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A Newton da Costa
ao mostrar que o impossível também pode ser verdadeiro,

ampliou o mundo – e o contradisse com elegância.



Sobre a série Investigação Filosófica

A Série Investigação Filosófica é uma série de livros de traduções de verbetes da En-
ciclopédia de Filosofia da Stanford (Stanford Encyclopedia of Philosophy), que intenciona
servir tanto como material didático para os professores das diferentes subáreas e níveis da
Filosofia quanto como material de estudo para a pesquisa e para concursos da área. Nós,
professores, sabemos o quão difícil é encontrar bommaterial em português para indicarmos.
E há uma certa deficiência na graduação brasileira de filosofia, principalmente em localiza-
ções menos favorecidas, com relação ao conhecimento de outras línguas, como o inglês e
o francês. Tentamos, então, suprir essa deficiência, ao introduzirmos essas traduções ao
público de língua portuguesa, sem nenhuma finalidade comercial e meramente pela glória
da filosofia.

Essas traduções foram todas realizadas por filósofos ou por estudantes de filosofia su-
pervisionados e revisadas por especialistas na área. Todas as traduções de verbetes da
Stanford foram autorizadas pelo querido Prof. Dr. Edward Zalta, editor da Enciclopédia de
Filosofia da Stanford; por isso o agradecemos imensamente. Sua disposição para ajudar
brinda os países de língua portuguesa com um material filosófico de excelência, que será
para sempre disponibilizado gratuitamente no site da Editora da Universidade Federal de
Pelotas (Editora UFPel), dado o nosso maior princípio se fundar na ideia de conhecimento
livre e a nossa maior intenção ser o desenvolvimento da filosofia em língua portuguesa e
do seu ensino. Aproveitamos o ensejo para agradecer também ao editor da Editora UFPel,
na figura do Prof. Dr. Juliano do Carmo, que apoiou nosso projeto desde o início. Agrade-
cemos também a todos os organizadores, tradutores e revisores, que participam de nosso
projeto. Sem sua dedicação voluntária, nosso trabalho não teria sido possível. Esperamos,
com o início desta coleção, abrir as portas para o crescimento desse projeto de tradução e
trabalharmos em conjunto pelo crescimento da filosofia em português.

Prof. Dr. Rodrigo Reis Lastra Cid
Prof. Dr. Juliano Santos do Carmo

Editores da Série Investigação Filosófica
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Paradoxos:
ou o que podemos aprender pensando absurdos

Paradoxos são fenômenos por vezes engraçados, por vezes difíceis de se compreen-
der. Contudo, há algo que irremediavelmente prende nossa atenção a eles, tornando-os
ferramentas fascinantes para testar e desafiar nossas intuições. Uma conclusão que soa
absurda, contraditória ou impossível não é apenas motivo de espanto: é também um convite
para pensar com mais rigor sobre as ideias que sustentam nosso raciocínio.

Não é à toa que, desde os primeiros debates da filosofia grega, os paradoxos ocupam
lugar central na investigação filosófica. Zenão, por exemplo, elaborou argumentos para mos-
trar que o movimento não poderia existir – uma provocação que desconcertou filósofos de
sua época e ainda hoje ecoa nas discussões sobre continuidade e infinito. Essa mistura de
surpresa e perplexidade é a marca registrada dos paradoxos. Como observa Sainsbury:

“um paradoxo é uma conclusão aparentemente inaceitável derivada por meios
aparentemente aceitáveis a partir de premissas aparentemente aceitáveis.”1

Mas qual é, afinal, a natureza de um paradoxo? Devemos compreendê-lo como um pro-
blema fundamentalmente epistêmico, lógico ou metafísico? Há boas razões para considerar
cada uma dessas perspectivas. Muitos autores caracterizam os paradoxos como conjuntos
de proposições, cada qual epistemicamente plausível isoladamente, mas inconsistentes
quando tomadas em conjunto. Lycan formula essa ideia de modo direto:

“um paradoxo é um conjunto inconsistente de proposições, cada uma das quais
é muito plausível.”2

Schiffer reforça essa caracterização:
1SAINSBURY, R. M. Paradoxes. 3. ed. Cambridge: Cambridge University Press, 2009, p. 26. ISBN
9780521720798.
2LYCAN, William G. “What, exactly, is a paradox?”. Analysis, v. 70, n. 4, p. 615–622, 2010, p. 621. DOI:
10.1093/analys/anq069.



“um paradoxo filosófico é um conjunto de proposições aparentemente mutua-
mente incompatíveis, cada uma das quais goza de algum grau significativo de
plausibilidade quando considerada isoladamente.”3

Na mesma linha, Sorensen define os paradoxos como conjuntos de sentenças inconsis-
tentes em conjunto, mas críveis quando tomadas separadamente:

“um paradoxo é um conjunto de sentenças que são inconsistentes em conjunto,
mas credíveis quando consideradas separadamente.”4

Rescher apresenta formulação semelhante:

“um paradoxo surge quando um conjunto de proposições individualmente plau-
síveis é coletivamente inconsistente.”5

Em uma leitura epistêmica, portanto, o paradoxo surge do atrito no modo como organi-
zamos nossas crenças e inferências. Ele surge quando princípios que parecem inofensivos
– como aceitar o fechamento do conhecimento, confiar na consistência de nossas crenças
ou aplicar regras de previsão – entram em colisão entre si, gerando inconsistência. O va-
lor desses paradoxos está em mostrar que nem sempre podemos manter todas as nossas
intuições epistêmicas ao mesmo tempo: em algum ponto, é preciso revisar, abandonar ou
qualificar certos compromissos que antes pareciam inquestionáveis.

Por outro lado, há paradoxos cujo impacto é sobretudo lógico-matemático. Os de Ze-
não e Russell, por exemplo, revelam não apenas limites de intuições humanas, mas verda-
deiras quebras nas estruturas formais da lógica e damatemática. Margaret Cuonzo expressa
esse ponto da seguinte forma:

“Argumentos são pedaços de raciocínio nos quais uma afirmação (a conclu-
são) é sustentada por outras afirmações (as premissas). Quando o raciocínio
é correto, premissas verdadeiras sempre levarão a conclusões verdadeiras.

3SCHIFFER, Stephen. The Things We Mean. Oxford: Oxford University Press, 2003, p. 68. ISBN 0199241273.
4SORENSEN, Roy. Vagueness and Contradiction. Oxford: Oxford University Press, 2003, p. 364. ISBN
0199255854.
5RESCHER, Nicholas. Paradoxes: Their Roots, Range, and Resolution. Chicago: Open Court, 2001, p. 6. ISBN
0812694376.
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Mas, no caso dos paradoxos, parece que algo deu errado, pois premissas
verdadeiras e raciocínio correto levam a uma conclusão obviamente falsa ou
contraditória.”6

Ou seja, aqui o problema não está (apenas) na plausibilidade epistêmica das premissas,
mas na própria arquitetura formal que as conecta: certos esquemas inferenciais e princípios
de fundo – como o uso irrestrito de compreensão em teoria de conjuntos, a autorreferên-
cia aliada ao esquema-T para verdade, ou a idealização do contínuo em argumentos sobre
movimento –, quando combinados, produzem incompatibilidades. Nesses casos, a “quebra”
exige intervir nos mecanismos lógicos ou matemáticos: restringir axiomas (e.g., compreen-
são), distinguir rigorosamente linguagem-objeto e metalinguagem, revisar regras inferenciais
(ou mesmo considerar lógicas não clássicas), ou refinar as noções técnicas de infinito, con-
tinuidade e modelo.

Há ainda quem veja nos paradoxos tensões de ordem metafísica, pois eles expõem
os limites de conceitos fundamentais como movimento, tempo, identidade, vaguidade ou
verdade. Barwise e Etchemendy resumem bem essa perspectiva:

“a importância de um paradoxo nunca está no paradoxo em si, mas naquilo de
que ele é um sintoma. Pois um paradoxo demonstra que a nossa compreensão
de algum conceito básico ou de um conjunto de conceitos está crucialmente
falha, que os conceitos se rompem em casos-limite. [...] Se os conceitos forem
importantes, isso não é motivo de riso.”7

Ou seja, quando encaramos os paradoxos em chavemetafísica, o ponto central não está
em falhas de inferência ou em sistemas formais insuficientes, mas na própria constituição
dos conceitos fundamentais com que estruturamos a realidade. O paradoxo atua como um
espelho que evidencia tensões em noções como movimento, tempo, identidade ou verdade,
mostrando que, levadas aos seus limites, tais noções podem gerar resultados incompatíveis
ou contraditórios. Nesses casos, não basta corrigir regras lógicas ou revisar axiomas: é
preciso repensar os próprios conceitos que organizam nossa visão do mundo. É nesse
6CUONZO, Margaret. Paradox. Cambridge, MA: MIT Press, 2014, p. 7. (Essential Knowledge Series). DOI:
10.7551/mitpress/9904.001.0001.
7BARWISE, Jon; ETCHEMENDY, John. The Liar: An Essay on Truth and Circularity. New York; Oxford: Oxford
University Press, 1987, pp. 4–5. ISBN 0195059441.
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sentido que os paradoxos metafísicos funcionam como diagnósticos de falhas conceituais
profundas, revelando onde a ontologia implícita de nossas teorias se rompe.

Essa pluralidade de enfoques repercute também nas tentativas de classificar paradoxos.
Doris Olin distingue, por exemplo, paradoxos do Tipo I, em que um único argumento leva
a uma conclusão absurda (como Aquiles e a tartaruga), e paradoxos do Tipo II, que envol-
vem dois argumentos simétricos com conclusões incompatíveis (como certas formulações
do Mentiroso):

“um paradoxo do tipo I, como Aquiles e a tartaruga, tem um argumento e uma
conclusão; um paradoxo do tipo II, como o Navio de Teseu, envolve dois argu-
mentos e duas conclusões.”8

Outros autores reservam o termo antinomia para designar paradoxos que desembocam
diretamente em uma contradição lógica. Pleitz propõe uma definição explícita:

“(Def. Antinomia) Uma antinomia é um paradoxo com uma conclusão contra-
ditória.”9

Cook, por sua vez, chama a atenção para o fato de que a distinção entre paradoxo e
antinomia não é absoluta:

“Dada qualquer antinomia, podemos construir um paradoxo simplesmente com-
binando os argumentos em um único argumento. [...] Da mesma forma, po-
demos transformar qualquer paradoxo em uma antinomia. Como resultado,
restringiremos nossa atenção aos paradoxos.”10

Assim, ao longo deste volume, adotaremos uma concepção ampla: paradoxos são ra-
ciocínios que tensionam os limites de nossas intuições e de nossas teorias, seja pela via da
contradição, seja pela via da conclusão absurda. Armour-Garb justifica o interesse filosófico
dessa postura:
8OLIN, Doris. Paradox. Montreal: McGill-Queen’s University Press, 2003, p. 7. ISBN 0773525847.
9PLEITZ, Martin. Logic, Language, and the Liar Paradox. Paderborn: Mentis, 2018, p. 18. ISBN 3957438497.
10COOK, Roy T. Paradoxes. Cambridge: Polity Press, 2013, pp. 15–16. ISBN 9780745665511.
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“estudamos os paradoxos porque eles revelam certas suposições que fizemos,
que precisam ser questionadas, e nos forçam a repensar alguns dos compro-
missos mais centrais que possuímos.”11

É justamente essa pluralidade que organiza o presente volume. Cada capítulo explora
um tipo distinto de paradoxo, revelando como problemas epistemológicos, linguísticos, his-
tóricos e lógico-matemáticos podem ser iluminados por tais raciocínios enigmáticos.

No capítulo (I) (p. 21–50), encontramos o Paradoxo da Cognoscibilidade, mais co-
nhecido como Paradoxo de Fitch. A ideia inicial é simples: se toda verdade pode ser co-
nhecida, então não deveria haver verdades permanentemente inacessíveis. O argumento,
contudo, mostra que essa suposição leva a uma conclusão surpreendente: se toda verdade
é cognoscível, então todas as verdades já são conhecidas. O paradoxo toca diretamente
em correntes filosóficas que vinculam verdade e possibilidade de conhecimento, como o
verificacionismo, o antirrealismo semântico e o construtivismo matemático. Ao longo do ca-
pítulo, o leitor encontrará não apenas a formulação original do paradoxo, mas também as
principais estratégias de resposta: restringir a tese de cognoscibilidade, rever os princípios
lógicos usados na derivação ou reconsiderar a própria noção de verdade em jogo. Trata-se
de um exemplo marcante de como um raciocínio aparentemente trivial pode abalar teorias
amplamente aceitas sobre o conhecimento.

No capítulo (II) (p. 51–88), tratamos doParadoxo Sorites, nascido da vagueza em predi-
cados como “monte” ou “careca”. A engrenagem é simples e traiçoeira: partindo do princípio
de tolerância (“se 𝑛 grãos formam um monte, então 𝑛 − 1 também”), encadeamos passos
tão pequenos que parecemos poder descer de 10, 000 grãos até 1 sem perder o estatuto
de “monte”. O capítulo apresenta as duas formulações canônicas (indutiva e condicional) e
explicita a tensão entre tolerância e a ausência de fronteiras nítidas. Em seguida, mapeia as
principais respostas: (i) linguagens ideais/regimentação, que tornam os termos precisos ao
custo de empobrecer o uso ordinário; (ii) epistemicismo, que postula um corte objetivo po-
rém incognoscível; (iii) abordagens semânticas com lacunas de verdade (supervalorações)
ou graus/medidas; e (iv) estratégias de aceitação parcial do sorites sob restrições. Por fim,
o texto conecta o Sorites ao Mentiroso (via esquemas unificadores) e extrai lições filosóficas
sobre significado como uso, verdade e o esquema T e imperscrutabilidade da referência,
preparando terreno para debates que atravessam semântica, lógica e metafísica.
11ARMOUR-GARB, Bradley. “Introduction”. In: ARMOUR-GARB, Bradley (ed.). Reflections on the Liar. Oxford:
Oxford University Press, 2017, p. 4. ISBN 9780199896042.
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No capítulo (III) (p. 89–127), o tema são os paradoxos epistêmicos, que desafiam
nossa compreensão sobre o que pode ser sabido ou previsto. O primeiro é o Paradoxo da
Prova Surpresa, em que a tentativa de antecipar racionalmente uma prova anunciada como
inesperada parece anular a própria surpresa prometida. Em seguida, encontramos o Pa-
radoxo do Conhecedor, no qual uma sentença autorreferencial leva a contradições quando
assumimos princípios epistêmicos plausíveis. O capítulo mostra como esses enigmas colo-
cam em xeque noções como fechamento epistêmico, bivalência e o princípio KK, além de
revelarem a dificuldade em articular coerentemente conhecimento, crença e previsão. Ao
mesmo tempo, ilustra o papel filosófico dos paradoxos epistêmicos: longe de serem apenas
curiosidades lógicas, eles funcionam como testes de estresse para nossas teorias do saber.

O capítulo (IV) (p. 128–158) revisita os argumentos clássicos de Zenão de Eleia contra
a pluralidade e o movimento. Em linguagem simples, Zenão mostra como uma sequência
infinita de etapas “inocentes” parece bloquear mudanças que tomamos como óbvias: antes
de alcançar um ponto, é preciso chegar à metade do caminho; antes disso, à metade da
metade, e assim por diante – o que sugere que Aquiles jamais alcançaria a tartaruga, que a
dicotomia impediria qualquer partida, que a flecha estaria em repouso a cada instante e que
o estádio geraria resultados incompatíveis sobre velocidades relativas. O texto organiza o
material em duas famílias. Primeiro, os paradoxos da pluralidade – Densidade, Extensão
Finita e Divisibilidade Completa – que tensionam a ideia de que haja muitos corpos com
tamanhos determinados ocupando um contínuo espacial. Em seguida, os paradoxos do
movimento – Dicotomia, Aquiles e a Tartaruga, A Flecha e O Estádio –, além de peças
correlatas como o Paradoxo do Lugar e O Grão de Trigo. Ao longo da exposição, o capítulo
contrasta leituras antigas e respostas contemporâneas: o cálculo de limites e a teoria da
medida explicam como somas infinitas podem ter valor finito; a noção física-matemática
de velocidade instantânea responde à Flecha; e a análise de supertarefas esclarece o que
significa (e o que não significa) “completar” infinitas etapas em tempo finito. O resultado é
um panorama rigoroso que conecta as aporias eleáticas à metafísica do espaço-tempo e às
ferramentas matemáticas hoje empregadas para lidar com o infinito e o contínuo.

Por fim, o capítulo (V) (p. 159–204) é dedicado ao Paradoxo de Skolem, que nasce do
encontro entre o teorema de Löwenheim–Skolem e o teorema de Cantor. De um lado, Can-
tor mostrou que certos conjuntos, como os números reais, são não-enumeráveis; de outro,
Löwenheim–Skolem garante que qualquer teoria de primeira ordem com modelos infinitos –
inclusive a teoria dos conjuntos – possui também modelos enumeráveis. O aparente cho-
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que é imediato: como pode um modelo enumerável satisfazer a sentença de que existem
conjuntos não-enumeráveis? O capítulo discute essa tensão em detalhe, mostrando como
ela revela tanto os limites expressivos da lógica de primeira ordem quanto questões filosó-
ficas sobre relatividade semântica e realismo matemático. Ao mesmo tempo, apresenta as
principais estratégias de resposta, desde a análise técnica dos modelos até reflexões mais
amplas sobre o estatuto do infinito. O paradoxo de Skolem, assim, exemplifica como mesmo
a matemática formalizada está sujeita a dilemas conceituais profundos.

O percurso deste volume acompanha a própria diversidade dos paradoxos. Iniciamos
com o desafio epistêmico do Paradoxo da Cognoscibilidade, que põe em xeque a relação
entre verdade e possibilidade de conhecimento; em seguida, passamos ao Paradoxo de
Sorites, que revela a fragilidade de conceitos vagos em nossa linguagem e o impacto da
vagueza sobre a lógica. O caminho prossegue com outros paradoxos epistêmicos – como o
do Conhecedor e o da Prova Surpresa –, que testam os limites da previsibilidade e da autor-
referência no domínio do saber. Retornamos então às origens da tradição paradoxal com os
argumentos de Zenão, cujas aporias sobre o movimento continuam a alimentar debates so-
bre infinito e continuidade. Por fim, encontramos o Paradoxo de Skolem, que expõe tensões
internas na lógica contemporânea e questiona a própria noção de modelo matemático.

Reunidos, esses capítulos mostram que os paradoxos não são meras curiosidades, mas
instrumentos poderosos para sondar as fronteiras de nossas intuições, de nossas teorias e
de nossas práticas de raciocínio. São eles que, ao desafiar o que tomamos por certo, abrem
caminho para a reformulação crítica de conceitos fundamentais.

Kherian Gracher
Organizador



(I) Paradoxo da Cognoscibilidade de Fitch1

Título Original: Fitch’s Paradox of Knowability
Autores: Berit Brogaard e Joe Salerno

Tradução: Alan R. Antezana
Revisão: Daniel Alves da Silva Lopes Diniz

O paradoxo da cognoscibilidade de Fitch (também conhecido como o paradoxo da cog-
noscibilidade ou paradoxo Church–Fitch) concerne qualquer teoria comprometida com a tese
de que todas as verdades podem ser conhecidas. Exemplos históricos de tais teorias incluem
possivelmente o antirrealismo semântico de Michael Dummett (a tese de que toda verdade é
verificável); o construtivismo matemático (a tese de que a verdade de uma fórmula matemá-
tica depende dos construtos mentais que matemáticos usam para demonstrar esta fórmula);
o realismo interno de Hilary Putnam (a tese de que a verdade é aquilo em que acreditaríamos
em circunstâncias epistêmicas ideais); a teoria pragmática da verdade de Charles Sanders
Peirce (de que a verdade é aquilo com que concordaríamos no limite da investigação); o po-
sitivismo lógico (a visão de que significado é dado por condições de verificação); o idealismo
transcendental de Kant (isto é, que todo o conhecimento é conhecimento de aparências); e
o idealismo de George Berkeley (isto é, ser é ser perceptível).

O conceito em vigor da noção de “cognoscibilidade” permanece difícil de definir, mas
deve estar entre identificar, de forma não-informativa, a verdade com o que Deus saberia,
1BROGAARD, Berit; SALERNO, Joe, “Fitch’s Paradox of Knowability”, In: ZALTA, E. N. (ed.). The Stanford
Encyclopedia of Philosophy (Fall 2019 Edition). Stanford, CA: The Metaphysics Research Lab, 2019. Disponível
em: https://plato.stanford.edu/archives/fall2019/entries/fitch-paradox/.
A seguir está a tradução da entrada sobre o Paradoxo da Cognoscibilidade de Fitch de Berit Brogaard e Joe
Salerno na Stanford Encyclopedia of Philosophy. A tradução segue a versão da entrada nos arquivos da SEP em
https://plato.stanford.edu/archives/fall2019/entries/fitch-paradox/. Esta versão traduzida pode diferir da versão
atual da entrada, que pode ter sido atualizada desde o momento desta tradução. A versão atual está localizada
em https://plato.stanford.edu/entries/fitch-paradox/. Agradecemos ao Prof. Dr. Edward N. Zalta pela permissão
para traduzir e publicar esta entrada.

https://plato.stanford.edu/archives/fall2019/entries/fitch-paradox/
https://plato.stanford.edu/archives/fall2019/entries/fitch-paradox/
https://plato.stanford.edu/entries/fitch-paradox/


e ingenuamente identificar a verdade com o que humanos atualmente sabem. Identificar a
verdade com o que Deus sabe não melhora a inteligibilidade do conceito; e identificá-la com
o que humanos atualmente sabem falha em apreciar a objetividade e o potencial de desco-
brimento da verdade. O caminho do meio, que podemos chamar de antirrealismo moderado,
pode ser situado logicamente em algum lugar próximo ao princípio da cognoscibilidade:

∀𝑝(𝑝 → 3𝐾𝑝), (Princípio K)

que diz formalmente que, para todas as proposições 𝑝, se 𝑝, então é possível saber que 𝑝.
O grande problema para o meio-termo é o paradoxo de Fitch. Ele é a prova que mostra

(em uma lógica modal normal acrescida de um operador de cognoscibilidade) que, se “todas
as verdades podem ser conhecidas”, então “todas as verdades são conhecidas”.

∀𝑝(𝑝 → 3𝐾𝑝) ⊢ ∀𝑝(𝑝 → 𝐾𝑝) (Paradoxo K)

Desse modo, a prova realiza a parte interessante do trabalho de fazer o antirrealismo mode-
rado colapsar em idealismo ingênuo.

Qual é o paradoxo? Timothy Williamson (2000b) afirma que o paradoxo da cognosci-
bilidade não é um paradoxo, mas um “vexame”—um vexame para várias formas de antir-
realismo que negligenciaram por tanto tempo um contraexemplo simples. Ele nota que é
“uma afronta” a várias teorias filosóficas, mas não ao senso comum. Outros discordam. O
paradoxo não é que a prova de Fitch é uma ameaça imediata ao meio-termo, mas sim que
a prova de Fitch, empregando recursos modais e epistêmicos mínimos, faz o meio-termo
colapsar na visão ingênua. O paradoxo, como articulado em Kvanvig (2006) e Brogaard &
Salerno (2008), é que o antirrealismo moderado não parece ser exprimível como uma tese
distinta, logicamente mais fraca que o idealismo ingênuo. Isso é interessante e problemático
independentemente da atitude de alguém, favorável ou contrária ao antirrealismo moderado.

1. Breve Histórico

A literatura sobre o paradoxo da cognoscibilidade emerge em resposta a uma prova
publicada pela primeira vez por Frederic Fitch em seu artigo de 1963 intitulado “A Logical
Analysis of Some Value Concepts” (“uma análise lógica de alguns conceitos de valor”). O
Teorema 5, como assim foi chamado, ameaça colapsar diversas diferenças modais e epis-
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têmicas. Seja ignorância a falha em conhecer alguma verdade. Então o Teorema 5 colapsa
um comprometimento com a ignorância contingente em comprometimento com a ignorân-
cia necessária. Isso porque mostra que a existência de verdades de fato desconhecidas
acarreta a existência de verdades necessariamente desconhecidas. Formalmente,

∃𝑝(𝑝 ∧ ¬𝐾𝑝) ⊢ ∃𝑝(𝑝 ∧ ¬3𝐾𝑝). (Teorema 5)

A conversa do Teorema 5 é trivial (uma vez que verdade implica possibilidade), então Fitch
dedica a maior parte do tempo a apagar quaisquer diferenças lógicas entre a existência de
ignorância contingente e a existência de incognoscibilidade necessária.

É todavia a contrapositiva do Teorema 5 que é geralmente referida como o paradoxo:

∀𝑝(𝑝 → 3𝐾𝑝) ⊢ ∀𝑝(𝑝 → 𝐾𝑝). (Paradoxo K)

Ela nos diz que, se qualquer verdade pode ser conhecida, então segue-se que toda verdade
é, de fato, conhecida.

A primeira versão da prova foi transmitida a Fitch por um parecerista anônimo em 1945.
Em 2005, nós descobrimos que Alonzo Church foi esse parecerista (Salerno 2009b). Seus
relatórios foram publicados em sua totalidade em Church (2009). Fitch aparentemente não
considerou o resultado como paradoxal. Ele publicou a prova em 1963 para evitar um tipo
de “falácia condicional” que ameaçava o seu desejo bem informado de uma análise de valor.
A análise diz, a grosso modo, que 𝑥 tem valor para 𝑠 somente se há uma verdade 𝑝 tal
que, se 𝑠 soubesse que 𝑝, então 𝑠 desejaria 𝑥. A existência de verdades incognoscíveis
explica, em última instância, por que ele restringe as variáveis proposicionais a proposições
cognoscíveis. É porque uma verdade incognoscível permite um antecedente impossível no
contrafactual de Fitch, e então trivializa a análise. Uma vez que a teoria do valor de Fitch
não é o contexto em que o paradoxo é amplamente discutido, não o discutiremos mais aqui.

Redescoberto em Hart e McGinn (1976) e Hart (1979), o resultado foi tomado como
uma refutação do verificacionismo, a postura de que todas as asserções com significado (e,
portanto, todas as verdades) são verificáveis. Afinal, se alguém aceita o princípio da cognos-
cibilidade ∀𝑝(𝑝 → 3𝐾𝑝), também está comprometido com a asserção absurda de que
todas as verdades são conhecidas. Mackie (1980) e Routley (1981), entre outros daquele
período, apontam dificuldades com essa posição geral, mas, em última instância, aceitam
que o resultado de Fitch é uma refutação da posição de que todas as verdades são cognos-
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cíveis, e que várias formas de verificacionismo são ameaçadas por motivos relacionados.
Desde o início da década de oitenta, todavia, tem havido um esforço considerável para ana-
lisar a prova como uma prova paradoxal. Por que, afinal, uma teoria epistêmica da verdade
colapsaria o conhecimento possível no conhecimento atual? Intuitivamente, que a verdade
deva ser entendida em termos das capacidades epistêmicas de agentes não oniscientes é
uma posição ao menos coerente—uma posição distinta de, e mais plausível que, a tese de
que todas as verdades são conhecidas. Além do mais, tem-se estranhado que formas sofis-
ticadas da teoria epistêmica da verdade sejam vítimas de uma dedução tão breve. Logo, a
prova de Church–Fitch veio a se tornar conhecida como o paradoxo da cognoscibilidade.

