Hipótese do Continuum de Cantor
é válida.

No Congresso de Heidelberg em 1904, Julius König tentou refutar a hipótese do conti-
nuum de Cantor. Devido a um erro descoberto por Zermelo, seu artigo foi imediatamente
retirado; porém, no ano seguinte, König elaborou um novo argumento.

Considere os reais que são definíveis em um número finito de palavras. Eles formam
uma sequência contável: 𝐸0, … , 𝐸𝑛, … . Uma vez que o continuum é incontável, existem
reais que não ocorrem na respectiva enumeração. Assumindo que o continuum é bem-
ordenado, existe “o menor real 𝐸 que não está na sequência 𝐸𝑛 | 𝑛 ∈ Ω”; este real não
está na sequência, mas a própria expressão “o menor real 𝐸 que não está na sequência”
define 𝐸 com um número finito de palavras; então 𝐸 ocorre em algum lugar na sequência:
contradição!

König também observou que o argumento se estende para a segunda classe de números
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e um paradoxo semelhante poderia ser obtido se considerada a coleção FOD de ordinais
contáveis finitamente definíveis. Neste caso, inspirando-se em Cantor, a solução de König
é que a segunda classe de números de Cantor não é um conjunto em sentido próprio (uma
totalidade completa). Para definir um conjunto, segundo König, deve-se fornecer não apenas
uma regra para definir seus elementos, mas também um meio para os distinguir.

Uma contradição relacionada à de König havia sido publicada um pouco antes por Jules
Richard, um matemático de um Liceu em Dijon. Usando uma enumeração de todas as per-
mutações com repetições das vinte e seis letras do alfabeto francês, Richard percebeu que
o conjunto 𝐸 dos reais que pode ser definido por um número finito de palavras francesas
é enumerável e, portanto, pode-se supor que haja uma enumeração 𝑢1, 𝑢2, … de todos
esses números. Mas então podemos definir o seguinte real 𝑁 : a parte inteira de 𝑁 é 0, ao
passo que o 𝑛-ésimo dígito decimal de 𝑁 é 𝑝 + 1 se 𝑢𝑛 tem o 𝑛-ésimo dígito decimal 𝑝
diferente tanto de 8 como de 9; do contrário, o 𝑛-ésimo dígito decimal de 𝑁 é 1. Por cons-
trução, 𝑁 não ocorrerá em 𝑢1, 𝑢2, … . Por outro lado, se consideramos que 𝑁 é definido
por uma coleção finita de letras, isso deve ocorrer em 𝑢1, 𝑢2,… .

Ao contrário de König, Richard não se embasou na boa ordenação do continuum, e a
solução proposta é interessante para o debate fundacional que está por vir. Ele apontou
que a definição do número 𝑁 se refere à totalidade de reais definíveis, aos quais o próprio
𝑁 pertence; mas nenhum objeto deveria ser definível em termos de uma coleção que o
contenha. Então parece que a definição é viciosamente circular, e isso a torna ilusória. Essa
ideia logo se tornou a base da solução de Poincaré, e eventualmente também de Russell
(sobre as coleções impredicativamente definidas, ver seção 3.1).

Então, por que definibilidade? Amotivação ficou clara, por exemplo, em “Die Theorie der
reellen Zahlen” de Bernstein (1905a), onde a hipótese do continuum de Cantor foi afirmada
como estabelecida no positivo. Ele criticou a famosa “noção de Dirichlet” de função arbi-
trária e afirmou que é possível fornecer fundamentos ao continuum usando somente reais
computáveis, reais que possuem uma “lei de formação” explícita (“Bildungsgesetz”).

Segundo ele, isso não é uma restrição, pois — ele afirma — há números reais compu-
táveis não enumeráveis segundo sua proposta. Ele também afirma que é possível exibir o
novo continuum computável em uma hierarquia (ou seja, uma sequência crescente ⊂) {𝐵𝛼
∣ 𝛼 < ℵ 1} de subconjuntos de𝑁𝑁 , o qual é definido de tal modo que cada𝐵𝛼 é no máximo
de cardinalidade ℵ1 e, portanto, que a cardinalidade da união da sequência é no máximo
ℵ1. A ideia é começar com um domínio básico 𝐵0 ⊂ 𝑁𝑁 de funções simples (por exemplo,
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aquelas que têm valores finitos), e então definir um novo domínio 𝐵1 que estende 𝐵0 com
operações que são definidas a partir de elementos de 𝐵0, e assim por diante.

Apesar de suas afirmações não serem justificadas, à luz do trabalho tardio de Gödel so-
bre construtibilidade, pode-se dizer que a intuição básica de Bernstein era sólida: o problema
do continuum pode ser resolvido, conquanto se tenha uma noção apropriadamente geral de
definibilidade (ou computabilidade, construtibilidade) e iterando-a ao longo dos ordinais.

Esta questão estava, em última análise, conectada com o problema de entender o con-
tinuum atomista. A concepção aritmetizada — no sentido de Dedekind ou Cantor, onde
números reais são identificados com conjuntos adequados de racionais — mudou a atenção
para as sequências infinitas arbitrárias de números naturais. Mas essa noção não era tão fá-
cil de aceitar. De acordo com Bernstein (Bernstein 1905a, p. 449), uma sequência infinita (ou
um conjunto infinito) deve ser dada por uma regra genuína. Mas o que é uma regra? Dado
que devemos ser liberais (para não ter apenas classes especiais de reais, se formos muito
restritivos), naturalmente somos levados a pensar em leis arbitrárias finitamente descritas,
mudando a atenção para a sintaxe das regras. Porém, a menos que se considere a lingua-
gem ordinária, nenhuma sintaxe desse tipo está disponível e isso resulta em indeterminação
(este é o diagnóstico de Peano, veja Peano 1902–1906).

A necessidade de uma especificação dos conjuntos infinitos é crucial na discussão re-
lacionada com o problema da boa ordenação. Também afeta o problema relativo à classifi-
cação de funções descontínuas e funções analiticamente representáveis de variáveis reais,
abordadas pelos franceses semi-intuicionistas Borel, Baire e Lebesgue. Ao mesmo tempo,
eles sustentavam que uma entidade matemática (como um conjunto infinito ou uma função)
existe apenas na medida em que é “nomeável por um número finito de palavras”, contra as
visões platonistas de Hadamard e Zermelo (veja Borel et al. 1905).

3. Paradoxos, predicatismo e a doutrina dos tipos: 1905–1913

À luz do debate fundacional, os anos seguintes foram ricos em trabalhos seminais: novos
paradoxos foram descobertos (Berry, Grelling-Nelson), um velho paradoxo— o Paradoxo do
Mentiroso — apareceu novamente, uma visão abrangente das contradições da lógica e da
matemática foi magistralmente delineada na seção de abertura do artigo de Russell de 1908
e no anterior Russell 1906a, enquanto uma distinção conceitual entre dois tipos de paradoxos
foi estabelecida no artigo de Peano de 1906. Além disso, as ideias básicas de predicatividade
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surgiram na discussão entre Poincaré, o principal matemático da época, e Russell. Ainda
mais importante para a história da lógica matemática, avanços técnicos fundamentais para
resolver os paradoxos e moldar os fundamentos da lógica e da matemática foram realizados:
a teoria dos tipos (ramificados) de Russell e a axiomatização da teoria dos conjuntos de
Zermelo.

3.1 Poincaré e Russell acerca das contradições

As ideias de Russell e Poincaré para resolver os paradoxos podem ser encontradas em
diversos artigos publicados no período de 1905–1912:

1. o longo ensaio “Les mathématiques et la logique, na Revue de Métaphysique et de
Morale (Poincaré 1905, 1906a), onde Poincaré critica veementemente os fundamen-
tos axiomáticos e logicistas;

2. Russell e seu “On some difficulties in the theory of transfinite numbers and order types”
(lido em 1905, publicado em 1907);

3. o contra-ataque de Poincaré (Poincaré, 1906b), e os subsequentes artigos de Russell
na Revue (Russell 1906) e na American Journal of Mathematics(Russell 1908), e os
últimos artigos de Poincaré (1909a, 1910, 1912).

Poincaré (1906b) tomou as contradições como base para defender uma concepção intu-
icionista e kantiana. De acordo com ele, a indução número-teórica11 e o axioma da escolha
constituem intuições independentes, verdadeiros juízos sintéticos a priori. Ele então argu-
menta contra a definição lógica de números naturais de Russell como aqueles números que
pertencem a todas as classes recorrentes (aquelas classes que contêm 0 e estão fechadas
sob um sucessor). Sua objeção é que a definição não é admissível pois refere-se essenci-
almente a uma totalidade à qual a classe a ser definida pertence — a definição é impredica-
tiva — e, portanto, deve ser considerada como circular. Porém, segundo Poincaré, objetos
matemáticos não existem sem uma definição própria, e uma definição própria deve ser pre-
dicativa, isto é, deve evitar círculos viciosos; Poincaré ampliou, de certo modo, o diagnóstico
de Richard.
11N.T.: “number-theoretic”.
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As visões de Poincaré evoluíram ao longo dos anos e em debate com Russell. No pe-
ríodo posterior, ele desenvolveu uma nova abordagem para a predicatividade, que, embora
informalmente esboçada, é sugestiva de desenvolvimentos ulteriores em definibilidade e te-
oria da prova (veja Feferman 1964 e Heinzmann 1985). Ele já não insistia na circularidade
viciosa da definição presente nas contradições; em vez disso, ele sustentava a tese de que
uma classificação predicativa é caracterizada por sua invariância, ou seja, que ela não pode
ser afetada pela introdução de novos elementos; em contraste, noções impredicativas estão
sujeitas à constante modificação toda vez que novos elementos são introduzidos.

À luz da lógica contemporânea, Poincaré está insinuando alguma forma de absolutismo
ou invariância sob extensão (que será precisada por Kreisel 1960 via teoria de modelos e
teoria da recursão): suas ideias inspirarão a abordagem não ramificada dos fundamentos da
análise predicativa.

Em sua última contribuição à Acta Mathematica (1909) e em sua quinta palestra em
Göttingen (1910), ele também reafirmou o paradoxo de Richard — como um refinamento do
teorema de Cantor — na seguinte forma: “não há enumeração definível de reais definíveis”.

Enquanto matemáticos e o próprio Poincaré se concentraram nos problemas decorren-
tes das contradições na medida em que eles envolviam os fundamentos de noções mate-
máticas específicas (o continuum, os números naturais, a teoria dos números cardinais e
ordinais), Russell atacou diretamente o princípio da compreensão, isto é, a hipótese de que
certas funções proposicionais determinam uma classe (ver seção 2.3). Os paradoxos pro-
vam que uma função proposicional pode ser bem definida para cada argumento, mas ainda
assim a coleção dos valores para os quais é definida não precisa ser uma classe. Então o
problema crucial se torna lógico: fornecer um critério para selecionar aquelas funções pro-
posicionais que dão origem a classes (entendidas como objetos bem definidos).

Sob a influência de Poincaré, Russell (1906, p. 634) aceitou o princípio do círculo vicioso,
para o qual ele usou uma formulação segundo a terminologia e as noções da lógica formal
estabelecidas por Peano:

O que quer que componha uma variável aparente não deve ser um entre os
valores possíveis dessa variável.

Em termos lógicos, não é permitido quantificar sobre uma dada classe 𝑋 ao definir um
elemento de 𝑋 em si mesmo (veja o verbete Definitions)12.
12N.T.: https://plato.stanford.edu/entries/definitions
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Claro, o princípio do círculo vicioso não é uma teoria em si, mas uma condição que
qualquer teoria adequada deve satisfazer. Russell (1906, 1907) propôs provisoriamente
três abordagens alternativas: a teoria do zigue-zague, a teoria da limitação de tamanho e
a teoria sem-classes. 13 A teoria do zigue-zague tenta capturar a ideia de que as funções
certas devem ser ‘simples’, enquanto, de acordo com a segunda visão, ‘predicativa’ seria
caracterizada por uma certa limitação do tamanho das classes que podem ser definidas pre-
dicativamente (por exemplo, a coleção ON de todos os ordinais é muito grande). Na teoria
sem classes, as classes não são entidades independentes e qualquer coisa dita sobre elas
deve ser considerada uma abreviação de uma declaração sobre seus membros e as funções
proposicionais que os definem. Isso não está longe da ideia de Poincaré de que objetos ma-
temáticos devem ser especificados em um número finito de palavras. No entanto, Russell
desenvolveu o seu próprio aparato técnico— como o ‘método de substituição’ (Landini, 1998)
e a eliminação contextual de descrições definidas (veja o verbete Bertrand Russell) — para
implementar as suas ideias.

Em contraste com Poincaré, Russell (1906) não apenas não considerou o infinito atual
como um componente essencial do problema fundacional, mas também enfatizou que as
contradições surgem mesmo na ausência do infinito. Isso é claramente demonstrado pelo
paradoxo do Mentiroso na forma “Estou mentindo”. Até onde sabemos, é exatamente neste
ponto do tempo que o (provavelmente) mais citado problema semântico na história da lógica
recupera uma posição de destaque na análise lógica.

Em sua análise do paradoxo do Mentiroso, Russell assumiu que existe uma entidade
verdadeira — a proposição — que é pressuposta por uma declaração genuína (por exemplo,
quando digo que Sócrates é mortal, há um fato correspondente à minha afirmação e é esse
fato que é chamado de “proposição”). O mesmo vale se a declaração for falsa, mas não no
caso em que a declaração em si contém variáveis quantificadas.

O paradoxo é então resolvido ao interpretar o Mentiroso como “há uma proposição que
eu afirmo e que é falsa”; portanto, a declaração contém uma quantificação (logo, uma variável
aparente) sobre a coleção de todas as proposições, e não é uma proposição em um sentido
próprio (Russell 1906, 642–644). Então, a conclusão é que o Mentiroso é falso porque não
afirma uma proposição.

Considerações semelhantes se aplicam ao paradoxo sugerido por Berry, que é breve-
mente apresentado em Russell (1906) pela primeira vez em forma publicada, e tem o mérito
13N.T.: “no-classes”.
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de não ir além do domínio dos números finitos.
Considere os números naturais que são definíveis com menos de 21 sílabas: este con-

junto é não-vazio e finito. Disso se segue que existem números que não são definíveis com
menos de 21 sílabas. Considere o menor desses números: evidentemente, por definição,
ele não é definível com menos de 21 sílabas.14

Por outro lado, tal número é definível com menos de 21 sílabas, uma vez que é determi-
nado unicamente pela expressão “o menor número não definível com menos de 21 sílabas”,
a qual tem menos de 21 sílabas.

Por razões de precisão histórica, devemos observar que Beppo Levi, que fez uma con-
tribuição articulada ao debate sobre o axioma da escolha nas duas primeiras décadas de
1900, delineou uma antinomia que é essencialmente uma variante do paradoxo de Berry
no contexto da discussão do paradoxo de Richard (veja Levi 1908). Para mais comentários
sobre a abordagem de Levi aos paradoxos, veja Lolli 2007 e Bruni 2013.

3.2 Lógica matemática baseada na teoria dos tipos

A teoria russeliana dos tipos é amplamente conhecida e investigada na literatura: é de
interesse atual e tem descendentes na lógica e suas aplicações (veja os verbetes Type The-
ory e Bertrand Russell)15. Foi desenvolvida pela primeira vez por Russell em seu memorável
trabalho fundamental Mathematical Logic as based on the theory of types, de 1908.

A doutrina dos tipos é baseada na observação de que a quantificação universal — en-
tendida como generalidade total, ou seja, quando se abrange ‘todo o universo’ — não faz
sentido: quando afirmamos que ∀𝑥𝜙(𝑥) é verdadeiro, estamos apenas afirmando que a
função 𝜙(𝑥) tem o valor ‘verdadeiro’ para todos os argumentos para os quais é significativa.
O ponto essencial é que cada função proposicional tem um alcance de significância, quer
dizer, um tipo, de modo que a quantificação é legítima apenas sobre tipos. Formalmente,
cada variável deve ter um tipo pré-designado. Os paradoxos (ou falácias reflexivas) pro-
vam que certas coleções, como a totalidade de todas as proposições, de todas as classes e
14N.T.: A versão original do paradoxo de Berry utiliza 18 sílabas em vez de 21. Isso se deve ao fato de a
expressão equivalente em língua inglesa (“the least number not definable with less than 18 syllables”) ter um
menor número — 18 — de sílabas. Porém, o paradoxo pode ser obtido em outras línguas e com números de
sílaba diferentes.
15N.T.: https://plato.stanford.edu/entries/type-theory/

https://plato.stanford.edu/entries/russell/
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assim por diante, não podem ser tipos. Assim, podemos quantificar sobre a coleção de ho-
mens, mas não podemos afirmar corretamente que ‘todas as proposições da forma 𝑝 ∨ ¬𝑝
são verdadeiras’. Portanto, as entidades lógicas se dividem em tipos, e, em particular, toda
função proposicional deve ter um tipo superior ao de seus argumentos. Além disso, à luz do
princípio do círculo vicioso, a noção de ordem também deve ser introduzida. Nenhum ob-
jeto pode ser definido quantificando sobre uma totalidade que contém o próprio objeto como
elemento; portanto, a ordem de cada função proposicional deve ser maior que a ordem das
funções proposicionais sobre as quais ela quantifica.

A ideia principal é esclarecida em Russell (1908, p. 163–164) ao considerar como as
proposições podem ser organizadas em uma hierarquia “ramificada” adequada, de acordo
com sua ordem e de modo a satisfazer o princípio do círculo vicioso. Antes de tudo, existem
proposições elementares, ou seja, aquelas que não contêm variáveis ligadas, enquanto o
tipo mais baixo consiste de indivíduos. Indivíduos são entidades sem estrutura lógica e po-
dem ser considerados como os sujeitos das proposições elementares. O segundo tipo lógico
abrange as proposições de primeira ordem, isto é, aquelas cujos quantificadores (se houver)
abrangem apenas indivíduos. A quantificação sobre proposições de primeira ordem dá ori-
gem a um novo tipo, composto exatamente por proposições de segunda ordem. De maneira
geral, o tipo lógico (𝑛+1)-ésimo inclui proposições de ordem 𝑛, que contêm quantificação
apenas até a (𝑛−1)-ésima ordem.

Uma vez que uma função proposicional pode ser obtida a partir de uma proposição
‘tratando um ou mais de seus constituintes como variáveis’, a hierarquia de tipos e ordens é
naturalmente elevada a funções proposicionais, e faz sentido falar da ordem de uma função,
sendo sua ordem aproximadamente a ordem do valor (isto é, uma proposição) que a função
assume quando é aplicada a um argumento para o qual faz sentido. Assim, por exemplo,
uma função que se aplica a indivíduos e toma proposições de primeira ordem como valores
é de primeira ordem.

Seguindo a doutrina dos tipos, devemos substituir ‘todas as proposições’ por ‘todas as
proposições de ordem 𝑛’ para um dado 𝑛. Assim, a sentença do paradoxo do Mentiroso
torna-se “não é verdade que para todas as proposições 𝑝 de ordem 𝑛, se eu afirmar 𝑝, 𝑝
é verdadeira”, que é uma proposição de ordem 𝑛 + 1. Então, o Mentiroso é simplesmente
falso em vez de contraditório; e isso resolve o paradoxo. Argumentos semelhantes resolvem
os outros paradoxos.

Nesta teoria, as funções predicativas de um argumento — ou seja, aquelas que têm
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como ordem o sucessor da ordem de seu argumento — desempenham um papel crucial.
Por exemplo, uma função predicativa de uma variável individual deve ter ordem 1 (na termi-
nologia atual, é elementarmente definível e quantifica somente sobre indivíduos). O axioma
da redutibilidade (AR) afirma que toda função proposicional é equivalente, para todos os
seus valores, a uma função predicativa das mesmas variáveis. Assim, por exemplo, pode-
mos ter uma definição de uma propriedade 𝑃 (𝑛) dos números naturais (considerados como
indivíduos) que quantifica sobre, digamos, proposições de segunda ordem. Mas AR implica
que existe uma função 𝑃 ∗(𝑛) que é satisfeita exatamente pelos mesmos números que 𝑃 (𝑛)
e é predicativa, isto é, envolve quantificação apenas sobre números.

Assim, de acordo com o axioma da redutibilidade, declarações sobre funções arbitrárias
podem ser substituídas por declarações sobre funções predicativas; e funções predicativas
desempenham o papel de classes, representantes canônicos de conceitos complexos arbi-
trários (por exemplo, entre as possíveis propriedades de diferentes ordens que têm a mesma
extensão que 𝑃 (𝑛), 𝑃 ∗(𝑛) representa canonicamente a classe de números que satisfazem
𝑃 (𝑛)).

Além do axioma do infinito, AR é uma ferramenta essencial para reconstruir a matemá-
tica clássica, mas é um princípio existencial forte, aparentemente em conflito com a ideia
filosófica de que entidades lógicas e matemáticas devem ser geradas construtivamente de
acordo com o princípio do círculo vicioso. No entanto, foi adotado na (primeira edição do)
monumentalPrincipia Mathematica, escrito em colaboração comA.N.Whitehead e publicado
em 1910 (vol. 1), 1912 (vol. 2) e 1913 (vol. 3).

Curiosamente, a ideia básica subjacente à hierarquia ramificada dos tipos de Russell
é um ingrediente crucial na posterior prova de consistência da hipótese do continuum de
Gödel através de seu modelo interno 𝐿 de conjuntos construtíveis. Além disso, como já
observado em Gödel (1944), uma forma de AR se torna verdadeira em 𝐿 no sentido de que,
grosso modo, uma função proposicional arbitrária de números naturais é extensivamente
equivalente a alguma função de ordem α, para algum ordinal contável α (veja o verbete Kurt
Gödel)16. Outras aplicações importantes das hierarquias ramificadas têm sido desenvolvidas
desde o final dos anos 50 em diferentes campos (desde teoria da recursão até teoria da
prova; veja o verbete Type Theory)17.

16N.T.: https://plato.stanford.edu/entries/goedel/
17N.T.: https://plato.stanford.edu/entries/type-theory/
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3.3 Completando a figura

Já nos primeiros anos do século XX havia uma vasta literatura sobre paradoxos, a qual
está longe de se esgotar na discussão anterior. Refinamentos e variações de interesse
fundacional e lógico podem ser encontrados nos trabalhos de diversos autores, incluindo
matemáticos proeminentes, entre eles Peano, Borel, Schönflies, Brouwer e Weyl. Algumas
das propostas mais instigantes e originais são analisadas no restante desta seção.

3.3.1 Peano, Schönflies, Brouwer e Borel

A crítica de Peano (em Additione a Super Theorema de Cantor-Bernstein) ao paradoxo
de Richard é principalmente conhecida por apontar que “o exemplo de Richard pertence à lin-
guística, não à matemática”. Essa afirmação abre a distinção entre antinomias matemáticas
ou da teoria dos conjuntos e antinomias semânticas: o ponto fraco na definição de Richard
é que, até certo ponto, ela é simbólica e formal, mas também faz uso da linguagem natural
(“lingua commune”), que contém ideias bastante familiares, mas que, ainda assim, não são
rigorosamente definidas e podem ser ambíguas (Peano 1906, p. 357–358). Por exemplo,
não há um critério preciso para decidir se uma determinada expressão da linguagem natural
representa uma regra que define unicamente um número.

Apesar disso, Peano elaborou uma solução formal. Ele tentou eliminar a vagueza e a
referência a 𝐸, o conjunto dos números reais finitamente definíveis no intervalo unitário, fi-
xando uma “numeração de Gödel” explícita: dado um número natural 𝑛, escreve-se 𝑛 na
base 𝐵, para 𝐵 suficientemente grande (de modo a incluir o número de letras do alfabeto
mais os sinais de pontuação). Assim, cada número é associado a uma sequência finita de
símbolos na linguagem natural, e, em certos casos, essa sequência definirá um número,
Val(𝑛) = “o número decimal determinado pela expressão codificada por 𝑛 e interpretada de
acordo com as regras da linguagem natural”. Agora, para obter o paradoxo, é necessário
provar que existe um único número 𝑁 em (0, 1) que satisfaz a condição dada por Richard
(ver seção 2.5), mas essa condição, e, portanto, o próprio 𝑁 , depende de Val, que é pos-
sivelmente obscuro e não pode ser definido exatamente segundo as regras da matemática
(p. 352, p. 358). A conclusão é que tal número real não pode existir e que a definição de
Richard é defeituosa, da mesma forma que a expressão “o maior número primo”.

Por outro lado, Schönflies e Brouwer reagiram aos paradoxos opondo-se fortemente aos
métodos axiomáticos e formais.
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Schönflies (1906) manteve uma concepção genética e conteudista dos conjuntos. Se-
gundo ele, os conjuntos são gerados e, uma vez formados, são conceitualmente invariantes.
Quando um novo conjunto é construído, ele é adicionado àqueles usados em sua formação,
sem alterar sua estrutura preexistente. Dessa forma, a auto pertinência não faz sentido, o
conjunto universal não existe e o paradoxo de Russell desaparece. Sua visão pode ser consi-
derada uma espécie de concepção iterativa dos conjuntos. Para Schönflies, as contradições
surgem na lógica, e não na matemática, e são resultado da natureza escolástica da lógica.
Ele via a lógica como uma influência prejudicial (“unheilvollen Einflüss”) sobre a matemática
(“Für den Cantorismus, aber gegen den Russellismus” é o lema final de Schönflies 1911).18

A abordagem de Brouwer aos paradoxos também se baseava em uma concepção con-
teudista da matemática. Ela pode ser encontrada em sua tese de 1907, capítulo III (confira
também van Dalen 1999, p. 105). Quanto à contradição de Russell, Brouwer observou que
os princípios lógicos usuais só valem para palavras com conteúdo matemático, e não para
sistemas linguísticos, como os de Peano ou Russell. Por exemplo, para decidir se uma
classe pertence a uma função proposicional, a classe deve ser uma totalidade completa. As
contradições mostram que há funções proposicionais que definem classes complementares
(disjuntas) e que, no entanto, não satisfazem o tertium non datur.19 Ideias semelhantes po-
dem ser encontradas em seu artigo filosófico de 1908, “On the unreliability of tertium non
datur” (veja van Dalen 1999).

Um resultado positivo do paradoxo de Richard no trabalho de Brouwer (1907, p. 149)
é a noção de conjunto enumeravelmente inacabado, isto é, um conjunto no qual podemos
determinar apenas subconjuntos enumeráveis de elementos, mas onde esses subconjuntos
enumeráveis não esgotam o conjunto dado, de modo que sempre se pode produzir novos
elementos do conjunto a partir de qualquer subconjunto enumerável dado. Exemplos típicos
de conjuntos enumeravelmente inacabados são a totalidade dos ordinais contáveis, os pon-
tos do continuum e, em particular, como pode ser demonstrado com o paradoxo de Richard,
o conjunto de todos os pontos definíveis do continuum (1907, p. 150). Brouwer considera a
contradição de Burali-Forti não como um paradoxo matemático, pois envolve uma estrutura
lógica (a coleção de todos os ordinais), que não é um objeto matemático bem definido e não
tem conteúdo matemático adequado. Do ponto de vista matemático, a contradição pode ser

18N.T.: Em tradução livre: “A favor do Cantorismo, mas contra o Russelianismo”.
19N.T.: Expressão clássica em latim para a lei do terceiro excluído.

36



evitada negando que o maior tipo bem ordenado tenha um tipo de ordem sucessor 20 (p.
153; isso é análogo a Bernstein 1905b).

Entre os matemáticos franceses, o semi-intuicionista Borel (1908) introduziu a distin-
ção entre conjuntos efetivamente enumeráveis e conjuntos denumeráveis. O paradoxo de
Richard é então resolvido ao se observar que o conjunto de Richard, 𝐸, é certamente de-
numerável, pois só se pode determinar no máximo um conjunto denumerável de números
reais por meios finitos. No entanto, 𝐸 não é efetivamente enumerável, ou seja, não se pode
produzir com um número finito de palavras um procedimento que atribua, de forma inequí-
voca, uma ordem (ou posição) a cada elemento do conjunto. Para que a enumeração de 𝐸
fosse efetiva, seria necessário ter resolvido todos os problemas matemáticos possíveis de
serem formulados, pois existem expressões que só se tornam definições de um número real
com base na prova ou na solução de um determinado problema. Borel tem em mente um
exemplo específico: considere a expressão “o único número transcendente cuja expansão
decimal é obtida a partir da de 𝜋, substituindo-se sempre 7 por 8 e 8 por 7”. Naturalmente,
essa é uma boa definição apenas se tivermos demonstrado que tal número não é algébrico
(veja Borel 1908, p. 446).

Borel, assim como Poincaré, adota um ponto de vista — definibilidade em um número
finito de palavras — que é uma extensão do ponto de vista algébrico de Kronecker: somente
objetos construtíveis em um número finito de etapas são objetos matemáticos propriamente
ditos. No entanto, ao contrário de Poincaré, ele desconsidera o problema das definições
predicativas: para ele, todos os paradoxos da teoria dos conjuntos derivam da tese de que a
proposição todo conjunto denumerável é efetivamente enumerável (“Tout ensemble dénom-
brable est effectivement énumérable”) é evidente, quando, na verdade, é falsa.

3.3.2 Hessenberg, Grelling, Zermelo and Weyl

No campo dos fundamentos da matemática, três capítulos do Bericht (1906) de Gerhard
Hessenberg sobre os fundamentos da teoria dos conjuntos são dedicados às questões fun-
dacionais. Eles contêm ideias interessantes sobre a filosofia da matemática — as quais,
infelizmente, não podem ser discutidas aqui em detalhes. Por exemplo, Hessenberg enfa-
tiza a distinção entre definições da teoria dos conjuntos que fornecem critérios para decidir
efetivamente a pertinência em um determinado conjunto e aquelas que não fornecem. Com
20N.T.: “successor order type”.
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relação à crítica construtiva de Kronecker ao continuum aritmetizado, Hessenberg argumenta
que, embora cada número irracional determine uma fração infinita e cada fração infinita pos-
sua uma regra de formação (“Bildungsgesetz”), não é verdade que tal regra seja fornecida
por meios finitos explícitos. Caso contrário, poderíamos derivar uma forma do paradoxo da
denotação finita, ou seja, se as regras de formação coincidissem com as definíveis, elas
seriam, no máximo, enumeráveis e, portanto, os números reais seriam enumeráveis, o que
contradiz o teorema de Cantor.

Ao lidar com as contradições conjuntistas,21 Hessenberg distingue o ‘ultrafinito’ (pará-
grafos 96–99) do ‘transfinito’: esta última noção é um atributo exclusivo dos conjuntos. Em
contraste, as coleções envolvidas nos paradoxos (como o conjunto de Russell, o conjunto
de todos os conjuntos, de todas as coisas e de todos os números ordinais) são ultrafinitas.

Quanto às soluções propostas para os paradoxos, Hessenberg se inspirou em uma ideia
kantiana. Assim como nas ciências naturais surgem antinomias quando a natureza é con-
cebida como um todo fechado, da mesma forma, a coleção ON e o conjunto de todos os
conjuntos não podem ser concebidos como totalidades completas. Assim, a distinção entre
‘ultrafinito’ e ‘transfinito’ parece estar em conformidade com uma abordagem teórica próxima
à doutrina da limitação de tamanho de Russell.

Próximo a esta inspiração filosófica, o influente artigo de Grelling e Nelson (1908) tenta
unificar os paradoxos e isolar sua estrutura subjacente. O filósofo Leonard Nelson foi uma
figura proeminente em Göttingen no início do século XX e contou com o forte apoio de Hilbert
(veja Peckhaus 1990). O artigo faz parte de um projeto para desenvolver uma “kritische
Mathematik” com um viés filosófico. Ele contém um novo paradoxo (atribuído a Grelling) de
natureza semântica (veja também o verbete Self-Reference and Paradox)22:

A cada palavra corresponde um conceito que a própria palavra designa e que
se aplica ou não a ela; no primeiro caso, chamamos a palavra de autológica,
no segundo caso, heterológica. Agora, a palavra ‘heterológica’ em si mesma é
autológica ou heterológica. Se assumirmos que a palavra é autológica, então
o conceito que ela designa se aplica, e, portanto, ‘heterológica’ é heterológica.
Mas se a palavra for heterológica, o conceito designado não se aplica, então
‘heterológica’ não é heterológica.

21N.T.: “set-theoretic”.
22N.T.: https://plato.stanford.edu/entries/self-reference/
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A axiomatização da teoria dos conjuntos por Zermelo (1908) forneceu uma ferramenta eficaz
para bloquear contradições (para maiores detalhes, veja os verbetes Set Theory, The Early
Development of Set Theory e Alternative Axiomatic Set Theories).23 As principais ideias da
axiomatização podem ser resumidas da seguinte forma: (i) a compreensão ingênua é restrita
a um axioma da separação, ou seja, um princípio que garante a existência de subconjun-
tos suficientes de um conjunto já dado de objetos (números, pontos, funções em um dado
espaço); ‘suficientes subconjuntos’ aqui se refere a todos os subconjuntos especificáveis
por meio de condições definidas envolvendo as noções primitivas (igualdade de conjuntos
e pertinência) e satisfazendo as leis da lógica clássica; (ii) existem axiomas que garantem
que as operações básicas de formação de unitário, união, pareamento e conjunto potência
sejam bem definidas e que existam pelo menos um conjunto infinito e o conjunto vazio; (iii)
assume-se a extensionalidade: dois conjuntos são iguais se e somente se possuem os mes-
mos elementos; (iv) postula-se o axioma da escolha, que permite selecionar um conjunto de
escolhas de qualquer família de conjuntos disjuntos e não vazios.

De imediato, observa-se que a antinomia de Burali-Forti não pode ser derivada no sis-
tema de Zermelo uma vez que a coleção de todos os tipos de ordem não existe como um
conjunto, e o paradoxo de Russell simplesmente se torna o teorema de que não existe um
conjunto universal.

No entanto, pode-se levantar pelo menos duas objeções contra essa teoria. Em pri-
meiro lugar, a abordagem de Zermelo é altamente impredicativa e a impredicatividade era
tomada como indispensável por ele (caso contrário, seria necessário rejeitar a matemática
padrão). Por exemplo, Zermelo acreditava que isso se aplicava até mesmo à prova de
Cauchy-Weierstrass do teorema fundamental da álgebra). Mas a impredicatividade torna
a construção de um modelo ou de uma interpretação mais difícil e menos evidente. O se-
gundo ponto é que Zermelo acreditava que o paradoxo da denotação finita (mencionado por
Hessenberg) e o de Richard são bloqueados na teoria dos conjuntos, pois o axioma da se-
paração deveria fornecer critérios claros para definir conjuntos. No entanto, isso não ocorre,
pois a noção de propriedade definida (definite Eigenschaft) de Zermelo é dada informalmente
e é, consequentemente, vaga.

Essa última questão foi abordada na palestra de “habilitação” de Weyl (1910), na qual

23N.T.: https://plato.stanford.edu/entries/set-theory/
https://plato.stanford.edu/entries/settheory-early/
https://plato.stanford.edu/entries/settheory-alternative/
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ele tratou da seguinte questão geral: quando uma relação é explicitamente definível a partir
de um conjunto de conceitos primitivos dados namatemática? Primeiramente, ele considera,
como estudo de caso concreto, o problema de caracterizar os conceitos explicitamente defi-
níveis da geometria plana elementar: esses conceitos podem ser gerados indutivamente por
meio de cinco princípios básicos de definição a partir de dois conceitos primitivos adequa-
damente escolhidos (por exemplo, a identidade entre pontos =, e a relação ternária 𝐸(𝑎, 𝑏,
𝑐), ‘a distância do ponto 𝑎 ao ponto 𝑏 é a mesma que a distância do ponto 𝑎 ao ponto 𝑐’).

Os cinco princípios de definição correspondem a uma axiomatização finita do princípio
da compreensão elementar e implicam precisamente a existência daqueles conjuntos (rela-
ções) que são definíveis por fórmulas na linguagem elementar contendo dois símbolos de
predicado para =, 𝐸. Mais explicitamente, exigem fechamento sob as operações lógicas
de negação, conjunção, quantificação existencial e operações combinatórias adequadas de
permutação e expansão.

À luz do exemplo geométrico, Weyl critica o conceito “definido por meio de um número
finito de palavras” como impreciso e, muito antes de Fraenkel e Skolem, ele consegue tornar
o princípio da separação preciso: ele substitui o conceito informal de propriedade definida
de Zermelo pela noção de ‘relação explicitamente definível a partir da igualdade extensional
e da pertinência por meio de princípios lógicos elementares básicos’ (ou seja, definível em
primeira ordem).

Segundo Weyl, o paradoxo de Richard nos ensina a seguinte distinção: por um lado,
só podemos caracterizar um número enumerável de subconjuntos de um dado conjunto por
meio de definições explícitas; mas, por outro lado, novos objetos e conjuntos (possivelmente
não contáveis) podem ser introduzidos pela aplicação das demais operações da teoria dos
conjuntos, como o conjunto potência ou a união.

Weyl abordou o problema da geração de propriedades admissíveis sobre um dado do-
mínio alguns anos depois, em Das Kontinuum (1918). Assim como em 1910, um conjunto
dos conjuntos de números naturais que são definíveis via operações admissíveis (às quais
agora também se adiciona uma forma de iteração) é enumerável. Pelo argumento de Can-
tor, não há uma relação que parametriza todos os subconjuntos dos números naturais (Weyl
1918, seção 5). Weyl aparentemente seguiu uma atitude relativista, segundo a qual a exten-
são do universo dos conjuntos e suas propriedades dependem das operações aceitas para
construí-los (veja o verbete Hermann Weyl).24

24N.T.: https://plato.stanford.edu/entries/weyl/
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Deve-se enfatizar que a atitude de Weyl em relação à antinomia de Grelling é totalmente
negativa: ele a considera puro escolasticismo (Weyl 1918, seção 1): segundo ele, não há
como atribuir significado a ‘heterológico’, de modo que, em última análise, tais problemas
devem ser resolvidos recorrendo à filosofia.

É interessante observar que, à luz dos recentes desenvolvimentos, o veredito negativo
de Weyl deve ser enfraquecido (ver seção 6).

4. Desenvolvimentos lógicos e paradoxos até 1930

No período até 1930, o problema dos paradoxos levou naturalmente à investigação dos
cálculos lógicos, e foi, em grande medida, inserido nela (cujo subproduto final foi o livro-texto
de Hilbert-Ackermann de 1928). Isso, por sua vez, abriu caminho para a simplificação da
teoria dos tipos, para generalizações importantes da noção de conjunto e para uma formula-
ção quase definitiva da teoria axiomática dos conjuntos (seguindo a abordagem de Zermelo,
mas também o novo caminho aberto por Johann von Neumann). A ferramenta lógica básica
é essencialmente a análise formal axiomática.

4.1 Teoria dos Conjuntos e paradoxos: conjuntos circulares e outras ques-
tões

Existem objetos circulares na teoria dos conjuntos? A visão de Zermelo sobre conjuntos,
conforme axiomatizada em 1908, não excluía, por si só, a possibilidade de auto pertinên-
cia. O problema foi retomado por Mirimanoff (1917a, 1917b, 1920; veja também o verbete
Zermelo’s Axiomatization of Set Theory).25 Uma vez permitidos os conjuntos circulares, é
preciso um fortalecimento da igualdade extensional por meio de uma relação de isomor-
fismo adequada (bissimulação, na terminologia atual) que essencialmente corresponde ao
isomorfismo das árvores que representam os conjuntos dados. O argumento de Russell su-
gere então uma distinção entre conjuntos de primeiro tipo, que não são isomorfos a nenhum
de seus próprios elementos, e conjuntos de segundo tipo, que são isomorfos a pelo menos
um de seus elementos. À luz dessa distinção, a contradição de Russell evidencia que a
coleção 𝑅 de conjuntos do primeiro tipo não existe como um conjunto. De fato, um conjunto
do segundo tipo sempre contém um conjunto do segundo tipo; portanto, um conjunto de con-

25N.T.: https://plato.stanford.edu/entries/zermelo-set-theory/
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juntos do primeiro tipo deve ser do primeiro tipo. Se 𝑅 fosse um conjunto, deveria ser do
primeiro tipo; mas então não poderia conter todos os conjuntos do primeiro tipo. Mirimanoff
(1917a) introduziu então a distinção fundamental entre conjuntos ordinários (bem-fundados)
e extraordinários (não bem-fundados): um conjunto 𝑋 é ordinário se toda cadeia descen-
dente ∈ em 𝑋 é finita; caso contrário, ele é extraordinário (existem cadeias descendentes
∈ infinitas). Disso decorre que todos os conjuntos do segundo tipo são extraordinários, mas
o inverso não é verdadeiro (por exemplo, considere o conjunto 𝐸 = {𝑒1, 𝐸1}, onde 𝐸1 =
{𝑒1, 𝑒2, 𝐸2}, 𝐸2 = {𝑒1, 𝑒2, 𝐸3,𝐸3}, etc.).

Para a história dos paradoxos, é importante enfatizar queMirimanoff (1917a) generalizou
a antinomia de Burali-Forti, criando o paradoxo dos conjuntos fundados. Esse paradoxo
prova que a coleção WF de conjuntos ordinários (em um dado conjunto de átomos) não é,
ela mesma, um conjunto. De fato, sejaWF o conjunto dos conjuntos fundados (= ordinários
= bem-fundados); então,WF em si mesmo é fundado, pois, seWF∋ 𝑥0 ∋ 𝑥1 ∋ 𝑥2 …, então
𝑥0 seria um membro não fundado de WF, o que é absurdo. Portanto, WF ∈ WF, de modo
queWF não é fundado, obtendo-se uma contradição (o mesmo paradoxo também aparecerá
em Shen-Yuting 1953).

O trabalho de Mirimanoff também é importante para os fundamentos da teoria dos con-
juntos. Ele introduziu a noção de classificação ordinal para conjuntos ordinários e percebeu
que conjuntos ordinários podem ser organizados em uma hierarquia cumulativa, indexada
por sua classificação. No entanto, a existência de uma estrutura cumulativa de conjuntos
ordinários não é considerada como um motivo para excluir conjuntos extraordinários. Mi-
rimanoff (p. 212–213) aponta explicitamente para o uso de conjuntos extraordinários para
modelar situações espelhadas. Ele menciona o caso de um livro 𝐵 cuja capa está decorada
com uma imagem 𝐽 representando duas crianças olhando para o mesmo livro, ou seja, para
a imagem 𝐽1 de 𝐵. Em 𝐽1, pode-se perceber novamente as duas crianças e a imagem
𝐽11 do livro em perspectiva. Agora, 𝐽 pode ser visto como um conjunto incluindo como
elementos as duas crianças 𝑒1 e 𝑒2 e a imagem 𝐽1 de 𝐽 , que por sua vez se decompõe
nas imagens de 𝑒11, 𝑒22 de 𝑒1 e 𝑒2 e na imagem 𝐽11 de 𝐽1, e assim por diante ad infini-
tum. Assim, 𝐽 é isomorfo a um de seus elementos, ou seja, 𝐽1 ∶ 𝐽 pode ser considerado
um conjunto do segundo tipo e, portanto, extraordinário. Esse exemplo não matemático é
sugestivo de desenvolvimentos posteriores, como a teoria dos conjuntos não bem-fundados
e suas aplicações recentes à semântica. Um conjunto 𝐸 do segundo tipo também é assimi-
lado a uma coleção impredicativa no sentido de Poincaré (Mirimanoff 1920, p. 34) devido à
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sua circularidade: de fato, 𝐸 é dado por uma condição 𝐸 = (𝑦, 𝑧, … , 𝑎, 𝑏, 𝑐, … ), onde 𝑦,
𝑧, … dependem de 𝐸.

Por outro lado, emMirimanoff (1917a) há um uso notável do paradoxo de Burali-Forti que
sugere uma condição necessária para que algo seja um conjunto em termos de tamanho,
ou seja, se uma coleção está em bijeção com o conjunto de todos os ordinais, então ela não
existe como um conjunto. Em Mirimanoff (1917a, 1917b), também está presente a ideia do
ordinal de von Neumann (von Neumann 1923, 1925) e uma forma do axioma da substituição
está presente.

O sistema de von Neumann de 1925 trata de uma fundação axiomática alternativa da
teoria dos conjuntos. Há dois tipos de objetos: objetos do tipo II (funções, correspondentes a
classes) e objetos do tipo I (argumentos), ligados pela operação de aplicação de uma função
a seus argumentos. Os dois domínios se sobrepõem parcialmente e existem objetos do tipo
I–II, correspondentes a conjuntos (como funções que também podem ser argumentos). O
axioma fundamental IV-2 estabelece então que um objeto 𝑎 é uma classe própria (ou seja,
não é do tipo I–II) se e somente se a totalidade de seus membros pode ser mapeada sobre
a totalidade de todos os argumentos. A antinomia de Burali-Forti mostra que a classe ON
de todos os ordinais não é um conjunto, o que implica, com o axioma IV-2, que existe uma
aplicação deON sobre o universo de todos os conjuntos, e, portanto, que o universo dos con-
juntos é bem ordenado. Conceitualmente, o sistema resolve o problema de tornar precisa
e aplicável a distinção de Cantor entre consistente e inconsistente (contra a crítica inicial de
Hilbert); ele também mostra que a escolha global se torna um teorema sob uma visão ade-
quada de conjuntos. Embora objetos circulares não possam existir no modelo hierárquico
da teoria dos conjuntos de von Neumann, eles podem ser encontrados nas investigações
de outros matemáticos e lógicos, como Finsler. Para Finsler, os paradoxos dependem de
noções circulares, mas a circularidade não leva necessariamente a contradições. Em parti-
cular, ele considera que a noção de conjunto de Cantor é intrinsecamente circular: conjuntos
dependem de conjuntos ou de coisas gerais que também dependem de conjuntos, e o grafo
de dependência associada pode nos levar de volta a um círculo. Para o leitor contempo-
râneo, vale mencionar que uma intuição original de Finsler (1926b) foi o uso da teoria dos
grafos para representar estruturas circulares. Com as setas empregadas para interpretar a
pertinência, não é difícil imaginar um conjunto que tenha a si mesmo como único elemento
e situações circulares mais complicadas (para maiores esclarecimentos sobre a teoria dos
conjuntos de Finsler, veja Holmes 1996). Finsler (1926) aplica o paradoxo de Richard para
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produzir resultados metamatemáticos, em particular ‘proposições formalmente indecidíveis’.
No entanto, os argumentos de Finsler não são conclusivos e não podem ser considerados
uma antecipação adequada dos teoremas da incompletude de Gödel (sobre o limite de suas
ideias, veja a discussão em van Heijenoort 1963, 438–440); mas eles mostram que uma
leitura atenta do paradoxo pode ter aplicações inesperadas.

4.2 Desenvolvimentos na teoria dos tipos e os paradoxos
No que diz respeito aos desenvolvimentos subsequentes em conexão com a lógica, o

processo de refinamento das ferramentas lógicas continuou de forma constante em Göttin-
gen por meio do trabalho de Hilbert e sua escola. Isso é especialmente evidente em suas
anotações de aula não publicadas (por exemplo, aquelas do curso do semestre de inverno
de 1917–1918, Prinzipien der Mathematik), que, em muitos aspectos, são próximas ao livro-
texto de Hilbert-Ackermann de 1928 e contêm formulações da lógica de primeira e segunda
ordem, juntamente com a teoria ramificada dos tipos e o axioma da redutibilidade. Os para-
doxos são derivados ao permitir uma forma adequada de compreensão irrestrita; a suposição
problemática está na admissibilidade de predicados e proposições como objetos, isto é, for-
malmente nas expressões 𝑋(𝑌 ), 𝑃 (𝑃 ). Variantes do paradoxo do Mentiroso tradicional e
da antinomia de Berry são introduzidas. Curiosamente, Hilbert se mantém essencialmente
na teoria dos tipos (ele não ministra aulas sobre o sistema de Zermelo); ele define a teoria
ramificada dos tipos com o axioma da redutibilidade, demonstrando que certas partes da ma-
temática podem ser desenvolvidas no sistema (sobre a influência de Russell, veja Mancosu
2003).

O fato de que a teoria dos tipos e o trabalho de Russell ocupavam um lugar central não
apenas em Göttingen, sob Hilbert, é ainda atestado pelo trabalho de Chwistek e Ramsey,
que tentaram revisar o Principia Mathematica (PM) a partir de perspectivas opostas. Ambos
os autores rejeitaram a teoria ramificada dos tipos (TRT, por brevidade) e o axioma da re-
dutibilidade. Seus trabalhos podem ser considerados um resultado típico do processo que
levaria a versões simplificadas dos formalismos lógicos. No que diz respeito aos paradoxos,
o principal problema é demonstrar que TRT não é necessária para resolvê-los.

A solução proposta por Chwistek foi motivada por uma concepção construtivista/predi-
cativa. Sua posição em 1921 era de que o Principia Mathematica não era suficiente para
evitar a antinomia clássica de Richard. Por outro lado, Chwistek propôs uma versão do pa-
radoxo do Mentiroso que pode ser reconstruída na teoria simples dos tipos sem o axioma
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da redutibilidade, desde que seja permitido quantificar sobre todas as proposições. Chwis-
tek adotava uma posição de cunho nominalista e tentou desenvolver uma teoria construtiva
dos tipos para os fundamentos da análise (sua tentativa de fundamentar a matemática sem
o axioma da redutibilidade foi chamada de “heroica” na introdução da segunda edição do
Principia Mathematica, de 1925; veja Linsky 2004).

Ramsey (1926) introduziu a distinção — hoje padrão — entre contradições lógicas e
epistemológicas (embora já houvesse indícios dessa distinção em Peano 1906; ver seção
3.3.1). Enquanto as contradições lógicas envolvem termos matemáticos ou lógicos, como
classe e número, indicando que nossa lógica ou matemática é problemática, as contradições
semânticas envolvem, além de termos puramente lógicos, noções como “pensamento”, “lin-
guagem” e “simbolismo”, que, segundo Ramsey, são termos empíricos (não formais). Assim,
essas contradições decorrem de ideias deficientes sobre pensamento ou linguagem e per-
tencem, propriamente, ao domínio da “epistemologia”.

Segundo Ramsey, as antinomias do primeiro grupo (como a de Russell ou a de Burali-
Forti) podem ser evitadas ao se referir a um universo de objetos matemáticos estruturado
em tipos de indivíduos, funções de indivíduos, funções de funções de indivíduos, e assim
por diante. A quantificação sobre tipos arbitrários é legítima, e os tipos são fechados sob
compreensão impredicativa, que é tida como necessária para a matemática. Os tipos são
intrínsecos aos objetos lógicos e matemáticos, e os paradoxos lógicos são exatamente aque-
les que exigem distinções de tipo para serem resolvidos (por exemplo, a auto pertinência é
bloqueada para objetos na hierarquia tipo-teórica)26. Para resolver as antinomias semânticas
(como o paradoxo do Mentiroso e a antinomia de Berry), Ramsey propõe distinguir várias no-
ções de significado. À luz dos desenvolvimentos posteriores, é interessante notar que, para
ele, a semântica não é uma noção universal viável: em particular, é impossível obter “uma
relação de significado totalmente inclusiva para funções proposicionais. Seja qual for a rela-
ção adotada, ainda haverá uma maneira de construir um símbolo que tenha um significado
não incluído em nossa relação. Os significados do significado formam uma totalidade ilegí-
tima” (Ramsey 1926, p. 372). Isso leva a indicações para a solução do paradoxo de Grelling
(veja seção 3.3.2). Seja 𝑅 a relação de significado que liga um adjetivo 𝑓 à função propo-
sicional correspondente denotada por 𝐹 (de modo que 𝑓𝑅𝐹 seja válido). Na definição de
“heterológico”, utilizamos a relação 𝑅 ∶ 𝑥 é heterológico se e somente se existe uma função
𝐹 tal que 𝐹 não se aplique a 𝑥 e 𝑥𝑅𝐹 . Agora, existe uma função proposicional, digamos
26N.T.: “type-theoretic”.
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𝐻 , que é o significado do adjetivo “heterológico”. O ponto de Ramsey é que esse sentido
de significado não pode ser o mesmo dado por 𝑅, e isso bloqueia a contradição quando
aplicamos 𝐻 a “heterológico” (ibid., p. 370). Assim, é necessária uma nova relação de sig-
nificado dependente da relação 𝑅 previamente fixada. Essas ideias antecipam as de Tarski
(para uma análise das antinomias semânticas em um contexto ramificado, compare também
a contribuição posterior de Church 1976, reconsiderada e criticada em Martino 2001).

5. Paradoxos: entre a metamatemática e fundamentos sem tipos (1930–1945)

Com os trabalhos de Gödel e Tarski, os argumentos paradoxais foram reformulados
em termos de resultados de ponto fixo, enquanto a concepção semântica da verdade, a
formalização da semântica e a aritmetização da sintaxe estabeleceram bases sólidas para
investigações metamatemáticas sistemáticas. Ademais, houve um esforço para desenvol-
ver novas grandes lógicas em reação à lógica do Principia Mathematica. Conceitualmente,
as noções de função-em-intensão/operação (autoaplicável) e propriedade/predicado foram
aceitas como primitivas, e o próprio mecanismo de definição/combinação de conceitos foi es-
tudado. Essa linha de pensamento impulsionou a elaboração de métodos sintáticos dentro
da lógica combinatória e o surgimento da teoria da recursão. O diagnóstico dos paradoxos
foi ainda enriquecido por uma análise mais sutil das características puramente lógicas do
raciocínio paradoxal: isso é especialmente verdade para a negação e o papel crucial das
propriedades de contração e duplicação incorporadas às leis da implicação padrão. A lógica
trivalente foi aplicada à compreensão ingênua.

5.1 Paradoxos e diagonalização

O papel heurístico dos paradoxos é testemunhado pelo próprio Gödel, quando intuitiva
e explicitamente relaciona sua construção de sentenças formalmente indecidíveis a para-
doxos epistemológicos (“a analogia com a antinomia de Richard salta aos olhos”, Gödel
1931, van Heijenoort 1967, p. 599). No entanto, as construções autorreferenciais atingiram
um grau adequado de rigor matemático e se tornaram ferramentas matemáticas genuínas
somente quando técnicas número-teóricas não triviais foram aplicadas (veja o verbete Re-
cursive Functions),27 por exemplo, na análise da substituição sintática e na elaboração de

27N.T.: https://plato.stanford.edu/entries/recursive-functions/
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modelos aritméticos de demonstrabilidade formal (o papel crucial da substituição na produ-
ção de contradições já havia sido notado por Russell, embora ele não tenha publicado a
respeito; veja Pelham e Urquhart 1994). Conceitualmente, é claro pelas construções de Gö-
del que a autorreferência, por si só, é inofensiva se for entendida no sentido indireto: pode-se
ter fórmulas 𝜑(𝑥), expressando propriedades de seu próprio “nome” ⌜𝜑⌝, mas nenhuma cir-
cularidade problemática surge.

A construção de Gödel foi logo generalizada, como um lema geral da diagonalização,
que se refere a propriedades definíveis arbitrárias. Isso pode ser encontrado em Carnap
1934b, p. 91, Carnap 1934a, p. 270, e em Rosser 1939, p. 57, Lema 1:

Para toda fórmula 𝜓(𝑣) com apenas 𝑣 livre, existe uma sentença 𝜑 tal que

𝜑 ↔ 𝜓(⌜𝜑⌝)

é demonstrável (veja o verbete Gödel’s Incompleteness Theorems).28

De fato, o lema tornou-se a ferramenta padrão para produzir declarações autorreferen-
ciais e para transformar paradoxos semânticos em resultados de indefinibilidade e indeci-
dibilidade (formal) (veja o verbete Self-Reference and Paradox).29 A álgebra subjacente às
construções de Gödel só seria plenamente compreendida muito depois, na década de 70.
Também é importante destacar que, poucos anos depois (1938), um análogo do lema da
diagonalização (o chamado segundo teorema da recursão) foi descoberto por Kleene e logo
se tornou uma ferramenta básica nos fundamentos da teoria da recursão e da teoria da com-
putação.

5.2 Paradoxos e os fundamentos da semântica
Fica evidente pelo trabalho feito nas décadas de 20 mencionados acima que o pro-

blema de encontrar uma solução formal para os paradoxos semânticos, como o paradoxo
do Mentiroso e o paradoxo de Richard, permaneceu essencialmente em aberto. As solu-
ções baseadas na teoria dos tipos não foram desenvolvidas a ponto de fornecer uma análise
formal sistemática das noções semânticas (como verdade ou definibilidade). Mas por que
28N.T.: https://plato.stanford.edu/entries/goedel-incompleteness/
29N.T.: https://plato.stanford.edu/entries/self-reference/
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esse problema justificaria o estudo do ponto de vista lógico e matemático? Na realidade,
noções semânticas — em particular, a noção de definibilidade — eram utilizadas, de forma
mais ou menos explícita, em certas partes da teoria dos conjuntos (teoria descritiva dos con-
juntos) e em áreas da teoria das funções mais inclinadas à teoria dos conjuntos, que eram
cultivadas pela matemática polonesa nos anos 20. Ao mesmo tempo, o projeto de uma me-
todologia formal e de uma semântica científica foi desenvolvido por proeminentes filósofos
e lógicos poloneses trabalhando em Lvov (atualmente Lviv) e Varsóvia (Lesniewski, Łukasi-
ewicz, Chwistek; veja Wolenski 1995; veja também os verbetes Stanisław Leśniewski, Jan
Łukasiewicz e Lvov-Warsaw School).30 Por exemplo, Chwistek tentou desenvolver uma se-
mântica elementar dentro de um programa fundacional nominalista, no qual conjuntos são
identificados com funções proposicionais, a extensionalidade é rejeitada e a noção funda-
mental da semântica é a relação de substituição “𝐻 é o resultado da substituição de 𝐺 por
𝐹 em 𝐸” (Chwistek 1933, p. 374). Nesse ambiente estimulante, Tarski desenvolveu sua
análise fundamental dos paradoxos semânticos, inicialmente entre 1929 e 1930, conforme
relatado por Łukasiewicz à Sociedade Polonesa de Ciências em Varsóvia em 1931, e pos-
teriormente detalhado em seu extenso trabalho de 1935 (veja os verbetes Alfred Tarski e
Tarski’s Truth Definitions).31

Primeiramente, a análise do paradoxo do Mentiroso começa com a formulação de um
requisito formal que deve ser atendido na investigação semântica da verdade, ou seja, uma
“definição materialmente adequada” (sachlich zutreffende) do termo “sentença verdadeira”
(wahre Aussage). Isso equivale ao famoso esquema (T), que pode ser formulado de maneira
simplificada como:

(T) 𝑥 é uma sentença verdadeira se e somente se 𝑝.

onde 𝑝 está para uma sentença e 𝑥 é um nome de 𝑝 (a ideia está de acordo com a intuição
clássica da correspondência). O resultado que Tarski extrai do paradoxo do Mentiroso é que
não pode existir uma linguagem interpretada que seja livre de contradições, obedeça às leis
clássicas da lógica e satisfaça os requisitos (I)–(III), onde:
30N.T.: https://plato.stanford.edu/entries/lesniewski/

https://plato.stanford.edu/entries/lukasiewicz/
https://plato.stanford.edu/entries/lvov-warsaw/

31N.T.: https://plato.stanford.edu/entries/tarski/
https://plato.stanford.edu/entries/tarski-truth/
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I. A linguagem possui nomes disponíveis para todas as suas sentenças;

II. Qualquer expressão obtida a partir de (T), substituindo 𝑝 por uma sentença arbitrá-
ria da linguagem e 𝑥 pelo nome correspondente de 𝑝, é aceita como verdadeira na
linguagem;

III. Existem sentenças autorreferenciais, ou seja, é legítimo que uma sentença inclua seu
próprio nome como um de seus constituintes (de modo que possamos estipular que
o nome denota uma sentença 𝛼(…𝑐 …)).

Diante desses obstáculos fundamentais, Tarski desenvolve uma definição estrutural das
noções semânticas básicas, ou seja, uma definição que depende apenas da forma lógica
de uma expressão e do fato de que expressões são definidas recursivamente. No entanto,
essa abordagem só é viável para uma linguagem que seja estruturalmente descrita, ou seja,
uma linguagem formalizada. Para tais linguagens, geralmente fechadas sob quantificação
e contendo fórmulas com variáveis livres, Tarski elabora uma noção apropriada de satisfa-
ção, que permite introduzir as noções de definibilidade, denotação, verdade e consequência
lógica. Pode-se então dar uma versão precisa e uma prova da condição de adequação (T)
em uma metaciência cujos princípios compreendam: (i) axiomas lógicos gerais, (ii) axiomas
especiais que dependam da teoria-objeto que consideramos e (iii) axiomas para lidar com
propriedades fundamentais das noções estruturais, ou seja, princípios de demonstração e
definição por indução. De posse deste aparato semântico, Tarski consegue resolver de forma
negativa o problema da existência de (uma contraparte formal de) uma linguagem universal,
isto é, uma linguagem na qual seja possível definir uma noção adequada de verdade para
a própria linguagem. Embora a teoria dos tipos simples (na qual o tipo 0 corresponde ao
tipo dos indivíduos, e o tipo 𝑛 + 1 é a coleção de todas as classes de objetos do tipo 𝑛)
com o axioma do infinito e a extensionalidade pareça uma boa candidata a uma metateoria
geral, demonstra-se que, independentemente da definição escolhida para o termo “verda-
deiro” dentro da teoria dos tipos, é possível deduzir, na própria teoria, a negação de alguma
instância do esquema de adequação (T). Na demonstração desse teorema, Tarski aplica
aritmetização e diagonalização, seguindo assim o padrão gödeliano. No lado positivo, o
conceito de verdade pode ser definido de maneira adequada para qualquer linguagem for-
malizada L dentro de uma linguagem (a chamada metalinguagem), conquanto esta seja de
ordem superior a L. Além disso, a semântica de Tarski explicita a observação de Gödel (1931,
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nota 48) de que “a verdadeira razão da incompletude é que a formação de tipos cada vez
mais elevados pode ser continuada no transfinito […], enquanto em qualquer sistema for-
mal, no máximo, uma quantidade enumerável deles está disponível.” As noções semânticas
tarskianas desempenham, portanto, o papel dos tipos superiores mencionados por Gödel.
Resumindo, o resultado do trabalho de Tarski é que as noções semânticas são eliminadas
em favor das noções (extensionais) de tipo ou conjunto, e uma explicação teórica para os
paradoxos semânticos é finalmente alcançada.

5.3 “A inconsistência de certas lógicas formais”
Nas décadas de 1920 e início de 1930, a visão ortodoxa da lógica entre os lógicos ma-

temáticos era, em linhas gerais, de caráter tipo-teórico ou conjuntista. No entanto, houve um
esforço para desenvolver novas lógicas como substitutas da lógica do Principia Mathematica.
Esses sistemas surgiram tanto como tentativas de recuperar a simplicidade da abordagem
livre de tipos, derivada do chamado princípio ingênuo da compreensão, quanto para atender
necessidades metamatemáticas, como o esclarecimento de conceitos fundamentais subja-
centes às noções de “sistema formal”, “formalismo”, “regra”, etc. Em particular, Church e
Curry propuseram teorias que (i) assumem como primitivas as noções de função em inten-
são autoaplicável (operação), e (ii) enfatizam o próprio mecanismo de definição/combinação
de conceitos. Ao observar de perto o desenvolvimento desses sistemas, percebe-se que
construções paradoxais tornaram-se ferramentas essenciais para definir objetos e demons-
trar fatos matemáticos e lógicos não triviais. Seguindo ideias de Schönfinkel e visando uma
análise matemática do processo de substituição, a tese de Curry de 1930 introduziu uma
linguagem formal baseada em operadores gerais básicos, os chamados combinadores 𝐵
(composição), 𝐶 (permutação), 𝑊 (duplicação), 𝐾 (cancelamento), 𝑄 (igualdade), além
de constantes lógicas como o quantificador universal e a implicação. Expressões são então
geradas indutivamente por aplicação a partir de constantes; intuitivamente, um termo 𝑀 re-
presenta uma função, e o termo aplicativo 𝑀𝑁 (onde a justaposição desempenha o papel
da aplicação e os parênteses são associados à esquerda) denota o valor do termo obtido ao
substituir a primeira variável de𝑀 por𝑁 . A autoaplicação𝑀𝑀 é permitida, e essa caracte-
rística indica que os objetos da lógica combinatória não podem simplesmente ser interpreta-
dos como funções na teoria dos conjuntos. O sistema formal consiste em equações padrão
sobre combinadores (por exemplo, 𝐵𝑥𝑦𝑧 = 𝑥(𝑦𝑧), 𝑊𝑥𝑦 = 𝑥𝑦𝑦 ou 𝐶𝑥𝑦𝑧 = 𝑥𝑧𝑦),
regras para a igualdade e constantes lógicas; seu objetivo principal é derivar igualdades
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𝑋 = 𝑌 e fazer afirmações da forma ⊢𝑋 (ou seja, 𝑋 é demonstrável). A lógica combina-
tória é uma teoria que analisa os modos de combinação de objetos formais, a substituição e
as noções de proposição e função proposicional (para uma introdução mais aprofundada às
variantes do formalismo e um panorama das propriedades dos cálculos relacionados, veja o
verbete Combinatory Logic).32 Para Curry, a raiz dos paradoxos encontra-se na suposição
de que combinações de conceitos são sempre proposições. A noção de proposição torna-se
um conceito teórico cuja validade é decidida pela própria teoria. Tipos não são atribuídos
às expressões do sistema formal desde o início, mas são inferidos pelo próprio sistema,
que possui uma natureza dual: ele pode derivar identidades, mas também verdades. Em
particular, se ⊢𝑀𝑁 é derivado, isso pode ser interpretado como “𝑁 é de tipo 𝑀 ” ou “𝑁
é um elemento de 𝑀 ”. Essas ideias antecipam desenvolvimentos fundamentais, como a
chamada interpretação fórmulas como tipos (veja Howard 1968).

O formalismo de Church — originalmente introduzido em Church 1932 e Church 1933
como um conjunto de postulados para a fundamentação da lógica formal — inclui regras de
conversão (isto é, regras computacionais), que permitem a substituição de termos por outros
intensionalmente equivalentes, e regras para afirmar certos termos como “verdadeiros”. A
sintaxe proporciona um sistema geral de notação para funções, baseado em uma lingua-
gem aplicativa na qual há uma única categoria básica de termos (fórmulas bem formadas,
segundo sua terminologia). Alguns termos são formalmente demonstráveis (ou afirmáveis)
e são classificados como verdadeiros. Os termos são definidos indutivamente a partir de um
conjunto de constantes básicas e variáveis pormeio de aplicação e do respectivo operador de
abstração lambda: se 𝑀 é um termo contendo a variável 𝑥, 𝜆𝑥. 𝑀 é um termo, nomeando
a função definida por 𝑀 . As constantes básicas designam operações lógicas: (uma forma
restrita de) implicação formal, quantificador existencial, conjunção, negação, operação de
descrição e abstração generalizada (ou seja, se 𝐹 é equivalência lógica formal, 𝐴(𝐹 , 𝑀 ) é
“o que 𝑀 tem em comum com qualquer 𝑁 formalmente equivalente a 𝑀 ”). Verifica-se que
a lógica de Church pode interpretar a teoria ingênua das classes, evidenciando que o sistema
é suspeitamente forte e expressivo (a força e expressividade são herdadas pelo formalismo
derivado do sistema de Church; para maiores detalhes, veja o verbete The Lambda Calcu-
lus).33 A esperança de Church era que as contradições pudessem ser evitadas garantindo-se
a possibilidade de que uma função proposicional fosse indefinida para alguns argumentos.

32N.T.: https://plato.stanford.edu/entries/logic-combinatory/
33N.T.: https://plato.stanford.edu/entries/lambda-calculus/
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No entanto, as teorias de Curry e Church foram quase imediatamente demonstradas
inconsistentes em 1934, por Kleene e Rosser, que (essencialmente) provaram uma versão
do paradoxo de Richard (ambos os sistemas podem enumerar demonstravelmente suas
próprias funções número-teóricas totalmente definíveis e demonstráveis). Esse resultado
foi motivado pelo próprio Church em 1934, quando ele utilizou o paradoxo de Richard para
demonstrar uma espécie de teorema de incompletude (no que diz respeito às afirmações
que expressam a totalidade de funções número-teóricas).

A razão das inconsistências foi finalmente esclarecida no ensaio de Curry de 1941. Nele,
Curry distingue duas noções básicas de completude: um sistema 𝑆 é dedutivamente com-
pleto se, sempre que ele demonstra uma proposição 𝐵 a partir da hipótese 𝐴, então ele
também deriva a implicação 𝐴 → 𝐵 (teorema da dedução ou regra de introdução da impli-
cação); 𝑆 é combinatoriamente completo (Curry 1941, p. 455) se, sempre que 𝑀 for um
termo do sistema possivelmente contendo um 𝑥 indeterminado, há um termo (o 𝜆𝑥.𝑀 de
Church) que nomeia a função de 𝑥 definida por 𝑀 . Curry então observa que o paradoxo de
Kleene-Rosser surge porque os sistemas de Church e Curry satisfazem ambos os tipos de
completude, demonstrando assim que essas duas propriedades são incompatíveis. Na parte
mais técnica do artigo, Curry axiomatiza cuidadosamente os principais elementos explora-
dos por Kleene e Rosser e realiza um trabalho substancial tanto no aspecto lógico quanto
no aspecto matemático (por exemplo, ao desenvolver uma parte da aritmética recursiva e
ao definir a existência de um enumerador, um termo 𝑇 tal que, se 𝛼 é o número de Gödel
de um termo fechado 𝑀 e 𝑍𝛼 é o termo que representa formalmente 𝛼, então 𝑇 𝑍𝛼 = 𝑀
é demonstrável em 𝑆, etc.). A demonstração de Curry sobre a inconsistência dos sistemas
combinatórios é insatisfatória porque depende fortemente de um desvio pela teoria dos nú-
meros e pela gödelização, o que, na verdade, é desnecessário, como o próprio Curry logo
percebeu e apresentou em um artigo com o mesmo título do de Kleene e Rosser, “em defe-
rência aos descobridores originais da contradição” (Curry 1942). O principal resultado desse
trabalho é o seguinte teorema (o paradoxo de Curry; veja o verbete Curry’s Paradox):34

1. assuma que temos um sistema combinatoriamente completo, ou seja, essencialmente
um sistema de lógica combinatória que contém as propriedades padrão de igualdade
e os axiomas básicos que garantem a definibilidade do lambda de Church, juntamente
com os axiomas correspondentes que definem os combinadores 𝐵, 𝐶, 𝐼, 𝑊 ;

34N.T.: https://plato.stanford.edu/entries/curry-paradox/
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2. assuma também que o sistema contém um operador de implicação ⊃ que satisfaz,
para termos arbitrários 𝑀 e 𝑁

⊢ 𝑀 ⊃ 𝑀
⊢ 𝑀 ⊃ (𝑀 ⊃ 𝑁) ⇒⊢ 𝑀 ⊃ 𝑁
⊢ 𝑀 e ⊢ 𝑀 ⊃ 𝑁 ⇒⊢ 𝑁 .
Então 𝑆 ⊢ 𝑀 , para todo termo 𝑀 .

Para a demonstração, basta encontrar, para um dado termo 𝐵, um termo 𝐴 tal que 𝐴
= 𝐴 ⊃ 𝐵. Curry observa que é possível construir a prova de duas maneiras. Por autor-
referência direta, podemos escolher: 𝐴 = 𝐻𝐻 , onde 𝐻 = 𝜆𝑌 (𝑁 (𝑌 𝑌 )) e 𝑁 = 𝜆𝑋(𝑋
⊃ 𝐵). Por outro lado, pode-se aplicar autorreferência indireta e explorar a maquinaria de
Curry (1941) e Kleene-Rosser: utilizando um enumerador 𝑇 , define-se 𝑈 = 𝜆𝑋(𝑇 𝑋𝑋 ⊃
𝐵) e 𝐴 = 𝑈𝑍𝑢, sendo 𝑢 o número de Gödel de 𝑈 . Curry sugere que essas duas aborda-
gens são análogas, respectivamente, ao paradoxo de Russell e ao paradoxo do Mentiroso.
É interessante notar que esses dois métodos correspondem às ferramentas que hoje são
conhecidas como o primeiro e o segundo teorema do ponto-fixo da lógica combinatória e do
cálculo lambda (Barendregt 1984, pp. 131 e 143; para maiores detalhes sobre a distinção
entre o primeiro e o segundo teorema da recursão na teoria clássica da recursão, veja o
verbete Recursive Functions).35

A análise de Curry sobre as soluções do paradoxo nos levaria ao campo da teoria da
funcionalidade, à história da lógica combinatória e à teoria da demonstração. Aqui, basta
lembrar que, segundo ele, um possível remédio seria formular dentro do próprio sistema a
própria noção de proposição, e uma maneira de evitar as contradições levaria a uma hierar-
quia de proposições canônicas (ou a uma teoria de níveis de implicação, já esboçada por
Church). Ideias relacionadas têm sido desenvolvidas desde os anos 1970 por Scott (1975),
Aczel (1980), Flagg e Myhill (1987), entre outros.

5.4 Criticando a implicação padrão e a negação
Nos anos de 1930, surgiu uma rota alternativa para resolver as antinomias. Essa abor-

dagem explora o combinador de duplicação (contração) 𝑊 , que satisfaz 𝑊𝑓𝑥 = 𝑓𝑥𝑥; se
35N.T.: https://plato.stanford.edu/entries/recursive-functions/
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𝑁 representa a negação e 𝐵𝑎𝑏𝑐 = 𝑎(𝑏𝑐), então 𝑊 (𝐵𝑁 )𝑊 (𝐵𝑁 )) é um ponto fixo da
negação, bem como um análogo funcional da classe de Russell. No nível lógico, atribuir
um tipo a 𝑊 leva à inferência essencial aplicada na derivação do paradoxo de Curry, ou
seja, a regra de contração: 𝐴 → (𝐴 → 𝐵) ⇒ (𝐴 → 𝐵). O papel da contração foi notado
por Fitch (1936), que observou que, para derivar o paradoxo de Russell, considera-se uma
função de duas variáveis, depois diagonaliza-se e trata-se tal objeto como uma nova função
proposicional unária. Mas esse passo só funciona se 𝑊 for aceito. Fitch então propôs uma
lógica “não-contrativa”, mas seu artigo não passou de um breve esboço de um fragmento da
lógica clássica com predicados. Foi apenas em meados dos anos 1980 que as lógicas sem
contração passaram a ser usadas sistematicamente na teoria da demonstração e na ciência
da computação teórica (para maiores detalhes, veja o verbete Linear Logic).36

Em 1942, Fitch propôs uma nova abordagem para o problema de encontrar sistemas
consistentes de lógica combinatória, que foram progressivamente expandidos e refinados
ao longo de muitos anos (até 1980). O método de Fitch para evitar paradoxos consiste
na construção de modelos sintáticos adequados, dotados de noções autorreferenciais de
classe, pertinência e verdade. Verdade e pertinência são gerados indutivamente por regras
iterativas que correspondem a condições naturais de fechamento lógico e podem ser forma-
lizadas por meio de cláusulas positivas (isto é, sem negação ou implicação). Isso implica
que o processo de geração é cumulativo e se torna saturado em um certo ponto, resultando
em interpretações consistentes e não triviais para verdade e pertinência. Matematicamente,
uma coleção de cláusulas positivas sempre dá origem a um operador, 𝐺, que mapeia con-
juntos de expressões em conjuntos de expressões e preserva a relação de inclusão (isto é,
é monótono); os conjuntos saturados correspondem então a pontos fixos do operador mo-
nótono 𝐺 (ou seja, a conjuntos 𝑋 que satisfazem 𝐺(𝑋) = 𝑋), os quais existem de acordo
com um teorema clássico sobre reticulados completos (veja Birkhoff 1967).

No início da década de 40, Fitch explorou um sistema combinatório 𝐾 puramente posi-
tivo (sem negação), com o objetivo explícito de definir uma espécie de sistema formal uni-
versal, no qual qualquer sistema lógico pudesse ser representado. Posteriormente, ele con-
seguiu fortalecer sua abordagem para incluir formas de negação e implicação, à medida
que forneceu uma geração simultânea de verdade e falsidade, o que equivale, na prática, a
conceber a verdade como um predicado parcial. A abordagem de Fitch é radicalmente inten-
sional: classes são sempre classes de expressões 𝑀 em alguma linguagem (por exemplo,
36N.T.: https://plato.stanford.edu/entries/logic-linear/
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a lógica básica) e identificadas com atributos, enquanto a pertinência é essencialmente re-
duzida à verdade no sentido de 𝐾. Assim, a afirmação 𝑀 ∈ 𝑇 significa essencialmente
que 𝑀 realmente se enquadra na propriedade especificada (ou expressa) por 𝑇 (veja tam-
bém o verbete Combinatory Logic).37 Sistemas lógicos similares também foram propostos
e demonstrados como consistentes através de métodos prova-teóricos por Schütte no início
dos anos 1950 (para um tratamento abrangente, veja Schütte 1960).

Até certo ponto, as ideias de Fitch podem ser vistas como a introdução da visão de
que os predicados básicos de verdade e pertinência devem ser parciais ou, se preferir, tri-
valorados. Bochvar (1937) delineou uma proposta baseada na introdução de uma lógica
trivalorada, na qual, além dos valores de verdade padrão T (verdadeiro) e F (falso), há um
terceiro valor N, interpretado como “sem significado”. Sua análise lógica leva à conclusão
de que os paradoxos envolvem proposições desprovidas de significado. Uma característica
marcante do formalismo de Bochvar é a distinção entre dois tipos de conectivos, correspon-
dendo aproximadamente a dois modos diferentes de asserção. Uma afirmação 𝐴, por si só,
assume exatamente um dos valores prescritos (verdadeiro, falso ou sem significado); mas
as operações lógicas internas trivaloradas também possuem operações lógicas externas,
que correspondem a afirmações em um nível meta e permitem o uso da lógica clássica para
lidar com proposições não clássicas. Formalmente, Bochvar descreveu tabelas de verdade
trivaloradas para os principais conectivos proposicionais internos: & (conjunção), ∼ (ne-
gação), ∨ (disjunção), → (implicação) e ↔ (equivalência lógica). Os valores de verdade
de ∼𝐴, 𝐴 & 𝐵, etc., coincidem com seus valores clássicos se 𝐴, 𝐵 assumirem valores
clássicos; porém, eles são sem significado (assumem valor N) se pelo menos um dentre
𝐴, 𝐵 tiver valor N (estriticidade). Nenhuma fórmula construída com os conectivos padrão
pode ser válida (ou tautológica, isto é, verdadeira em todas as atribuições possíveis), pois
𝐴 → 𝐴 possui valor N se 𝐴 não tem significado. No entanto, Bochvar introduziu conectivos
que permitem a formulação de afirmações metateóricas, como ⊢ 𝐴, ¬𝐴, ↓𝐴, interpretadas,
respectivamente, como “𝐴 é verdadeira”, “𝐴 é falsa” e “𝐴 é sem significado”. O valor de ⊢
𝐴(¬𝐴) é verdadeiro se 𝐴 for verdadeiro (falso) e falso (verdadeiro) caso contrário. Bochvar
descreveu uma versão expandida do cálculo lógico sem tipos de Hilbert–Ackermann (1928)
e, para eliminar os paradoxos, restringiu a substituição e, consequentemente, o esquema de
compreensão da forma

37N.T.: https://plato.stanford.edu/entries/logic-combinatory/
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∃𝐹∀𝑥(𝐹 (𝑥)↔ 𝜑) onde𝜑 é qualquer fórmula na qual𝐹 não ocorre livremente
e que pode ter ou não ter 𝑥 como variável livre.

para condições 𝜑 somente com operações lógicas internas. Aparentemente, a solução de
Bochvar não é simplesmente uma solução de lacuna na qual a lógica é enfraquecida. Em
vez disso, ele formaliza a distinção entre nível objeto e nível meta dentro da própria lógica.
Isso torna sua teoria bastante expressiva (por exemplo, ela consegue lidar com a própria
noção de “sem sentido”, “sem significado”).

5.5 Processos Não Terminativos, Ciclos e Ambiguidade Típica

O artigo de Behmann (1931), apresentado em 1929, localiza a origem dos paradoxos
na maquinaria definicional. O artigo começa com uma análise da contradição de Russell na
forma da aplicação de predicados. Nele, Behmann observa que, uma vez que o predicado
𝐹 de Russell é definido pela estipulação

𝐹 (𝜑) =𝑑𝑓 ¬𝜑(𝜑),

deve ser possível eliminar 𝐹 de qualquer argumento que o envolva. No entanto, se tentar-
mos substituir 𝐹 por seu definiens, obtemos 𝐹 (𝐹 ) ≡ ¬𝐹 (𝐹 ), ficando assim presos em um
regresso infinito uma vez que não há uma expressão livre de 𝐹 que possa substituir 𝐹 (𝐹 ).
Dessa forma, a contradição é atribuída a um erro na teoria das definições, a saber, o uso de
definições que dão origem a uma cadeia infinita de substituições sem convergir para um re-
sultado. A proposta técnica de Behmann consiste em uma lógica reformada sem tipos, mas
com um operador adicional ! que, quando aplicado a um predicado 𝜒, seleciona exatamente
aqueles argumentos 𝑥 para os quais 𝜒 se aplica de maneira significativa. Por exemplo, o
silogismo Barbara, geralmente expresso na forma

(∀𝑥)(𝐴(𝑥) → 𝐵(𝑥)) & (∀𝑥)(𝐵(𝑥) → 𝐶(𝑥)) → (∀𝑥)(𝐴(𝑥) → 𝐶(𝑥)),

é corrigido para

(∀𝑥)(𝐴(𝑥) → 𝐵(𝑥)) & (∀𝑥)(𝐵(𝑥) → 𝐶(𝑥)) → (∀𝑥)(𝐶(𝑥))! → (𝐴(𝑥) →
𝐶(x))
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onde o domínio do quantificador final é restrito apenas àqueles elementos para os quais a
proposição faz sentido. Behmann não desenvolveu uma teoria sistemática até muito mais
tarde, e a interpretação precisa de seu operador especial ! permanece incerta. No entanto,
seu trabalho inspirou as pesquisas de Aczel e Feferman (1980).

Lewis e Langford (1932) chegaram a conclusões que não são muito diferentes das de
Behmann. Segundo eles, os paradoxos demonstram que certas expressões não expressam
proposições. Eles adotam a notação 𝑝 : 𝛼 para indicar que 𝑝 é um nome cujo significado é
a proposição 𝛼 (de modo que 𝑝 e “𝛼” denotam a mesma entidade e podem ser substituídos
um pelo outro). Tipicamente, o paradoxo do Mentiroso assume a forma “𝑝 ∶ 𝑝 é falso”, mas
também podemos imaginar situações autorreferenciais mais complexas, como:

(𝑝1) 𝑝2 é falso;
(𝑝2) 𝑝1 é falso.

Nesse caso, não há uma contradição, mas ficamos presos em um regresso vicioso (p.
440), e, portanto, nenhuma proposição surge. Em geral, pode-se construir ciclos arbitraria-
mente complicados e verificar que eles podem levar tanto a contradições quanto a regressos
infinitos. Mas, em ambos os casos, a expressão falha em convergir para uma proposição
definida.

Mesmo depois que as lógicas desenvolvidas por Russell, Zermelo e Tarski forneceram
os meios teóricos para lidar com as dificuldades relacionadas às noções de classe, conjunto,
verdade e definibilidade, os paradoxos continuaram a ser um problema relevante. Isso se
deve provavelmente ao interesse persistente por paradigmas formais alternativos, às carac-
terísticas e axiomas controversos doPrincipia Mathematica, bem como ao lugar problemático
que a autorreferência ocupa na lógica matemática. Nesse contexto, vale mencionar o artigo
de Quine de 1937 sobre o sistema NF (para maiores detalhes, veja o verbete Quine’s New
Foundations), 38 inspirado na noção russelliana de ambiguidade típica, isto é, no dispositivo
sistemático de suprimir os índices de ordem das funções proposicionais e de seus argumen-
tos, permitindo que sejam restaurados à vontade, quando necessário, conforme a disciplina
da teoria dos tipos (ver seção 3.2). A ideia é restringir o esquema de compreensão ingênuo
apenas às instâncias estratificadas, onde em geral uma fórmula 𝜑 é estratificada se e so-
mente se é possível atribuir um número natural (um tipo, por brevidade) a cada ocorrência
38N.T.: https://plato.stanford.edu/entries/quine-nf/
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de termo de modo que a fórmula resultante seja bem formada no sentido da teoria dos tipos.
Por exemplo, se 𝑡 ∈ 𝑠 é uma sub-fórmula de 𝜑, então o tipo de 𝑠 deve ser exatamente um
a mais do que o tipo de 𝑡, e assim por diante. Claramente, a estratificação bloqueia a for-
mação de conjuntos quando fórmulas como 𝑥 ∈ 𝑥, ¬𝑥 ∈ 𝑥 estão presentes. Além disso,
no sistema NF, o conjunto universo existe. O problema da consistência para NF continua
em aberto (embora existam resultados parciais sobre fragmentos do sistema que impõem
restrições na estratificação ou na extensionalidade). Notavelmente, NF refuta o axioma da
escolha, conforme um teorema clássico de Specker. Outro resultado clássico de Specker
estabelece a existência de um modelo de NF em uma versão apropriada da teoria dos tipos
simples, na qual há um equivalente formal da ambiguidade típica. Os paradoxos não estão
tão distantes de NF. Em 1942, Rosser e Lyndon publicaram independentemente uma versão
da antinomia de Burali-Forti dentro de uma extensão aparentemente natural de NF (chamada
ML) obtida pela adição de “classes últimas”. O sistema ML foi concebido com o objetivo de
evitar certas fraquezas de NF (por exemplo, no que diz respeito à indução número-teórica).
No entanto, o resultado de Lyndon-Rosser revelou, mais uma vez, a presença inesperada
de um paradoxo na teoria dos conjuntos e nos fundamentos da lógica matemática.

6. Um olhar sobre as investigações atuais

6.1 Dos paradoxos aos teoremas

Como observado há muitos anos por Kreisel e muito apropriadamente lembrado por
Dean (2020, p. 541), a questão correta a ser abordada não é como se livrar dos paradoxos
ou resolvê-los: em vez disso, o problema frutífero é como extrair algo deles. De fato, parado-
xos podem ser convertidos em simples teoremas da indecidibilidade/indefinibilidade, e isso
é consequência de uma metodologia sistemática: com o trabalho de Gödel e Tarski, argu-
mentos paradoxais são reformulados em resultados de pontos fixos, enquanto a concepção
semântica da verdade dá origem a uma formalização da própria semântica, fornecendo ba-
ses sólidas para investigaçõesmetamatemáticas sistemáticas, como pode ser observado em
várias contribuições iniciais de diversos lógicos, por exemplo, Kreisel (1950) e Wang (1955).
Por exemplo, a aritmetização da semântica permite um refinamento do teorema da com-
pletude, conhecido como teorema da completude aritmetizado (ART): toda teoria recursiva
consistente possui um modelo no qual os símbolos de função são substituídos por funções
primitivas recursivas e os símbolos de predicado são substituídos por predicados definíveis
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com apenas dois quantificadores em uma versão da teoria formal dos números (cf. Hilbert
e Bernays 1939, p. 293, e Feferman 1960). Ao adicionar uma sentença aritmética Con(S),
que expressa a consistência de uma teoria dos conjuntos S como um novo axioma da teoria
elementar dos números, pode-se provar no sistema resultante traduções aritméticas de to-
dos os teoremas de S. Um resultado dessa formalização metamatemática é uma unificação
de fato entre os paradoxos da teoria dos conjuntos e os paradoxos da teoria semântica, no
sentido de que paradoxos de ambos os tipos tornam-se ferramentas para provar incomple-
tude e indecidibilidade. Tipicamente, uma dada noção paradoxal é formalizada como um
predicado na linguagem de uma teoria que interpreta (pelo menos um fragmento da) a teoria
dos números Z; então, aplica-se diagonalização, autorreferência etc., para obter afirmações
correspondentes a sentenças número-teóricas que se tornam indecidíveis ou improváveis,
dada uma hipótese de consistência.

6.2 Estruturas fundacionais e paradoxos

Motivações filosóficas exercem uma forte influência na investigação lógica contempo-
rânea sobre paradoxos, e, portanto, é natural perguntar o que ainda sobrevive da teoria
fregeana original dos conceitos, baseada em um princípio inconsistente de abstração e a
visão logicista. Bem, a resposta é que um legado significativo ainda está vivo: isso é espe-
cialmente evidente na abordagem neofregeana, baseada no princípio de Hume e em suas
variações. Subsistemas consistentes do Grundgesetze de Frege foram isolados e são es-
tudados atualmente: veja Burgess (2005) para uma lista abrangente de referências a traba-
lhos anteriores de Boolos, Wright e Hale, Heck, Wehmeier, Ferreira, Antonelli e May (veja
também os ensaios contidos em Reck e Cook (2016), assim como o verbete Logicism and
Neologicism).39 Além disso, pesquisas dentro da tradição neofregeana demonstraram que a
inconsistência do princípio da abstração extensional (Lei Básica V) no Grundgesetze é ape-
nas um caso particular de um resultado mais geral sobre inconsistência na lógica de segunda
ordem (estendida com um símbolo para uma função 𝑓 que mapeia conceitos para objetos)
de quaisquer princípios de abstração que satisfaçam a condição chamada de “parte-todo”:
se A está estritamente incluído em 𝐵, então 𝑓 (𝐴)≠ 𝑓 (𝐵) (veja Mancosu e Siskind 2019).

Por outro lado, se deixarmos de lado a inspiração ideológica do logicismo, poderíamos
crer que o desenvolvimento da lógica e da teoria dos conjuntos no século XX eliminou com-

39N.T.: https://plato.stanford.edu/entries/logicism/
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pletamente os paradoxos e que contradições em sistemas lógicos sejam fenômenos restritos
aos anos da crise fundacional. Mas isso não é verdade: paradoxos foram descobertos em
sistemas lógicos relacionados à ciência da computação. Por exemplo, há meio século, Gi-
rard demonstrou que uma teoria construtiva dos tipos desenvolvida por Per Martin-Löf (1971),
baseada na correspondência de Curry-Howard, é inconsistente quando se assume a exis-
tência de um tipo de todos os tipos. A contradição decorre de uma reconstrução tipo-teórica
de um argumento relacionado à antinomia de Burali-Forti e ao paradoxo de Mirimanoff dos
conjuntos fundados. Mais tarde, Coquand (1986) provou que certas extensões do Cálculo C
de construções são inconsistentes. De maneira simplificada, C é uma teoria dos tipos impre-
dicativa de ordem superior que estende o Sistema F de Girard, um poderoso cálculo lambda
de segunda ordem e com abstração sobre tipos, que é adequado para representar provas da
lógica intuicionista impredicativa de segunda ordem. Coquand (1994) apresentou um novo
paradoxo que afeta a teoria dos tipos, refinando o resultado de Reynolds, segundo o qual
não existe um modelo conjuntista clássico para o polimorfismo (ou seja, o Sistema F de Gi-
rard; veja os verbetes Type Theory e Set Theory: Constructive and Intuicionistic ZF).40 Por
outro lado, um desenvolvimento geral e sem tipos da teoria das construções como uma base
para a demonstrabilidade construtiva em lógica e matemática foi originalmente proposto por
Kreisel e Goodman, mas revelou-se sujeito a uma antinomia, recentemente reexaminada por
Dean e Kurokawa (2016).

Na fronteira entre questões fundacionais e aplicações em ciência da computação, argu-
mentos de natureza paradoxal aparecem na investigação da matemática explícita de Fefer-
man (EM), uma teoria de operações (autoaplicáveis) e classificações não-extensionais. Por
exemplo, a existência de uma construção de tipo potência forte 41 leva à inconsistência nas
chamadas “teorias dos tipos e nomes”, um desenvolvimento de EM introduzido por Jäger,
1997 (para uma bibliografia detalhada sobre EM de 1975–2013, veja o sítio eletrônico Biblio-
grafia da Matemática Explícita;42 para resultados mais recentes conectados com EM, veja
Hayashi 2025). Argumentos paradoxais também são úteis para avaliar o papel de universos
e refutar a não-extensionalidade em EM, quando presentes formas de compreensão ingênua
uniforme (veja Cantini e Minari 1999). De fato, o papel da uniformidade é essencial nessas

40N.T.: https://plato.stanford.edu/entries/type-theory/
https://plato.stanford.edu/entries/set-theory-constructive/

41N.T.: “strong power type”.
42N.T.: https://home.inf.unibe.ch/~til/em_bibliography/
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investigações. No que diz respeito à compreensão ingênua, já se sabe desde os anos 70
(Malitz 1976) e 80 (Weydert 1988, Forti e Hinnion 1989) que existem bons modelos topo-
lógicos da extensionalidade e da compreensão ingênua não uniforme restrita a condições
de positividade generalizadas. Isso levou ao estudo dos chamados hiperuniversos. Re-
sultados adicionais de consistência/inconsistência sobre a relação entre extensionalidade e
princípios de compreensão uniforme vs. não uniforme podem ser encontrados em Hinnion e
Libert (2003), assim como em Libert e Esser (2005). Em uma direção semelhante, propostas
teóricas recentes combinam novamente ideias da lógica combinatória e do cálculo lambda
com reinterpretações “indutivas” da compreensão ingênua e do esquema de verdade irres-
trito, em uma linha de pesquisa já iniciada por Fitch no final da década de 40 (veja Scott
1975, Flagg e Myhill 1987, Aczel 1980 e Feferman 1984). A partir de 1992, houve uma ten-
tativa, por parte de K. Grue, de ressuscitar o cálculo lambda de Church como um fundamento
para a matemática. Grue (2002) apresenta uma extensão muito forte do cálculo lambda, a
chamada teoria dos mapas, na qual a teoria axiomática dos conjuntos padrão torna-se inter-
pretável, e que pode ser utilizada para esclarecer a diferença entre os paradoxos de Russell
e Burali-Forti.

6.3 Circularidade e autorreferência

Desde os trabalhos de Mirimanoff, Finsler e outros, lógicos têm estudado universos da
teoria dos conjuntos nos quais conjuntos circulares existem. No entanto, foi apenas a partir
do início da década de 80 que uma matemática genuína dos conjuntos não bem-fundados
(veja o verbete Non-wellfounded Set Theory)43 passou a ser desenvolvida. Utilizando o axi-
oma AFA de antifundação, permite-se a autorreferência direta na teoria dos conjuntos, e
existem inúmeros conjuntos que solucionam equações autorreferenciais gerais (AFA foi in-
troduzido por Forti e Honsell em 1983; para um desenvolvimento sistemático e histórico, veja
Aczel, 1988). Em particular, conjuntos não bem-fundados são aplicados à análise de para-
doxos, à semântica das línguas naturais e à ciência teórica da computação (veja Barwise e
Etchemendy 1984, Barwise e Moss 1996).

Sobre a questão de se a autorreferência pode ser evitada na derivação de paradoxos
e, portanto, se existem contradições genuínas decorrentes da ausência de fundação, uma
resposta positiva foi dada pelo paradoxo semântico de Yablo (1993): há infinitos agentes

43N.T.: https://plato.stanford.edu/entries/nonwellfounded-set-theory/
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etc., cada um afirmando a mesma sentença: “pelo menos um agente que vem depois de mim
está mentindo”; no entanto, isso leva a uma contradição (veja os verbetes Self-reference and
Paradox e Liar Paradox).44 A questão levantada por essa construção — se a circularidade e
a autorreferência são condições necessárias e suficientes para o surgimento de paradoxos
— foi posteriormente analisada em Yablo (2006) (para um estudo abrangente sobre o tema,
veja Cook 2014; para uma prova sem o lema da diagonalização, veja Halbach e Zhang
2017). Além disso, a conexão entre os fenômenos da incompletude e dos paradoxos foi
estendida de modo a incluir o paradoxo de Yablo como um caso especial dos paradoxos do
tipo Mentiroso (Kurahashi 2014, Kikuchi e Kurahashi 2016).

A análise da autorreferência e da diagonalização motivou a aplicação de técnicas al-
gébricas e topológicas: considere os modelos de Scott para o cálculo lambda extensional
(Scott 1972) e sua subsequente interpretação categórica. Por outro lado, a teoria das ca-
tegorias tem sido utilizada para novas abordagens aos paradoxos desde Lawvere (1969).
Uma abordagem matemática à questão geral de “autorreferência vs. não fundação” pode
ser encontrada em Bernardi (2001, 2009). Além do paradoxo de Yablo e de uma versão ba-
seada em teoria dos jogos do paradoxo de Mirimanoff, diversos resultados clássicos (como
a existência de um conjunto não recursivamente enumerável e os teoremas de Cantor so-
bre a não enumerabilidade dos reais) podem ser transformados em teoremas de existência
para certas cadeias não fundadas (e, formalmente, tais cadeias são vistas como pontos fixos
generalizados).

6.4 Dos paradoxos à incompletude
Na metamatemática padrão, um papel importante para a compreensão aprofundada do

segundo teorema da incompletude é desempenhado pelo teorema de Löb (Löb 1955). A
prova desse teorema está relacionada ao paradoxo de Curry (veja o verbete Curry’s Para-
dox)45 e a um argumento informal devido a Geach (1955). Além disso, o teorema de Löb
é essencial para definir estruturas matemáticas, estas adequadas para fornecer versões de
autorreferência e incompletude (veja as chamadas álgebras de Magari e a análise modal da
demonstrabilidade formal em Boolos 1993). Na mesma direção, há aplicações do paradoxo
de Berry. Por exemplo, em 1966, Vopěnka provou o segundo teorema da incompletude para
44N.T.: https://plato.stanford.edu/entries/self-reference/

https://plato.stanford.edu/entries/liar-paradox/
45N.T.: https://plato.stanford.edu/entries/curry-paradox/
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a teoria dos conjuntos e classes de Bernays-Gödel utilizando uma forma desse paradoxo.
Boolos (1989) explora um argumento do tipo Berry46 para provar a incompletude na forma
“não existe um algoritmo cuja saída contenha todas as sentenças verdadeiras da aritmética
e nenhuma falsa” sem recorrer à diagonalização. O paradoxo de Berry também foi relacio-
nado aos fenômenos da incompletude devido a trabalhos (desde os anos 1960 e 1970) na
complexidade de Kolmogorov e na teoria algorítmica da informação. Em particular, Chaitin
demonstrou, em diversos artigos, como explorar a aleatoriedade para provar certas limita-
ções dos sistemas formais (veja Chaitin 1995). Em conexão com os resultados de Chaitin,
Kritchman e Raz (2011) fornecem uma prova do segundo teorema da incompletude base-
ada em um argumento semelhante ao paradoxo do teste surpresa (veja o verbete Epistemic
Paradoxes).47 Esse paradoxo, por sua vez, pode ser explicitamente relacionado ao teorema
da completude de Solovay para a lógica da demonstrabilidade (veja Montagna 1994). Mais
recentemente, Egré (2005), De Voos, Kooj e Verbrugge (2018) aplicaram a lógica da de-
monstrabilidade para resolver o paradoxo do Conhecedor. Vale lembrar que — novamente
no campo da lógica epistêmica — a autorreferência pode ser aplicada para provar a incom-
pletude em modelos de crença. Brandenburger e Keisler (2006) identificaram um paradoxo
de autorreferência no âmbito das crenças em jogos, que resulta em um teorema da impossi-
bilidade jogo-teórico, análogo ao paradoxo de Russell. Uma versão informal desse paradoxo
é a de que a seguinte configuração de crenças é impossível: Ann acredita que Bob assume
que Ann acredita que a suposição de Bob está errada. Essa versão é formalizada para
demonstrar que qualquer modelo de crença de certo tipo deve conter uma “lacuna”. Uma
interpretação desse resultado é que “se as ferramentas do analista estiverem disponíveis
para os jogadores em um jogo, então haverá sentenças sobre as quais os jogadores podem
pensar, mas que não podem assumir”. Além disso, o simples fato de paradoxos como esse,
com um distinto caráter lógico, surgirem em contextos que envolvem noções epistêmicas é
notável, podendo ser considerado um indício de que essa linha de pesquisa, baseada nos
muitos exemplos já disponíveis na literatura, tende a se expandir e se tornar sistemática no
futuro graças à aplicação de métodos formais (ver seção 6.5). Embora não esteja direta-
mente conectado ao fenômeno da incompletude, há diversos relatos de antinomias que afe-
tam conjuntos de postulados aparentemente legítimos e naturais envolvendo certas noções
epistêmicas. Um exemplo importante desse tipo de fonte é o trabalho de Leitgeb (2021),

46N.T.: ”Berry-type argument”.
47N.T.: https://plato.stanford.edu/entries/epistemic-paradoxes/
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apresentando uma solução para o paradoxo da loteria (veja Kyburg 1961; veja também o
verbete Epistemic Paradoxes)48, que afeta princípios que relacionam crença categórica e
crença gradativa (para maiores detalhes, veja Douven 2021).

6.5 Sobre os fundamentos da semântica, novamente
No último quarto do século passado, uma série de artigos em lógica surgiu a partir da

discussão sobre os fundamentos da semântica, com diversas propostas que generalizam
ou modificam a concepção semântica da verdade de Tarski. Não obstante, desde 1975
a abordagem hierárquica de Tarski foi, em certa medida, suplantada por novas ideias que
tornaram o ideal de fechamento lógico e semântico acessível em muitos aspectos (espe-
cialmente por meio dos métodos de ponto fixo usados por Kripke 1975 e Martin-Woodruff;
veja Martin 1984). Merece destaque também a abordagem derivada de Herzberger, Gupta e
Belnap (1993) (veja o verbete Revision Theory of Truth)49, que possui conexões com partes
não elementares da teoria da definibilidade, teoria dos conjuntos e teoria da recursão supe-
rior50 (Welch 2001, 2009, 2011, 2019). Isso levou ao estudo axiomático geral das definições
revisão-teóricas51 e teorias das definições circulares (veja Bruni 2009, 2013b, 2015, 2019).
Em Standefer (2015) é estabelecida uma conexão entre um teorema do tipo Solovay e defi-
nições circulares da teoria da revisão, e uma lógica modal particular RT (teoria da revisão):
um teorema de completude para essa lógica, análogo ao teorema de completude de Solovay
para GL, é provado. A lógica modal em questão é construída sobre um operador natural-
mente conectado à construção revisão-teórica (por isso o nome), como explicado emGupta e
Standefer (2017). A teoria da demonstração desse sistema é estudada em Standefer (2018).

Os avanços recentes na teoria da revisão contribuíram para demonstrar a fertilidade
dessa abordagem (em uma direção relacionada à última parte da seção 6.4 deste verbete):
Gupta (2011) apresenta uma aplicação ao conceito de racionalidade estratégica em um certo
tipo de jogos finitos, que está ligado a uma forma comum de entender a escolha racional em
contextos estratégicos. Embora desenvolvida de maneira independente, a abordagem de
Gupta lembra o trabalho anterior de H. Gaifman sobre a racionalidade sendo afetada por
paradoxos semelhantes aos paradoxos da verdade como o paradoxo do Mentiroso (veja
48N.T.: Veja a nota 49.
49N.T.: https://plato.stanford.edu/entries/truth-revision/
50N.T.: ”higher recursion theory”.
51N.T.: ”revision-theoretic definitions”.
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Gaifman 1999). Uma extensão dessa abordagem para a classe de todos os jogos finitos é
apresentada em Bruni e Sillari (2018). O aspecto notável da aplicação de Gupta é o emprego
exclusivo da parte finita da teoria da revisão (ou seja, não requer a iteração transfinita dessa
construção) e a eliminação da regra para lidar com estágios correspondentes a ordinais
limite. Essa regra do limite, essencial para abordar o conceito de verdade, revelou-se o
aspecto mais crítico da abordagem revisão-teórica para conceitos circulares, tanto do ponto
de vista da complexidade quanto do ponto de vista conceitual (para uma abordagem recente
e inovadora sobre o tema, veja Campbell-Moore 2019).

A riqueza e variedade de ferramentas semânticas têm desencadeado uma espécie de
experimentação com diversas propostas mistas. Refinamentos da teoria da revisão e suas
generalizações podem ser encontrados em Rivello (2019a, 2019b) onde é desenvolvida uma
nova abordagem para uma teoria formal da verdade, que implementa características da teo-
ria do ponto fixo de Kripke com a teoria da revisão de Herzberger-Gupta. Uma combinação
análoga, estudada sob um viés mais voltado à teoria da demonstração, foi considerada em
Standefer (2017). De forma semelhante, combinações da semântica de mundos possíveis
para o predicado de necessidade com os modelos parciais supervaloracionais de Kripke
para o predicado de verdade também são estudadas por Nicolai, 2018 (para uma tentativa
recente de completar a figura das teorias axiomáticas de verdade supervaloracional tomando
por base as contribuições de Cantini 1990, veja Dopico e Hayashi 2024). 52

Field (2003, 2008) propôs soluções influentes para os paradoxos semânticos que com-
binam técnicas kripkeanas e técnicas da teoria da revisão. Segundo ele, as soluções atuais
para os paradoxos não são satisfatórias devido aos seguintes pontos: (i) a ausência de uma
condicional (e bicondicional) adequada; (ii) a falha (de algumas instâncias) do esquema–T,
𝐴 ↔ 𝑇 (⌜𝐴⌝); (iii) a falha da intersubstitutividade entre 𝐴 e 𝑇 (⌜𝐴⌝); (iv) a impossibilidade
de fornecer uma análise interna da defeituosidade das sentenças paradoxais. Como con-
sequência, Field (2008) desenvolveu uma teoria da verdade com um operador condicional
não clássico, permitindo expressar uma noção de verdade determinada e afirmar que o pa-
radoxo do Mentiroso não é determinadamente verdadeiro. A análise da construção de Field
requer desenvolvimentos sofisticados da teoria dos conjuntos e da teoria da recursão (veja
Welch 2008, 2009, 2011). Além disso, a possibilidade de enriquecimento lógico da teoria da
verdade de Kripke com novos condicionais abriu novas direções de pesquisa. Por exemplo,
Rossi (2016) propõe um método interessante para incorporar uma condicional que satisfaça
52N.T.: https://arxiv.org/abs/2410.12471
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as exigências da lógica trivalente de Łukasiewicz em uma construção de ponto fixo para a
verdade. Na mesma direção, considerável atenção tem sido direcionada na literatura re-
cente ao chamado problema da revanche: soluções típicas, por exemplo, do paradoxo do
Mentiroso baseiam-se em noções que, se expressáveis na linguagem objeto, geram novas
versões do paradoxo. Assim, a solução seria apenas uma ilusão.53 O problema da revanche
pode ser exemplificado pelo Mentiroso Reforçado: informalmente, uma vez que temos um
modelo que faz com que a sentença mentirosa M não seja nem verdadeira nem falsa e po-
demos expressar esse fato, então M não é verdadeira. Mas essa é exatamente a afirmação
feita por M, logo M é verdadeira. Assim, o paradoxo parece ressurgir (para mais detalhes,
veja o verbete Liar Paradox;54 veja também a coletânea de ensaios em Beall 2007).

Soluções “indexicais” para o paradoxo do Mentiroso foram desenvolvidas em diversas
contribuições, como as de Burge, Gaifman e Simmons. A ideia é que o paradoxo do Men-
tiroso não envolve sentenças, mas ocorrências específicas de sentenças, isto é, tokens de
sentenças (essa ideia pode ser encontrada já em soluções escolásticas). Por questão de pre-
cisão histórica, vale mencionar que, em 1913, Leśniewski, mais tarde orientador de Tarski,
já havia proposto uma solução indexical de inspiração nominalista para o paradoxo do Men-
tiroso em seu artigo A Critique of the Logical Principle of the Excluded Middle (veja Betti
2004).

Além do aspecto modelo-teórico, investigações axiomáticas sobre a verdade e para-
doxos relacionados tornaram-se cada vez mais importantes desde os artigos pioneiros de
Friedman e Sheard (1987) e Feferman (1991). Desde o ano 2000, essa linha de pesquisa
tem sido intensamente estudada com diversos objetivos, desde análises prova-teóricas até
discussões filosóficas sobre minimalismo (para um panorama das variedades de sistemas
teóricos da verdade e referências apropriadas, veja as monografias recentes de Halbach,
2011 e Horsten, 2011, bem como o verbete Axiomatic Theories of Truth;55 veja também os
artigos de Feferman 2008, Fujimoto 2010, Leigh e Rathjen, 2010).

Por fim, mas não menos importante, o estudo axiomático de noções epistêmicas tem
sido consideravelmente beneficiado pela aplicação de técnicas usadas para provar resulta-
dos da incompletude e da indefinibilidade desde os anos 1960. Essas técnicas levaram a
resultados negativos (Kaplan e Montague 1960, Montague 1963, e Thomason 1980) e esta-

53N.T.: Também encontrado na literatura sob como “problema da vingança”.
54N.T.: https://plato.stanford.edu/entries/liar-paradox/
55N.T.: https://plato.stanford.edu/entries/truth-axiomatic/
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beleceram um elo interessante com o paradoxo do teste surpresa. A situação pode também
ter mudado pelo estudo da semântica de mundos possíveis para noções modais, concebidas
como predicados em Halbach, Leitgeb e Welch (2003). No entanto, esse tema ainda está
em aberto para debate e experimentação: por exemplo, argumenta-se em Halbach e Welch
(2009) que a abordagem predicativa da necessidade é um caminho viável — conquanto con-
siderado o poder expressivo — caso se utilize linguagens que envolvem tanto um predicado
de verdade quanto um operador de necessidade.

6.6 Mantendo-se não clássico

Diversas soluções foram propostas baseando-se no uso de lógicas paraconsistentes
(Priest) ou lógicas subestruturais (vide os verbetes Paraconsistent Logic e Substructural Lo-
gics,56 bem como Mares e Paoli 2014).

A investigação de paradoxos semânticos e conjuntistas no contexto da lógica infinita-
mente valorada — inicialmente explorada por Mow Shaw-Kwei (1954) e Skolem (1957) —
recebeu um novo impulso com as contribuições de Hájek, Shepherdson e Paris (2000), bem
como Hájek (2005, 2010) (veja Fisher, Halbach, Kriener e Stern 2015 para uma discussão
crítica sobre a interação entre as abordagens axiomática e a semântica da verdade). Tipica-
mente, artigos como esses aplicam resultados básicos da análise matemática (por exemplo,
o teorema do ponto fixo de Brouwer). Vale mencionar que Leitgeb (2008) forneceu uma
prova da consistência para uma teoria probabilística da verdade com o esquema–T irrestrito
empregando o teorema de Hahn-Banach. Um desdobramento dessa abordagem, que se
conecta com pesquisas relacionadas à teoria da revisão (ver seção 6.5) é encontrado em
Campbell-Moore, Horsten e Leitgeb (2019).

Teorias da verdade ingênua — baseadas na bicondicional irrestrita e em uma lógica
sem contração — podem ser encontradas na literatura, por exemplo, em Cantini (2002),
Zardini (2011), Bacon (2013) e Standefer (2016). Por outro lado, Ripley (2012) propõe uma
abordagem alternativa baseada em um sistema lógico não transitivo (veja também Cobreros
et al. 2012 e Cobreros et al. 2015, que tentam estender essa abordagem aos paradoxos da
vagueza).

Grišin (1981) demonstrou que um sistema baseado no princípio paradoxal por exce-

56N.T.: https://plato.stanford.edu/entries/logic-paraconsistent/
https://plato.stanford.edu/entries/logic-substructural/
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lência — o esquema uniforme da compreensão ingênua — e em alguma forma de lógica
não contrativa possui a eliminação do corte, e, portanto, é consistente. Por outro lado, a
consistência do sistema é destruída pela extensionalidade, o que pode ser visto como um
paradoxo adicional! Aqui, “uniforme” significa que um operador de abstração que vincula
variáveis57 {𝑥 ∣ 𝜑(𝑥,𝑎)} e nomeia o conjunto definido por 𝜑, dependendo de uma lista de
parâmetros 𝑎, está disponível. Curiosamente, foi demonstrado que sistemas intimamente
relacionados possuem aplicações inesperadas na caracterização de classes de complexi-
dade (Girard 1998, Terui 2004). Por outro lado, o sistema é computacionalmente completo
(ele pode interpretar a lógica combinatória, Cantini 2003).

A escolha de uma lógica de base não clássica frequentemente não é isenta de con-
sequências, no que tange à facilidade de uso de uma teoria. Uma tendência recente na
literatura (baseada em Halbach e Nicolai 2018) é a tentativa de comparar teorias clássicas e
não clássicas (quando cabível, como a axiomatizações da semântica de ponto fixod e Kripke)
para determinar o custo relacionado a uma escolha em relação à outra (ver tambémCastaldo
2023a, 2023b, e também Castaldo 2024, que tenta argumentar a favor das teorias clássicas
por meio da recaptura).

Finalmente, uma vez que o caráter da verdade clássica (tarskiana) é a sua natureza
infinitária, poder-se-ia classificar como não clássica a investigação de Sato e Walker 2023,
a qual tenta esclarecer o relacionamento entre verdade e finitismo respondendo à pergunta:
Faz sentido investigar uma versão da “verdade axiomática finitista”?

6.7 Em direção a uma abordagem “geométrica“

Além do uso de ferramentas da álgebra e da análise, investigações lógicas recentes
sobre paradoxos têm aplicado a teoria dos grafos (veja Cook 2004, Rabern, Rabern e Ma-
cauley 2013, Beringer e Schindler 2017, Hsiung 2017). A ideia central é tentar capturar em
termos geométricos os padrões do paradoxo, suas características estruturais. Por exemplo,
é possível associar um grafo de referência (rfg) às sentenças da linguagem da aritmética com
verdade através da noção de dependência de Leitgeb (Leitgeb 2005). Ainda, conjectura-se
que uma solução para o problema de caracterização de rfgs perigosos equivale à afirmação
de que, basicamente, o grafo do Mentiroso e o grafo de Yablo são os únicos rfgs paradoxais.
Essa linha de pesquisa é desenvolvida independentemente em Rossi (2019), explorando

57N.T.: “variable-binding”.
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uma ampla gama de comportamentos semânticos exibidos por sentenças paradoxais, pro-
pondo uma teoria unificada da verdade e do paradoxo (veja também Bruni e Rossi 2023,
que, ao estender esses meios, fornece uma unificação de paradoxos do tipo Mentiroso e do
tipo sorites). O resultado é uma teoria da verdade que fornece uma classificação tríplice das
sentenças paradoxais (sentenças do tipo Mentiroso, sentenças do tipo contador de verdade,
e sentenças do tipo revanche) e propõe um modo de interpretar esses três tipos de senten-
ças paradoxais, bem como sentenças livres de paradoxo, dentro de um único modelo no qual
a ferramenta fundamental é a noção de “grafo semântico”. Por sua vez, em Hsiung (2020),
a abordagem de Leitgeb é combinada com a de Beringer e Schindler (2017) para estudar
um tipo de paradoxos de característica finitária,58 definido em termos da própria relação de
dependência de Leitgeb.

Notavelmente, a teoria dos grafos não parece ser a única maneira pela qual se tenta
alcançar um tratamento uniforme dos paradoxos (na forma de uma teoria da “paradoxicali-
dade”; ver, por exemplo, Castaldo 2021).
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(II) Autorreferência e Paradoxo1

Título Original: Self-Reference and Paradox
Autores: Thomas Bolander
Tradução: Benedito Monteiro

Revisão: Bruna Silva

No contexto da linguagem, a autorreferência é usada para denotar uma afirmação que
se refere a si mesma ou ao seu próprio referente. O exemplo mais famoso de uma sentença
autorreferencial é a sentença do mentiroso: “Esta sentença não é verdadeira”. A autorre-
ferência também é frequentemente usada em um contexto mais amplo. Por exemplo, uma
imagem pode ser considerada autorreferencial se contiver uma cópia de si mesma (veja a
imagem acima)2; e uma obra literária pode ser considerada autorreferencial se incluir uma
referência à própria obra. Na filosofia, a autorreferência é de interesse específico em relação
à análise da linguagem, mas também à análise da mente. A autorreferência também é um
campo de especial interesse em matemática e ciência da computação, particularmente em
relação aos fundamentos dessas ciências.

Também falamos de autorreferência ao usarmos o pronome de primeira pessoa “eu”,
como em “Eu sinto dor” ou “Eu conheço essa música”. A autorreferência no sentido de um

1BOLANDER, Thomas, “Self-Reference and Paradox”, In: ZALTA, E. N.; NODELMAN, U. (eds.). The Stanford
Encyclopedia of Philosophy (Fall 2024 Edition). Stanford, CA: The Metaphysics Research Lab, 2024. Disponível
em: https://plato.stanford.edu/archives/fall2024/entries/self-reference/.
A seguir está a tradução da entrada sobre Autorreferência e Paradoxo de Thomas Bolander na Stanford
Encyclopedia of Philosophy. A tradução segue a versão da entrada nos arquivos da SEP em https://plato.
stanford.edu/archives/fall2024/entries/self-reference/. Esta versão traduzida pode diferir da versão atual da
entrada, que pode ter sido atualizada desde o momento desta tradução. A versão atual está localizada em
https://plato.stanford.edu/entries/self-reference/. Agradecemos aos editores Edward N. Zalta e Uri Nodelman
pela permissão para traduzir e publicar esta entrada.
2A imagem mencionada pelo autor consiste em um loop infinito, em que a reflexão espelhada se repete recursi-
vamente, criando um efeito de repetição sem fim. (N. T.)
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agente referir-se a si mesmo, assim como a diferença entre a autoatribuição e autoiden-
tificação em relação à atribuição ou identificação de outros, é abordada em várias outras
entradas desta enciclopédia, incluindo autoconhecimento3, conhecimento de si4, autocons-
ciência5, epistemologia de Descartes6 e introspecção7.