2. O Paradoxo da Cognoscibilidade

O raciocínio de Fitch envolve quantificação sobre sentenças. Nossas variáveis proposi-
cionais 𝑝 e 𝑞 terão sentenças declarativas como substitutas. Seja 𝐾 o operador epistêmico
“é sabido por alguém em algum instante que”. Seja3 o operador modal “é possível que”.

Suponha que o princípio da cognoscibilidade (KP)—que todas as verdades são cognos-
cíveis por alguém em algum momento:

∀𝑝(𝑝 → 3𝐾𝑝). (KP)

E suponha que, coletivamente, não somos oniscientes, e que há uma verdade que não é
conhecida.

∃𝑝(𝑝 ∧ ¬𝐾𝑝). (NonO)

Se essa asserção existencial é verdadeira, então uma instância dela também é:

𝑝 ∧ ¬𝐾𝑝. (1)

Agora considere a instância de KP substituindo a variável 𝑝 em KP pela linha 1:

(𝑝 ∧ ¬𝐾𝑝) → 3𝐾(𝑝 ∧ ¬𝐾𝑝). (2)

Segue de forma trivial que é possível saber a conjunção expressa na linha 1:

3𝐾(𝑝 ∧ ¬𝐾𝑝) (3)
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Todavia, pode ser mostrado de forma independente que é impossível conhecer essa conjun-
ção. Portanto, a linha 3 é falsa.

O resultado independente pressupõe dois princípios epistêmicos muito modestos: pri-
meiramente, conhecer uma conjunção implica conhecer cada um dos conjuntos; em segundo
lugar, conhecimento implica verdade. Respectivamente,

𝐾(𝑝 ∧ 𝑞) ⊢ 𝐾𝑝 ∧ 𝐾𝑞 (A)
𝐾𝑝 ⊢ 𝑝 (B)

São também pressupostos dois modestos princípios modais: primeiro, que todos os teore-
mas são necessários; segundo, que necessariamente ¬𝑝 implica que 𝑝 é impossível. Res-
pectivamente,

Se ⊢ 𝑝, então ⊢ 2𝑝. (C)
Se 2¬𝑝, então ¬3𝑝. (D)

Considere o resultado independente:

𝐾(𝑝 ∧ ¬𝐾𝑝) hipótese [para redução ao absurdo] (4)
𝐾𝑝 ∧ 𝐾¬𝐾𝑝 de 4, por (A) (5)
𝐾𝑝 ∧ ¬𝐾𝑝 de 5, aplicando (B) à direita (6)
¬𝐾(𝑝 ∧ ¬𝐾𝑝) de 4–6, por redução ao absurdo, descarregando a assunção 4 (7)
2¬𝐾(𝑝 ∧ ¬𝐾𝑝) de 7, por (C) (8)
¬3𝐾(𝑝 ∧ ¬𝐾𝑝) de 8, por (D) (9)

A linha 9 contradiz a linha 3, então uma contradição é consequência de (KP) e (NonO). A
adepta da posição de que todas as verdades são cognoscíveis deve negar que somos não-
oniscientes:

¬∃𝑝(𝑝 ∧ ¬𝐾𝑝). (10)

E segue-se disso que todas as verdades são conhecidas:

∀𝑝(𝑝 → ¬𝐾𝑝). (11)
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A aliada da visão de que todas as verdades são cognoscíveis (por alguém em algum mo-
mento) é forçada a admitir, de modo absurdo, que toda verdade é conhecida (por alguém
em algum momento).

3. Revisões Lógicas

Nesta seção, inspecionamos a viabilidade de admitir o raciocínio de Fitch como inválido.
Estaria o raciocínio epistêmico de Fitch em ordem? A lógica da cognoscibilidade é a lógica
clássica? Ou mais diretamente: o princípio da cognoscibilidade carrega em si considerações
especiais que justifiquem a revisão da lógica clássica? Se sim, essa revisão lógica invalida
o raciocínio de Fitch? Se o raciocínio é inválido, existem paradoxos próximos que ameaçam
o princípio da cognoscibilidade sem violar os padrões lógicos de maior relevância?

3.1 Revisão Epistêmica

O problema com o raciocínio de Fitch não é com nenhuma das inferências epistêmi-
cas A ou B. Embora algumas pessoas tenham argumentado que conhecer uma conjunção
não implica conhecer cada um dos argumentos da conjunção (Nozick 1981), Williamson
(1993) e Jago (2010) mostraram que versões do paradoxo não demandam a suposição desta
distributividade. E perguntas sobre a factividade de 𝐾 podem ser neutralizadas de forma
rápida, uma vez que paradoxos relacionados emergem substituindo o operador factivo “É
sabido que” por um operador não-factivo, tal como “Acredita-se racionalmente que” (Mackie
1980:92; Edgington 1985:558–559; Tennant 1997:252–259; Wright 2000:357).

Aparecem em vários artigos discussões profundas e interessantes sobre operadores
epistêmicos e/ou análogos temporais no contexto do paradoxo de Fitch. Burgess (2009)
considera análogos temporais. Van Benthem (2004; 2009), van Ditmarsh et al. (2012), Berto
et al. (em fase de publicação) e Holliday (2018) exploram o problema em estruturas epistê-
micas dinâmicas. Palczewski (2007), Kelp and Pritchard (2009), Chase et al. (2018), e Hey-
len (no prelo) consideram noções não-factivas de conhecimento e cognoscibilidade. Linsky
(2009), Paseau (2008), Jago (2010), Carrara et al. (2011), e Rosenblatt (2014) debatem a
viabilidade de conhecimento sobre tipos.
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3.2 Revisão Intuicionista

Williamson (1982) argumenta que a prova de Fitch não é uma refutação do antirrealismo,
mas um motivo para que a antirrealista aceite a lógica intuicionista. A lógica intuicionista não
valida a eliminação da dupla negação, graças a uma leitura verificacionista (ou construtivista)
da negação e da quantificação existencial:

¬¬𝑝 ⊢ 𝑝,

nem a seguinte regra de troca de quantificadores:

¬∀𝑥𝑃 [𝑥] ⊢ ∃𝑥¬𝑃 [𝑥].

Sem a eliminação da dupla negação, não é possível derivar a conclusão de Fitch de que
“todas as verdades são conhecidas” (linha 11) de “não há uma verdade que é incognoscível”
(linha 10). Considere a linha 10,

¬∃𝑝(𝑝 ∧ ¬𝐾𝑝).

Disso podemos derivar de forma intuicionista

∀𝑝¬(𝑝 ∧ ¬𝐾𝑝).

Note, todavia, que, sem a eliminação da dupla negação,

¬(𝑝 ∧ ¬𝐾𝑝)

não acarreta
𝑝 → 𝐾𝑝.

Suponha
¬(𝑝 ∧ ¬𝐾𝑝),

e suponha 𝑝 para a introdução de um condicional. E suponha¬𝐾𝑝, por redução ao absurdo.
Nós podemos fazer a conjunção de 𝑝 com ¬𝐾𝑝 para obter

𝑝 ∧ ¬𝐾𝑝.
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Isso contradiz a nossa primeira hipótese. Então, por redução, ¬¬𝐾𝑝. Sem a eliminação
da dupla negação, não podemos concluir 𝐾𝑝, e, dessa forma, não podemos introduzir o
condicional

𝑝 → 𝐾𝑝.
A intuicionista, todavia, está comprometida, pela introdução do condicional, com

𝑝 → ¬¬𝐾𝑝.

Existe algum debate sobre se esta consequência é suficientemente problemática, mas a
antirrealista intuicionista se consola com o fato de que não está comprometida com a asser-
ção absurda de que todas as verdades são conhecidas. Aparecem em Murzi (2010; 2012),
Murzi et al. (2009), e Zardini (2015) discussões muito interessantes sobre as esperanças e
os sonhos do antirrealismo intuicionista neste contexto.

3.3 Problemas para a Revisão Intuicionista
Uma vez que o raciocínio de Fitch é intuicionisticamente válido por meio da linha 10, a an-

tirrealista intuicionista deve aceitar que nenhuma verdade é desconhecida: ¬∃𝑝(𝑝 → 𝐾𝑝).
Isso pode ser prejudicial o bastante, porque a antirrealista parece não poder dar credência
ao truísmo de que nós não somos oniscientes (nem individualmente, nem coletivamente).
Williamson responde que a antirrealista intuicionista pode expressar naturalmente a nossa
não-onisciência como “nem todas as verdades são conhecidas”:

¬∀𝑝(𝑝 → 𝐾𝑝). (12)

Esta asserção é classicamente, mas não intuicionisticamente, equivalente à tese de não-
onisciência:

∃𝑝(𝑝 ∧ ¬𝐾𝑝).
Isso ocorre porque, na lógica intuicionista, a regra de troca de quantificadores, ¬∀𝑥𝑃 [𝑥] ⊢
∃𝑥¬𝑃 [𝑥], não é válida de forma irrestrita. É relevante destacar que a expressão de não-
onisciência na linha 12, ¬∀𝑝(𝑝 → 𝐾𝑝), é inconsistente somente de forma clássica (e não
de forma intuicionista) com a linha 10, ¬∃𝑝(𝑝 ∧ ¬𝐾𝑝). Então a intuicionista antirrealista
pode dar expressão consistentemente ao truísmo de que nós não somos oniscientes (com
a linha 12), ao passo em que aceita a consequência intuicionista derivada na linha 10. Com
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efeito, a antirrealista admite tanto que nenhuma verdade é desconhecida, quanto que nem
todas as verdades são conhecidas. A satisfatibilidade dessa asserção em termos intuicio-
nistas é demonstrada por Williamson (1988, 1992).

3.4 A indecidibilidade do Paradoxo da Cognoscibilidade

Um problema mais profundo pode persistir para a intuicionista antirrealista. O paradoxo
de Fitch se situa na suposição de que existem verdades desconhecidas. Mas considere a
suposição intuicionisticamente mais fraca de que existem asserções não decididas, isto é,
que alguma 𝑝, tal que 𝑝 é desconhecida e ¬𝑝 é desconhecida. Formalmente,

∃𝑝(¬𝐾𝑝 ∧ ¬𝐾¬𝑝). (Und)

Se (Und) é verdadeiro, então também é verdadeira uma instância sua:

¬𝐾𝑝 ∧ ¬𝐾¬𝑝. (i)

E note que a conclusão intuicionisticamente aceitável na linha 10, ¬∃𝑝(𝑝 ∧ ¬𝐾𝑝), é intui-
cionisticamente equivalente à asserção universal:

∀𝑝(¬𝐾𝑝 → ¬𝑝). (ii)

Derivando ¬𝐾𝑝 → ¬𝑝 e ¬𝐾¬𝑝 → ¬¬𝑝 de (ii), e aplicando os dois operandos da
conjunção (i), respectivamente, nos dá a contradição ¬𝑝 ∧¬¬𝑝. A antirrealista intuicionista
é forçada a admitir que não há constatações não decididas:

¬∃𝑝(¬𝐾𝑝 ∧ ¬𝐾¬𝑝). (iii)

O argumento acima é dado por Percival (1990:185). Uma vez que é intuicionisticamente
aceitável, ele tem a intenção demostrar que a antirrealista intuicionista ainda está em apuros.

Em resposta, a antirrealista pode novamente utilizar a estratégia de Williamson para
revisar a lógica e reconstruir uma expressão do truísmo epistêmico. Aceite apenas as con-
sequências intuicionistas de KP (neste caso, de que não há asserções não decididas), e
dê expressão ao truísmo sobre indecidibilidade ao afirmar que nem todas as asserções são

29



decididas:
¬∀𝑝(𝐾𝑝 ∨ 𝐾¬𝑝). (iv)

A reinterpretação da intuição de indecidibilidade na linha (iv) nos dá uma asserção que é clas-
sicamente, mas não intuicionisticamente, equivalente a (Und). E, dessa forma, é somente
classicamente, e não intuicionisticamente, inconsistente com a inferência na linha (iii).

Paradoxos correlatos sobre a indecidibilidade da cognoscibilidade são discutidos em
Wright (1987: 311), Williamson (1988: 426) e Brogaard e Salerno (2002: 146–148). Os
paradoxos da indecidibilidade dão à antirrealista motivos adicionais para revisar a lógica
clássica em favor da lógica intuicionista. Acompanhados de uma reinterpretação de nossas
modestas intuições epistêmicas, o espaço lógico para o antirrealismo é retomado.

O que tudo isso sugere é que o antirrealismo intuicionista é coerente. Mas essa abor-
dagem tem a motivação correta? Seria ad hoc a revisão da lógica clássica, ou a engenhosa
reinterpretação de nossas intuições epistêmicas?

O suposto direito da antirrealista de abrir mão da lógica clássica em favor da lógica in-
tuicionista tem sido defendido de forma independente. O argumento remonta a Dummett
(1976, e alhures). Interpretações mais recentes do argumento antirrealista pela revisão ló-
gica aparecem em Wright (1992: Chp. 2), Tennant (1997: Chp. 7), e Salerno (2000). Os
detalhes sobre, e o sucesso ou fracasso dos argumentos pela revisão lógica são assunto
para outro momento. Por enquanto, é suficiente indicar que a ameaça do paradoxo de Fitch
não é a única motivação para a antirrealista favorecer uma lógica não-clássica.

E a reinterpretação de nossas intuições epistêmicas? Seria ela bem justificada? De
acordo com Kvanvig (1995), ela não é. Por que pensaríamos que os tratamentos intuicio-
nistas da não onisciência e da indecidibilidade são melhores do que os nossos tratamentos
iniciais do senso comum? E como a antirrealista deve explicar a aparente trivialidade desses
tratamentos do senso comum? Essas questões não foram respondidas.

Além disso, algumas das consequências intuicionistas de KP são por vezes considera-
das suficientemente ruins. Ainda que “não há verdades incognoscíveis” ou “não há asser-
ções indecidíveis” sejam intuicionisticamente toleráveis, o seguinte não parece ser o mesmo:
“se 𝑝 é desconhecida, então ¬𝑝”. Formalmente, ¬𝐾𝑝 → ¬𝑝. Esta asserção segue-se in-
tuicionisticamente de 𝑝 → ¬¬𝐾𝑝, que nós já estabelecemos como uma consequência
intuicionista de KP. Mas ¬𝐾𝑝 → ¬𝑝 parece ser falsa no discurso empírico. Por que o
fato de que ninguém nunca saberá que 𝑝 ser suficiente para a falsidade de 𝑝? Veja Percival
(1990) e Williamson (1988) para discussões adicionais sobre esse problema, e sobre proble-
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mas relacionados, em torno da aplicação do antirrealismo intuicionista ao discurso empírico.
DeVidi e Solomon (2001) discordam. Eles argumentam que as consequências intuicionistas
não são inaceitáveis para alguém interessado em uma teoria epistêmica da verdade. De
fato, elas são centrais para uma teoria epistêmica da verdade.

Por estes motivos, um apelo à lógica intuicionista por si próprio é geralmente encarado
como insatisfatório em lidar com o paradoxo da cognoscibilidade. Exceções incluem Bermü-
dez (2009), Dummett (2009), Rasmussen (2009) e Maffezioli, Naibo & Negri (2013).

3.5 Revisão Paraconsistente

Outro desafio à lógica do paradoxo de Fitch é mencionado em Routley (1981) e defen-
dido por Beall (2000): a ideia de que a lógica correta da cognoscibilidade é paraconsistente.
Em uma lógica paraconsistente, contradições não trivializam a teoria, porque elas não “ex-
plodem”. Isto é, em uma lógica paraconsistente, a inferência de 𝑝 ∧¬𝑝 para uma conclusão
arbitrária 𝑟 não é válida. Desta forma, algumas contradições são permitidas e consideradas
possíveis.

Beall afirma que (1) a prova de Fitch assume a suposição de que, para todas as sen-
tenças 𝑝, a contradição 𝐾𝑝 ∧ ¬𝐾𝑝 é impossível e que (2) temos evidência independente
para pensar que 𝐾𝑝 ∧ ¬𝐾𝑝, para algum 𝑝. A evidência independente jaz no paradoxo do
agente cognoscente (que não deve ser confundido com o paradoxo da cognoscibilidade). A
versão relevante do paradoxo do agente cognoscente pode ser demonstrada ao considerar
a seguinte sentença autorreferencial:

𝑘 é desconhecida. (k)

Assuma pelo argumento que 𝑘 é conhecida. Então, assumindo que conhecimento implique
verdade, 𝑘 é verdadeira; mas 𝑘 afirma que 𝑘 é desconhecida. Então 𝑘 é desconhecida.
Consequentemente, 𝑘 tanto é conhecida quanto desconhecida. Mas, desse modo, a nossa
suposição (de que 𝑘 é conhecida) é falsa, e de maneira demonstrável. E, dado que uma
falsidade demonstrada é sabidamente falsa, segue que é conhecido que 𝑘 é desconhecida.
Isso é afirmar que é conhecido que 𝑘. Mas já mostramos que, se é conhecido que 𝑘, então 𝑘
é tanto conhecida quanto desconhecida. Então está demonstrado que 𝑘 é tanto conhecida
quanto desconhecida. É demonstravelmente o caso que a descrição completa do nosso
conhecimento inclui tanto 𝐾𝑘 quanto ¬𝐾𝑘. Esse é o paradoxo do agente cognoscente.
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Beall sugere que o paradoxo nos dá alguma evidência independente para pensar que
𝐾𝑝 ∧ ¬𝐾𝑝, para algum 𝑝, tal que a descrição completa do conhecimento humano tem a
propriedade interessante de ser inconsistente. Com uma lógica paraconsistente, poder-se-
ia aceitá-lo sem incorrer em trivialidade. E dessa forma é sugerido que se tome o caminho
da paraconsistência e se aceite 𝐾𝑝 ∧ ¬𝐾𝑝 como uma consequência real do princípio da
cognoscibilidade. Beall conclui afirmando que o raciocínio de Fitch, sem uma devida resposta
ao agente cognoscente, é ineficaz contra o princípio da cognoscibilidade, uma vez que o
raciocínio de Fitch supostamente depende da suposição de que, para todo 𝑝, é impossível
que 𝐾𝑝 ∧ ¬𝐾𝑝.

Note que a nossa apresentação do raciocínio de Fitch não faz menção explícita à su-
posição de que 𝐾𝑝 ∧ ¬𝐾𝑝 é impossível. Então aqui tentamos indicar exatamente onde o
raciocínio de Fitch falha na abordagem acima. Afirma-se na linha 9 (na primeira seção deste
verbete) que 𝐾(𝑝 ∧ ¬𝐾𝑝) é impossível. É claro que 𝐾(𝑝 ∧ ¬𝐾𝑝) implica a contradi-
ção 𝐾𝑝 ∧ ¬𝐾𝑝. Dessa forma, se o raciocínio é que 𝐾(𝑝 ∧ ¬𝐾𝑝) é impossível porque
contradições são impossíveis, então Beall estaria atacando diretamente o argumento aqui
apresentado. Note, todavia, que há uma diferença sutil no argumento, que segue da se-
guinte forma. 𝐾(𝑝 ∧ ¬𝐾𝑝) implica a contradição 𝐾𝑝 ∧ ¬𝐾𝑝. Então, por redução ao
absurdo, 𝐾(𝑝 ∧ ¬𝐾𝑝) é falso. Por necessitação, segue que 𝐾(𝑝 ∧ ¬𝐾𝑝) é necessari-
amente falso. A depender da lógica paraconsistente, a paraconsistentista pode objetar ao
uso de reductio, ou pode objetar a outras inferências. A afirmação de que 𝐾(𝑝 ∧ ¬𝐾𝑝) é
impossível (na linha 9) é inferida dessa afirmação de que 𝐾(𝑝 ∧ ¬𝐾𝑝) é necessariamente
falsa. Isso pode preocupar a paraconsistentista. Pela ótica de alguém convivendo com con-
tradições, pode não se seguir que uma asserção inconsistente é impossível mesmo que
seja necessariamente falsa. Afinal, nessa abordagem uma asserção necessariamente falsa
pode ser tanto verdadeira quanto falsa em algum mundo, caso em que a asserção é tanto
necessariamente falsa quanto possível. Se isto estiver correto, então a inferência de 2¬𝑝
para ¬3𝑝 tem contraexemplos e não pode ser empregada para inferir ¬3𝐾(𝑝 ∧ ¬𝐾𝑝)
de 2¬𝐾(𝑝 ∧ ¬𝐾𝑝).

Os insights de Beall dependem de uma série de coisas: (1) a força da evidência indepen-
dente para contradições epistêmicas verdadeiras; (2) a adequação das resoluções propostas
ao paradoxo do agente cognoscente, (3) a dúvida sobre se o raciocínio de Fitch é ineficaz
sem uma solução ao agente cognoscente, e (4) uma interpretação para2 e3 que invalida a
inferência relevante (de2¬𝑝 para ¬3𝑝) enquanto permanece fiel ao papel desempenhado
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por3 no princípio da cognoscibilidade. Nós deixamos esses problemas para um debate pos-
terior; mas compare a Wansing (2002), onde uma lógica modal construtiva paraconsistente
com uma negação forte é proposta para bloquear o paradoxo.

Desenvolvimentos mais recentes da abordagem paraconsistentes aparecem em Beall
(2009) e Priest (2009).

4. Restrições Semânticas

O restante das propostas são estratégias de restrição. Elas reinterpretam KP restrin-
gindo o seu quantificador universal. Na prática, as estratégias de restrição invalidam o ra-
ciocínio de Fitch ao proibir as instâncias de KP que levam ao paradoxo. Nesta seção, nós
examinamos as razões semânticas para restringir o quantificador universal em KP.

4.1 Situações e Operações Rígidas

Edgington (1985) oferece um diagnóstico situacional do paradoxo de Fitch. Ela afirma
que o problema jaz no fracasso em distinguir entre “saber em uma situação que 𝑝” e “saber
que 𝑝 é o caso em uma situação”. No último caso, a situação é (ao menos parcialmente)
aquela sobre a qual é o conhecimento. No caso anterior, a situação é aquela em que o
conhecimento é entretido. Por exemplo, eu poderia saber na minha situação atual que eu
estaria sofrendo em uma situação contrafactual onde meu dente é arrancado. Notavelmente,
a situação em que o conhecimento é entretido pode ser diferente da situação que é tema
do conhecimento. Em uma situação em que meu dente não é arrancado, eu posso saber
coisas que são sobre uma situação em que meu dente é puxado.

O que são situações? O exemplo acima parece sugerir que situações são mundos. Si-
tuações, todavia, podem ser menos completas que mundos; isto é, elas não precisam ter
valores de verdade fixados para asserções que são irrelevantes para o contexto. Considere
um exemplo por Linstöm: eu posso saber em uma dada situação perceptual 𝑠 que João
(um dos participantes de um jogo de cartas) tem a melhor mão e que nenhum dos outros
participantes sabe disso. Neste caso, meu conhecimento é de uma situação 𝑠∗, o jogo de
cartas, mas meu conhecimento é adquirido em uma diferente situação 𝑠, minha situação per-
ceptual. A situação 𝑠∗ não somente é determinada, mas a informação relevante é limitada
pelo contexto do jogo de cartas. E 𝑠 é fixada e limitada pelo contexto da situação percep-
tual. Edgington prefere falar de situações em vez de mundos, porque o conhecimento de
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situações não-atuais, diferentemente do conhecimento de mundos não-atuais, não requer
conhecimento com uma quantidade infinita de detalhes.

Explicitando a distinção da teoria da situação entre “saber em” e “saber sobre”, nós po-
demos reinterpretar o princípio da cognoscibilidade: para cada asserção 𝑝 e situação 𝑠, se 𝑝
é verdadeiro em 𝑠 então existe uma situação 𝑠∗ em que é sabido que 𝑝 é verdadeiro em 𝑠.
Edgington requer da cognoscibilidade uma tese menos geral: se 𝑝 é verdadeiro em uma
situação atual 𝑠, então existe uma situação possível 𝑠∗ em que é sabido que 𝑝 é verdadeiro
em 𝑠. Chame isto de E-cognoscibilidade ou EKP:

𝐴𝑝 → 3𝐾𝐴𝑝, (EKP)

onde 𝐴 é o operador de atualidade que pode ser lido como “em alguma situação atual”, e3
é o operador de possibilidade que pode ser lido como “em alguma situação possível”.

Como vemos, EKP restringe o princípio da cognoscibilidade para verdades atuais, di-
zendo que 𝑝 é atualmente verdadeiro somente se existe uma situação possível em que é
sabido que 𝑝 é atualmente verdadeiro.

A sugestão importante é esta. Assim como pode existir conhecimento atual do que é
contrafactualmente o caso, pode haver conhecimento contrafactual do que é atualmente o
caso. De fato, em vista da prova de Fitch, EKP requer a existência de conhecimento não-
atual. Vejamos por quê.

Verdades atuais da forma 𝑝 ∧ ¬𝐾𝑝 teriam de ser E-cognoscíveis, mas 𝑝 ∧ ¬𝐾𝑝 não
pode ser atualmente conhecido como sendo atualmente o caso. O raciocínio aqui é análogo
ao raciocínio de Fitch.

A lição é esta. Visto que, para algum 𝑝, 𝑝∧¬𝐾𝑝 é atualmente o caso, E-cognoscibilidade
nos compromete a um conhecimento possível de que 𝑝∧¬𝐾𝑝 é possivelmente o caso. Uma
vez que esse conhecimento não pode ser atual, a E-cognoscibilidade requer conhecimento
não atual do que é atualmente o caso. E-cognoscibilidade então nega a seguinte suposição:
dada uma asserção 𝑝, se é conhecido que 𝑝 em 𝑠, então em 𝑠 é sabido que 𝑝. Pela análise
de Edgington, é exatamente essa suposição implícita que descarrilha o raciocínio de Fitch.
O paradoxo é bloqueado sem ela.
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4.2 Problemas para as Situações

Uma vez que o operador de atualidade designa rigidamente as situações, os valores de
verdade das asserções da forma 𝐴𝑝 não vão variar entre as situações possíveis. “𝐴𝑝” im-
plica “em toda situação𝐴𝑝”. Logo, como Edgington sabe, se𝐴𝑝 então é necessário que𝐴𝑝.
Isso por si mesmo impõe um problema a EKP. A crítica é que a abordagem de Edgington
não é suficientemente geral. Qualquer um que endossaria o princípio da cognoscibilidade
provavelmente pensaria que ele vale para todas as verdades, e não apenas as verdades
necessárias que envolvem o operador de atualidade. EKP parece ser uma tese muito limi-
tada que falha na especificação de uma restrição epistêmica sobre a verdade contingente
(Williamson 1987a).