Uma parte importante do interesse filosófico na autorreferência está centrada nos para-
doxos. Um paradoxo é um raciocínio aparentemente sólido, baseado em suposições apa-
rentemente verdadeiras, que ainda levam a uma contradição (Quine, 1976). Considere no-
vamente a sentença do mentiroso mencionada anteriormente. É uma sentença 𝐿 que ex-
pressa: “A sentença 𝐿 não é verdadeira.” Somos levados a uma contradição quando ten-
tamos determinar se 𝐿 é verdadeira ou não. Se primeiro assumirmos que 𝐿 é verdadeira,
então ele deve estar expressando uma afirmação verdadeira sobre o mundo. Como 𝐿 ex-
pressa “A sentença 𝐿 não é verdadeira”, agora temos que 𝐿 não é verdadeira, o que é uma
contradição. Suponha, contrariamente, que 𝐿 não seja verdadeira. Então, a expressão “A
sentença 𝐿 não é verdadeira” é verdadeira. Mas a expressão entre aspas é exatamente
a afirmação expressa por 𝐿, então 𝐿 deve ser verdadeira, novamente uma contradição.
Assim, independentemente de assumirmos que 𝐿 é verdadeira, seja assumindo que não,
chegamos a uma contradição. Portanto, agora temos uma contradição obtida por meio de
um raciocínio aparentemente sólido, baseado em suposições aparentemente verdadeiras.
Isso, portanto, qualifica-se como um paradoxo. Esse paradoxo é conhecido como o para-
doxo do mentiroso. A sentença do mentiroso leva a um paradoxo porque é autorreferencial,
mas a autorreferência não é uma condição suficiente para a paradoxalidade. A sentença
veraz “Esta sentença é verdadeira” não é paradoxal, e tampouco a sentença “Esta sentença
contém quatro palavras” (embora seja falsa).

A maioria dos paradoxos de autorreferência pode ser categorizada como semântica,
3Gertler, Brie, “Self-Knowledge”, The Stanford Encyclopedia of Philosophy (Summer 2024 Edition), Edward N.
Zalta & Uri Nodelman (eds.), URL = https://plato.stanford.edu/archives/sum2024/entries/self-knowledge.
4Gertler, Brie, “Self-Knowledge”, The Stanford Encyclopedia of Philosophy (Summer 2024 Edition), Edward N.
Zalta & Uri Nodelman (eds.), URL = https://plato.stanford.edu/archives/sum2024/entries/self-knowledge/.
5Smith, Joel, “Self-Consciousness”, The Stanford Encyclopedia of Philosophy (Summer 2024 Edition), Edward
N. Zalta & Uri Nodelman (eds.), URL = https://plato.stanford.edu/archives/sum2024/entries/self-consciousness/.
6Newman, Lex, “Descartes’ Epistemology”, The Stanford Encyclopedia of Philosophy (Winter 2023 Edi-
tion), Edward N. Zalta & Uri Nodelman (eds.), URL = https://plato.stanford.edu/archives/win2023/entries/
descartes-epistemology.
7Schwitzgebel, Eric, “Introspection”, The Stanford Encyclopedia of Philosophy (Fall 2024 Edition), Edward N.
Zalta & Uri Nodelman (eds.), URL = https://plato.stanford.edu/archives/fall2024/entries/introspection/.
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conjuntista ou epistêmicos. Os paradoxos semânticos, como o paradoxo do mentiroso, são
principalmente relevantes para as teorias da verdade. Os paradoxos conjuntistas são rele-
vantes para os fundamentos da matemática, e os paradoxos epistêmicos são relevantes à
epistemologia. Embora esses paradoxos sejam diferentes no assunto no qual se relacionam,
eles compartilham a mesma estrutura subjacente e, muitas vezes, podem ser abordados
usando os mesmos meios matemáticos.

Nesta introdução, apresentaremos primeiramente alguns dos paradoxos de autorrefe-
rência mais conhecidos e discutiremos a estrutura subjacente em comum. Em seguida,
abordaremos as profundas consequências que esses paradoxos têm em diferentes áreas:
teorias da verdade, teoria dos conjuntos, epistemologia, fundamentos da matemática e com-
putabilidade. Por fim, apresentaremos as abordagens mais proeminentes para a resolução
desses paradoxos.

1. Paradoxos da Autorreferência

1.1 Paradoxos Semânticos

Os paradoxos de autorreferência são conhecidos desde a antiguidade. A descoberta
do paradoxo do mentiroso é frequentemente creditada a Eubúlides de Mégara, que viveu
no século IV a.C. O paradoxo do mentiroso pertence à categoria dos paradoxos semânti-
cos, já que é baseado na noção semântica de verdade. Outros paradoxos semânticos bem
conhecidos incluem o paradoxo de Grelling, o paradoxo de Berry e o paradoxo de Richard.

O paradoxo de Grelling envolve um predicado definido da seguinte maneira. Diz-se que
um predicado é heterológico se não é verdadeiro em relação a si mesmo, isto é, se ele próprio
não possui a propriedade que expressa. Assim, o predicado “alemão” é heterológico, uma
vez que não é uma palavra alemã, mas o predicado “deutsch” não é heterológico. A questão
que leva ao paradoxo é:

> O “heterológico” é heterológico?

É fácil perceber que chegamos a uma contradição, independentemente de responder-
mos “sim” ou “não” a essa questão (o raciocínio segue de maneira semelhante ao paradoxo
do mentiroso). O paradoxo de Grelling é autorreferencial, pois a definição do predicado
“heterológico” se refere a todos os predicados, incluindo o próprio predicado heterológico.
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Definições como essa, que dependem de um conjunto de entidades, sendo que pelo menos
uma delas é a entidade que está sendo definida, são chamadas de impredicativas.

O paradoxo de Berry é outro paradoxo baseado em uma definição impredicativa, ou me-
lhor, em uma descrição impredicativa. Algumas expressões da língua inglesa são descrições
de números naturais, por exemplo, “a soma de cinco e sete” é uma descrição do número 12.
O paradoxo de Berry surge ao tentar determinar a denotação da seguinte descrição:

> O menor número que não pode ser referido por uma descrição contendo
menos de 100 símbolos.

A contradição é que essa descrição com 93 símbolos denota um número que, por defi-
nição, não pode ser denotado por nenhuma descrição contendo menos de 100 símbolos. É
claro que a descrição é impredicativa, já que se refere implicitamente a todas as descrições,
incluindo a si mesma.

O paradoxo de Richard considera frases da língua inglesa que definem números reais,
em vez de números naturais. Por exemplo, “a razão entre a circunferência e o diâmetro de
um círculo” é uma frase que define o número 𝜋. Suponha que uma enumeração de todas
essas frases seja fornecida (por exemplo, colocando-as em ordem lexicográfica). Agora
considere a frase:

> O número real cujo n-ésimo decimal é 1 sempre que o n-ésimo decimal do
número denotado pela n-ésima frase for 0; caso contrário, é 0.

Essa frase define um número real, então deve estar entre as frases enumeradas, di-
gamos que seja o número 𝑘 nessa enumeração. Mas, ao mesmo tempo, por definição,
ele difere do número denotado pela 𝑘-ésima frase no 𝑘-ésimo decimal. Assim, temos uma
contradição. A frase definidora é obviamente impredicativa. A construção particular empre-
gada nesse paradoxo é chamada de diagonalização. A diagonalização é uma construção
geral e um método de prova originalmente inventado por Georg Cantor (1891) para provar a
não-enumerabilidade do conjunto das partes dos números naturais. Ela também foi usada
como base para o paradoxo de Cantor, um dos paradoxos da teoria dos conjuntos que será
considerado a seguir.
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1.2 Paradoxos da Teoria dos Conjuntos

Os paradoxos mais conhecidos da teoria dos conjuntos são o paradoxo de Russell e o
paradoxo de Cantor. O paradoxo de Russell surge ao considerar o conjunto de Russell 𝑅
de todos os conjuntos que não são membros de si mesmos, ou seja, o conjunto definido
por 𝑅 = {𝑥 ∣ 𝑥 ∉ 𝑥}. A contradição é derivada ao perguntar se 𝑅 é um membro de si
mesmo, isto é, se 𝑅 ∈ 𝑅 é verdadeiro. Se 𝑅 ∈ 𝑅, então 𝑅 ∈ 𝑅 é um membro de si
mesmo e, portanto, 𝑅 ∉ 𝑅, pela definição de 𝑅. Se, por outro lado, 𝑅 ∉ 𝑅, então 𝑅 não
é um membro de si mesmo e, assim, 𝑅 ∈ 𝑅, novamente pela definição de 𝑅.

O paradoxo de Cantor é baseado em uma aplicação do teorema de Cantor. O teorema
de Cantor afirma que, dado qualquer conjunto finito ou infinito 𝑆, o conjunto das partes
de 𝑆 tem uma cardinalidade (tamanho maior) estritamente maior do que 𝑆. O teorema
é provado por uma forma de diagonalização, a mesma ideia subjacente ao paradoxo de
Richard. O paradoxo de Cantor considera o conjunto de todos os conjuntos. Chamemos
esse conjunto de conjunto universal e denotemos-o por 𝑈 . O conjunto das partes de 𝑈 é
denotado por 𝒫(𝑈). Como 𝑈 contém todos os conjuntos, ele conterá, em particular, todos
os elementos de 𝒫(𝑈). Assim, 𝒫(𝑈) deve ser um subconjunto de 𝑈 e deve, portanto, ter
uma cardinalidade (tamanho) que é menor ou igual à cardinalidade de 𝑈 . No entanto, isso
contradiz imediatamente o teorema de Cantor.

O paradoxo do hiperjogo é uma adição mais recente à lista de paradoxos da teoria dos
conjuntos, inventado por Zwicker (1987). Chamaremos um jogo de dois jogadores de bem-
fundamentado se ele tiver que terminar em um número finito de jogadas. O xadrez em
torneio é um exemplo de jogo bem-fundamentado. Agora definimos o hiperjogo como o
jogo em que o jogador 1, na primeira jogada, escolhe um jogo bem-fundamentado a ser
jogado, e o jogador 2, subsequentemente, faz a primeira jogada no jogo escolhido. Todas
as jogadas restantes são, então, jogadas do jogo escolhido. O hiperjogo deve ser um jogo
bem-fundamentado, uma vez que qualquer partida durará exatamente uma jogada a mais
do que algum jogo bem-fundado dado. No entanto, se o hiperjogo é bem-fundamentado,
então ele deve ser um dos jogos que podem ser escolhidos na primeira jogada do hiperjogo,
ou seja, o jogador 1 pode escolher o hiperjogo na primeira jogada. Isso permite que o jo-
gador 2 escolha o hiperjogo na jogada subsequente, e os dois jogadores podem continuar
escolhendo o hiperjogo ad infinitum. Assim, o hiperjogo não pode ser bem-fundamentado,
contradizendo nossa conclusão anterior.
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1.3 Paradoxos Epistêmicos
O paradoxo epistêmico mais conhecido é o paradoxo do conhecedor (Kaplan & Mon-

tague, 1960; Montague, 1963). Esse paradoxo tem muitas formulações equivalentes, uma
delas baseada na frase “Esta sentença não é conhecida por ninguém”. Vamos chamar essa
frase de sentença do conhecedor, abreviada como 𝐾𝑆. 𝐾𝑆 é obviamente bastante seme-
lhante à sentença do mentiroso, exceto que o conceito central envolvido é o conhecimento,
em vez da verdade. O raciocínio que leva a uma contradição a partir de𝐾𝑆 é um poucomais
complexo do que no paradoxo do mentiroso. Primeiro, 𝐾𝑆 é demonstrada como verdadeira
pelo seguinte raciocínio:

> Assuma, para obter uma contradição, que KS não é verdadeira. Então, o que
KS expressa não pode ser o caso, ou seja, KS deve ser conhecida por alguém.
Como tudo o que é conhecido é verdadeiro (isso faz parte da definição do
conceito de conhecimento), KS é verdadeira, o que contradiz nossa suposição.
Isso conclui a prova de que KS é verdadeira.

A parte do raciocínio que acabou de ser realizado para provar a veracidade de𝐾𝑆 deve
estar disponível para qualquer agente (pessoa) com capacidades de raciocínio suficientes.
Ou seja, um agente deve ser capaz de provar a veracidade de 𝐾𝑆 e, assim, saber que ao
conhecimento que 𝐾𝑆 é válido. No entanto, se 𝐾𝑆 é conhecida por alguém, então o que
expressa não é o caso, e, portanto, não pode ser verdadeira. Isso é uma contradição, e
assim temos um paradoxo. O papel da autorreferência nesse paradoxo é óbvio, já que se
baseia em uma sentença, 𝐾𝑆, referindo-se diretamente a si mesma.

O paradoxo do conhecedor é apenas um dos muitos paradoxos epistêmicos envol-
vendo autorreferência. Veja o artigo sobre paradoxos epistêmicos8 para mais informações
sobre a classe dos paradoxos epistêmicos. Um paradoxo epistêmico mais recente, situ-
ado no contexto de crenças e suposições em um jogo de dois jogadores, é o paradoxo de
Brandenburger-Keisler (Brandenburger & Keisler, 2006), descrito em detalhes no artigo so-
bre fundamentos epistêmicos da teoria dos jogos9. Para uma discussão detalhada e história
8Sorensen, Roy, “Epistemic Paradoxes”, The Stanford Encyclopedia of Philosophy (Fall 2024 Edition), Edward
N. Zalta & Uri Nodelman (eds.), URL = https://plato.stanford.edu/archives/fall2024/entries/epistemic-paradoxes/.
9Pacuit, Eric and Olivier Roy, “Epistemic Foundations of Game Theory”, The Stanford Encyclopedia of Philosophy
(Fall 2024 Edition), Edward N. Zalta & Uri Nodelman (eds.), URL = https://plato.stanford.edu/archives/fall2024/
entries/epistemic-game/.

90

https://plato.stanford.edu/archives/fall2024/entries/epistemic-paradoxes/
https://plato.stanford.edu/archives/fall2024/entries/epistemic-game/
https://plato.stanford.edu/archives/fall2024/entries/epistemic-game/


dos paradoxos de autorreferência em geral, veja o artigo sobre paradoxos e lógica contem-
porânea10.

1.4 Estruturas Comuns nos Paradoxos

Os paradoxos acima são todos bastante semelhantes em sua estrutura. No caso dos
paradoxos de Grelling e Russell, isso pode ser visto da seguinte maneira. Defina a extensão
de um predicado como o conjunto de objetos dos quais ele é verdadeiro. Para um predicado
𝑃 , denotamos sua extensão por ext(𝑃 ). O paradoxo de Grelling envolve o predicado hete-
rológico, que é verdadeiro para todos aqueles predicados que não são verdadeiros para si
mesmos. Assim, a extensão do predicado heterológico é o conjunto {𝑃 ∣ 𝑃 ∉ ext(𝑃 )}.
Compare isso ao conjunto de Russell 𝑅 dado por {𝑥 ∣ 𝑥 ∉ 𝑥}. A única diferença significa-
tiva entre esses dois conjuntos é que o primeiro é definido em predicados, enquanto o se-
gundo é definido em conjuntos. As provas de contradições baseadas nesses dois conjuntos
também compartilham a mesma estrutura, conforme visto abaixo (onde “het” é a abreviação
de “heterológico”):

(Grelling) het ∈ ext(het) ⇔ het ∈ {𝑃 ∣ 𝑃 ∉ ext(𝑃 )}
⇔ het ∉ ext(het).

(Russell) 𝑅 ∈ 𝑅 ⇔ 𝑅 ∈ {𝑥 ∣ 𝑥 ∉ 𝑥}
⇔ 𝑅 ∉ 𝑅

Aqui temos dois paradoxos de uma estrutura quase idêntica pertencentes a duas clas-
ses distintas de paradoxos: um é semântico e o outro é teórico-conjuntista. O que isso nos
ensina é que, mesmo que os paradoxos pareçam diferentes por envolverem assuntos di-
ferentes, eles podem ser quase idênticos em sua estrutura subjacente. Assim, em muitos
casos, faz mais sentido estudar os paradoxos da autorreferência como um único tipo, em vez
de estudá-los, digamos, os paradoxos semânticos e os paradoxos da teoria dos conjuntos
separadamente.

10Cantini, Andrea and Riccardo Bruni, “Paradoxes and Contemporary Logic”, The Stanford Encyclopedia of Phi-
losophy (Fall 2024 Edition), Edward N. Zalta & Uri Nodelman (eds.), URL = https://plato.stanford.edu/archives/
fall2024/entries/paradoxes-contemporary-logic/.
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Os paradoxos de Russell e Cantor também são mais semelhantes do que parecem à
primeira vista. O paradoxo de Cantor é baseado em uma aplicação do teorema de Cantor
ao conjunto universal𝑈 (cf. Seção 1.2 acima). Abaixo, damos a prova do teorema de Cantor
para um conjunto arbitrário 𝑆.

> Precisamos provar que 𝒫(𝑆) tem maior cardinalidade que 𝑆. Assumimos,
para obter uma contradição, que isso não é o caso. Então deve existir uma fun-
ção (potencialmente parcial) 𝑓 de 𝑆 sobre 𝒫(𝑆). Agora considere o conjunto
𝐶 = {𝑥 ∈ dom(𝑓) ∣ 𝑥 ∉ 𝑓(𝑥)}. Claramente, 𝐶 ⊆ 𝑆 então 𝐶 ∈ 𝒫(𝑆).
Como 𝑓 é sobrejetora em 𝒫(𝑆), deve então existir um conjunto 𝑐 ∈ dom(𝑓)
tal que 𝑓(𝑐) = 𝐶 . No entanto, agora obtemos uma contradição, pois o se-
guinte vale:

𝑐 ∈ 𝑓(𝑐) ⇔ 𝑐 ∈ {𝑥 ∈ dom(𝑓) ∣ 𝑥 ∉ 𝑓(𝑥)}
⇔ 𝑐 ∉ 𝑓(𝑐).

Note a semelhança entre essa sequência de equivalências e as sequências de equiva-
lências correspondentes derivadas para os paradoxos de Russell e Grelling acima. Agora
considere o caso especial do teorema de Cantor onde 𝑆 é o conjunto universal. Então po-
demos simplesmente escolher 𝑓 como a função identidade em 𝒫(𝑆), já que 𝑆 é o conjunto
universal e, portanto, 𝒫(𝑆) ⊆ 𝑆 (qualquer conjunto deve ser um subconjunto do conjunto
universal). Então, 𝑓 é a função parcial 𝑓 ∶ 𝒫(𝑆) → 𝒫(𝑆) definida por 𝑓(𝑥) = 𝑥. Mas
então 𝐶 acima se torna o conjunto de Russell, e a sequência de equivalências se torna a
prova da contradição no paradoxo de Russell! Assim, o paradoxo de Cantor nada mais é do
que uma ligeira variação do paradoxo de Russell; o argumento central que leva à contradição
é o mesmo em ambos.

Priest (1994) fornece evidências ainda mais firmes sobre a semelhança entre os para-
doxos da autorreferência ao mostrar que todos eles se encaixam no que ele originalmente
chamou de Esquema de Russell Qualificado, agora denominado Esquema de Inclusão. A
ideia por trás disso remonta ao próprio Russell (1905), que também considerou que os pa-
radoxos da autorreferência têm uma estrutura subjacente comum. Dado dois predicados 𝑃
e 𝑄, e uma função possivelmente parcial 𝛿, o Esquema de Inclusão consiste nas seguintes
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duas condições:

1. 𝑤 = {𝑥 ∣ 𝑃 (𝑥)} existe e 𝑄(𝑤) é verdadeiro;

2. Se 𝑦 é um subconjunto de 𝑤 tal que 𝑄(𝑦) é verdadeiro, então:

2.1. 𝛿(𝑦) ∉ 𝑦,
2.2. 𝛿(𝑦) ∈ 𝑤.

Se essas condições forem satisfeitas, temos a seguinte contradição: como 𝑤 é trivi-
almente um subconjunto de 𝑤 e como 𝑄(𝑤) é verdadeiro pela condição 1, temos tanto
𝛿(𝑤) ∉ 𝑤 quanto 𝛿(𝑤) ∈ 𝑤, pelas condições 2a e 2b, respectivamente. Assim, qual-
quer tripla (𝑃 , 𝑄, 𝛿) que satisfaça o Esquema de Inclusão produzirá um paradoxo. Priest
mostra como a maioria dos paradoxos bem conhecidos da autorreferência se encaixam no
esquema. Abaixo, consideraremos apenas alguns desses paradoxos, começando com o
paradoxo de Russell. Nesse caso, definimos a tripla (𝑃 , 𝑄, 𝛿) da seguinte forma:

• 𝑃(𝑥) é o predicado “𝑥 ∉ 𝑥”.

• 𝑄(𝑦) é o predicado universal verdadeiro para qualquer objeto.

• 𝛿 é a função identidade.

Então, 𝑤 no Esquema de Inclusão se torna o conjunto de Russell e a contradição obtida
a partir do esquema se torna o paradoxo de Russell.

No caso do paradoxo de Richard, definimos a tripla da seguinte maneira:

• 𝑃(𝑥) é o predicado “𝑥 é um real definível por uma frase em inglês.”

• 𝑄(𝑦) é o predicado “𝑦 é um conjunto denumerável de reais definíveis por uma frase
em inglês.”

• 𝛿 é a função que mapeia qualquer conjunto denumerável 𝑦 de reais para o real 𝑧,
cujo enésimo decimal é 1 sempre que o enésimo decimal do enésimo real em 𝑦 for 0;
caso contrário, é 0. (Qualquer enumeração dos elementos em 𝑦 servirá.)
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Aqui, 𝑤 = {𝑥 ∣ 𝑃 (𝑥)} torna-se o conjunto de todos os reais definíveis por frases em
inglês. Para qualquer subconjunto denumerável 𝑦 de𝑤, 𝛿(𝑦) é um real que, por construção,
diferirá de todos os reais em 𝑦 (difere do enésimo real em 𝑦 no enésimo decimal). Se deixar-
mos 𝑦 igual a 𝑤, então obtemos 𝛿(𝑤) ∉ 𝑤. No entanto, ao mesmo tempo, 𝛿(𝑤) é definível
por uma frase em inglês, então 𝛿(𝑤) ∈ 𝑤, e temos uma contradição. Essa contradição é o
paradoxo de Richard.

O paradoxo do mentiroso também se encaixa no esquema de Russell, embora de uma
maneira um pouco menos direta:

• 𝑃(𝑥) é o predicado “𝑥 é verdadeiro.”

• 𝑄(𝑦)é o predicado “𝑦 é definível.”

• 𝛿(𝑦) é a frase “esta frase não pertence ao conjunto 𝑦”.

Aqui, 𝑤 = {𝑥 ∣ 𝑃 (𝑥)} torna-se o conjunto de frases verdadeiras, e 𝛿(𝑤) torna-
se uma versão da sentença do mentiroso: “esta frase não pertence ao conjunto de frases
verdadeiras”.

Do exposto acima, pode-se concluir que todos, ou pelo menos a maioria, dos paradoxos
de autorreferência compartilham a mesma estrutura subjacente - independente de serem se-
mânticos, conjuntistas ou epistêmicos. Priest chama isso de princípio da solução uniforme:
“mesmo tipo de paradoxo, mesmo tipo de solução.” No entanto, se o Esquema de Inclusão
pode, de forma geral, ser considerado uma condição necessária e suficiente para a parado-
xalidade autorreferencial é discutível (Slater, 2002; Abad, 2008; Badici, 2008; Zhong, 2012,
entre outros), de modo que nem todos os autores concordam com o princípio da solução
uniforme.

O paradoxo sorites11 é um paradoxo que, à primeira vista, não envolve autorreferência
de forma alguma. No entanto, Priest (2010b, 2013) argumenta que ele ainda se encaixa no
Esquema de Inclusão e, portanto, pode ser visto como um paradoxo de autorreferência, ou
pelo menos um paradoxo que deveria ter o mesmo tipo de solução que os paradoxos de
autorreferência. Isso levou Colyvan (2009), Priest (2010) e Weber (2010b) a propor uma
abordagem dialeteica para resolver o paradoxo sorites. Essa abordagem ao paradoxo sori-
tes foi atacada por Beall (2014a, 2014b) e defendida por Weber et al. (2014). Cobreros et
11Hyde, Dominic and Diana Raffman, “Sorites Paradox”, The Stanford Encyclopedia of Philosophy (Summer 2018
Edition), Edward N. Zalta (ed.), URL = https://plato.stanford.edu/archives/sum2018/entries/sorites-paradox/.
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al. (2015) investigam a noção de consequência permissiva com o objetivo de oferecer um
tratamento unificado para os paradoxos da vagueza (como o paradoxo sorites) e os parado-
xos de autorreferência. A relação de consequência permissiva é uma versão enfraquecida
da relação de consequência clássica no contexto da lógica multivalorada: ela apenas exige
que, quando as premissas assumem o valor 1 (são exclusivamente verdadeiras), então a
conclusão não deve assumir o valor 0 (não é exclusivamente falsa). Um diagnóstico unifi-
cado mais recente dos paradoxos semânticos e soríticos é feito por Bruni & Rossi (2023),
que identificam sua origem em uma forma geral de indiscernibilidade.

1.5 Paradoxos sem Negação

A maioria dos paradoxos considerados até agora envolve a negação de maneira es-
sencial, por exemplo, sentenças que afirmam de si mesmas que não são verdadeiras ou
conhecíveis. O papel central da negação se tornará ainda mais claro quando formalizarmos
os paradoxos de autorreferência na Seção 2 abaixo. O paradoxo de Curry é um paradoxo
de autorreferência semelhante que, no entanto, não envolve diretamente a negação. Uma
variante semântica do paradoxo de Curry vem da seguinte sentença de Curry 𝐶 : “Se esta
sentença é verdadeira, então 𝐹 ”, onde 𝐹 pode ser qualquer afirmação, como por exemplo
uma que seja obviamente falsa. Suponha que a sentença de Curry 𝐶 seja verdadeira. En-
tão, ela expressa um fato verdadeiro, isto é, se 𝐶 é verdadeira, então 𝐹 . No entanto, já
assumimos que 𝐶 é verdadeiro, então podemos inferir 𝐹 , usando o Modus Ponens. Prova-
mos que, se assumirmos que 𝐶 é verdadeira, então 𝐹 se segue. Isso é exatamente o que a
própria sentença de Curry expressa. Em outras palavras, provamos que a própria sentença
de Curry é verdadeira! Mas então também temos que 𝐹 é verdadeira, e isso é um paradoxo,
uma vez que 𝐹 pode ser qualquer afirmação, incluindo coisas que são claramente falsas.
Podemos, por exemplo, provar facilmente que o Papai Noel existe, simplesmente deixando
𝐹 ser a sentença “Papai Noel existe” (Boolos, 1993; Smullyan, 2006). Em um contexto lógico
clássico onde a implicação 𝐶 → 𝐹 é equivalente a ¬𝐶 ∨ 𝐹 , o paradoxo de Curry ainda
envolve implicitamente a negação, mas o paradoxo de Curry ainda é independentemente
interessante, uma vez que se sustenta com menos suposições sobre a lógica subjacente
do que o paradoxo do mentiroso. Veja a entrada sobre o paradoxo de Curry12 para mais

12Shapiro, Lionel and Jc Beall, “Curry’s Paradox”, The Stanford Encyclopedia of Philosophy (Winter 2021 Edition),
Edward N. Zalta (ed.), URL = https://plato.stanford.edu/archives/win2021/entries/curry-paradox/.
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detalhes.

1.6 Paradoxos sem Autorreferência
A maioria dos paradoxos clássicos de autorreferência envolve autorreferência direta,

como no paradoxo do mentiroso, onde uma sentença se refere diretamente a si mesma.
No entanto, é fácil construir paradoxos que empregam apenas autorreferência indireta, ou
seja, sentenças que se referem a outras sentenças, que por sua vez se referem a outras, de
modo a formar um loop de volta à sentença original. Um exemplo é o paradoxo do cartão
postal, muitas vezes atribuído a Philip Jourdain (1879–1919), embora, segundo Roy Soren-
sen (2003, p. 332), o verdadeiro inventor seja G.G. Berry (1867–1928), o bibliotecário de
Oxford a quem também é creditado o paradoxo de Berry mencionado anteriormente. No
paradoxo do cartão postal, o lado da frente de um cartão postal diz “a sentença no verso é
verdadeira”, enquanto o verso diz “a sentença na frente é falsa”. Para que a sentença na
frente seja verdadeira, a sentença no verso precisa ser verdadeira, mas para que a sentença
no verso seja verdadeira, a sentença na frente precisa ser falsa. Isso gera uma contradição,
alcançada de maneira semelhante ao paradoxo do mentiroso. Existem até exemplos muito
anteriores de autorreferência indireta na literatura: o Sofisma 9 nos Sophismata de John Bu-
ridan, do século 14 (Buridan [SD], Hughes 1982), é estruturalmente equivalente ao paradoxo
do cartão postal.

Em 1985, Yablo conseguiu construir um paradoxo semântico que não envolve autorre-
ferência, nem mesmo autorreferência indireta. Em vez disso, ele consiste em uma cadeia
infinita de sentenças, cada sentença expressando a falsidade de todas as sentenças subse-
quentes. Mais precisamente, para cada número natural 𝑖 , definimos 𝑆𝑖 como a sentença
“para todo 𝑗 > 𝑖, 𝑆𝑗 não é verdadeira”. Podemos, então, derivar uma contradição da se-
guinte maneira:

> Primeiro, provamos que nenhuma das sentenças 𝑆𝑖 pode ser verdadeira.
Suponha, para obter uma contradição, que 𝑆𝑖 seja verdadeira para algum 𝑖.
Então, é verdade que “para todo 𝑗 > 𝑖, 𝑆𝑗 não é verdadeira”. Assim, ne-
nhuma das sentenças 𝑆𝑗 para 𝑗 > 𝑖 é verdadeira. Em particular, 𝑆𝑖+1 não é
verdadeira. 𝑆𝑖+1 é a sentença “para todo 𝑗 > 𝑖 + 1, 𝑆𝑗 não é verdadeira”.
Como essa sentença não é verdadeira, deve haver algum 𝑘 > 𝑖 + 1 para o
qual 𝑆𝑘 seja verdadeira. No entanto, isso contradiz o fato de que nenhuma

96



das sentenças 𝑆𝑗 com 𝑗 > 𝑖 é verdadeira.
> Agora provamos que nenhuma das sentenças 𝑆𝑖 é verdadeira. Então, em
particular, temos que para todo 𝑗 > 0, 𝑆𝑗 não é verdadeira. Isso é exatamente
o que é expresso por 𝑆0, então 𝑆0 deve ser verdadeira. Novamente, temos
uma contradição.

Yablo chama este paradoxo de 𝜔-mentiroso, mas outros geralmente se referem a ele
como o paradoxo de Yablo. Note que nenhuma das sentenças 𝑆𝑖 se refere a si mesma (nem
mesmo indiretamente), mas apenas às sentenças que ocorrem posteriormente na sequên-
cia. O paradoxo de Yablo é semântico, mas como mostrado por Yablo (2006), paradoxos
similares de teoria dos conjuntos, que não envolvem autorreferência, podem ser formulados
em certas teorias dos conjuntos.

O paradoxo de Yablo demonstra que podemos ter paradoxos lógicos sem autorreferên-
cia — apenas um certo tipo de estrutura não bem-fundada é necessário para obter uma
contradição. Obviamente, há diferenças estruturais entre os paradoxos ordinários de autor-
referência e o paradoxo de Yablo: os paradoxos ordinários de autorreferência envolvem uma
estrutura cíclica de referência, enquanto o paradoxo de Yablo envolve uma estrutura acíclica,
mas não bem-fundada, de referência. Mais precisamente, podemos pensar a estrutura re-
ferencial subjacente a um paradoxo como um grafo direcionado. Os vértices desse grafo
são sentenças, e há uma aresta direcionada da sentença 𝑆 para a sentença 𝑇 se 𝑆 se re-
fere diretamente a 𝑇 . A estrutura referencial do mentiroso é, então, um grafo com um único
laço reflexivo. A estrutura referencial do paradoxo do cartão-postal é um grafo cíclico com
2 vértices, cada um tendo uma aresta direcionada para o outro vértice. Todos os paradoxos
de autorreferência direta ou indireta possuem estruturas cíclicas de referência (seus grafos
subjacentes são cíclicos). Isso é diferente no paradoxo de Yablo. A estrutura referencial no
paradoxo de Yablo é isomórfica à ordenação usual de menor que nos números naturais, que
é uma ordem total estrita (não contém ciclos). Mesmo havendo essa diferença, o paradoxo
de Yablo ainda compartilha a maioria das propriedades com os paradoxos ordinários de au-
torreferência. Quando resolvemos paradoxos, podemos então optar por considerá-los todos
em um só e nos referirmos a ele como paradoxos de não bem-fundamentação. No entanto,
a seguir, vamos nos ater ao termo paradoxos de autorreferência, embora grande parte do
que dissermos também se aplique ao paradoxo de Yablo e a paradoxos relacionados de não
bem-fundamentação.
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Dado o insight de que não apenas as estruturas cíclicas de referência podem levar a
paradoxos, mas também certos tipos de estruturas não bem-fundadas, torna-se interessante
estudar mais a fundo essas estruturas de referência e seu potencial para caracterizar as
condições necessárias e suficientes para a paradoxicalidade. Essa linha de trabalho foi
iniciada por Gaifman (1988, 1992, 2000) e mais tarde continuada por Cook (2004), Walicki
(2009) e outros.

Uma quantidade significativa de trabalhos mais mais recentes sobre autorreferência têm
se concentrado em tentar fazer uma caracterização completa, do ponto de vista da teoria dos
grafos, de quais estruturas de referência admitem paradoxos, incluindo Rabern e Macauley
(2013), Cook (2014), e Dyrkolbotn e Walicki (2014). Uma caracterização completa ainda é
um problema em aberto (Rabern, Rabern e Macauley, 2013), mas parece ser uma conjec-
tura relativamente difundida que todos os grafos paradoxais de referência são ou cíclicos ou
contêm uma estrutura do tipo Yablo. A conjectura foi confirmada para certas subclasses de
grafos infinitos (Walicki, 2019), mas ainda está em aberto se ela vale para grafos arbitrários.
Se a conjectura for de fato verdadeira, isso significa que, em termos de estruturas de refe-
rência, todos os paradoxos de referência são ou do tipo mentiroso ou do tipo Yablo. O que
exatamente significa para uma estrutura (grafo) ser do tipo Yablo pode ser definido de várias
maneiras diferentes, mas equivalentes, incluindo: 1) o grafo contém o grafo de referência
do paradoxo de Yablo, (𝜔, <), como um menor finitário (Beringer & Schindler, 2017); 2) o
grafo contém um raio (um caminho infinito) no qual há infinitos vértices, cada um com infinitos
caminhos disjuntos para infinitos outros vértices no raio (Walicki, 2019).

Embora a estrutura de referência envolvida no paradoxo de Yablo não contenha ciclos
(cada sentença refere-se apenas a sentenças posteriores na sequência), ainda é debatido
se o paradoxo é autorreferencial ou não (Cook, 2014; Halbach e Zhang, 2017). O próprio
Yablo (1993) argumenta que não é autorreferencial, enquanto Priest (1997) defende que é
autorreferencial. Butler (2017) afirma que, mesmo que Priest esteja correto, haverá outros
paradoxos semelhantes ao de Yablo que não são autorreferenciais no sentido de Priest. Na
análise do paradoxo de Yablo, é essencial notar que ele envolve uma sequência infinita de
sentenças, em que cada sentença se refere a infinitas outras sentenças. Para formalizá-lo
em um contexto de lógica proposicional, é necessário usar lógica proposicional infinitária (ver
o verbete sobre lógica infinitária)13. Qualquer variante finita da sequência de Yablo—onde

13Bell, John L., “Infinitary Logic”, The Stanford Encyclopedia of Philosophy (Fall 2023 Edition), Edward N. Zalta
& Uri Nodelman (eds.), URL = https://plato.stanford.edu/archives/fall2023/entries/logic-infinitary/.
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cada sentença se refere a apenas um número finito de sentenças posteriores—deve ser ne-
cessariamente consistente (não paradoxal) devido ao teorema da compacidade na lógica
proposicional (cada subconjunto finito de sentenças na sequência induz uma relação de re-
ferência bem-fundada, e as sentenças podem, assim, ser atribuídas de maneira consistente
com valores de verdade de baixo para cima). Na aritmética de primeira e segunda ordem
finita, pode-se tentar formalizar o paradoxo de Yablo por meio de um predicado unário 𝑆(𝑥),
onde, para cada número natural 𝑖, 𝑆(𝑖) representa a formalização da 𝑖-ésima sentença 𝑆𝑖
da sequência de Yablo (onde 𝑖 é o numeral que representa 𝑖). Como e se o paradoxo de
Yablo pode ser representado de forma verdadeira dessa maneira, e como isso se relaciona
à compacidade da lógica subjacente, foi investigado por Picollo (2013).

O paradoxo de Yablo também inspirou a criação de paradoxos semelhantes envolvendo
estruturas de referência acíclicas e não-bem-fundadas em outras áreas que não a verdade,
por exemplo, a variante “yablosca” do paradoxo de Brandenburger-Keisler na teoria dos jogos
epistêmicos por Başkent (2016), uma variante relacionada à provabilidade por Cieśliński e
Urbaniak (2013), e uma variante no contexto dos teoremas da incompletude de Gödel por
Leach-Krouse (2014).

2. Por que os Paradoxos Importam

Depois de apresentarmos vários paradoxos de autorreferência e discutirmos algumas
de suas semelhanças subjacentes, passaremos agora a uma discussão de seu significado.
A relevância de um paradoxo está na indicação de uma falha ou deficiência em nossa com-
preensão dos conceitos centrais envolvidos. No caso dos paradoxos semânticos, parece
que nossa compreensão de conceitos semânticos fundamentais, como a verdade (no para-
doxo do mentiroso e no paradoxo de Grelling) e a definibilidade (nos paradoxos de Berry e
de Richard), é deficiente. No caso dos paradoxos da teoria dos conjuntos, o que está em
questão é nossa compreensão do conceito de conjunto. Se compreendêssemos completa-
mente esses conceitos, deveríamos ser capazes de lidar com eles sem sermos levados a
contradições.

Para ilustrar isso, considere o paradoxo clássico de Zenão sobre Aquiles e a tartaruga
(ver a entrada Paradoxos de Zenão para mais detalhes14). Nesse paradoxo, parece que po-

14Huggett, Nick, “Zeno’s Paradoxes”, The Stanford Encyclopedia of Philosophy (Fall 2024 Edition), Edward N.
Zalta & Uri Nodelman (eds.), URL = https://plato.stanford.edu/archives/fall2024/entries/paradox-zeno/.
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demos provar que a tartaruga pode vencer uma corrida contra Aquiles, que é 10 vezes mais
rápido, se lhe for dado uma pequena vantagem inicial. Zenão usou esse paradoxo como
um argumento contra a possibilidade de movimento. Posteriormente, descobriu-se que o
paradoxo repousa sobre uma compreensão inadequada do conceito de infinito. Mais preci-
samente, baseia-se na suposição implícita de que qualquer série infinita de números reais
positivos deve ter uma soma infinita. Os desenvolvimentos posteriores da matemática das
séries infinitas mostraram que essa suposição é inválida, e assim o paradoxo se dissolve.
A aceitação original do argumento de Zenão como um paradoxo era um sintoma de que
o conceito de infinito não era suficientemente bem compreendido na época. Por analogia,
parece razoável esperar que a existência de paradoxos semânticos e paradoxos da teoria
dos conjuntos seja um sintoma de que os conceitos semânticos e de teoria dos conjuntos
envolvidos ainda não são suficientemente bem compreendidos. Ou, pelo menos, que preci-
samos revisar nossa visão sobre o que consideramos “pressupostos naturais”. O paradoxo
de Russell se baseia na suposição de que qualquer predicado sobre objetos matemáticos
determina um conjunto que consiste exatamente nos objetos que satisfazem o predicado, e o
paradoxo do mentiroso se baseia na suposição de que é possível que uma linguagem conte-
nha seu próprio predicado de verdade. Como resposta aos paradoxos, esses pressupostos
aparentemente sensatos foram revisados, como veremos na Seção 3 a seguir.

Outra resposta possível poderia ser que é a nossa compreensão do próprio conceito de
“contradição” que é falha. O raciocínio envolvido nos paradoxos de autorreferência termina
em alguma contradição, uma sentença concluída como sendo ao mesmo tempo verdadeira e
falsa. Consideramos isso uma impossibilidade, daí o paradoxo, mas talvez não necessário?
O Dialeteísmo é a visão de que podem existir “contradições verdadeiras”, o que significa que
não é impossível que uma sentença seja ao mesmo tempo verdadeira e falsa. Se adotarmos
o ponto de vista do dialetismo, todos os paradoxos de autorreferência se dissolvem e passam
a ser, em vez disso, provas de existência de certas “dialeteias”: sentenças que são tanto
verdadeiras quanto falsas. Priest (1987) é um forte defensor do dialeteísmo e utiliza seu
princípio de solução uniforme (ver a Seção 1.4 acima) para defender a solução dialeteísta.
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Para mais informações, veja as entradas sobre dialeteísmo15 e lógica paraconsistente16.
Atualmente, não existe uma solução consensual para os paradoxos de autorreferência.

Eles continuam a apresentar problemas fundamentais na semântica e na teoria dos conjun-
tos. Não se pode afirmar que há uma base sólida para esses temas até que uma solução
satisfatória para os paradoxos seja fornecida. Problemas surgem quando se tenta formalizar
a semântica (o conceito de verdade) e a teoria dos conjuntos. Se a formalização seguir a
compreensão intuitiva e “ingênua” desses temas, sistemas inconsistentes que se prologam
como os paradoxos serão formalizáveis nesses sistemas.

2.1 Consequências dos Paradoxos Semânticos
O paradoxo do mentiroso é uma barreira significativa para a construção de teorias for-

mais da verdade, pois gera inconsistências nessas teorias potenciais. Grande parte da pes-
quisa sobre autorreferência se concentra em teorias formais da verdade e em maneiras de
contornar o paradoxo do mentiroso. Dois artigos influenciaram os trabalhos sobre teorias
formais da verdade e o paradoxo do mentiroso mais do que qualquer outro: “O Conceito de
Verdade em Linguagens Formalizadas” (1935), de Alfred Tarski, e “Esboço de uma Teoria
da Verdade” (1975), de Saul Kripke. Abaixo, introduziremos algumas ideias e resultados do
artigo de Tarski. O artigo de Kripke será discutido na Seção 3.2.

Tarski apresenta uma série de condições que, segundo ele, qualquer definição adequada
de verdade deve satisfazer. A mais central dessas condições é o que hoje se conhece como
Esquema T (ou T-esquema, ou Convenção T, ou bicondicionais de Tarski):

(Esquema T) 𝜙 ↔ 𝑇 ⟨𝜙⟩ para todas as sentenças 𝜙.

Aqui, 𝑇 é o predicado destinado a expressar a verdade, e ⟨𝜙⟩ é o nome para a sentença
𝜙. Aplicar o predicado 𝑇 ao nome ⟨𝜙⟩ gera a expressão 𝑇 ⟨𝜙⟩, que representa a frase “𝜙 é
verdadeira”. O Esquema 𝑇 expressa, portanto, que para toda sentença 𝜙, 𝜙 é válida se, e
somente se, a sentença “𝜙 é verdadeira” for válida. O esquema 𝑇 costuma ser considerado
15Priest, Graham, Francesco Berto, and Zach Weber, “Dialetheism”, The Stanford Encyclopedia of Philosophy
(Summer 2024 Edition), Edward N. Zalta & Uri Nodelman (eds.), URL = https://plato.stanford.edu/archives/
sum2024/entries/dialetheism/.
16Priest, Graham, Koji Tanaka, and Zach Weber, “Paraconsistent Logic”, The Stanford Encyclopedia of Philo-
sophy (Spring 2025 Edition), Edward N. Zalta & Uri Nodelman (eds.), URL = https://plato.stanford.edu/archives/
spr2025/entries/logic-paraconsistent/.
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um conjunto de sentenças dentro de uma teoria formal. É comum utilizar a aritmética de pri-
meira ordem, ou seja, a lógica de predicados de primeira ordem estendida com um conjunto
de axiomas padrão para a aritmética, como a PA (Aritmética de Peano) ou 𝑄 de Robinson.
O que está sendo dito a seguir aplica-se a qualquer formalização de primeira ordem da arit-
mética. Nesse contexto, ⟨𝜙⟩ denota o código de Gödel de 𝜙, e 𝑇 ⟨𝜙⟩ é uma abreviação
de 𝑇 (⟨𝜙⟩). O leitor não familiarizado com as codificações de Gödel (também conhecidas
como numerações de Gödel) pode simplesmente pensar no mapeamento ⟨⋅⟩ como um me-
canismo de nomeação ou citação para fórmulas — tal como as aspas em linguagem natural.
Variantes notacionais frequentemente usadas para ⟨𝜙⟩ são ⌜𝜙⌝ e ‘𝜙’.

Tarski mostrou que o paradoxo do mentiroso é formalizável em qualquer teoria formal
que contenha seu Esquema𝑇 , e, portanto, qualquer teoria desse tipo deve ser inconsistente.
Esse resultado é frequentemente referido como o teorema de Tarski sobre a indefinibilidade
da verdade. O resultado é basicamente uma formalização do paradoxo do mentiroso dentro
da aritmética de primeira ordem estendida com o Esquema 𝑇 . Para construir tal formaliza-
ção, é necessário ser capaz de formular sentenças autorreferenciais (como a sentença do
mentiroso) dentro da aritmética de primeira ordem. Essa capacidade é fornecida pelo lema
diagonal.

Lema Diagonal
Seja 𝑆 uma teoria que estende a aritmética de primeira ordem. Para toda
fórmula 𝜙(𝑥), existe uma sentença Ψ tal que 𝑆 ⊢ 𝜓 ↔ 𝜙(⟨𝜓⟩).

Aqui, a notação 𝑆 ⊢ 𝛼 significa que 𝛼 é demonstrável na teoria 𝑆, e 𝜙(⟨𝜓⟩) é uma
abreviação de 𝜙(⟨𝜓⟩). Suponha a fórmula 𝜙(𝑥) seja dada com o objetivo de expressar
alguma propriedade de sentenças — por exemplo, verdade. O lema diagonal fornece a
existência de uma sentença 𝜓 que satisfaz a bi-implicação 𝜓 ↔ 𝜙⟨𝜓⟩. A sentença 𝜙⟨𝜓⟩
pode ser vista como uma expressão de que a sentença 𝜓 tem a propriedade expressa por
𝜙(𝑥). A bi-implicação, portanto, expressa que𝜓 é equivalente à sentença que expressa que
𝜓 tem a propriedade 𝜙. Pode-se pensar, então, que 𝜓 é uma sentença que afirma sobre si
mesma que possui a propriedade 𝜙. No caso da verdade, seria uma sentença que afirma
sobre si mesma que é verdadeira. A sentença 𝜓 não é autorreferencial em um sentido
estrito, mas, matematicamente, ela se comporta como uma. Portanto, é possível utilizar
sentenças geradas pelo lema diagonal para formalizar paradoxos baseados em sentenças
autorreferenciais, como o paradoxo do mentiroso. O lema diagonal é, às vezes, chamado
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de lema do ponto fixo, uma vez que a equivalência 𝜓 ↔ 𝜙⟨𝜓⟩ pode ser vista como uma
expressão de que 𝜓 é um ponto fixo de 𝜙(𝑥).

Uma teoria em lógica de predicados de primeira ordem é chamada de inconsistente se
uma contradição lógica puder ser demonstrada nela. O teorema de Tarski (sobre a indefini-
bilidade da verdade) pode agora ser enunciado e demonstrado.

Teorema de Tarski.
Qualquer teoria que estenda a aritmética de primeira ordem e contenha o es-
quema 𝑇 é inconsistente.
Prova. Assuma a existência de uma teoria formal consistente 𝑆 que estende
a aritmética de primeira ordem e contenha o esquema 𝑇 . Precisamos mos-
trar que essa suposição leva a uma contradição. A prova imita o paradoxo
do mentiroso. Aplicando o lema diagonal, obtemos uma sentença 𝜆 que sa-
tisfaz 𝜆 ↔ ¬𝑇 ⟨𝜆⟩ em 𝑆. A sentença 𝜆 expressa sobre si mesma que não
é verdadeira, assim 𝜆 corresponde à sentença do mentiroso. Instanciando o
esquema 𝑇 com a sentença 𝜆, temos 𝜆 ↔ 𝑇 ⟨𝜆⟩. Agora temos que tanto
𝜆 ↔ ¬𝑇 ⟨𝜆⟩ e 𝜆 ↔ 𝑇 ⟨𝜆⟩ são válidas em 𝑆 (prováveis em 𝑆) e, portanto,
𝑇 ⟨𝜆⟩ ↔ ¬𝑇 ⟨𝜆⟩ deve ser válida em 𝑆. Isso contradiz a consistência de 𝑆.

Observe que a contradição 𝑇 ⟨𝜆⟩ ↔ ¬𝑇 ⟨𝜆⟩ expressa: a sentença do mentiroso é
verdadeira se e somente se não for. Compare isso com o paradoxo do mentiroso informal
apresentado no início do artigo. O teorema de Tarski mostra que, no contexto da aritmética
de primeira ordem, não é possível fornecer o que Tarski considera uma “teoria adequada da
verdade”. A questão central, então, torna-se: como a configuração formal ou os requisitos
para uma teoria adequada da verdade podem ser modificados para recuperar a consistência
— ou seja, para evitar que o paradoxo do mentiroso trivialize o sistema? Existem muitas
respostas diferentes para essa pergunta, assim como há muitas maneiras diferentes de re-
cuperar a consistência. Na Seção 3, revisaremos as abordagens mais influentes.

2.2 Consequências dos Paradoxos da Teoria dos Conjuntos

Os paradoxos da teoria dos conjuntos constituem um desafio significativo para os fun-
damentos da matemática. Eles mostram que é impossível ter um conceito de conjunto que
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satisfaça o princípio da compreensão irrestrita (também chamado de compreensão plena ou
abstração irrestrita):

Compreensão irrestrita:
∀𝑢(𝑢 ∈ {𝑥 ∣ 𝜙(𝑥)} ↔ 𝜙(𝑢)), para todas as fórmulas 𝜙(𝑥).

Em um contexto informal, as fórmulas 𝜙(𝑥) poderiam ser predicados arbitrários. Em
um contexto mais formal, elas seriam fórmulas de, por exemplo, uma linguagem de primeira
ordem adequada. O princípio da compreensão irrestrita afirma que, para qualquer proprie-
dade (expressa por 𝜙), existe o conjunto daquelas entidades que satisfazem a propriedade.
Isso soa como um princípio muito razoável e captura, mais ou menos, o conceito intuitivo
de conjunto. De fato, é o conceito de conjunto originalmente proposto pelo pai da teoria dos
conjuntos, Georg Cantor (1895). Infelizmente, o princípio não é consistente, pois dá origem
ao paradoxo de Russell. Considere a propriedade da não-auto-pertinência. Ela pode ser
expressa pela fórmula 𝑥 ∉ 𝑥. Se deixarmos 𝜙(𝑥) ser a fórmula 𝑥 ∉ 𝑥, então o conjunto
{𝑥 ∣ 𝜙(𝑥)} torna-se o conjunto de Russell 𝑅, e obtemos a seguinte instância do princípio
da compreensão irrestrita:

∀𝑢(𝑢 ∈ 𝑅 ↔ 𝑢 ∉ 𝑢).
Análogo ao argumento no paradoxo de Russell, uma contradição é obtida ao instanciar

𝑢 com 𝑅:

𝑅 ∈ 𝑅 ↔ 𝑅 ∉ 𝑅.
Essa contradição expressa que o conjunto de Russell é membro de si mesmo se e so-

mente se não é. O que se provou aqui é o seguinte.

Teorema (Inconsistência da Teoria Ingênua dos Conjuntos)
Qualquer teoria que contenha o princípio da compreensão irrestrita é inconsis-
tente.

Compare este teorema com o teorema de Tarski. O teorema de Tarski expressa que,
se formalizarmos o princípio intuitivamente mais óbrio sobre a verdade, acabamos com uma
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teoria inconsistente. O teorema acima expressa que a mesma coisa ocorre quando formali-
zamos o princípio intuitivamente mais óbrio sobre a existência e a pertinência dos conjuntos.

Dada a inconsistência da compreensão irrestrita, o objetivo passa a ser encontrar uma
forma de restringir o princípio da compreensão em si ou os princípios lógicos subjacentes
para obter uma teoria consistente, isto é, uma teoria dos conjuntos que não seja trivializada
pelo paradoxo de Russell. Muitas teorias alternativas de conjuntos que excluem o princípio
da compreensão irrestrita foram desenvolvidas ao longo do último século, entre elas a teoria
dos tipos de Russell e Whitehead, a Teoria dos Tipos Simples (ST), a Teoria dos Conjun-
tos de Gödel-Bernays (GB), a Teoria dos Conjuntos de Zermelo-Fraenkel (ZF) e os Novos
Fundamentos de Quine (NF). Todas essas são consideradas consistentes, embora não se
conheçam provas simples de sua consistência. Pelo menos, todas elas escapam dos para-
doxos conhecidos de autorreferência. Retornaremos a uma discussão sobre isso na Seção
3.

2.3 Consequências dos Paradoxos Epistêmicos
Os paradoxos epistêmicos representam uma ameaça à construção de teorias formais do

conhecimento, uma vez que os paradoxos podem ser formalizados em muitas dessas teo-
rias. Suponha que desejemos construir uma teoria formal da cognoscibilidade dentro de uma
extensão da aritmética de primeira ordem. A razão para escolher formalizar a cognoscibili-
dade, em vez do conhecimento, é que o conhecimento é sempre relativo a um determinado
agente em um certo momento, enquanto a cognoscibilidade é um conceito universal, como
a verdade. Poderíamos ter escolhido trabalhar diretamente com o conhecimento, mas isso
exigiria mais trabalho e tornaria a apresentação desnecessariamente complicada. Para for-
malizar a cognoscibilidade, introduzimos um predicado especial 𝐾, e usamos sentenças da
forma 𝐾⟨𝜙⟩ para expressar que 𝜙 é cognoscível. De maneira análoga aos casos de ver-
dade e pertinência de conjunto, deve haver certos princípios lógicos que𝐾 precisa satisfazer
para que nossa teoria formal se qualifique como uma teoria adequada de cognoscibilidade.
Primeiramente, todas as sentenças cognoscíveis devem ser verdadeiras. Essa propriedade
pode ser formalizada pelo seguinte princípio lógico:

A1. 𝐾⟨𝜙⟩ → 𝜙, para todas as sentenças 𝜙.

Claro, esse princípio deve ser cognoscível, ou seja, obtemos o seguinte princípio lógico:
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A2. 𝐾⟨𝐾⟨𝜙⟩ → 𝜙⟩, para todas as sentenças 𝜙.

Além disso, todos os teoremas da aritmética de primeira ordem devem ser cognoscíveis:

A3. 𝐾⟨𝜙⟩ para todas as sentenças 𝜙 da aritmética de primeira ordem.

Além disso, a cognoscibilidade deve ser fechada sob consequências lógicas:

A4. 𝐾⟨𝜙 → 𝜓⟩ → (𝐾⟨𝜙⟩ → 𝐾⟨𝜓⟩), para todas as sentenças 𝜙.

Agora, os princípios A1–A4 são tudo o que é necessário para formalizar o paradoxo do
conhecedor. Mais precisamente, temos o seguinte teorema, de Montague (1963), cuja prova
pode ser apresentada na 𝐾𝑆 forma (veja Bolander 2004).

Teorema de Montague.
Qualquer teoria formal que estende a aritmética de primeira ordem e contém
os esquemas axiomáticos A1–A4 é inconsistente.
Prova. Suponha a existência de uma teoria formal consistente 𝑆 que estende
a aritmética de primeira ordem e contém os esquemas axiomáticos A1–A4.
Precisamos mostrar que essa suposição leva a uma contradição. A prova imita
o paradoxo do conhecedor. Aplique o lema diagonal para obter uma sentença
𝜆 que satisfaz 𝜆 ↔ ¬𝐾⟨𝜆⟩ em 𝑆. A sentença 𝜆 expressa de si mesma
que não é cognoscível, então 𝜆 corresponde aproximadamente à sentença do
conhecedor, 𝐾𝑆. A primeira parte da argumentação utilizada no paradoxo do
conhecedor levou à conclusão de que é de fato verdadeira. Este raciocínio é
imitado pelo seguinte argumento formal dentro de 𝑆:

1. 𝜆 → ¬𝐾⟨𝜆⟩ pela escolha de 𝜆
2. ¬𝐾⟨𝜆⟩ → 𝜆 pela escolha de 𝜆
3. 𝐾⟨𝜆⟩ → 𝜆 axioma A1
4. (𝐾⟨𝜆⟩ → 𝜆) → ((𝜆 → ¬𝐾⟨𝜆⟩) → ¬𝐾⟨𝜆⟩) tautologia proposicio-

nal
5. (𝜆 → ¬𝐾⟨𝜆⟩) → ¬𝐾⟨𝜆⟩ modus ponens em 4, 3
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6. ¬𝐾⟨𝜆⟩ modus ponens em 5, 1
7. 𝜆 modus ponens em 2, 6

Esta prova mostra que 𝜆, nossa versão formal de 𝐾𝑆, é demonstrável em 𝑆.
A prova corresponde ao argumento informal de que 𝐾𝑆 é verdadeiro. Como
argumentado no paradoxo do conhecedor, qualquer agente com capacidades
de raciocínio suficientes será capaz de provar a verdade de𝐾𝑆 e, assim, che-
gar a saber que 𝐾𝑆 é válido. Portanto, 𝐾𝑆 deve ser conhecível. O que isso
significa no presente quadro formal é que também podemos provar a conheci-
bilidade de 𝜆 em 𝑆:

8. 𝐾⟨𝜆 → ¬𝐾⟨𝜆⟩⟩ por A3 e escolha de 𝜆
9. 𝐾⟨¬𝐾⟨𝜆⟩ → 𝜆⟩ por A3 e escolha de 𝜆
10. 𝐾⟨𝐾⟨𝜆⟩ → 𝜆⟩ axioma A2
11. 𝐾⟨(𝐾⟨𝜆⟩ → 𝜆) → ((𝜆 → ¬𝐾⟨𝜆⟩) → ¬𝐾⟨𝜆⟩)⟩ axioma A3 sobre

tautologia proposicional
12. 𝐾⟨(𝜆 → ¬𝐾⟨𝜆⟩) → ¬𝐾⟨𝜆⟩⟩ axioma A4 sobre 11, 10
13. 𝐾⟨¬𝐾⟨𝜆⟩⟩ axioma A4 sobre 12, 8
14. 𝐾⟨𝜆⟩ axioma A4 sobre 9, 13

Isso completa a prova da conhecibilidade de 𝜆, correspondendo ao argumento
informal de que 𝐾𝑆 é conhecido por algum agente. Note a semelhança entre
as duas provas nas linhas 1–7 e 8–14. A única diferença é que, nas últimas,
todas as fórmulas são precedidas por um 𝐾 extra. Isso se deve ao fato de
que as linhas 8–14 expressam o mesmo raciocínio das linhas 1–7, com a única
diferença de que as últimas são uma prova da conhecibilidade de 𝜆, em vez da
verdade de 𝜆. Tendo concluído que 𝜆 é tanto verdadeira quanto conhecível,
agora obtemos imediatamente uma contradição, assim como na parábola do
conhecedor:

15. ¬𝐾⟨𝜆⟩ modus ponens em 1, 7
16. 𝐾⟨𝜆⟩ ∧ ¬𝐾⟨𝜆⟩ conjunção de 14 e 15
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Isso completa a prova do teorema de Montague.

A prova acima imita diretamente o raciocínio subjacente ao paradoxo do conhecedor. O
teorema de Montague mostra que, no contexto da aritmética de primeira ordem, não pode-
mos ter uma teoria do conhecimento ou da conhecibilidade que satisfaça mesmo os princí-
pios básicos A1–A4. O teorema de Montague é uma generalização do teorema de Tarski. Se
um símbolo de predicado 𝐾 satisfaz o esquema 𝑇 de Tarski, então é fácil ver que também
satisfará as esquemas axiomáticos A1–A4. Assim, os esquemas axiomáticos A1–A4 cons-
tituem um enfraquecimento do esquema 𝑇 , e o teorema de Montague mostra que mesmo
essa versão muito mais fraca do esquema 𝑇 é suficiente para produzir inconsistência. Uma
possível resposta poderia ser que mesmo os esquemas axiomáticos A1–A4 são muito fortes
e deveriam ser enfraquecidos ainda mais. No entanto, como nas formalizações anteriores de
paradoxos, não está claro como enfraquecer ainda mais as suposições, uma vez que todas
as suposições parecem sensatas e naturais para o conceito que estamos formalizando (co-
nhecibilidade, neste caso). Outra possível saída para o resultado de inconsistência poderia
ser preservar os princípios em sua forma atual, mas aplicá-los apenas a um subconjunto das
sentenças disponíveis (significando que A1–A4 são exigidas apenas para sentenças 𝜙 ∈ 𝑆
para algum subconjunto 𝑆). Os princípios deveriam ser válidos para todas as sentenças
“normais”, mas poderíamos não querer insistir que eles sejam válidos para certas senten-
ças patológicas que expressam declarações autorreferenciais. No entanto, não está claro
que podemos indicar sensatamente exatamente quais sentenças são normais e quais são
patológicas. Mas ainda poderíamos ser capazes de encontrar alguns subconjuntos sensa-
tos para os quais podemos instanciar nossos princípios e ainda ter uma teoria consistente.
Revières e Levesque (1988) mostraram que os princípios permanecem consistentes quando
instanciados apenas sobre as chamadas sentenças regulares, e esse resultado foi mais tarde
generalizado para a classe mais inclusiva das chamadas sentenças RPQ (Morreau e Kraus,
1998). A maioria das soluções para os resultados de inconsistência induzidos por paradoxos
é, na verdade, desse tipo: estratificar ou limitar a aplicabilidade dos princípios que levam à
inconsistência, sejam os princípios de verdade, existência de conjuntos, conhecibilidade ou
algo quarto. Vamos explorar isso muito mais na Seção 3.

Formalizar o conhecimento como um predicado em uma lógica de primeira ordem é re-
ferido como o tratamento sintático do conhecimento. Alternativamente, pode-se optar por
formalizar o conhecimento como um operador modal em uma lógica modal adequada. Isso
é conhecido como o tratamento semântico do conhecimento (consulte a entrada sobre lógica
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epistêmica17). No tratamento semântico do conhecimento, geralmente se evitam problemas
de autorreferência e, portanto, inconsistência, mas isso ocorre à custa do poder expressivo
do formalismo (os problemas de autorreferência são evitados pela lógica modal proposici-
onal, que não admite nada equivalente ao lema diagonal para a construção de fórmulas
autorreferenciais). Na verdade, as sentenças regulares mencionadas acima são alcançadas
exatamente por uma tradução da lógica modal de primeira ordem para a lógica de predi-
cados, portanto, a única maneira de instanciar os princípios apenas sobre as sentenças
regulares é uma forma de seguir o tratamento sintático do conhecimento, mas ainda ga-
rantir consistência ao limitar o operador de conhecimento à expressividade que possui no
tratamento semântico.

2.4 Consequências sobre provabilidade e Computabilidade

O argumento central apresentado na prova do teorema de Tarski está intimamente rela-
cionado ao argumento central no primeiro teorema da incompletude de Gödel (Gödel, 1931).
O teorema de Gödel pode receber a seguinte formulação.

Primeiro teorema da incompletude de Gödel.
Se a aritmética de primeira ordem é 𝜔-consistente, então ela é incompleta.

Uma teoria é chamada de 𝜔-consistente se a seguinte condição for satisfeita para toda
fórmula 𝜙(𝑥) contendo 𝑥 como sua única variável livre: Se ⊢ ¬𝜙(𝑛) (significando que
¬𝜙(𝑛) é demonstrável) para cada número natural 𝑛, então ⊬ ∃𝑥𝜙(𝑥) (significando que
∃𝑥𝜙(𝑥) não é demonstrável). A 𝜔-consistência é uma condição mais forte do que a consis-
tência ordinária, de modo que qualquer teoria 𝜔-consistente também será consistente. Uma
teoria é incompleta se contiver uma fórmula que não pode ser nem provada nem reprovada.

Esboço de prova do primeiro teorema da incompletude deGödel. Suponha que
a aritmética de primeira ordem seja ao mesmo tempo 𝜔-consistente e com-
pleta. Precisamos mostrar que isso leva a uma contradição. Gödel constrói

17Rendsvig, Rasmus, John Symons, and Yanjing Wang, “Epistemic Logic”, The Stanford Encyclopedia of Philo-
sophy (Summer 2024 Edition), Edward N. Zalta & Uri Nodelman (eds.), URL = https://plato.stanford.edu/archives/
sum2024/entries/logic-epistemic/.
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uma fórmula Bew (para “Beweis”) na aritmética formal que satisfaz, para todos
𝜙 e todos 𝑛,
(1) ⊢ Bew(𝑛, ⟨𝜙⟩) se e somente se 𝑛 é o código de Gödel de uma prova de
𝜙.
Assumindo que a teoria seja 𝜔-consistente e completa, podemos provar que,
para todas as sentenças 𝜙,
(2) ⊢ ∃𝑥Bew(𝑥, ⟨𝜙⟩) se e somente se ⊢ 𝜙.
A prova de (2) segue assim. Primeiro, provamos a implicação da esquerda
para a direita. Se⊢ ∃𝑥Bew(𝑥, ⟨𝜙⟩), então há algum𝑛 tal que⊬ ¬Bew(𝑛, ⟨𝜙⟩),
pela 𝜔-consistência. Pela completude, obtemos ⊢ Bew(𝑛, ⟨𝜙⟩) para esse 𝑛.
Por (1) acima, obtemos que 𝑛 denota uma prova de 𝜙. Isto é, 𝜙 é demonstrá-
vel, portanto temos ⊢ 𝜙. Para provar a implicação da direita para a esquerda,
note que se ⊢ 𝜙, então deve haver um 𝑛 tal que ⊢ Bew(𝑛, ⟨𝜙⟩), por (1).
A partir disso, obtemos ⊢ ∃𝑥Bew(𝑥, ⟨𝜙⟩), conforme requerido. Isso conclui
a prova de (2). Agora, quando em uma teoria completa temos (2), devemos
também ter:
(3) ⊢ ∃𝑥Bew(𝑥, ⟨𝜑⟩) ↔ 𝜙, para todas as sentenças 𝜙.
Se deixarmos ∃𝑥Bew(𝑥, ⟨𝜙⟩) abreviada como 𝑇 ⟨𝜙⟩, então (3) torna-se:
⊢ 𝑇 ⟨𝜙⟩ ↔ 𝜑 para todas as sentenças 𝜙.
Este é o esquema 𝑇 ! Assim, se assumirmos que a aritmética de primeira
ordem é 𝜔-consistente e completa, o esquema 𝑇 pode ser interpretado nela.
Agora, o teorema de Tarski acima mostra que não existe tal teoria consistente,
e, portanto, temos uma contradição.

Na prova acima, reduzimos o teorema da incompletude de Gödel a uma aplicação do te-
orema de Tarski para mostrar a estreita ligação entre os dois (essa versão da prova é devida
a Bolander, 2002). Gödel estava bem ciente dessa ligação, e, de fato, parece que Gödel
provou o teorema de Tarski antes mesmo de Tarski (Feferman, 1984). O teorema de Gödel
pode ser interpretado como uma demonstração de uma limitação no que pode ser alcançado
por procedimentos puramente formais. Ele diz que, se a aritmética de primeira ordem é 𝜔-
consistente (como se acredita ser), então deve haver sentenças aritméticas que não podem
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ser provadas nem refutadas pelos procedimentos formais da aritmética de primeira ordem.
Pode-se, a princípio, esperar que essa limitação possa ser resolvida pela inclusão de axio-
mas adicionais, mas Gödel mostrou que o resultado da incompletude ainda vale quando a
aritmética de primeira ordem é estendida com um conjunto finito arbitrário de esquemas de
axiomas (ou, mais geralmente, um conjunto recursivo arbitrário de axiomas). Assim, obtemos
um resultado de limitação geral, dizendo que não pode existir um procedimento formal de
prova pelo qual qualquer sentença aritmética possa ser provada como verdadeira ou falsa.
Para mais detalhes sobre o teorema da incompletude de Gödel, consulte o verbete sobre
Kurt Gödel18.

O resultado de limitação do teorema de Gödel está intimamente relacionado a outro re-
sultado de limitação conhecido como a indecidibilidade do problema da parada. Esse resul-
tado afirma que há limitações no que pode ser computado. Vamos apresentar esse resultado
a seguir. O resultado é baseado na noção de uma máquina de Turing, que é um modelo ge-
nérico de um programa de computador rodando em um computador com memória ilimitada.
Assim, qualquer programa rodando em qualquer computador pode ser pensado como uma
máquina de Turing (veja o verbete sobre Máquinas de Turing19 para mais detalhes). Quando
rodamos uma máquina de Turing, ela ou termina após um número finito de passos de com-
putação, ou continua rodando para sempre. No caso de ela terminar após um número finito
de passos, dizemos que ela para. O problema da parada é o problema de encontrar uma
máquina de Turing que possa decidir se outras máquinas de Turing param ou não. Dizemos
que uma máquina de Turing 𝐻 decide o problema da parada se o seguinte for verdadeiro:

𝐻 recebe como entrada um par (⟨𝐴⟩, 𝑥), consistindo no código de Gödel ⟨𝐴⟩
de uma máquina de Turing 𝐴 e uma string arbitrária 𝑥. 𝐻 retorna a resposta
“sim” se a máquina de Turing 𝐴 parar quando dada a entrada 𝑥, e “não” caso
contrário.

Assim, se uma máquina de Turing 𝐻 decide o problema da parada, podemos usá-la
para determinar, para uma máquina de Turing 𝐴 arbitrária e uma entrada 𝑥 arbitrária, se 𝐴
18Kennedy, Juliette, “Kurt Gödel”, The Stanford Encyclopedia of Philosophy (Winter 2020 Edition), Edward N.
Zalta (ed.), URL = https://plato.stanford.edu/archives/win2020/entries/goedel/.
19De Mol, Liesbeth, “Turing Machines”, The Stanford Encyclopedia of Philosophy (Winter 2024 Edition), Edward
N. Zalta & Uri Nodelman (eds.), URL = https://plato.stanford.edu/archives/win2024/entries/turing-machine/.
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irá parar com a entrada 𝑥 ou não. A indecidibilidade do problema da parada é o seguinte
resultado, devido a Turing (1937), afirmando que nenhuma máquina desse tipo pode existir:

Teorema (Indecidibilidade do Problema da Parada)
Não existe nenhuma máquina de Turing que decida o problema da parada.
Prova. Suponha a existência de uma máquina de Turing 𝐻 que decide o pro-
blema da parada. Precisamos mostrar que essa suposição leva a uma con-
tradição. A prova imita o paradoxo de Grelling. Chamamos uma máquina de
Turing 𝐴 de heterológica se 𝐴 não parar com a entrada ⟨𝐴⟩, ou seja, se 𝐴
não parar quando dada seu próprio código de Gödel como entrada. Usando
𝐻 , podemos construir uma máquina de Turing 𝐺 que para se, e somente se,
ela for dada como entrada o código de Gödel de uma máquina de Turing he-
terológica. 𝐺 funciona da seguinte maneira:
𝐺 recebe como entrada o código de Gödel de uma máquina de Turing 𝐴. En-
tão, ela executa𝐻 coma entrada (⟨𝐴⟩, ⟨𝐴⟩). Se𝐻 coma entrada (⟨𝐴⟩, ⟨𝐴⟩)
retorna “não”,𝐺 é interrompida. Por outro lado, se𝐻 coma entrada (⟨𝐴⟩, ⟨𝐴⟩)
retorna “sim” então 𝐺 é forçada a entrar em um loop infinito (ou seja, forçada
a nunca parar).
Analogamente ao paradoxo de Grelling, agora podemos perguntar se𝐺 é uma
máquina de Turing heterológica ou não. Isso leva à seguinte sequência de
equivalências:

𝐺 é heterológica ⇔ 𝐺 não para com a entrada ⟨𝐺⟩ (pela definição de heterológica)
⇔ 𝐻 retorna “não” com a entrada (⟨𝐺⟩, ⟨𝐺⟩) (já que 𝐻 decide o problema da parada)
⇔ 𝐺 para com a entrada ⟨𝐺⟩ (pela construção de 𝐺)
⇔ 𝐺 não é heterológica (pela definição de heterológica)

Isso dá a contradição necessária.

A partir dos dois teoremas acima, vemos que nas áreas de provabilidade e computabili-
dade, os paradoxos da auto-referência se transformam em resultados de limitação: existem
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limites para o que pode ser provado e para o que pode ser computado. Isso é bastante
semelhante ao que aconteceu nas áreas de semântica, teoria dos conjuntos e epistemolo-
gia: os paradoxos da auto-referência se transformaram em teoremas que mostram que há
limites para as propriedades que podemos consistentemente assumir para um predicado de
verdade (teorema de Tarski), para uma teoria dos conjuntos (inconsistência da teoria dos
conjuntos ingênua), e para um predicado de conhecimento (teorema de Montague). É difícil
aceitar esses resultados de limitação porque a maioria deles entra em conflito com nossas
intuições e expectativas. O papel central desempenhado pela auto-referência em todos eles
potencialmente os torna ainda mais difíceis de aceitar, ou, pelo menos, definitivamente os
torna mais intrigantes. No entanto, somos forçados a aceitá-los e forçados a aceitar o fato de
que, nessas áreas, não podemos ter tudo o que poderíamos (de outra forma) razoavelmente
pedir.

3. Resolvendo os Paradoxos

Nesta seção, vamos explorar como resolver — ou melhor, contornar — os paradoxos.
Para resolver ou contornar um paradoxo, é necessário enfraquecer algumas das suposições
que levam à contradição. É muito difícil escolher quais suposições enfraquecer, já que cada
uma das suposições explicitamente declaradas que sustentam um paradoxo parece ser “ob-
viamente verdadeira” — caso contrário, não seria qualificada como um paradoxo. Abaixo,
veremos as abordagens mais influentes para resolver os paradoxos.

Até agora, a apresentação foi estruturada de acordo com o tipo de paradoxo: os para-
doxos semânticos, conjuntistas e epistêmicos foram tratados separadamente. No entanto,
também foi demonstrado que esses três tipos de paradoxos são semelhantes em sua es-
trutura subjacente, e argumentou-se que uma solução para um deve ser uma solução para
todos (o princípio da solução uniforme). Portanto, a seguir, a apresentação será estruturada
não de acordo com o tipo de paradoxo, mas de acordo com o tipo de solução. Cada tipo de
solução considerado a seguir pode ser aplicado a qualquer um dos paradoxos de autorrefe-
rência, embora, na maioria dos casos, as construções envolvidas tenham sido originalmente
desenvolvidas com apenas um tipo de paradoxo em mente.
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3.1 Construindo Hierarquias Explícitas

Construir hierarquias é um método para contornar os paradoxos semânticos, conjun-
tistas e epistêmicos. A solução original de Russell para seu paradoxo — assim como a
solução original de Tarski para seu problema da indefinibilidade da verdade — foi construir
hierarquias. No caso de Russell, isso levou à teoria dos tipos. No caso de Tarski, resultou
no que é conhecido como a hierarquia de linguagens de Tarski. Em ambos os casos, a ideia
é estratificar o universo do discurso (conjuntos, sentenças) em níveis. Na teoria dos tipos,
esses níveis são chamados de tipos. A ideia fundamental da teoria dos tipos é introduzir a
restrição de que qualquer conjunto de um determinado tipo pode conter apenas elementos
de tipos inferiores (isto é, pode conter apenas conjuntos que estão localizados mais abaixo
na estratificação). Isso efetivamente bloqueia o paradoxo de Russell, pois nenhum conjunto
pode ser membro de si mesmo.

No caso de Tarski, a estratificação é obtida da seguinte maneira. Suponha que se queira
equipar uma linguagem𝐿0 com um predicado de verdade. A partir do teorema de Tarski (Se-
ção 2.1), sabe-se que esse predicado de verdade não pode fazer parte da própria linguagem
𝐿0 — pelo menos, não enquanto desejarmos que o predicado de verdade satisfaça o es-
quema 𝑇 . Em vez disso, constrói-se uma hierarquia de linguagens 𝐿0, 𝐿1, 𝐿2, …, onde
cada linguagem 𝐿𝑖+1 possui um predicado de verdade 𝑇𝑖+1 que se aplica apenas às sen-
tenças de 𝐿𝑗, para 𝑗 ≤ 𝑖. Nessa hierarquia, 𝐿0 é chamada de linguagem-objeto e, para
todo 𝑖, 𝐿𝑖+1 é chamada de meta-linguagem de 𝐿𝑖. Essa hierarquia bloqueia efetivamente
o paradoxo do mentiroso, já que agora uma sentença só pode expressar a verdade ou fal-
sidade de sentenças em níveis inferiores, e, portanto, uma sentença como a do mentiroso,
que expressa sua própria falsidade, não pode ser formada.

A teoria dos tipos de Russell pode ser considerada uma solução para o paradoxo de Rus-
sell, uma vez que demonstra como “reparar” a teoria dos conjuntos de forma que o paradoxo
desapareça. Similarmente, a hierarquia de Tarski pode ser vista como uma solução para o
paradoxo do mentiroso. É a mesma ideia de estratificação que está subjacente às soluções
de Russell e Tarski. O ponto a ser destacado é que tanto o paradoxo de Russell quanto o
paradoxo do mentiroso dependem crucialmente de noções circulares (auto-pertencimento
e autorreferência). Ao criar uma estratificação na qual um objeto pode conter ou se referir
apenas a objetos em níveis inferiores, a circularidade desaparece. No caso dos parado-
xos epistêmicos, uma estratificação semelhante poderia ser obtida ao fazer uma distinção
explícita entre conhecimento de primeira ordem (conhecimento sobre o mundo externo), co-
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nhecimento de segunda ordem (conhecimento sobre o conhecimento de primeira ordem),
conhecimento de terceira ordem (conhecimento sobre o conhecimento de segunda ordem),
e assim por diante. Essa estratificação, na verdade, surge naturalmente no tratamento se-
mântico do conhecimento, onde o conhecimento é formalizado como um operador modal.

Construir hierarquias explícitas é suficiente para evitar a circularidade e, portanto, sufi-
ciente para bloquear os paradoxos padrão de autorreferência. No entanto, também existem
paradoxos, como o de Yablo, que não dependem de circularidade e autorreferência. Esses
paradoxos também podem ser bloqueados por uma abordagem de hierarquia, mas é ne-
cessário exigir que a hierarquia seja bem fundada, ou seja, que tenha um nível mais baixo.
Caso contrário, ainda será possível formular paradoxos decorrentes de fundamentação ina-
dequada (não bem-fundada). Por exemplo, o paradoxo de Yablo pode ser formalizado em
uma hierarquia descendente de linguagens. Uma hierarquia descendente de linguagens
consiste em linguagens 𝐿0, 𝐿−1, 𝐿−2, …, onde cada linguagem 𝐿−𝑖 tem um predicado de
verdade que se aplica apenas às sentenças das linguagens 𝐿−𝑗, 𝑗 > 𝑖. Similarmente, um
paradoxo da teoria dos conjuntos não bem-fundados pode ser formulado em uma teoria dos
tipos que permite tipos negativos. A conclusão é que uma estratificação do universo não é
suficiente por si só para evitar todos os paradoxos — a estratificação também precisa ser
bem fundada.

Construir uma hierarquia explícita (e bem fundada) para resolver os paradoxos é hoje
considerado, por muitos, uma abordagem excessivamente drástica e rígida. As hierarquias
introduzem uma série de tecnicalidades complicastes que não estão presentes em um “uni-
verso plano”, e, embora os paradoxos de fato desapareçam, o mesmo ocorre com todas as
ocorrências não paradoxais de autorreferência. Kripke (1975) oferece o seguinte exemplo
ilustrativo tirado do discurso cotidiano. Suponha que 𝑁 seja a seguinte declaração, feita por
Nixon:

(𝑁) Todas as declarações de Jones sobre Watergate são verdadeiras,
e seja 𝐽 a seguinte declaração, feita por Jones,
(𝐽) A maioria das declarações de Nixon sobre Watergate é falsa.
Em uma hierarquia de linguagem tarskiana, a sentença 𝑁 teria que estar em um nível

superior ao de todas as declarações de Jones, e, inversamente, a sentença 𝐽 teria que estar
em um nível superior ao de todas as declarações de Nixon. Já que 𝑁 é uma declaração
de Nixon, e 𝐽 é uma declaração de Jones, 𝑁 teria que estar em um nível superior a 𝐽 , e
𝐽 em um nível superior a 𝑁 . Isso é obviamente impossível, entretanto, em uma hierarquia
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como a tarskiana, essas sentenças não podem nem mesmo ser formuladas. As sentenças
𝑁 e 𝐽 são, de fato, ambas indiretamente autorreferenciais, uma vez que 𝑁 faz referência
a uma totalidade que inclui 𝐽 , e 𝐽 faz referência a uma totalidade que inclui 𝑁 . No entanto,
na maioria dos casos, 𝑁 e 𝐽 são inofensivas e não produzem um paradoxo. Um paradoxo
é produzido apenas no caso especial em que todas as declarações de Jones, exceto pos-
sivelmente 𝐽 , são verdadeiras, e exatamente metade das declarações de Nixon são falsas,
desconsiderando 𝑁 . Kripke usa o fato de que 𝑁 e 𝐽 são apenas problemáticas em um
certo caso especial como um argumento contra uma abordagem que exclui totalmente a
possibilidade de formular 𝑁 e 𝐽 .

Outro argumento contra a abordagem da hierarquia é que a estratificação explícita não
faz parte do discurso comum, e, portanto, pode ser considerado um tanto ad hoc introduzi-la
em contextos formais com o único propósito de contornar os paradoxos. Não ter uma estra-
tificação explícita no discurso cotidiano não implica, obviamente, a não existência de uma
estratificação implícita subjacente, mas pelo menos não está explicitamente representada
em nossa sintaxe.

Os argumentos apresentados acima estão entre as razões pelas quais o trabalho de
Russell e Tarski não foi considerado como a solução definitiva para os paradoxos. Mui-
tas soluções alternativas foram propostas. Pode-se, por exemplo, tentar buscar hierarquias
implícitas em vez de hierarquias explícitas. Uma hierarquia implícita é uma hierarquia não re-
fletida explicitamente na sintaxe da linguagem. Na seção seguinte, consideraremos algumas
das soluções para os paradoxos obtidas por meio de tais estratificações implícitas.

3.2 Building Implicit Hierarchies

A abordagem da hierarquia de Tarski para os paradoxos semânticos dominou o campo
até 1975, quando Kripke publicou seu famoso e influente artigo, “Outline of a Theory of Truth”.
Este artigo moldou significativamente a maioria das abordagens posteriores às teorias da
verdade e aos paradoxos semânticos. Deve-se notar, no entanto, que ideias bastante se-
melhantes às de Kripke foram desenvolvidas simultaneamente e de forma independente por
Martin e Woodruff (1975), e que uma abordagem paralela em um contexto de teoria dos
conjuntos foi desenvolvida independentemente por Gilmore (1974).
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3.2.1 A Teoria da Verdade de Kripke

As ideias de Kripke são baseadas em uma análise dos problemas envolvidos na aborda-
gem da hierarquia de Tarski. Kripke lista uma série de argumentos contra ter uma hierarquia
de linguagem na qual cada sentença reside em um nível fixo, determinado por sua forma
sintática. Ele propõe uma solução alternativa que ainda utiliza a ideia de ter níveis, mas
onde os níveis não se tornam uma parte explícita da sintaxe. Em vez disso, os níveis se
tornam estágios em uma construção iterativa de um predicado de verdade. Para explicar a
construção de Kripke, algum maquinário técnico adicional é necessário.

Em cada estágio na construção de Kripke, o predicado de verdade é apenas parcial-
mente definido, ou seja, ele se aplica apenas a algumas das sentenças da linguagem. Para
lidar com tais predicados parcialmente definidos, é empregada uma lógica de três valores,
ou seja, uma lógica que opera com um terceiro valor, indefinido, além dos valores de ver-
dade verdadeiro e falso. Muitas vezes, o terceiro valor é denotado por “𝑢” ou “⊥” (bottom).
Um predicado parcialmente definido recebe apenas um dos valores de verdade clássicos,
verdadeiro ou falso, quando é aplicado a um dos termos para os quais o predicado foi de-
finido, e, caso contrário, recebe o valor indefinido. Existem várias lógicas de três valores
disponíveis, diferindo em como tratam o terceiro valor. Aqui, apenas uma delas é descrita
brevemente, chamada de lógica forte de três valores de Kleene. Informações mais detalha-
das sobre essa lógica e lógicas relacionadas podem ser encontradas na entrada sobre lógica
multivalorada20.

Na lógica forte de três valores de Kleene, o valor ⊥ (indefinido) pode ser interpretado
como “ainda não definido”. Assim, pode-se pensar em fórmulas com o valor ⊥ como fór-
mulas que na verdade têm um valor de verdade clássico (verdadeiro ou falso), mas que
simplesmente ainda não foi determinado. Essa interpretação de indefinido é refletida nas
tabelas de verdade para a lógica, apresentadas abaixo. A tabela de verdade superior é para
a disjunção, a inferior para a negação:

∨ verdadeiro falso ⊥
verdadeiro verdadeiro verdadeiro verdadeiro

falso verdadeiro falso ⊥
⊥ verdadeiro ⊥ ⊥

¬
verdadeiro falso

falso verdadeiro
⊥ ⊥

20Gottwald, Siegfried, “Many-Valued Logic”, The Stanford Encyclopedia of Philosophy (Summer 2022 Edition),
Edward N. Zalta (ed.), URL = https://plato.stanford.edu/archives/sum2022/entries/logic-manyvalued/.
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Essas tabelas de verdade definem a lógica de três valores completamente, uma vez que
∨ e ¬ são consideradas para formar um conjunto adequado de conectivos e a quantificação
existencial e universal é tratada como disjunção e conjunção infinitas, respectivamente.

Para lidar com predicados de verdade parcialmente definidos, é necessário introduzir a
noção de modelos parciais. Em um modelo parcial para uma linguagem de primeira ordem,
cada símbolo de predicado𝑛-place𝑃 é interpretado por um par (𝑈, 𝑉 ) de relações𝑛-place
disjuntas no domínio do modelo. 𝑈 é chamado de extensão de 𝑃 e 𝑉 de anti-extensão. No
modelo, 𝑃 é verdadeiro para os objetos em 𝑈 , falso para os objetos em 𝑉 e indefinido
caso contrário. Dessa forma, qualquer sentença atômica recebe um dos valores de verdade
verdadeiro, falso ou indefinido no modelo. As fórmulas não atômicas recebem valores de
verdade nomodelo usando a lógica forte de três valores de Kleene para avaliar os conectivos.

Dada a definição de um modelo parcial, uma linguagem parcialmente interpretada é
um par (𝐿, 𝑀) onde 𝐿 é uma linguagem de primeira ordem e 𝑀 é um modelo parcial de
𝐿. Kripke define recursivamente uma sequência de linguagens parcialmente interpretadas
𝐿0, 𝐿1, 𝐿2, …, que diferem apenas em sua interpretação do predicado de verdade 𝑇 . A
primeira linguagem, 𝐿0, é considerada uma linguagem arbitrária na qual tanto a extensão
quanto a anti-extensão de 𝑇 são o conjunto vazio. Assim, em 𝐿0, o predicado de verdade
está completamente indefinido. Para qualquer 𝛼, a linguagem 𝐿𝛼+1 é como 𝐿𝛼, exceto
que 𝑇 é interpretado pelo par extensão/anti-extensão (𝑈, 𝑉 ) dado por:

• 𝑈 é o conjunto de códigos de Gödel ⟨𝜙⟩ de sentenças 𝜙 verdadeiras em 𝐿𝛼.

• 𝑉 é o conjunto de códigos de Gödel ⟨𝜙⟩ de sentenças 𝜙 falsas em 𝐿𝛼.

Essa definição imediatamente indica que para todo 𝛼,

(4) 𝜙 é verdadeira (falsa) em 𝐿𝛼 ⟺ 𝑇 ⟨𝜙⟩ é verdadeira (falsa) em 𝐿𝛼+1.

O que foi construído é uma sequência 𝐿0, 𝐿1, 𝐿2, … de linguagens parcialmente inter-
pretadas tal que 𝑇 é interpretado em 𝐿𝛼+1 como o predicado de verdade para 𝐿𝛼. Isso
é semelhante à hierarquia de linguagens de Tarski, exceto que aqui não há uma distinção
sintática entre as diferentes linguagens e seus predicados de verdade.

A sequência 𝐿0, 𝐿1, 𝐿2, … possui uma propriedade importante: Para cada 𝛼, a inter-
pretação de 𝑇 em 𝐿𝛼+1 estende a interpretação de 𝑇 em 𝐿𝛼, ou seja, tanto a extensão

118



quanto a anti-extensão de 𝑇 aumentam (ou permanecem as mesmas) ao se mover de 𝐿𝛼
para𝐿𝛼+1. Isso significa que se pode definir uma nova linguagem parcialmente interpretada
𝐿𝜔 deixando a extensão de 𝑇 ser a união de todas as extensões de 𝑇 em 𝐿0, 𝐿1, 𝐿2, …;
e de maneira similar para a anti-extensão. Assim, em 𝐿𝜔, a interpretação de 𝑇 estende a
interpretação que 𝑇 recebe em todas as linguagens anteriores. Isso fornece uma estraté-
gia para continuar a construção iterativa de um predicado de verdade até o transfinito: Para
cada ordinal sucessor 𝛼 + 1, defina 𝐿𝛼+1 a partir de 𝐿𝛼 exatamente como no caso finito
acima; e para cada ordinal limite 𝜎, defina 𝐿𝜎 a partir das linguagens precedentes (𝐿𝑖)𝑖<𝜎
da mesma forma que 𝐿𝜔 foi definido (para uma explicação detalhada dos números ordinais
e seu uso neste contexto, consulte a entrada sobre a teoria da revisão da verdade21). Uma
consideração simples de cardinalidade agora mostra que essa sequência transfinita de lin-
guagens acabará por estabilizar : Existe um ordinal 𝛾 tal que𝐿𝛾 = 𝐿𝛾+1. Assim, a seguinte
instância de (4) é obtida:

(5) 𝜙 é verdadeira (falsa) em 𝐿𝛾 ⟺ 𝑇 ⟨𝜙⟩ é verdadeira (falsa) em 𝐿𝛾.

Isso mostra que𝐿𝛾 é, na verdade, uma linguagem que contém seu próprio predicado de
verdade: qualquer sentença𝜙 é verdadeira (falsa) se e somente se a sentença que expressa
sua verdade, 𝑇 ⟨𝜙⟩, é verdadeira (falsa). A equivalência (5) não é nada mais do que um
análogo semântico do esquema 𝑇 de Tarski em um contexto de três valores. A construção
da linguagem 𝐿𝛾 foi uma das principais contribuições de Kripke (1975). Ela mostra que, em
um ambiente lógico de três valores, é realmente possível que uma linguagem contenha seu
próprio predicado de verdade. É fácil ver que o terceiro valor, indefinido, é essencial para
que as coisas funcionem: se 𝐿𝛾 fosse uma linguagem totalmente interpretada (ou seja,
uma linguagem sem sentenças indefinidas), então 𝐿𝛾 satisfaria o esquema 𝑇 , conforme (5)
acima. No entanto, isso contradiz imediatamente o teorema de Tarski de que tal linguagem
totalmente interpretada pode existir.

Entre as sentenças que recebem o valor indefinido em𝐿𝛾 está a sentença do mentiroso.
A solução para o paradoxo do mentiroso implícita na teoria de Kripke é a seguinte: uma vez
que tanto assumir que a sentença do mentiroso é verdadeira quanto assumir que é falsa
21Kremer, Philip and Edoardo Rivello, “The Revision Theory of Truth”, The Stanford Encyclopedia of Philo-
sophy (Summer 2023 Edition), Edward N. Zalta & Uri Nodelman (eds.), URL = https://plato.stanford.edu/archives/
sum2023/entries/truth-revision/.
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levam a uma contradição, deve ser nenhuma das duas; ela é indefinida. A sentença do
mentiroso é dita sofrer de uma lacuna de valor-verdade. A ideia de evitar o paradoxo do
mentiroso permitindo lacunas de valor-verdade de fato apareceu várias vezes na literatura
antes do artigo de Kripke, mas Kripke foi um dos primeiros a torná-la uma parte integral de
uma teoria genuína.

Assim como a solução da hierarquia para o paradoxo do mentiroso, a solução da la-
cuna de valor-verdade é considerada problemática por muitos. A principal crítica é que, ao
usar uma semântica de três valores, obtém-se uma linguagem interpretada que é expressi-
vamente fraca. Não se pode, por exemplo, em nenhuma das linguagens de Kripke ter um
predicado que expresse a propriedade de ser indefinido. Isso é, de fato, notado pelo próprio
Kripke. Se uma linguagem parcialmente interpretada contivesse tal predicado, a seguinte
sentença do mentiroso reforçada dentro da linguagem poderia ser formulada: “Esta sen-
tença é falsa ou indefinida”. A sentença do mentiroso reforçada é verdadeira se e somente
se é falsa ou indefinida, então temos um novo paradoxo, chamado paradoxo do mentiroso
reforçado. O problema com o paradoxo do mentiroso reforçado é conhecido como um pro-
blema de vingança: dada qualquer solução para o mentiroso, parece que podemos gerar
um novo paradoxo reforçado, análogo ao mentiroso, que permanece sem solução. A ideia
é que, qualquer que seja o status semântico que a solução suposta afirme que a sentença
do mentiroso tenha, se nos for permitido referir-nos livremente a esse status semântico na
linguagem objeto, podemos gerar um novo paradoxo.

A incapacidade da linguagem kripkeana de expressar seu próprio predicado indefinido
também significa que não podemos, na linguagem objeto kripkeana, expressar uma afirma-
ção como: “A sentença do mentiroso é indefinida”. Na verdade, na linguagem de Kripke 𝐿𝛾 ,
a sentença do mentiroso é indefinida, portanto, a sentença anterior expressa uma verdade
sobre 𝐿𝛾 que não pode ser expressa dentro de 𝐿𝛾 (daí a linguagem é expressivamente
incompleta). Para expressar a verdadeira afirmação “A sentença do mentiroso é indefinida”,
somos forçados a ascender a uma meta-linguagem de 𝐿𝛾 . Como Kripke (1975) coloca: “O
fantasma da hierarquia de Tarski ainda está conosco.”

3.2.2 Extensões e Alternativas à Teoria da Verdade de Kripke

Sucessores do trabalho de Kripke, muitas tentativas foram feitas para construir lingua-
gens que contêm seu próprio predicado de verdade e que não sofrem com o problema de
vingança dosmentirosos reforçados. Muitas dessas tentativas se concentraram emmodificar
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ou estender a lógica forte de três valores subjacente, por exemplo, modificando a semântica
do condicional (Field, 2003, 2008) ou permitindo um número ilimitado de valores de verdade
(Cook, 2007; Schlenker, 2010; Tourville e Cook, 2016).

A teoria de Kripke contorna o paradoxo do mentiroso atribuindo a ele o valor indefinido.
Uma maneira alternativa de contornar o paradoxo do mentiroso seria atribuir a ele o valor
tanto verdadeiro quanto falso em uma lógica paraconsistente adequada. Esta seria a solução
correta de acordo com a visão dialeteísta, cf. Seção 2. Uma das lógicas paraconsistentes
mais simples é a LP, que é uma lógica de três valores com as mesmas tabelas de verdade
da lógica forte de três valores de Kleene apresentadas acima— a única diferença é que
o terceiro valor de verdade é interpretado como tanto verdadeiro quanto falso, em vez de
indefinido. Uma razão para preferir uma lógica paraconsistente a uma lógica parcial é que
sentenças paradoxais, como a domentiroso, podementão sermodeladas como contradições
verdadeiras (dialetéia), em vez de lacunas de valor-verdade. Referimo-nos novamente às
entradas sobre dialeteísmo22 e lógica paraconsistente23.

A escolha é entre lacunas de valor-verdade e glut de valor-verdade: uma lacuna de valor-
verdade é uma declaração sem valor-verdade, nem verdadeira nem falsa (como indefinido
na lógica forte de três valores de Kleene), e um glut de valor-verdade é uma declaração
com vários valores de verdade, por exemplo, tanto verdadeira quanto falsa (como na lógica
paraconsistente LP). Também existem argumentos a favor de permitir tanto lacunas quanto
excessos, por exemplo, permitindo que o conjunto de valores de verdade forme um bilattice
(Fitting, 2006; Odintsov eWansing, 2015). O bilattice não trivial mais simples tem exatamente
quatro valores, que no contexto de valores de verdade são interpretados como: verdadeiro,
falso, ⊥ (nem verdadeiro nem falso) e ⊤ (tanto verdadeiro quanto falso).

Para uma discussão mais extensa sobre a teoria de Kripke, seus sucessores e rivais,
consulte a entrada sobre o paradoxo do mentiroso24.

22Priest, Graham, Francesco Berto, and Zach Weber, “Dialetheism”, The Stanford Encyclopedia of Philosophy
(Summer 2024 Edition), Edward N. Zalta & Uri Nodelman (eds.), URL = https://plato.stanford.edu/archives/
sum2024/entries/dialetheism/.
23Priest, Graham, Koji Tanaka, and Zach Weber, “Paraconsistent Logic”, The Stanford Encyclopedia of Philo-
sophy (Spring 2025 Edition), Edward N. Zalta & Uri Nodelman (eds.), URL = https://plato.stanford.edu/archives/
spr2025/entries/logic-paraconsistent/.
24Beall, Jc, Michael Glanzberg, and David Ripley, “Liar Paradox”, The Stanford Encyclopedia of Philosophy (Win-
ter 2023 Edition), Edward N. Zalta & Uri Nodelman (eds.), URL = https://plato.stanford.edu/archives/win2023/
entries/liar-paradox/.
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3.2.3 Hierarquias Implícitas em Teorias de Conjuntos

Construir hierarquias implícitas, em vez de explícitas, é também uma ideia que tem sido
empregada na teoria dos conjuntos. New Foundations (NF) de Quine (1937) é uma modifi-
cação da teoria de tipos simples, onde a estratificação em tipos sintáticos foi substituída por
uma estratificação no princípio de compreensão:

Compreensão NF:
∀𝑢 (𝑢 ∈ {𝑥 ∣ 𝜙(𝑥)} ↔ 𝜙(𝑢)) para todas as fórmulas estratificadas 𝜙(𝑥).

Uma fórmula 𝜙 é estratificada se existe um mapeamento 𝜎 (uma estratificação) das va-
riáveis de 𝜙 para os números naturais, de modo que se 𝑢 ∈ 𝑣 é uma subfórmula de 𝜙, então
𝜎(𝑣) = 𝜎(𝑢) + 1 e se 𝑢 = 𝑣 é uma subfórmula de 𝜙, então 𝜎(𝑣) = 𝜎(𝑢). Obviamente,
a fórmula 𝑥 ∉ 𝑥 não é estratificada, e assim o princípio de compreensão NF não pode ser
usado para formular o paradoxo de Russell na teoria. As New Foundations de Quine são es-
sencialmente obtidas a partir da teoria de tipos, ocultando os tipos da sintaxe. Assim, a teoria
ainda faz uso de uma abordagem hierárquica para evitar os paradoxos, mas a hierarquia é
tornada implícita ao não ser representada na sintaxe das fórmulas. Cantini (2015) investigou
a possibilidade de imitar essa abordagem de hierarquia implícita no contexto das teorias da
verdade (conseguindo uma hierarquia de verdade tarskiana implicitamente representada).

A teoria dos conjuntos de Zermelo-Fraenkel (ZF) é outra teoria que se baseia na ideia de
uma hierarquia implícita para contornar os paradoxos. No entanto, ela o faz de uma maneira
muito menos direta do que NF. Em ZF, os conjuntos são construídos de baixo para cima,
começando com o conjunto vazio e iterando uma construção de conjuntos cada vez maiores
usando as operações de união e conjunto das partes. Isso produz uma hierarquia com o
conjunto vazio no nível mais baixo, nível 0, e com a operação de conjunto das partes produ-
zindo um conjunto de nível 𝛼 + 1 a partir de um conjunto de nível 𝛼. Análogo à construção
iterativa de Kripke, o procedimento é continuado para o transfinito usando o operador de
união nos níveis ordinais limites. A hierarquia obtida é chamada de hierarquia cumulativa.
Um dos axiomas de ZF, o axioma da fundação, afirma que todo conjunto de ZF reside em um
determinado nível nessa hierarquia cumulativa. Em outras palavras, o axioma da fundação
afirma que não existem conjuntos em ZF além daqueles que podem ser construídos de baixo
para cima pelo procedimento iterativo descrito. Como em uma hierarquia cumulativa, não
pode haver conjuntos que contenham a si mesmos, nenhum conjunto universal e nenhum
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conjunto não bem-fundado, nenhum dos paradoxos conhecidos pode ser imediatamente for-
mulado na teoria. Isso, evidentemente, não garante por si só a consistência de ZF, mas pelo
menos ilustra como a ideia de uma hierarquia de conjuntos desempenha um papel signifi-
cativo em ZF também. ZF possui um status privilegiado entre as teorias de conjuntos, uma
vez que é hoje o candidato mais amplamente reconhecido para uma fundamentação formal
da matemática.

3.3 Abordagens Gerais de Ponto Fixo
A construção iterativa de Kripke de um predicado de verdade apresentado acima pode

ser vista como uma instância de uma abordagem de ponto fixomais geral para a construção
de teorias formais da verdade. As abordagens de ponto fixo tornaram-se centrais para as
teorias formais contemporâneas da verdade. A ideia principal é ter um operador de revisão da
verdade e, em seguida, buscar os pontos fixos desse operador. O cerne dessas abordagens
de ponto fixo é algum teorema de ponto fixo adequado, que garanta a existência de pontos
fixos para certos tipos de operadores. Existem vários teoremas diferentes de ponto fixo
disponíveis. Considere agora um dos mais simples.

Teorema do Ponto Fixo.
Seja 𝜏 um operador monótono em uma ordem parcial completa por cadeias
(doravante ccpo). Então 𝜏 tem um menor ponto fixo, ou seja, existe um menor
𝑓 tal que 𝜏(𝑓) = 𝑓 .

Uma ccpo é uma ordem parcial (𝐷, <) na qual todo subconjunto totalmente ordenado
de 𝐷 tem um limite superior mínimo. Os subconjuntos totalmente ordenados de 𝐷 são
chamados de cadeias em 𝐷. Um operador monótono em (𝐷, <) é um aplicação 𝜏 ∶ 𝐷 →
𝐷 que satisfaz:

𝑑1 ≤ 𝑑2 ⇒ 𝜏(𝑑1) ≤ 𝜏(𝑑2), para todos 𝑑1, 𝑑2 ∈ 𝐷.
A construção de Kripke se encaixa no teorema de ponto fixo acima da seguinte forma.

Primeiro, note que o conjunto de linguagens parcialmente interpretadas que diferem ape-
nas na interpretação de 𝑇 forma uma ccpo: simplesmente definimos a ordenação nessas
linguagens por 𝐿1 ≤ 𝐿2 se e somente se a interpretação de 𝑇 em 𝐿2 estender a interpre-
tação de 𝑇 em 𝐿1 (isto é, a extensão e a anti-extensão de 𝑇 em 𝐿1 estão incluídas nas de
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𝐿2). Então, definimos um operador de revisão da verdade 𝜏 nessas linguagens da seguinte
maneira:

(6) 𝜏(𝐿) = 𝐿′, onde 𝑇 ⟨𝜙⟩ é verdadeiro (falso) em 𝐿′ se e somente se 𝜙 é verdadeiro (falso) em 𝐿.

Note que se𝐿𝛼 é uma das linguagens na construção de Kripke, então𝐿𝛼+1 = 𝜏(𝐿𝛼).
A ideia desse operador de revisão da verdade 𝜏 é que, se 𝜏(𝐿) = 𝐿′, então 𝐿′ será uma
linguagem na qual 𝑇 é interpretado como o predicado de verdade para 𝐿. Portanto, se
𝜏(𝐿) = 𝐿 para algum 𝐿, isto é, se 𝐿 é um ponto fixo de 𝜏 , então 𝐿 será uma linguagem
contendo seu próprio predicado de verdade. Isso motiva a busca por pontos fixos de 𝜏 .
Como é fácil perceber que 𝜏 é monótono, pelo teorema do ponto fixo, ele tem um menor
ponto fixo. Não é difícil ver que esse ponto fixo é exatamente a linguagem 𝐿𝛾 construída na
teoria da verdade de Kripke. Assim, a construção de Kripke é recapturada no contexto de
pontos fixos para operadores monótonos.

O objetivo de introduzir a maquinaria adicional não foi apenas redescobrir a linguagem
𝐿𝛾 . O objetivo foi, ao contrário, fornecer uma estrutura muito mais geral e abstrata que pode
levar a novas teorias da verdade e oferecer novos insights sobre os paradoxos semânticos.
Acontece que o operador de revisão da verdade 𝜏 , definido acima, tem muitos pontos fixos
interessantes além de 𝐿𝛾 . Também é possível obter novas teorias da verdade considerando
maneiras alternativas de transformar o conjunto de linguagens interpretadas em uma ccpo.
Por exemplo, pode-se adicionar um valor de verdade adicional e considerar a situação em
uma lógica de quatro valores, como considerado por Fitting (1997); ou pode-se remover o
terceiro valor de verdade indefinido e construir uma ccpo em um contexto completamente
clássico. No contexto clássico, a atenção é restringida às linguagens totalmente interpreta-
das (linguagens nas quais toda sentença é ou verdadeira ou falsa), e uma ordenação sobre
elas é definida da seguinte por: 𝐿1 ≤ 𝐿2 se e somente se a extensão do predicado de ver-
dade em 𝐿1 está incluída na extensão do predicado de verdade em 𝐿2, isto é, se e somente
se𝐿2 aponta pelo menos tantas sentenças como verdadeiras quanto𝐿1. Isso dá uma ccpo.
Usando o teorema do ponto fixo neste contexto com um operador de revisão adequadamente
definido, é relativamente fácil provar a existência de uma linguagem totalmente interpretada
contendo uma definição positiva de verdade. Com isso, queremos dizer que a linguagem
interpretada tem um predicado 𝑇 que satisfaz a seguinte versão restrita do esquema 𝑇 :
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(7) 𝜙 ↔ 𝑇 (⟨𝜙⟩) para todas as sentenças positivas 𝜙,
onde as sentenças positivas são aquelas construídas sem o uso de negação (¬). Dado

que (7) é satisfiável em uma linguagem totalmente interpretada, a teoria de primeira ordem
contendo as sentenças de (7) como axiomas deve ser consistente. Isso deve ser contras-
tado com o teorema de Tarski, que afirma que o esquema 𝑇 irrestrito é inconsistente. Se
o princípio de compreensão irrestrito for similarmente restrito às fórmulas positivas, também
obtemos uma teoria consistente. Isso foi originalmente demonstrado por Gilmore (1974).

A abordagem do ponto fixo também é o ponto de partida da teoria de revisão da verdade
desenvolvida por Belnap e Gupta (1993). A teoria de revisão da verdade é a teoria mais influ-
ente da verdade e os paradoxos semânticos que foi desenvolvida desde a teoria de Kripke.
A teoria de revisão considera o operador de revisão da verdade padrão 𝜏 , definido por (6),
como um operador sobre as linguagens totalmente interpretadas. Nessas linguagens, 𝜏 não
tem um ponto fixo: Se houvesse tal ponto fixo 𝐿, então 𝐿 seria uma linguagem totalmente
interpretada satisfazendo o esquema completo 𝑇 , o que contradiz diretamente o teorema
de Tarski. Como 𝜏 não tem um ponto fixo nas linguagens totalmente interpretadas, a teoria
de revisão considera, em vez disso, sequências transfinitas 𝐿1, 𝐿2, … , 𝐿𝜔, 𝐿𝜔+1, … de
linguagens totalmente interpretadas que satisfazem:

• Para qualquer ordinal sucessor 𝛼 + 1, 𝐿𝛼+1 = 𝜏(𝐿𝛼).

• Para qualquer ordinal limite 𝜎 e qualquer sentença 𝜙, se 𝜙 estabiliza no valor verda-
deiro (ou falso) na sequência (𝐿𝛼)𝛼<𝜎, então 𝜙 é verdadeira (ou falsa) em 𝐿𝜎.

Em tal sequência, cada sentença 𝜙 ou eventualmente se estabiliza em um valor de
verdade clássico (verdadeiro ou falso), ou nunca se estabiliza. Um exemplo de sentença
que nunca se estabiliza é a sentença do mentiroso: se a sentença do mentiroso é verdadeira
em uma das linguagens 𝐿𝛼, ela será falsa em 𝐿𝛼+1, e vice-versa. A teoria de revisão,
assim, fornece uma explicação da verdade que modela corretamente o comportamento da
sentença do mentiroso como uma que nunca se estabiliza em um valor de verdade. Na teoria
de revisão, argumenta-se que isso oferece uma explicação mais precisa da verdade e da
autorreferência do que a teoria de Kripke, na qual a sentença do mentiroso é simplesmente
atribuída ao valor indefinido. Tanto a teoria de revisão da verdade quanto as teorias de ponto
fixo ao estilo de Kripke continuam sendo ativamente pesquisadas (Gupta e Standefer, 2017;
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Hsiung, 2017; Schindler, 2017). Um relato completo da teoria de revisão pode ser encontrado
na entrada sobre a teoria de revisão da verdade25.

Estudar fenômenos autorreferenciais como pontos fixos não se limita às teorias da ver-
dade. Por exemplo, no contexto de paradoxos epistêmicos, o paradoxo de Brandenburger-
Keisler foi interpretado como um resultado de ponto fixo por Abramsky e Zvesper (2015).

4. Desenvolvimentos Recentes

Murzi e Massimiliano (2015) fornecem uma visão geral dos desenvolvimentos recentes
nas abordagens para resolver os paradoxos: paracompletude (permitindo lacunas de va-
lores de verdade), paraconsistência (permitindo excessos de valores de verdade), lógicas
subestruturais (enfraquecendo os princípios lógicos da lógica clássica) e os problemas de
vingança que essas abordagens irão ou podem causar. Desenvolvimentos recentes em ló-
gicas subestruturais como solução para os paradoxos incluem French (2016) (eliminando a
reflexividade), Caret, Colin e Weber (2015), Shapiro e Lionel (2015), Mares e Paoli (2014)
(eliminando a contração), e Cobreros, Égré, Ripley e van Rooij (2014) (eliminando a tran-
sitividade). Mais recentemente, um volume especial da Synthese foi dedicado às aborda-
gens subestruturais para o paradoxo (edição de dezembro de 2021, com uma introdução
de Zardini, 2021). O volume de Achourioti et al. (eds., 2015) contém vários artigos sobre
autorreferência e como evitar paradoxos no contexto das teorias da verdade.

Volker Halbach e Albert Visser (2014a, 2014b) realizaram um estudo muito detalhado
sobre autorreferência na aritmética, estudando o que significa para uma sentença da aritmé-
tica atribuir a si mesma uma propriedade e como isso depende da codificação escolhida, dos
detalhes da construção do ponto fixo, etc. Albert Visser (2019) também está entre os autores
que estudaram o quão pouca autorreferência podemos usar ao provar teoremas clássicos
como o segundo teorema da incompletude de Gödel.

Ainda há trabalhos que tentam caracterizar exatamente o que significa algo ser um pa-
radoxo (Hsiung, 2022). Isso está de certa forma no espírito dos Esquemas de Inclusão de
Priest e das classificações gráfico-teóricas de paradoxicidade mencionadas acima. Encon-
trar os ingredientes exatos necessários e suficientes para um paradoxo ainda é um problema

25Kremer, Philip and Edoardo Rivello, “The Revision Theory of Truth”, The Stanford Encyclopedia of Philo-
sophy (Summer 2023 Edition), Edward N. Zalta & Uri Nodelman (eds.), URL = https://plato.stanford.edu/archives/
sum2023/entries/truth-revision/.
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em aberto. Também houve mais trabalho em definir exatamente o que significa algo ser
autorreferencial (Picollo, 2018, 2020). Grabmayr, Halbach e Ye (2023) distinguem entre au-
torreferência genuína e acidental, e assim tentam fornecer uma análise mais detalhada da
autorreferencialidade. Uma análise mais detalhada da autorreferencialidade também pode
ser feita observando mais de perto o tipo de numeração de Gödel que usamos (Grabmayr e
Visser, 2023; Kripke, 2023).
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(III) Paradoxo do Mentiroso1

Título Original: Liar Paradox
Autores: BEALL, Jc. GLANZBERG, Michael. RIPLEY, Ellie.

Tradução: Annelyze Reis e Kherian Gracher
Revisão: Caio Cezar Silva

A primeira sentença deste ensaio é uma mentira. Há algo paradoxal em tal afirmação,
como já se reconhece desde a Antiguidade. Para entender o porquê, lembre-se que toda
proposição falsa é, por definição, não verdadeira. A sentença inicial é verdadeira? Se sim,
então o que ela afirma é uma mentira, e, portanto, não pode ser verdadeira. Inversamente,
suponha que não seja verdadeira. Nós (a saber, os autores) a enunciamos, e, em geral, os
enunciados são proferidos com a intenção de serem tomados como verdadeiros. Declarar
algo dessa maneira, quando o que é dito é falso, é uma mentira. Mas, dado o que afirma a
sentença, ela é verdadeira afinal!

O fato de que há algum tipo de enigma associado a sentenças como a primeira deste
ensaio é algo que tem sido frequentemente acentuado ao longo da história da filosofia. Tal
questão foi discutida na Antiguidade clássica, notadamente pelos Megáricos, mas também
foi mencionada por Aristóteles e por Cícero. Como um dos insolubilia, foi objeto de extensa
investigação por parte dos lógicos medievais, como Buridan. Mais recentemente, o estudo
1BEALL, Jc; GLANZBERG, Michael; RIPLEY, Ellie, “Liar Paradox”, In: ZALTA, E. N.; NODELMAN, U. (eds.). The
Stanford Encyclopedia of Philosophy (Fall 2025 Edition). Stanford, CA: The Metaphysics Research Lab, 2025.
Disponível em: https://plato.stanford.edu/archives/fall2025/entries/liar-paradox/.
A seguir está a tradução da entrada sobre o Paradoxo do Mentiroso de Jc Beall, Michael Glanzberg e Ellie
Ripley na Stanford Encyclopedia of Philosophy. A tradução segue a versão da entrada nos arquivos da SEP em
https://plato.stanford.edu/archives/fall2025/entries/liar-paradox/. Esta versão traduzida pode diferir da versão
atual da entrada, que pode ter sido atualizada desde o momento desta tradução. A versão atual está localizada
em https://plato.stanford.edu/entries/liar-paradox/. Agradecemos aos editores Edward N. Zalta e Uri Nodelman
pela permissão para traduzir e publicar esta entrada.

https://plato.stanford.edu/archives/fall2025/entries/liar-paradox/
https://plato.stanford.edu/archives/fall2025/entries/liar-paradox/
https://plato.stanford.edu/entries/liar-paradox/


desse problema tem desempenhado um papel central no desenvolvimento da lógica mate-
mática moderna, tornando-se, inclusive, um campo de pesquisa autônomo e amplamente
explorado. O paradoxo é por vezes denominado ”paradoxo de Epimênides”, dado que a tra-
dição atribui uma sentença análoga à primeira deste ensaio a Epimênides de Creta, a quem
se imputa a afirmação de que todos os cretenses são sempre mentirosos. O fato de que tal
afirmação tenha sido proferida por um cretense encontra-se, nada menos, do que em uma
das epístolas do Novo Testamento!2

Mentir é um fenômeno complexo, mas o que torna sentenças como a primeira deste en-
saio enigmáticas não está, em essência, vinculado a intenções, normas sociais ou quaisquer
fatores similares. Antes, parece tratar-se de algo relacionado à verdade, ou, ao menos, a
alguma noção semântica relacionada à verdade. O enigma é comumente denominado “o
paradoxo do Mentiroso”, embora tal designação se refira, na realidade, a uma família de
paradoxos associada a sentenças desse tipo. A designação como família de paradoxos é
adequada, pois elas parecem conduzir a conclusões incoerentes, como, por exemplo: “tudo
é verdadeiro”. De fato, o paradoxo do mentiroso parece permitir que se chegue a tais con-
clusões com base na lógica, a partir de alguns princípios bastante evidentes, que por vezes
foram considerados como princípios da própria lógica. Assim, deparamo-nos com a situa-
ção surpreendente de que algo próximo — ou análogo — à própria lógica possa conduzir à
incoerência. Este é, talvez, o mais impetuoso dos tipos de paradoxo, e enfrentá-lo tem sido
uma tarefa central da lógica desde os seus primórdios.