Outras críticas emergem quando tentamos afirmar algo informativo sobre o que constitui
conhecimento não atual sobre o que atualmente é o caso. Se existe um tal conhecimento
não-atual, existe pensamento não atual sobre uma situação atual. Então o pensador não
atual de alguma forma tem o conceito de uma situação atual. Mas como é possível para
um pensador não atual ter um conceito que é especificamente sobre situações neste mundo
atual? Não será suficiente para a pensadora expressar o pensamento “atualmente 𝑝”, uma
vez que “atualmente” vai designar rigidamente somente situações em seu próprio mundo.
Além disso, uma vez que não existe nenhum elo causal entre o mundo atual 𝑤1 e o mundo
não atual relevante 𝑤2, não é claro como um pensamento não atual em 𝑤2 pode ser unica-
mente sobre 𝑤1 (Williamson, 1987a: 257-258). Logo, não é claro como pode haver conhe-
cimento não atual sobre o que é atualmente o caso.

É claro que o conhecimento atual sobre o não-atual não émelhor em especificar mundos.
O problema especial para a pensadora não atual é que o conteúdo do seu pensamento deve
ser precisamente o conteúdo que apreendemos quando consideramos a verdade de 𝐴𝑝.
Estando no mundo atual, somos capazes de especificar esse mundo de forma a distingui-lo
de todos os outros. Quando consideramos a verdade de 𝐴𝑝, nosso contexto fixa o conteúdo
de𝐴 especificamente. Então se realmente é𝐴𝑝 que é cognoscível pelo agente cognoscente
não atual, então deve ser 𝐴𝑝 aquilo que ele apreende—isto é, deve ser o mesmo conceito
que nós apreendemos. Como isso é possível é precisamente o problema.

Críticas adicionais, e relacionadas à proposta de Edgington, podem ser encontradas
em Wright (1987), Williamson (1987b,2000) e Percival (1991). Desenvolvimentos formais
desta proposta, incluindo pontos que tratam de algumas dessas preocupações aparecem
em Rabinowicz e Segerberg (1994), Lindström (1997), Rückert (2003), Edgington (2010),
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Fara (2010), Proietti e Sandu (2010), e Schlöder (no prelo).

4.3 Falácias Modais e Asserções Não-rígidas
Kvanvig (1995) acusa Fitch de uma falácia modal. A falácia é uma substituição ilícita

em um contexto modal. Considere uma falácia modal familiar. Para todas as pessoas 𝑥,
existe um mundo possível em que 𝑥 não é o inventor das lentes bifocais. Mesmo Benjamin
Franklin, o verdadeiro inventor das bifocais, pode não as ter inventado. Logo, existe um
mundo possível em que o inventor das bifocais não é o inventor das bifocais. Nós represen-
tamos o argumento de maneira formal. Permita que nossos quantificadores quantifiquem
sobre pessoas, e seja “𝑖” o designador não-rígido de “o inventor das bifocais”. Considere o
argumento:

∀𝑥3¬(𝑥 = 𝑖)
Logo,

3¬(𝑖 = 𝑖)

Embora qualquer um possa não ter sido o inventor das lentes bifocais, disso não se segue
(e de fato é falso) que é possível que o inventor das bifocais não seja idêntico ao inventor
das bifocais. Afinal, é necessário que o inventor das bifocais seja o inventor das bifocais.

A lição é que nós não podemos substituir de forma irrestrita em contextos modais. Subs-
tituir em contextosmodais, nós podemos dizer, é permitido somente se os termos substituido-
res são designadores rígidos. No caso do resultado de Fitch, nossos termos são sentenças.
O princípio da cognoscibilidade, ∀𝑝(𝑝 → 3𝐾𝑝), aparentemente nos permite substituir 𝑝
por qualquer sentença. Note, todavia, que nosso quantificador tem um escopo amplo so-
bre 3. Nós esperaríamos que as lições da lógica modal quantificada sejam válidas em
lógica modal quantificada proposicional. Se é assim, então nós não podemos substituir 𝑝
por qualquer outra asserção que não seja um designador rígido.

Segundo o diagnóstico de Kvanvig, o problema com a linha argumentativa de Fitch é
que, quando ele substituiu 𝑝 por 𝑝 ∧ ¬𝐾𝑝 em KP (na linha 2 do resultado), ele não parou
para determinar se 𝑝 ∧ ¬𝐾𝑝 era uma asserção rígida. Kvanvig mantém que 𝑝 ∧ ¬𝐾𝑝 não
é rígido. Então o resultado de Fitch é falacioso devido a uma substituição ilícita em contexto
modal. Nós podemos, todavia, reinterpretar 𝑝 ∧ ¬𝐾𝑝 como rígido. Quando o fazemos, o
paradoxo se evapora.
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Kranvig propõe que expressões quantificadas são não-rígidas. O motivo que ele dá é
que quantificadores designam diferentes objetos em diferentes mundos possíveis. “Todos
no curso de lógica de João devem fazer a prova final” é sobre diferentes estudantes em
diferentes mundos possíveis. Se Susie tivesse feito o curso, a expressão seria sobre ela,
mas ela decidiu não fazer o curso, então atualmente não é sobre ela. 𝐾𝑝 é uma abreviação
para “é sabido por alguém em algum tempo que 𝑝”. Então, 𝐾𝑝 é implicitamente quantifi-
cado. Implicitamente lê-se ∃𝑥∃𝑡(𝐾𝑥𝑝𝑡), que afirma que existe um ser 𝑥 em um tempo 𝑡
tal que 𝑥 sabe que 𝑝 no tempo 𝑡. Da mesma forma, nessa abordagem, a expressão quan-
tificada que 𝐾𝑝 abrevia é não-rígida. ∃𝑥∃𝑡(𝐾𝑥𝑝𝑡) é sobre diferentes seres e instantes
em diferentes contextos modais. Por exemplo, a expressão ∃𝑥∃𝑡(𝐾𝑥𝑝𝑡) é sobre coisas
e instantes atuais. Mas no contexto modal (por exemplo, 3∃𝑥∃𝑡(𝐾𝑥𝑝𝑡)), a expressão é
sobre seres e instantes possíveis. Ela diz “existe ummundo possível em que existe um ser 𝑥
e um instante 𝑡 tal que 𝑥 sabe que 𝑝 no instante 𝑡”.

Agora considere a instância relevante da tese de não onisciência de Fitch: 𝑝∧¬𝐾𝑝. De
forma não abreviada, isso seria lido como 𝑝 ∧ ¬∃𝑥∃𝑡(𝐾𝑥𝑝𝑡), que diz que 𝑝 é verdadeiro,
mas ninguém nunca sabe que 𝑝. A expressão quantificada é, nesta visão, um designador
não-rígido. Enunciada no mundo atual, é sobre seres e instantes atuais. Entretanto, assim é
argumentado, dentro do escopo de um operador de possibilidade, a designação varia entre
ser sobre seres e instantes possíveis. Quando Fitch substituiu 𝑝 pela verdadeira conjunção
(𝑝 ∧ ¬∃𝑥∃𝑡(𝐾𝑥𝑝𝑡)) no princípio da cognoscibilidade, ele substituiu 𝑝 por um designador
não-rígido, alterando assim a referência da conjunção e cometendo uma falácia modal.

De forma alternativa, sugere Kvanvig, nós podemos caracterizar 𝐾𝑝 rigidamente de
forma a dizer “existe um ser atual 𝑥 e um instante atual 𝑡 tal que é sabido por 𝑥 no ins-
tante 𝑡 que 𝑝”. Uma vez que esta expressão designa rigidamente (isto é, faz referência ao
mundo atual independentemente do contexto modal em que ela aparece), ela pode substi-
tuir 𝑝 no princípio da cognoscibilidade. A conjunção reinterpretada não muda a sua desig-
nação quando subsumida sob o escopo de 3. Além disso, nesta leitura da conjunção, o
paradoxo se dissolve. É possível saber que a conjunção reinterpretada é verdadeira. Não
há contradição em supor que exista algum ser possível em algum instante possível que sabe
que 𝑝 é uma proposição verdadeira mas nunca sabida por um ser atual em um instante atual.
O paradoxo se dissolve.

Discussões adicionais sobre falácias modais e asserções não-rígidas podem ser encon-
tradas em Brogaard e Salerno (2008) e Kennedy (2014).
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4.4 Problemas para a Não-rigidez

Williamson (2000b) defende a linha de argumentação de Fitch contra a acusação de
Kvanvig. Ele sugere que Kvanvig não está justificado em pensar que a conjunção de Fitch
𝑝∧¬∃𝑥∃𝑡(𝐾𝑥𝑝𝑡) não designa rigidamente. A razão que Williamson dá é a seguinte. Uma
expressão é não-rígida se, quando proferida em um contexto fixo, ela varia sua referência
conforme as circunstâncias em que é avaliada. Mas Kvanving não dá uma razão convin-
cente para pensar que a conjunção de Fitch, como proferida em um contexto fixado, varia
sua referência dessa forma. No máximo, Kvanvig mostrou que a conjunção varia sua refe-
rência quando o contexto sofre variação, uma vez que seu argumento é que uma sentença
quantificada, quando proferida em mundos diferentes, será sobre objetos distintos. Pensar
que isso é suficiente para não-rigidez, Williamson argumenta, é confundir não-rigidez com
indexicalidade. Por exemplo, “eu estou cansado” é sobre mim mesmo, e continua sendo so-
bre mim mesmo quando eu avalio o seu valor de verdade em circunstâncias contrafactuais.
A sentença pode ter sido falsa. Tivesse eu dormido o suficiente, eu não estaria cansado.
Enunciado em um contexto fixo, “eu” designa rigidamente, ainda que seja um indexical. Isso
é assim ainda que, tivesse sido proferido em um contexto diferente por outrem, teria sido
sobre alguém que não eu. De forma análoga, ainda que expressões quantificacionais sejam
indexicais, não se segue que elas sejam não-rígidas. Deste modo, ainda que a conjunção
de Fitch seja uma expressão indexical, não nos foi dada uma razão para considerá-la não-
rígida. Se isso estiver correto, então nós não temos motivos para pensar que Fitch cometeu
a falácia modal em questão.

Kvanvig (2006) responde e desenvolve outros temas interessantes no Paradoxo da Cog-
noscibilidade, que é a única monografia até a presente data dedicada ao tópico.

5. Restrições Sintáticas

As estratégias de restrição supramencionadas envolviam motivos semânticos para limi-
tar a quantificação universal. Nesses casos, KP estava restrito à luz de considerações sobre
situações, mundos possíveis ou designação rígida. Outro tipo de estratégia de restrição é
sintática. Ela limita o escopo da quantificação universal àquelas fórmulas que têm uma certa
forma lógica ou se localizam em uma certa relação de demonstrabilidade. De forma mais
geral,

𝑝 → 3𝐾𝑝, onde 𝑝 tem a propriedade lógica 𝐹 .
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𝐹 então deveria ser uma propriedade lógica que restringe o quantificador conforme algum
conjunto de princípios.

5.1 Asserções Cartesianas

Tennant (1997) foca na propriedade de ser cartesiana: uma asserção 𝑝 é cartesiana se,
e somente se, 𝐾𝑝 não é demonstravelmente inconsistente. De acordo com a definição, ele
restringe o princípio da cognoscibilidade às asserções cartesianas. Chame isso de princípio
restrito da cognoscibilidade (T-cognoscibilidade), ou TKP:

𝑝 → 3𝐾𝑝, onde 𝑝 é cartesiano. (TKP)

Note que o princípio da T-cognoscibilidade é livre dos paradoxos que nós discutimos. É livre
do paradoxo de Fitch e do paradoxo de indecidibilidade correlato, uma vez que ambos os
resultados substituem a variável em 𝑝 → 3𝐾𝑝 pela problemática conjunção de Fitch, 𝑝 ∧
¬𝐾𝑝, nos dando (𝑝∧¬𝐾𝑝) → 3𝐾(𝑝∧¬𝐾𝑝). Isto é, eles requerem que 𝑝∧¬𝐾𝑝 seja
cognoscível caso verdadeira (linha 2 do resultado de Fitch). Mas 𝑝∧¬𝐾𝑝 não é cartesiana,
já que 𝐾(𝑝 ∧ ¬𝐾𝑝) é demonstravelmente inconsistente (acarretando a contradição na
linha 6 do resultado de Fitch). Com efeito, TKP oferece uma das restrições mais tolerantes
necessárias para proibir a substituição incômoda. Isso porque proíbe somente a substituição
daquelas asserções que são logicamente impossíveis de saber.

5.2 Asserções Básicas

Dummett (2001) concorda que o erro da teórica da cognoscibilidade jaz em fornecer
um princípio da cognoscibilidade abrangente, ao invés de restrito. E ele concorda que a
restrição deveria ser sintática. Dummett restringe o princípio da cognoscibilidade a asserções
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“básicas” e caracteriza a verdade indutivamente a partir daí. Para Dummett,

𝑝 sse 3𝐾𝑝, onde 𝑝 é básico.
𝑝 e 𝑞 sse 𝑝 ∧ 𝑞;

𝑝 ou 𝑞 sse 𝑝 ∨ 𝑞;
Se 𝑝 então 𝑞 sse 𝑝 → 𝑞;

Não é o caso que 𝑝 sse ¬𝑝;
𝐹 [Algo] sse ∃𝑥𝐹 [𝑥];
𝐹 [Tudo] sse ∀𝑥𝐹[𝑥].

onde a constante lógica no lado direito de cada cláusula bicondicional é compreendida como
sujeita às leis das lógicas intuicionistas.

O princípio da cognoscibilidade de Dummett ou DKP, como o de Tennant, não é ame-
açado pelos paradoxos da cognoscibilidade, e pelo mesmo motivo. Ele restringe a classe
de asserções que são sujeitas à cognoscibilidade. No caso de Dummett, a conjunção pro-
blemática de Fitch, 𝑝 ∧ ¬𝐾𝑝, sendo composta, e assim não básica, não pode substituir a
variável em 𝑝 → 3𝐾𝑝. O paradoxo é, assim, evitado.

5.3 Problemas para as Restrições Sintáticas
Os méritos relativos dessas duas restrições são sopesados por Tennant (2002). A res-

trição de Tennant é a menos exigente entre as duas, uma vez que ela barra somente a
substituição daquelas asserções que são logicamente incognoscíveis; e, dessa forma, so-
mente aquelas asserções que são responsáveis pelos paradoxos. A restrição de Dummett,
em comparação, barra não somente a restrição dessas proposições, mas também a subs-
tituição de proposições logicamente complexas que são claramente cognoscíveis. Tennant
também indica que, se o princípio da cognoscibilidade é a motivação antirrealista primária
para revisar a lógica clássica, então restringir aquele princípio a asserções básicas pode
erodir argumentos contra um tratamento clássico de asserções complexas.

As principais objeções às estratégias restritivas classificam-se em dois campos. No
primeiro campo, encontramos a acusação de que uma dada restrição sintática ao princípio da
cognoscibilidade não é justificada por um princípio. No segundo campo surgem formulações
de paradoxos à la Fitch que não são evitados por essas restrições sintáticas sobre a verdade
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cognoscível.

Do primeiro campo, Hand e Kvanvig (1999) argumentam que TKP não foi restrito de uma
maneira coerente com os princípios—e não foi dado nenhum bom motivo, além da ameaça
de paradoxo, para restringir o princípio às asserções cartesianas. Uma asserção análoga
foi feita com relação à DKP de Dummett. Tennant (2001b) responde a Hand e Kvanvig com
uma discussão geral sobre a admissibilidade das restrições na prática de análise conceitual
e clarificação filosófica. Ao traçar analogias entre sua própria restrição e outras que são
claramente admissíveis, ele defende que a restrição cartesiana não é ad hoc. Ele também
indica que TKP, e não o KP irrestrito, serve como o tema de disputa mais interessante entre
a realista semântica e a antirrealista. A realista acredita que é possível que a verdade seja
incognoscível em princípio. O argumento de Fitch, na melhor das hipóteses, mostra-nos que
há incognoscibilidade estrutural, isto é, incognoscibilidade que é uma função somente de
considerações lógicas. Mas ainda existe uma forma mais substancial de incognoscibilidade,
por exemplo, a incognoscibilidade que é uma função da transcendência de reconhecimento
do conteúdo não-lógico? Uma realista que recrimina a natureza ad hoc de TKP (ou DKP)
falha em se engajar com a teórica da cognoscibilidade no cerne do debate sobre realismo.

Outras reclamações de que a estratégia de restrição de Tennant não é justificada por um
conjunto de princípios aparecem em DeVidi & Kenyon (2003), e Hand (2003). Hand oferece
uma forma de restringir a cognoscibilidade conforme princípios.

Essas preocupações podem ser dispensadas ao notar versões do paradoxo que não vi-
olam as restrições propostas ao princípio da cognoscibilidade. Williamson (2000a) considera
o seguinte paradoxo. Seja 𝑝 a sentença decidível “existe um fragmento de cerâmica romana
naquele lugar”. Seja 𝑛 tal que designa rigidamente o número de livros atualmente sobre a
minha mesa agora. Seja 𝐸 o predicado “é par”. Williamson constrói a conjunção

𝑝 ∧ (𝐾𝑝 → 𝐸𝑛),

que consideramos uma sentença cartesiana. Sabê-la aparentemente não implica uma con-
tradição. Se ele está certo, nós podemos aplicá-la a TKP, resultando em

(𝑝 ∧ (𝐾𝑝 → 𝐸𝑛)) → 3𝐾(𝑝 ∧ (𝐾𝑝 → 𝐸𝑛)) (1.)

Adicionalmente, se 𝑝 é verdadeiro e 𝐾𝑝 é falso, então a conjunção de Williamson é verda-
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deira. Deste modo,
(𝑝 ∧ ¬𝐾𝑝) → (𝑝 ∧ (𝐾𝑝 → 𝐸𝑛)) (2.)

As linhas (1) e (2) acarretam

(𝑝 ∧ ¬𝐾𝑝) → 3𝐾(𝑝 ∧ (𝐾𝑝 → 𝐸𝑛)) (3.)

Aceitando os modestos recursos epistêmicos encontrados na linha de argumentação de
Fitch, pode-se provar o seguinte teorema:

𝐾(𝑝 ∧ (𝐾𝑝 → 𝐸𝑛)) → 𝐸𝑛. (4.)

Eis o porquê. Uma conjunção só é conhecida se suas conjuntas são conhecidas. Dessa
forma, se 𝐾(𝑝 ∧ (𝐾𝑝 → 𝐸𝑛)), então 𝐾𝑝. E somente verdades podem ser conhecidas.
Então, se 𝐾(𝑝 ∧ (𝐾𝑝 → 𝐸𝑛)), então (𝐾𝑝 → 𝐸𝑛). É claro, 𝐾𝑝 e 𝐾𝑝 → 𝐸𝑛 de
forma conjunta acarretam 𝐸𝑛. Então o teorema 4 é válido, se os recursos epistêmicos de
Fitch são válidos. Agora, 4 é um teorema e, desse modo, é verdadeiro em todos os mundos
possíveis. Deste modo, seu consequente é possível se o seu antecedente é possível:

3𝐾(𝑝 ∧ (𝐾𝑝 → 𝐸𝑛)) → 3𝐸𝑛. (5.)

Das linhas (3) e (5) podemos derivar

(𝑝 ∧ ¬𝐾𝑝) → 3𝐸𝑛. (6.)

Uma vez que 𝑛 designa rigidamente, não é contingente se 𝑛 é par. Segue da linha (6) que

(𝑝 ∧ ¬𝐾𝑝) → 𝐸𝑛. (7.)

Um argumento análogo substituindo “par” por “ímpar” nos dá

(𝑝 ∧ ¬𝐾𝑝) → ¬𝐸𝑛. (8.)

Mas então nós temos uma contradição sobre TKP e a conjunção de Fitch, 𝑝 ∧ ¬𝐾𝑝. O
resultado envolve as substituições de 𝑝 por 𝑝 ∧ (𝐾𝑝 → 𝐸𝑛) e 𝑝 ∧ (𝐾𝑝 → ¬𝐸𝑛)
em TKP, mas Williamson argumenta que nenhuma viola a restrição cartesiana. Retornamos
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ao paradoxo.

Tennant (2001a) discorda da asserção de Williamson de que 𝑝 ∧ (𝐾𝑝 → 𝐸𝑛) é car-
tesiana. No caso em que 𝑛 é ímpar, 𝐸𝑛 expressa uma falsidade necessária (por exemplo,
“13 é par”). Mas então a linha 4 nos diz que 𝐾(𝑝 ∧ (𝐾𝑝 → 𝐸𝑛)) implica algo que é
necessariamente falso. E se a falsidade de “13 é par” é uma questão de necessidade ló-
gica, então 𝑝 ∧ (𝐾𝑝 → 𝐸𝑛) não pode ser consistentemente conhecido, e logo não é
cartesiana. Logo, quando 𝑛 é ímpar, a primeira parte da prova de Williamson (envolvendo o
predicado “é ímpar”) viola, na verdade, a restrição cartesiana. Em contraste, a conjunção de
Williamson é cartesiana quando 𝐸𝑛 é verdadeira. Mas, analogamente, se a verdade de 𝐸𝑛
é uma questão de necessidade lógica, então 𝑝 ∧ (𝐾𝑝 → ¬𝐸𝑛) não pode ser consistente-
mente conhecida e, portanto, não é cartesiana. Logo, quando 𝑛 é par, a segunda parte da
prova de Williamson (envolvendo o predicado “é ímpar”) viola a restrição cartesiana. De todo
modo, Tennant argumenta, Williamson não mostrou que TKP é um tratamento inadequado
do paradoxo de Fitch.

O debate continua em Williamson (2009) e Tennant (2010).

Brogaard & Salerno (2002) desenvolvem outros paradoxos à la Fitch contra as estraté-
gias restritivas. Note que o princípio de cognoscibilidade de Dummett é um bicondicional:
𝑝 ↔ 3𝐾𝑝, onde 𝑝 é básico. Tennant (2002) concorda que o princípio da cognoscibilidade
deveria preservar a natureza factiva de 3𝐾. Então Brogaard & Salerno começam com o
princípio da cognoscibilidade mais forte a seguir:

𝑝 ↔ 3𝐾𝑝, onde 𝑝 satisfaz a condição sintática relevante. (SKP)

Além disso, afora uma discussão mais aprofundada da lógica de 𝐾, não é implausível que
a teórica intuicionista da cognoscibilidade deseje validar o princípio 𝐾𝐾:

2(𝐾𝑝 → 𝐾𝐾𝑝). (KK)

O princípio diz que, necessariamente, se 𝑝 é conhecido, então é conhecido que 𝑝 é co-
nhecido. Um outro recurso é utilizado, qual seja, o princípio de fechamento que diz que o
antecedente de um condicional necessário é possível somente se o consequente é possível.

Se estes comprometimentos nos são concedidos, é possível derivar o resultado de Fitch
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sem violar a restrição cartesiana de Tennant:

1. 𝑝 ∧ ¬𝐾𝑝 Hipótese (conjunção de Fitch)
2. 𝐾𝑝 → 𝐾𝐾𝑝 de KK
3. 𝑝 → 3𝐾𝑝 de SKP (esquerda para direita)
4. 3𝐾𝑝 de 1 e 3
5. 3𝐾𝐾𝑝 de 4 e 2, por fechamento
6. 3𝐾𝐾𝑝 → 𝐾𝑝 de SKP (direita para esquerda)
7. 𝐾𝑝 de 5 e 6
8. 𝐾𝑝 ∧ ¬𝐾𝑝 de 1 e 7

SKP é aplicado nas linhas 3 e 6 a 𝑝 e 𝐾𝑝, respectivamente. E estes substituendos não
violam a restrição cartesiana. Nem 𝐾𝑝, nem 𝐾𝐾𝑝 são auto-contraditórios. Todavia, a
antirrealista é forçada, de maneira absurda, a admitir que nenhuma verdade é desconhecida.

Pode-se argumentar que esse resultado ameaça também o princípio da cognoscibilidade
restrita de Dummett. Mas isso depende de se aplicamos o princípio apenas às asserções
básicas. 𝑝 é básica, mas a caracterização de Dummett da verdade subdetermina o status
de 𝐾𝑝. Talvez ela seja básica, uma vez que 𝐾𝑝 não é verofuncionalmente complexa.
Todavia, o problema não pode ser resolvido sem uma discussão sobre 𝐾.

Brogaard & Salerno demonstram outros paradoxos contra as estratégias de restrição.
Esses resultados adicionais não pressupõem um comprometimento com o princípio 𝐾𝐾.
Eles dependem, em última análise, da interpretação de 3 da teórica da cognoscibilidade.
Quando3 é uma possibilidade metafísica, ou governada por uma lógica ao menos tão forte
quanto 𝑆4, o princípio da cognoscibilidade forte (devidamente restrito, e tomado como uma
tese necessária) implica que não há verdades desconhecidas. Quando 3 é possibilidade
epistêmica, e o princípio da cognoscibilidade é encarado como uma tese necessária que é
conhecida, o princípio da cognoscibilidade implica que, necessariamente, não há asserções
indecididas. Diferentemente dos paradoxos da indecidibilidade de Wright (1987), Williamson
(1988) e Percival (1990), o raciocínio de Brogaard e Salerno não viola a restrição cartesiana
de Tennant. Uma resposta a Brogaard e Salerno aparece em Rosenkranz (2004). Discus-
sões adicionais sobre a restrição cartesiana podem ser encontradas em Broogard & Salerno
(2006, 2008). Tennant (2009) é uma defesa e um desenvolvimento adicionais da estratégia
cartesiana. Uma defesa da estratégia da restrição pode ser encontrada em Fischer (2013).

Muito do que foi escrito sobre o paradoxo da cognoscibilidade aparece na forma de ten-

44



tativas de expressar a forma relevante do antirrealismo sem o paradoxo. Propostas incluem
Chalmers (2012), Dummett (2009), Edgington (2010), Fara (2010), Hand (2009,2010), Jen-
kins (2005), Kelp & Pritchard (2009), Linsky (2009), Hudson (2009), Restall (2009), Tennant
(2009), Alexander (2013), Dean & Kurokawa (2010), Proietti (2016).

Chalmers (2002, 2012: chap. 2), por exemplo, defende a ideia que, dada suficiente
informação qualitativa sobre o mundo, nós poderíamos em princípio saber o valor de verdade
de qualquer asserção. Mais especificamente, a sua tese do escrutínio diz que, se 𝐷 é uma
descrição qualitativa completa do mundo, então, para todo 𝑇 , é conhecido a priori que 𝐷
implica (materialmente) 𝑇 . Notoriamente, o paradoxo da cognoscibilidade não ameaça a
asserção de que conjunções de Fitch verdadeiras são deriváveis a priori de uma descrição
completa do mundo.