Neste ensaio, examinaremos os membros mais relevantes da família dos paradoxos
do mentiroso, bem como algumas das principais propostas sobre como tais paradoxos po-
deriam ser resolvidos. Os últimos milênios produziram uma grande variedade de soluções
propostas, mas não será possível analisá-las todas; ao invés disso, nos concentraremos em
algumas que, nas discussões recentes, mostraram-se particularmente relevantes.

2Assim, um paradoxo quase ocorre no Novo Testamento. Para uma discussão instigante sobre esse tema,
veja Anderson (1970). Para uma análise mais aprofundada sobre a história do paradoxo do Mentiroso, consulte
Sorensen (2003). Há trabalhos recentes de grande importância sobre as teorias medievais do paradoxo do men-
tiroso e sua relevância para as abordagens contemporâneas. Veja os artigos reunidos em Rahman, Tulenheimo
e Genot (2008) e, por exemplo, Read (2002, 2006); Restall (2008); e Simmons (1993).
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1. O Paradoxo e o Fenômeno Mais Amplo

1.1 Mentiroso de Falsidade Simples

Considere uma sentença denominada ‘FMentiroso’, que afirma de si mesma (isto é,
afirma a respeito de FMentiroso) que é falsa:

FMentiroso: FMentiroso é falsa.

Tal formulação parece conduzir a uma contradição da seguinte maneira. Se a sentença
“FMentiroso é falsa” é verdadeira, então, dado o que ela afirma, FMentiroso é falsa. Contudo,
FMentiroso é precisamente a sentença “FMentiroso é falsa”, de modo que se pode concluir
que, se FMentiroso é verdadeira, então FMentiroso é falsa. Por outro lado, se FMentiroso é
falsa, então a sentença “FMentiroso é falsa” é verdadeira. Novamente, dado que FMentiroso
é idêntica à sentença “FMentiroso é falsa”, conclui-se que, se FMentiroso é falsa, então
FMentiroso é verdadeira. Assim, demonstramos que FMentiroso é falsa se, e somente se,
FMentiroso é verdadeira. No entanto, se toda sentença é ou verdadeira ou falsa, então a
sentença FMentiroso é ou verdadeira ou falsa, mas nesse caso — segundo o raciocínio
acima — ela é ambos: verdadeira e falsa. Isso constitui uma contradição. E contradições,
de acordo com muitas teorias lógicas (por exemplo, a lógica clássica, a lógica intuicionista,
entre outras), implicam trivialidade, isto é, que toda sentença é verdadeira.

Uma resposta óbvia consiste em negar que toda sentença seja verdadeira ou falsa, ou
seja, negar o princípio da bivalência. Como discutiremos na seção 4, alguns desdobramen-
tos dessa ideia permanecem relevantes na pesquisa contemporânea sobre o paradoxo do
mentiroso. Ainda assim, uma variante simples da sentença do mentiroso mostra que tal
resposta imediata não esgota o problema.

1.2 Mentiroso Não-Verdadeiro Simples

Ao invés de operar com a noção de falsidade, podemos construir uma sentença do Men-
tiroso utilizando o predicado composto “não-verdadeiro”.3 Considere uma sentença denomi-
3Note-se que a terminologia não é uniforme. Van Fraassen (1968) introduziu o termo ’Mentiroso Fortalecido’
para denominar o que estamos chamando de ’Mentiroso Não-Verdadeiro Simples’. Porém, o termo cunhado por
Van Fraassen é frequentemente utilizado para uma forma de paradoxo da revanche [ou vingança] ao modo de
C. Parsons (1974), como discutido na seção 4.1.3.
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nada ‘NMentiroso’ (N para ‘não-verdadeiro’), que afirma de si mesma que não é verdadeira:

NMentiroso: NMentiroso não é verdadeira.

O argumento que conduz à contradição é similar ao caso de FMentiroso. Em resumo: se
NMentiroso é verdadeira, então, conforme o que afirma, ela não é verdadeira; e se NMenti-
roso não é verdadeira, então ela é verdadeira. No entanto, se toda sentença é ou verdadeira
ou não verdadeira, então NMentiroso é verdadeira ou não verdadeira e, nesse caso, ela é
ambos: verdadeira e não verdadeira. Isso constitui uma contradição. E, de acordo com
muitas teorias lógicas, uma contradição implica trivialidade.

As duas formas do paradoxo do mentiroso que examinamos até o momento dependem
de alguma autorreferência explícita — sentenças que falam diretamente de si mesmas. Con-
tudo, tal autorreferência explícita pode ser evitada, como será demonstrado pela próxima
família de paradoxos do mentiroso.

1.3 Ciclos do Mentiroso

Considere um diálogo muito conciso (isto é, com uma sentença cada) entre os irmãos
Max e Agnes:

Max: A afirmação de Agnes é verdadeira.

Agnes: A afirmação de Max não é verdadeira.

O que Max disse é verdadeiro se, e somente se, o que Agnes disse é verdadeiro. Con-
tudo, o que Agnes disse (a saber: ”A afirmação de Max não é verdadeira.”) é verdadeiro se,
e somente se, o que Max disse não é verdadeiro. Portanto, o que Max disse é verdadeiro
se, e somente se, o que Max disse não é verdadeiro. Entretanto, se o que Max disse é ou
verdadeiro ou não verdadeiro, então é ambos: verdadeiro e não verdadeiro. E isso cons-
titui, assim como nos casos de FMentiroso e NMentiroso, uma contradição, a qual implica,
segundo muitas teorias lógicas, uma trivialidade.

Paradoxos do mentiroso também podem ser formulados por meio de estruturas sen-
tenciais mais complexas, e não apenas por modos de referência complexos. Um exemplo
particularmente relevante envolve compostos booleanos.
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1.4 Compostos Booleanos

Compostos booleanos podem ser incorporados a sentenças do mentiroso de diversas
maneiras. Um exemplo relativamente simples é o seguinte. Considere a sentença denomi-
nada DMentiroso (D para disjuntivo):

DMentiroso: Ou DMentiroso não é verdadeira, ou 1=0.

Primeiramente, observe que, se DMentiroso não é verdadeira, então ela deve ser verda-
deira. Se DMentiroso não é verdadeira, então, por raciocínio análogo ao que vimos anteri-
ormente, a primeira disjunta de DMentiroso é verdadeira. Uma disjunção é verdadeira se ao
menos uma de suas disjuntas o for, logo, DMentiroso é verdadeira. Assim, se DMentiroso
não é verdadeira, ela é ambos: verdadeira e não verdadeira, o que constitui uma contradi-
ção. Por reductio ad absurdum, conclui-se, então, que DMentiroso é verdadeira; portanto,
uma de suas disjuntas deve ser verdadeira. Se for a primeira, incorremos em contradição;
logo, deve ser a segunda. Concluímos, assim, que 1=0. Dessa forma, demonstramos que
1=0. Além disso, a sentença “1=0” não desempenhou nenhum papel substancial no raciocí-
nio acima. Poderíamos substituí-la por qualquer outra sentença e obter, desse modo, uma
prova dessa sentença.

Fizemos uma pausa para mencionar DMentiroso, porque ela está relacionada a outro
paradoxo importante: o paradoxo de Curry, o qual envolve condicionais que afirmam de si
mesmas apenas se forem verdadeiras (isto é, se a própria condicional for verdadeira), então
alguma absurdidade também o será (por exemplo: ”se esta sentença é verdadeira, então
1=0”, ou “se esta sentença é verdadeira, então tudo é verdadeiro”, e assim por diante).
Pelo menos em linguagens nas quais o condicional é o condicional material, de modo que
A⊃B é equivalente a ¬A∨B, DMentiroso é equivalente à sentença de Curry “DMentiroso é
verdadeira⊃ 1=0”. Embora essa equivalência estabeleça certas conexões entre o paradoxo
do Mentiroso e o paradoxo de Curry, convém assinalar uma diferença fundamental. Para o
paradoxo de Curry é mais relevante onde está o condicional do que o condicional material
(ou alguma variante modalizada deste). Nesses contextos, o paradoxo de Curry não ostenta
a negação de forma explícita, como ocorre com DMentiroso. Para maiores esclarecimentos,
consulte o verbete sobre o paradoxo de Curry.4

4N.T.: https://plato.stanford.edu/entries/curry-paradox/
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1.5 Sequências Infinitas
A questão de saber se o paradoxo do mentiroso exige, de fato, algum tipo de circulari-

dade tem sido objeto de amplo debate. Os ciclos do Mentiroso (como, por exemplo, o diálogo
entre Max e Agnes) demonstram que a autorreferência explícita não é necessária; contudo,
é evidente que tais ciclos envolvem uma referência circular. Yablo (1993b) argumentou que
um paradoxo mais complexo, composto por uma sequência de múltiplas sentenças, pode
gerar um paradoxo do Mentiroso sem circularidade.

O paradoxo de Yablo fundamenta-se em uma sequência infinita de afirmações A0, A1,
A2, …, em que cada A𝑖 afirma que todas as A𝑘 maiores (isto é, todas aquelas para as quais
𝑘 > 𝑖) são não verdadeiras. Em outras palavras, cada sentença declara que todas as sen-
tenças subsequentes são não verdadeiras. Dado que estamos diante de uma sequência
infinita, esta versão do paradoxo do Mentiroso parece evitar o tipo de circularidade evidente
nos exemplos anteriores. No entanto, a contradição ainda parece emergir. Se A0 é ver-
dadeira, então todas as sentenças maiores A𝑘 são não verdadeiras, e a fortiori A1 é não
verdadeira. Mas isso implica que há ao menos uma sentença A𝑘 (com 𝑘 > 1) que é ver-
dadeira, o que contradiz A0. Por outro lado, se A0 é não verdadeira, então existe ao menos
uma sentença verdadeira A𝑘 maior que A0. Supondo que A𝑚 seja tal sentença (ou seja, uma
sentença verdadeira maior que A0), temos que A𝑚+1 é não verdadeira, e nesse caso, há
alguma afirmativa verdadeira maior que A𝑚+1. Contudo, isso contradiz A𝑚. Em vista disso,
se A0 (a primeira sentença da sequência infinita) é ou verdadeira ou não verdadeira, então
ela é ambas: verdadeira e não verdadeira. E isso constitui, como nos casos anteriores, uma
contradição.5

2. Elementos Básicos

Já observamos um tipo característico de raciocínio associado ao paradoxo doMentiroso.
Também identificamos certa estrutura comum presente em todos os exemplos analisados,
como a ocorrência de predicados de verdade e de algo análogo à negação. Faremos aqui
uma pausa na exposição para discutir esses elementos constituintes do paradoxo, com foco
nos paradoxos do Mentiroso mais básicos. O que exatamente dá origem ao paradoxo do
5A questão sobre se o paradoxo de Yablo evita de fato a autorreferência é objeto de intenso debate. Consulte,
por exemplo, Barrio (2012), Beall (2001), Cook (2006, 2014), Ojea (2012), Picollo (2012), Priest (1997), Sorensen
(1998) e Teijeiro (2012).
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Mentiroso, e quais, entre os enigmas que acabamos de examinar, podem ser considerados
verdadeiramente “básicos”, são objetos de controvérsia; uma vez que diferentes abordagens
para a solução do paradoxo adotam visões distintas sobre esses pontos. Assim, nosso
objetivo, nesta seção, é esclarecer certos temas recorrentes entre as diversas variantes do
paradoxo, e não oferecer um diagnóstico exaustivo de sua fonte paradoxal.

Destacamos três aspectos do paradoxo do Mentiroso: o papel desempenhado pelos
predicados de verdade, os tipos de princípios utilizados no raciocínio acerca da verdade
que são necessários, e a maneira pela qual um paradoxo pode ser derivado a partir desses
recursos.

2.1 Predicado de Verdade

O primeiro elemento necessário para a construção de um paradoxo do mentiroso é um
predicado de verdade, que denotaremos aqui por 𝑇 𝑟. Seguimos o costume usual na lógica
de usar 𝑇 𝑟 como um predicado de sentenças. No entanto, especialmente ao considerarmos
certas abordagens para a resolução do paradoxo, convém lembrar que tal tratamento deve
ser visto mais como uma conveniência expositiva do que como um compromisso sério acerca
dos portadores da verdade.

Assumimos que, juntamente com o predicado de verdade, dispomos de nomes adequa-
dos para sentenças. Para uma dada sentença 𝐴, suponha que ⌜𝐴⌝ seja um nome dessa
sentença. A predicação da verdade a 𝐴 então assume a forma 𝑇 𝑟(⌜𝐴⌝).

Digamos que um predicado 𝑇 𝑟(𝑥) é um predicado de verdade para uma linguagem ℒ
somente se 𝑇 𝑟(⌜𝐴⌝) for bem-formada para toda sentença 𝐴 de ℒ. Tipicamente, espera-se
que 𝑇 𝑟 obedeça a certos princípios que regem seu comportamento sobre as sentenças de
uma dada linguagem. É a esses princípios que nos voltaremos a seguir.6

6Uma nota sobre a terminologia: ao falarmos de uma linguagem, entendemos uma linguagem interpretada, que
inclui uma sintaxe, uma interpretação ou modelo (contendo um domínio de objetos e interpretações para o vo-
cabulário não lógico), bem como um esquema de valoração que determina a verdade no modelo para fórmulas
complexas. Para fins expositivos, adotamos, por vezes, uma linguagem mais simplificada e não rigorosa, es-
maecendo a distinção entre uma lógica e uma linguagem (concebendo, de maneira não estritamente precisa, o
esquema de valoração como o aspecto relevante da “consequência lógica” para a linguagem). Ademais, em cer-
tos momentos, é uma teoria, e não propriamente uma linguagem, que está em questão. Assinalaremos quando
tais distinções forem relevantes. Dada a ampla gama de ideias lógicas que abordamos de forma relativamente
breve neste ensaio, deixamos muitas dessas sutilezas para exposições mais extensas.
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2.2 Princípios da Verdade
A tradição, que remonta a Tarski (1935), sustenta que o comportamento do predicado

de verdade 𝑇 𝑟 é descrito pela seguinte bicondicional:

𝑇 𝑟(⌜𝐴⌝) ↔ 𝐴.

De fato, Tarski considerava que a bicondicional em questão era a bicondicional material
da lógica clássica. Essa bicondicional é usualmente denominada esquema-T [T-schema]7.
Para uma análise mais aprofundada do esquema-T e das concepções de verdade em Tarski,
veja as entradas dedicadas a Alfred Tarski e às definições de verdade segundo Tarski.8

O paradoxo do Mentiroso tem sido um ponto central na reflexão sobre lógicas não clás-
sicas (como já tivemos uma amostra, por exemplo, na ideia de que o princípio da bivalência
poderia ser rejeitado como parte de uma solução para o paradoxo do Mentiroso). Assim,
devemos deter-nos para considerar quais princípios devem reger o predicado de verdade
𝑇 𝑟 no caso de a lógica clássica não ser mantida.

A principal ideia quanto ao que poderia substituir o esquema-T aponta para dois tipos de
‘regras’ (isto é, para dois tipos de ‘regras de inferência’, em certo sentido) ou princípios ca-
racterísticos do predicado de verdade. Se se tem uma sentença 𝐴, pode-se inferir 𝑇 𝑟(⌜𝐴⌝),
isto é, pode-se ‘capturar’𝐴 com o predicado de verdade. Inversamente, se se tem 𝑇 𝑟(⌜𝐴⌝),
pode-se inferir 𝐴, isto é, pode-se ‘liberar’ 𝐴 do predicado de verdade. Em algumas lógicas,
captura e liberação acabam sendo equivalentes ao esquema-T, mas frequentemente é útil
examiná-las separadamente:

Captura: 𝐴 implica 𝑇 𝑟(⌜𝐴⌝). (Que também pode ser escrito como 𝐴 ⊢ 𝑇 𝑟 (⌜𝐴⌝).)
Liberação: 𝑇 𝑟(⌜𝐴⌝) implica 𝐴. (Que também pode ser escrito como 𝑇 𝑟(⌜𝐴⌝) ⊢ 𝐴.)

O termo ’implica’ aqui é empregado em um sentido lógico, embora o exato significado,
assim como as alternativas disponíveis, dependa da lógica de fundo assumida. Para os fins
desta discussão, consideramos tal implicação sob a forma da regra: o argumento de 𝐴 para
𝐵 é válido, o que registramos (como acima) por meio do símbolo de derivabilidade, ⊢. Em
7N.T.: O uso de colchetes, com exceção dos usados nos raciocínios lógicos, indica interferência do tradutor no
texto com intuito de elucidar algum conceito ou informar o termo no seu original em inglês.
8N.T.: https://plato.stanford.edu/entries/tarski/

https://plato.stanford.edu/entries/tarski-truth/
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certos contextos lógicos (por exemplo, na lógica clássica, na qual vale o chamado ‘teorema
de dedução’), isso é equivalente à demonstrabilidade de uma condicional; contudo, em ou-
tros contextos, tal equivalência não se mantém. Em qualquer dos casos, captura e liberação,
tomadas em conjunto, tornam 𝐴 e 𝑇 𝑟(⌜𝐴⌝) logicamente equivalentes, no sentido de serem
inter deriváveis. Em formas mais fortes, captura e liberação podem conduzir à plena inter-
substitutividade de 𝐴 e 𝑇 𝑟(⌜𝐴⌝) em contextos extensionais. Como discutiremos com mais
profundidade na seção 4.1, isso é relevante para certas concepções acerca da natureza
da verdade. Assim, o símbolo ⊢ está sendo usado aqui como um marcador esquemático
para uma gama de noções lógicas distintas, cada qual oferecendo um conceito de inferência
válida em uma dada teoria lógica.

(Há aqui uma série de sutilezas lógicas que não exploraremos, especialmente sobre
como se dá a formulação de regras e à questão de quais regras são consistentes. Diferen-
tes formulações dessas regras variam significativamente quanto à sua força lógica9. Para
uma análise mais aprofundada sobre como formular, em lógica clássica, formas consistentes
das regras de captura e liberação, veja a entrada sobre teorias axiomáticas da verdade.10
Na terminologia de Friedman e Sheard (1987), as formas de regra de captura e liberação
são denominadas, respectivamente, ’T-Intro’ e ’T-Elim’, ao passo que suas formas condici-
onais são chamadas ’T-In’ e ’T-Out’. Preferimos aqui uma terminologia mais abrangente,
pois ela evidencia um padrão geral de comportamento comum a uma grande variedade de
predicados e operadores, por exemplo: o conhecimento admite liberação, mas não captura;
a possibilidade admite captura, mas não liberação; e assim por diante. A verdade, por sua
vez, é especial por admitir ambas.)

2.3 O Mentiroso em Resumo

O paradoxo do Mentiroso tem início em uma linguagem que contém um predicado de
verdade, o qual obedece a alguma forma das regras de captura e liberação. Passamos agora
a examinar com maior precisão como um paradoxo resulta dessas suposições.

9Deste modo, nossa terminologia de “formas de regra” talvez não seja a mais adequada. Para os fins limitados
a que nos propomos aqui, utilizamo-la meramente para assinalar a diferença entre um argumento válido, regis-
trado como uma “forma de regra”, e a demonstrabilidade de uma condicional, apresentada como uma “forma
condicional”. Embora esta não seja a única distinção lógica possível, é aquela que assumirá maior importância
no desenvolvimento de nossa análise.
10N.T.: https://plato.stanford.edu/entries/truth-axiomatic/
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2.3.1 Existência de Sentenças Similares ao Mentiroso

Deixando de lado os paradoxos do tipo Yablo, o paradoxo do Mentiroso depende de
alguma forma de autorreferência, seja direta, como nos casos simples do Mentiroso já apre-
sentados, seja indireta, como nos ciclos do Mentiroso. A maioria das línguas naturais não
encontra grandes dificuldades em gerar autorreferência. A primeira frase deste ensaio é um
exemplo disso. A autorreferência pode ser acidental, como no caso em que alguém escreve:
“A única sentença no quadro da sala 101 não é verdadeira”, tendo-a escrito, por acaso, na
própria sala 101 (como observou C. Parsons, 1974).

Em linguagens formais, a autorreferência também é fácil de encontrar. Qualquer lin-
guagem capaz de expressar alguma sintaxe básica pode gerar sentenças autorreferenciais
por meio da chamada diagonalização (ou, mais propriamente, qualquer linguagem dotada
de uma teoria adequada da sintaxe ou da aritmética).11 Uma linguagem que contenha um
predicado de verdade e essa sintaxe básica terá, então, uma sentença 𝑀 tal que 𝑀 implica
¬𝑇 𝑟(⌜𝑀⌝), e vice-versa:

𝑀 ⊣⊢ ¬𝑇 𝑟(⌜𝑀⌝).
Este é um ‘ponto fixo’ do (predicado composto) ¬𝑇 𝑟, e é, na prática, o nosso Mentiroso

não-verdadeiro simples.
(Tecnicamente, é mais simples expressar a propriedade do ‘ponto fixo’ em termos de

implicações, como fizemos acima. Mas, intuitivamente, a ideia é que, de certo modo, 𝑀 ‘é
apenas’ ¬𝑇 𝑟(⌜𝑀⌝). Isso pode ser formalizado com mais precisão se pensarmos na sen-
tença do Mentiroso 𝑀 como originando-se de um nome 𝑐 que denota a sentença ¬𝑇 𝑟(𝑐).
Dessa forma, podemos compreender a existência do Mentiroso como refletida na identidade

11A situação no tocante às linguagens formais é, na verdade, um pouco mais sutil do que nossa breve expo-
sição dá a entender. Na maioria dos casos, as citações de canto [corner quotes ou também chamadas cita-
ções de Quine], indicam termos formais correspondentes aos números de Gödel das sentenças, e não são
aspas genuínas no sentido habitual (isto é, não denotam diretamente a expressão contida entre elas). Por
conseguinte, o sentido em que tais linguagens fazem referência a sentenças é delicado. No entanto, com
mínimos recursos, é possível representar a sintaxe e construir sentenças diagonais. Assim, há um sentido,
ainda que sutil, no qual tais linguagens conseguem expressar autorreferência. Sobre este tema, consulte-se
as entradas relativas à lógica da demonstrabilidade [https://plato.stanford.edu/entries/logic-provability/] e Gödel
[https://plato.stanford.edu/entries/goedel/] (especialmente a seção sobre os teoremas da incompletude), bem
como Heck (2007).
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𝑐 = ⌜¬𝑇 𝑟(𝑐)⌝. Para mais detalhes sobre essa abordagem, ver Heck 2012.)

2.3.2 Outras “Leis” Lógicas

Outros elementos evidentes nos paradoxos do Mentiroso mais comuns dizem respeito
ao comportamento lógico dos conectivos básicos ou às características da implicação. Alguns
dos princípios relevantes são os seguintes:

• Princípio do Terceiro Excluído (PTE): ⊢ 𝐴 ∨ ¬𝐴.

[Para qualquer proposição 𝐴, ou 𝐴 é verdadeira ou sua negação ¬𝐴 é.]

• Explosão (EFQ – Ex Falso Quodlibet)12: 𝐴, ¬𝐴 ⊢ 𝐵.
[A partir de uma contradição, isto é, 𝐴 e ¬𝐴 , qualquer proposição 𝐵 pode ser de-
duzida.]

• Princípio da Disjunção (PD)13: Se 𝐴 ⊢ 𝐶 e 𝐵 ⊢ 𝐶 , então 𝐴 ∨ 𝐵 ⊢ 𝐶 .

[Se 𝐶 pode ser deduzida tanto de 𝐴 quanto de 𝐵, então pode ser deduzida da dis-
junção 𝐴 ∨ 𝐵.]

• Adjunção: Se 𝐴 ⊢ 𝐵 e 𝐴 ⊢ 𝐶 , então 𝐴 ⊢ 𝐵 ∧ 𝐶 .

[Se 𝐵 e 𝐶 podem ser deduzidas a partir de 𝐴, então também se pode deduzir sua
conjunção 𝐵 ∧ 𝐶 a partir de 𝐴.]

(Isto não quer dizer que essas sejam as únicas características lógicas envolvidas nos pa-
radoxos do Mentiroso mais comuns, mas pode-se argumentar que são as mais importantes
entre as mais evidentes.)

12É este princípio ou regra que reiteramos anteriormente ao afirmar que, segundo os critérios de muitas teorias
lógicas, uma contradição arbitrária implica absurdo ou trivialidade, no sentido de que dela se seguem todas as
sentenças. Este princípio é frequentemente designado por seu título clássico ex falso quodlibet, razão pela qual
sua abreviação costumeira é EFQ, apesar do nome alternativo “explosão”.
13Este princípio é frequentemente denominado ‘∨-Out’, ‘∨-Elim’ ou, de maneira mais sugestiva, ‘raciocínio por
casos’.
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2.3.3 O Paradoxo do Mentiroso em Abstrato

Dado os elementos discutidos anteriormente, podemos apresentar uma forma ligeira-
mente mais abstrata do paradoxo. (Nosso objetivo é utilizar essa forma abstrata para desta-
car diferentes respostas ao paradoxo.) Suponhamos que temos uma linguagem ℒ com um
predicado de verdade 𝑇 𝑟, e que ℒ possui sintaxe suficiente para construir uma sentença
𝑀 tal que 𝑀 ⊣⊢ ¬𝑇 𝑟(⌜𝑀⌝). Suponhamos também que a lógica de ℒ admite os prin-
cípios do Terceiro Excluído (PTE) e da Explosão (EFQ), além de satisfazer os princípios da
Disjunção (PD) e da Adjunção.

Um argumento de que nossa sentença do Mentiroso 𝑀 , implica uma contradição pro-
cede da seguinte forma:

1. 𝑇 𝑟(⌜𝑀⌝) ∨ ¬𝑇 𝑟(⌜𝑀⌝) (PTE)

2. Caso Um:

a. 𝑇 𝑟(⌜𝑀⌝)
b. 𝑀 (2a: liberação)
c. ¬𝑇 𝑟(⌜𝑀⌝) (2b: definição de 𝑀 )
d. ¬𝑇 𝑟(⌜𝑀⌝) ∧ 𝑇 𝑟(⌜𝑀⌝) (2a, 2c: adjunção)

3. Caso Dois:

a. ¬𝑇 𝑟(⌜𝑀⌝)
b. 𝑀 (3a: definição de 𝑀 )
c. 𝑇 𝑟(⌜𝑀⌝) (3b: captura)
d. ¬𝑇 𝑟(⌜𝑀⌝) ∧ 𝑇 𝑟(⌜𝑀⌝) (3a, 3c: adjunção)

4. ¬𝑇 𝑟(⌜𝑀⌝) ∧ 𝑇 𝑟(⌜𝑀⌝) (1–3: PD)

Esta versão do paradoxo do Mentiroso é apenas uma entre muitas. Com um pouco
mais de complexidade, por exemplo, pode-se evitar tanto a captura quanto a liberação,
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substituindo-as por outros pressupostos de fundo. Também existem variantes intuicionis-
tas do paradoxo do Mentiroso, embora não exploraremos aqui a lógica intuicionista.14

Até agora, mostramos que, com os elementos fornecidos, nossa sentença do Mentiroso
𝑀 implica uma contradição (formalizando assim o raciocínio presente em NMentiroso). A
partir daí, é um passo curto até o completo absurdo — isso, claro, se a mera contradição já
não for suficientemente absurda por si só. Invocamos, então, o princípio da explosão (EFQ)
para concluir a demonstração. (Também assumimos que 𝐴 ∧ 𝐵 implica 𝐴 e 𝐵, ou seja,
que a simplificação é válida em ℒ; mas, essa suposição não é realmente necessária.)

5. 𝐵 (4: EFQ)

𝐵, aqui, pode ser qualquer — toda e qualquer — sentença que você desejar (ou que
lhe desagrade, conforme o caso)! O princípio da explosão afirma que de uma contradição
qualquer sentença se segue; ele legitima a passagem de uma única contradição à trivialidade
lógica.

Diante de tamanho absurdo (isto é, trivialidade), concluímos que há algo de errado no
raciocínio do Mentiroso apresentado acima. A pergunta que se impõe é: o quê? Esta, em
última instância, é a questão fundamental que o paradoxo do Mentiroso coloca.

3. Significado

Já vimos que, com alguns pressupostos elementares acerca da verdade e da lógica,
ocorre um desastre lógico. Mas qual é o significado mais amplo de tal resultado?

De tempos em tempos, argumenta-se que o paradoxo do Mentiroso revela algo de pro-
fundo sobre a própria filosofia. Por exemplo, Grim (1991) defende que o paradoxo mostra
que o mundo é, de certo modo, essencialmente “incompleto” e que não pode haver um ser
onisciente. McGee (1991) e outros sugerem que o paradoxo revela que a noção de verdade
é uma noção vaga. Glanzberg (2001) sustenta que o paradoxo nos mostra algo importante

14Novamente para o caso clássico, Friedman e Sheard (1987) fornecem uma lista exaustiva de teorias incon-
sistentes relativas a uma teoria base relativamente fraca. Eles demonstram que qualquer uma das formas con-
dicionais clássicas de captura ou liberação são inconsistentes por si mesmas, em relação à teoria de base
suplementada pela escolha adequada de princípios que asseguram a completude (𝑇 𝑟(⌜𝐴⌝) ∨ 𝑇 𝑟(⌜¬𝐴⌝))
ou a consistência (¬(𝑇 𝑟(⌜𝐴⌝) ∧ 𝑇 𝑟(⌜¬𝐴⌝))) da verdade.

148



sobre a natureza da dependência de contexto na linguagem, enquanto Eklund (2002) de-
fende que ele revela algo essencial sobre a competência semântica e as línguas que fala-
mos. Gupta e Belnap (1993) alegam que o paradoxo traz à tona propriedades importantes
da noção geral de definição. E há outras lições, bem como variações dessas, que também
têm sido extraídas do paradoxo.

A preocupação mais imediata, ao menos para os nossos propósitos aqui, é o que o
paradoxo do Mentiroso nos revela acerca dos princípios fundamentais que regem a noção
de verdade e acerca da própria lógica. Em tom cético, o próprio Tarski (1935, 1944) parece
ter entendido que o paradoxo evidencia a incoerência da noção ordinária de verdade, a qual
exigiria substituição por uma noçãomais cientificamente respeitável. (Paramais informações
sobre Tarski, veja o verbete sobre Tarski15 e sobre as definições de verdade de Tarski16.
Para saber sobre suas metas e propósitos, consulte Heck 1997.) A mais comum, e talvez
predominante entre as tentativas de solução ao paradoxo, é a ideia de que os princípios
básicos que regem a verdade são mais sutis do que aquilo que o esquema-T é capaz de
expressar.

O paradoxo do Mentiroso também tem sido o núcleo de diversos argumentos contrários
à lógica clássica, dado que são precisamente algumas características fundamentais dessa
lógica que permitem que os princípios de captura e liberação conduzam ao absurdo. Entre
essas características, destacam-se os argumentos em favor de lógicas paracompletas (como
nas propostas de Kripke, 1975; Field, 2008) ou paraconsistentes (como em Asenjo, 1966;
Priest, 1984, 2006). Contudo, Ripley (2013b) argumenta que é possível preservar a lógica
clássica ao mesmo tempo em que se abandonam essas características problemáticas.

Em muitos casos, inspirados por concepções mais amplas acerca do significado do pa-
radoxo, houve diversas tentativas de, de uma forma ou de outra, resolvê-lo. É a essas
soluções propostas que nos voltamos agora.

4. Algumas Famílias de Soluções

Nesta seção, faremos um breve levantamento de algumas abordagens destinadas a re-
solver o paradoxo do Mentiroso. Agrupamos as soluções propostas em famílias, procurando
explicar as ideias fundamentais que as orientam. Emmuitos casos, uma exposição completa

15N.T.: https://plato.stanford.edu/entries/tarski/
16N.T.: https://plato.stanford.edu/entries/tarski-truth/
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exigiria uma apresentação técnica extensa, a qual não será desenvolvida aqui. Os leitores
interessados são encorajados a consultar as referências que fornecemos para cada ideia
básica.

4.1 Lógicas Paracompletas e Paraconsistentes

Uma das principais ideias para a resolução do paradoxo do Mentiroso é que ele nos
revela algo sobre a própria lógica, de fato, algo ainda obscuro sobre a lógica. A ideia central
é que os princípios de captura e liberação são princípios conceituais fundamentais que regem
a noção de verdade e, por isso, não podem ser modificados. Em vez disso, a lógica básica
deve ser uma lógica não clássica, a fim de evitar o desastre lógico do tipo que examinamos
na seção 2.

Uma forma importante de motivar soluções não clássicas é recorrer a uma forma de
deflacionismo acerca da verdade. Tais visões tomam algo análogo ao esquema-T como ca-
racterística definidora da verdade e, por isso, não suscetível a modificação (ver, por exemplo,
Horwich 1990). De maneira mais estrita, as chamadas concepções de verdade transparen-
tes, ou “translúcidas”, ou “disquotacionais puras” (e.g., Field 1994, 2008; Beall 2005) consi-
deram que a propriedade definidora da verdade consiste na intersubstitutividade, em todos
os contextos não opacos, a sentença 𝐴 por 𝑇 𝑟(⌜𝐴⌝) e vice-versa. Isso faz com que os
princípios de captura e liberação, aplicados de forma irrestrita a todas as sentenças de uma
linguagem, sejam exigências da própria noção de verdade (ao menos onde temos 𝐴 ⊢ 𝐴
ou, mais fortemente, ⊢ 𝐴 → 𝐴).17 Consulte o verbete sobre verdade para uma discussão
mais aprofundada.18

Manter fixos os princípios de captura e liberação, aplicando-os a todas as sentenças
sem restrição, conduz à trivialidade, salvo se a lógica for não clássica. Há duas principais
subfamílias de teorias da verdade não-clássicas (transparentes): as paracompletas e as
paraconsistentes. A seguir, delineamos as ideias centrais de cada uma dessas teorias.

17Beall e Glanzberg (2008) argumentam em prol de uma estreita conexão entre concepções gerais acerca da
natureza da verdade e os caminhos possíveis para a resolução do paradoxo.
18N.T.: https://plato.stanford.edu/entries/truth/
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4.1.1 Paracompleta

Segundo as abordagens paracompletas do paradoxo do Mentiroso, a principal lição do
paradoxo é que o princípio do Terceiro Excluído (PTE) ’falha’ em algum aspecto. Em outras
palavras: o paradoxo do Mentiroso nos ensina que algumas sentenças (notadamente, as
sentenças mentirosas) ’nem se sustentam nem deixam de se sustentar’ (em certo sentido),
ou seja, não são nem verdadeiras nem falsas. Como consequência, a lógica da verdade
deve ser não clássica.

Essa ideia talvez pareça mais natural em resposta ao Mentiroso de falsidade simples.
Nesse caso, é tentador afirmar que há um status distinto da verdade e da falsidade, e que a
sentença mentirosa 𝑀 possui esse status intermediário. Contudo, tal resposta não basta,
por exemplo, para o Mentiroso não-verdadeiro simples, que não afirma nada sobre falsidade.
Assim, o raciocínio básico revisado na seção 2.3 deve falhar, e segundo a perspectiva pa-
racompleta, o responsável é o PTE. As instâncias do Mentiroso no PTE ’falham’ (em algum
aspecto) de acordo com a perspectiva paracompleta; tais sentenças caem no ‘vazio’ entre a
verdade e a falsidade (para empregar uma metáfora comum).

Diversas propostas foram formuladas com o intuito de empregar lógicas não clássicas
na resolução do paradoxo do Mentiroso. Um dos primeiros exemplos pode ser encontrado
nos trabalhos de van Fraassen (1968, 1970). No entanto, o trabalho mais influente nas
últimas décadas tem sido o de Kripke, cuja abordagem impactou não apenas as tentativas
de resolução baseadas em lógica não clássica, mas também uma série de outras estratégias
que abordaremos na seção 4.2. Dada essa relevância, convém fazer uma breve exposição
da estrutura teórica proposta por Kripke.

4.1.2 A Teoria de Kripke

Lógicas nas quais o PTE falha não são particularmente difíceis de encontrar. Entre as
várias opções disponíveis, há um número de lógicas trivalentes, que admitem um terceiro
valor de verdade além de verdadeiro e falso. Sentenças como as do tipo Mentiroso rece-
bem esse terceiro valor. Uma das lógicas mais amplamente utilizadas nesse contexto é a
lógica de Kleene forte (𝐾3). Não entraremos aqui nos detalhes técnicos da lógica 𝐾3, mas
mencionaremos apenas as propriedades de 𝐾3 que precisaremos. (Para uma análise mais
aprofundada, ver o verbete sobre lógica multivalorada19, ou Priest 2008.) Antes de tudo, é
19N.T.: https://plato.stanford.edu/entries/logic-manyvalued/
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importante notar:

⊬ 𝐾3𝐴 ∨ ¬𝐴.
O PTE falha. De fato, segundo a lógica 𝐾3, não há verdades lógicas (ou sentenças

logicamente válidas). (Voltaremos a este ponto ao tratar da questão de um ’condicional
adequado’, mais adiante.)

O desafio ao se empregar 𝐾3 para fundamentar uma teoria paracompleta consiste em
explicar como princípios como captura e liberação (mesmo como forma de regra) poderiam
ser preservados. E, caso se siga a linha deflacionista, o desafio é ainda maior: explicar
como captura e liberação irrestritas e completas poderiam ser mantidas. Uma maneira de
compreender o trabalho fundamental de Kripke (1975) (e os trabalhos relacionados de Martin
e Woodruff (1975)) é vê-lo justamente como uma tentativa de alcançar esse objetivo.

Kripke inicia com uma linguagem totalmente clássica ℒ0, que não contém predicado
de verdade (ou, mais geralmente, nenhum termo semântico). (Recordemos que estamos
assumindo que uma linguagem vem equipada com um esquema de valoração. No caso
de ℒ0 esse esquema é clássico.) Ele então considera estender essa linguagem a uma
nova linguagem ℒ+

0 , que contém um predicado de verdade 𝑇 𝑟. O predicado 𝑇 𝑟 é tomado
como aplicável a toda sentença da linguagem expandida ℒ+

0 , inclusive àquelas da lingua-
gem original ℒ0. Assim, trata-se de um predicado de verdade autoaplicável (como exige
a perspectiva inspirada no deflacionismo que mencionamos anteriormente), mesmo que se
tenha começado com uma linguagem desprovida de predicado de verdade.

Podemos pensar a linguagem ℒ+
0 como sendo interpretada por um modelo clássico

ℳ0. Kripke nos mostra como construir uma interpretaçãoℳ+
0 para a linguagem expandida.

A principal inovação está em conceber o predicado de verdade como parcial. Em vez de
possuir apenas uma extensão, ele possui tanto uma extensão (o conjunto das sentenças
das quais é verdadeiro) quanto uma antiextensão (o conjunto das sentenças das quais é
falso). A extensão e a antiextensão são mutuamente exclusivas, mas não precisam juntas
esgotar o domínio de ℳ0. Sentenças patológicas, como a sentença do Mentiroso 𝑀 , não
pertencem nem à extensão nem à antiextensão de 𝑇 𝑟. (De fato, poderíamos ter interpretado
a linguagem-base ℒ0 também por um modelo parcial. No entanto, na aplicação pretendida,
a parcialidade surge apenas com predicados semânticos, como 𝑇 𝑟.)

Não pertencer nem à extensão nem à antiextensão de 𝑇 𝑟 funciona como ter um terceiro
valor de verdade, e assim podemos interpretar ℒ+

0 atuando como uma linguagem com um
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esquema de valoração𝐾3. Tratando a linguagem desta forma, Kripkemostra como construir
uma extensão e uma antiextensão muito plausíveis para 𝑇 𝑟, normalmente denotadas por ℰ
e 𝒜, respectivamente. A propriedade importante do novo modelo estendido ⟨ℳ0, ⟨ℰ, 𝒜⟩⟩
é que o valor de verdade de qualquer sentença 𝐴 e da sentença 𝑇 𝑟(⌜𝐴⌝) é exatamente
o mesmo. 𝐴 é verdadeira, falsa, ou nenhuma das duas se 𝑇 𝑟(⌜𝐴⌝) também o é. Além
disso, interpretando a linguagem expandida ℳ+

0 como uma linguagem 𝐾3, temos como
consequência em 𝐾3 que 𝐴 ⊣⊢ 𝑇 𝑟(⌜𝐴⌝), exatamente como se desejava.

Kripke demonstra como construir ℰ e 𝒜 por meio de um processo indutivo. Parte-se de
uma ’aproximação’ inicial da extensão e antiextensão de 𝑇 𝑟, e essa aproximação é aper-
feiçoada sucessivamente, até que o processo de aprimoramento deixe de ser produtivo —
isto é, atinge-se um ponto fixo. De fato, no contexto da solução baseada em 𝐾3, o proce-
dimento mais natural consiste em começar com extensões e antiextensões vazias, e então
adicionar as sentenças que se revelam verdadeiras nas etapas subsequentes do processo.
A construção de Kripke pode ser aplicada a diversas lógicas distintas, incluindo outras lógicas
multivaloradas, como a lógica de Kleene fraca [Weak Kleene], bem como lógicas sobreva-
loradas [supervaluation logics]. Para uma discussão mais aprofundada veja, por exemplo,
Burgess (1986) e McGee (1991). As construções ao estilo de Kripke envolvem um grau con-
siderável de sutileza matemática. Para uma exposição acessível de mais detalhes técnicos
e conceituais, recomenda-se Soames (1999). Para uma apresentação mais rica em termos
matemáticos, veja McGee (1991).

4.1.3 Condicionais adequados

Lógicas como 𝐾3 sofrem com a ausência de um condicional natural ou ’adequado’ (em
particular, de um que satisfaça as propriedades 𝐴, 𝐴 → 𝐵 ⊢ 𝐵 e ⊢ 𝐴 → 𝐴). Essa limita-
ção revela uma deficiência importante na abordagem kripkeana ao paradoxo do Mentiroso.
A linguagem expandida ℒ+

0 não consegue expressar, em forma condicional, as proprieda-
des de captura e liberação da verdade (isto é, T-bicondicionais): 𝑇 𝑟 é transparente nessa
formulação, então 𝑇 𝑟(⌜𝐴⌝) e 𝐴 são plenamente intersubstituíveis. Contudo, nesta teoria,
a disjunção ¬𝐴 ∨ 𝐴 não é verdadeira para todas as sentenças 𝐴, e, portanto, tampouco
¬𝑇 𝑟(⌜𝐴⌝) ∨ 𝐴 é verdadeira para todo 𝐴. Porém, ¬𝑇 𝑟(⌜𝐴⌝) ∨ 𝐴 é logicamente equi-
valente, nesta teoria, a 𝑇 𝑟(⌜𝐴⌝) → 𝐴, dado que o condicional usado é o condicional
material. Conclui-se, então, que a construção de Kripke aqui considerada não satisfaz to-
dos os T-bicondicionais, os quais seriam os candidatos naturais para expressar, dentro da
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própria teoria, os traços fundamentais de captura e liberação característicos do conceito de
verdade.

Um avanço recente e importante no sentido de suplementar a estrutura de Kripke com
um condicional adequado é o trabalho de Field (2008). A teoria de Field representa um
progresso significativo, mas é suficientemente complexa para ultrapassar os limites desta
introdução (muito elementar). Os leitores interessados devem consultar a própria exposição
de Field para obter uma noção de como tal modificação pode ser realizada. Ver Field (2008),
e discussões adicionais em Beall (2009).

Um uso importante dos condicionais na lógica é a formalização da quantificação univer-
sal restrita, expressando a conexão entre 𝐴 e 𝐵 na forma “Todos os 𝐴s são 𝐵s”. Isso tem
desempenhado recentemente um papel central em várias discussões sobre condicionais e
paradoxos; ver, por exemplo, Beall et al. (2006); Beall (2011); Field (2014); e Ripley (2015).

4.1.4 Paraconsistente

Como mencionamos, duas abordagens importantes para o paradoxo do Mentiroso que
se concentram em lógicas não clássicas são as abordagens paracompleta e paraconsistente.
Esboçamos acima uma opção paracompleta. Voltamo-nos agora para uma opção paracon-
sistente. Aqui, a ideia básica é permitir a contradição (por exemplo, até e incluindo o passo
4 da derivação na seção 2.3.3), mas alterar a lógica rejeitando o princípio da explosão — e,
assim, evitar o absurdo envolvido no passo 5.

Assim como a abordagem paracompleta que acabamos de examinar, as abordagens
paraconsistentes ao paradoxo do Mentiroso encontram uma motivação fácil e natural em
concepções de verdade transparentes ou de outra forma adequadamente ’minimalistas’, que
exigem a plena intersubstitutividade entre 𝐴 e 𝑇 𝑟(⌜𝐴⌝) e, portanto, não podem restringir
os princípios de captura e liberação. No entanto, as abordagens paraconsistentes também
encontraram motivação em uma concepção antideflacionista inspirada em Dummett, que
leva a sério o papel da verdade como objetivo da asserção (cf. Dummett 1959). Com efeito,
Priest (2006) argumenta que essa concepção (não transparente) da verdade motiva tanto
o esquema-T quanto o PTE, e que isso implica que a sentença mentirosa 𝑀 é simultane-
amente verdadeira e não verdadeira. Assim, de acordo com qualquer linha dialeteica (se-
gundo a qual ao menos uma sentença é ao mesmo tempo verdadeira e não verdadeira), a
única opção é rejeitar o EFQ.
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4.1.5 Dialeteísmo

Priest (1984, 2006) tem sido uma das vozes mais influentes na defesa de uma aborda-
gem paraconsistente para a resolução do paradoxo do Mentiroso. Ele propôs uma lógica
paraconsistente (e não paracompleta) hoje conhecida como 𝐿𝑃 [Logic of Paradox], a qual
preserva o princípio do terceiro excluído, mas rejeita o princípio da explosão.20 Essa lógica
possui a característica distintiva de permitir contradições verdadeiras. É essa a abordagem
da verdade que Priest denomina dialeteica. (Para uma discussãomais extensa, ver o verbete
sobre dialeteísmo.21)

Formalmente, a 𝐿𝑃 pode ser entendida como uma lógica trivalente; mas enquanto
𝐾3 apresenta lacunas de valor de verdade, 𝐿𝑃 apresenta excessos de valor de verdade
[gluts]. Assim, em 𝐿𝑃 , há sentenças que podem ser simultaneamente verdadeiras e falsas.
Contudo, como discutiremos mais detalhadamente na seção 4.1.3, a maneira adequada de
descrever tanto lacunas quanto excessos é uma questão delicada. Por ora, limitamo-nos
à observação preliminar de que, da mesma forma que 𝐾3 pode ser caracterizada como
apresentando lacunas — por admitir um terceiro valor de verdade —, 𝐿𝑃 pode, de modo
correspondente, ser caracterizada como contendo excessos.

De modo análogo, técnicas ao estilo de Kripke podem ser aplicadas para produzir uma
interpretação para um predicado de verdade, partindo-se de uma linguagem clássica ℒ0
que não contenha tal predicado. Novamente, são atribuídas uma extensão e uma antiex-
tensão ao predicado 𝑇 𝑟. Enquanto a construção original de Kripke previa que a extensão e
a antiextensão fossem disjuntas, mas sem necessariamente esgotar o domínio, neste caso
admite-se que a extensão e a antiextensão se sobreponham, desde que, em conjunto, es-
gotem o domínio do modelo. Isso implementa a ideia de excessos, da mesma forma que a
versão anterior implementa a ideia de lacunas. Técnicas relacionadas às de Kripke podem,
então, ser empregadas para construir uma extensão e uma antiextensão para 𝑇 𝑟. O resul-
tado, mais uma vez, é uma interpretação na qual 𝐴 e 𝑇 𝑟(⌜𝐴⌝) recebem o mesmo valor de
verdade no modelo.

Essa construção não foi apresentada pelo próprio Kripke, mas variantes dela foram de-
senvolvidas por diversos autores, incluindo Dowden (1984), Leitgeb (1999), Priest (1984,
2006), Visser (1984) e Woodruff (1984).
20A lógica foi inicialmente desenvolvida por Asenjo (1966), embora tenha sido popularizada pelos trabalhos de
Priest. A denominação ’𝐿𝑃 ’ é devida a Priest, enquanto o termo “dialeteísmo” foi cunhado por Priest e Routley.
21N.T.: https://plato.stanford.edu/entries/dialetheism/
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4.1.6 Combinando Paracompletude e Paraconsistência

Embora tenhamos identificado as abordagens paracompleta e paraconsistente ao Pa-
radoxo do Mentiroso como duas opções distintas, elas não são incompatíveis. Com efeito,
se forem consideradas como teorias da negação (caso se adote essa perspectiva), pode-
se sustentar que a negação não é nem exaustiva nem ’explosiva’ — isto é, que não satisfaz
nem PTE e nem EFQ. Uma abordagem desse tipo é a teoria da verdade (transparente) base-
ada em FDE [First-Degree Entailment, ou Implicação de Primeiro Grau], discutida em Dunn
(1969) (ver Gupta e Belnap (1993); Leitgeb (1999); Visser (1984); Woodruff (1984); Yablo
(1993a); e — em essência — Brady (1989)).

(As teorias baseadas em 𝐿𝑃 e as teorias baseadas em 𝐾3 são — pelo menos em um
nível (padrão de primeira-ordem) — simplesmente lógicas fortalecidas da lógica mais ampla
FDE. Para uma discussão geral sobre tais estruturas, consulte, por exemplo, Priest 2008.)

4.1.7 Poder Expressivo e ’Revanche’

Trabalhando em lógica clássica, Tarski (1935) concluiu, de forma célebre, a partir do
paradoxo do Mentiroso, que uma linguagem não pode definir seu próprio predicado de ver-
dade. De modo mais geral, ele entendeu que a lição do paradoxo do Mentiroso é que as
linguagens não podem expressar toda a gama de conceitos semânticos que descrevem seu
próprio funcionamento. Um dos principais objetivos das abordagens não clássicas ao para-
doxo do Mentiroso que examinamos aqui é evitar essa conclusão, que muitos consideraram
excessivamente drástica. Contudo, o quão bem-sucedidas essas abordagens têm sido a
esse respeito permanece uma questão altamente controversa.

Em certo sentido, tanto as abordagens paracompletas quanto as paraconsistentes al-
cançam o resultado desejado: apresentam linguagens que contêm predicados de verdade
que se aplicam a sentenças dessa própria linguagem e possuem a característica de que 𝐴 e
𝑇 𝑟(⌜𝐴⌝) têm o mesmo valor de verdade. Nesse aspecto, ambas fornecem linguagens que
contêm seus próprios predicados de verdade.

No caso paracompleto, a questão de saber se isso é suficiente tem sido amplamente
debatida. A visão paracompleta sustenta que a sentença do Mentiroso 𝑀 não é nem ver-
dadeira nem falsa, e isso é fundamental para a preservação da consistência. Contudo, ob-
serve que a abordagem paracompleta que discutimos acima não pode enunciar esse fato,
pois não pode resultar verdadeiro que¬𝑇 𝑟(⌜𝑀⌝). Se isso fosse verdadeiro, então𝑀 seria
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verdadeira, e, em seguida, 𝑇 𝑟(⌜𝑀⌝) também seria verdadeira, levando-nos novamente à
contradição.

Segue-se daí um ponto adicional. Como aludimos acima, isso mostra que 𝐾3, com um
predicado de verdade, não será capaz de enunciar o caráter lacunar das lacunas, enquanto
𝐿𝑃 poderá enunciar tanto propriedades de lacunas quanto de excessos de verdade. Assim,
como mencionamos, a condição de lacunas e excessos pode ser bastante complexa.

No que diz respeito ao problema da ‘revanche’22, a principal dificuldade é simplesmente
que a abordagem paracompleta não consegue enunciar corretamente a sua própria solução
ao paradoxo do Mentiroso. O significado exato desse fato tem sido objeto de debate. É
certamente o caso que o conjunto de sentenças verdadeiras no tipo de modelo construído
por Kripke não inclui ¬𝑇 𝑟(⌜𝑀⌝). Por essa razão, alguns autores, como McGee (1991),
T. Parsons (1984) e Soames (1999), sustentaram que o fracasso da sentença do Mentiroso
em ser verdadeira é um fato adicional que vai além do que o predicado de verdade precisa
expressar, e, portanto, é irrelevante para o êxito da solução do paradoxo. (A posição de
McGee possui outro aspecto, que discutiremos na seção 4.2.3.)

Apesar disso, parece haver um fato semântico importante acerca da verdade na lin-
guagem paracompleta, intimamente relacionado — se não idêntico — a um fato sobre a
verdade per se, que a linguagem não consegue expressar. Assim, tem-se argumentado que
essa abordagem falha em alcançar uma teoria da verdade plenamente adequada. O próprio
Kripke observa que existem certos conceitos semânticos que não podem ser expressos, e
esse argumento foi desenvolvido de maneira mais incisiva por C. Parsons (1974).

Uma maneira de explicitar o que falta na linguagem paracompleta é introduzir uma nova
noção de determinabilidade, de modo que o status do enunciado do Mentiroso seja o de não
ser determinadamente verdadeiro. Se assim for, então a linguagem paracompleta de Kripke
não pode expressar esse conceito de determinabilidade. Algumas abordagens que incor-
poram ideias paracompletas procuraram suplementar o método de Kripke acrescentando
noções de verdade determinável. McGee (1991) o faz em um contexto basicamente clás-
sico. Em um contexto não clássico e paracompleto, Field (2008) complementa a abordagem
paracompleta básica com infinitos operadores de ‘determinadamente’, cada um definido em
termos do ‘condicional adequado’ de Field, e cada um proporcionando uma noção diferente
(e mais forte) de ‘verdade’. (Veja também alguns dos artigos em Beall (ed.) 2008.)

Frequentemente se argumenta em favor das abordagens paraconsistentes que estas
22N.T.: também podendo ser traduzido como ’vingança’.
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não têm dificuldade em ‘caracterizar’ o status dos enunciados do Mentiroso: eles são ver-
dadeiros e falsos (isto é, são verdadeiros e têm a negação verdadeira). As teorias base-
adas em 𝐿𝑃 conseguem expressar essa caracterização. Por outro lado, alguns autores,
como Littmann e Simmons (2004) e S. Shapiro (2004), consideraram que há um problema
dual: a saber, caracterizar os enunciados ‘normais’, aqueles que não são simultaneamente
verdadeiros e falsos. (Alguns formulam esse problema como o de caracterizar ser apenas
verdadeiro.) Se isso constitui realmente um problema é algo que deixamos em aberto. (Para
discussões sobre o tema, veja Field 2008 e Priest 2006.)

Outro problema que surge neste contexto é o dos chamados ‘paradoxos de revanche’.
Podemos ilustrá-lo com o caso do Mentiroso de falsidade simples. Suponha que se tome
este paradoxo como o paradigma do paradoxo do Mentiroso, e que se proponha uma solu-
ção simples que rejeita a bivalência. Em resposta, apresenta-se o paradoxo do Mentiroso
não-verdadeiro simples, que mina a solução proposta. Este é o padrão de ‘revanche’, em
que uma solução para o paradoxo é refutada com base numa forma levemente modificada do
próprio paradoxo. Frequentemente são propostos paradoxos de revanche contra soluções
paracompletas: muitos pontos em que a linguagem paracompleta falha em expressar algum
conceito semântico fornecem meios para construir problemas de revanche. A incapacidade
de expressar corretamente o status do Mentiroso não-verdadeiro simples é um exemplo. Ou-
tro exemplo envolve a noção de determinabilidade. Se tomarmos a via da determinabilidade
e atribuirmos ao enunciado do Mentiroso o status de não ser determinadamente verdadeiro,
então é possível construir um problema de revanche por meio de uma sentença que afirma
de si mesma que não é determinadamente verdadeira.

De maneira semelhante, argumenta-se que as abordagens paraconsistentes enfrentam
um tipo de problema de revanche, pois precisam tratar separadamente o paradoxo de Curry,
discutido na seção 1.4, e o paradoxo doMentiroso. Trata-se de uma questão técnica bastante
complexa, pois depende da natureza do condicional utilizado na formulação da sentença de
Curry. Se esse condicional obedece à propriedade de destacamento, então ele não pode ser
um excesso de valor de verdade, como ocorre com o Mentiroso em abordagens paraconsis-
tentes. No entanto, a questão de saber se essa é a abordagem correta para o condicional
tem sido objeto de controvérsia. Para uma discussão mais aprofundada, veja Beall (2014,
2015).

Vimos que algumas abordagens (por exemplo, McGee 1991; em certos aspectos, T.
Parsons 1984 e Soames 1999) rejeitam o problema da revanche, enquanto outras buscam
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solucioná-lo por meio da introdução de aparato adicional (por exemplo, Field 2008). Como
discutiremos mais adiante na seção 4.3, visões contextualistas, como as de Burge (1979),
Glanzberg (2004a) e C. Parsons (1974), tendem a entender a revanche não como um pro-
blema separado, mas como o próprio cerne do fenômeno do Mentiroso. Para uma discussão
mais aprofundada sobre a revanche e sua natureza, veja os artigos reunidos em Beall (ed.)
(2008) e L. Shapiro (2006).

4.2 Lógicas Subestruturais

Há outra maneira de entender o paradoxo, considerando-o como decorrente de pressu-
postos equivocados incorporados às lógicas padrão. Essa perspectiva não vê o problema
como relacionado a qualquer conectivo específico ou a um elemento particular do vocabulá-
rio, mas sim a certas regras estruturais que regem a relação de consequência em questão.
Essas abordagens, baseadas nas chamadas lógicas subestruturais, dividem-se em três prin-
cipais vertentes: a não-contrativa, a não-transitiva e a não-reflexiva. (Há, na realidade, uma
diversidade muito maior entre as lógicas subestruturais do que esta divisão sugere; parti-
cularmente, muitas não se enquadram em nenhuma dessas categorias ou se encaixam em
mais de uma. Todavia, são essas três que parecem mais adequadas para lidar com os
paradoxos que nos interessam aqui.)

4.2.1 Lógicas Não-Contrativas

A abordagem subestrutural mais desenvolvida para os paradoxos atua atacando a re-
gra estrutural da contração. A contração é o princípio que nos diz que, sempre que temos
Γ, 𝐴, 𝐴 ⊢ 𝐵, então também temos Γ, 𝐴 ⊢ 𝐵; isto é, é o princípio que afirma que pode-
mos utilizar premissas repetidamente enquanto as contamos apenas uma vez. Retornando
ao argumento apresentado na seção 2, podemos observar que, em dois momentos, uma
suposição é usada duas vezes para alcançar uma conclusão: a suposição 2a é usada duas
vezes até chegar a 2d, e a suposição 3a é usada duas vezes até chegar a 3d. Na forma
como apresentamos o argumento, não destacamos essa característica, mas é exatamente
nesse ponto que uma abordagem não-contrativa tem seu foco.

Os detalhes da resposta dependerão de como os conectivos que representamos como
’∨’ e ’∧’ são interpretados; na ausência da contração, cada um dos conectivos de conjun-
ção e disjunção apresenta versões ’aditivas’ e ’multiplicativas’, e os proponentes das visões
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não-contrativas divergem quanto a quais dessas versões eles admitem. A diferença entre
conjunção aditiva e multiplicativa é a seguinte: uma conjunção aditiva pode desempenhar o
papel de qualquer um de suas conjuntas, enquanto uma conjunção multiplicativa pode de-
sempenhar o papel de ambas as conjuntas simultaneamente. Na presença da contração,
a conjunção aditiva é suficiente para a multiplicativa: pode ser usada uma vez para suprir
o papel da primeira conjunta e novamente para suprir o papel da segunda. A contração
permite que essas duas utilizações contem como uma só. Sem a contração, entretanto, a
conjunção aditiva não necessariamente basta para a multiplicativa. (A conjunção multipli-
cativa basta para a aditiva na presença de uma regra estrutural chamada enfraquecimento,
não discutida neste artigo.) A situação para a disjunção é dual: na presença de contração,
a disjunção aditiva é suficiente para a multiplicativa, mas fora desse contexto isso não se
verifica necessariamente.

O duplo uso apontado acima terá maior relevância se esses conectivos forem interpre-
tados multiplicativamente: se 2d realmente tiver de desempenhar o papel de ¬𝑇 𝑟(⌜𝑀⌝) e
𝑇 𝑟(⌜𝑀⌝) conjuntamente, então de fato utilizará duas cópias de 2a, uma para cada conjunto.
Em uma leitura aditiva de 2d e 3d, esse aparente duplo uso não precisa ser problemático,
uma vez que 2d apenas necessita desempenhar o papel de um de seus conjuntos. Embora
possa ser qualquer um deles, qualquer que seja o conjunto escolhido, uma única utilização
de 2a será suficiente. Nessa leitura aditiva, são os princípios PTE e EFQ que entram em
questão; por exemplo, com ∧ interpretado aditivamente, são necessárias duas ocorrências
da mesma contradição para que se derive uma sentença arbitrária (pois ambos os conjun-
tos precisam ser utilizados), enquanto a derivação acima produz apenas uma. (A situação
para 3d e 3a é semelhante, em ambos os casos.) Não consideramos aqui detalhes adicio-
nais; para uma análise mais aprofundada dessas escolhas e das abordagens não-contrativas
em geral, veja Beall e Murzi (2013), Grishin (1982), Petersen (2000), Restall (1994), Ripley
(2015), L. Shapiro (2011a, 2015) e Zardini (2011, 2013). (Alguns desses trabalhos focam
em paradoxos de natureza conjuntista, e não em paradoxos da verdade, mas muitas das
questões são paralelas. Veja também o verbete sobre o paradoxo de Russell23.)

23N.T.: https://plato.stanford.edu/entries/russell-paradox/
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4.2.2 Lógicas Não-Transitivas

Outra forma de abordagem subestrutural trabalha atacando diversas regras estruturais
associadas à transitividade da consequência. A mais conhecida dessas regras é a regra
do corte, que nos permite passar de Γ ⊢ 𝐵 e Δ, 𝐵 ⊢ 𝐶 para Δ, Γ ⊢ 𝐶 . Contudo,
também pode ser útil considerar outras propriedades relacionadas à transitividade, como
aquela denominada transitividade simples emWeir (2015), que procede de𝐴 ⊢ 𝐵 e𝐵 ⊢ 𝐶
para 𝐴 ⊢ 𝐶 . (Ou seja, a transitividade simples é o caso especial do corte em que Δ é vazio
e Γ é um conjunto unitário.)

Algumas abordagens não-transitivas podem ser compreendidas por meio dos mesmos
modelos trivalorados utilizados para 𝐾3 e 𝐿𝑃 (novamente, remetemos ao verbete sobre
lógica multivalorada24 para maiores detalhes). A diferença reside em como a consequência
é definida nesses modelos. Em todos os casos, consequência equivale à ausência de um
contramodelo, mas existem diferentes compreensões sobre o que um modelo precisa ser
para constituir um contramodelo a um argumento. Dependendo da compreensão de contra-
modelo adotada, os mesmos modelos trivalorados podem dar origem à lógica paracompleta
𝐾3, à lógica paraconsistente 𝐿𝑃 , a uma lógica simultaneamente paracompleta e paracon-
sistente, às vezes denominada 𝑆3 ou 𝐹𝐷𝑅𝑀 , ou — nosso tópico atual — a duas lógicas
distintas que incluem contraexemplos à regra do corte e que passaram a ser conhecidas
como não-transitivas.

Uma abordagem sem a regra do corte é desenvolvida e defendida emWeir (2005, 2015)
(e, para a teoria ingênua dos conjuntos, em Weir (1998, 1999), sendo ali denominada ’neo-
clássica’). Nesta abordagem, o terceiro valor nos modelos é considerado como sendo nem
verdadeiro nem falso, e um contramodelo a um argumento de Γ para 𝐵 deve: ou tornar
toda sentença em Γ verdadeira e 𝐵 não verdadeira, ou tornar 𝐵 falsa e todas as sentenças
em Γ verdadeiras, exceto uma, que deve ser tornada não falsa. A ideia motivadora é que
argumentos válidos devem preservar a verdade, e também preservar a falsidade de forma
retrospectiva, em certo sentido: se um argumento válido tem todas as suas premissas, ex-
ceto uma, verdadeiras, e a conclusão falsa, então a premissa restante deve ser falsa. Isso
permite contraexemplos à regra do corte, mas não à transitividade simples, e possibilita a
manutenção da consistência. A lógica resultante é mais fraca do que a lógica clássica. Na
nossa versão do paradoxo do Mentiroso, a dificuldade situa-se em PTE: a abordagem de

24N.T.: https://plato.stanford.edu/entries/logic-manyvalued/

161



Weir permite contraexemplos ao PTE.
Uma abordagem distinta sem a regra do corte é desenvolvida e explorada em Barrio et

al. (2015); Cobreros et al. (2013, 2015); Fjellstad (2016); e Ripley (2013a, 2015). Nesta
abordagem, um contramodelo a um argumento não pode atribuir o terceiro valor a qualquer
sentença que ocorra no argumento. Ou seja, um contramodelo a um argumento de Γ para
𝐵 deve agir exatamente como um contramodelo clássico em relação ao argumento. Se
atribuir o terceiro valor a alguma sentença, essa sentença não pode pertencer a Γ nem ser
𝐵. Essa concepção permite contraexemplos à regra do corte e, diferentemente da abor-
dagem de Weir, também admite contraexemplos à transitividade simples. Apresenta ainda
a característica curiosa de que todo argumento válido na lógica clássica permanece válido.
Ou seja, todos os contraexemplos à regra do corte e à transitividade simples envolvem o
uso do princípio de captura, liberação ou algum outro comportamento especial do predicado
de verdade. Apesar dessa nuance clássica, essas abordagens são também dialeteístas; a
afirmação de que a sentença do Mentiroso é simultaneamente verdadeira e não verdadeira
revela-se como um teorema. Tal afirmação é forçada a assumir o terceiro valor, razão pela
qual não pode haver contra modelo para qualquer argumento que a envolva.

Talvez devido à importância da regra do corte na teoria da demonstração, as abordagens
não-transitivas são frequentemente estudadas por meio de sistemas de prova, em vez de
modelos. O uso essencial de propriedades de transitividade em derivações paradoxais foi
observado em Tennant (1982); uma abordagem dos paradoxos que rejeita tanto a regra do
corte quanto à transitividade simples, em um contexto geral, pode ser encontrada emHallnäs
(1991); Hallnäs e Schroeder-Heister (1991); e Schroeder-Heister (2004). Há comentários
filosóficos esclarecedores sobre a regra do corte em Schroeder-Heister (1992), que também
observa algumas relações entre as abordagens não-contrativas e não-transitivas.

4.2.3 Logicas Não-Reflexivas

Uma terceira possibilidade para uma abordagem subestrutural aos paradoxos consiste
em atacar a reflexividade, o princípio segundo o qual toda sentença implica a si mesma. Há
uma estreita analogia entre reflexividade e transitividade, conforme explicado em Frankowski
(2004); Girard et al. (1989, p. 28); e Ripley (2012), de modo que essa linha de aborda-
gem acaba por apresentar pontos em comum com a família das abordagens não-transitivas.
As abordagens não-reflexivas aos paradoxos têm sido, até o momento, menos exploradas,
mas parecem constituir uma direção promissora para pesquisas futuras; para mais desen-
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volvimentos, ver French (2016) e Meadows (2014). Veja também Malinowski (1990) para
trabalhos gerais sobre lógicas não-reflexivas.

4.3 Lógica Clássica

Até aqui, examinamos diversas opções para responder ao paradoxo do Mentiroso me-
diante a reconsideração da lógica básica. Há, contudo, diversas abordagens que mantêm a
lógica clássica inalterada e procuram encontrar outras formas de neutralizar o paradoxo.

Uma característica marcante da maioria dessas abordagens é a disposição de, de al-
gum modo, restringir o âmbito de aplicação dos princípios de captura e liberação, a fim de
bloquear o raciocínio paradoxal. Tal postura é antitética à visão deflacionista da verdade dis-
cutida na seção 4.1, mas é compatível com outra concepção de verdade. Essa concepção
alternativa entende que a principal característica da verdade é relatar uma propriedade se-
mântica não trivial das sentenças (por exemplo, a correspondência com um fato no mundo,
ou a atribuição de um valor em ummodelo). Muitas abordagens que permanecem no âmbito
da lógica clássica incorporam a ideia de que uma compreensão adequada desta propriedade
permite formas restritas de captura e liberação, e que isso, por sua vez, possibilita bloquear
o paradoxo sem qualquer abandono da lógica clássica.

Consideraremos a seguir diversas abordagens importantes ao paradoxo dentro da lógica
clássica, a maioria das quais incorpora essa concepção de algum modo.

4.3.1 A Hierarquia de Linguagens de Tarski

Tradicionalmente, o principal caminho para resolver o paradoxo dentro da lógica clássica
é a hierarquia de linguagens e metalinguagens proposta por Tarski. Tarski concluiu, a partir
do paradoxo, que nenhuma linguagem poderia conter seu próprio predicado de verdade (em
sua terminologia, nenhuma linguagem pode ser ’semanticamente fechada’).

Em vez disso, Tarski propôs que o predicado de verdade para uma linguagem só pode-
ria ser encontrado em uma metalinguagem expandida. Por exemplo, começa-se com uma
linguagem interpretada ℒ0, que não contém nenhum predicado de verdade. Em seguida,
realiza-se um ”salto”para uma linguagem expandida ℒ1, a qual contém um predicado de
verdade, mas um predicado que se aplica apenas às sentenças de ℒ0. Com essa restrição,
é relativamente simples definir um predicado de verdade que relate de maneira completa-
mente precisa os valores de verdade de cada sentença de ℒ0, obedecendo aos princípios
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de captura e liberação, sem incorrer em qualquer paradoxo. Naturalmente, esse processo
não se encerra aí. Caso desejemos descrever a verdade em ℒ1, será necessário subir para
ℒ2 para obter um predicado de verdade para ℒ1. E assim sucessivamente. O processo
continua indefinidamente. Em cada etapa, uma nova linguagem clássica interpretada é pro-
duzida, apta a expressar a verdade para as linguagens de nível inferior. (Para mais detalhes
sobre a matemática dessa hierarquia de linguagens, ver Halbach (1997).)

Por que não há paradoxo do Mentiroso nesse tipo de hierarquia de linguagens? Porque
a restrição de que nenhum predicado de verdade pode se aplicar a sentenças da própria lin-
guagem é imposta de forma sintática. Qualquer sentença 𝑀 equivalente a ¬𝑇 𝑟(⌜𝑀⌝) não
é sintaticamente bem-formada. Assim, não há paradoxo do Mentiroso porque não há sequer
uma sentença do Mentiroso. Para uma discussão mais aprofundada sobre as concepções
de verdade de Tarski, consulte as entradas relativas à Tarski e às definições de verdade de
Tarski.25

A abordagem hierárquica de Tarski foi alvo de diversas críticas. Uma delas é que, à luz
de casos de autorreferência que ocorrem naturalmente, a sua decisão de tornar as senten-
ças do Mentiroso sintaticamente malformadas parece excessivamente drástica. Embora o
próprio Tarski estivesse mais interessado em resolver o paradoxo do Mentiroso para lingua-
gens formais, sua solução mostra-se inverossímil quando aplicada a muitos usos naturais
de ’verdade’. Outro problema relevante foi destacado por Kripke (1975). Conforme observa
Kripke, qualquer conjunto de níveis fixado sintaticamente torna extremamente difícil — senão
impossível — acomodar várias afirmações não-paradoxais dentro da hierarquia. Por exem-
plo, se Jc declara que ”tudo o que Michael diz é verdadeiro”, essa afirmação deve ser feita
a partir de um nível da hierarquia superior a tudo o que Michael diz. Contudo, se entre as
coisas ditas por Michael consta que ”tudo o que Jc diz é verdadeiro”, então as afirmações de
Michael deveriam estar num nível superior às de Jc. Assim, algumas afirmações de Michael
estariam em um nível superior a algumas de Jc, e vice-versa. O que é impossível. Além
disso, mesmo nos casos em que é possível atribuir coerentemente um nível a uma enun-
ciação, é difícil explicar o que determina que a referência à verdade envolva exatamente
um nível específico e não outro. O que faz com que uma afirmação pertença a um nível da
hierarquia em vez de a outro?

Outro desafio enfrentado pela hierarquia de Tarski é explicar por que não podemos sim-
plesmente definir a verdade para toda a hierarquia, quantificando sobre os níveis. Assim,
25N.T.: Consulte a nota 5
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teríamos um predicado como ’verdadeiro em algum nível’. Se tais predicados forem permi-
tidos, o paradoxo retorna, o que obriga os defensores da hierarquia tarskiana a sustentar
que tais predicados não são possíveis. Explicar por que não são possíveis é um problema
comum a todas as abordagens hierárquicas. (Para uma discussão mais aprofundada, veja
Glanzberg (2015).)

A partir desse tipo de dificuldade, muitos concluíram que a hierarquia de linguagens e
metalinguagens proposta por Tarski obtém uma solução para o paradoxo do Mentiroso ao
custo de uma restrição excessivamente implausível.

4.3.2 A Construção Fechada de Kripke

À luz das críticas dirigidas à teoria de Tarski, diversas abordagens ao paradoxo do men-
tiroso buscaram conservar a lógica clássica, mas permitindo certo grau de autoaplicação do
predicado de verdade. Sabemos, a partir do raciocínio apresentado na seção 2.3, que al-
gumas restrições sobre captura e liberação serão então necessárias. Um dos objetivos tem
sido determinar quais restrições são bem fundamentadas e como implementá-las adequa-
damente.

Uma maneira de proceder nesse sentido foi sugerida pelo próprio Kripke. Em vez de
considerar o aparato de Kripke, brevemente revisado na seção 4.1.1, como parte de uma
abordagem lógica não-clássica, pode-se vê-lo como um passo intermediário na construção
de uma interpretação clássica de um predicado de verdade autoaplicável 𝑇 𝑟.

Recordemos que a construção de Kripke inicia-se com uma linguagem clássica ℒ0 sem
predicado de verdade. Passa-se, então, para uma linguagem expandida ℒ+

0 , contudo, di-
ferentemente de uma metalinguagem tarskiana, essa linguagem contém um predicado de
verdade 𝑇 𝑟 que se aplica a todas as sentenças de ℒ+

0 . Kripke demonstra como cons-
truir uma interpretação parcial de 𝑇 𝑟, fornecendo uma extensão ℰ e uma antiextensão 𝒜.
Pode-se, porém, considerar simplesmente o modelo clássico ⟨ℳ0, ℰ⟩, utilizando unica-
mente a extensão. Esta é a chamada construção ’fechada’, pois o hiato entre a extensão e
a antiextensão é eliminado, classificando-se como falsas, em um modelo clássico, todas as
sentenças situadas nesse intervalo.

Sabemos que tal interpretação não pode satisfazer integralmente as propriedades de
captura e liberação (nem a intersubstitutividade completa entre 𝐴 e 𝑇 𝑟(⌜𝐴⌝)). Todavia, ela
assegura uma forma restrita dessas propriedades. No modelo fechado, é válido o seguinte:
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[𝑇 𝑟(⌜𝐴⌝) ∨ 𝑇 𝑟(⌜¬𝐴⌝)] → [𝑇 𝑟(⌜𝐴⌝) ↔ 𝐴].
Isso nos mostra que captura e liberação (na forma do esquema-T) valem para sentenças

que são bem-comportadas, no sentido de satisfazerem 𝑇 𝑟(⌜𝐴⌝) ∨ 𝑇 𝑟(⌜¬𝐴⌝).
O que acontece com a sentença do Mentiroso nessa abordagem? Assim como no caso

trivalorado, o Mentiroso é interpretado como caindo dentro da lacuna. 𝑀 não pertence
nem a ℰ nem a 𝒜. Assim, 𝑀 está fora do domínio em que 𝑇 𝑟 é interpretado como bem-
comportado. Como a situação é clássica, e ⌜𝑀⌝ ∉ ℰ, sabemos que ¬𝑇 𝑟(⌜𝑀⌝) é verda-
deira no modelo fechado; da mesma forma, também é verdadeira ¬𝑇 𝑟(⌜¬𝑀⌝).

Para sentenças bem-comportadas, temos a propriedade do ponto fixo segundo a qual𝐴
e 𝑇 𝑟(⌜𝐴⌝) possuem o mesmo valor de verdade, e assim a semântica de ℒ+

0 e a semântica
que ela atribui a 𝑇 𝑟 correspondem exatamente. Para sentenças patológicas como 𝑀 , essa
correspondência não ocorre e, de fato, não pode ocorrer, sob pena de trivialidade.

Foi observado por Feferman (1984), em um ponto relacionado à construção fechada,
que se formos cuidadosos com a negação, podemos dispensar totalmente 𝒜 na construção
de Kripke. Assim, a construção pode ser realizada sem qualquer apelo implícito à lógica
multivalorada. Formas relacionadas de pensar a construção de Kripke são discutidas por
McGee (1991).

4.3.3 Determinação Revisitada

Na seção 4.1.3, notamos que abordagens paracompletas ao paradoxo podem ser vul-
neráveis a “paradoxos de revanche” baseados em alguma ideia de verdade indeterminada
ou falta de valor de verdade. Questões relacionadas também surgem no caso clássico. Dis-
cutiremos algumas delas a seguir.

4.3.4 Grounding

A construção fechada de Kripke pode ajudar a preencher a ideia de um operador de
determinação discutido na seção 4.1.3. Em vez de um operador, ela nos permite definir
um predicado 𝐷(⌜𝐴⌝) por 𝑇 𝑟(⌜𝐴⌝) ∨ 𝑇 𝑟(⌜¬𝐴⌝). 𝐷 representa ’determinadamente’ no
sentido de ser aplicável a sentenças que possuem um valor de verdade de acordo com
𝑇 𝑟, ou seja, ’determinado’ pelo modelo produzido pela construção de Kripke. Aplica-se
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também, como observamos, a todas as sentenças que são bem-comportadas no sentido de
obedecerem ao esquema-T (ou às regras de captura e liberação).

Formalmente, as sentenças às quais 𝐷 se aplica no modelo gerado pela construção de
Kripke são aquelas que pertencem aℰ ou cujas negações pertencem aℰ (equivalentemente,
pertencem a 𝒜). Kripke denominou esse fenômeno de grounding.26

Tem sido frequentemente observado que existe também uma noção mais informal de
determinação ou grounding, à qual a noção formal expressa por 𝐷 corresponde aproxima-
damente (cf. Herzberger 1970). A ideia é que as sentenças determinadas são aquelas
que possuem propriedades semânticas bem definidas. Onde não temos tais propriedades
semânticas bem definidas, não devemos esperar que o predicado de verdade reporte algo
bem-comportado, nem devemos esperar que propriedades como captura e liberação seman-
tenham. A construção de Kripke constrói ℰ em estágios, começando com sentenças sem
termos semânticos e acrescentando complexidade semântica a cada etapa. Alcança-se ℰ
no limite desse processo, o que nos permite pensar em ℰ como indicando o limite em que
valores semânticos são atribuídos por um processo bem definido. Assim, a noção formal
de grounding fornecida por 𝐷 é por vezes sugerida como refletindo a extensão em que as
sentenças possuem propriedades semânticas bem definidas.

A noção de grounding gerou sua própria literatura, com Leitgeb (2005) sendo um impulso
chave. Ver também Bonnay e van Vugt (2015), Meadows (2013) e Schindler (2014).

4.3.5 McGee sobre a Verdade e a Verdade Definida

Outra visão que faz uso de uma forma de determinabilidade é defendida por McGee
(1991). A teoria de McGee, como muitas das que examinamos aqui, é rica em complexi-
dade, de modo que não podemos fazer-lhe justiça em sua totalidade. A teoria possui muitos
componentes, incluindo abordagens matematicamente sofisticadas para a verdade relacio-
nadas às ideias kripkeanas que discutimos, dentro de um contexto que preserva a lógica
clássica.

McGee baseia-se em duas noções: verdade e verdade definida. A verdade definida é
uma forma da ideia que anteriormente caracterizamos como determinabilidade. Contudo,

26Uma nota técnica: Kripke definiu o conceito de ser fundamentado [grounded] como pertencer ao ponto fixo
mínimo. Não discutimos aqui outros pontos fixos, mas há muitos, e uma sentença pode pertencer a alguns deles
sem, contudo, pertencer ao ponto fixo mínimo.
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McGee descreve essa ideia utilizando técnicas lógicas bastante sofisticadas. Mencionare-
mos essas técnicas brevemente, para aqueles familiarizados com o pano de fundo técnico.
Formalmente, para McGee, a verdade definida é identificada com a demonstrabilidade em
uma linguagem parcialmente interpretada, utilizando uma extensão da lógica clássica conhe-
cida como lógica-𝒜, que incorpora fatos acerca da interpretação parcial. Trata-se, portanto,
de algo distinto da noção de grounding que acabamos de discutir. McGee trata ’definiti-
vamente’ como um predicado, em paridade com o predicado de verdade, e não como um
operador sobre sentenças, como ocorre em alguns outros desenvolvimentos. Com a noção
adequada de verdade definida, McGee demonstra que uma linguagem parcialmente interpre-
tada contendo seu próprio predicado de verdade pode satisfazer formas restritas de captura
e liberação, expressas em termos de verdade definida. Onde 𝒟𝑒𝑓 é o predicado de defi-
nitividade, McGee mostra como vincular verdade e verdade definida, validando a seguinte
relação:

𝐷𝑒𝑓(⌜𝐴⌝) sse 𝐷𝑒𝑓(⌜𝑇 𝑟(⌜𝐴⌝)⌝)
𝐷𝑒𝑓(⌜¬𝐴⌝) sse 𝐷𝑒𝑓(⌜¬𝑇 𝑟(⌜𝐴⌝)⌝)

De fato, McGee demonstra que essas condições podem ser satisfeitas dentro de uma
teoria que incorpora tanto a verdade quanto a verdade definida, na qual a verdade respeita
formas apropriadas de captura e liberação, e onde também uma declaração formal da bi-
valência para a verdade resulta ser definitivamente verdadeira. McGee, assim, apresenta
uma teoria que permite uma aplicação fortemente autorreferencial da verdade e da verdade
definida, dentro de um quadro clássico.

Embora a verdade possa satisfazer a propriedade formal da bivalência, é crucial para a
abordagem de McGee que a verdade definida seja uma noção aberta, que pode ser fortale-
cida (formalmente, por meio do fortalecimento de uma linguagem parcialmente interpretada).
Dessa forma, a verdade definida satisfaz formas mais fracas de captura e liberação do que
a própria verdade. (Algumas instâncias de 𝐷𝑒𝑓(⌜𝐴⌝) → 𝐴 deixam de ser definitivamente
verdadeiras, segundo McGee.) Além disso, McGee sugere que esse comportamento da ver-
dade e da verdade definida torna a verdade um predicado vago. Permanece em debate se
a teoria de McGee consegue evitar os tipos de problemas de revanche que afetam outras
abordagens kripkeanas.
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4.3.6 Outras Abordagens Clássicas

Já examinamos alguns representantes importantes das abordagens que buscam resol-
ver o paradoxo do Mentiroso dentro da lógica clássica. Existem diversas outras, muitas das
quais envolvem matemática complexa. Faremos uma pausa para mencionar algumas das
mais relevantes, embora, devido à complexidade matemática envolvida, nos limitemos a
indicá-las de forma geral.

4.3.7 Teorias Axiomáticas da Verdade

Existe uma vertente importante de trabalho na teoria da prova que busca desenvolver
teorias axiomáticas da verdade autoaplicáveis dentro da lógica clássica, incluindo os traba-
lhos de Cantini (1996), Feferman (1984, 1991), Friedman e Sheard (1987), Halbach (2011) e
Horsten (2011). A ideia é encontrar maneiras de expressar regras como captura e liberação
que preservem a consistência. Entre as opções, incluem-se maior cuidado na formulação
das regras de inferência da teoria da prova e na formulação de regras restritas. As ideias
principais são discutidas no verbete sobre ‘teorias axiomáticas da verdade’27, às quais não
exploraremos os detalhes.

4.3.8 Verdade e Definições Indutivas

O trabalho de Kripke sobre a verdade foi desenvolvido em conjunto com algumas ideias
importantes sobre definições indutivas (como podemos ver, por exemplo, nas últimas partes
de Kripke 1975). Essas conexões são exploradas de forma mais aprofundada nos trabalhos
de Burgess (1986) e McGee (1991). Cabe também mencionar o trabalho de Aczel (1980),
que combina ideias sobre definições indutivas e o cálculo lambda.

4.4 Abordagens Contextualistas

Outra família de propostas para a solução do paradoxo do Mentiroso são as soluções
contextualistas. Estas também utilizam a lógica clássica, mas fundamentam suas soluções
principalmente em algumas ideias oriundas da filosofia da linguagem. Elas interpretam a
principal lição do paradoxo do Mentiroso como sendo o fato de que predicados de verdade
27N.T.: https://plato.stanford.edu/entries/truth-axiomatic/
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exibem uma forma de dependência do contexto, mesmo em fragmentos de linguagem que,
de outra forma, não apresentariam tal dependência. Tais soluções procuram explicar como
isso pode ocorrer e baseiam nessa explicação a resolução dos problemas suscitados pelo
paradoxo do Mentiroso.

As teorias contextualistas compartilham com as diversas abordagens que já examina-
mos, a ideia de que há algo de indeterminado ou semanticamente malformado em nossa
sentença do Mentiroso 𝑀 . No entanto, as visões contextualistas atribuem um papel espe-
cial às questões de ’revanche’ e à falta de poder expressivo.

4.4.1 Instabilidade e Revanche

Uma maneira de entender por que o predicado de verdade não se comporta adequada-
mente diante da sentença do Mentiroso é considerar que, na realidade, não há um portador
de verdade bem definido fornecido por essa sentença. Para ilustrar esta ideia (como dis-
cutido por C. Parsons (1974)), suponha que os portadores de verdade sejam proposições
expressas por sentenças em contextos específicos, e que a sentença do Mentiroso falhe em
expressar uma proposição. Este é o início de uma explicação de como o Mentiroso acaba
por ser não fundado [ungrounded] ou, em certo sentido, indeterminado. Pelo menos, não
deveríamos esperar que 𝑇 𝑟 se comporte adequadamente em casos em que as sentenças
falham em expressar proposições.

Contudo, trata-se de uma proposta instável. Podemos raciocinar que, se a sentença do
Mentiroso falha em expressar uma proposição, ela falha, portanto, em expressar uma propo-
sição verdadeira. Àmaneira de um paradoxo de revanche, se a nossa sentença doMentiroso
afirmasse originalmente “esta sentença não expressa uma proposição verdadeira”, então re-
cuperaríamos a sentença paradoxal do Mentiroso. E, ao fazê-lo, teríamos demonstrado que
tal sentença diz algo verdadeiro, e assim expressa uma proposição verdadeira. Portanto,
partindo da suposição de que a sentença do Mentiroso é indeterminada ou carece de status
semântico, raciocinamos que ela deve possuir, sim, um status semântico apropriado e, de
fato, expressar algo verdadeiro. Assim, retornamos ao paradoxo.

Os contextualistas não veem isso como um novo paradoxo de ’revanche’, mas sim como
o problema básico colocado pelo Mentiroso. Em primeiro lugar, em um contexto onde as sen-
tenças são dependentes do contexto, a formulação natural de uma assertiva verdadeira é
sempre em termos de expressar uma proposição verdadeira, ou alguma aplicação semanti-
camente cuidadosa do predicado de verdade. Demodomais relevante, para o contextualista,
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a principal questão subjacente aoMentiroso está incorporada no raciocínio aqui apresentado.
Ele envolve dois passos fundamentais. Primeiro, atribui-se ao Mentiroso um status semanti-
camente defeituoso — isto é, a falha em expressar uma proposição ou ser, de algum modo,
indeterminado. Segundo, conclui-se, a partir do primeiro passo, que o Mentiroso deve ser
verdadeiro— e, portanto, não indeterminado ou falho em expressar uma proposição. Ambos
os passos parecem ser frutos de raciocínios corretos, e, portanto, as conclusões alcançadas
em ambos deveriam ser verdadeiras. O principal desafio do paradoxo do Mentiroso, se-
gundo os contextualistas, é explicar como isso pode ocorrer e como o segundo passo pode
ser não-paradoxal. (Esse tipo de raciocínio é explorado por Glanzberg (2004c) e C. Parsons
(1974). Para uma discussão crítica, ver Gauker (2006).)

Assim, os contextualistas procuram explicar como a sentença do Mentiroso pode pos-
suir um status semântico instável, alternando entre defeituoso e não defeituoso no decorrer
desse tipo de inferência. Eles o fazem apelando para o papel do contexto na fixação do sta-
tus semântico das sentenças. Sentenças podem possuir diferentes status semânticos em
diferentes contextos. Portanto, para os contextualistas, deve haver algum efeito não trivial
do contexto envolvido na sentença do Mentiroso e, de maneira mais geral, na predicação de
verdade.

4.4.2 Parâmetros Contextuais nos Predicados de Verdade

Uma abordagem contextualista proeminente, defendida por Burge (1979) e desenvol-
vida por Koons (1992) e Simmons (1993), parte da ideia de que a própria hierarquia tars-
kiana oferece uma maneira de ver o predicado de verdade como dependente do contexto.
A hierarquia de Tarski postula uma hierarquia de predicados de verdade 𝑇 𝑟𝑖. E se 𝑖 não
fosse meramente um marcador de nível em uma hierarquia, mas um autêntico parâmetro
contextual? Se assim for, então a sentença do Mentiroso é de fato dependente do contexto:
ela tem a forma¬𝑇 𝑟𝑖(⌜𝑀⌝), onde 𝑖 é fixado pelo contexto. O contexto, portanto, determina
o nível do predicado de verdade.

Essa ideia pode ser vista como um aprimoramento da abordagem tarskiana original em
vários aspectos. Primeiro, uma vez que possuímos um parâmetro contextual, desaparece
a necessidade de insistir que sentenças do Mentiroso jamais sejam bem-formadas. Assim,
podemos considerar cada 𝑇 𝑟𝑖 como incluindo algum alcance limitado de aplicabilidade a
sentenças de sua própria linguagem. Utilizando técnicas kripkeanas como a construção
fechada que revisamos acima, é possível construir predicados como 𝑇 𝑟𝑖 que tenham tanto
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grau de autoaplicabilidade quanto os do próprio Kripke. (Burge 1979 e o pós-escrito de C.
Parsons 1974 consideram brevemente como técnicas kripkeanas poderiam ser aplicadas
nesse contexto. Embora opere em um cenário bastante diferente, as ideias de Gaifman
(1988, 1992) podem ser interpretadas como mostrando como modos ainda mais sutis de
interpretar um predicado de verdade dependente de contexto podem ser desenvolvidos.)

Com os devidos cuidados, outros problemas associados à hierarquia tarskiana também
podem ser evitados. Burge propõe que o parâmetro 𝑖 em 𝑇 𝑟𝑖 seja determinado por um
processo pragmático de natureza griceana. Em essência, os falantes implicam que 𝑖 deve
ser ajustado para um nível no qual o discurso em que eles estejam possa ser interpretado
de maneira coerente (com uma extensão máxima coerente para 𝑇 𝑟𝑖). Assim, a verdade de
fato encontra seu próprio nível, e, portanto, a objeção de Kripke sobre como fixar níveis para
sentenças não-paradoxais pode ser contornada.

Essa abordagem dá substância à ideia de que a sentença do Mentiroso é dependente
do contexto. Qualquer sentença que contenha 𝑇 𝑟𝑖 será dependente do contexto, herdando
um parâmetro contextual ao longo do caminho. Isso oferece uma maneira de dar sentido
aos argumentos sobre a instabilidade do status semântico de 𝑀 que motivaram o contextu-
alismo. Em um contexto inicial, fixamos um nível 𝑖. Este é o nível em que 𝑀 é interpretado.
Chamemos essa interpretação de 𝑀𝑖. 𝑀𝑖 afirma ¬𝑇 𝑟𝑖(⌜𝑀𝑖⌝). Pelo raciocínio usual do
Mentiroso, mostramos que 𝑀𝑖 deve carecer de status semântico determinado — ou falhar
em expressar uma proposição. Como discutimos, em seguida raciocinamos que 𝑀 deve
ser verdadeiro. Segundo a visão contextualista aqui apresentada, isso corresponde à afir-
mação de que 𝑀𝑖 é verdadeiro de acordo com algum outro contexto, no qual um predicado
de verdade mais amplo está em jogo. Isso equivale a ser verdadeiro em algum nível superior
da hierarquia. Podemos concluir, por exemplo, que a sentença do Mentiroso, tal como foi
usada no nível 𝑖, é verdadeira segundo um nível mais alto 𝑘 > 𝑖. Assim, 𝑇 𝑟𝑘(⌜𝑀𝑖⌝), onde
𝑘 > 𝑖.

Essa forma de contextualismo sustenta que, uma vez que reconhecemos o comporta-
mento dependente do contexto de 𝑇 𝑟𝑖, podemos compreender adequadamente a instabi-
lidade de 𝑀 . Isso pode ser visto como uma melhoria tanto em relação à visão Tarskiana
quanto como uma incorporação de algumas das técnicas de lógica clássica que revisamos
na seção 4.2. Dependendo de como a visão de Burge for desenvolvida tecnicamente, ela
terá ou a plena validade das regras de captura e liberação em cada nível, ou a captura e
liberação com as mesmas restrições da construção fechada de Kripke.
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A visão que postula parâmetros contextuais no predicado de verdade enfrenta diversas
questões. Por exemplo, é legítimo perguntar por que deveríamos considerar que o predi-
cado de verdade possui realmente um parâmetro contextual, especialmente se estivermos
nos referindo a um predicado de verdade como o que utilizamos na linguagem natural. Mera-
mente observar que tal parâmetro evitaria o paradoxo não demonstra que ele esteja de fato
presente na linguagem natural. Ademais, permanece controverso se é aceitável conceber a
verdade como ocorrendo em níveis, sejam eles baseados em contexto ou não. (Nem todos
os que defendem parâmetros contextuais para o predicado de verdade concordam quanto
ao papel da hierarquia. Em particular, Simmons (1993) defende uma visão que ele denomina
”teoria da singularidade”, a qual, segundo ele, evita estruturas hierárquicas explícitas.) Por
fim, o recurso burgeano aos mecanismos griceanos para a fixação dos níveis de verdade
também foi contestado. (Por exemplo, Gaifman (1992) questiona se o processo griceano
desempenha algum papel substancial na teoria de Burge.)

As abordagens contextualistas apresentam diversas variantes, cada uma fazendo uso
de instrumentos conceituais ligeiramente distintos. Nas teorias contextualistas, a escolha
entre essas variantes frequentemente depende de questões relativas tanto à filosofia da
linguagem quanto à lógica. Já mencionamos anteriormente uma maneira diferente de de-
senvolver ideias contextualistas proposta por Gaifman (1988, 1992). Faremos agora uma
breve revisão de algumas outras alternativas.

4.4.3 Efeitos Contextuais em Domínios dos Quantificadores

Outra abordagem contextualista, oriunda do trabalho de C. Parsons (1974), busca fun-
damentar a dependência contextual da sentença do Mentiroso — e, em última instância, do
predicado de verdade — a partir de componentes mais básicos. O ponto central é perceber
que a dependência contextual da sentença do Mentiroso deriva da dependência contextual
dos domínios dos quantificadores.

A quantificação entra em cena quando refletimos sobre como justificar a predicação de
verdade em sentenças que exibem dependência do contexto. Em tal ambiente, não faz
sentido atribuir verdade diretamente a sentenças. Nem todas as sentenças possuirão o
tipo adequado de propriedades semânticas determinadas para serem portadoras de valor
de verdade; ou, como temos colocado, nem todas as sentenças expressarão proposições.
Assim, afirmar que uma sentença 𝑆 é verdadeira em um contexto 𝑐 é afirmar que há uma
proposição 𝑝 expressa por 𝑆 em 𝑐, e que essa proposição 𝑝 é verdadeira.
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A atual proposta contextualista parte da observação de que os quantificadores na lin-
guagem natural tipicamente possuem domínios de quantificação dependentes do contexto.
Quando dizemos “Todos estão aqui”, não queremos dizer todos no mundo, mas sim todos
dentro de algum subdomínio fornecido contextualmente. Segundo esta perspectiva contextu-
alista, a dependência de contexto entra no caso do Mentiroso através dos efeitos contextuais
sobre o domínio do quantificador proposicional ∃𝑝.

Em particular, esse domínio deve se expandir no decorrer do raciocínio sobre o status
semântico do Mentiroso. No contexto inicial, ∃𝑝 deve abranger um domínio suficientemente
pequeno para que não exista uma proposição que 𝑀 possa expressar. No contexto subse-
quente, o domínio se expande para permitir que𝑀 expresse alguma proposição verdadeira.
Propostas sobre como essa expansão ocorre, e sobre comomodelar o predicado de verdade
e a relação de expressão de uma proposição na presença do Mentiroso, foram exploradas
por Glanzberg (2001, 2004a), com base no trabalho de C. Parsons (1974). Os defensores
dessa abordagem argumentam que ela localiza melhor o foco da dependência de contexto
do que os parâmetros nos predicados de verdade.

4.4.4 Teoria da Situação

Outra variante da estratégia contextualista para resolver o paradoxo do Mentiroso, de-
senvolvida por Barwise e Etchemendy (1987) e por Groeneveld (1994), baseia-se na teoria
das situações, em vez de domínios de quantificação, para fornecer o ponto da dependência
de contexto. A teoria das situações é um ramo altamente desenvolvido da filosofia da lingua-
gem, de modo que, mais uma vez, esboçaremos apenas de maneira bastante geral como
essa perspectiva funciona.

Uma situação é um estado parcial no qual o mundo pode se encontrar: algo como 𝑎
sendo 𝐹 . As situações são classificadas pelo que se denominam ‘tipos de situação’. Uma
proposição envolve classificar situação como pertencente a um tipo de situação. Assim, uma
proposição [𝑠; (𝜎)] nos informa que a situação 𝑠 é do tipo 𝜎. A situação 𝑠 aqui desempenha
diversos papéis, incluindo o de fornecer um contexto.

No que diz respeito ao paradoxo do Mentiroso, Barwise e Etchemendy interpretam as
proposições do Mentiroso como tendo a forma 𝑓𝑠 = [𝑠; (𝑇 𝑟, 𝑓𝑠; 0)], relativa a uma situ-
ação inicial 𝑠. Esta é uma proposição 𝑓𝑠 que diz de si mesma que sua falsidade é um fato
que ocorre em 𝑠. (Na notação de Barwise e Etchemendy, o ’0’ indica falsidade, de modo
que o tipo de situação é que o estado de coisas correspondente à falsidade da proposição
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se verifica. A proposição afirma que esse fato ocorre em 𝑠.). Há um sentido em que esta
proposição não pode ser expressa. Em particular, o estado de coisas (𝑇 𝑟, 𝑓𝑠; 0) não pode
pertencer à situação 𝑠. (Barwise e Etchemendy, na verdade, afirmam que a proposição é
expressável, mas abrem mão do que denominam o fechamento-𝐹 de 𝑠. Entretanto, há uma
observação central comum entre essas perspectivas, e os detalhes não são essenciais para
nossos propósitos aqui.) Forma-se então uma situação distinta 𝑠′ = 𝑠 ∪ [(𝑇 𝑟, 𝑓𝑠; 0)],
e a proposição [𝑠′; (𝑇 𝑟, 𝑓𝑠; 0)] relativa a esta nova situação — este novo ’contexto’ — é
verdadeira.

Esta concepção claramente apresenta diversas semelhanças com a abordagem base-
ada na restrição dos domínios de quantificação. Em especial, ambas as estratégias buscam
demonstrar como o domínio dos conteúdos expressáveis em determinados contextos pode
expandir-se, a fim de dar conta da instabilidade associada à sentença do Mentiroso. Para
uma análise das relações entre as abordagens baseadas na teoria das situações e nos do-
mínios de quantificação, ver Glanzberg (2004a). Barwise e Etchemendy também discutem,
em seu trabalho de 1987 (capítulo 11), as relações entre sua abordagem fundamentada
em situações e abordagens mais tradicionais. Para uma comparação pormenorizada entre
a estrutura teórica de Barwise e Etchemendy e uma estrutura burgeana de predicados de
verdade indexados, consulte Koons (1992).

4.4.5 Questões para o Contextualismo

Constitui um desafio central para os contextualistas fornecer um relato completo e bem
fundamentado da origem e da natureza da mudança de contexto envolvida no paradoxo
do Mentiroso — embora, naturalmente, muitos defensores do contextualismo considerem
já ter superado tal desafio. Em favor da abordagem contextualista, destaca-se o fato de
que ela trata o fenômeno da revanche como o problema fundamental, mostrando-se, assim,
amplamente imune aos tipos de problemas de revanche que afetam outras estratégias que
examinamos. Todavia, é possível que haja ainda outra forma de revanche a ser aplicada.
Para manter a consistência, os contextualistas devem impor restrições a quantificadores
como ’todos os contextos’. Para tanto, parece necessário negar a existência de quantifica-
dores absolutamente irrestritos. Glanzberg (2004b, 2006) defende que essa é, de fato, a
conclusão correta, embora tal posição seja altamente controversa. Para uma visão geral
das discussões a respeito, ver os artigos reunidos em Rayo e Uzquiano (2006).
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4.5 A Teoria da Revisão

Outra abordagem ao paradoxo do Mentiroso, defendida por Gupta (1982), Herzberger
(1982), Gupta e Belnap (1993), entre outros, é a teoria da revisão da verdade. Essa abor-
dagem partilha certas características com as perspectivas que examinamos na seção 4.3,
na medida em que toma a lógica clássica como pressuposto. Contudo, cremos que ela tam-
bém possui afinidades com as concepções discutidas na seção 4.4, ao repensar aspectos
fundamentais da semântica. Todavia, trata-se de uma proposta distinta. Esboçaremos a
seguir alguns dos fundamentos desta teoria. Para uma discussão mais aprofundada sobre
as bases da teoria da revisão, bem como sobre suas relações com o contextualismo, ver L.
Shapiro (2006). Para mais detalhes e referências adicionais, consultar a entrada dedicada
à teoria da revisão da verdade.28

A teoria da revisão da verdade parte da ideia de que podemos tomar o esquema-T em
sua apresentação inicial. De fato, Gupta e Belnap (1993) retomam uma sugestão de Tarski
(1944), segundo a qual as instâncias do esquema-T podem ser vistas como definições parci-
ais de verdade; presumivelmente, todas as instâncias reunidas, para a linguagem apropriada
ou para uma família de linguagens, constituiriam uma definição completa. Ao mesmo tempo,
a teoria da revisão mantém-se fiel à lógica clássica. Assim, como já sabemos, o paradoxo do
Mentiroso surge em qualquer linguagem que disponha de recursos expressivos suficientes
para gerar sentenças do tipo do Mentiroso.

Em resposta, a teoria da revisão propõe uma maneira distinta de abordar as proprie-
dades semânticas do predicado de verdade. Em consonância com nossas práticas aqui,
podemos começar com um modelo clássico ℳ0 para uma linguagem ℒ0 sem um predi-
cado de verdade, e considerar o que ocorre ao acrescentarmos um predicado de verdade
𝑇 𝑟 para formar a linguagem estendidaℒ+

0 . Esta linguagem possui um predicado de verdade
plenamente autoaplicável e, assim, é capaz de gerar a sentença do Mentiroso 𝑀 .

Para construir um modelo clássico para ℒ+
0 , precisamos de uma extensão para 𝑇 𝑟.

Escolhemos um conjunto: chamemo-lo𝐻 , para a hipótese sobre qual poderia ser a extensão
de 𝑇 𝑟. 𝐻 pode ser ∅, pode ser todo o domínio deℳ0, ou pode ser qualquer outro conjunto.
Não é necessário que seja uma boa aproximação das propriedades semânticas de 𝑇 𝑟.

Ainda que não seja, ⟨ℳ0, 𝐻⟩ fornece ummodelo clássico, no qual podemos interpretar
ℒ+

0 . Com isso, podemos aplicar o esquema-T relativamente à nossa hipótese 𝐻 e observar

28N.T.: https://plato.stanford.edu/entries/truth-revision/
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o que obtemos. Mais precisamente, podemos deixar que 𝜏(𝐻) = [⌜𝐴⌝ ∣ 𝐴 seja verdadeira
em ⟨ℳ0, 𝐻⟩]. 𝜏(𝐻) é, em geral, uma hipótese melhor sobre o que é verdadeiro em nossa
linguagem do que 𝐻 poderia ter sido. Pelo menos, é evidente que, se 𝐻 fez suposições er-
rôneas sobre a verdade de sentenças do fragmento sem verdadeℒ0, elas são corrigidas em
𝜏(𝐻), que contém todas as sentenças de ℒ0 verdadeiras em ℳ0. Assim, ⟨ℳ0, 𝜏(𝐻)⟩
é, em geral, um modelo melhor de ℒ+

0 do que ⟨ℳ0, 𝐻⟩.
Melhor em muitos aspectos. Contudo, quando consideramos sentenças paradoxais

como 𝑀 , observamos algo distinto. Como hipótese inicial, consideremos 𝐻 = ∅. Veja-
mos o que acontece com a verdade de 𝑀 à medida que aplicamos 𝜏 :

n valor de verdade de ℒ em ⟨ℳ0, 𝜏𝑛(∅⟩
0 verdadeiro
1 falso
2 verdadeiro
3 falso
4 verdadeiro
⋮ ⋮

A sentença do Mentiroso jamais se estabiliza nesse processo. Ocorre uma alternância
de valores de verdade que persiste indefinidamente. Isto demonstra, segundo a teoria da
revisão, que a verdade é um conceito circular. Como tal, ela não possui uma extensão no
sentido ordinário. Em vez disso, a verdade é caracterizada por uma regra de revisão de
extensões, a qual nunca alcança um ponto de estabilização.

Na terminologia da teoria da revisão, 𝜏 é uma regra de revisão. Ela nos conduz de
uma hipótese inicial acerca da interpretação de 𝑇 𝑟 a uma nova hipótese. As sequências de
valores geradas por tais regras de revisão, a partir de uma hipótese inicial, são denominadas
sequências de revisão. Deixamos para uma exposição mais detalhada a importante questão
sobre a maneira correta de definir sequências de revisão. transfinitas (veja o verbete sobre
teorias da revisão da verdade29).

A propriedade característica das sentenças paradoxais, como a sentença do Mentiroso,
é sua instabilidade em sequências de revisão: não existe ponto algum na sequência em que
elas atinjam um valor de verdade estável. A teoria da revisão, a partir disto, classifica as
29N.T.: https://plato.stanford.edu/entries/truth-revision/
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sentenças em estavelmente verdadeiras, estavelmente falsas e instáveis. A teoria desen-
volve ainda noções de consequência baseadas nessas categorias e em conceitos correlatos.
Para uma apresentação mais ampla desta teoria rica e complexa, recomenda-se a leitura do
verbete sobre teorias da revisão da verdade.30

4.6 Visões de Inconsistência

Conforme observamos na seção 2.3.3, o paradoxo do Mentiroso, na presença da cap-
tura e liberação irrestritas e da lógica clássica, conduz à contradição. Enquanto estivermos
no âmbito da lógica clássica, a qual admite EFQ, tal contradição resulta em trivialidade. A
maioria das soluções que analisamos (com exceção da teoria da revisão) tenta evitar este
resultado de alguma maneira, seja restringindo os princípios de captura e liberação, seja
abandonando a lógica clássica. Todavia, existe outra proposta que, embora menos frequen-
temente defendida, sustenta que o paradoxo do Mentiroso revela que as línguas que falamos
— línguas que contêm seus próprios predicados de verdade — são inconsistentes.

Esta, porém, não é uma posição de fácil formulação. Embora o próprio Tarski pareça ter
sugerido algo semelhante (especificamente no que se refere às línguas naturais), Herzberger
(1967) argumentou que é impossível haver uma linguagem inconsistente.

Em contraste, Eklund (2002) leva a sério a ideia de que nossas intuições semânticas —
expressas, por exemplo, através da aceitação irrestrita dos princípios de captura e liberação,
são, de fato, inconsistentes. Eklund reconhece que essa posição não faria sentido caso tais
intuições tivessem sua origem apenas em nossa apreensão das condições de verdade das
sentenças. No entanto, ele propõe um quadro alternativo de competência semântica que
torna essa visão plausível, fortemente relacionado às concepções de significado baseadas
no papel conceitual. Segundo Eklund, deveríamos conceber a competência semântica em
termos de um conjunto de princípios que os falantes estão dispostos a aceitar em virtude de
seu conhecimento de uma língua. Tais princípios podem ser internamente inconsistentes.
Ainda assim, eles determinam valores semânticos: estes serão aquilo que mais se aproxima
de satisfazer os princípios — isto é, aquilo que os torna maximalmente corretos — mesmo
que nenhum valor semântico possa satisfazê-los completamente devido à inconsistência
subjacente.

Eklund endossa uma ideia anteriormente sugerida por Chihara (1979). O principal ob-

30N.T.: https://plato.stanford.edu/entries/truth-revision/
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jetivo de Chihara é oferecer aquilo que denomina um diagnóstico do paradoxo, isto é, uma
explicação de por que o paradoxo surge e por que ele nos parece tão convincente. No en-
tanto, ao longo de sua argumentação, Chihara também sugere que a origem do paradoxo
reside em nossa aceitação do esquema-T (por convenção, segundo ele), apesar de sua
inconsistência.

Uma posição relacionada, embora distinta, é defendida por Patterson (2007, 2009). Pat-
terson argumenta que a competência linguística coloca o indivíduo em um estado cognitivo
que se relaciona a uma teoria inconsistente — uma teoria que inclui o esquema-T irrestrito
e que é regida pela lógica clássica. Ele prossegue explorando como tal estado cognitivo
poderia permitir a comunicação bem-sucedida, ainda que nos vincule a uma teoria falsa.

Uma teoria de inconsistência de natureza diferente é defendida por Scharp (2013). Scharp
sustenta que o conceito de verdade é inconsistente, de modo análogo ao conceito de massa
na física pré-relativística. Sendo assim, o conceito de verdade seria inadequado para a
teorização rigorosa. O que se faz necessário, segundo Scharp, é substituir o conceito incon-
sistente de verdade por uma família de conceitos consistentes, que possam desempenhar
melhor as funções teóricas desejadas. Scharp desenvolve precisamente essa família de
conceitos e oferece uma teoria correspondente.

5. Considerações Finais

Há ainda muito a ser dito sobre o paradoxo do Mentiroso além do que foi tratado aqui:
existem outras abordagens possíveis às variantes do Mentiroso que abordamos, e outros pa-
radoxos relacionados, como os de denotação e propriedades, entre outros. Existem, igual-
mente, mais resultados técnicos relevantes, bem como implicações e aplicações filosóficas
de grande importância. Nosso objetivo, entretanto, se pautou mais por sugerir caminhos
do que esgotar o tema, e esperamos ter oferecido ao leitor uma indicação sobre o que é o
paradoxo do Mentiroso e sobre quais podem ser suas consequências.
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(IV) Paradoxo de Russell1

Título Original: Russell’s Paradox
Autor: Andrew David Irvine e Harry Deutsch

Tradução: Paloma de Souza Xavier
Revisão: Ederson Safra Melo

O paradoxo de Russell é o mais famoso dos paradoxos lógicos ou paradoxos da teoria
dos conjuntos. Também conhecido como paradoxo de Russell-Zermelo, ele surge na teoria
ingênua dos conjuntos ao se considerar o conjunto de todos os conjuntos que não são mem-
bros de si mesmos. Esse conjunto parece ser membro de si mesmo se, e somente se, não
for membro de si mesmo. Daí o paradoxo.

Alguns conjuntos, como o conjunto de todas as xícaras de chá, não são membros de si
mesmos. Outros conjuntos, como o conjunto de todos os não xícaras de chá, são membros
de si mesmos. Chamemos de ’𝑅’ o conjunto de todos os conjuntos que não são membros
de si mesmos. Se 𝑅 é membro de si mesmo, então, por definição, não deve ser membro de
si mesmo. Da mesma forma, se 𝑅 não é membro de si mesmo, então, por definição, deve
ser membro de si mesmo.

Embora também tenha sido notada por Ernst Zermelo, a contradição não foi considerada
importante até ser descoberta de forma independente por Bertrand Russell na primavera de
1901. Desde então, o paradoxo tem motivado um grande volume de trabalho em lógica,
1IRVINE, Andrew David; DEUTSCH, Harry, “Russell’s Paradox”, In: ZALTA, E. N. (ed.). The Stanford Encyclo-
pedia of Philosophy (Spring 2021 Edition). Stanford, CA: The Metaphysics Research Lab, 2021. Disponível em:
https://plato.stanford.edu/archives/spr2021/entries/russell-paradox/.
A seguir está a tradução da entrada sobre o Paradoxo de Russell de Andrew David Irvine e Harry Deutsch
na Stanford Encyclopedia of Philosophy. A tradução segue a versão da entrada nos arquivos da SEP em
https://plato.stanford.edu/archives/spr2021/entries/russell-paradox/. Esta versão traduzida pode diferir da ver-
são atual da entrada, que pode ter sido atualizada desde o momento desta tradução. A versão atual está loca-
lizada em https://plato.stanford.edu/entries/russell-paradox/. Agradecemos ao Prof. Dr. Edward N. Zalta pela
permissão para traduzir e publicar esta entrada.

https://plato.stanford.edu/archives/spr2021/entries/russell-paradox/
https://plato.stanford.edu/archives/spr2021/entries/russell-paradox/
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teoria dos conjuntos, e na filosofia e fundamentos da matemática.

1. O paradoxo

Indispensável a qualquer teoria de conjuntos é a formulação das condições sob as
quais os conjuntos são formados. Além da simples listagem dos membros de um conjunto,
assumiu-se inicialmente que qualquer condição bem definida (ou propriedade precisamente
especificada) poderia ser utilizada para determinar um conjunto. Por exemplo, se 𝑇 é a
propriedade de ser uma xícara de chá, então o conjunto S de todas as xícaras de chá pode
ser definido como 𝑆 = {𝑥 ∶ 𝑇 (𝑥)}, ou seja, o conjunto de todos os indivíduos 𝑥 tal que
𝑥 possui a propriedade 𝑇 . Mesmo uma propriedade contraditória pode ser utilizada para
determinar um conjunto. Por exemplo, a propriedade de ser simultaneamente 𝑇 e não 𝑇
determinaria o conjunto vazio, ou seja, o conjunto que não possui membros.

Mais precisamente, a teoria ingênua dos conjuntos assume o chamado Axioma da Com-
preensão ingênua ou irrestrita, que estabelece que, para qualquer fórmula 𝜙(𝑥) que con-
tenha 𝑥 como variável livre, existirá o conjunto 𝑥 ∶ 𝜙(𝑥) cujos membros são exatamente
os objetos que satisfazem 𝜙(𝑥). Assim, se a fórmula 𝜙(𝑥) representa “x é primo”, então
{𝑥 ∶ 𝜙(𝑥)} será o conjunto dos números primos. Se 𝜙(𝑥) representar “∼ (𝑥 = 𝑥)”, então
{𝑥 ∶ 𝜙(𝑥)} será o conjunto vazio.

Mas, a partir da suposição deste axioma, segue-se a contradição de Russell. Por exem-
plo, se considerarmos que 𝜙(𝑥) representa 𝑥 ∈ 𝑥 e definirmos 𝑅 = {𝑥 ∶∼ 𝜙(𝑥)},
então 𝑅 é o conjunto cujos membros são exatamente os objetos que não são membros de
si mesmos.

𝑅 é um membro de si mesmo? Se for, então tem de satisfazer a condição de não ser
membro de si mesmo e, portanto, não é membro de si mesmo. Se não for, então não deve
satisfazer a condição de não ser membro de si mesmo e, portanto, tem de ser membro de
si mesmo. Uma vez que, pela lógica clássica, um dos dois casos deve ser válido — ou 𝑅 é
um membro de si mesmo, ou não é —, segue-se que a teoria implica uma contradição.

Como Russell nos diz, foi depois de aplicar o mesmo tipo de raciocínio encontrado no
argumento diagonal de Cantor a uma “suposta classe de todos os objetos imagináveis” que
ele foi conduzido à contradição:

A classe abrangente que estamos considerando, que deve englobar tudo, tem
de englobar a si mesmo como um dos seus membros. Em outras palavras,
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se existe algo como “tudo”, então, “tudo” é algo e é um membro da classe
“tudo”. Mas, normalmente, uma classe não é um membro de si mesmo. A
humanidade, por exemplo, não é um homem. Agora, forme o conjunto de
todas as classes que não são membros de si mesmas. Esta é uma classe: é
membro de si mesma ou não? Se for, então pertence ao grupo das classes
que não são membros de si mesmas, ou seja, não é membro de si mesma.
Se não for, então não pertence a esse grupo, ou seja, é membro de si mesmo.
Assim, das duas hipóteses — ser ou não ser membro de si mesmo — cada
uma implica sua contraditória. Isso é uma contradição. (Russell, 1919, p. 136)

As respostas padrão ao paradoxo tentam limitar, de alguma forma, as condições sob
as quais os conjuntos são formados. O objetivo é, normalmente, eliminar 𝑅 (e conjuntos
contraditórios semelhantes) e, ao mesmo tempo, manter todos os outros conjuntos neces-
sários para a matemática. Isto é frequentemente feito substituindo o Axioma da Compre-
ensão irrestrito pelo Axioma da Separação, mais restritivo, ou seja, o axioma que, dado
qualquer conjunto (consistente) 𝑆 e qualquer fórmula 𝜙(𝑥) com 𝑥 livre, haverá um conjunto
{𝑥 ∈ 𝑆 ∶ 𝜙(𝑥)} cujos membros são exatamente os membros de 𝑆 que satisfazem 𝜙(𝑥).
Se agora deixarmos 𝜙(𝑥) representar a fórmula 𝑥 ∉ 𝑥, verifica-se que o conjunto corres-
pondente, 𝑥 ∈ 𝑆 ∶ 𝑥 ∉ 𝑥 não será contraditório, uma vez que é constituído apenas pelos
membros encontrados em𝑆 que não são membros de si mesmos. Portanto, o conjunto falha
em incluir a si mesmo.