Dummett vê∀𝑝(𝑝 → ¬¬𝐾𝑝) como a melhor expressão da sua forma de antirrealismo
e aceita as suas consequências intuicionistas de braços abertos. Edgington defende seu
princípio da cognoscibilidade (a saber, se atualmente 𝑝, então é possível saber que atual-
mente 𝑝) ao argumentar por algum tipo de cognoscibilidade transmundana—especificamente
naqueles casos em que o conhecedor meramente possível compartilha o histórico causal re-
levante com o mundo atual. Hand defende o antirrealismo ao indicar a distinção entre tipos
de verificações e seus tokens de performances, e argumenta que a existência de um tipo
de verificação não implica que ela seja performável. A lição aqui é que a antirrealista deve
pensar sobre a verdade não tanto em termos da performabilidade de procedimentos de ve-
rificação, e mais em termos da existência de tipos de verificação. E Linsky arregimenta os
princípios epistêmicos e o raciocínio com uma teoria dos tipos. O debate acerca da me-
lhor caracterização de um antirrealismo semântico irá muito além do escopo deste verbete.
Quanto à prova da cognoscibilidade em si, segue não havendo consenso sobre se ela está
errada, e onde estaria errada.

Discussões de nicho sobre o paradoxo que não cabem em nenhuma dessas seções
incluem o novo paradoxo da felicidade emSalerno (2018); o argumento de Kvanvig (2010) de
que o paradoxo ameaça o cristianismo em si, dada a sua doutrina da encarnação de Cristo; e
o argumento de Cresto (2017) de que o princípio da cognoscibilidade levanta dúvidas sobre
o princípio da reflexão como um requerimento da racionalidade.

45



Referências Bibliográficas

S. Alexander. An axiomatic version of fitch’s paradox. Synthese, 190:2015–2020, 2013.
J. C. Beall. Fitch’s proof, verificationism, and the knower paradox. Australasian Journal of

Philosophy, 78:241–247, 2000.
J. C. Beall. Knowability and possible epistemic oddities. In Proceedings of the conference or

edited volume edited by Salerno (2009), pages 105–125. Unknown, 2009.
J. Bermüdez. Truth, indefinite extensibility, and fitch’s paradox. In Proceedings of the confe-

rence or edited volume edited by Salerno (2009), pages 76–90. Unknown, 2009.
F. Berto and P. Hawke. Knowability relative to information. Mind, 2018. doi: 10.1093/mind/

fzy045. First online, 25 October 2018.
B. Brogaard. Knowability and a modal closure principle. American Philosophical Quarterly,

43:261–270, 2006.
B. Brogaard. Knowability, possibility and paradox. In V. Hendricks and D. Pritchard (eds.),

New Waves in Epistemology. Palgrave Macmillan, New York, 2008.
B. Brogaard. On keeping blue swans and unknowable facts at bay: a case study on fitch’s

paradox. In Salerno (ed.) 2009, pages 241–251, 2009.
B. Brogaard and J. Salerno. Clues to the paradoxes of knowability: Reply to dummett and

tennant. Analysis, 62:143–150, 2002.
O. Bueno. Fitch’s paradox and the philosophy of mathematics. In Proceedings of the confe-

rence or edited volume edited by Salerno (2009), pages 252–280. 2009.
J. Burgess. Can truth out? In Edited Volume, pages 147–162. Salerno, 2009.
D. J. Chalmers. Actuality and knowability. Analysis, 71(3):411–419, 2011.
D. J. Chalmers. Constructing the World. Oxford University Press, Oxford, 2012.
David J. Chalmers. Does conceivability entail possibility? In Gendler, T. and Hawthorne, J.

(eds.), Conceivability and Possibility. Oxford University Press, Oxford, 2002.
J. Chase and P. Rush. Factivity, consistency and knowability. Synthese, 195:899–918, 2018.
A. Church. Referee reports on fitch’s ‘a definition of value’. In Proceedings of Salerno (ed.)

2009, pages 13–20. Saleno (2009), 2009.
A. Costa-Leite. Fusions of modal logics and fitch’s paradox. Croatian Journal of Philosophy,

6:281–290, 2006.
C. Cozzo. What we can learn from the paradox of knowability. Topoi, 13:71–78, 1994.
E. Cresto. Lost in translation: Unknowable propositions in probabilistic frameworks.

46



Synthese, 194:3955–3977, 2017.
W. Dean and H. Kurokawa. From the knowability paradox to the existence of proofs.

Synthese, 176:177–225, 2010.
D. DeVidi and T. Kenyon. Analogues of knowability. Australasian Journal of Philosophy, 81

(4):481–495, 2003.
D. DeVidi and G. Solomon. Knowability and intuitionistic logic. Philosophia, 28:319–334,

2001.
M. Dummett. Truth. Proceedings of the Aristotelian Society, 59:141–162, 1959.
M. Dummett. The philosophical basis of intuitionistic logic. In H. Rose and J. Shepherdson.

Amsterdam: North Holland, 1975.
M. Fara. Knowability and the capacity to know. Synthese, 173:53–73, 2010.
M. Fischer. Some remarks on restricting the knowability principle. Synthese, 190:63–88,

2013.
F. Fitch. A logical analysis of some value concepts. The Journal of Symbolic Logic, 28:

135–142, 1963a.
F. Fitch. A logical analysis of some value concepts. The Journal of Symbolic Logic, pages

21–28, 1963b.
M. Hand. Knowability and epistemic truth. Australasian Journal of Philosophy, 81(2):216–

228, 2003.
M. Hand. Performance and paradox. Salerno (ed.) 2009, pages 283–301, 2009.
M. Hand. Antirealism and universal knowability. Synthese, 173:25–39, 2010.
M. Hand and J. Kvanvig. Tennant on knowability. Australasian Journal of Philosophy, 77:

422–428, 1999.
W. D. Hart. The epistemology of abstract objects: Access and inference. Proceedings of the

Aristotelian Society, 53:153–165, 1979.
W. D. Hart. Invincible ignorance. Salerno (ed.) 2009, pages 283–301, 2009.
W. D. Hart and C. McGinn. Knowledge and necessity. Journal of Philosophical Logic, 5:

205–208, 1976.
J. Heylen. Factive knowability and the problem of possible omniscience. Philosophical Stu-

dies.
W. Holliday. Knowledge, time, and paradox: Introducing sequential epistemic logic. In H. van

Ditmarsch and G. Sandu (eds.), Jaakko Hintikka on Knowledge and Game-Theoretical
Semantics, pages 363–394. Springer, Berlin, 2018.

47



R. Hudson. Faint-hearted anti-realism and knowability. Philosophia, 37:511, 2009.
M. Jago. Closure on knowability. Analysis, 70:648–659, 2010.
C. Jenkins. Realism and independence. American Philosophical Quarterly, 42:199–209,

2005.
C. Jenkins. The mystery of the disappearing diamond. Salerno (ed.) 2009, pages 302–319,

2009.
C. Kelp and D. Pritchard. Two deflationary approaches to fitch-style reasoning. Salerno (ed.)

2009, pages 324–338, 2009.
N. Kennedy. Defending the possibility of knowledge. Journal of Philosophical Logic, 43:

579–601, 2014.
J. Kvanvig. The knowability paradox and the prospects for anti-realism. Noûs, 29:481–499,

1995.
J. Kvanvig. The Knowability Paradox. Oxford University Press, Oxford, 2006.
J. Kvanvig. Restriction strategies for knowability: Some lessons in false hope. In Salerno

(ed.) 2009, pages 205–222. 2009.
J. Kvanvig. The incarnation and the knowability paradox. Synthese, 173:89–105, 2010.
S. Lindström. Situations, truth and knowability: A situation-theoretic analysis of a paradox

of fitch. In E. Ejerthed and S. Lindström, editors, Logic, Action and Cognition: Essays in
Philosophical Logic, pages 183–210. Kluwer Academic Publishers, Dordrecht, 1997.

B. Linsky. Logical types in arguments about knowability and belief. Salerno (ed.) 2009, pages
163–179, 2009.

J. L. Mackie. Truth and knowability. Analysis, 40:90–92, 1980.
P. Maffezioli, A. Naibo, and S. Negri. The church-fitch knowability paradox in the light of

structural proof theory. Synthese, 190:2677–2716, 2013.
J. Melia. Anti-realism untouched. Mind, 100:341–342, 1991.
J. Murzi. Knowability and bivalence: intuitionistic solutions to the paradox of knowability.

Philosophical Analysis, 149:269–281, 2010.
J. Murzi. Manifestability and epistemic truth. Topoi, 31:17–26, 2012.
R. Palczewski. Distributed knowability and fitch’s paradox. Studia Logica, 86:455–478, 2007.
A. Paseau. Fitch’s argument and typing knowledge. Notre Dame Journal of Formal Logic,

49:153–176, 2008.
P. Percival. Fitch and intuitionistic knowability. Analysis, 50:182–187, 1990.
P. Percival. Knowability, actuality and the metaphysics of context-dependence. Australasian

48



Journal of Philosophy, 69:82–97, 1991.
G. Priest. Beyond the limits of knowledge. Salerno (ed.) 2009, pages 93–104, 2009.
C. Proietti. The fitch-church paradox and first order modal logic. Erkenntnis, 81:87–104,

2016.
C. Proietti and G. Sandu. Fitch’s paradox and ceteris paribus modalities. Synthese, 173:

75–87, 2010.
W. Rabinowicz and K. Segerberg. Actual truth, possible knowledge. Topoi, 13:101–115,

1994.
S. Rasmussen. The paradox of knowability and the mapping objection. Salerno (ed.) 2009,

pages 53–75, 2009.
S. Rasmussen and J. Ravnkilde. Realism and logic. Synthese, 52:379–437, 1982.
G. Restall. Not every truth can be known (at least, not all at once). Salerno (ed.) 2009, pages

339–354, 2009.
L. Rosenblatt. The knowability argument and the syntactic type-theoretic approach. Theoria,

80:201–221, 2014.
S. Rosenkranz. Fitch back in action again? Analysis, 64(1):67–71, 2004.
R. Routley. Necessary limits to knowledge: Unknowable truths. In Essays in Scientific Phi-

losophy. Dedicated to Paul Weingartner, pages 93–115. Come-Verlag, Bad Reichenhall,
1981.

H. Rückert. A Solution to Fitch’s Paradox of Knowability. Kluwer Academic Publishers, 2003.
J. Salerno. Revising the logic of logical revision. Philosophical Studies, 99:211–227, 2000.
J. Salerno, editor. New Essays on the Knowability Paradox. Oxford University Press, 2009a.
J. Salerno. Knowability noir: 1945–1963. In Salerno (ed.) 2009, pages 29–48. 2009b.
W. K. San. Knowability and a new paradox of happiness. In H. van Ditmarsch and G. Sandu

(eds.), Jaakko Hintikka on Knowledge and Game-Theoretical Semantics, pages 457–474.
Springer, 2018.

J. Schlöder. Counterfactual knowability revisited. Synthese, 198(2):1123–1137, 2014.
A. Stephenson. Kant, the paradox of knowability, and the meaning of ‘experience’. Philo-

sophers’ Imprint, 15(27):available online, 2015.
N. Tennant. The Taming of the True. Oxford University Press, 1997.
N. Tennant. Is every truth knowable? reply to williamson. Ratio, XIV:263–280, 2001a.
N. Tennant. Is every truth knowable? reply to hand and kvanvig. Australasian Journal of

Philosophy, 79:107–113, 2001b.

49



N. Tennant. Victor vanquished. Analysis, 62:135–142, 2002.
N. Tennant. Revamping the restriction strategy. In Salerno (ed.) 2009, pages 223–238. 2009.
N. Tennant. Williamson’s woes. Synthese, 173:9–23, 2010.
J. van Benthem. What one may come to know. Analysis, 64(2):95–105, 2004.
J. van Benthem. Actions that make us know. In Proceedings of the conference or edited

volume edited by Salerno (2009), pages 129–146. Unknown, 2009.
H. van Ditmarsch, W. van der Hoek, and P. Iliev. Everything is knowable—how to get to know

whether a proposition is true. Theoria, 78:93–114, 2012.
H. Wansing. Diamonds are a philosopher’s best friend: The knowability paradox and modal

epistemic relevance logic. Journal of Philosophical Logic, 31(6):591–612, 2002.
T. Williamson. Intuitionism disproved? Analysis, 42:203–207, 1982.
T. Williamson. On the paradox of knowability. Mind, 1987.

50



(II) Paradoxo de Sorites1

Título Original: Sorites Paradox
Autores: Dominic Hyde e Diana Raffman

Tradução: Daniel Alves da Silva Lopes Diniz
Revisão: Alan R. Antezana

O paradoxo de sorites se originou em um antigo quebra-cabeça que parece ser gerado
por termos vagos, ou seja, termos com limites de aplicação indefinidos (“borrados” ou “difu-
sos”). “Calvo”, “amontoado”, “alto”, “velho”, e “azul” são exemplos paradigmáticos de termos
vagos: não há uma linha clara que separe as pessoas que são calvas das que não são, ou
objetos azuis de verdes (portanto, não azuis), ou pessoas velhas de pessoas de meia-idade
(portanto, não velhas). Como o predicado “amontoado” tem limites indefinidos, parece que
nenhum grão de trigo em particular pode fazer a diferença entre um número de grãos que
constitui um amontoado e um número que não constitui. Portanto, já que um grão de trigo
não forma um amontoado, segue-se que dois grãos também não formam; se dois não for-
mam, então três não formam; e assim por diante. Esse raciocínio leva à conclusão absurda
de que nenhum número de grãos de trigo forma um amontoado.

A mesma forma de raciocínio é familiar à vida cotidiana. Dorothy Edgington observa
(Edgington, 1996, p. 296):

Existe o paradoxo do amanhã: a tarefa desagradável que precisa ser feita,
1HYDE, Dominic; RAFFMAN, Diana, “Sorites Paradox”, In: ZALTA, E. N. (ed.). The Stanford Encyclopedia
of Philosophy (Summer 2018 Edition). Stanford, CA: The Metaphysics Research Lab, 2018. Disponível em:
https://plato.stanford.edu/archives/sum2018/entries/sorites-paradox/.
A seguir está a tradução da entrada sobre o Paradoxo de Sorites de Dominic Hyde e Diana Raffman na
Stanford Encyclopedia of Philosophy. A tradução segue a versão da entrada nos arquivos da SEP em https:
//plato.stanford.edu/archives/sum2018/entries/sorites-paradox/. Esta versão traduzida pode diferir da versão
atual da entrada, que pode ter sido atualizada desde o momento desta tradução. A versão atual está locali-
zada em https://plato.stanford.edu/entries/sorites-paradox/. Agradecemos ao Prof. Dr. Edward N. Zalta pela
permissão para traduzir e publicar esta entrada.

https://plato.stanford.edu/archives/sum2018/entries/sorites-paradox/
https://plato.stanford.edu/archives/sum2018/entries/sorites-paradox/
https://plato.stanford.edu/archives/sum2018/entries/sorites-paradox/
https://plato.stanford.edu/entries/sorites-paradox/


mas tal que é sempre indiferente se ela é feita hoje ou amanhã; o paradoxo
da pessoa em dieta: eu não me importo com a diferença para o meu peso que
um chocolate fará.

O quebra-cabeça pode ser expresso como um argumento do modo mais simples usando
modus ponens:

• 1 grão de trigo não forma um amontoado.

• Se 1 grão não forma um amontoado, então 2 grãos não formam um amontoado.

• Se 2 grãos não formam um amontoado, então 3 grãos não formam um amontoado.

…

• Se 999.999 grãos não formam um amontoado, então 1 milhão de grãos não formam
um amontoado.

Portanto,

• 1 milhão de grãos não formam um amontoado.

O argumento é um paradoxo porque um raciocínio aparentemente impecável a partir de
premissas aparentemente impecáveis gera uma falsidade. A partir da premissa de que um
milhão de grãos formam um amontoado, o argumento pode igualmente ir na direção oposta:
se ummilhão de grãos formam um amontoado, então ummilhão de grãos menos um formam
um amontoado, se um milhão de grãos menos um formam um amontoado, então um milhão
de grãos menos dois formam um amontoado, etc. Segue-se de forma absurda que até
mesmo um único grão forma um amontoado. Logo, o raciocínio sorítico parece mostrar
tanto que nenhum número de grãos forma um amontoado quanto que qualquer número de
grãos forma um amontoado.

Que conclusão devemos tirar desse resultado inconveniente? Há algo errado com o
argumento paradoxal, ou o uso de predicados vagos realmente leva ao absurdo?2 Em parte
porque usamos essas palavras comuns exitosamente o tempo todo, e normalmente não
2Outras classes de palavras—por exemplo, verbos, advérbios, nomes, e mesmo indexicais—também parecem
ser soríticas, mas os predicados receberam mais atenção na literatura. Confira, por exemplo, Ellis (2004) para
uma discussão relevante.
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incorremos em absurdos como esses acima, a maioria dos teóricos da vagueza supõe que
o paradoxo é solucionável, ou seja, que o argumento paradoxal é defeituoso e podemos
descobrir o defeito. No que se segue, consideramos algumas das principais tentativas de
resolvê-lo.

1. O sorites na história

O filósofo megárico Eubulides (século IV a.C.) é geralmente creditado pela primeira for-
mulação do quebra-cabeça (o nome “sorites” deriva da palavra grega soros, que significa
“amontoado”). Embora não saibamos suas motivações para introduzi-lo (junto com vários
outros quebra-cabeças lendários), o paradoxo foi mais tarde usado por filósofos gregos como
uma arma dialética, mais notavelmente pelos céticos contra as alegações de conhecimento
dos estoicos.

Curiosamente, o paradoxo atraiu pouco interesse subsequente até o final do século XIX.
Filósofos marxistas na tradição neo-hegeliana, como Plekhanov (1908, [1937], p. 114), cita-
ram o paradoxo como evidência tanto do fracasso da lógica “costumeira”, quanto da utilidade
da “lógica da contradição”. Dessa forma, alguns marxistas buscaram estabelecer o triunfo da
dialética. Enquanto isso, na filosofia anglo-americana, a lógica formal recuperou seu lugar
central, e sua formalização clássica não deixou espaço para a vagueza da linguagem natu-
ral. A vagueza e o paradoxo associado foram vistos como excedendo o escopo da lógica e,
portanto, não representando nenhum desafio a ela. No entanto, desde o fim das doutrinas de
linguagem ideal da segunda metade do século XX (ver §3.1), o interesse nas idiossincrasias
da linguagem natural, incluindo sua vagueza, aumentou muito.

2. Diferentes formulações do paradoxo

Pelo menos três condições devem ser satisfeitas para que um argumento seja uma ins-
tância do paradoxo de sorites. (1) Deve ser possível construir uma série de sorites para o
predicado em questão, a saber, uma ordenação finita de valores em uma dimensão decisiva
para a aplicação do predicado. Uma série de sorites para “alto” é uma ordenação na di-
mensão de altura (uma ordenação de alturas); para “velho”, uma ordenação na dimensão de
idade (uma ordenação de idades), e assim por diante. (2) Valores adjacentes na série devem
ser apenas incrementalmente diferentes, isto é, ou indiscrimináveis, ou apenas ligeiramente
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diferentes. Uma diferença incremental deveria garantir que, se um predicado vago aplica-se
a um objeto de um par de vizinhos, aplica-se igualmente ao outro (como em Wright—por
exemplo, Wright (1975)—a propriedade de se aplicar ao longo de diferenças incrementais
em uma dimensão decisiva é frequentemente chamada de tolerância de um termo vago).
(3) O predicado deve ser verdadeiro para o primeiro valor na série e falso para o último.

O paradoxo é frequentemente apresentado na forma condicional discutida acima. Mais
formalmente: seja Φ um predicado sorítico e seja 𝛼𝑛 (onde 𝑛 é um número natural) a re-
presentação de um valor em uma série de sorites para Φ. Então o paradoxo pode ser repre-
sentado da forma mais simples deste modo, usando modus ponens:

Sorites condicional:

Φ𝛼1
Se Φ𝛼1

então Φ𝛼2
Se Φ𝛼2

então Φ𝛼3
etc.
Se Φ𝛼𝑛−1

então Φ𝛼𝑛
Φ𝛼𝑛

(onde 𝑛 pode ser arbitrariamente grande)

Uma formulação diferente do paradoxo substitui o conjunto de premissas condicionais por
uma generalização universal e procede por indução matemática. Seja 𝑛 uma variável sobre
os números naturais, e seja ∀𝑛(… 𝑛 … ) a afirmação de que todo número 𝑛 satisfaz a
condição (… 𝑛 … ). Além disso, representemos a afirmação “para todo 𝑛, se 𝛼𝑛 é Φ então
𝛼𝑛+1 é Φ” como “∀𝑛(Φ𝛼𝑛

→ Φ𝛼𝑛+1
)”.

Sorites de indução matemática:
Φ𝛼1
∀𝑛(Φ𝛼𝑛 → Φ𝛼𝑛+1)
∀𝑛(Φ𝛼𝑛)

Por exemplo, como um homem com 1 fio de cabelo na cabeça é calvo, e como, para qualquer
número 𝑛 de fios de cabelo, se um homem com 𝑛 fios de cabelo é calvo, então também o é
um homem com 𝑛 + 1 fios de cabelo, então todo número 𝑛 é tal que um homem com 𝑛 fios
de cabelo na cabeça é calvo.

Outra versão do quebra-cabeça é a variante de forma indutiva. Sabemos que uma série
de sorites para “calvo” contém alguns números de cabelos tais que homens com aqueles
números de cabelo não são calvos. Pelo princípio demenor número (equivalente ao princípio
de indução matemática), deve existir um número mínimo, digamos 𝑖 + 1, tal que um homem
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com 𝑖 + 1 cabelos na cabeça não é calvo. Já que um homem com 1 cabelo na cabeça
é calvo, segue-se que 𝑖 + 1 deve ser maior que 1. Assim, a série contém um número de
cabelos 𝑛 ( = 𝑖) tal que um homem com 𝑛 cabelos é calvo, ao passo que um homem
com 𝑛 + 1 cabelos não o é. Seja ∃(… 𝑛 … ) a asserção de que um número 𝑛 satisfaz a
condição (… 𝑛 … ). Esquematizamos então esse último raciocínio desta forma:

Sorites de traçamento de linha:
Φ𝛼1
∼∀𝑛(Φ𝛼𝑛)
∃𝑛 ≥ 1(Φ𝛼𝑛 & ∼Φ𝛼𝑛+1)

As formas de desenho de linha e indutiva do quebra-cabeça ilustram bem o impasse sorítico;
aparentemente, usuários competentes de “calvo” devem, e não devem, traçar uma linha na
série. Por conveniência, no que se segue, a maioria dos exemplos é colocada em termos
das formas condicional ou indutiva do paradoxo. Certamente, uma resolução adequada do
sorites presumivelmente precisará desarmar todas as suas versões.

Devemos mencionar também uma versão informal do paradoxo, conhecida como “sori-
tes de marcha forçada” (Horgan (1994a); Soames (1999)). Aqui ele é descrito em termos de
classificações hipotéticas que seriam feitas por uma falante competente percorrendo uma
série de sorites passo a passo. Uma falante competente deve dizer que um único grão de
trigo não forma um amontoado; mas se isso está correto, então ela também deve dizer que
dois grãos não formam um amontoado; e que três grãos não formam; e assim por diante, até
ela dizer que ummilhão de grãos, por exemplo, não formam um amontoado. Como veremos,
o paradoxo da marcha forçada desempenha um papel importante em vários tratamentos do
paradoxo.

Vale a pena notar que a definição popular de vagueza em termos de soriticalidade (por
exemplo, Wright (1976); Bueno and Colyvan (2012)) pode muito bem estar incorreta. Se o
sorites é uma falácia solucionável, como acredita a maioria das teóricas da vagueza, então
a vagueza não é, afinal, uma fonte de paradoxo. Talvez alguém diga que, mesmo depois
que o diagnóstico correto do quebra-cabeça tenha sido descoberto, o argumento permane-
cerá um paradoxo porque ainda parecerá consistir em um raciocínio incontestável a partir
de premissas verdadeiras para uma conclusão falsa. Mas essa visão torna a vagueza uma
propriedade contingente demais; dado tudo que sabemos, uma vez que tenhamos desco-
berto a solução adequada para o quebra-cabeça, a premissa maior não parecerá verdadeira
mais. Pode parecer verdadeira aos não iniciados, mas esta também seria uma maneira
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duvidosa de definir a vagueza—a saber, como a propriedade de gerar um argumento que
anteriormente parecia, ou parece aos não iniciados, paradoxal. Bueno and Colyvan (2012)
dizem que “um predicado é vago apenas no caso de poder ser empregado para gerar um
argumento de sorites”. Mas o que “pode ser empregado” significa aqui? Se um argumento
de sorites é uma falácia, um predicado vago não pode ser corretamente empregado nele. O
critério seria que um predicado vago é um termo que, quando empregado incorretamente,
temporariamente parece (aos não iniciados?) gerar um paradoxo de sorites (Raffman, 2014,
p. 18–19)?

O mais provável é que a soriticalidade seja uma característica ilusória de palavras como
“velho’ e “rico”; sua vagueza é real. Se isso estiver correto, então a soriticalidade aparente
pode ser melhor vista como um sintoma temporário de vagueza, ou talvez como um elemento
de sua “caracterização superficial” (Smith (2008), por exemplo, p. 132; veja o terceiro capítulo
de Smith para uma visão perspicaz sobre o que é vagueza).

3. Respostas ao paradoxo

Como com qualquer paradoxo, quatro tipos gerais de respostas parecem estar disponí-
veis. Alguém poderia:

1. Negar que a lógica aplica-se a expressões soríticas.

Alternativamente, alguém poderia aceitar que o paradoxo é um argumento legítimo ao qual
a lógica se aplica, mas negar sua corretude ao

2. Rejeitar alguma(s) premissa(s), ou

3. Negar que ele seja válido.

A resposta mais drástica seria

4. Acolher o paradoxo e concluir que expressões vagas são ou incoerentes ou vazias.

No que se segue, consideramos os principais tratamentos filosóficos do sorites e as formas
com que eles usaram essas estratégias para desfazer o quebra-cabeça.
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3.1 Abordagens de linguagem ideal

Comprometidos como estavam com doutrinas de linguagem ideal, não é surpreendente
encontrar Frege e Russell (veja as entradas sobre Gottlob Frege e Bertrand Russell) bus-
cando uma resposta do tipo (1) (por exemplo, Frege (1903); Russell (1923)). Diz-se que um
atributo-chave da linguagem ideal é sua precisão; portanto, a vagueza da linguagem natural,
incluindo todas as expressões soríticas, é um defeito a ser eliminado. Se isso estiver cor-
reto, então, ao contrário do que muitas teóricas acreditam, os termos soríticos não podem
ser coligidos para desafiar a lógica clássica. A lógica simplesmente não se aplica a eles.
Ecoando essa resposta, Quine (1981, p. 31–37) argumenta que, embora a eliminação de
termos vagos possa incorrer em algum custo para as formas comuns de falar, é um custo
que vale a pena pagar na medida em que nos permite preservar a “doce simplicidade” da
lógica clássica.

No entanto, com o fim das doutrinas de linguagem ideal e o subsequente renascimento
do interesse pela linguagem comum, a vagueza não é mais considerada uma propriedade
superficial ou facilmente dispensável. Se a lógica tem alguma força, ela precisa se aplicar
à linguagem natural como ela é; expressões soríticas são inevitáveis e o paradoxo deve
ser encarado de frente. Respostas do tipo (2) fazem exatamente isso e são a família mais
comum de respostas. A lógica é vista como aplicável à linguagem natural, em particular ao
argumento paradoxal, e este último é diagnosticado como baseado em uma premissa falha.