2. História do Paradoxo

Russell parece ter descoberto seu paradoxo no final da primavera de 1901, enquanto
trabalhava em seus The Principles of Mathematics (1903). A data exata da descoberta não
é clara. Russell afirma inicialmente que se deparou com o paradoxo “em junho de 1901”
(1944, 13). Mais tarde, ele relata que a descoberta ocorreu “na primavera de 1901” (1959,
75). Ainda mais tarde, ele relata que se deparou com o paradoxo, não em junho, mas em
maio daquele ano (1969, 221). Cesare Burali-Forti, um assistente de Giuseppe Peano, ha-
via descoberto uma antinomia semelhante em 1897, quando reparou que, uma vez que o
conjunto dos ordinais é bem ordenado, ele também deve ter um ordinal. No entanto, este
ordinal tem de ser simultaneamente um elemento do conjunto de todos os ordinais e, ainda
assim, maior do que todos esses elementos.
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Ao contrário do paradoxo de Burali-Forti, o paradoxo de Russell não envolve ordinais
nem cardinais, baseando-se, ao invés disso, apenas nas noções primitivas de conjunto e
inclusão de conjuntos. Zermelo percebeu uma contradição semelhante entre 1897 e 1902,
possivelmente antecipando Russell em alguns anos (Ebbinghaus e Peckhaus 2007, 43-48;
Tappenden 2013, 336), embora Kanamori conclua que a descoberta poderia muito bem ter
ocorrido já em 1902 (Kanamori 2009, 411). Como destaca Linsky, o argumento de Zermelo,
embora semelhante ao de Russell, é melhor entendido como um dos vários argumentos
de Zermelo, Schröder e Cantor que “de fato anteciparam” o argumento matemático desen-
volvido por Russell, mas que acabaram sendo diferentes em pequenos, mas significativos,
aspectos do argumento de Russell (Linsky 2013, 11). Em todo o caso, os argumentos fo-
ram considerados de menor importância até se perceber como eram prejudiciais para os
fundamentos da aritmética de Gottlob Frege.

Russell escreveu a Frege com notícias sobre seu paradoxo em 16 de junho de 1902.
(Para a relevante correspondência, ver Russell (1902) e Frege (1902) em van Heijenoort
(1967). O paradoxo foi significativo para o trabalho lógico de Frege, pois, na prática, mostrou
que os axiomas que ele estava usando para formalizar a sua lógica eram inconsistentes. Es-
pecificamente, o Axioma V de Frege exige que uma expressão como 𝜙(𝑥) seja considerada
tanto uma função do argumento x como uma função do argumento 𝜙. (Mais precisamente,
a Lei de Frege afirma que o curso de valores de um conceito f é idêntico ao de valores de
um conceito g se, e somente se, 𝑓 e 𝑔 concordam no valor de cada argumento, isto é, se, e
somente se, para cada objeto 𝑥, 𝑓(𝑥) = 𝑔(𝑥). De fato, foi esta ambiguidade que permitiu
a Russell construir 𝑅 de modo que pudesse ser e não ser membro de si mesmo.

A carta de Russell chegou justamente quando o segundo volume dos Grundgesetze
der Arithmetik (As Leis Básicas da Aritmética), 1893, 1903) de Frege estava sendo im-
presso. Percebendo de imediato a dificuldade que o paradoxo colocava, Frege acrescentou
ao Grundgesetze um apêndice escrito às pressas discutindo a descoberta de Russell. No
apêndice, Frege observa que as consequências do paradoxo de Russell não são imedia-
tamente claras. Por exemplo, “É sempre permitido falar da extensão de um conceito, de
uma classe? E, se não for, como reconhecemos os casos excepcionais? Podemos sempre
inferir que, se a extensão de um conceito coincide com a de outro, então todos os objetos
que se enquadram no primeiro conceito também se enquadram no segundo? Estas são as
questões”, observa Frege, “levantadas pela comunicação do Sr. Russell” (1903, p. 127).
Devido a essas preocupações, Frege acabou se sentindo forçado a abandonar muitos dos
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seus pontos de vista sobre lógica e matemática.
Mesmo assim, como Russell salienta, Frege enfrentou a notícia do paradoxo com uma

firmeza notável:

Quando penso em atos de integridade e virtude, percebo, que não há nada
em meu conhecimento que se compare à dedicação de Frege à verdade. A
obra de toda a sua vida estava prestes a ser concluída, grande parte do seu
trabalho havia sido ignorado em benefício de homens infinitamente menos ca-
pazes, seu segundo volume estava prestes a ser publicado e, ao descobrir
que a sua suposição fundamental estava errada, ele reagiu com um prazer
intelectual que claramente sobrepujou qualquer sentimento de desilusão pes-
soal. Foi algo quase sobre-humano e uma poderosa demonstração do que as
pessoas são capazes quando sua dedicação está voltada para o trabalho cria-
tivo e para o conhecimento, em vez de esforços mais grosseiros para dominar
e ser reconhecidas. (van Heijenoort, 1967, p. 127)

É claro que Russell também estava preocupado com as consequências da contradição.
Ao saber que Frege concordava com ele sobre o significado do resultado, começou imedi-
atamente a escrever um apêndice para sua obra The Principles of Mathematics, que seria
lançada em breve. Intitulado “Apêndice B: A Doutrina dos Tipos”, o apêndice representa
a primeira tentativa de Russell de apresentar um método fundamentado para evitar o que
depois se tornaria conhecido como “o paradoxo de Russell”.

3. Primeiras respostas ao paradoxo

O significado do paradoxo de Russell pode ser compreendido quando se percebe que,
usando a lógica clássica, qualquer proposição pode ser derivada a partir de uma contradição.
Por exemplo, assumindo 𝑃 e∼ 𝑃 , qualquer proposição arbitrária, 𝑄, pode ser provada da
seguinte forma: a partir de𝑃 obtemos𝑃 ∨𝑄 pela regra da Adição; depois, a partir de𝑃 ∨𝑄
e∼ 𝑃 obtemos𝑄 pela regra do Silogismo Disjuntivo. Como a teoria dos conjuntos serve de
base para todos os ramos da matemática, muitas pessoas começaram a se preocupar com
o fato de que a inconsistência da teoria dos conjuntos poderia significar que nenhuma prova
matemática seria completamente confiável. Somente ao eliminar o paradoxo de Russell é
que a matemática como um todo poderia recuperar a sua consistência.
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O paradoxo de Russell deriva, em última análise, da ideia de que qualquer condição ou
propriedade pode ser usada para definir um conjunto. Por exemplo, a propriedade de ser
divisível apenas por si mesmo e pelo número um distingue o conjunto dos números primos
do conjunto dos números inteiros. A propriedade de possuir glândulas mamárias distingue o
conjunto dos mamíferos dos répteis, aves e outros organismos vivos. A propriedade de ser
simultaneamente quadrado e não quadrado (ou qualquer outra conjunção de propriedades
contraditórias) define o conjunto vazio, e assim por diante.

Georg Cantor, o criador da teoriamoderna dos conjuntos, foi um dos primeiros céticos em
relação a um axioma de Compreensão (ou Abstração) irrestrita. Mesmo antes da descoberta
de Russell, Cantor já havia rejeitado a Compreensão irrestrita a favor do que era, de fato,
uma distinção entre conjuntos e classes, reconhecendo que algumas propriedades (como a
propriedade de ser um ordinal) produziam coleções que eram simplesmente grandes demais
para serem conjuntos, e que qualquer suposição contrária levaria à inconsistência. (Detalhes
podem ser encontrados em Moore (1982), Hallett (1984) e Menzel (1984)).

A resposta de Russell ao paradoxo veio com a sua teoria dos tipos, neomeada de forma
bastante apropriada. Acreditando que a autoaplicação estava no cerne do paradoxo, a ideia
básica de Russell era que poderíamos evitar o compromisso com 𝑅 (o conjunto de todos os
conjuntos que não são membros de si mesmos) organizando todas as proposições (ou, mais
precisamente, todas as funções proposicionais, funções que atribuem proposições como
valores) em uma hierarquia. Assim, só seria possível referir-se a todos os objetos para os
quais uma determinada condição (ou predicado) se aplica se eles estiverem no mesmo nível
ou pertencerem ao mesmo “tipo”.

Esta solução para o paradoxo de Russell é motivada, em grande parte, pela adoção
do chamado princípio do círculo vicioso. O princípio afirma, de fato, que nenhuma função
proposicional pode ser definida antes que se verifique o seu âmbito de aplicação. Em outras
palavras, antes que uma função possa ser definida, é necessário primeiro determinar exata-
mente quais objetos pertencem ao seu domínio. Por exemplo, antes de definir o predicado
“é um número primo”, é preciso primeiro definir o conjunto de objetos que podem satisfa-
zer este predicado, ou seja, o conjunto dos números naturais. Como explicam Whitehead e
Russell,

Uma análise dos paradoxos a serem evitados mostra que todos eles resultam
de uma espécie de círculo vicioso. Esses círculos viciosos decorrem da supo-
sição de que uma coleção de objetos pode conter membros que só podem ser
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definidos por meio da coleção como um todo. Assim, por exemplo, supõe-se
que a coleção de proposições contenha uma proposição que afirma que “to-
das as proposições são ou verdadeiras ou falsas”. Parece, no entanto, que
tal afirmação só poderia ser legítima se “todas as proposições” se referisse a
alguma coleção já definida, o que não é possível se novas proposições forem
criadas por afirmações sobre “todas as proposições”. Teremos, portanto, de
afirmar que tais afirmações são destituídas de sentido. (...) O princípio que nos
permite evitar totalidades ilegítimas pode ser formulado da seguinte maneira:
“Tudo o que envolve a totalidade de uma coleção não deve ser um de seus
membros”; ou, de forma equivalente: “Se, supondo que uma certa coleção ti-
vesse um todo, ela tivesse membros apenas definíveis em termos desse todo,
então essa coleção não possui um todo.” Chamaremos isso de “princípio do
círculo vicioso”, pois ele nos permite evitar os círculos viciosos implicados na
suposição de totalidades ilegítimas. (1910, 2ª ed. 37)

Se Whitehead e Russell estiverem certos, segue-se que o âmbito de aplicação de uma
função jamais poderá incluir qualquer objeto que pressuponha a própria função. Como resul-
tado, as funções proposicionais (juntamente com suas proposições correspondentes) aca-
barão sendo organizadas em uma hierarquia, tal como propõe Russell.

Embora Russell tenha apresentado pela primeira vez sua teoria dos tipos em The Prin-
ciples of Mathematics (1903), reconheceu de imediato que seria necessário aprofundá-la,
já que sua formulação inicial parecia resolver apenas alguns dos paradoxos. Entre as al-
ternativas que considerou, estava a chamada teoria da substituição (Galaugher 2013). Isso
levou, por sua vez, a uma formulação mais madura da teoria dos tipos, cinco anos depois,
no artigo de 1908, Lógica Matemática Baseada na Teoria dos Tipos, e na obra monumental
que coescreveu com Alfred North Whitehead, Principia Mathematica (1910, 1912, 1913). A
teoria dos tipos de Russell aparece, assim, em duas versões: a “teoria simples”, de 1903, e
a “teoria ramificada”, de 1908. Ambas foram criticadas por serem excessivamente ad hoc,
não conseguindo eliminar o paradoxo de forma satisfatória.

Em resposta ao paradoxo de Russell, David Hilbert também ampliou seu programa de
construção de uma base consistente e axiomática para a matemática, de modo a incluir
uma fundamentação axiomática para a lógica e a teoria dos conjuntos (Peckhaus 2004).
Subjacente a essa abordagem formalista estava a ideia de permitir apenas o uso de objetos
finitos, bem definidos e construtíveis, juntamente com regras de inferência consideradas
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absolutamente certas.
Por fim, Luitzen Brouwer desenvolveu o intuicionismo, cuja ideia básica era que não

se pode afirmar a existência de um objeto matemático a menos que se possa definir um
procedimento para construí-lo.

Em conjunto, todas essas respostas ajudaram a concentrar a atenção nas conexões
entre lógica, linguagem e matemática. Também auxiliaram os lógicos a desenvolver uma
consciência explícita da natureza dos sistemas formais e dos tipos de resultados metalógicos
e metamatemáticos que se revelaram centrais para a pesquisa nos fundamentos da lógica
e da matemática ao longo dos últimos cem anos.

4. O Paradoxo de Russell na lógica contemporânea

O paradoxo de Russell é, às vezes, visto como um desenvolvimento negativo – como
a ruína do Grundgesetze de Frege e como um dos pecados conceituais originais que leva-
ram à nossa expulsão do paraíso de Cantor. W. V. Quine descreve o paradoxo como uma
“antinomia” que “traz uma surpresa que só pode ser acomodada por nada menos que um
repúdio à nossa herança conceitual” (1966, p. 11). Quine está se referindo ao princípio da
Compreensão Ingênua mencionado anteriormente. Em símbolos, o princípio afirma que:

(CI) ∃𝐴∀𝑥(𝑥 ∈ 𝐴 ≡ 𝜙)

Onde 𝐴 não ocorre livre na fórmula 𝜙. Isso quer dizer: “Existe um conjunto A tal que,
para qualquer objeto 𝑥, 𝑥 é um elemento de 𝐴 se, e somente se, a condição expressa por
𝜙 for satisfeita.” O paradoxo de Russell surge ao se tomar 𝜙 como a fórmula: 𝑥 ∉ 𝑥.

Apesar do comentário de Quine, é possível ver o paradoxo de Russell sob uma luz mais
positiva. Por um lado, embora o assunto ainda seja controverso, pesquisas posteriores reve-
laram que o paradoxo não prejudica necessariamente a derivação da aritmética de Frege a
partir da lógica. A versão de Frege do princípio de Compreensão (seu Axioma V) pode sim-
plesmente ser abandonada. Por outro lado, Church apresenta uma formulação elegante da
teoria simples dos tipos, que se mostrou frutífera até mesmo em áreas distantes dos funda-
mentos da matemática. Além disso, o desenvolvimento de teorias axiomáticas de conjuntos
(em oposição às ingênuas), que apresentam várias maneiras engenhosas, e significativas
tanto do ponto de vista filosófico quanto matemático, de lidar com o paradoxo de Russell,
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preparou o terreno para resultados impressionantes na metamatemática da teoria dos con-
juntos. Esses resultados incluíram os teoremas de Gödel e Cohen sobre a independência do
axioma da escolha e a hipótese do continuum de Cantor. Então, vamos ver, grosso modo,
como alguns desses métodos – especificamente, os chamados métodos ’não tipados’ – li-
dam com o paradoxo de Russell.

Zermelo substitui CI pelo seguinte esquema axiomático de Separação (ou axioma de
Ausência):

(ZA) ∀𝐴∃𝐵∀𝑥(𝑥 ∈ 𝐵 ≡ (𝑥 ∈ 𝐴 ∧ 𝜙))

Novamente, para evitar circularidade, 𝐵 não pode ser livre em 𝜙. Isso exige que, para
ser membro de 𝐵, 𝑥 deve ser um elemento de um conjunto existente 𝐴. Como se pode
prever, isso requer uma série de axiomas adicionais de existência de conjuntos, nenhum
dos quais seria necessário se NC tivesse sido mantido.

Como a ZA evita o paradoxo de Russell? A princípio, pode-se pensar que não. Afinal, se
tomarmos A como V – o universo completo dos conjuntos – e 𝜙 como 𝑥 ∉ 𝑥, parece surgir
uma contradição novamente. Mas, nesse caso, tudo o que a contradição demonstra é que
V não é um conjunto. Tudo o que a contradição demonstra é que “V” é um nome vazio (ou
seja, que não tem referência, que V não existe), já que a ontologia do sistema de Zermelo
consiste exclusivamente em conjuntos.

Esse mesmo ponto pode ser apresentado de outra maneira, envolvendo uma forma rela-
tivizada do argumento de Russell. Seja 𝐵 um conjunto qualquer. Pelo axioma de separação
(ZA), o conjunto 𝑅𝑏 = 𝑥 ∈ 𝐵 ∶ 𝑥 ∉ 𝑥 existe, mas ele não pode ser um elemento de 𝐵.
Pois, se for um elemento de 𝐵, então podemos perguntar se ele pertence ou não a 𝑅𝑏; e
ele pertence se, e somente se, não pertencer. Assim, algo, a saber, 𝑅𝑏, está “faltando” em
cada conjunto 𝐵. Logo, novamente, V não é um conjunto, já que nada pode estar faltando
em V. Mas observe a seguinte sutileza: ao contrário do argumento anterior, que envolve a
aplicação direta do axioma de separação a V, o argumento em questão sugere a ideia de
que, embora V não seja um conjunto, “V” não é um nome vazio. A próxima estratégia para
lidar com o paradoxo de Russell explora essa sugestão.

O método não tipado de John von Neumann (1925) para lidar com paradoxos — em
particular, com o paradoxo de Russell — é simples e engenhoso. Von Neumann introduz uma
distinção entre pertencimento e não pertencimento e, com base nisso, traça uma distinção
entre conjuntos e classes. Um objeto é um membro (simpliciter) se for membro de alguma
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classe; e é um não-membro se não for membro de nenhuma classe. (Na verdade, von
Neumann desenvolve uma teoria de funções — tomadas como primitivas — em vez de uma
teoria de classes, na qual a distinção membro/não-membro corresponde à distinção entre
um objeto que pode ser argumento de alguma função e um que não pode. Em sua forma
moderna, devida a Bernays e Gödel, trata-se de uma teoria de classes de tipo único.)

Os conjuntos são então definidos como membros, e os não membros são rotulados
como “classes próprias”. Assim, por exemplo, a classe de Russell, 𝑅, não pode ser membro
de nenhuma classe e, portanto, deve ser uma classe própria. Se 𝑅 for considerado um
elemento de alguma classe 𝐴, então decorre de um dos axiomas de von Neumann que 𝑅
não é equivalente a V. Mas 𝑅 é equivalente a V e, portanto, não pode ser um elemento
de 𝐴. Dessa forma, o método de von Neumann está intimamente relacionado ao resultado
mencionado anteriormente sobre o conjunto 𝑅𝐵𝑅𝐵𝑅𝐵, para um 𝐵 arbitrário. O método de
von Neumann, embora admirado por nomes como Gödel e Bernays, tem sido subestimado
nos últimos anos.

De maneira semelhante, Quine (1937) e (1967) oferecem outro método não tipado (em
letra, senão em espírito) para bloquear o paradoxo de Russell — um método repleto de
anomalias interessantes. A ideia básica de Quine é introduzir um axioma de compreensão
estratificada. Esse axioma evita a circularidade ao introduzir uma hierarquia (ou estratifica-
ção) que é semelhante à teoria dos tipos em certos aspectos, e distinta dela em outros.

Em contraste com as estratégias de Zermelo, von Neumann e Quine, que são, de certo
modo, puramente conjuntista, também houve tentativas de evitar o paradoxo de Russell por
meio da alteração da lógica subjacente. Houve muitas tentativas desse tipo, e não analisa-
remos todas, mas uma se destaca por ser, no momento, ao mesmo tempo radical e relati-
vamente popular (embora não entre os teóricos de conjuntos propriamente ditos): trata-se
da abordagem paraconsistente, que limita o efeito geral de uma contradição isolada sobre
toda uma teoria. A lógica clássica exige que qualquer contradição trivialize uma teoria, tor-
nando todas as sentenças da teoria demonstráveis. Isso ocorre porque, na lógica clássica,
o seguinte é um teorema:

(Princípio de explosão) 𝐴 → (∼ 𝐴 → 𝐵).

Agora, praticamente a única maneira de evitar o Princípio de Explosão (PE) é abando-
nar o modus ponens, dadas as definições usuais dos conectivos. Assim, alterar a lógica
sentencial básica dessa maneira é, de fato, radical — mas possível. Infelizmente, mesmo
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renunciando ao PE, isso não é suficiente para preservar alguma forma do princípio de Com-
preensão Ingênua (CI). Também é necessário abrir mão do seguinte teorema adicional da
lógica sentencial básica:

(Contração) (𝐴 → (𝐴 → 𝐵)) → (𝐴 → 𝐵).

Pode-se então argumentar que o princípio de Compreensão Ingênua leva diretamente,
não apenas a uma contradição isolada, mas à trivialidade. (no paradoxo de Curry observe-
se também que não é suficiente apenas manter o nome “modus ponens” ; é a própria regra
que se modifica nas lógicas não tradicionais). Assim, parece que os problemas da CI não se
limitam ao paradoxo de Russell, mas também incluem um paradoxo sem negação, devido a
Curry.

Outra sugestão poderia ser concluir que o paradoxo depende de uma instância do prin-
cípio do terceiro excluído, ou seja, ou R é um membro de 𝑅, ou não é. Esse é um princípio
rejeitado por algumas abordagens não clássicas da lógica, incluindo o intuicionismo. No en-
tanto, é possível formular o paradoxo sem apelar para o terceiro excluído, com base na lei
da não contradição. Fazemos isso da seguinte forma: Dada a definição de 𝑅, segue-se que
𝑅 ∈ 𝑅 ≡∼ (𝑅 ∈ 𝑅). Portanto, 𝑅 ∈ 𝑅 →∼ (𝑅 ∈ 𝑅). dada a definição de 𝑅, segue-
se que 𝑅 ∈ 𝑅 ≡∼ (𝑅 ∈ 𝑅). Portanto, 𝑅 ∈ 𝑅 →∼ (𝑅 ∈ 𝑅). Mas, também sabemos
que 𝑅 ∈ 𝑅 → (𝑅 ∈ 𝑅∧ ∼ (𝑅 ∈ 𝑅)). Mas, pela lei da não contradição, sabemos que
∼ (𝑅 ∈ 𝑅∧ ∼ (𝑅 ∈ 𝑅)). Assim, por modus tollens, concluímos que ∼ (𝑅 ∈ 𝑅). Ao
mesmo tempo, também sabemos que, uma vez que 𝑅 ∈ 𝑅 ≡∼ (𝑅 ∈ 𝑅), segue-se que
∼ (𝑅 ∈ 𝑅) → 𝑅 ∈ 𝑅, e, portanto, que 𝑅 ∈ 𝑅. Assim, podemos deduzir tanto 𝑅 ∈ 𝑅
quanto sua negação, usando apenas métodos intuicionisticamente aceitáveis.

Parece, portanto, que os proponentes de lógicas não clássicas não podem reinvindicar
que preservaram a CI em qualquer sentido significativo, além da preservação da forma pura-
mente sintática do princípio, e tampouco o intuicionismo ou a paraconsistência, somados ao
abandono da contração, oferecerão uma vantagem sobre as soluções não tipificadas de Zer-
melo, von Neumann ou Quine. (Discussões adicionais podem ser encontradas em Meyer,
Routley e Dunn (1979), Irvine (1992), Priest (2006, cap. 18), Weber (2010), Weber (2012), e
nas entradas sobre o paradoxo de Curry (seção 2.2) e lógica paraconsistente (seção 2.3).)

Também vale a pena observar que o paradoxo de Russell não foi o único paradoxo que
o preocupou e, portanto, não foi a única motivação para as restrições tipológicas encontra-
das no Principia Mathematica. Em sua obra anterior, The Principles of Mathematics, Russell
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dedica um capítulo à “Contradição” (o paradoxo de Russell), apresentando-a em várias for-
mas e descartando várias respostas que ele considera inválidas desde o início. Em seguida,
sinaliza que discutirá “em breve” a doutrina dos tipos. Isso só ocorre várias centenas de
páginas depois, no final do livro, no Apêndice B! Ali, Russell apresenta uma teoria incipiente
e simplificada dos tipos — não a teoria dos tipos que encontramos no Principia Mathematica.

Por que a teoria posterior era necessária? A razão é que, no Apêndice B, Russell tam-
bém apresenta outro paradoxo que, segundo ele, não poderia ser resolvido por meio da
teoria simples dos tipos. Esse novo paradoxo diz respeito a proposições, e não a classes, e,
juntamente com os paradoxos semânticos, levou Russell a formular sua versão ramificada
da teoria dos tipos.

A nova versão proposicional do paradoxo não teve grande destaque no desenvolvimento
subsequente da lógica e da teoria dos conjuntos, mas causou grande perplexidade em Rus-
sell. Por um lado, parece contradizer o teorema de Cantor. Russell escreve: ’Não podemos
admitir que existam mais classes [ou domínios] de proposições do que proposições’ (1903,
527). A razão é que parece haver correlações fáceis, um a um, entre classes de proposições
e proposições. Por exemplo, a classe 𝑚 de proposições pode ser correlacionada com a pro-
posição de que toda proposição em 𝑚 é verdadeira. Isso, junto a um princípio detalhado
de individuação para proposições (que afirma, por exemplo, que, se as classes 𝑚 e 𝑛 de
proposições diferem, qualquer proposição sobre 𝑚 será diferente de qualquer proposição
sobre 𝑛), leva a uma contradição.

Essa discussão sobre o paradoxo tem sido relativamente pouca, embora tenha desem-
penhado um papel fundamental no desenvolvimento da lógica de sentido e denotação de
Church. Embora tenhamos várias teorias de conjuntos para escolher, não temos algo como
uma teoria bem desenvolvida das proposições russellianas, embora tais proposições sejam
centrais para os pontos de vista dosmillianistas e dos teóricos da referência direta. Esperava-
se que essa teoria fosse necessária para os fundamentos da semântica, se não para os
fundamentos da matemática. Assim, embora um dos paradoxos de Russell tenha levado ao
desenvolvimento frutífero dos fundamentos da matemática, seu ’outro’ paradoxo ainda não
resultou em nada remotamente semelhante nos fundamentos da semântica. Sem dúvida,
Church (1974a) e Anderson (1989) tentaram desenvolver uma lógica intensional russelliana
com base na teoria ramificada dos tipos, mas pode-se argumentar que a teoria ramificada
é muito restritiva para servir de base à semântica da linguagem natural. Também houve
algumas tentativas recentes de obter os primórdios de uma lógica intensional russelliana
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com base em teorias de conjuntos não tipificados (Cantini 2004; Deutsch 2014). É bastante
irônico que, embora as proposições russellianas de granulação fina sejam favorecidas na
filosofia da linguagem, o desenvolvimento formal da lógica intensional seja dominado pela
gramática de Montague, com sua teoria de proposições de pouco refinada.

Também vale a pena observar que vários princípios que parecem pertencer puramente
à teoria dos conjuntos são, na verdade, instâncias aplicadas de teoremas da lógica pura (isto
é, da teoria da quantificação de primeira ordem com identidade). Há uma lista parcial desses
exemplos em Kalish, Montague e Mar (2000). O paradoxo de Russell é uma instância do
T269 nessa lista:

(T269)∼ ∃𝑦∀𝑥(𝐹𝑥𝑦 ≡∼ 𝐹𝑥𝑥).

Lendo a letra do predicado diádico “𝐹 ” como “é membro de”, isso expressa que não
existe um 𝑦 tal que, para qualquer 𝑥, 𝑥 é membro de 𝑦 se e somente se 𝑥 não for membro
de 𝑥. Isso significa que o paradoxo de Russell se reduz ao T269?

Sem dúvida, a demonstração do T269 condensa a essência do argumento de Russell,
seu padrão de raciocínio. Mas esse mesmo padrão também fundamenta uma lista inter-
minável de “paradoxos” aparentemente frívolos, como o célebre paradoxo do barbeiro que
barbeia todos e apenas aqueles que não se barbeiam, ou, de modo semelhante, o paradoxo
do Deus benevolente mas eficiente que ajuda todos e apenas aqueles que não se ajudam.

Como esses “pseudoparadoxos”, como às vezes são chamados, diferem, se é que di-
ferem, do paradoxo de Russell? O esquema argumentativo é o mesmo e a conclusão –
que não há tal barbeiro, nem tal Deus eficiente, nem tal conjunto de conjuntos que não são
membros de si mesmos – também é a mesma: tais entidades simplesmente não existem.
(No entanto, como mostrou von Neumann, não é necessário ir tão longe. O método de von
Neumann nos instrui não que tais entidades como 𝑅 não existam, mas apenas que não po-
demos dizer muito sobre elas, já que 𝑅 e semelhantes não podem pertencer à extensão de
nenhum predicado que se qualifique como uma classe.)

A resposta padrão a essa pergunta é que a diferença reside no objeto do discurso. Quine
pergunta: “Por que ele [o paradoxo de Russell] conta como uma antinomia e o paradoxo
do barbeiro não?”; e responde: “A razão é que existe, em nossos hábitos de pensamento,
uma presunção avassaladora de que exista tal classe, mas nenhuma presunção de que
exista tal barbeiro” (1966, p. 14). Ainda assim, a linguagem psicológica dos “hábitos de
pensamento” não é particularmente esclarecedora. Mais especificamente, o paradoxo de
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Russell dá origem, de modo significativo, à questão sobre quais conjuntos existem; mas é
um contrassenso perguntar, com base no T269, quais barbeiros ou deuses existem.

Esse veredicto, entretanto, não é totalmente justo com os defensores do paradoxo do
Barbeiro ou do T269 em geral. Eles insistirão que a questão levantada pelo T269 não é sobre
quais barbeiros ou deuses existem, mas sim sobre quais objetos não paradoxais existem.
Essa questão é praticamente a mesma levantada pelo próprio paradoxo de Russell. Assim,
a partir dessa perspectiva, a relação entre o paradoxo do Barbeiro e o paradoxo de Russell
é muito mais próxima do que muitos (seguindo Quine) estão dispostos a admitir (Salmon
2013).

Observamos que há uma fórmula lógica de primeira ordem que guarda com o princípio
sobre os 𝑅𝐵𝑠 a mesma relação que o T269 guarda com o paradoxo de Russell. Ela é a
seguinte:

(T273) ∀𝑧∀𝑦(∀𝑥[𝐹𝑥𝑦 ≡ (𝐹𝑥𝑧∧ ∼ 𝐹𝑥𝑥)] →∼ 𝐹𝑦𝑧).

(Tomamos a liberdade de estender a numeração usada em Kalish, Montague e Mar
(2000) até o T273.) Mas nem todos os paradoxos da teoria dos conjuntos estão relacionados
de forma semelhante a teoremas da lógica de primeira ordem. O paradoxo de Burali-Forti é
um exemplo, já que a noção de uma boa ordenação não é elementar, ou seja, não é definível
em primeira ordem.

O paradoxo de Russell nunca foi superado, mas recentemente houve uma explosão de
interesse por ele por parte de acadêmicos envolvidos em pesquisas de lógica matemática e
em estudos filosóficos e históricos da lógica moderna. Um exame do conteúdo do volume
One Hundred Years of Russell’s Paradox (Cem anos do paradoxo de Russell), de 2004, re-
vela lógicos matemáticos e filosóficos proeminentes, além de historiadores da lógica, debru-
çados sobre o paradoxo, propondo novos caminhos de volta ao paraíso de Cantor ou outras
formas de resolver a questão. Suas investigações incluemmodos radicalmente novos de es-
capar do dilema apresentado pelo paradoxo, novos estudos das teorias dos tipos (simples,
ramificada e suas extensões), novas interpretações do paradoxo de Russell e das teorias
construtivas, do paradoxo russelliano das proposições e da tentativa do próprio Russell de
formular uma teoria sem tipos (a teoria da substituição), entre outros temas.

Tudo isso nos lembra que observações improváveis podem dar origem a trabalhos ex-
tremamente frutíferos. Como expressou Dana Scott: “Deve-se entender desde o início que o
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paradoxo de Russell não deve ser considerado um desastre. Ele e os paradoxos relaciona-
dos mostram que a noção ingênua de coleções totalizantes é insustentável. Isso realmente
é um resultado interessante, sem dúvida” (1974, p. 207).
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(V) Paradoxo de Curry1

Título Original: Curry’s Paradox
Autores: Lionel Shapiro e Jc Beall
Tradução: Pedro Almeida Brandão

Revisão: Kherian Gracher

O “Paradoxo de Curry”, como o termo é utilizado por filósofos hoje, refere-se a uma vari-
edade de paradoxos de autorreferência ou circularidade que traçam sua linhagem moderna
a Curry (1942b) e Löb (1955).2 A característica comum desses chamados “paradoxos de
Curry” é a maneira como eles exploram uma noção de implicação, implicação lógica ou con-
sequência 3, seja na forma de um conectivo, seja na forma de um predicado. O paradoxo de
Curry surge em vários domínios diferentes. Como o Paradoxo de Russell, ele pode assumir
a forma de um paradoxo da teoria de conjuntos ou da teoria de propriedades. Mas também
pode assumir a forma de um paradoxo semântico, intimamente relacionado ao Paradoxo do
Mentiroso. O Paradoxo de Curry difere tanto do Paradoxo de Russell quanto do Paradoxo do
Mentiroso pelo fato de não envolver essencialmente a noção de negação. Versões comuns
1SHAPIRO, Lionel; BEALL, Jc, “Curry’s Paradox”, In: ZALTA, E. N. (ed.). The Stanford Encyclopedia of Phi-
losophy (Winter 2021 Edition). Stanford, CA: The Metaphysics Research Lab, 2021. Disponível em: https:
//plato.stanford.edu/archives/win2021/entries/curry-paradox/.
A seguir está a tradução da entrada sobre o Paradoxo de Curry de Lionel Shapiro e Jc Beall na Stanford
Encyclopedia of Philosophy. A tradução segue a versão da entrada nos arquivos da SEP em https://plato.
stanford.edu/archives/win2021/entries/curry-paradox/. Esta versão traduzida pode diferir da versão atual da
entrada, que pode ter sido atualizada desde o momento desta tradução. A versão atual está localizada em
https://plato.stanford.edu/entries/curry-paradox/. Agradecemos ao Prof. Dr. Edward N. Zalta pela permissão
para traduzir e publicar esta entrada.
2O termo “Paradoxo de Curry” parece ter origem em Fitch 1952; outras formulações iniciais influentes incluem
Moh 1954, Geach 1955 e Prior 1955. Estas serão discutidas na seção 2. Precursores do Paradoxo de Curry
também são encontrados no trabalho de lógicos escolásticos tardios e medievais; para referências e discussão,
ver Ashworth 1974: 125, Read 2001 e Hanke 2013.
3Implication, entailment, or consequence, no original. (N. do T.)
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baseadas na teoria da verdade envolvem uma sentença que diz de si mesma que, se esta é
verdadeira, então uma afirmação arbitrariamente escolhida é verdadeira ou - para usar um
exemplo mais sinistro - diz de si mesma que, se esta é verdadeira, então toda falsidade é
verdadeira. O paradoxo se dá uma vez que a existência de tal sentença parece implicar
a verdade da afirmação arbitrariamente escolhida, ou - no exemplo mais sinistro - de toda
falsidade. Neste verbete, mostramos como os vários paradoxos de Curry podem ser constru-
ídos, examinamos o espaço de soluções disponíveis e explicamos algumas maneiras pelas
quais o paradoxo de Curry é significativo e apresenta desafios característicos.

1. Introdução: Duas Formas do Paradoxo

1.1 Um Argumento Informal

Suponha que seu amigo lhe diga: “Se o que estou dizendo com esta sentença é ver-
dade, então o tempo é infinito”. Acontece que existe um argumento curto e aparentemente
convincente para a seguinte conclusão:

(P) A mera existência da afirmação de seu amigo implica (ou tem como consequência)
que o tempo é infinito.

Muitos consideram que (P) é inaceitável 4 (e, nesse sentido, paradoxal), mesmo que
o tempo realmente seja infinito. Ou, se isso não for ruim o suficiente, considere outra ver-
são, desta vez envolvendo uma afirmação sabidamente falsa. Suponha que seu amigo diga,
em vez disso: “Se o que estou dizendo com esta sentença é verdade, então todos os nú-
meros são primos”. Agora, mutatis mutandis, o mesmo argumento curto e aparentemente
convincente leva a (Q):

(Q) A mera existência da afirmação de seu amigo implica (ou tem como consequência)
que todos os números são primos.

Eis aqui o argumento para (P). Seja 𝑘 a sentença autorreferente que seu amigo pronun-
ciou, um pouco simplificada de forma que fique: “Se 𝑘 é verdadeira, então o tempo é infinito”.
À luz do que 𝑘 diz, sabemos o seguinte:

(1) Sob a suposição de que 𝑘 é verdadeira, segue-se que se 𝑘 é verdadeira então o
tempo é infinito.

Mas, claro, também temos:

4Beyond belief no original. A escolha por “inacreditável” em português poderia trazer ambiguidades. (N. do T.)
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(2) Sob a suposição de que 𝑘 é verdadeira, segue-se que 𝑘 é verdadeira.
Sob a suposição de que 𝑘 é verdadeira, portanto, derivamos uma condicional junto com

seu antecedente. Usando modus ponens dentro do escopo da suposição, agora derivamos
o consequente da condicional sob essa mesma suposição:

(3) Sob a suposição de que 𝑘 é verdadeira, é o caso que o tempo é infinito.
A regra da prova condicional agora nos permite afirmar uma condicional com nossa

suposição como antecedente:
(4) Se 𝑘 é verdadeiro, então o tempo é infinito.
Mas, já que (4) é apenas 𝑘 ela mesma, temos então:
(5) 𝑘 é verdadeira.
Finalmente, juntando (4) e (5) pelo modus ponens, obtemos:
(6) O tempo é infinito.
Parece que estabelecemos que o tempo é infinito sem usar suposições além da exis-

tência da sentença autorreferente 𝑘, junto com os princípios aparentemente óbvios sobre
verdade que nos levaram a (1) e também de (4) a (5). O mesmo vale para (Q), uma vez que
poderíamos ter usado a mesma forma de argumento para chegar à conclusão falsa de que
todos os números são primos.

1.2 Uma Restrição às Teorias
Um desafio imposto pelo Paradoxo de Curry é identificar o que dá errado no argumento

informal anterior para (P), (Q) ou algo semelhante. Mas, a começar pela apresentação ini-
cial de Curry em Curry 1942b (consulte o documento suplementar Curry sobre o Paradoxo
de Curry), a discussão sobre o Paradoxo de Curry geralmente teve um foco diferente. Ela
centrou-se em vários sistemas formais — mais frequentemente teorias de conjuntos ou teo-
rias da verdade. Nesse contexto, o que gera o paradoxo é uma prova de que o sistema possui
uma característica particular. Tipicamente, a característica em questão é a trivialidade. Uma
teoria é dita trivial, ou absolutamente inconsistente, quando valida toda e qualquer afirmação
5 expressável na linguagem da teoria.6

Um argumento que estabelece que uma teoria formal particular é trivial representará um
problema se uma das seguintes condições for o caso: (i) desejamos usar a teoria formal em
5Affirms every claim, no original. (N. do T.)
6O artigo de Curry é intitulado “A Inconsistência de Certas Lógicas Formais”7 (1942b). Por “inconsistência”, ele
se refere à inconsistência absoluta, ou seja, trivialidade.
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nossas investigações, como usamos teoria de conjuntos ao fazer matemática, ou (ii) deseja-
mos usar a teoria formal para modelar características da linguagem ou do pensamento, em
particular as afirmações às quais alguns falantes ou pensantes8 estão comprometidos. De
ambas as formas, a trivialidade da teoria alvo mostraria que ela é inadequada para o seu
propósito pretendido. Então, esse é um segundo desafio imposto pelo paradoxo de Curry.

Para explicar o sentido em que o paradoxo de Curry impõe restrições a teorias, pre-
cisamos dizer o que é uma sentença de Curry. Informalmente, uma sentença de Curry é
uma sentença que é equivalente, à luz de alguma teoria, a uma condicional com ela mesma
como antecedente. Por exemplo, pode-se pensar no argumento da seção 1.1 como recor-
rendo a uma teoria informal da verdade. Assim, a sentença “𝑘 é verdadeira” serve como
uma sentença de Curry para essa teoria. Isso porque, dado o que nossa teoria informal nos
diz sobre o que está envolvido na verdade de 𝑘, “𝑘 é verdadeira” deve ser equivalente a “Se
𝑘 é verdadeira, então o tempo é infinito” (já que essa condicional é 𝑘 ela mesma).

Nas seções seguintes, a notação ⊢𝒯 𝛼 é usada para dizer que a teoria 𝒯 contém a
sentença 𝛼, e Γ ⊢𝒯 𝛼 é usado para dizer que 𝛼 segue das premissas coletadas em Γ de
acordo com 𝒯 (ou seja, de acordo com ⊢𝒯, a relação de consequência de 𝒯).9 Exceto na
seção 4.2.1, no entanto, onde estaremos preocupados apenas com afirmações sobre o que
segue de acordo com a teoria a partir de uma única premissa, isto é, afirmações expressas
por sentenças da forma 𝛾 ⊢𝒯 𝛼. (O contexto deixará claro onde tal sentença está sendo
usada e onde está apenas sendo mencionada.)

Duas sentenças (na linguagem da teoria 𝒯) serão chamadas de intersubstituíveis de
acordo com 𝒯 desde que a verdade de qualquer afirmação da forma Γ ⊢𝒯 𝛼 não seja
afetada pela substituição de uma pela outra em 𝛼 ou em qualquer uma das sentenças de
Γ. Finalmente, assumimos que a linguagem contém um conectivo → que serve, em algum
sentido adequado, como uma condicional. Para os propósitos da definição seguinte, não
colocamos nenhum requisito específico sobre o comportamento desta condicional. Agora
podemos definir a noção de uma sentença de Curry para um par sentença-teoria.

8Thinkers, no original. Embora o termo “pensadores” seja mais comum, “pensantes” expressa melhor a ideia de
aquele que é capaz de pensar. (N. do T.)
9Tipicamente, a relação de consequência de uma teoria será uma relação de fechamento10, no sentido de que
Γ ⊢𝒯 𝛼 se e somente se 𝛼 está entre as sentenças em 𝐶𝑛(Γ), onde 𝐶𝑛 é uma operação de fechamento.
Ver entrada sobre lógica proposicional algébrica. No entanto, Ripley (2015b) mostra que as relações de conse-
quência de muitas das teorias que resultam em respostas “livres de contração” ao paradoxo de Curry (ver seção
4.2.1) não são relações de fechamento.
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Definição 1 (Sentença de Curry): Seja 𝜋 uma sentença da linguagem de 𝒯. Uma sen-
tença de Curry para 𝜋 e 𝒯 é qualquer sentença 𝜅 tal que 𝜅 e 𝜅 → 𝜋 são intersubstituíveis
de acordo com 𝒯.11

As várias versões do paradoxo de Curry surgem da existência de argumentos em favor
da seguinte afirmação muito geral. (Esses argumentos, que se baseiam em suposições
sobre a condicional →, serão discutidos em detalhes na seção 3).

Afirmação Problemática12: Para toda teoria 𝒯 e qualquer sentença 𝜋 na linguagem
de 𝒯, se existe uma sentença de Curry para 𝜋 e 𝒯, então ⊢𝒯 𝜋.

Um argumento que parece estabelecer a Afirmação Problemática será considerado pa-
radoxal desde que também haja razões convincentes para acreditar que essa afirmação é
falsa. Um contraexemplo para a Afirmação Problemática seria qualquer teoria 𝒯 e sentença
𝜋 tais que existe uma sentença de Curry para 𝜋 e 𝒯, mas não é o caso que ⊢𝒯 𝜋.

Como observado acima, o paradoxo de Curry é frequentemente entendido como um de-
safio à existência de teorias não triviais. Dada a Afirmação Problemática, uma teoria será
trivial sempre que uma sentença de Curry puder ser formulada para qualquer sentença na
linguagem da teoria. De fato, a trivialidade segue de uma condição mais fraca, que a defini-
ção a seguir torna explícita.

Definição 2 (Teoria Curry-Completa): Uma teoria 𝒯 é Curry-completa se, para cada
sentença 𝜋 na linguagem de 𝒯, existe algum 𝜋′ tal que (i) existe uma sentença de Curry
para 𝜋′ e 𝒯 e (ii) se ⊢𝒯 𝜋′ então ⊢𝒯 𝜋.

Enquanto uma instância de 𝜋′ satisfazendo a condição (ii) seria 𝜋 ela mesma, outra
instância seria uma sentença “explosiva” ⊥ que está contida em uma teoria apenas se toda

11O termo “sentença de Curry” é por vezes usado em um sentido mais restrito, a saber, para uma sentença que
diz de si mesma (apenas) que se esta é verdadeira, então𝑝 (ou, alternativamente, um absurdo) é verdadeiro (por
exemplo, Beall 2009: 33; Zardini 2011: 503). Algumas discussões (por exemplo, Restall 1994: vii; Humberstone
2006) delimitam a noção relevante usando um bicondicional em vez de intersubstituibilidade, ou seja, como
qualquer 𝜅 tal que ⊢𝒯 𝜅 ↔ (𝜅 → 𝜋). A desvantagem aqui é que o comportamento de → está atrelado ao de
↔, embora eles desempenhem papéis muito diferentes na geração de paradoxos. Note que a mera existência
de uma sentença de Curry para um par teoria-sentença não constitui um paradoxo, nem é uma objeção à teoria
em questão. Por exemplo, 𝜋 → 𝜋 será uma sentença de Curry para 𝜋 → 𝜋 e a teoria que consiste nos
teoremas da lógica clássica, já que 𝜋 → 𝜋 será intersubstituível com (𝜋 → 𝜋) → (𝜋 → 𝜋). Os autores
agradecem a Lorenzo Rossi por levantar esta questão.
12Troubling Claim, no original. (N. do T.)
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sentença estiver contida na teoria.13
A Afirmação Problemática agora tem uma consequência imediata: uma teoria Curry-

completa deve conter toda sentença em sua linguagem.
Corolário Problemático14: Toda teoria Curry-completa é trivial.
Novamente, qualquer argumento que pareça estabelecer o Corolário Problemático será

considerado paradoxal desde que haja razões convincentes para acreditar que existem teo-
rias não triviais (de fato, verdadeiras) que são Curry-completas.

1.3 Visão Geral

No restante deste verbete, o Paradoxo de Curry será entendido como impondo uma
restrição paradoxal às teorias, a saber, aquela enunciada pelo Corolário Problemático acima.
Apresentar uma versão do Paradoxo de Curry, entendido dessa forma, envolve fazer duas
coisas:

• argumentar que 𝒯 é Curry-completa, para alguma teoria alvo 𝒯 aparentemente não
trivial, e

• fornecer um argumento para a Afirmação Problemática.15

As seções 2 e 3 discutem essas duas tarefas nessa ordem. Por enquanto, a ideia bá-
sica pode ser transmitida usando o exemplo da sentença autorreferencial 𝑘: “Se 𝑘 é ver-
dadeira, então o tempo é infinito”. Primeiramente, dado nosso entendimento de verdade,
reconhecemos que a sentença “𝑘 é verdadeira” é intersubstituível com “Se 𝑘 é verdadeira,
então o tempo é infinito”. Em segundo lugar, o argumento informal da seção 1.1 deriva uma
conclusão paradoxal a partir desta equivalência. Leitores interessados principalmente nos
princípios lógicos envolvidos nesse argumento e em argumentos relacionados, bem como
nas opções para resistir a tais argumentos, podem desejar passar para a seção 3.

13Se assumimos que a relação ⊢𝒯 é transitiva, a condição (ii) pode ser substituída pela condição de que 𝜋′ ⊢𝒯
𝜋. No entanto, uma das respostas ao paradoxo de Curry consideradas abaixo rejeita a transitividade.
14Troubling Corollary, no original. (N. do T.)
15A seção 6 levará em consideração uma família de paradoxos um pouco mais ampla.
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2. Construindo Sentenças de Curry

Na forma pela qual é comumente apresentado hoje, o paradoxo de Curry afeta teorias da
verdade “ingênuas” (aquelas que apresentam um predicado de verdade “transparente”) e te-
orias de conjuntos “ingênuas” (aquelas que apresentam abstração de conjuntos irrestrita16).
Esta seção explicará como cada tipo de teoria pode dar origem a sentenças de Curry. Come-
çamos, no entanto, com uma versão que diz respeito a teorias de propriedades, uma versão
que se assemelha mais de perto à formulação de Curry. (O documento suplementar Curry
sobre o Paradoxo de Curry caracteriza brevemente os alvos das versões do paradoxo do
próprio Curry.)

Uma teoria de propriedades apresenta abstração de propriedades irrestrita, desde que
para qualquer condição que possa ser expressa na linguagem da teoria, exista uma proprie-
dade que (de acordo com a teoria) é exemplificada precisamente pelas coisas que satisfazem
essa condição. Considere uma teoria 𝒯𝒫 formulada em uma linguagem com um dispositivo
de abstração de propriedades [𝑥 ∶ 𝜙𝑥] e uma relação de exemplificação 𝜖. Por exemplo,
se 𝜙(𝑡) afirma que o objeto que o termo 𝑡 representa é triangular, então 𝑡 𝜖 [𝑥 ∶ 𝜙𝑥] afirma
que esse objeto exemplifica a propriedade da triangularidade. Então, dado a abstração de
propriedades irrestrita, deveríamos ter o seguinte princípio.

(Propriedade): Para cada sentença aberta 𝜙 com uma variável livre e cada termo 𝑡, as
sentenças 𝑡 𝜖 [𝑥 ∶ 𝜙𝑥] e 𝜙𝑡 são intersubstituíveis de acordo com 𝒯𝒫.

Efetivamente, Curry (1942b) esboça dois “métodos de construção” de sentenças de
Curry usando sua contraparte da (Propriedade). Ele diz que o primeiro é “baseado no pa-
radoxo de Russell”, enquanto o segundo é “baseado no paradoxo de Epimenides”. Embora
ambos os métodos sejam baseados na teoria de propriedades, o primeiro método produz
um precursor das versões conjuntistas do paradoxo de Curry, enquanto o segundo gera um
precursor das versões em teoria da verdade.

2.1 O Primeiro Método e Sentenças de Curry Conjuntistas

A versão do paradoxo de Russell a qual o primeiro método de Curry se assemelha é
aquela que diz respeito à exemplificação de propriedades. Seu tema é a propriedade de ser

16Irrestricted set abstraction, no original. (N. do T.)
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tal que falha-se em exemplificar a si mesmo17. Obtemos uma sentença de Curry em teoria
de propriedades considerando, ao invés, a propriedade de ser tal que exemplifica-se a si
mesmo apenas se o tempo for infinito.18 Digamos que introduzimos o nome ℎ para essa
propriedade, estipulando ℎ =def [𝑥 ∶ 𝑥 𝜖 𝑥 → 𝜋], onde a sentença 𝜋 afirma que o tempo
é infinito. Aplicando o princípio (Propriedade) à sentença ℎ 𝜖 ℎ, obtemos:

(ℎ 𝜖 ℎ) e (ℎ 𝜖 ℎ → 𝜋) são intersubstituíveis de acordo com 𝒯𝒫.
Em outras palavras, ℎ 𝜖 ℎ é uma sentença de Curry para 𝜋 e 𝒯𝒫.
O primeiro método de Curry subsequentemente deu origem a sentenças de Curry con-

juntistas. Uma teoria de conjuntos apresenta abstração de conjuntos irrestrita desde que
para qualquer condição expressável na linguagem da teoria, exista um conjunto que (de
acordo com a teoria) contém todas e somente as coisas que satisfazem essa condição. Seja
𝒯𝒮 nossa teoria de conjuntos, formulada em uma linguagem que expressa abstração de con-
juntos utilizando {𝑥 ∶ 𝜙𝑥} e a relação de pertencimento utilizando ∈. Então, a contraparte
da (Propriedade) é:

(Conjunto): Para cada sentença aberta 𝜙 com uma variável livre e cada termo 𝑡, as
sentenças 𝑡 ∈ {𝑥 ∶ 𝜙𝑥} e 𝜙𝑡 são intersubstituíveis de acordo com 𝒯𝒮.

Para obter uma sentença de Curry conjuntista, considere o conjunto consistindo de qual-
quer coisa que seja membro de si mesma apenas se o tempo for infinito. Chamemos de 𝑐
este conjunto, estipulando 𝑐 =def [𝑥 ∶ 𝑥 ∈ 𝑥 → 𝜋]. Aplicando o princípio (Conjunto) à
sentença 𝑐 ∈ 𝑐, obtemos:

(𝑐 ∈ 𝑐) e (𝑐 ∈ 𝑐 → 𝜋) são intersubstituíveis de cordo com 𝒯𝒮
Em outras palavras, 𝑐 ∈ 𝑐 é uma sentença de Curry para 𝜋 e 𝒯𝒮
A versão conjuntista do Paradoxo de Curry foi introduzida por Fitch em 195219 e também

é apresentada em Moh 1954 e Prior 1955.

2.2 O Segundo Método e Sentenças de Curry em Teoria da Verdade

Apesar de seu comentário sobre o “paradoxo de Epimênides”, uma forma do paradoxo
do Mentiroso, o segundo método de Curry é uma variante de um paradoxo semântico rela-
17Being such that one fails to exemplify oneself, no original. (N. do T.)
18A letra ℎ é escolhida para corresponder ao ℌ que Curry 1942b usa para denotar essa propriedade; o mesmo
vale para 𝑢 abaixo.
19Fitch considera o paradoxo em suas versões tanto em teoria de propriedades quanto em teorias de conjuntos
(Fitch 1952: 89).
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cionado: o paradoxo de Grelling.20 Em sua forma original, o paradoxo de Grelling considera
uma propriedade possuída por muitas palavras, a saber, a propriedade que uma palavra tem
quando ela falha em exemplificar a propriedade que representa (Grelling & Nelson 1908).
Por exemplo, a palavra “ofensividade” possui essa propriedade: ela falha em exemplificar
a propriedade que representa, já que não é ofensiva (ver entrada sobre paradoxos e lógica
contemporânea). Curry considera, em vez disso, a propriedade que uma palavra tem uma
vez que que ela exemplifica a propriedade que representa apenas se o tempo for infinito.
Agora suponha que nossa teoria introduza um nome 𝑢 para essa propriedade. Curry então
mostra como construir uma sentença que (informalmente) diz que o nome 𝑢 exemplifica a
propriedade que representa. Ele mostra que essa sentença servirá como uma sentença de
Curry para uma teoria de propriedades e a denotação de nomes.21

Embora este método de obter uma sentença de Curry seja baseado em uma caracterís-
tica semântica das expressões, ele ainda se baseia em abstração de propriedades. Não obs-
tante, este pode ser visto como precursor de uma versão inteiramente semântica. (Em vez de
considerar a propriedade introduzida acima, poder-se-ia considerar o predicado “aplica-se a
si mesmo apenas se o tempo é infinito”.) Dessa forma, como Geach (1955) e Löb (1955) fo-
ram os primeiros a mostrar, sentenças de Curry podem ser obtidas usando apenas princípios
semânticos, sem recorrer à abstração de propriedades. A abordagem deles corresponde ao
argumento informal, na seção 1.1, envolvendo a sentença autorreferencial 𝑘 que diz: “Se 𝑘
é verdadeira, então o tempo é infinito”.

Para este propósito, seja 𝒯𝒯 uma teoria da verdade onde 𝑇 é o predicado de verdade.
Assuma o princípio da “transparência”:

(Verdade): Para cada sentença 𝛼, as sentenças 𝑇 (𝛼) e 𝛼 são intersubstituíveis de
acordo com 𝒯𝒯.

Para obter uma sentença de Curry usando este princípio, suponha que exista uma sen-
tença 𝜉 que seja 𝑇 ⟨𝜉⟩ → 𝜋.22 Então segue imediatamente de (Verdade) que:

𝑇 ⟨𝜉⟩ e 𝑇 ⟨𝜉⟩ → 𝜋 são intersubstituíveis de acordo com 𝒯𝒯.
20Isso é mencionado na resenha contemporânea de Church (Church 1942).
21Estritamente falando, em sua apresentação, os “nomes” são numerais que denotam números, não proprieda-
des; as propriedades são então códigos numéricos dados.
22Geach, na verdade, utiliza uma diagonalização baseada em uma teoria da sintaxe para obter a autorreferên-
cia necessária. Ele adiciona que “poderíamos em vez disso usar os conhecidos dispositivos Gödelianos” para
simular autorreferência usando diagonalização baseada em uma teoria da aritmética. Ver o verbete sobre os
teoremas de incompletude de Gödel.
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Em outras palavras, 𝑇 ⟨𝜉⟩ é uma sentença de Curry para 𝜋 e 𝒯𝒯.
Geach observa que o paradoxo semântico que resulta de uma sentença como 𝑇 ⟨𝜉⟩

se assemelha “ao Paradoxo de Curry em teoria de conjuntos”. Löb, que não menciona o
trabalho de Curry, atribui o paradoxo a uma observação de um revisor sobre a prova do que
agora é conhecido como teorema de Löb, concernente à provabilidade23 (ver o verbete sobre
os teoremas de incompletude de Gödel). O revisor, que agora sabemos ter sido Leon Henkin
(Halbach & Visser 2014: 257), sugeriu que o método usado por Löb em sua prova “leva a
uma nova derivação de paradoxos em linguagem natural”, a saber, o argumento informal da
seção 1.1 acima.24

3. Derivando o Paradoxo

Suponha que usamos um dos métodos acima para mostrar, para alguma teoria da ver-
dade, conjuntos ou propriedades, que a teoria é Curry-completa (por virtude de, digamos,
conter uma sentença de Curry para cada sentença da linguagem, ou para uma sentença
explosiva). Para concluir que a teoria em questão é trivial, basta agora fornecer um argu-
mento para a Afirmação Problemática. Esta afirmação diz que para cada teoria 𝒯, se há
uma sentença de Curry para 𝜋 e 𝒯, então ⊢𝒯 𝜋. Tal argumento fará uso das suposições
sobre o comportamento lógico do condicional → mencionado na Definição 1. Assumindo
que a Afirmação Problemática deve ser resistida, isso impõe, consequentemente, restrições
ao comportamento deste condicional.