3.2 A teoria epistemicista

A maioria das teóricas da vagueza concebe a vagueza como um fenômeno semântico,
de alguma forma oriundo dos significados de palavras como “alto” e “velho”. Como veremos,
teorias semânticas tipicamente introduzem lógicas e/ou semânticas especiais não clássicas
para resolver o paradoxo (e acomodar o fenômeno de casos limítrofes). Em contraste, as
epistemicistas pensam que a vagueza é apenas uma forma de ignorância: termos vagos têm
limites nítidos cujas localizações nos estão ocultas. Amontoados são, de fato, nitidamente
separadas dos não-amontoados, e alturas altas são nitidamente separadas das alturas mé-
dias, mas não podemos descobrir onde essas divisões estão (ver, por exemplo, Sorensen
(1988, 2001); Williamson (1994, 1995, 2000); Fara (2000, 2008); Rescher (2009)). Nessa
visão, o paradoxo sorites é eliminado imediatamente: a premissa maior, ou uma das premis-
sas condicionais, é simplesmente falsa. E a bivalência é preservada: qualquer aplicação de
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uma expressão vaga é ou verdadeira ou falsa, embora nem sempre possamos saber qual.
Quais fatos sobre o mundo, ou a linguagem natural, ou falantes competentes, pode-

riam servir para fixar limites nítidos para palavras vagas? De acordo com Williamson (por
exemplo, Williamson (1995, p. 184)), o significado sobrevém ao uso; em outras palavras,
as localizações dos limites nítidos de uma expressão vaga são uma função das disposições
dos falantes de usá-la como usam. Na medida em que o uso de uma expressão vaga va-
ria ao longo do tempo, seus limites podem ser instáveis. Claro, não podemos conhecer a
totalidade dessas disposições, e não conhecemos a função relevante; e nossa ignorância
desses fatores interdita um caminho para o conhecimento das localizações dos limites da
expressão.

Outra rota possível para o conhecimento das localizações dos limites é interditada pelo
fato de que nosso conhecimento da aplicação de uma expressão vaga é inexato. O conhe-
cimento inexato é governado por princípios de margem de erro, a saber, princípios da forma
“se 𝑥 e 𝑦 diferem incrementalmente em uma dimensão decisiva e 𝑥 é sabidamenteΦ (velho,
azul, etc.), então 𝑦 é Φ”.3 Por exemplo, quando o conhecimento é inexato, podemos saber
de um objeto azul que ele é azul somente se objetos cujas cores são incrementalmente di-
ferentes também forem azuis—portanto, somente em casos claros. Em contraste, na região
limítrofe ou “penumbral” de uma série de sorites para “azul”, onde o limite se encontra, um
certo tom de azul é apenas incrementalmente diferente de (e na verdade pode parecer o
mesmo que) um tom que não é azul; e não podemos saber onde se encontra essa dife-
rença. Consequentemente, se classificarmos o tom anterior como azul, essa classificação
está correta por sorte e, portanto, não constitui conhecimento. Na suposição plausível de
que ver que um certo 𝑥 é azul é suficiente para saber que 𝑥 é azul, segue-se que algumas
coisas azuis são tais que não podemos ver que são azuis, mesmo sob condições ideais de
visão.

As virtudes e o apelo da teoria epistêmica são significativos, e ela angariou sua parcela
de apoiadores. Ao mesmo tempo, essa visão pode ser difícil de aceitar. Até mesmo suas
proponentes admitem que o epistemicismo é intuitivamente implausível, e parece multiplicar
mistérios. Como uma primeira aproximação, a epistemicista diz que

as expressões vagas têm limites nítidos e desconhecidos que são fixados por
uma função desconhecida de seus padrões de uso incognoscíveis (ou seja,

3Williamson (1992, p. 161) afirma que, ao contrário de princípios de tolerância, princípios de margem de erro
não geram um paradoxo.
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não totalmente conhecíveis).

No entanto, parece que a função também deve ser incognoscível, não apenas desconhecida;
pois como poderíamos reconhecê-la se nos deparássemos com ela? Como poderíamos
dizer se tínhamos obtido a função correta, senão determinando se ela gera os limites corretos
como seus valores? Se isso estiver certo, então a tese da epistemicista deve ser, na verdade,
que

termos vagos têm limites nítidos e desconhecidos que são fixados por uma
função incognoscível de seus padrões de uso incognoscíveis (Raffman, 2014,
p. 10).

Certamente, explicações são fornecidas para nossa ignorância irremediável nesses casos:
por exemplo, não podemos saber onde estão os limites nítidos porque nosso conhecimento
é inexato, e não podemos saber o padrão total do uso da expressão porque “os dados são
infinitos” (Williamson, 1995, p. 184–185), e assim por diante. Não obstante, o epistemicismo
pode soar como uma história do tipo “é assim porque é assim”.4 Veja §5.1 para uma discus-
são mais aprofundada sobre Williamson.

Graff Fara defende uma linha diferente de epistemicismo (Fara, 2000, 2008). Åkerman
and Greenough (2010, p. 277) observam que a perspectiva dela

é uma forma de epistemicismo em que predicados vagos traçam fronteiras
nítidas e bivalentes.5 Ao contrário do epistemicismo de Sorensen (1988) e
Williamson (1994, 1995), no entanto, é constitutivo da vagueza que a fronteira
possa se deslocar em função de mudanças [nos interesses dos falantes].6

4A defesa do epistemicismo de Williamson apoia-se fortemente na afirmação de que outras resoluções do pa-
radoxo são insustentáveis, mas alguns dos seus principais argumentos negativos são vistos como petições de
princípio; ver, por exemplo, Wright (1995, p. 135–8) e Raffman (2014, p. 95–96), para discussão.
5Fara (2000, p. 70) escreve: “nas conversas em que temos oportunidade de usar expressões vagas como “alto”
[…] será simplesmente um fato bruto que haverá uma altura mínima […] da qual é verdade dizer que [é alta]…
Qualquer quantidade menor [de altura] simplesmente não pode ser a mesma para quaisquer propósitos que
estejam em vigor”.
6Em Fara (2008), Graff Fara explica que a caracterização de sua visão em Fara (2000) era enganosa. Na
verdade, os limites mudam em função de mudanças em “o que melhor satisfaz nossos interesses—dado nosso
interesse permanente em eficiência resultante de […] uma mudança no que está sendo ativamente considerado”
(Fara, 2008, p. 328). Stanley (2003) manifesta dúvidas quanto à ideia de que predicados vagos expressam
propriedades relativas a interesses; Graff Fara responde em Fara (2008).
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Esse limite nítido é incognoscível entre outras coisas porque está constantemente se mo-
vendo em uma série de sorites, mudando de localização conforme os interesses do falante
tal que ele nunca o encontra (Fara, 2008, p. 328). Como Stanley (2003, p. 269) coloca,

quando procuramos por [uma] fronteira da extensão de [uma expressão vaga]
em sua penumbra, nossa própria procura tem o efeito demudar a [extensão] da
expressão vaga de modo que a fronteira não esteja onde estamos procurando.

Assim, nunca podemos descobrir onde está a fronteira, e cada premissa condicional parece
verdadeira enquanto estamos considerando-na (o papel da relatividade de interesse no re-
lato de Graff Fara é discutido mais adiante em §3.3.4). A retenção da lógica clássica e da
bivalência é supostamente uma das principais vantagens da abordagem epistêmica em re-
lação às outras perspectivas (por exemplo, Williamson (1992, p. 162)). Com efeito, como é
amplamente assumido que a bivalência implica fronteiras nítidas, muitas teóricas da vagueza
acreditam que, para todos os efeitos, o epistemicismo é a única teoria que pode empregar
uma semântica bivalente (por exemplo, Rosenkranz (2003); Keefe (2000)).7 Em particular,
elas acreditam que nenhuma teoria semântica da vagueza pode ser clássica. Desenvolvi-
mentos subsequentes lançam dúvidas sobre essa visão, no entanto; veja §3.3.5.

3.3 Abordagens semânticas
Como indicado acima, a vagueza é geralmente considerada uma característica semân-

tica da linguagem. E se é uma característica semântica, sua lógica e/ou semântica não
podem ser clássicas, ou assim diz o pensamento padrão. Começando na parte final do sé-
culo XX, uma série de lógicas e semânticas não clássicas foram desenvolvidas para expres-
sões vagas, cada uma avançando sua própria solução do paradoxo de sorites. O tamanho
da inovação lógica proposta varia.

A maioria das teorias semânticas da vagueza e tratamentos semânticos do sorites
concebe a aplicação de um termo vago como indeterminada em uma certa gama de ca-
sos. Especificamente, em uma série de sorites para o predicado vago “Φ”, diz-se que é
indeterminado—não há “nenhuma questão de fatos”—qual valor é o último valor que é Φ.
Geralmente se pensa que a indeterminação manifesta-se na posse do predicado de (possí-
veis) casos limítrofes. Os casos limítrofes são concebidos de várias maneiras: como nem
7Mas veja a referência a Burns (1991) em §3.3.4.
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definitivamente (ou determinadamente) Φ, nem definitivamente não Φ, ou como tais que a
sentença “𝑥 é Φ” não é nem verdadeira nem falsa, nem super-verdadeira nem super-falsa,
ou nem verdadeira até o grau 1 nem falsa até o grau 1, por exemplo.8 A ideia em comum
parece ser que as regiões de casos limítrofes em uma série de sorites para “Φ” constituem
os limites borrados do predicado; e que, como a série contém esses valores indeterminados,
a premissa principal (ou uma ou mais premissas condicionais) do paradoxo é ou menos que
verdadeira, ou simplesmente falsa. A seguir, analisamos alguns dos principais tratamentos
semânticos do paradoxo.

3.3.1 Supervaluacionismo

Em consonância com um princípio de menor mutilação, uma abordagem adapta a se-
mântica de supervaloração de van Fraassen (1966) ao paradoxo sorites, e à vagueza de
forma mais geral (por exemplo, Fine (1975); Keefe (2000)). Como resultado, ela endossa
uma lógica não bivalente que, pelo menos à primeira vista, retém a relação de consequência
clássica e as leis clássicas, ao passo que admite lacunas de valor de verdade. Nessa visão,
o desafio colocado pelo paradoxo de sorites pode ser enfrentado pela revisão lógica apenas
na metateoria, e uma resposta do tipo (2) é defendida. Diferentemente da concepção epis-
têmica de vagueza, uma concepção semântica tratará como real a aparente indeterminação
semântica de predicados vagos. Casos limítrofes são valores aos quais o predicado nem
definitivamente se aplica nem definitivamente não se aplica, onde “definitivamente” recebe
uma análise semântica ao invés de epistêmica. A extensão positiva de um predicado é dada
por aqueles valores aos quais o predicado definitivamente se aplica, a extensão negativa
por aqueles valores aos quais o predicado definitivamente não se aplica, e os casos res-
tantes (penumbrais) são valores aos quais o predicado nem definitivamente se aplica, nem
definitivamente não se aplica. Consistentemente com uma visão da vagueza como uma de-
ficiência semântica (por exemplo, Fine (1975)) ou como indecisão semântica (por exemplo,
Lewis (1986)), as supervaluacionistas definem uma noção de “superverdade” (“superfalsi-
dade”) como o estado de ser verdadeiro (falso) independentemente de como a deficiência
ou indecisão semântica é resolvida ou precisificada, ou seja, verdadeiro (falso) em cada pre-
cisificação do predicado. Aplicar o predicado a algo em sua extensão positiva resulta em
8As epistemicistas representam casos limítrofes da maneira usual, como nem definitivamente Φ nem definiti-
vamente não Φ, mas eles interpretam o operador de definição epistemicamente: casos limítrofes não são nem
cognoscivelmente Φ nem cognoscivelmente não Φ.
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uma sentença superverdadeira, enquanto aplicá-lo a algo em sua extensão negativa resulta
em uma sentença superfalsa. Tornar equivalentes superverdade e verdade simpliciter, e su-
perfalsidade e falsidade simpliciter, resulta então em uma lógica não bivalente com casos
limítrofes que originam lacunas de valor de verdade.

Com validade então definida da maneira usual como preservação da verdade (simpli-
citer), a explicação supervaloracionista de validade coincide com a validade clássica. Em
particular, tratando leis como argumentos com zero premissas, o supervaloracionismo pre-
serva todas as leis clássicas. Assim, apesar de seu abandono da bivalência, o supervalu-
acionismo valida a lei do terceiro excluído. Por exemplo, independentemente da vagueza
de “amontoado”, é logicamente verdadeiro para qualquer número de grãos de trigo que ele
ou forma, ou não forma, um amontoado. Como consequência, a semântica de supervalo-
ração não é verofuncional. Ela permite instâncias de disjunções verdadeiras, nenhuma das
quais é (super)verdadeira. A conjunção e o condicional exibem características não clássicas
análogas.

Como todas as formas assumidas pelo paradoxo sorites são classicamente válidas, elas
também são supervaluacionisticamente válidas. A conclusão da forma condicional usando
modus ponens é evitada ao notarmos que alguma premissa condicional falha em ser verda-
deira; embora, reconhecidamente, nenhuma seja falsa. O sorites condicional é válido, mas
incorreto. Mais revelador é o diagnóstico da versão que emprega uma premissamaior univer-
sal. Esta versão também é considerada incorreta devido à falha de uma das premissas—a
premissa universal. O condicional universalmente quantificado não é verdadeiro; na ver-
dade, é falso. Embora não haja nenhuma premissa condicional que seja falsa, é, no entanto,
verdade segundo a teoria da supervaloração que algum condicional é falso. Ou seja, é ver-
dade que algum 𝑛 é tal que não é o caso de que se Φ𝛼𝑛

, então Φ𝛼𝑛+1
(onde “Φ” é sorítico

em relação aos sujeitos da forma 𝛼𝑛).
Como a semântica de supervaloração admite que a falsidade de “∀𝑛(Φ𝛼𝑛

→ Φ𝛼𝑛+1
)”

é logicamente equivalente à verdade de “∃𝑛(Φ𝛼𝑛
& ∼Φ𝛼𝑛+1

)”, a forma de linha traçada
do sorites é correta: é supervaluacionisticamente válida, pois classicamente válida, e suas
premissas são incontestavelmente verdadeiras. O que a semântica de supervaloração alega
fornecer é uma descrição formal de como, ao contrário das aparências, tal conclusão poderia
ser verdadeira; é verdadeira porque é verdadeira não importa como se resolva a indetermi-
nação do termo vago envolvido (ou seja, o predicado sorítico).

Dessa forma, os paradoxos de sorites são considerados resolvidos. Com a vagueza
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vista como um fenômeno semântico, a semântica clássica não é mais apropriada como se-
mântica de uma linguagem vaga, e a semântica de supervaloração é proposta em seu lugar.
Uma preocupação imediata diante dessa solução é o fato de que ela, em última análise,
trata a indução matemática e as formas de linha traçada do sorites da mesma maneira que a
teoria epistêmica, conservadora logicamente, o faz. Somos forçados a aceitar a verdade sa-
bidamente contraintuitiva de “∃𝑛(Φ𝛼𝑛

&∼Φ𝛼𝑛+1
)” que parece postular a existência de uma

fronteira nítida, embora a existência de tal fronteira seja exatamente o que a teoria semântica
da vagueza pretende negar. Supervaluacionistas respondem negando que a conclusão do
sorites de linha traçada expresse a existência de uma fronteira nítida. Embora comprometi-
dos com a afirmação expressa por a precisão semântica é capturada devidamente apenas
pela expressão e isso é claramente negado pela teoria supervaluacionista. Embora seja ver-
dade que existe algum ponto de corte, não existe um ponto em particular em relação ao qual
é verdade que ele é o ponto de corte. Uma vez que apenas o último tipo de ponto de corte é
considerado um limite nítido, nenhum compromisso é feito com tal limite sobre o qual somos
ignorantes (em oposição à teórica epistemicista).

Com essa explicação, no entanto, surgem dúvidas quanto à adequação da lógica. Não
apenas (b) deve ser encarado apropriadamente como representando a precisão semântica
de “Φ”, mas também devemos estar preparados para admitir que algumas afirmações exis-
tenciais podem ser verdadeiras sem ter nenhuma instância verdadeira, bloqueando assim
qualquer inferência de (a) para (b). Assim como a falha do princípio metateórico da bivalên-
cia em conjunto com a retenção da lei do terceiro excluído compromete a supervaluacionista
com a presença de disjunções verdadeiras sem disjuntos verdadeiros, da mesma forma de-
vemos permitir um comportamento não padrão análogo na teoria de quantificação da lógica.
Com efeito, os aspectos contraintuitivos da teoria epistemicista são evitados apenas medi-
ante um custo para outras intuições.

Neste ponto, a supervaluacionista pode procurar explicar essas anomalias semânticas
mostrando como elas são exigidas por uma compreensão adequada do fenômeno subja-
cente da vagueza. Mais precisamente, a sugestão é que uma visão da vagueza como me-
ramente semântica, não refletindo nenhum fenômeno subjacente de vagueza metafísica (ou
seja, uma visão da vagueza como meramente representacional) pode embasar uma abor-
dagem supervaluacionista. Fine (1975) parece promover essa visão representacional ao
defender a lei do terceiro excluído, por exemplo, e Varzi (2001), entre outros, também de-
fendem o supervaluacionismo dessa forma. Se bem-sucedida, tal defesa também forneceria
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uma justificativa virtuosa da ligação comum de facto entre a teoria do supervaluacionismo e
uma visão representacional da vagueza. Se é essa a explicação a ser buscada, então a ma-
quinaria formal do supervaluacionismo resolve o paradoxo apenas em conjunção com uma
negação da vagueza metafísica. O debate metafísico está em andamento. Keefe (2000),
por outro lado, opta por uma defesa pragmática arriscada: embora contraintuitivas, as ano-
malias semânticas que afligem o supervaluacionismo devem ser aceitas porque integram
uma teoria que, no geral, se sai melhor do que qualquer outra; nenhuma defesa adicional é
necessária.

Williamson (1994) aponta dois problemas adicionais que aparentemente afligem a expli-
cação supervaluacionista. Primeiro, inferências clássicas como demonstração condicional,
dilema construtivo e reductio ad absurdum não vigoram mais em uma linguagem estendida
para expressar vagueza pela adição de um operador de determinação “𝐷” ou similar. A
lógica da linguagem estendida é decididamente não clássica. Dummett (1975) oferece uma
definição alternativa de validade que não se depara com esse problema, mas Williamson
levanta outras objeções a ela. No entanto, Graff Fara [2003] mostra que, se fortalecermos
a noção de consequência obtendo consequência penumbral, obtemos falhas desses princí-
pios mesmo na ausência de um operador de determinação. Segundo, surgem problemas
também com relação ao fenômeno da vagueza de ordem superior. Ao acomodar a vagueza
de ordem superior, a supervaluacionista deve admitir que o conceito de verdade que propõe
(a saber, superverdade), carece de propriedades que usualmente se pensa que a verdade
tem. Ao contrário das alegações das supervaluacionistas, então, verdade não é superver-
dade (veja Keefe (2000) para uma refutação).

3.3.2 Parentes do supervaluacionismo

Algumas críticas ao supervaluacionismo são feitas a partir de posições mais próximas
da própria perspectiva da supervaluacionista, compartilhando algumas de suas percepções
centrais, mas também abandonando outras. Embora concordem com a resposta do tipo (2)
defendida pelas supervaluacionistas, Burgess and Humberstone (1987) discordam da reten-
ção (que é muito discutida), por parte da teoria, da lei do terceiro excluído, adotando em vez
disso uma variante da lógica supervaluacionista que abandona a lei clássica perante apa-
rentes contraexemplos fornecidos pela vagueza. Para uma discussão e crítica a partir de
uma perspectiva supervaluacionista, confira o capítulo 7 de Keefe (2000).

Outra variante do supervaluacionismo é a “lógica discussiva” paraconsistente de Jaś-
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kowski (veja a entrada sobre lógica paraconsistente) que endossa uma resposta do tipo (3)
ao sorites condicional. Uma década antes de Mehlberg (1958) propor pela primeira vez o
que era, com efeito, um tratamento supervaluacionista da vagueza, um aluno de Łukasiewicz
(veja a entrada), Stanisław Jaśkowski, publicou uma descrição de uma lógica que ele propu-
sera como uma lógica dos conceitos vagos. Ela foi, na verdade, o primeiro sistema formal
de lógica paraconsistente. Curiosamente, tanto Mehlberg quanto Jaśkowski eram alunos da
Escola de filosofia de Lvóv-Varsóvia (veja a entrada) onde Łukasiewicz era professor. Abor-
dagens paraconsistentes ao paradoxo de sorites vinham sendo defendidas por marxistas por
algum tempo, com predicações de casos limítrofes fornecendo exemplos paradigmáticos de
situações dialéticas. O paradoxo era comumente citado como evidência da inadequação
da lógica clássica; mas foi somente com o trabalho pioneiro de Jaśkowski que a proposta
recebeu explicação formal. Essa lógica, às vezes agora chamada de “subvaluacionismo”
para enfatizar sua dualidade com o supervaluacionismo, que é mais familiar, representa a
indeterminação semântica postulada como sobredeterminação semântica, em vez da sub-
determinação típica das respostas de lacuna de valor de verdade ao fenômeno da vagueza.
Ao argumentar por uma semântica supervaluacionista para vagueza, Fine (1975) observou
que a abordagem de excesso de valor de verdade (subvaluacionista) pode ser alcançada por
uma simples reinterpretação da abordagem de lacuna de valor de verdade defendida nela.
Para mais informações sobre esse sistema e uma defesa limitada dele, veja Hyde (1997).
Para críticas, veja o capítulo 7 de Keefe (2000), e Beall and Colyvan (2001).

3.3.3 Teorias de grau e multivaloradas

Em contraste com as lógicas não verofuncionais delineadas acima, várias lógicas não
clássicas verofuncionais foram propostas, e em particular, lógicas multivaloradas (veja a
entrada sobre lógica multivaloradas). Novamente, a vagueza é vista como um fenômeno
propriamente semântico, com as indeterminações concomitantes fornecendo casos de sub-
determinação ou sobredeterminação semântica, mas com a verofuncionalidade preservada.
As abordagens variam quanto ao número de valores de verdade não clássicos considerados
apropriados para modelar a vagueza e desfazer o paradoxo de sorites.

Uma proposta inicial, desenvolvida pela primeira vez em Halldén (1949) e Körner (1960)
e reformulada em Tye (1994), usa uma lógica de três valores. A motivação para tal lógica
é semelhante à da supervaluacionista. Assim como um predicado vago divide objetos em
extensão positiva, extensão negativa e penumbra, as sentenças vagas podem ser divididas
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em verdadeiras, falsas, e indeterminadas. Ao contrário da semântica de supervaloração,
no entanto, os conectivos são todos definidos verofuncionalmente. Embora Halldén tenha
proposto as tabelas trivaloradas fracas de Kleene, as tabelas trivaloradas fortes de Kleene
prevaleceram como a escolha preferida. Para as tabelas relevantes, veja o apêndice de
Haack (1974). Uma variação recente, nesse tema, é Field (2003), que complementa as
tabelas fortes de Kleene com um condicional não verofuncional aprimorado e distingue a
semântica trivalorada da abordagem comum de lacuna de valor de verdade.

A resposta específica ao paradoxo de sorites depende ainda, então, da definição de
validade adotada. Uma generalização comum do conceito de validade à lógica multivalo-
rada envolve a designação de certos valores. Uma sentença vale (ou é asserível) em uma
interpretação multivalorada somente se ela recebe um valor designado. A validade pode
então ser definida como a necessária preservação de valor designado. Na lógica clássica,
é claro, somente a verdade é designada e, portanto, o conceito generalizado se reduz ao
conceito clássico de necessária preservação da verdade. Há então duas escolhas não tri-
viais: seja o conjunto de valores designados {verdadeiro} ou {verdadeiro, indeterminado}.
A primeira proposta, defendida por Körner e por Tye, resulta em uma resposta de tipo (2) ao
paradoxo. A última proposta resulta em uma lógica paraconsistente e produz uma resposta
de tipo (3) (veja a seção sobre sistemas multivalorados na entrada sobre lógica paracon-
sistente). Quando associada às tabelas fortes de Kleene, resulta no sistema paraconsis-
tente LP, proposto em outro lugar para lidar com o paradoxo do mentiroso e oferecido como
uma lógica da vagueza em Weber (2010).

Enquanto algumas são motivados a adotar as abordagens trivaloradas anteriores por
sua verofuncionalidade, outras consideram as consequências inaceitáveis. Aquelas que,
por exemplo, acham argumentos supervaluacionistas para leis clássicas plausíveis rejeitarão
asserções de terceiro excluído às vezes não sendo totalmente verdadeiras, ou contradições
às vezes não sendo totalmente falsas, como pode ser o caso em tais sistemas. Uma preo-
cupação adicional com tais abordagens, aplicável também ao supervaloracionismo, é que a
invocada divisão tripartite de sentenças parece enfrentar objeções semelhantes àquelas que
levaram ao abandono da divisão bipartida efetuada pela lógica clássica bivalorada. Devido
ao fenômeno da vagueza de ordem superior (em particular vagueza de segunda ordem),
não parece haver mais motivos para supor que exista uma fronteira nítida entre as senten-
ças verdadeiras e as indeterminadas ou as sentenças indeterminadas e as sentenças falsas
do que havia para supor que exista uma fronteira nítida entre as sentenças verdadeiras e as
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falsas. O fenômeno da vagueza que orienta o paradoxo de sorites não sugere duas frontei-
ras nítidas mais do que sugere uma fronteira. Conceitos vagos parecem ser conceitos sem
quaisquer limites. Nenhum número finito de divisões parece adequado. Tye (1994) busca
evitar essas dificuldades empregando uma metalinguagem vaga; Sainsbury (1990) propõe
que termos vagos são “sem limites”, e que pertencer à extensão de um predicado vago é
mais como ser atraído por um polo magnético do que como se encaixar em um nicho (como
a sabedoria convencional poderia sugerir).

Goguen (1969) e Zadeh (1975), por outro lado, sugerem substituir a lógica clássica de
dois valores por uma de infinitos valores de verdade. Hyde (2008) também adota essa abor-
dagem, embora a semântica de valores infinitos seja considerada um dispositivo puramente
formal e não um compromisso com graus de verdade (veja Cook (2002) a esse respeito).
Lógicas de valores infinito ou difusas (veja a entrada sobre lógica difusa) também foram,
no entanto, promovidas precisamente por seu reconhecimento de graus de verdade. Assim
como a calvície apresenta-se em graus, argumenta-se que também é graduada a verdade
de sentenças que predicam calvície das coisas. O fato de João ser mais calvo do que José
reflete-se na sentença “John é calvo” ter um grau de verdade maior do que “José é calvo”.
Smith (2008) defende uma lógica difusa exatamente por esse motivo.

Lógicas de valores infinitos são então desenvolvidas para resolver o paradoxo de sorites
de várias maneiras. Como em todas as lógicas multivaloradas, os conectivos e a validade
podem ser definidos de várias maneiras, dando origem a uma série de lógicas distintas. Uma
proposta padrão prossegue por meio da semântica verofuncional, de valores contínuos, de
Łukasiewicz (ver o apêndice de Haack (1974)). Assim como no caso trivalorado, o tipo de
resposta oferecida ao paradoxo também depende crucialmente da definição de validade.
Onde a validade é definida como preservação de valor designado e apenas o valor máximo
é designado, o sorites condicional admite uma resposta de tipo (2), como em Hyde (2008).
No entanto, restabelecer a validade das leis clássicas nessa abordagem geral exigiria tornar
designado mais do que o valor máximo, e uma resposta de tipo (3) se segue. Em con-
traste, Machina (1976) sugere definir validade como preservação do menor grau de verdade
possuído por qualquer uma das premissas do argumento. Nessa abordagem, os sorites con-
dicionais são inválidos e, portanto, novamente ocorre uma resposta de tipo (3). Edgington
(1996) expõe uma teoria de graus não verofuncional, particularmente distinta, que preserva o
princípio da bivalência e a lógica clássica. Nessa abordagem, a forma condicional do sorites
é válida e uma resposta de tipo (2) é defendida. Smith (2008) combina uma teoria de grau
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não bivalente e não verofuncional com a lógica clássica por meio de uma definição distinta
de validade. A abordagem singular de Smith fornece outra resposta de tipo (2) ao paradoxo.

Assim como nas abordagens trivaloradas, uma série de problemas acomete as aborda-
gens de valores infinitos para a vagueza. Primeiro, onde a infinidade de valores semânticos é
encarada como modelando graus de verdade, a própria ideia de um grau de verdade precisa
de explicação. Segundo, se valores de verdade numéricos são usados, alguma justificativa
parece necessária para as atribuições particulares de valor de verdade. Terceiro, as implica-
ções completas de abandonar a bem compreendida teoria clássica em favor de uma teoria
de grau precisam ser explicadas antes que uma avaliação adequada de seu mérito possa
ser feita. Sobre esses pontos, veja o capítulo 2 de Sainsbury (1995), e o capítulo 4 de Keefe
(2000). Para uma defesa estendida, veja o capítulo 5 de Smith (2008). Além disso, está longe
de ser claro se tal abordagem evita com sucesso problemas de vagueza de ordem superior.
E a suposição de um conjunto de verdade totalmente ordenado é excessivamente simples.
Nem todas as sentenças de linguagem natural são comparáveis quanto a sua verdade. De-
vido à natureza multidimensional de um conceito como vermelhidão, podemos ser incapazes
de dizer de duas manchas avermelhadas que diferem em matiz, brilho, ou saturação de cor,
se uma é mais vermelha que a outra. Sobre os últimos pontos, veja o capítulo 4 de William-
son (1994). Smith (2008, capítulo 6) argumenta que o chamado problema da vagueza de
ordem superior é, na verdade, um fenômeno distinto, e propõe uma resposta distinta.

Smith defende a visão que ele chama de plurivaluacionismo difuso, misturando elemen-
tos de teorias de grau e do supervaluacionismo. A semântica plurivaluacionista diverge da
supervaluacionista ao atribuir a cada predicado vago múltiplas extensões clássicas precisas
(“interpretações aceitáveis”) e ao abandonar a noção semântica de superverdade. Ele subs-
titui superverdade por “apenas um nível de conversa” governado pela instrução “diga que
uma frase é simplesmente verdadeira se for verdadeira em todas as interpretações aceitá-
veis” (Smith, 2008, p. 109–110). Smith (2008, p. 110) escreve:

A plurivaluacionista nos dirá que “esta folha é vermelha” e “esta folha não é
vermelha” não podem ser ditas nem simplesmente verdadeiras nem simples-
mente falsas, ao passo que “esta folha é vermelha ou não vermelha” pode
ser dita simplesmente verdadeira… Não temos violação da verofuncionalidade
porque não há nível de fato semântico no qual […] uma disjunção recebe o va-
lor Verdadeiro, enquanto nenhum de seus componentes o é. Pois os únicos
fatos semânticos são os fatos sobre o que está acontecendo em cada interpre-
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tação aceitável—e estes são inteiramente clássicos (portanto, verofuncionais).
O que temos é apenas um nível de conversa sobreposto a esses fatos semânti-
cos. A conversa soa não verofuncional, mas é na verdade epifenomenal… Ela
não descreve literalmente uma realidade semântica não funcional da verdade.

Embora “verdade simples” possa diferir significativamente da superverdade, a plurivaluacio-
nista endossa a noção de que as propriedades definidas em múltiplas avaliações (interpre-
tações) desempenham um papel significativo no comportamento verbal de falantes compe-
tentes.

3.3.4 Contextualismo e seus parentes

Insatisfeito com abordagens multivaloradas e supervaluacionistas, Kamp (1981) intro-
duziu uma solução contextualista para o paradoxo. Focando-se na forma indutiva do sorites,
Kamp sustentou que toda instanciação da premissa maior é verdadeira em seu contexto indi-
vidual, onde um contexto consiste das sentenças (contendo o predicado dado) previamente
aceitas como verdadeiras. Para Kamp, um contexto é apenas um conjunto de sentenças.
Cada instância é verdadeira porque seu antecedente deve ser adicionado ao contexto ope-
rativo antes que seu consequente seja avaliado, e os valores adjacentes referidos no antece-
dente e consequente são apenas incrementalmente diferentes. Em uma semântica clássica,
a premissa maior universal seria então verdadeira também; mas Kamp adota uma definição
não clássica ditando que a premissa universal é verdadeira em contextos (i) onde suas ins-
tâncias são verdadeiras e (ii) que permanecem coerentes quando a premissa universal é
ela própria adicionada. O problema é que adicionar essa premissa produz um contexto in-
coerente que “atribui valores de verdade opostos à mesma frase” (Kamp, 1981, p. 252).
Portanto, a premissa é falsa, apesar de todas as suas instâncias serem verdadeiras. A re-
latividade contextual dessa visão é intuitivamente atraente, e é isenta da necessidade de
explicar por que cada instância da premissa universal parece verdadeira quando pelo me-
nos uma precisa ser falsa. Ao mesmo tempo, a semântica não padrão para o quantificador
universal pode parecer contraintuitiva.

Inspirada por Kamp, uma abordagem contextualista subsequente (Raffman, 1994) afirma
que a premissa maior do paradoxo é falsa, mas parece verdadeira por ao menos duas ra-
zões. Primeiro, nós a confundimos com a afirmação verdadeira de que se𝛼𝑖 éΦ então𝛼𝑖+1
é Φ quando os dois valores são considerados juntos, dois a dois. A afirmação sobre pares,
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embora verdadeira, não autoriza a conclusão paradoxal, que faz referência apenas a um
valor considerado individualmente. A segunda razão é uma hipótese, a saber, que a pre-
missa principal pode ser falsa, embora parecendo verdadeira, porque a falante que executa
uma marcha forçada sofre uma mudança característica em suas disposições verbais no mo-
mento de mudar de “Φ” para “não-Φ”. Essa mudança disposicional constitui uma mudança
de contexto (semelhante a uma mudança de Gestalt) que permite que as extensões coor-
denadas de “Φ” e de “não-Φ” mudem de modo que os valores 𝛼𝑖 e 𝛼𝑖+1 adjacentes ao
ponto de troca sejam agora ambos classificados como não-Φ; em particular, 𝛼𝑖 é classifi-
cada como Φ antes da troca, e como não-Φ depois. Assim, nenhum predicado é aplicado
de forma a distinguir entre os dois valores relativos ao mesmo contexto, e assim a falante é
capaz de mudar de “Φ” para “não-Φ” sem cruzar uma fronteira. A premissa maior parece
verdadeira porque falhamos em perceber que a verdade pode ser assegurada para todas as
suas instâncias conjuntamente apenas mediante equivocação de contexto.

Essa última visão foi criticada por (entre outras coisas) aplicar-se apenas ao paradoxo da
marcha forçada, em oposição ao sorites propriamente dito; o sorites diz respeito a uma série
de valores (propriedades como cores, alturas, idades, etc.) em abstrato, independentemente
de qualquer coisa relativa às disposições verbais ou comportamentais de falantes. Para co-
locar a crítica de outra forma, a descrição de Raffman pode explicar por que a premissa maior
do sorites de marcha forçada parece verdadeira, mas não toca o paradoxo propriamente dito.
Na medida em que suas soluções frequentemente envolvem um elemento dinâmico, outros
tratamentos contextualistas do paradoxo também podem ser vulneráveis a essa objeção.

Soames (1999, 2002) sustenta que termos vagos são sensíveis ao contexto da mesma
forma que expressões indexicais. Stanley (2003) objeta que, se Soames estiver certo, então
um diagnóstico do paradoxo como equivocando um parâmetro contextual implícito é inter-
ditado porque indexicais não admitem interpretação variável em elipse de sintagma verbal.
Considere a afirmação “José está cansado agora e Joana também”. Tanto a primeira quanto
a segunda ocorrência (implícitas) do indexical “agora” devem receber a mesma interpreta-
ção: José e Joana estão cansados ao mesmo tempo. Como resultado dessa fixidez de
interpretação, versões do paradoxo de sorites que empregam essas elipses não estão aber-
tas à solução contextualista, mesmo na presença do tipo relevante de variação contextual.
Stanley (2003, p. 272) dá o seguinte exemplo:

Se aquilo1 é um amontoado então aquilo2 também é, e se aquilo2 é, então
aquilo3 é, e se aquilo3 é, então aquilo4 é, …, e então aquilon é…
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onde “aquilon” refere-se ao enésimo elemento de uma série de sorites para “amontoado”.
Se “amontoado” é indexical, como propõe Soames, não há como supor que sua extensão
muda de conjunto para conjunto na formulação de Stanley. Defendendo a contextualista,
Raffman (2005) responde negando que termos vagos sejam indexicais. Ela argumenta que,
na elipse do sintagma verbal, termos vagos devem ser entendidos no modelo de “aquele
elefante é grande, e aquela pulga também”. Aqui a extensão de “grande” varia entre os dois
conjuntos, apesar da elipse (Ludlow, 1989).

Embora Graff Fara defenda uma solução epistêmica para o paradoxo, ela propõe uma
explicação contextualista dinâmica para o apelo intuitivo da(s) premissa(s) condicional(ais).
Em sua visão, predicados vagos expressam propriedades relativas a interesses, no sentido
de que suas extensões são determinadas pelo que conta como significativo para uma falante
em um momento. As premissas do paradoxo parecem verdadeiras porque um falante rea-
lizando uma marcha forçada tem um “interesse permanente em eficiência que [o] faz evitar
fazer discriminações que são muito custosas” (Fara, 2008, p. 327–328). Por exemplo, para
qualquer par de alturas adjacentes, incrementalmente diferentes em uma série de sorites
para “alto”: quando o falante está considerando ativamente o par, de modo que a similari-
dade entre as duas alturas é saliente, o custo de discriminar entre elas supera os benefícios:

Suponha que meu propósito principal seja escolher uma cerejeira para o quin-
tal. Uma discriminação entre duas cerejeiras que são muito semelhantes em
altura será muito custosa, dado meu interesse em eficiência. Mas a discrimi-
nação será ainda mais custosa quando eu estiver ativamente considerando as
duas árvores como opções vigentes para meu propósito (Fara, 2008, p. 328).

Devido ao alto custo, as duas alturas em questão serão tratadas como “iguais para os propó-
sitos presentes”, e, se uma das árvores for alta, a outra também será. Com efeito, a aplicação
de “alta” é governada por uma forma de tolerância relativa a interesses. Presumivelmente,
o interesse do falante deve invariavelmente ser em custo sempre que ele considera valores
salientemente semelhantes; em particular, seu interesse não pode ser substituído por um
diferente, como, digamos, um interesse na localização da fronteira nítida.

Alguns contextualizadores, como Burns (1991), fazem uso da ideia de que os limites
nítidos de um predicado nunca estão onde se está olhando, para defender uma análise
puramente pragmática do paradoxo de sorites que deixa a semântica e a lógica clássicas
intactas; outros veem consequências para a lógica e a semântica e defendem uma aborda-
gem não clássica. O livro de Shapiro (2006) desenvolve uma teoria contextualista dinâmica
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empregando uma variante distinta da lógica e da semântica supervaluacionistas para for-
necer uma solução de tipo (2) para o paradoxo. Soames (1999) apela à sensitividade a
contexto para defender uma lógica trivalorada de predicados vagos, postulando limites en-
tre os exemplares determinados, os não exemplares determinados, e os casos limítrofes.
Juntamente com a semântica forte trivalorada de Kleene, esse contextualismo não clássico
nega a verdade da premissa maior universalmente quantificada do paradoxo, ao passo em
que também nega sua falsidade. Tappenden (1993) sugere uma abordagem trivalorada si-
milar que apela ao contexto para explicar a aparente verdade da premissa universalmente
quantificada, mas seu uso da noção de contexto aqui difere sutilmente daquele de Kamp e
Soames. O sorites condicional também admite solução. Aceitando as condições de verdade
trivaloradas padrão para o quantificador universal, Soames (1999) considera que o sorites
condicional tem alguma premissa condicional que não é verdadeira.

Para críticas e uma taxonomia útil de diferentes variedades de contextualismo (com
atenção especial à distinção entre perspectivas de “mudança de extensão” e “mudança de
fronteira”), veja Åkerman (2009) e Åkerman and Greenough (2010).

3.3.5 A teoria de intervalos múltiplos

A teoria de intervalos múltiplos (“multi-intervalos”) é uma teoria semântica da vagueza
que pretende manter a lógica clássica e a bivalência.9 Aqui, a vagueza de uma expressão
consiste em ela ter múltiplas formas de ser aplicada, igualmente permissíveis e arbitraria-
mente diferentes, em relação a um dado contexto (Raffman, 2014, capítulo 4). Em uma
série de sorites, a vagueza de um termo reflete-se em ele ter múltiplos lugares, igualmente
permissíveis e arbitrariamente diferentes, para parar de ser aplicado. Qualquer teoria ade-
quada da vagueza deve reconhecer a existência de lugares de parada permissíveis em uma
série sorites, uma vez que usuários competentes de um termo vago são obrigados a pa-
rar de aplicá-lo antes do fim. Por exemplo, em uma série de sorites de idades procedendo
de uma idade claramente avançada de 90 para uma idade claramente de meia-idade (não
idosa, portanto) de 50, digamos para os americanos em 2018—torne o contexto tão deta-
lhado quanto quiser—os falantes podem parar de aplicar “velho” aos 70, ou aos 67, ou 65,

9A bivalência é preservada em grande medida por meio de uma análise incompatibilista de casos limítrofes que
os define em termos de uma oposição entre predicados incompatíveis como “velho” e “de meia-idade” em vez
de contraditórios como “velho” e “não velho” (capítulo 2 de Raffman (2014)).
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ou 63,5, etc.10 Diferentes falantes pararão em idades diferentes, e o mesmo falante parará
em idades diferentes em ocasiões diferentes. Qualquer ponto de parada específico na sé-
rie é arbitrário, portanto sem força legislativa; falantes não podem justificadamente acusar
umas às outras de erro quando param em lugares diferentes. Em contraste, um limite seria
legislativo; as falantes que falhassem em parar de aplicar “velho” nos limites deste estariam
cometendo erros. A distinção entre limites e pontos de parada permissíveis é uma pedra
angular da abordagem multi-intervalos.

Diz-se que essa multiplicidade de aplicações reflete-se na semântica do predicado na
forma de múltiplos intervalos de aplicação. Um intervalo de aplicação é apenas uma repre-
sentação abstrata, na semântica, de uma maneira permissível de aplicar o predicado. Mais
formalmente: um intervalo é um conjunto de valores (por exemplo, idades) a cujas instan-
ciações o predicado pode ser competentemente aplicado. Em uma série de 90 a 50, um
intervalo de aplicação de “velho” pode conter as idades de 90 a 70, outro, de 90 a 65, outro,
de 90 a 63,5, e assim por diante; e as idades nesses vários intervalos (por exemplo, 90 a 70)
serão instanciadas por pessoas diferentes em mundos diferentes.

De acordo com a visão de múltiplos intervalos, uma sentença aplicando um termo vago
a um determinado valor é verdadeira em relação a cada um dos seus intervalos que contêm
esse valor, e falsa em relação a cada um dos outros. Alguns intervalos de “velho”, “limítrofe”,
e “meia-idade” são exibidos na figura (II).1. Note que cada predicado tem alguns intervalos
que se sobrepõem a alguns intervalos dos outros dois. A figura indica que, para uma pessoa
de 63 anos, a sentença “𝑥 é velho” é verdadeira em relação ao terceiro, ao quarto, e ao
quinto intervalo de “velho”, e falsa em relação ao primeiro e ao segundo. A sentença “𝑥 é de
meia-idade” é verdadeira em relação ao primeiro e ao segundo intervalo de “meia-idade”, e
falsa em relação a cada um dos outros. A sentença “𝑥 é meio velho” é verdadeira em relação
a cada intervalo de “quase velho”, exceto o quarto, e falsa em relação ao último.

Raffman alerta contra duas confusões em potencial. (1) Intervalos de aplicação não são
precisificações (Raffman, 2014, p. 102–3). Para ver porque, observe que na visão multi-
intervalos, o predicado “limítrofe” tem intervalos de aplicação como qualquer outro termo
vago; intervalos de aplicação de “limítrofe” contêm valores limítrofes. Em contraste, por sua
natureza, as precisificações não contêm valores limítrofes. Segundo, um intervalo de (por
exemplo) “velho” contém apenas idades avançadas, enquanto uma precisificação de “velho”

10Aqui, um contexto é definido por coordenadas como dimensões decisivas, classes de comparação, e categorias
contrastivas; também pode incluir propósitos, interesses das falantes, e padrões de aplicação, entre outros.
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90 85 80 78 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45
V MI
90 ---------------------------------- 70
90 ------------------------------------------------------ 65
90 ---------------------------------------------------------------------------------------------- 55
90 -------------------------------------------------------------------------- 60
90 -------------------------------------------------------------- 63

69 ---------------------------------------------------------------------- 50
64 -------------------------------------------------- 50

59 ------------------------------ 50
54 ---------- 50

62 ------------------------------------------ 50
69 ---------------------- 62

64 ---------- 60
66 -------------------------------------- 55

60 ------ 57
68 ------------------------------------------ 56

“velho”

“de meia-
idade”

“limítrofe”

Figura (II).1: Alguns intervalos de aplicação de “velho”, “meia-idade” e “velho [meia-idade]
limítrofe”.

contém idades avançadas e idades não avançadas (de meia-idade, por exemplo). Portanto,
um intervalo contém apenas um local de parada permissível, enquanto uma precisificação
contém um limite nítido. Consequentemente, em terceiro lugar, enquanto um intervalo es-
pecifica uma maneira pela qual falantes competentes podem realmente aplicar o termo, um
falante que aplicasse “antigo” conforme uma precisificação estaria aplicando-o (talvez erro-
neamente) como se ele tivesse limites nítidos. Em quarto lugar, a visão de múltiplos interva-
los não contém nenhum análogo de superverdade; a verdade comum é a verdade relativa
a um único intervalo. (2) Intervalos de aplicação não são (aspectos de) contextos. Entre
outras coisas, enquanto os falantes normalmente estão (ou podem estar) cientes do con-
texto ao qual estão relativizando, e podem escolher um determinado contexto por uma certa
razão, eles não escolhem (não podem escolher) os intervalos aos quais relativizarão suas
aplicações de um termo vago. Em vez disso, os falantes simplesmente escolhem como
classificarão um determinado valor, e essa classificação é relativizada—automaticamente,
por assim dizer, em virtude da semântica do termo—em relação a cada um de seus inter-
valos que contém o valor em questão. A relativização a intervalos não é algo que falantes
fazem. Nesse âmbito, vale notar que, enquanto os tratamentos contextualistas do sorites
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são tipicamente pareados com um tipo distinto de semântica para termos vagos, por exem-
plo, uma semântica epistemicista, supervaluacionista ou trivalorada, a soluçãomulti-intervalo
emprega uma semântica multi-intervalo própria.

Na visão multi-intervalos, diz-se que o sorites é resolvido porque, sob pena de equi-
vocação de intervalos, cada linha no paradoxo deve ter seu valor de verdade relacionado
aos mesmos intervalos de aplicação de “velho”. E como cada intervalo contém uma última
idade—um ponto de parada permissível—a premissa maior do paradoxo é falsa em relação
a cada intervalo do predicado para qualquer contexto.

A teórica de multi-intervalos levanta a hipótese de que a premissa maior do paradoxo pa-
rece verdadeira porque a confundimos com duas regras pragmáticas para o uso de palavras
vagas (Raffman, 2014, p. 172–175):

1. Para qualquer termo vago “Φ”: se 𝛼𝑛 e 𝛼𝑛+1 são apenas incrementalmente dife-
rentes em uma dimensão decisiva, então qualquer aplicação diferencial do predicado
entre eles, ou seja, qualquer aplicação de “Φ” a um, mas não ao outro, deve ser
arbitrária (isto é: arbitrária ao invés de ilícita).

2. Para qualquer termo vago “Φ”: se 𝛼𝑛 e 𝛼𝑛+1 são apenas incrementalmente diferen-
tes em uma dimensão decisiva, então, se 𝛼𝑛, então 𝛼𝑛+1, na medida em que 𝛼𝑛
e 𝛼𝑛 são considerados dois a dois.11

Dos seus aspectos discutidos aqui, a abordagemmulti-intervalo foi criticadamais proeminen-
temente por seu comprometimento com um relativismo extremo sobre a verdade. Oponentes
objetam que uma coisa é relativizar a verdade a mundos possíveis, e a fatores contextuais
como falantes, tempos, localizações espaciais, classes de comparação, interesses e pro-
pósitos de falantes, apostas, e padrões de avaliação; e outra bem diferente é relativizar a
verdade a fatores que variam mesmo depois que todos esses parâmetros contextuais foram
fixados. A relatividade extremamente refinada proposta pela teórica multi-intervalo parece
esticar a noção de verdade até o ponto de ruptura. Além disso, surgem questões sobre a
vagueza (de ordem superior) do próprio predicado “intervalo de aplicação”; e não está claro
se falantes seguem uma regra como (I) acima. Veja Åkerman (2014); Égré (2015); Sains-
bury (2015); Scharp (2015); Caie (2015) para essas e outras críticas; e Raffman (2015) para
11O suporte para (II) é extrapolado de experimentos de Raffman e colegas sobre o uso de predicados de cor
(capítulo 5 de Raffman (2014)). Alguém poderia questionar, é claro, se o uso de um termo não observacional
como “velho” ou “rico” produziria os mesmos resultados.
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algumas respostas. Embora não haja espaço para revisá-los aqui, devemos observar que
teóricas da vagueza fizeram uma variedade de estudos empíricos reveladores investigando
o uso de termos vagos por falantes comuns. Só a título de exemplo, veja Égré (2009); Ripley
(2011); Alxatib and Pelletier (2011); Serchuk et al. (2011); Huang (2012, 2013); Égré et al.
(2013).

3.4 Aceitando o paradoxo
Várias filósofas endossaram uma resposta de tipo (4), tirando a conclusão radical de que

o paradoxo é insolúvel; estamos simplesmente presos com ele. A questão então é o que o
paradoxo mostra. Dummett (1975), por exemplo, sustenta que predicados observacionais
vagos cuja aplicação é supostamente governada por uma relação de indiscriminabilidade
não transitiva são incoerentes. Essa visão parece fatal para a noção familiar de um tom
determinado de cor (veja, por exemplo, Jackson (1975); Wright (1975); Peacocke (1992);
Fara (2001); Mills (2002); Hellie (2005); Chuard (2007) para discussão).

Uma resposta de tipo (4) diferente sustenta que, ao contrário das aparências, os pa-
radoxos de sorites condicionais são corretos. Por exemplo, é verdade, afinal, que nenhum
número de grãos de trigo forma um amontoado. No entanto, tal visão imediatamente depara-
se com problemas porque os paradoxos vêm em pares. Como observado acima, há versões
negativas e positivas do quebra-cabeça dependendo de se o predicado de sorites é negado.
Aceitar todos os argumentos de sorites como corretos requer assentir à afirmação adicional
de que, já que um grão de trigo forma um amontoado, qualquer número forma. Uma inco-
erência radical se segue, uma vez que há um compromisso com todo e qualquer número
tanto formando quanto não formando um amontoado. Da mesma forma, todos são calvos e
ninguém é; todos são ricos e ninguém é, e assim por diante.

O problema é que a corretude de qualquer sorites condicional positivo enfraquece a
verdade da premissa incondicional da respectiva versão negativa, e vice-versa. A menos
que se esteja preparado para aceitar uma pandemia de contradições na linguagem natural,
nem todos os sorites podem ser corretos. Unger (1979) e Wheeler (1979) propõem uma
aceitação mais restrita. Insatisfeitos com respostas de tipos (1) e (3), nós aceitamos a apli-
cabilidade e validade das normas clássicas de raciocínio. No entanto, a insatisfação com as
respostas de tipo (2) consideradas até agora—rejeitar alguma premissa condicional—deixa
em aberto a opção de rejeitar a premissa menor (incondicional) ou aceitá-la e, com ela, a
corretude do paradoxo. O que é defendido é a corretude daqueles sorites que negam “mon-
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ticidade”,12 calvície, hirsutismo, riqueza, pobreza, etc. de tudo—uma resposta de tipo (4)—e
a respectiva falsidade da premissa incondicional de todas as respectivas variantes positivas
do argumento—uma resposta de tipo (2). Termos como “amontoado”, “calvo”, “cabeludo”,
“rico”, e “pobre” não se aplicam a nada. Para críticas, veja o capítulo 6 de Williamson (1994).

4. Unificação com o paradoxo do mentiroso

O paradoxo sorites tem sido tradicionalmente visto como não relacionado de nenhuma
forma substancialmente interessante aos paradoxos semânticos, e relativos a teoria de con-
juntos, de autorreferência. No entanto, McGee (1991) e Tappenden (1993) propuseram um
tratamento unificado dos paradoxos do mentiroso e de sorites, com base em similaridades
entre predicados vagos e o predicado da verdade. Mais recentemente, Field (2003, p. 262)
fala sobre

certa tentação de conectar [os paradoxos semânticos aos paradoxos da va-
gueza] ao ver os paradoxos semânticos como devidos a algo semelhante à
vagueza ou indeterminação em conceitos semânticos como “verdadeiro”.

Field (2008) desenvolve mais esse tema, embora seja dedicado principalmente a uma reso-
lução dos paradoxos do mentiroso, de Curry, e outros. A abordagem de Field é por meio de
uma lógica que abandona a lei do terceiro excluído.