3.1 O Lema do Paradoxo de Curry
Para começar, aqui está um resultado limitativo muito geral, uma variante próxima do

Lema que aparece em Curry 1942b.25
Lema do Paradoxo de Curry: Suponha que a teoria 𝒯 e a sentença 𝜋 sejam tais que

(i) existe uma sentença de Curry para 𝜋 e 𝒯, (ii) todas as instâncias da regra de identidade
23Provability, no original. (N. do T.)
24Sobre a relação entre o Paradoxo de Curry e o teorema de Löb, ver van Benthem (1978), que comenta sobre o
“estranho antiparalelo entre a prova de Gödel, na qual um conhecido paradoxo semântico inspirou um resultado
formal em termos de provabilidade, em vez de verdade, e a prova de Löb, onde um paradoxo semântico ... foi
extraído de um resultado formal sobre provabilidade” (1978: 59).
25Não deve ser confundido com um resultado em teoria da prova conhecido como Lema de Curry, seguindo
Anderson & Belnap (1975: 136).
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(Id) 𝛼 ⊢𝒯 𝛼 são válidas, e (iii) o condicional → satisfaz ambos os seguintes princípios:
(MP) Se ⊢𝒯 𝛼 → 𝛽 e ⊢𝒯 𝛼 então ⊢𝒯 𝛽
(Cont) Se 𝛼 ⊢𝒯 𝛼 → 𝛽 então ⊢𝒯 𝛼 → 𝛽
Então ⊢𝒯 𝜋.
Aqui MP é uma versão do modus ponens, e Cont é um princípio de contração: duas

ocorrências da sentença 𝛼 são “contraídas” em uma. (Em breve encontraremos princípios
relacionados que são mais comumente referidos como contração.[14]) O Lema do Paradoxo
de Curry implica que qualquer teoria Curry-completa deve violar um oumais princípios dentre
Id, MP ou Cont sob pena de trivialidade.

Para provar o Lema, mostra-se que Id, MP eCont, juntamente com a “Curry-intersubstitutividade”
de 𝑘 e 𝑘 → 𝜋, são suficientes para estabelecer ⊢𝒯 𝜋. A derivação a seguir se assemelha
ao argumento informal da seção 1.1. Esse argumento também incluiu um subargumento
para o princípio Cont, que será examinado abaixo.

1. 𝑘 ⊢𝒯 𝑘 Id

2. 𝑘 ⊢𝒯 𝑘 → 𝜋 1 Curry-intersubstitutividade

3. ⊢𝒯 𝑘 → 𝜋 2 Cont

4. ⊢𝒯 𝑘 3 Curry-intersubstitutividade

5. ⊢𝒯 𝜋 3, 4 MP

A seção 4 discutirá maneiras pelas quais cada um dos dois princípios relativos a →
assumidos no Lema do Paradoxo de Curry poderia ser justificado ou rejeitado.

3.1.1 Premissas Alternativas

Existem contrapartes do Lema do Paradoxo de Curry que invocam conjuntos alternativos
de princípios lógicos (ver, por exemplo, Rogerson & Restall 2004 e Bimbó 2006). Provavel-
mente a versão mais comum substitui as regras Id e Cont pelas leis correspondentes:

(IdL) ⊢𝒯 𝛼 → 𝛼
(ContL) ⊢𝒯 (𝛼 → (𝛼 → 𝛽)) → (𝛼 → 𝛽)
A derivação agora procede da seguinte forma:

217



1. ⊢𝒯 𝑘 → 𝑘 IdL

2. ⊢𝒯 𝑘 → (𝑘 → 𝜋) 1 Curry-intersubstitutividade

3. ⊢𝒯 (𝑘 → (𝑘 → 𝜋)) → (𝑘 → 𝜋) 2 ContL

4. ⊢𝒯 𝑘 → 𝜋 2, 3 MP

5. ⊢𝒯 𝑘 4 Curry-intersubstitutividade

6. ⊢𝒯 𝜋 4, 5 MP

Uma segunda contraparte comum do Lema do Paradoxo de Curry é devida a Meyer,
Routley e Dunn (1979).26 Ela utiliza dois princípios relativos à conjunção: a forma de lei do
modus ponens e a idempotência da conjunção.

(MPL) ⊢𝒯 ((𝛼 → 𝛽) ∧ 𝛼) → 𝛽
(Idem∧) As sentenças 𝛼 e 𝛼 ∧ 𝛼 são intersubstituíveis de acordo com 𝑇
Desta vez, a derivação procede da seguinte forma:

1. ⊢𝒯 ((𝑘 → 𝜋) ∧ 𝑘) → 𝜋 MPL

2. ⊢𝒯 (𝑘 ∧ 𝑘) → 𝜋 1 Curry-intersubstitutividade

3. ⊢𝒯 𝑘 → 𝜋 2 Idem∧

4. ⊢𝒯 𝑘 4 Curry-intersubstitutividade

5. ⊢𝒯 𝜋 3, 4 MP

Formulando o Lema do Paradoxo de Curry usando Cont, em vez de ContL ou MPL,
facilitará chamar atenção (na próxima seção) para diferenças significativas dentro da classe
de respostas que rejeitam ambos os últimos princípios.27

26Também está intimamente relacionado ao método usado na prova original de Löb do teorema de Löb (1955).
27Uma terceira contraparte do Lema do Paradoxo de Curry substitui Cont por uma regra que, à luz da Lei de
Peirce ⊢𝒯 ((𝛼 → 𝛽) → 𝛼)) → 𝛼, poderia ser chamada de Regra de Peirce:
(RP) Se 𝛼 → 𝛽 ⊢𝒯 𝛼, então ⊢𝒯 𝛼.
A prova do Lema é, então, estruturalmente análoga àquela da seção 3.1. Aqui também, poderia-se em vez disso
usar IdL e a Lei de Peirce. Cf. Bunder 1986, Rogerson & Restall 2004. Ao contrário dos princípios usados até
agora, a Lei de Peirce e a Regra de Peirce falham na lógica intuicionista.
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4. Respostas ao Paradoxo de Curry

As respostas ao paradoxo de Curry podem ser divididas em duas classes, baseadas em
se aceitam ou não o Corolário Problemático, que diz que todas as teorias Curry-completas
são triviais.

• Respostas de Curry-incompletude28 aceitam o Corolário Problemático. No entanto,
elas negamque as teorias-alvo (de propriedades, conjuntos ou verdade) sejamCurry-completas.
Respostas de Curry-incompletude podem adotar a lógica clássica (e geralmente o fazem).

• Respostas de Curry-completude29 rejeitam o Corolário Problemático; elas insistem
que podem existir teorias Curry-completas não triviais. Qualquer teoria desse tipo deve violar
um oumais dos princípios lógicos assumidos no Lema do Paradoxo de Curry. Uma vez que a
lógica clássica valida esses princípios, essas respostas invocam uma lógica não clássica.30

Também existe a opção de defender uma resposta de Curry-incompletude para parado-
xos de Curry surgindo em um domínio, digamos, teoria de conjuntos, enquanto se defende
uma resposta de Curry-completude para paradoxos de Curry em outro domínio, por exemplo,
teoria de propriedades (e.g., Field 2008; Beall 2009).

4.1 Respostas de Curry-Incompletude

A teoria hierárquica de Tarski, a teoria revisionista da verdade (Gupta & Belnap 1993)
e as abordagens contextualistas (Burge 1979, Simmons 1993, e Glanzberg 2001, 2004) são
exemplos de teorias da verdade tradicionais que fornecem respostas ao paradoxo de Curry
baseadas na Curry-incompletude. Todas essas teorias restringem o princípio da transparên-
cia “ingênuo” (Verdade). Para uma visão geral, ver verbete sobre o Paradoxo do Mentiroso.
No contexto da teoria de conjuntos, as respostas de Curry-incompletude incluem as teorias
dos tipos russellianas31 e diversas teorias que restringem o princípio “ingênuo” de abstração
de conjuntos (Conjunto). Ver verbete sobre o Paradoxo de Russell e teorias de conjuntos

28Curry-incompleteness responses, no original. (N. do T.)
29Curry-completeness responses, no original. (N. do T.)
30No entanto, uma vez que uma resposta rejeita o suficiente princípios lógicos padrão envolvendo →, pode
ser indeterminado se esta conta como uma resposta de Curry-completude ou de Curry-incompletude. Isso por-
que o conectivo → que aparece na definição de uma sentença de Curry (Definição 1) foi estipulado como um
condicional.
31Russellian type theories, no original. (N. do T.)
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axiomáticas alternativas.
Em geral, as considerações pertinentes para avaliar a maioria das respostas de Curry-

incompletude não parecem ser específicas ao Paradoxo de Curry, mas se aplicam igual-
mente ao paradoxo doMentiroso (no domínio da teoria da verdade) e ao paradoxo de Russell
(nos domínios da teoria de conjuntos e teoria de propriedades).32 Por essa razão, o restante
desta entrada se concentrará nas respostas de Curry-completude, embora a seção 6.3 re-
torne brevemente à distinção no contexto dos chamados Paradoxos de Curry-validade.33

4.2 Respostas de Curry-completude
As respostas de Curry-completude ao paradoxo de Curry sustentam que existem teorias

que são Curry-completas, porém não triviais; tais teorias devem violar um ou mais dos prin-
cípios lógicos assumidos no Lema do Paradoxo de Curry. Uma vez que a regra Id em geral
não foi posta em questão (mas ver French 2016 e Nicolai & Rossi, a ser publicado), isto
significou negar que que o condicional → de uma teoria Curry-completa não trivial satisfaça
ambos MP e Cont. Consequentemente, as respostas foram divididas em duas categorias:

(I) A estratégia mais comum tem sido aceitar que o condicional de tal teoria obedece a
MP, mas negar que obedece a Cont. Como Cont é um princípio de contração, tais respostas
podem ser chamadas de livres de contração34. Esta estratégia foi primeiramente proposta
por Moh (1954), que é citado com aprovação por Geach (1955) e Prior (1955).

(II) Uma segunda e muito mais recente estratégia consiste em aceitar que o condicional
de uma teoria obedece a Cont, mas negar que obedece a MP (às vezes chamado de regra
de “desprendimento”). Tais respostas podem ser chamadas de livres de desprendimento35.
32As justificativas dadas para negar que uma teoria-alvo𝒯 seja Curry-completa são tipicamente paralelas às jus-
tificativas para negar que existe uma sentença𝜆 tal que esta e sua negação¬𝜆 são intersubstituíveis de acordo
com 𝒯. E os respectivos movimentos terão ramificações filosóficas paralelas. Uma exceção pode ser a res-
posta inicial ao Paradoxo de Curry por Fitch (1952, 1969). Fitch apresenta várias possíveis restrições às regras
de inferência de um sistema de dedução natural que são motivadas especificamente pelo Paradoxo de Curry.
Como seu efeito é garantir violações de (Propriedade) e (Conjunto), estas são respostas de Curry-incompletude.
Em particular, os sistemas de Fitch permitem uma derivação de ⊢𝒯𝒫 ℎ 𝜖 ℎ → 𝜋. No entanto, baseado em
características globais dessa derivação, ambas as “restrição especial” e “restrição à não-recorrência” de Fitch
bloqueariam a sua extensão a uma derivação de ⊢𝒯𝒫 ℎ 𝜖 ℎ. Para uma discussão útil, ver Anderson 1975 e
Rogerson 2007.
33Validity Curry paradoxes, no original. (N. do T.)
34Contraction-free, no original. (N. do T.)
35Detachment-free, no original. (N. do T.)
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Esta estratégia é defendida, de diferentes maneiras, por Ripley (2013) e Beall (2015).
Cada categoria de respostas de Curry-completude pode, por sua vez, ser subdividida

em função da maneira pela qual bloqueia as pretendidas derivações de Cont e MP.

4.2.1 Respostas livres de contração

O princípio Cont, rejeitado pelas respostas livres de contração segue de dois princípios
padrões. Tratam-se de a) provas condicionais de premissa única e b) uma versão um pouco
mais geral do modus ponens, envolvendo no máximo uma premissa 𝛾:

(MP’) Se 𝛾 ⊢𝒯 𝛼 → 𝛽 e 𝛾 ⊢𝒯 𝛼, então 𝛾 ⊢𝒯 𝛽
(PC) Se 𝛼 ⊢𝒯 𝛽 então ⊢𝒯 𝛼 → 𝛽
1. 𝛼 ⊢𝒯 𝛼 → 𝛽
2. 𝛼 ⊢𝒯 𝛼 Id

3. 𝛼 ⊢𝒯 𝛽 1, 2 MP’

4. ⊢𝒯 𝛼 → 𝛽 3 PC

As respostas livres de contração, portanto, devem rejeitar um ou outro desses dois prin-
cípios para o condicional de uma teoria Curry-completa não trivial. Consequentemente, duas
subcategorias de teóricos na categoria (I) podem ser identificadas:

(Ia) Uma resposta livre de contração forte36 nega que → obedece a MP’ (por exemplo,
Mares & Paoli 2014; Slaney 1990; Weir 2015; Zardini 2011).

(Ib) Uma resposta livre de contração fraca37 aceita que → obedece a MP’, mas nega
que obedece a PC (por exemplo, Field 2008; Beall 2009; Nolan 2016).

A razão pela qual as respostas livres de contração na categoria (Ib) são consideradas
“fracas” é que, como os passos 1–3 mostram, elas aceitam o princípio de contração segundo
o qual se 𝛼 ⊢𝒯 𝛼 → 𝛽, então 𝛼 ⊢𝒯 𝛽.

Proponentes das respostas livres de contração fortes sustentam que MP’ não expressa
adequadamente a forma relevante domodus ponens. Eles geralmente apresentam sua pró-
pria versão dessa regra em um framework “subestrutural”, especificamente um que nos per-
mite distinguir entre o que se segue de uma premissa considerada uma vez e o que se segue
36Strongly contraction-free response, no original. (N. do T.)
37Weakly contraction-free response, no original. (N. do T.)
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da mesma premissa considerada duas vezes. (Ver verbete sobre lógicas subestruturais).
Consequentemente, MP’ precisa ser substituído por:

(MP”) Se 𝛾 ⊢𝒯 𝛼 → 𝛽 e 𝛾 ⊢𝒯 𝛼, então 𝛾, 𝛾 ⊢𝒯 𝛽
E a regra da “contração estrutural” precisa ser rejeitada:
(sCont) Se Γ, 𝛾, 𝛾 ⊢𝒯 𝛽, então Γ, 𝛾 ⊢𝒯 𝛽
É porque rejeitam a contração estrutural que as respostas livres de contração fortes

podem afirmar que preservam modus ponens apesar de rejeitar MP’. (Ver Shapiro 2011,
Zardini 2013, e Ripley 2015a).

Respostas livres de contração fortes também precisam bloquear uma derivação de MP’
usando um par de princípios envolvendo conjunção:

(MP’∧) Se 𝛾 ⊢𝒯 𝛼 → 𝛽 e 𝛿 ⊢𝒯 𝛼, então 𝛾 ∧ 𝛿 ⊢𝒯 𝛽
(Idem∧) As sentenças 𝛼 e 𝛼 ∧ 𝛼 são intersubstituíveis de acordo com 𝑇

1. 𝛾 ⊢𝒯 𝛼 → 𝛽

2. 𝛾 ⊢𝒯 𝛼

3. 𝛾 ∧ 𝛾 ⊢𝒯 𝛽 1, 2 MP’∧

4. 𝛾 ⊢𝒯 𝛽 3 Idem∧

Evitar essa derivação de MP’ exige negar que exista uma conjunção ∧ que obedeça
tanto a MP’∧ quanto a Idem∧. Segundo muitos proponentes de respostas livres de contração
fortes (por exemplo, Mares & Paoli 2014; Zardini 2011), um tipo de conjunção — o tipo
“multiplicativo” ou “de fusão” — obedece a MP’∧, mas não a Idem∧, enquanto outro tipo —
o tipo “aditivo” — obedece a Idem∧, mas não a MP’∧ (ver verbete sobre lógica linear, bem
como Ripley 2015a). Se o framework subestrutural discutido acima for utilizado, a falha de
38 MP’∧ se dá pelo fato de que, para a conjunção aditiva, 𝛾, 𝛿 ⊢𝒯 𝛽 não é equivalente a
𝛾 ∧ 𝛿 ⊢𝒯 𝛽.

Quanto às respostas livres de contração fracas, a falha de PC foi por vezes motivada
usando a “semântica de mundos” do tipo que implica uma distinção entre mundos logica-
mente possíveis e impossíveis (por exemplo, Beall 2009; Nolan 2016). Para refutar PC,
precisamos da verdade de 𝛼 ⊢𝒯 𝛽 e da falsidade de ⊢𝒯 𝛼 → 𝛽. Nas abordagens de
38The failure of, no original. (N. do T.)
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“mundos” alvo, ⊢𝒯 é definido como preservação de verdade sobre um subconjunto próprio
de mundos (em um modelo), a saber, os “mundos possíveis” do modelo. Portanto, 𝛼 ⊢𝒯 𝛽
ser verdadeiro significa não haver nenhum mundo possível (em nenhum modelo) no qual 𝛼
é verdadeiro e 𝛽 não o é. Por sua vez, para refutar ⊢𝒯 𝛼 → 𝛽 precisamos de um mundo
possível no qual 𝛼 → 𝛽 não seja verdadeiro. Como isso acontece? Porque os conectivos
são definidos de uma forma que leva em conta todos os (tipos de) mundos no modelo (pos-
síveis e, se houver, impossíveis), há uma opção para 𝛼 → 𝛽 não ser verdadeiro39 em um
mundo possível em virtude de 𝛼 ser verdadeiro e 𝛽 não o ser em um mundo impossível. E
é justamente isso que acontece nas abordagens alvo. (A maneira exata de definir as con-
dições de veradade-em-um-mundo e falsidade-em-um-mundo para o conectivo depende da
exata abordagem de “mundos” em questão).

4.2.2 Respostas livres de desprendimento

Respostas livres de desprendimento devem bloquear uma derivação direta de MP ba-
seada em um princípio de transitividade juntamente com a recíproca da prova condicional
de premissa única:

(Trans) Se 𝛼 ⊢𝒯 𝛽 e ⊢𝒯 𝛼, então ⊢𝒯 𝛽
(RPC)40 Se ⊢𝒯 𝛼 → 𝛽, então 𝛼 ⊢𝒯 𝛽

1. ⊢𝒯 𝛼 → 𝛽

2. ⊢𝒯 𝛼

3. 𝛼 ⊢𝒯 𝛽 1 RPC

4. ⊢𝒯 𝛽 2, 3 Trans

Existem duas subcategorias de teóricos na categoria (II):
(IIa) Uma resposta livre de desprendimento forte41 nega que → obedece a RPC (Go-

odship 1996; Beall 2015).
39Being untrue, no original. (N. do T.)
40Recíproca da prova condicional. (N. do T.)
41Strongly detachment-free response, no original. (N. do T.)
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(IIb) Uma resposta livre de desprendimento fraca42 aceita que → obedece a RPC, mas
rejeita Trans (Ripley 2013).

A razão pela qual as respostas livres de desprendimento na categoria (IIb) são consi-
deradas “fracas” é que RPC, que essas respostas aceitam, pode ser visto como um tipo de
princípio de desprendimento43 para o condicional.

Uma estratégia para responder à alegação de que as respostas livres de desprendi-
mento são contra-intuitivas tem sido apelar para uma conexão entre consequência e nossa
aceitação e rejeição de sentenças. De acordo com essa conexão, sempre que é o caso que
𝛼 ⊢𝒯 𝛽, isso significa (ou pelo menos implica) que é incoerente, à luz da teoria 𝒯, aceitar
𝛼 enquanto se rejeita 𝛽 (ver Restall 2005). Agora suponha que, à luz de uma teoria 𝒯, é
incoerente rejeitar 𝛼 e também é incoerente aceitar 𝛼 enquanto se rejeita 𝛽. Então, Ripley
(2013) argumenta, não há nada de incoerente, segundo os critérios da teoria, em rejeitar
𝛽, desde que também não se aceite 𝛼. Há, portanto, espaço para abandonar Trans e ado-
tar uma resposta livre de desprendimento fraca ao paradoxo de Curry. A defesa de Beall
da abordagem livre de desprendimento forte baseia-se em considerações relacionadas. Ele
argumenta, em suma, que um princípio mais fraco que RPC pode desempenhar o papel re-
levante na restrição de combinações de aceitação e rejeição de sentenças, incluindo 𝛼, 𝛽 e
𝛼 → 𝛽.

4.2.3 Aplicação ao Argumento Informal

As abordagens para o Paradoxo de Curry acima distinguidas apontam falhas em dife-
rentes inferências e subconclusões do argumento paradoxal informal na seção 1.1. Uma
resposta livre de contração forte corresponde ao bloqueio do passo (3) desse argumento,
uma vez que rejeita MP’. Uma resposta livre de contração fraca, em vez disso, bloqueia o
passo (4), já que rejeita PC. Nenhum tipo de resposta livre de desprendimento aceitará o
raciocínio no passo (3). Como aceitam Cont, as respostas livres de desprendimento nos
permitem derivar a conclusão de (4), da qual as respostas livres de desprendimento fracas
permitem ainda derivar a conclusão de (3) por meio de RPC. Contudo, ambas as resposta
livre de desprendimento encontram falhas no movimento final, por meio de MP, até (6).

42Weakly detachment-free response, no original. (N. do T.)
43Detachment principle, no original. (N. do T.)
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5. A Significância do Paradoxo de Curry

Nesta seção, explicamos algumas lições distintivas que podem ser aprendidas ao consi-
derar o Paradoxo de Curry. Para discussões sobre os tipos de significância que as versões
do Paradoxo de Curry compartilham com paradoxos relacionados, consulte os verbetes so-
bre o Paradoxo de Russell e o Paradoxo do Mentiroso.

5.1 Frustrando Esperanças por Soluções de Paradoxos de Negação
Começando com Church (1942), Moh (1954), Geach (1955), Löb (1955) e Prior (1955),

discussões sobre o Paradoxo de Curry tem enfatizado o fato de que ele difere do Paradoxo
de Russell e do Paradoxo do Mentiroso, no que ele não “envolve essencialmente negação”
(Anderson 1975: 128).44 Uma razão pela qual o status “livre de negação” do paradoxo
de Curry é importante é que isso torna o paradoxo resistente a algumas resoluções que
poderiam ser adequadas para tais “paradoxos de negação”.

Geach argumenta que o paradoxo de Curry representa um problema para qualquer pro-
ponente de uma teoria da verdade ingênua ou uma teoria de conjuntos ingênua que, diante
de paradoxos de negação,

...poderia esperar evitar [esses paradoxos] usando um sistema lógico no qual
‘𝑝 se e somente se não-𝑝’ fosse um teorema para algumas interpretações de ‘𝑝’
sem que pudéssemos inferir daí qualquer sentença arbitrária... (Geach 1955:
71)

O problema, diz ele, é que o Paradoxo deCurry “não pode ser resolvido apenas adotando
um sistema que contém um tipo estranho de negação”. Em vez disso, “se queremos manter
a visão ingênua de verdade ou a visão ingênua de classes, então devemos modificar as
regras de inferência elementares relacionadas a ‘se”’(1955: 72). O ponto de vista de Geach
44Contrapartes do Lema do Paradoxo de Curry podem ser formuladas utilizando princípios envolvendo negação.
Por exemplo, ¬𝛼 ⊢𝒯 𝛼 → 𝛽 junto à clássica regra reductio

Se ¬𝛼 ⊢𝒯 𝛼, então ⊢𝒯 𝛼
resultam na Regra de Peirce da nota [27]. (É claro que, em uma linguagem cujo único “condicional” 𝛼 → 𝛽
é o condicional material ¬𝛼 ∨ 𝛽, a versão correspondente do Paradoxo de Curry envolverá negação. Nesse
contexto, o Paradoxo de Curry apresenta um desafio menos distintivo.

225



sobre a significância do paradoxo de Curry é ecoada por Meyer, Routley e Dunn (1979:
127). Eles concluem que o Paradoxo de Curry frustra aqueles que “tinham esperança de
que enfraquecer os princípios clássicos de negação” resolveria o Paradoxo de Russell.45

Em resumo, o ponto é que existem lógicas não-clássicas com princípios de negação fra-
cos que resolvem o Paradoxo de Russell e o Paradoxo do Mentiroso, mas que permanecem
vulneráveis ao Paradoxo de Curry. Estas são lógicas com as seguintes características:

(a) Elas podem servir como base para uma teoria não-trivial segundo a qual alguma
sentença é intersubstituível com sua própria negação.

(b) Elas não podem servir como base para uma teoria não-trivial que seja Curry-completa.
Apesar de não estar claro quais lógicas Geach tinha em mente, existem de fato lógi-

cas não-clássicas que atendem a essas duas condições. Teorias baseadas nessas lógicas
permanecem, consequentemente, vulneráveis ao paradoxo de Curry.

5.1.1 Soluções Paraconsistentes Frustradas

Meyer, Routley e Dunn (1979) chamam atenção para uma classe de lógicas que satis-
fazem as condições (a) e (b). Elas estão entre as lógicas paraconsistentes, que são lógicas
segundo as quais uma sentença juntamente com sua negação não implicará qualquer sen-
tença arbitrária. Lógicas paraconsistentes podem ser usadas para obter teorias que resol-
vem os paradoxos de Russell e do Mentiroso, ao abraçar a inconsistência da negação sem
sucumbir à trivialidade.

De acordo com uma tal teoria 𝒯, sentenças 𝜆 e ¬𝜆 podem ser intersubstituíveis, desde
que tenhamos tanto ⊢𝒯 𝜆 quanto ⊢𝒯 ¬𝜆. Tais teorias são “glutty”, no sentido de que
afirmam alguma sentença junto com sua negação (ver verbete sobre dialeteísmo). No en-
tanto, várias lógicas paraconsistentes proeminentes não podem servir como base para teo-
rias Curry-completas, sob pena de trivialidade. Diz-se por vezes que tais lógicas falham em
ser “Curry paraconsistentes” (Slaney 1989).47

45Assim como Geach, eles acrescentam que o Paradoxo de Curry mostra que “as propriedades de implicação...
bastam para acabar com a gente”46. (Por “implicação”, eles querem dizer um condicional; ver nota [50].)
47Meyer et al. (1979) citam as lógicas de relevância 𝐸 e 𝑅; o mesmo é verdade para a lógica de relevância
livre de contração 𝑅𝑊𝑋 (Slaney 1989). Respostas glutty ao paradoxo que admitem teorias Curry-completas
incluem Priest 2006, Beall 2009 e Beall 2015.
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5.1.2 Soluções Paracompletas Frustradas

Muitas das lógicas não-clássicas que foram propostas para fundamentar respostas ao
Paradoxo de Russell e ao Paradoxo do Mentiroso são lógicas paracompletas, lógicas que
rejeitam a lei do terceiro excluído. Essas lógicas possibilitam teorias “gappy”. Em particular,
onde 𝜆 e ¬𝜆 são intersubstituíveis de acordo com uma tal teoria 𝒯, não será o caso que
⊢𝒯 𝜆 ∨ ¬𝜆. Algumas dessas lógicas paracompletas também atendem às condições (a) e
(b).

Um exemplo é a lógica Ł3, baseada nas tabelas de verdade trivalorada de Łukasiewicz
(ver, por exemplo, Priest 2008). Uma vez que satisfaz a condição (a), Ł3 oferece uma pos-
sível resposta ao Paradoxo de Russell e ao Paradoxo do Mentiroso — em particular, uma
resposta “gappy”. No entanto, considere o condicional iterado 𝛼 → (𝛼 → 𝛽), que abrevi-
amos como 𝛼 ⇒ 𝛽. Suponha que uma sentença de Curry para 𝜋 e uma teoria 𝒯 baseada
em Ł3 seja redefinida como sendo48 qualquer sentença 𝜅 intersubstituível com 𝜅 ⇒ 𝜋. En-
tão 𝒯 cumprirá todas as condições do Lema do Paradoxo de Curry, como foi inicialmente
notado por Moh (1954). Portanto, desde que haja um 𝜅 intersubstituível com 𝜅 ⇒ 𝜋 de
acordo com 𝒯, então ⊢𝒯 𝜋. Consequentemente, Ł3 não servirá como fundamento de uma
resposta ao Paradoxo de Curry.49

Resumindo: o Paradoxo de Curry continua sendo um obstáculo para certas abordagens
que, em outros casos, serviram como caminhos viáveis para a resolução de paradoxos se-
mânticos por meio de teorias “glutty” ou “gappy”. Como resultado, a necessidade de evitar
o Paradoxo de Curry desempenhou papel significativo no desenvolvimento de lógicas não-
clássicas (por exemplo, Priest 2006; Field 2008).

5.2 Em Direção à uma Estrutura Geral de Paradoxo

O status “livre de negação” do Paradoxo de Curry é importante por uma segunda razão.
Prior faz a seguinte importante observação:

48Redefined to be any sentence 𝜅, no original. (N. do T.)
49Ver também Restall 1993. Geach cita o artigo de Moh, mas há poucas razões para pensar que ele tinha 3 em
mente como uma lógica com a qual se “poderia ... esperar” evitar o Paradoxo do Mentiroso, mas que permanece
vulnerável ao Paradoxo de Curry. Isso porque as sentenças de Curry em relação ao condicional primitivo →,
que falha em satisfazer Cont, não representam problema para uma teoria baseada em 3. Respostas gappy para
o paradoxo que admitem teorias Curry-completas não-triviais incluem Kripke 1975, White 1979 e Field 2008.

227



Podemos ... dizer não apenas que o Paradoxo de Curry não envolve negação,
mas que atémesmo o Paradoxo de Russell pressupõe apenas as propriedades
da negação que esta compartilha com a implicação. (Prior 1955: 180)50

O que ele tem em mente é que o Paradoxo de Russell e o Paradoxo de Curry podem
ser entendidos como resultando da mesma estrutura geral, que pode ser instanciada tanto
usando negação quanto usando uma condicional.51

A estrutura geral pode ser explicitada definindo um tipo de conectivo unário que engen-
dra52 o Paradoxo de Curry e mostrando como esse tipo é exemplificado tanto pela negação
quanto por um conectivo unário definido em termos de uma condicional.

Definição 3: (Conectivo de Curry) Seja 𝜋 uma sentença na linguagem da teoria 𝒯. O
conectivo unário ⊙ é um conectivo de Curry para 𝜋 e 𝒯 se satisfaz dois princípios:

(P1) Se ⊢𝒯 𝛼 e ⊢𝒯 ⊙𝛼, então ⊢𝒯 𝜋.
(P2) Se 𝛼 ⊢𝒯 ⊙𝛼, então ⊢𝒯 ⊙𝛼
Lema do Paradoxo de Curry Generalizado: Suponha que 𝒯 seja tal que Id é válido e

que, para algum par de sentenças 𝜋 e 𝜇, (i) 𝜇 e ⊙𝜇 são intersubstituíveis de acordo com 𝒯
e (ii) ⊙ é um conectivo de Curry para 𝜋 e 𝒯. Nesse caso, ⊢𝒯 𝜋.53

Prova:

1. 𝜇 ⊢𝒯 𝜇 Id

2. 𝜇 ⊢𝒯 ⊙𝜇 1 Curry-intersubstitutividade
50Ver também Curry & Feys 1958: 259. Por “implicação”, Prior quer dizer uma condicional. Alguns anos antes,
Quine havia notado que o uso de “condicional” no lugar de “implicação” está ”encorajadoramente em ascensão”
(1953: 451).
51O fato de que o Paradoxo de Curry chama atenção para essa estrutura geral pode ser o que Curry et al. (1972)
tinham em mente quando se referem ao Paradoxo de Curry como “o paradoxo de Russell generalizado”. No
entanto, o ponto deles é provavelmente diferente, ou seja, que o Paradoxo de Russell se torna um caso especial
do paradoxo de Curry (em sua forma conjuntista ou em teoria de propriedades), desde que ¬𝛼 seja definido
como 𝛼 → ⊥, como é possível nas lógicas intuicionista e clássica.
52Gives rise to, no original. (N. do T.)
53O mesmo resultado é obtido se o requerimento de que ⊙ seja um conectivo de Curry for substituído pelo
requerimento de que seja um conectivo de Curry’, definido substituindo P2 por:
(P2’) Se ⊙𝛼 ⊢𝒯 𝛼, então ⊢𝒯 𝛼. (Ver nota 16.)
Para o que são, de fato, várias outras maneiras de generalizar o Lema do Paradoxo de Curry, ver Bimbó 2006 e
Humberstone 2006.
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3. ⊢𝒯 ⊙𝜇 2 P2

4. ⊢𝒯 𝜇 3 Curry-intersubstitutividade

5. ⊢𝒯 𝜋 3, 4 P1

O Lema do Paradoxo de Curry Generalizado pode agora ser instanciado de duas ma-
neiras diferentes, de forma a produzir ou o Paradoxo de Curry, ou um paradoxo de negação.

• Para obter o Paradoxo de Curry, seja o conectivo unário ⊙ tal que ⊙𝛼 seja 𝛼 → 𝜋
e seja 𝜇 uma sentença intersubstituível com 𝜇 → 𝜋 de acordo com 𝒯. Então P1 equivale
à instância de MP usada em nossa derivação do Lema do Paradoxo de Curry, enquanto P2
não é nada além de nossa regra Cont.

(MP) Se ⊢𝒯 𝛼 → 𝛽 e ⊢𝒯 𝛼 então ⊢𝒯 𝛽
(Cont) Se 𝛼 ⊢𝒯 𝛼 → 𝛽 então ⊢𝒯 𝛼 → 𝛽
• Para obter um paradoxo de negação, deixe que ⊙𝛼 seja ¬𝛼 e seja 𝜇 uma sentença

intersubstituível com ¬𝜇 de acordo com 𝒯.54 Então P1 equivale a uma instância de ex
contradictione quodlibet (ou “explosão”), enquanto P2 é um princípio reductio.

(ECQ) Se ⊢𝒯 𝛼 e ⊢𝒯 ¬𝛼 então ⊢𝒯 𝛽
(Red) Se 𝛼 ⊢𝒯 ¬𝛼 então ⊢𝒯 ¬𝛼
O ponto de Prior é que as características da negação que são relevantes para o Pa-

radoxo de Russell ou para o Paradoxo do Mentiroso são esgotadas pelo seu status como
um conectivo de Curry. Isso deixa claro por que esses paradoxos não dependem de pro-
priedades55 da negação, como a lei do terceiro excluído ou a eliminação da dupla negação,
que não se mantêm56 em teorias não-clássicas onde a negação permanece um conectivo
de Curry (por exemplo, em teorias intuicionistas, onde ECQ e Red ambos se mantêm).57

54No caso do Paradoxo de Russell na teoria de conjuntos, 𝜇 pode ser {𝑥 ∶ 𝑥 ∉ 𝑥} ∈ {𝑥 ∶ 𝑥 ∉ 𝑥}. No caso
do Paradoxo do Mentiroso, 𝜇 pode ser 𝑇 ⟨𝜆⟩, onde 𝜆 é ¬𝑇 ⟨𝜆⟩.
55Features of negation, no original. (N. do T.)
56Fail to hold, no original. (N. do T.)
57Ver também Curry & Feys 1958: 259. Eles acrescentam: “Se insiste-se em considerar
[⊙𝛼, definido como 𝛼 → 𝜋] como uma espécie de negação, então essa negação é uma negação mi-
nimal”. Como notado abaixo, isso é, estritamente falando, incorreto. A explicação é que a prova de Curry da
afirmação correspondente, em Curry 1952, assume que o condicional é caracterizado usando uma extensão do
cálculo de sequentes em Curry 1950: 32–33, que inclui a regra de troca estrutural58. Isso é o que garante que
𝛼 ⊢ (𝛼 → 𝜋) → 𝜋, ou seja, 𝛼 ⊢𝒯 ⊙ ⊙ 𝛼.
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Além disso, um conectivo de Curry não precisa ser muito parecido com uma negação.
Ele pode falhar até mesmo em ser uma negação minimal (ver verbete sobre negação), já
que não precisa obedecer à lei da dupla introdução:

(DI) 𝛼 ⊢𝒯 ⊙ ⊙ 𝛼.
Por exemplo, suponha que ⊙𝛼 seja 𝛼 → 𝜋. Então, para que ⊙ obedeça à DI, teria

que ser o caso que 𝛼 ⊢𝒯 (𝛼 → 𝜋) → 𝜋. Esse princípio é violado por várias teorias não-
clássicas para as quais ⊙, quando definido desta maneira, qualifica-se como um conectivo
de Curry.59

Resumindo: o Paradoxo de Curry aponta para uma estrutura geral instanciada por uma
ampla gama de paradoxos. Esta estrutura ela mesma não envolve negação, mas também é
exibida por paradoxos que (ao contrário do Paradoxo de Curry) envolvem essencialmente a
negação, como o Paradoxo de Russell e o Paradoxo do Mentiroso.

A questão de saber quais paradoxos exibem uma estrutura comum torna-se importante à
luz do “princípio de solução uniforme”, influentemente defendido por Priest (1994). Segundo
este princípio, paradoxos que pertencem ao “mesmo tipo” devem receber o “mesmo tipo de
solução”. Suponha que delimitamos um tipo de paradoxo da seguinte forma:

Definição 4: (Paradoxo de Curry Generalizado) Temos um Paradoxo de Curry em to-
dos os casos onde as hipóteses anunciadas no Lema do Paradoxo de Curry Generalizado
aparentam ser o caso.60

Assumindo que alguém aceita o princípio de solução uniforme, a questão se torna saber
o que conta como propor uma solução uniforme para todos os paradoxos de Curry generali-
zados. Em particular, é suficiente mostrar, para cada instância do tipo assim delimitado, que
o que parece ser um conectivo de Curry na verdade não o é? Pareceria que isso deveria
ser suficiente. Não é claro por que “uniformidade” deveria adicionalmente exigir que todos
os aparentes conectivos de Curry não se qualifiquem como tais em virtude de violarem a
mesma condição. Por exemplo, suponha que a negação e nosso conectivo unário definido
usando → ambos aparentam satisfazer o princípio generalizado P2; no primeiro caso, por-
que ¬ parece obedecer a Red e, no último caso, porque → parece obedecer a Cont. A
menos que essas duas aparências compartilhem uma fonte comum (por exemplo, uma re-
corrência implícita à contração estrutural, como sustentado por Zardini 2011), não há nada

59Estas incluem as lógicas de relevância 𝑇 e 𝐸 de Anderson & Belnap 1975, e muitas das lógicas exploradas
em Brady 2006.
60Appear to hold, no original.
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objetavelmente não uniforme em aceitar uma em seu valor nominal enquanto se descarta
a outra como enganosa. (Para discussão sobre a questão filosófica aqui, aplicada a uma
classe diferente de paradoxos, ver diálogo em Smith 2000 e Priest 2000).

Se este é o caso, o desiderato de que os paradoxos de Curry generalizados sejam re-
solvidos de forma uniforme não precisa discriminar entre as diferentes soluções logicamente
revisionárias que têm sido perseguidas. Estas incluem as seguintes três opções:

• Pode-se sustentar que é apenas o princípio P1 que falha quando ⊙𝛼 é instanciado
como ¬𝛼 (para obter um paradoxo de negação), enquanto é P2 sozinho que falha quando
⊙𝛼 é instanciado como 𝛼 → 𝜋 (para obter um Paradoxo de Curry). Nessa abordagem,
ECQ e Cont falham, enquanto Red e MP se mantêm. (Priest 1994, 2006).

• Pode-se sustentar que apenas P2 falha para ambas as instanciações de ⊙. Nessa
abordagem, Red e Cont falham, enquanto ECQ e MP se mantêm (Field 2008; Zardini 2011).

• Pode-se sustentar que apenas P1 falha para ambas as instanciações de ⊙. Nessa
abordagem, ECQ e MP falham, enquanto Red e Cont se mantêm (Beall 2015; Ripley 2013).

Assim, por exemplo, a própria abordagem de Priest seria considerada como resolvendo
uniformemente o Paradoxo de Curry e o Paradoxo doMentiroso como exemplos do paradoxo
de Curry generalizado. Isso seria o caso apesar do fato de Priest avaliar as sentenças do
Mentiroso como tanto verdadeiras quanto falsas, enquanto ele rejeita a afirmação de que as
sentenças de Curry são verdadeiras.

Em todo caso, o Paradoxo de Curry apresenta desafios em conexão com a questão
de que tipo de uniformidade deveria ser exigida das soluções para vários paradoxos (ver
também Zardini 2015). Priest chama atenção para um tipo de paradoxo mais restrito do
que os paradoxos de Curry generalizados, um tipo cujas instâncias incluem os paradoxos de
negação mas excluem o Paradoxo de Curry. Este tipo é identificado pelo “Inclosure Schema”
de Priest (2002); ver verbete sobre autorreferência. Uma disputa em andamento trata da
questão de se poderia haver uma versão do Paradoxo de Curry que se qualifique como
um “ inclosure paradox”, mas que resista à solução dialeteísta uniforme de Priest para tais
paradoxos (ver diálogo em Beall 2014b, Weber et al. 2014, e Beall 2014a, bem como Pleitz
2015).
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6. Curry-validade

Na última década (até a data desta versão do verbete), testemunhou-se um aumento
significativo da atenção dada aos paradoxos de Curry, e talvez especialmente aos chama-
dos Paradoxos de Curry-validade ou v-Curry (Whittle 2004; Shapiro 2011; Beall & Murzi
2013).61 V-Curry envolve sentenças de Curry que especificamente invocam a relação de
consequência ou “validade” de uma teoria, através da utilização seja de uma condicional,
seja de um predicado que pretende expressar a relação ⊢𝒯 na linguagem da própria teoria
𝒯.

6.1 Forma de Conectivo
Para uma forma do paradoxo de v-Curry, seja o condicional mencionado na definição de

uma sentença de Curry (Definição 1) um conectivo de consequência ⇒. Uma sentença com
⇒ como seu operador principal deve ser interpretada da seguinte maneira: “Que 𝑝 implica
(de acordo com 𝒯) que 𝑞”. Agora, imediatamente obtemos versões do Paradoxo de Curry
em teoria de propriedades, teoria de conjuntos ou teoria da verdade, desde que ⇒ atenda
às condições MP e Cont do Lema do Paradoxo de Curry.

O que torna esta instância do Lema do Paradoxo de Curry particularmente problemática
é que ela apresenta um obstáculo para uma resposta comum ao Paradoxo de Curry, a saber,
a resposta livre de contração fraca discutida na seção 4.2.1. Essa resposta dependia da
rejeição da regra CP da prova condicional de premissa única, uma direção do “teorema
de dedução” de premissa única. Mas esta é uma regra que parece difícil de resistir para
um conectivo de consequência (Shapiro 2011; Weber 2014; Zardini 2013). Se 𝛽 é uma
consequência de 𝛼 de acordo com a relação de consequência da teoria 𝒯, onde esta teoria
tem ⇒ como seu próprio conectivo de consequência, então 𝒯 deve certamente conter a
afirmação de consequência 𝛼 ⇒ 𝛽. Da mesma forma, esta variedade de Paradoxo de
Curry apresenta um obstáculo para respostas livres de desprendimento, que requerem a
rejeição da regra MP. Se uma teoria com seu próprio conectivo de consequência contém
tanto 𝛼 quanto a condicional de consequência 𝛼 ⇒ 𝛽, então ela deve certamente conter 𝛽
61Trabalhos mais recentes incluem Bacon 2015, Barrio et al. a ser publicado, Cook 2014, Field 2017, Mares
& Paoli 2014, Meadows 2014, Murzi 2014, Murzi & Rossi a ser publicado, Murzi & Shapiro 2015, Nicolai &
Rossi 2017, Rosenblatt 2017, Tajer & Pailos 2017, Priest 2015, Shapiro 2013 & 2015, Wansing & Priest 2015,
Weber 2014, Zardini 2013 & 2014.
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também. Ou, pelo menos, é o que parece. Certamente, o proponente de uma resposta livre
de desprendimento fraca argumentará queMP para⇒ ilicitamente incorpora 62 transitividade
(ver seção 4.2.2). Ainda assim, o que parece inescapável é a recíproca de PC: a regra RPC,
que é a outra direção do teorema de dedução de premissa única. Se uma teoria contém o
condicional de consequência 𝛼 ⇒ 𝛽, então certamente 𝛽 segue de 𝛼 de acordo com a
teoria. Isso ainda excluiria uma resposta livre de desprendimento forte.

6.2 Forma de Predicado

Uma segunda forma do paradoxo de v-Curry surge para uma teoria 𝒯𝑉 , cujo objeto
inclui a relação de consequência de premissa única ⊢𝒯𝑉

, que se verifica, de acordo com
essa mesma teoria, entre sentenças em sua linguagem.63

Seja essa relação expressa pelo predicado 𝑉 𝑎𝑙(𝑥, 𝑦), e suponha ainda que existe uma
sentença 𝜒 que seja ou 𝑉 𝑎𝑙(⟨𝜒⟩, ⟨𝜋⟩), ou ao menos intersubstituível com esta de acordo
com 𝒯𝑉 . Uma forma do paradoxo de v-Curry emprega dois princípios que governam 𝑉 𝑎𝑙,
que chamamos de “desprendimento de validade”64 e “prova de validade”, seguindo Beall &
Murzi (2013).

(DV) Se 𝛾 ⊢𝒯𝑉
𝑉 𝑎𝑙(⟨𝛼⟩, ⟨𝛽⟩) e 𝛾 ⊢𝒯𝑉

𝛼 então 𝛾 ⊢𝒯𝑉
𝛽

(PV) Se 𝛼 ⊢𝒯𝑉
𝛽 então ⊢𝒯𝑉

Val(⟨𝛼⟩, ⟨𝛽⟩)
Usando estes princípios, obtemos o seguinte breve argumento para ⊢𝒯𝑉

𝜋.

1. 𝜒 ⊢𝒯𝑉
𝜒 Id

2. 𝜒 ⊢𝒯𝑉
𝑉 𝑎𝑙(⟨𝜒⟩, ⟨𝜋⟩) Curry-intersubstitutividade

3. 𝜒 ⊢𝒯𝑉
𝜋 1, 2 DV

62Build in transitivity, no original. (N. do T.)
63A forma de predicado de v-Curry é discutida em detalhes por Beall & Murzi (2013); é mencionada por Whittle
(2004) e Shapiro (2011). As formas de conectivo e de predicado são equivalentes desde que 𝑉 𝑎𝑙(⟨𝛼⟩, ⟨𝛽⟩)
e 𝛼 ⇒ 𝛽 sejam intersubstituíveis de acordo com 𝒯𝑉 . Consequentemente, embora a forma de predicado
seja um paradoxo semântico (no sentido de que concerne a uma característica das expressões que depende de
sua interpretação), ela pode ser obtida construindo uma sentença de Curry 𝜅 em teoria de propriedades − ou
conjuntos − intersubstituível, de acordo com 𝒯𝑉 , com 𝜅 ⇒ 𝜋 e garantindo que a última sentença seja, por
sua vez, intersubstituível com 𝑉 𝑎𝑙(⟨𝜅⟩, ⟨𝜋⟩).
64Validity detachment, no original. (N. do T.)
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4. ⊢𝒯𝑉
𝑉 𝑎𝑙(⟨𝜒⟩, ⟨𝜋⟩) 3 PV

5. ⊢𝒯𝑉
𝜒 4 Curry-intersubstitutividade

6. ⊢𝒯𝑉
𝜋 4, 5 DV

Quando aplicada a esta forma de predicado de v-Curry, uma resposta livre de contração
fraca resistiria à “contração” dada do passo 2 ao passo 4, rejeitando a regra PV, e uma
resposta livre de desprendimento rejeitaria DV, mesmo na forma “sem premissas”65 usada
no passo 6. Novamente, no entanto, ambos PV e DV “sem premissas” parecem inescapáveis
à luz da interpretação pretendida do predicado 𝑉 𝑎𝑙 (Beall & Murzi 2013; Murzi 2014; Murzi
& Shapiro 2015; Priest 2015; Zardini 2014).66 Finalmente, mesmo que DV seja rejeitado
como envolvendo ilicitamente a transitividade, o que parece inescapável é a recíproca de
PV. Se assim for, isso excluiria pelo menos uma resposta livre de desprendimento forte.

Uma versão possivelmente mais poderosa do argumento v-Curry67 é apresentada por
Shapiro (2013) e Field (2017: 7). Esse argumento pode tomar tanto a forma de conectivo
quanto a de predicado, mas não depende de PC ou PV. Aqui apresentamos a forma predi-
cativa usando 𝑉 𝑎𝑙. Como anteriormente, derivamos primeiro que 𝜒 ⊢𝒯𝑉

𝜋 através de DV.
À luz do significado de 𝑉 𝑎𝑙, a conclusão de que 𝜒 ⊢𝒯𝑉

𝜋 mostra que 𝑉 𝑎𝑙(⟨𝜒⟩, ⟨𝜋⟩) é
verdadeiro, ou seja, que𝜒 é verdadeiro. Mas se𝜒 é verdadeiro e𝜒 ⊢𝒯𝑉

𝜋, então pareceria
que 𝜋 deve ser também verdadeiro. Dado que respostas livres de desprendimento fracas
(não-transitivas) a v-Curry permitem a derivação de 𝜒 ⊢𝒯𝑉

𝜋, esse argumento também
apresenta uma objeção a tais respostas.

6.3 Significância
Se, de fato, os paradoxos v-Curry não são suscetíveis a respostas livres de contração

fracas ou respostas livres de desprendimento fortes, então (assumindo que a regra Id é man-
tida) o espaço para respostas Curry-completas fica restrito a respostas livres de contração
fortes e respostas livres de desprendimento fracas. As primeiras respostas, como explicado
na seção 4.2.1, são tipicamente apresentadas reformulando omodus ponens (ou desprendi-
mento para o predicado de validade) em um sistema de dedução subestrutural e rejeitando
65Zero-premise form, no original. (N. do T.)
66O status de regras como PV e DV é um tópico controverso: ver Field 2017.
67v-Curry reasoning, no original. (N. do T.)
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a regra de contração estrutural sCont. As últimas, como explicado na seção 4.2.2, rejeitam o
princípio estrutural da transitividade. Por essa razão, paradoxos v-Curry são por vezes con-
siderados como motivando relações de consequências subestruturais (por exemplo, Barrio
et al. a ser publicado; Beall & Murzi 2013; Ripley 2015a; Shapiro 2011, 2015).68

O debate vívido e abrangente sobre os paradoxos de v-Curry teve como resultado um
progresso genuíno em nosso entendimento dos paradoxos de Curry. Ao final, o que ficou
claro é que, embora os paradoxos v-Curry possam convidar diferentes resoluções em rela-
ção aos paradoxos não-v-Curry, eles permanecem nomesmomolde dos paradoxos de Curry
generalizados. Em particular, no modelo geral da seção 5.2, pode-se tomar ⊙ como expres-
sando consequência (seja como um predicado, seja como conectivo) à luz da relação ⊢𝒯
ela mesma. Isso é o cerne de v-Curry. Na medida em que existem (muitas) diferentes rela-
ções de consequência (formais) definíveis em nossa linguagem (por exemplo, consequência
lógica em virtude do vocabulário lógico, consequência epistêmica em virtude do vocabulário
lógico-e-epistêmico, e assim por diante), existem, portanto, muitos diferentes paradoxos de
v-Curry que podem surgir. Ainda assim, o espaço de soluções para estes paradoxos é o
espaço de soluções para os paradoxos de Curry generalizados discutidos neste verbete.

No entanto, restam pelo menos duas razões pelas quais os paradoxos de v-Curry mere-
cem atenção separada. Primeiramente, como mencionado anteriormente, duas categorias
de soluções Curry-completas − as opções livres de contração fracas e livres de despren-
dimento fortes − se mostraram especialmente problemáticas no caso dos paradoxos de
v-Curry. Em segundo lugar, suponha que alguém trate de um Paradoxo de Curry ordinário
(em teoria de propriedades, teoria de conjuntos ou semântico) de maneira Curry-completa.
Ainda podem haver motivos para tratar o correspondente paradoxo de v-Curry (conectivo ou
predicado) de maneira incompleta, talvez em virtude de olhar para a relação de consequên-
cia de uma teoria como estando essencialmente além do alcance de qualquer conectivo ou
predicado na linguagem da teoria (ver, por exemplo, Myhill 1975; Whittle 2004). Assim, uma
solução “não-uniforme” aos paradoxos de Curry ordinários e suas contrapartes v-Curry pode

68De fato, Nicolai & Rossi (a ser publicado) argumentam que os paradoxos de v-Curry motivam respostas se-
gundo as quais um terceiro princípio estrutural, a saber, o princípio da reflexividade 𝜙 ⊢𝒯𝑉 𝜙 codificado por Id,
pode falhar em casos onde 𝜙 contém um predicado expressando a relação ⊢𝒯𝑉 .
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− mais uma vez − ser uma não-uniformidade motivada.6970

7. Apêndice: Curry sobre o Paradoxo de Curry

7.1 Os Sistemas Alvo de Curry
Quando Curry (1942b) introduziu o paradoxo para demonstrar a inconsistência de “cer-

tos sistemas de lógica formal”, os sistemas que ele tinha emmente eram teorias de aplicação
funcional, especificamente o cálculo lambda não tipado de Church e a própria lógica combi-
natória de Curry (Church 1932; Curry 1930; Seldin 2006). Além de variáveis, a sintaxe de
ambos os sistemas consiste apenas em termos que denotam entidades (por exemplo, nú-
meros, propriedades e proposições). Uma operação binária sobre termos forma um termo
que representa o resultado da aplicação de uma entidade à outra. Por exemplo, aplicar a
propriedade ser par ao número dois resulta em uma proposição verdadeira.

A hipótese fundamental de Curry é que os sistemas alvo são “combinatoriamente com-
pletos”. Isso significa que “qualquer função que possamos definir intuitivamente por meio de
uma variável pode ser formalmente representada como uma entidade do sistema” através
do uso de um termo denotativo (Curry & Feys 1958: 5). Por exemplo, existe uma função
que, aplicada a alguma entidade 𝑥, produz como resultado a aplicação de 𝑥 a si mesmo.72
No cálculo lambda, essa função é formalmente representada pela expressão 𝜆𝑥.𝑥𝑥. O
princípio da completude combinatória é a contraparte de Curry do princípio de abstração de
propriedades (Propriedade) mencionado na seção 2 do verbete principal.

7.2 A Resposta de Curry
Curry considerava seu paradoxo como uma restrição a uma teoria de aplicação funcional

adequada. Ele insistiu que a lição errada seria abandonar a abstração de propriedades
irrestrita que permite à teoria conter expressões como a que corresponde à ℎ na seção
2.1. Informalmente falando, este termo denota a função que, quando aplicada a um dado
69May be a motivated non-uniformity, no original. (N. do T.)
70A não uniformidade considerada no início da seção 4 se tratava de fornecer diferentes respostas para os para-
doxos de Curry ordinários surgidos em diferentes domínios (como teoria de propriedades e teoria de conjuntos).
A não uniformidade considerada na seção 5.2 se tratava de diferentes conectivos falhando em se qualificar71
como conectivos de Curry por diferentes razões.
72Yields the result of, no original. (N. do T.)

236



argumento 𝑥, produz como resultado a aplicação da função implicação à autoaplicação de
𝑥 junto a uma proposição arbitrária 𝑝.

A presença desses termos paradoxais é uma vantagem, pois permite que os
paradoxos sejam representados no sistema onde é possível analisá-los. (Curry
1942a: 56n14a)

Curry também criticou as tentativas de resolver o paradoxo por meio da adoção de uma
lógica não-clássica para o condicional. Ele afirmou que as lógicas disponíveis para desem-
penhar esse papel eram ou ad hoc ou falhavam em ser “adequadas para a matemática”
(Curry & Feys 1958: 261).

Para entender a lição que Curry extraiu de seu paradoxo, deve-se ter em mente que
sua formulação não envolve sentenças de Curry, mas sim termos de Curry. No lugar da
sentença ℎ 𝜖 ℎ da seção 2.1, ele emprega um termo que denota o resultado da aplicação de
uma certa função a si mesma. Segundo ele, o termo em questão é uma expressão denotativa
significativa73, mas falha em “denotar uma proposição” (Curry 1942a: 62). No entanto, os
princípios lógicos usados para derivar o paradoxo são ditos ser princípios que se aplicam
apenas a proposições.

A abordagem deCurry não está disponível como resposta às versões do paradoxo consi-
deradas no verbete principal. Isso ocorre porque, como agora é padrão, expressões como ℎ
𝜖 ℎ, 𝑐 ∈ 𝑐 e 𝑇 ⟨𝜉⟩ são tratadas como sentenças, e não como nomes que denotam entidades.
Apesar disso, uma contraparte de sua abordagem sustenta que essas sentenças, embora
significativas, falham em expressar proposições. Diversos comentários de Kripke (1975; es-
pecialmente pp. 699–700) sugerem que essa é uma maneira de entender sua resposta ao
paradoxo em teoria da verdade. Para uma defesa mais recente dessa abordagem, que é
um exemplo do que a seção 4 chama de abordagem de Curry-incompletude, ver Goldstein
2000.

7.3 A Dívida Professada de Curry para com Carnap

Curry observa que “a ideia central” de sua derivação do paradoxo foi “sugerida por al-
gum trabalho de R. Carnap” (Curry 1942b). Ele cita Carnap 1934, a parte relevante da qual
73Meaningful denoting expression, no original. (N. do T.)
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aparece na tradução como §60a-d da edição expandida em inglês da Sintaxe Lógica da Lin-
guagem74 de Carnap (1937). Essa observação é intrigante, já que a discussão de Carnap
não contém nada que se assemelhe à prova de Curry de seu resultado central, a saber, o
Lema do qual o Lema do Paradoxo de Curry da seção 3.1 é uma variante. A discussão de
Carnap se concentra sobre o paradoxo de propriedades de Russell e no paradoxo semân-
tico de Grelling, as mesmas duas fontes em que Curry se apoia para obter suas sentenças
paradoxais (ver seção 2).

No entanto, Curry também direciona o leitor para Hilbert & Bernays 1939 para um “re-
sumo” do trabalho de Carnap que inspirou seu resultado central. Essa referência sugere que
ele pode ter tido em mente o precursor do lema diagonal generalizado citado por Carnap em
§60c de Sintaxe Lógica da Linguagem (e apresentado em §35). Carnap escreve em §60c:

É possível construir, para toda e cada ... propriedade formulável em 𝑆, uma
sentença de 𝑆, 𝔖1, tal que 𝔖1 atribui essa propriedade ... a si mesma.

Se esta é a afirmação que Curry tinha em mente, a “ideia central” seria a aplicabilidade
geral do resultado do ponto fixo de Gödel para qualquer propriedade definível, e não apenas
para propriedade de não ser provável. Isso pode ter sugerido a Curry a possibilidade de um
paradoxo que envolve implicação em vez de negação. (Ver os verbetes sobre paradoxos e
lógica contemporânea e os teoremas de incompletude de Gödel.)
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