Algumas veem a unificação como muito mais claramente indicada pelo suposto fato de
que os paradoxos semânticos e de sorites são eles próprios “de um tipo”. Assim, Colyvan
(2009) aponta para uma série de maneiras pelas quais os paradoxos podem ser considera-
dos de um tipo per se, concluindo que o mentiroso e o sorites são exemplares e, portanto,
merecedores de uma solução similar. Priest (2010) endossa essa afirmação, argumentando
que tanto os paradoxos de autorreferência quanto o de sorites têm uma estrutura subjacente
comum, satisfação do que Priest chama de “esquema de fechamento”. Partindo do pressu-
posto de que essa estrutura comum basta para justificar um tratamento semelhante, Priest
defende uma resposta paraconsistente ao sorites, tendo defendido em outros lugares uma
resposta paraconsistente aos paradoxos da autorreferência. De fato, assim como acontece
com sentenças paradoxais, algumas frases vagas envolvendo casos limítrofes fornecerão
exemplos de contradições verdadeiras, dialeteias.
12N.T.: a propriedade de ser um amontoado (de alguma coisa).
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5. Lições filosóficas

Tendo considerado várias grandes famílias de respostas aos desafios lógicos e semân-
ticos colocados pelo sorites, vale a pena refletir sobre algumas das questões filosóficas mais
amplas que o problema levanta. Uma vez que o fenômeno profundamente intrigante da
vagueza manifesta-se primeiramente e sobretudo como um fenômeno linguístico, não é sur-
preendente que as respostas se cruzem de várias maneiras com problemas relativos a sig-
nificado, verdade e referência.

5.1 Significado como uso
Um desafio colocado contra a resposta da teórica epistemicista é que, nessa visão, a

conexão comumente assumida entre significado e uso parece ser tensionada, se não com-
pletamente rompida (veja novamente §3.2). Embora o princípio de margem de erro discutido
emWilliamson (1994) possa servir para explicar como poderíamos ser ignorantes dos limites
nítidos postulados, pode-se pensar que, uma vez que nosso uso de termos vagos não traça
limites nítidos, ele não poderia contê-los, dada a conexão geralmente aceita entre significado
e uso. Como Williamson (1994, p. 205) relata essa preocupação que outros podem ter, “a
visão epistemicista de vagueza posiciona condições de verdade como flutuando inaceita-
velmente livres de nossas disposições a concordar e discordar”. Parece que tal visão deve
abandonar a ideia de que nosso uso determina o significado.

Uma resposta óbvia é que a conexão entre significado e uso não é tão forte quanto se
poderia supor. A natureza também pode às vezes desempenhar um papel na determinação
do significado, por exemplo, no caso de termos de tipo natural; mas para um predicado
como, digamos, “fino”, é improvável que a natureza forneça o que nosso uso não fornece.
Williamson responde ainda apontando que a tese de determinação em questão é realmente
uma tese de superveniência—significado sobrevém ao uso—e essa tese pode ser aceita
pelas epistemicistas. De fato, a epistemicista não pode dizer exatamente como o significado
sobrevém ao uso, e não pode portanto calcular o significado ou as condições de verdade
de uma aplicação de um termo vago a partir de fatos sobre o uso. No entanto, continua a
resposta, essa incapacidade é algo que todas as teóricas devem aceitar. Supor que a teoria
epistêmica deve atender essa demanda é depositar expectativas irracionais sobre a teoria
(veja Williamson (1996) e Burgess (2001) para discussão adicional).

A tese da superveniência também é desafiada por considerações de simetria. Quando
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confrontada com um caso limítrofe de “fino”, diz o argumento, uma usuária da linguagem não
concordará nem com a aplicação do termo, nem com a aplicação de sua negação. Padrões
de dissenso são simétricos de forma similar com relação às duas alegações.13 E ainda
assim, apesar dessa simetria no nível de uso, ela deve ser quebrada no nível de verdade
e falsidade, onde um dos termos ou sua negação verdadeiramente aplica-se, conforme a
teoria; uma ou outra asserção é verdadeira, e a outra é falsa. Se nossos padrões de uso
deixam a questão incerta igualmente em qualquer direção, então como pode a verdade da
questão ser resolvida sem arbitrariedade nem um rompimento da conexão entre significado
e uso? A resposta, sugere Williamson, está no fato de que verdade e falsidade não são
noções simétricas. A falsidade obtém-se na ausência de verdade, então onde há simetria
no nível de uso, a falsidade reina. Se essa resposta é bem sucedida é debatido em Burgess
(2001) e Weatherson (2003).

5.2 Verdade e o esquema T

Como já observado em conexão com o supervaluacionismo, teorias que abandonam a
bivalência foram acusadas de ter que rejeitar a restrição tarskiana exigida sobre a verdade
encapsulada em seu esquema T: “𝑝” é verdadeiro se, e somente se, 𝑝. Diz-se que a re-
jeição da bivalência no contexto do esquema T leva ao absurdo (capítulo 7 de Williamson
(1994); veja Wright (1995) para críticas). Essa acusação aplica-se de forma mais geral a
qualquer teoria não bivalente de vagueza associada ao esquema T. Se validada, a pressão
para abandonar a bivalência na presença de vagueza lançaria dúvidas sobre uma explicação
deflacionária da verdade. Muitas acharão essa consequência desagradável. Field (2008),
por exemplo, dedica-se a salvar essa explicação da verdade de uma série de paradoxos, e
rejeita uma abordagem de lacunas de valor de verdade.

As supervaluacionistas responderam observando que, embora o esquema T não seja
verdadeiro, uma tese de implicação mútua correspondente não é ameaçada: “ ‘𝑝’ é verda-
deiro” implica e é implicado por “𝑝”. No entanto, a última afirmação é estritamente mais
fraca do que a respectiva afirmação envolvendo o condicional de acordo com o supervalu-
acionismo, e podemos nos perguntar se o comprometimento mais fraco é suficiente para
capturar o que importa sobre a verdade (ver o capítulo 8 de Keefe (2000)). Outras discorda-
ram do argumento de Williamson apontando que, no contexto de abordagens não bivalentes

13Essas são, naturalmente, afirmações empíricas que precisariam ser testadas.
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à vagueza, a negação pode ser definida de várias maneiras e que o argumento supõe uma
rejeição da bivalência invocando uma leitura particularmente forte da negação. Williamson
argumenta em resposta que, embora possa ser oferecida uma descrição apropriadamente
fraca da negação, o suficiente para minar o argumento por uma aceitação geral da biva-
lência, no caso especial da vagueza, o fenômeno da vagueza de ordem superior fornece
os materiais para reduzir ao absurdo, de forma semelhante, essa rejeição mais fraca. Ver
Williamson (1994, 193f) e Pelletier and Stainton (2003) para discussão adicional.

A tese então é que, mesmo se houvesse um sentido em que a verdade fosse não bi-
valente e, ainda assim, satisfizesse o esquema T, disponibilizando assim uma explicação
deflacionária, a natureza particular do problema colocado pela vagueza impede tal síntese.
A profundidade do problema, como evidenciado pelo fenômeno da vagueza de ordem supe-
rior, mostra que ele não pode ser explicado por uma rejeição da bivalência apenas.

5.3 A imperscrutabilidade da referência
Tentativas de resolver o paradoxo de sorites também evidenciam questões de referên-

cia. Diferentemente das respostas epistemicistas ao sorites que postulam limites imperscru-
táveis, o supervaluacionismo é frequentemente associado a uma abordagem semântica da
vagueza aparentemente comprometida com a imperscrutabilidade da referência.

Considere um paradoxo de sorites usando o predicado “está no Everest” usando a série
de discriminações milimétricas ao longo de uma linha do seu pico até o fundo do vale abaixo.
O primeiro ponto (o cume) está claramente no Everest. O último (no vale) claramente não
está. E não há um ponto claro no meio onde traçaríamos a fronteira nítida separando a
montanha de seus arredores. A vagueza ou indeterminação que subjaz a esse paradoxo
de sorites não é, nessa abordagem, resultado de limitações epistêmicas, nem resultado de
indeterminação no próprio Everest, mas, em vez disso, surge como resultado da indetermi-
nação em torno do que contar como o referente do termo. De acordo com a supervaluaci-
onista, vagueza é uma questão de indecisão semântica, como frequentemente se coloca.
No caso em questão, simplesmente não há fatos quanto a exatamente que porção da Terra
está sendo referida. Há uma gama de candidatas admissíveis, todas com igual pretensão
de ser o Everest, entre as quais simplesmente não decidimos, nem (parafraseando Lewis)
alguém é estúpido o suficiente para tentar. Nesse caso, sobrepondo-se ao problema da mul-
tiplicidade (veja a entrada sobre o problema da multiplicidade), a teoria compromete-se com
um termo singular “Everest”, embora aparentemente como um sintagma denotativo, sem ne-
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nhum referente determinado único. Isso coaduna-se com a análise muito anterior de Russell
de vagueza como “um-multiplicidade na denotação”.

Como aponta Keefe (2000, capítulo 7.1), o supervaluacionismo assim entendido não
obstante torna verdadeira a alegação de que há apenas um (nitidamente delimitado) Monte
Everest (reivindicando assim uma solução para o problema da multiplicidade, e para o para-
doxo de sorites supramencionado, já que é verdade que há um ponto de corte nítido para se
estar no Everest), mesmo que não haja nenhuma montanha (nitidamente delimitada) da qual
seja verdade que é a coisa referida por “Everest” (e, portanto, nenhum ponto na montanha
do qual possamos dizer que é verdadeiramente o ponto de corte). Há apenas um Everest,
mas não há fatos sobre o que ele é.

Assim como nos problemas anteriores sobre o papel da quantificação existencial no
supervaluacionismo, pode-se debater se essa é uma consequência a ser aceita ou uma
consequência indesejada que enfraquece a teoria sendo avançada. É certamente surpre-
endente que a referência seja inescrutável dessa forma. Além disso, tais casos não são a
exceção; dada a ubiquidade de termos singulares vagos, tais casos parecem ser a regra (ver
Lewis (1993); McGee and McLaughlin (2000); Morreau (2002)).
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(III) Paradoxos Epistêmicos1

Título Original: Epistemic Paradoxes
Autor: Roy Sorensen

Tradução: Renato Semaniuc Valvassori
Revisão: Rafael dos Santos Ongaratto

Paradoxos epistêmicos são enigmas que se voltam para o conceito de conhecimento
(“episteme” é a palavra grega para conhecimento). Tipicamente, há respostas conflitantes
e igualmente bem qualificadas a essas questões (ou pseudo-questões), o que leva direta-
mente a inconsistências. No longo prazo, esses enigmas nos instigam e nos orientam a
corrigir ao menos algum erro profundo – quando não diretamente acerca do conhecimento,
então no que concerne conceitos a ele aparentados, tais como justificação, crença racional
e evidência.

Tais correções são do interesse de epistemólogos. Historiadores datam a origem da
epistemologia quando da aparição dos céticos. Como fica evidente a partir da leitura dos
diálogos de Platão em que figura Sócrates, paradoxos epistêmicos têm sido discutidos há
dois mil e quinhentos anos. Dada a dificuldade que apresentam, alguns desses enigmas
ainda podem muito bem ser alvo de discussão pelos próximos dois mil e quinhentos anos.

1SORENSEN, Roy, “Epistemic Paradoxes”, In: ZALTA, E. N.; NODELMAN, Uri (eds.). Stanford Encyclopedia
of Philosophy. Winter Edition. Stanford, CA: The Metaphysics Research Lab, 2023. Disponível em: https:
//plato.stanford.edu/archives/win2023/entries/epistemic-paradoxes/. Acesso em: 21 de mar. 2022.
A seguir está a tradução da entrada sobre Paradoxos Epistêmicos de Roy Sorensen na Stanford Encyclopedia of
Philosophy. A tradução segue a versão da entrada nos arquivos da SEP em https://plato.stanford.edu/archives/
win2023/entries/epistemic-paradoxes/. Esta versão traduzida pode diferir da versão atual da entrada, que pode
ter sido atualizada desde omomento desta tradução. A versão atual está localizada em https://plato.stanford.edu/
entries/epistemic-paradoxes/. Gostaríamos de agradecer aos editores da Stanford Encyclopedia of Philosophy,
principalmente o Prof. Dr. Edward Zalta e Uri Nodelman, por concederem permissão para traduzir e publicar
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1. O Paradoxo da Prova Surpresa

Uma professora anuncia que haverá uma prova surpresa semana que vem. Será uma
prova surpresa na medida em que os estudantes serão incapazes de saber com antecedên-
cia em que dia a prova será aplicada. Um estudante, contudo, objeta apontando que essa
é uma impossibilidade: “A aula ocorre às segundas, quartas e sextas-feiras. Se a prova for
aplicada na sexta-feira, então quinta-feira serei capaz de prever que a prova será na sexta-
feira. Não seria, portanto, surpresa. Poderia a prova ser aplicada na quarta-feira? Não, pois
na terça-feira eu saberia que a prova não seria aplicada na sexta-feira (dado o raciocínio an-
terior) e saberia que a prova não ocorreu na segunda (graças àminhamemória). Portanto, na
terça-feira eu poderia prever que a prova seria aplicada na quarta-feira e, assim, essa prova
já nãomais seria surpresa. A prova surpresa poderia ocorrer na segunda-feira? No domingo,
as conclusões eliminatórias alcançadas já estariam disponíveis para mim e, consequente-
mente, eu saberia que a prova deveria ser aplicada na segunda-feira. Por conseguinte, uma
prova na segunda-feira não poderia ser caracterizada como surpresa. Portanto, é impossível
ocorrer uma prova surpresa”.

Seria a professora capaz de cumprir aquilo que anuncia? Encontramo-nos numa encru-
zilhada. Por um lado, há o argumento da eliminação oferecido pelo estudante. (Para uma
formalização, ver Holliday 2017). Por outro lado, o senso comum nos diz que provas sur-
presa são possíveis mesmo quando estamos em posição de saber que em algum momento
elas ocorrerão. Qualquer uma das alternativas poderia ser vista como decisiva, não fosse o
peso da resposta rival. Temos, assim, um paradoxo. Mas um paradoxo de que natureza?
“Prova Surpresa” é um paradoxo definido em termos do que pode ser conhecido. Mais espe-
cificamente, uma prova é considerada surpresa se, e somente se, os estudantes não forem
capazes de saber com antecedência em que dia a prova ocorrerá. Portanto, o enigma da
prova surpresa é considerado um paradoxo epistêmico.

Paradoxos são mais do que surpresas edificantes. Eis uma surpresa edificante que não
apresenta um paradoxo. A professora de estatística anuncia que realizará questionários ale-
atoriamente: “Haverá aulas todos os dias. A cada dia eu começarei uma nova aula rolando
um dado. Quando o resultado da rolagem for seis, eu imediatamente aplicarei um ques-
tionário. Hoje, uma segunda-feira, obtive seis na rolagem. Portanto, vocês receberão um
questionário. A última questão de seu questionário é: “Em qual dos dias subsequentes há
a maior chance de ocorrer o próximo questionário aleatório?”. A maior parte das pessoas
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responde que há a mesma probabilidade de ser aplicado um questionário aleatório em cada
um dos dias subsequentes. Mas a resposta correta é: Amanhã (Terça-feira).

Fatos incontroversos sobre probabilidade revelam o erro incorrido e estabelecem a res-
posta correta. Para que o próximo questionário seja aplicado quarta-feira, deve haver uma
conjunção de dois eventos: não ter um questionário aplicado terça-feira (com � de chances
disso ocorrer) e a aplicação do questionário quarta-feira (com � de chances). A probabilidade
de ocorrer a aplicação do questionário em cada dia subsequente vai tornando-se cada vez
menor (seria impressionante se o próximo questionário só fosse aplicado dali a cem dias!).
A questão não é se haverá uma rolagem resultando em seis em qualquer dos dias especifi-
camente, mas quando o próximo seis será obtido. A obtenção do próximo seis é um evento
que depende parcialmente do que ocorre no meio-tempo e parcialmente da rolagem do dia
específico.

Esse enigma probabilístico é instrutivo e será retomado no decorrer deste verbete. Con-
tudo, a existência de uma rápida e decisiva solução a ele mostra que apenas uma revisão
moderada de nossas crenças iniciais foi necessária. Em contrapartida, quando nossas cren-
ças profundas conflitam, as emendas propostas reverberam de forma imprevisível. Tentati-
vas de se descartar uma crença profunda voltam-se contra nós, pois os problemas gerados
ao nos distanciarmos de tais crenças demonstram sua centralidade. Frequentemente, a
crença em questão acaba se tornando ainda mais arraigada: “Os problemas que merecem
ser atacados provam seu valor ao revidar” (Hein 1966).

Um sinal da profundidade de uma crença (ou ao menos de desespero) é o fato de que
comentadores começam a rejeitar regras de inferência bastante plausíveis. Há quem tenha
defendido que a Prova Surpresa invalida a lei de bivalência, o princípio KK (de que se al-
guém está em posição de saber que p, então também está em posição de saber que sabe
que p), e mesmo o princípio de fechamento (se alguém sabe que p e é capaz de deduzir
competentemente q de p, então essa pessoa sabe que q) (Immerman 2017).

O paradoxo da prova surpresa também está ligado a problemas que não são evidente-
mente paradoxos – ou a problemas cuja caracterização enquanto sendo paradoxos é contes-
tável. Considere o problema de Monty Hall. Há um prêmio por detrás de somente uma entre
três portas. Após sua escolha, Monty Hall revelará o que há atrás de uma das portas não-
premiadas. Ele dará a você, então, a opção de trocar sua porta escolhida pela outra porta
fechada. Você deveria efetuar a troca para aumentar suas chances de ganhar o prêmio?
Quando Marylin vos Savant respondeu que sim numa edição da revista Parade em 1990,
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muitos leitores — incluindo alguns acadêmicos — a repreenderam. A solução adequada ao
problema foi fornecida por seu idealizador décadas antes e nunca chegou a ser esquecida
ou efetivamente criticada.

O que torna o Problema de Monty Hall interessante é o fato de que não se trata de
um paradoxo. Sempre houve consenso entre especialistas quanto à sua solução. Ainda
assim, esse problema apresenta uma série de características psicológicas e sociológicas
presentes em paradoxos. O Problema de Monty Hall é tão somente uma ilusão cognitiva.
O status de paradoxo também é negado àqueles que só encontram ironia em previsões
auto-derrotantes, e somente embaraço no “paradoxo da cognoscibilidade” (discutido abaixo).
Tratar um problema como sendo um paradoxo tende a separá-lo das demais investigações
que realizamos. Portanto, aqueles que querem se basear no resultado surpreendente negam
que haja um paradoxo. No máximo ele concederá que houve um paradoxo. Paradoxos
mortos são bons fertilizantes para a árvore do conhecimento.

Podemos aguardar futuros filósofos realizarem conexões históricas edificantes. O argu-
mento de eliminação regressiva subjacente ao paradoxo da prova surpresa pode ser encon-
trado em contos populares alemães que datam de 1756 (Sorensen 2003a, 267). Talvez os
estudiosos medievais tenham explorado esses argumentos escorregadios. Voltemo-nos, no
entanto, aos comentários que presentemente podemos acessar.

1.1 Profecias auto-derrotantes e paradoxos pragmáticos
No século XX, a primeira reação pública ao paradoxo da prova surpresa endossou o

argumento de eliminação defendido pelo estudante. D. J. O’Connor (1948) considerou o
anúncio do professor como auto-derrotante. Se a professora não tivesse anunciado que
haveria uma prova surpresa, ela de fato poderia ter aplicado uma prova surpresa. A lição
de moral do paradoxo seria, portanto, que se você quiser aplicar uma prova surpresa, não
anuncie sua intenção a seus alunos!

Mais precisamente, O’Connor comparou o anúncio do professor a proferimentos como
“eu não estou falando agora”. Ainda que consistentes, esses proferimentos “não poderiam
ser verdadeiros em qualquer circunstância concebível” (O’Connor 1948, p. 358). L. Jonathan
Cohen (1950) concordou com essa posição e classificou o anúncio da professora como
sendo um paradoxo pragmático. Ele definiu um paradoxo pragmático como sendo uma de-
claração falseada por seu próprio proferimento. Assim, a professora teria ignorado o fato
de que a maneira com a qual uma declaração é disseminada pode acabar condenando-a à
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falsidade.
A classificação de Cohen é excessivamente monolítica. É verdade que o anúncio da

professora quanto à surpresa é comprometedor em ao menos um aspecto: os estudantes
agora sabem que haverá uma prova. Mas esse aspecto comprometedor não é, por si só,
suficiente para tornar a declaração auto-falseante. A existência de uma prova surpresa foi
revelada, mas isso ainda deixa incerto em qual dia a prova ocorrerá. O anúncio de uma sur-
presa vindoura visa tornar uma ignorância desinformada em uma consciência da ignorância
capaz de orientar a ação. Assim, um estudante que perde o anúncio não fica sabendo que
haverá uma prova. Se nenhum aluno o informar da prova, o estudante em completa igno-
rância estará menos preparado para a prova do que seus colegas cientes de que não sabem
o dia da prova.

Anúncios são feitos para servir a diferentes objetivos simultaneamente. A disputa en-
tre a acurácia e a prestatividade torna possível que um anúncio seja auto-realizante por ser
auto-derrotante. Imagine um meteorologista que avise o seguinte: “o tsunami da meia-noite
causará fatalidade ao longo da costa”. Tendo tido acesso ao aviso, amantes de espetáculos
fazem uma viagem especialmente para presenciar a onda, e alguns se afogam. Por conse-
guinte, o anúncio do meteorologista foi bem sucedido enquanto predição na medida em que
falha como aviso.

1.2 Determinismo Preditivo
Ao invés de encarar predições auto-derrotantes como uma demonstração da maneira

com a qual a professora foi refutada, alguns filósofos interpretam que predições auto-derrotantes
demonstram como o estudante é refutado. O argumento da eliminação sustentado pelo es-
tudante incorpora previsões hipotéticas sobre qual dia em que a professora aplicará a prova.
Não estaria o estudante, contudo, ignorando a capacidade e o desejo da professora de frus-
trar essas expectativas? Alguns teóricos de jogos sugerem que a professora seria capaz de
derrotar essa estratégia ao escolher aleatoriamente o dia da prova.

Estudantes podem certamente ser mantidos na incerteza se a professora tiver a preten-
são genuína de agir de maneira aleatória. Ela precisará preparar um questionário a cada dia
e também terá de se preparar para a possibilidade de acabar aplicando seja muitos questi-
onários, poucos questionários ou mesmo uma distribuição não representativa dos mesmos.

Se os custos dessa estratégia forem considerados onerosos, a professora pode optar
por uma alternativa: no começo da semana, ela seleciona aleatoriamente um único dia. A
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identidade daquele dia será mantida em segredo. Como o estudante só saberá que a prova
será em um daqueles dias, os alunos não conseguirão prever o dia da prova.

Esse plano é arriscado. Se, por mero acaso, o último dia acabar sendo selecionado para
a aplicação da prova, essa deixará de ser surpresa. Isso porque, como no cenário original, o
aluno tem conhecimento do anúncio da professora e consciência de que não ocorreu a prova
nos dias anteriores. Logo, a professora deve excluir o último dia da seleção aleatória. Não
obstante, poderia a professora acatar a seleção aleatória do penúltimo dia? Já fica claro o
raciocínio que se segue.

Outra crítica à réplica do aluno ao raciocínio da professora adapta o experimento mental
de Michael Scriven (1964). Para refutar o determinismo preditivo (a tese de que todos os
eventos são previsíveis), Scriven supõe um agente “Previsor”, o qual detém todas as informa-
ções, conhecimento das leis e capacidades de cálculo necessárias para prever as escolhas
dos outros. Scriven também imagina o “Escapista”, cuja principal motivação é escapar às
previsões. Assim sendo, o Previsor deve ocultar sua previsão. O problema é que o Esca-
pista tem acesso aos mesmos dados, leis e capacidade de cálculo que o Previsor. Logo, o
Escapista pode duplicar o raciocínio do Previsor e, consequentemente, mesmo o Previsor
ideal não é capaz de prever o Escapista. Assumamos que a professora é o Escapista e o
aluno o Previsor. O Escapista deve vencer. Portanto, é possível fazer uma prova surpresa.

O argumento original de Scriven pressupõe que o Previsor e o Escapista podem ter
simultaneamente todos os dados, leis e capacidade de cálculo necessários. David Lewis e
Jane Richardson objetam:

… a quantidade de cálculo necessária para permitir que o previsor conclua sua
previsão depende da quantidade de cálculo feita pelo escapista, e a quantidade
de cálculo necessária para permitir que o escapista termine de duplicar o cál-
culo do previsor depende da quantidade de cálculo feita pelo previsor. Scriven
pressupõe que esses requisitos são compatíveis: ou seja, que há quantidades
de cálculo disponíveis para o previsor e o escapista, de modo que cada um
tenha o suficiente para terminar seus cálculos, dada a quantidade que o outro
tem. (Lewis & Richardson 1966, pp. 70–71)

De acordo com Lewis e Richardson, Scriven equivoca-se ao dizer que “tanto o Previsor
quanto o Escapista têm tempo suficiente para terminar seus cálculos”. Essa frase, lida de
certa maneira, produz uma verdade: contra qualquer Escapista, o Previsor pode terminar
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seus cálculos, e contra qualquer Previsor, o Escapista pode terminar seus cálculos. En-
tretanto, a premissa de compatibilidade requer a leitura falsa em que Previsor e Escapista
podem ambos terminar um contra o outro.

Idealizar o professor e o aluno como na hipótese do Escapista e do Previsor não seria
suficiente para desarmar o argumento de eliminação do aluno. Teríamos apenas formulado
um enigma que pressupõe falsamente que os dois tipos de agentes são co-possíveis. Seria
como perguntar: “Se Bill é mais inteligente do que qualquer outra pessoa e Hillary é mais
inteligente do que qualquer outra pessoa, qual dos dois é o mais inteligente?”

O determinismo preditivo afirma que tudo é previsível. O determinismo metafísico afirma
que há apenas uma maneira pela qual o futuro pode ser dado, a partir da maneira com a
qual o passado ocorreu. Simon Laplace usou o determinismo metafísico como premissa
para o determinismo preditivo. Ele argumentou que, como todo evento tem uma causa, uma
descrição completa de qualquer estágio da história, combinada com as leis da natureza,
implica o que acontece em qualquer outro estágio do universo. Scriven estava apenas desa-
fiando o determinismo preditivo em seu experimento mental. A próxima abordagem desafia
o determinismo metafísico.

1.2.1 O Problema da Presciência

O conhecimento prévio de uma ação parece incompatível com ela ser uma ação livre.
Se eu sei que você terminará de ler este artigo amanhã, então você terá de terminá-lo ama-
nhã (porque conhecimento implica verdade). Mas isso significa que você terminará o artigo
mesmo que decida não fazê-lo — nada pode impedi-lo. Assim, se eu sei que você terminará
de ler este artigo amanhã, você não é livre para agir diferentemente.

Talvez toda leitura que você faz seja compulsória. Se Deus existe, então Ele sabe tudo.
Assim, a ameaça à liberdade torna-se aterradora para o teísta. O problema da presciência
divina levanta a possibilidade de que o teísmo (em vez do ateísmo) impeça a livre escolha
e, portanto, impeça que tenhamos qualquer responsabilidade moral.

Em resposta ao aparente conflito entre liberdade e presciência, os filósofos medievais
negaram que proposições contingentes futuras tenham um valor de verdade. Eles conside-
raram estar estendendo uma solução que Aristóteles discute em De Interpretatione para o
problema do fatalismo lógico. De acordo com essa abordagem que aceita uma lacuna no
valor de verdade, “Você terminará este artigo amanhã” não é verdade agora. A previsão se
tornará verdadeira amanhã. Um teísta moralmente sério pode concordar com o Rubaiyat de
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Omar Khayyam:

Dispõe o Eterno Escriba. E havendo escrito,
A folha vira: e não há ciência ou devoção
Que cancele uma Linha; e não há pranto aflito
Que risque uma palavra! Ah, todo choro é vão!

2

A onisciência de Deus requer apenas que Ele conheça cada proposição verdadeira.
Deus saberá que “Você terminará este artigo amanhã” assim que isso se tornar verdade —
mas não antes disso.

A professora tem livre-arbítrio. Portanto, previsões sobre o que ela fará não são verda-
deiras (antes da prova). O metafísico Paul Weiss (1952) conclui que o argumento do aluno
falsamente assume que ele sabe que o anúncio é verdadeiro. De fato, o aluno só pode saber
que o anúncio é verdadeiro depois que ele se torna verdadeiro — mas não com antecedên-
cia.

O lógico W. V. O. Quine (1953) concorda com a conclusão de Weiss de que o anúncio de
uma prova surpresa pela professora falha em dar ao aluno o conhecimento de que haverá
uma prova surpresa. No entanto, Quine rejeita o raciocínio de Weiss. Weiss viola a lei da
bivalência (a qual afirma que toda proposição tem um valor de verdade, verdadeiro ou falso).
Quine acredita que o enigma da prova surpresa não deve ser respondido abrindo-se mão da
lógica clássica.

1.3 Suicídio Intelectual
Quine insiste que o argumento da eliminação oferecido pelo aluno é apenas uma reductio

ad absurdum da suposição de que o aluno sabe que o anúncio é verdadeiro (ao invés de
uma reductio do anúncio realizado pela professora). Ele aceita essa reductio epistêmica, mas
rejeita a reductiometafísica. Dada a ignorância do aluno sobre o anúncio, Quine conclui que
uma prova em qualquer dia seria imprevista. Ou seja, Quine aceita que o aluno não tem
conhecimento prévio acerca do dia da prova, mas rejeita que não haja antecipadamente a
verdade acerca de quando a prova será aplicada.
2N.T. No verbete é citada uma tradução realizada por Fitzgerald (1859) do poema originalmente escrito por Omar
Khayyam. Escolhi, então, reproduzir uma tradução da versão de Fitzgerald realizada por Haddad (1972).
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O senso comum sugere que os alunos são informados pelo anúncio. A professora está
assumindo que o anúncio esclarecerá algo aos alunos. Ela parece certa em assumir que o
anúncio dessa intenção produz o mesmo tipo de conhecimento que suas outras declarações
de intenções (sobre quais tópicos serão selecionados para a aula, a escala de notas e assim
por diante).

Há premissas céticas que poderiam levar Quine à conclusão de que os alunos não sa-
bem que o anúncio é verdadeiro. Se ninguém pode saber nada sobre o futuro, como alegado
pelo problema de indução de David Hume, então o aluno não pode saber que o anúncio da
professora é verdadeiro (veja a entrada sobre o problema da indução). Mas negar todo o
conhecimento do futuro para negar o conhecimento do aluno sobre o anúncio da professora
é uma medida desproporcional e exacerbada. Não mate uma mosca com um canhão — a
menos que seja uma mosca assassina e somente um canhão seja páreo!

Em escritos posteriores, Quine demonstra reservas gerais acerca do conceito de co-
nhecimento. Uma de suas objeções favoritas é que “saber” é uma noção vaga. Se o co-
nhecimento implica certeza, então muito pouco contará como conhecido. Quine infere que
devemos igualar o conhecimento a uma crença verdadeira firmemente suportada. Perguntar
quão firme essa crença deve ser é semelhante a perguntar quão grande algo tem que ser
para ser considerado grande. Não há resposta para essa pergunta porque “grande” não tem
o tipo de limite desfrutado por palavras precisas.

Não há lugar na ciência para termos como “grande”, por causa dessa falta
de limite; mas há um lugar para a relação de ser-maior-que. Aqui vemos a
retificação familiar e amplamente aplicável da vagueza: renunciar ao termo
vago e apegar-se ao comparativo preciso. Mas isso não se aplica ao verbo
“saber”, mesmo gramaticalmente. Os verbos não têm flexões comparativas
e superlativas... Acho que para propósitos científicos ou filosóficos o melhor
que podemos fazer é desistir da noção de conhecimento, impraticável, e nos
contentarmos com seus ingredientes isolados. Ainda podemos falar de uma
crença como sendo verdadeira, e de uma crença como mais firme ou mais
certa, para aquele que detém a crença, do que outra (1987, p. 109).

Quine está aludindo à generalização de Rudolf Carnap (1950) de que os cientistas subs-
tituem termos qualitativos (alto) por comparativos (mais alto que) e então substituem os com-
parativos por termos quantitativos (ter n milímetros de altura).
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É verdade que alguns casos limítrofes de um termo qualitativo não são casos limítrofes
para o comparativo correspondente. Mas o inverso também se aplica. Um homem alto que
fica curvado pode ficar menos alto do que outro homem alto que não é tão comprido, mas tem
uma postura melhor. Ambos os homens são claramente altos. Não está claro que “O homem
mais comprido é mais alto”. Termos qualitativos podem ser aplicados quando uma cota vaga
é satisfeita sem a necessidade de se atentar aos detalhes. Apenas termos comparativos são
atormentados por questões de desempate.

A ciência é sobre o que é o caso, em vez do que deveria ser o caso. Isso parece implicar
que a ciência não nos diz no que devemos acreditar. A maneira tradicional de preencher a
lacuna normativa é delegar questões de justificação aos epistemólogos. No entanto, Quine
se sente desconfortável em delegar tal autoridade aos filósofos. Ele prefere a tese de que
a psicologia é suficiente para lidar com as questões tradicionalmente abordadas pelos epis-
temólogos (ou pelo menos com as questões que ainda vale a pena tratar em uma Era da
Ciência). Essa “epistemologia naturalista” parece implicar que “saber” e “justificado” são
termos antiquados — tão vazios quanto “flogisto” ou “alma”.

Aqueles dispostos a abandonar o conceito de conhecimento podem dissolver o paradoxo
da prova surpresa. Mas para epistemólogos que veem esperança em respostas menos
drásticas, isso é como usar uma bomba suicida para matar uma mosca.

Nosso homem-bomba, contudo, pode protestar que as moscas foram subestimadas.
O eliminativismo epistêmico dissolve todos os paradoxos epistêmicos pois, de acordo com
essa perspectiva, esses paradoxos são sintomas de um problema com o próprio conceito de
conhecimento.

Observe que o eliminativista é mais radical que o cético. O cético acha que o conceito
de conhecimento é coerente e bem definido — nós apenas ficamos aquém de ser conhe-
cedores. Ele trata “Nenhum homem é um conhecedor” como “Nenhum homem é imortal”
— não há nada de errado com o conceito de imortalidade, mas a biologia nos garante que
nenhum homem é imortal. Essa ausência universal de conhecimento, não obstante, seria
chocante. Mas o potencial de nos chocar não deve nos levar a matar o mensageiro (o cé-
tico) ou declarar ininteligível o vocabulário que compreende a mensagem (especificamente,
a palavra “saber”).

Ao contrário do mensageiro que nos diz “nenhum homem é imortal”, o cético tem dificul-
dade em nos dizer “não há conhecimento”. De acordo com Sexto Empírico, uma afirmação
expressa a crença de que se sabe o que é afirmado (Outlines of Pyrrhonism, I, 3, 226). Ele
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condena a afirmação “não há conhecimento” (embora não a proposição expressa pela afir-
mação) como ceticismo dogmático. Sexto prefere o agnosticismo sobre o conhecimento ao
invés do ceticismo (entendido como “ateísmo” sobre o conhecimento). No entanto, é igual-
mente inconsistente afirmar “ninguém pode saber se algo é conhecido”, pois isso transmite
a crença de que se sabe que ninguém pode saber se algo é conhecido.

O eliminativista tem dificuldades ainda mais severas em declarar sua posição do que
o cético. Alguns eliminativistas descartam a ameaça de autoderrota traçando uma analo-
gia: aqueles que negavam a existência de almas eram acusados de minar uma condição
necessária para afirmar qualquer coisa. No entanto, a explicação do teórico da alma sobre
tais condições necessárias não dá razões para que se negue que um cérebro saudável é
suficiente para a realização de estados mentais.

Se o eliminativista pensa que asserções apenas impõem o objetivo de expressar uma
verdade, então ele pode consistentemente afirmar que “saber” é um termo problemático. No
entanto, um epistemólogo pode reviver a acusação de autoderrota ao mostrar que afirma-
ções de fato requerem que o falante atribua conhecimento a si mesmo. Essa concepção
de asserções baseada no conhecimento foi recentemente apoiada por pesquisas acerca do
próximo paradoxo que abordaremos.

1.4 Loterias e o Paradoxo da Loteria
As loterias representam um problema para a teoria segundo a qual a alta probabilidade

de que uma crença seja verdadeira é suficiente para o conhecimento. Dado que há um
milhão de bilhetes e apenas um ganhador, a probabilidade de “Este bilhete é um bilhete
perdedor” é muito alta. No entanto, relutamos em dizer que isso gera o conhecimento de
que essa proposição é verdadeira.

Superamos essa relutância depois que o bilhete ganhador é anunciado. Agora o bilhete
é sabidamente perdedor e jogado no lixo. Mas espere! O testemunho não fornece certeza.
Nem a percepção ou a lembrança. Quando pressionados, admitimos que há uma pequena
chance de que tenhamos visto mal o sorteio ou que o apresentador tenha lido mal o número
vencedor ou que estejamos nos lembrando mal. Enquanto estamos nesse estado de espí-
rito concessivo, somos capazes de abandonar nossa convicção de termos conhecimento. O
cético silogiza a partir desta rendição: Para qualquer proposição contingente, há uma decla-
ração lotérica mais provável e que é desconhecida. Uma proposição conhecida não pode
ser menos provável do que uma proposição desconhecida. Portanto, nenhuma proposição
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contingente é conhecida (Hawthorne 2004). Isso é demais para aceitar! No entanto, as
estatísticas do cético parecem impecáveis.

Esse paradoxo cético foi observado por Gilbert Harman (1968, p. 166), mas sua pers-
pectiva sobre o papel da causação no conhecimento inferencial parecia resolver o problema
(DeRose 2017, cap. 5). O paradoxo ainda bebê foi descartado como natimorto. Como o
recém-chegado não recebeu o costumeiro batismo de atenção, os epistemólogos não no-
taram que a derrocada da teoria causal do conhecimento significava uma nova vida para o
paradoxo da loteria de Harman.

As sugestões comuns do cético da probabilidade sobre como podemos estar enganados
contrastam com as possibilidades extraordinárias evocadas pelo cético inspirado por René
Descartes. O cético cartesiano tenta minar vastas faixas de conhecimento com uma única
contra-explicação não testável à evidência (como a hipótese de que você está sonhando ou a
hipótese de que um demôniomaligno está enganando você). Essas alternativas abrangentes
são projetadas para evitar qualquer refutação empírica. Já o cético probabilístico aponta para
uma infinidade de contra-explicações simples. Todas são fáceis de testar: talvez você tenha
confundido os dígitos de um número de telefone, talvez o agente de turismo tenha pensado
que você queria voar para Moscou, Rússia, em vez de Moscou, Idaho, etc. Você pode
verificar se há erros, mas qualquer verificação tem uma pequena chance de ter erros ela
própria. Assim, sempre há algo a verificar, dado que os problemas não podem ser ignorados
com base na improbabilidade.

Você pode verificar qualquer um desses possíveis erros, mas não pode verificar todos
eles. Você não pode descartar essas simples possibilidades como ficção científica. Esses
são exatamente os tipos de possibilidades que verificamos quando os planos dão errado.
Por exemplo, você acha que sabe que tem o compromisso de encontrar uma possível em-
pregadora para almoçar ao meio-dia. Quando ela não aparece no horário esperado, você
para e pensa: Meu relógio está atrasado? Estou lembrando do restaurante certo? Poderia
haver outro restaurante na cidade com o mesmo nome? Ela foi detida? Teria ela esquecido?
Poderia ter havido uma falha de comunicação?

O ceticismo probabilístico remonta a Arcesilau, que assumiu a Academia duas gerações
após a morte de Platão. Esse tipo moderado de ceticismo, relatado por Cícero (Academica
2.74, 1.46) sobre seus dias como aluno da Academia, permite a crença justificada. Muitos
cientistas acham que devem atribuir apenas probabilidades, descartando a preocupação do
epistemólogo com o conhecimento como antiquada.

100



Apesar do início precoce da teoria qualitativa da probabilidade, a teoria quantitativa não
se desenvolveu até o estudo de Blaise Pascal sobre apostas no século XVII (Hacking 1975).
Somente no século XVIII ela penetrou na indústria de seguros (embora as seguradoras te-
nham percebido que uma fortuna poderia ser feita calculando riscos com precisão). Apenas
no século XIX a probabilidade deixou sua marca na física, e tão somente no século XX os
probabilistas fizeram avanços importantes em relação a Arcesilau.

A maioria desses avanços filosóficos são reações ao uso da probabilidade por cientistas.
No século XX, editores de periódicos científicos começaram a exigir que a hipótese dos
autores fosse aceita somente quando fosse suficientemente provável — conforme medida
por testes estatísticos. O limite para aceitação foi reconhecido como um tanto arbitrário, e
também foi admitido que a regra de aceitação pode variar de acordo com os propósitos de
alguém. Exigimos, por exemplo, uma probabilidade maior quando o custo de aceitar uma
hipótese falsa é alto.

Em 1961, Henry Kyburg salientou que esta política entrava em conflito com um princípio
de aglomeração: se você acredita racionalmente em p e racionalmente acredita em q, então
você racionalmente acredita em p e q. Pequenas imagens de uma cena devem formar uma
imagem maior da mesma cena. Se a crença racional pode ser baseada em uma regra de
aceitação que requer apenas uma alta probabilidade, haverá crença racional em uma contra-
dição! Para ver o porquê, suponha que a regra de aceitação permita a crença em qualquer
proposição que tenha uma probabilidade de pelo menos 0,99. Dada uma loteria com 100
bilhetes e exatamente um ganhador, a probabilidade de “O bilhete 𝑛 é perdedor” credencia a
crença. Simbolizando proposições sobre um bilhete 𝑛 ser perdedor como 𝑝𝑛, e “Eu acredito
racionalmente” como 𝐵, segue-se uma crença numa contradição:

1. 𝐵 ¬(𝑝1 ∧ 𝑝2 ∧ … ∧ 𝑝100)
pela regra de aceitação probabilística.

2. 𝐵𝑝1 ∧ 𝐵𝑝2 ∧ … ∧ 𝐵𝑝100
pela regra de aceitação probabilística.

3. 𝐵(𝑝1 ∧ 𝑝2 ∧ … ∧ 𝑝100)
a partir de (2) e do princípio de que crenças racionais se aglomeram.

4. 𝐵[(𝑝1 ∧ 𝑝2 ∧ … ∧ 𝑝100) ∧ ¬(𝑝1 ∧ 𝑝2 ∧ … ∧ 𝑝100)]
a partir de (1) e (3) pelo princípio de que crenças racionais se aglomeram.
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Mais informalmente, a regra de aceitação implica isto: cada crença de que um bilhete em
particular perderá é provável o suficiente para justificar que se acredite nela. Por aplicações
repetidas do princípio de aglomeração, juntar todas essas crenças justificadas resulta em
uma crença justificada. Finalmente, juntar essa crença com a crença justificada de que um
dos bilhetes é um vencedor resulta na crença contraditória de que todos perderão e um
ganhará. No entanto, por aglomeração isso também é justificado.

Como a crença em uma contradição óbvia é um exemplo paradigmático de irracionali-
dade, Kyburg apresenta um dilema: rejeitar a aglomeração ou rejeitar regras que licenciam
a crença para uma probabilidade menor que um. (Martin Smith 2016, pp. 186–196) adverte
que mesmo a probabilidade de um leva à inconsistência conjunta para uma loteria que tem
infinitamente muitos bilhetes. Kyburg rejeita a aglomeração. Ele promove a tolerância à in-
consistência conjunta (ter crenças que não podem ser todas verdadeiras juntas) para evitar
a crença em contradições. A razão nos proíbe de acreditar em uma proposição que é neces-
sariamente falsa, mas nos permite ter um conjunto de crenças que necessariamente contém
uma falsidade. A escolha de Henry Kyburg logo foi apoiada pela descoberta de um paradoxo
relacionado.

1.5 Paradoxo do Prefácio
No prefácio de Introduction to the Foundations of Mathematics, Raymond Wilder (1952,

p. iv) pede desculpas pelos erros em seu texto. A reimpressão de 1982 tem três páginas de
errata que sustentam a humildade de Wilder. D. C. Makinson (1965, p. 205) cita o pedido
de desculpas de Wilder de 1952 e extrai um paradoxo: Wilder acredita racionalmente em
cada uma das afirmações apresentadas em seu livro. Contudo, como Wilder se considera
falível, ele também acredita racionalmente que a conjunção de todas as suas afirmações é
falsa. Se o princípio da aglomeração for válido, (𝐵𝑝 & 𝐵𝑞) → 𝐵(𝑝 & 𝑞), Wilder acredita
racionalmente na conjunção de todas as afirmações em seu livro e também desacreditaria
racionalmente na mesma coisa!

O paradoxo do prefácio não depende de uma regra de aceitação probabilística. A crença
do prefácio é gerada organicamente de forma qualitativa. O autor está meramente refletindo,
de maneira humilde, sobre sua semelhança com outros autores que são falíveis, sobre seus
próprios erros do passado posteriormente descobertos, sobre sua imperfeição na verificação
de fatos, e assim por diante.

Nesta conjuntura, muitos filósofos se juntam a Kyburg ao rejeitarem a aglomeração e
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concluem que pode ser racional ter crenças conjuntamente inconsistentes. A solução de
Kyburg para o paradoxo do prefácio levanta uma questão metodológica sobre a natureza
dos paradoxos. Como paradoxos podem mudar nossas maneiras de pensar se a incon-
sistência conjunta for permitida? Um paradoxo é comumente definido como um conjunto
de proposições que são individualmente plausíveis, mas conjuntamente inconsistentes. A
inconsistência funciona como o incômodo que nos impele a remover um dos membros do
conjunto (ou como a dor que nos leva a nos afastarmos do estímulo). A título ilustrativo,
muito trabalho epistemológico orbita em torno de um antigo enigma colocado pelo regresso
da justificação: Qual das seguintes opções é falsa?

1. Uma crença só pode ser justificada por outra crença justificada.

2. Não há cadeias circulares de justificação.

3. Todas as cadeias de justificação são finitas.

4. Algumas crenças são justificadas.

Os fundacionalistas rejeitam (1). Eles tomam algumas proposições como sendo auto-
evidentes ou permitem que crenças sejam justificadas por não-crenças (como percepções
ou intuições). Os coerentistas rejeitam (2), tolerando algumas formas de raciocínio circular.
NelsonGoodman (1965), por exemplo, caracterizou ométodo do equilíbrio reflexivo como vir-
tuosamente circular. Charles Sanders Peirce (1933–35, 5.250) possivelmente rejeitava (3),
mas o primeiro a claramente rejeitá-la foi Peter Klein (2007). Para um livro defendendo essa
ideia, leia Scott F. Aikin (2011). Os infinitistas acreditam que cadeias infinitamente longas
de justificação não são mais impossíveis do que cadeias infinitamente longas de causali-
dade. Finalmente, os anarquistas epistemológicos rejeitam (4) — como Paul Feyerabend,
que entoa em Contra o Método, “vale tudo” (1988, vii, 5, 14, 19, 159).

Formular um paradoxo como um conjunto de crenças individualmente plausíveis, mas
conjuntamente inconsistentes, é um feito de compressão de dados. Mas se a inconsistência
conjunta é racionalmente tolerável, por que esses filósofos se preocupam em oferecer solu-
ções para paradoxos como o do regresso da justificação? Por que é irracional acreditar nas
proposições (1)–(4), apesar de sua inconsistência conjunta?

Kyburg pode responder que há um efeito de escala. Embora a sensação de inconsistên-
cia conjunta seja tolerável quando difusamente distribuída por um grande corpo de proposi-
ções, a sensação passa a ser incômoda quando a inconsistência torna-se localizada (Knight
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2002). É por isso que os paradoxos são sempre representados como um pequeno conjunto
de proposições. Um paradoxo é melhorado pela redução no número de suas proposições
— como quando um membro do conjunto é exposto como supérfluo à inconsistência (ainda
que, a rigor, um conjunto só possa mudar de tamanho no sentido metafórico em que um
número pode crescer ou encolher).

Se você sabe que suas crenças são conjuntamente inconsistentes, mas nega que isso
cria um grande paradoxo, então você deve rejeitar a definição de paradoxo oferecida por
R. M. Sainsbury como “uma conclusão aparentemente inaceitável derivada de um raciocí-
nio aparentemente aceitável a partir de premissas aparentemente aceitáveis” (1995, p. 1).
Considere a negação de qualquer uma de suas crenças como uma conclusão e suas cren-
ças restantes como as premissas. Você deve julgar esse argumento confuso como válido, e
como tendo premissas que você aceita, e ainda assim como tendo uma conclusão que você
rejeita (Sorensen 2003b, pp. 104–110). Se a conclusão desse argumento conta como um
paradoxo, então a negação de qualquer uma de suas crenças conta como um paradoxo.

A semelhança entre o paradoxo do prefácio e o paradoxo da prova surpresa se torna
mais visível por meio de um caso intermediário. O prefácio de The Emperor of All Maladies: A
Biography of Cancer, de Siddhartha Mukherjee, alerta: “Em casos em que não havia conhe-
cimento público prévio, ou quando os entrevistados solicitaram privacidade, usei um nome
falso e deliberadamente confundi identidades para dificultar o rastreamento” (2010, p. xiv).
Aqueles que se recusam a consentir em serem enganados são livres para fechar a crônica
do Dr. Mukherjee, mas quase todos os leitores consideram aceitável a troca de mentiras por
novas informações oferecida pelo médico. Eles antecipam racionalmente serem racional-
mente enganados. No entanto, esses leitores aprendem muito sobre a história do câncer.
Da mesma forma, os alunos que são avisados de que receberão uma prova surpresa es-
peram racionalmente ser racionalmente enganados sobre o dia do teste. A perspectiva de
serem enganados não os leva a abandonar o curso.

O paradoxo do prefácio pressiona Kyburg a estender sua tolerância à inconsistência
conjunta para a aceitação de contradições, pois o exemplo original de Makinson expressa
o pesar de um lógico ao afirmar contradições, ao invés de falsas declarações contingentes.
Considere um estudante de lógica que é obrigado a escolher cem verdades de uma listamista
de tautologias e contradições (Sorensen 2001, pp. 156–158). Embora o modesto estudante
acredite em cada uma de suas respostas, 𝐴1, 𝐴2, … , 𝐴100, ele também acredita que pelo
menos uma dessas respostas é falsa — o que garantiria que ele acredita em uma contra-
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dição. Se alguma de suas respostas for falsa, então o aluno acredita em uma contradição
(porque as únicas falsidades na lista são contradições). Se todas as suas respostas do teste
forem verdadeiras, então o aluno acredita na seguinte contradição: ¬(𝐴1∧𝐴2∧…∧𝐴100).
Afinal, uma conjunção de tautologias é em si uma tautologia e a negação de qualquer tauto-
logia é uma contradição.

Se os paradoxos fossem sempre conjuntos de proposições, argumentos ou conclu-
sões, então eles sempre teriam significado. Mas alguns paradoxos são semanticamente
falhos (Sorensen 2003b, p. 352) e alguns têm respostas que são apoiadas por um pseudo-
argumento que emprega um “lema” defeituoso que não tem um valor de verdade. O para-
doxo de Kurt Grelling, por exemplo, começa com uma distinção entre palavras autológicas e
heterológicas. Uma palavra autológica descreve a si mesma; por exemplo, “polissilábico” é
polissilábica, “português” é uma palavra em português,3 “substantivo” é um substantivo, etc.
Uma palavra heterológica não descreve a si mesma; por exemplo, “monossilábico” não é
monossilábica, “chinês” não é uma palavra em chinês, “verbo” não é um verbo, etc. Agora, o
enigma: “heterológico” é uma palavra heterológica ou autológica? Se “heterológico” é hete-
rológica, então, uma vez que se descreve, é autológica. Mas se “heterológico” é autológica,
então, como é uma palavra que não se descreve, é heterológica. A solução comumpara esse
enigma é que “heterológico”, como definido por Grelling, não é um predicado bem definido
(Thomson 1962). Em outras palavras, “ ‘heterológico’ é heterológico?” não tem significado.
Não pode haver um predicado que se aplique a todos e somente àqueles predicados aos
quais ele não se aplica, pela mesma razão que não pode haver um barbeiro que faça a barba
de todas e somente daquelas pessoas que não se barbeiam.

O eliminativista, que pensa que “saber” ou “justificado” não possuem significado, diag-
nosticará os paradoxos epistêmicos como questões que apenas parecem bem-formadas.
Por exemplo, o eliminativista sobre justificação não aceitaria a proposição (4) no paradoxo
do regresso: “Algumas crenças são justificadas”. Seu ponto não é que nenhuma crença
atende aos altos padrões de justificação, tal como um anarquista pode negar que quaisquer
autoridades ostensivas atendem aos altos padrões de legitimidade. Em vez disso, o elimi-
nativista diagnostica “justificado”, sem romantismo, como um termo patológico. Assim como
o astrônomo ignora “Existem um zilhão de estrelas?” com base no fato de que “zilhão” não é
um numeral genuíno, o eliminativista ignora “Algumas crenças são justificadas?” com base
em que “justificado” não é um adjetivo genuíno.
3N.T. No original, “english” is english.
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No século XX, as suspeitas sobre patologia conceitual eram mais fortes para o paradoxo
do mentiroso: “Esta frase é falsa” é verdadeira? Filósofos que pensavam que havia algo
profundamente defeituoso com o paradoxo da prova surpresa o assimilaram ao paradoxo do
mentiroso. Vamos dar uma olhada no processo de assimilação.

1.6 Anti-especialização

No paradoxo da prova surpresa, as premissas do aluno são auto-derrotantes. Qualquer
razão que o aluno tenha para prever uma data para a prova ou uma data sem prova está
disponível para o professor. Assim, o professor pode simular a previsão do aluno e saber o
que o aluno espera.

A conclusão geral do aluno, de que a prova é impossível, também é auto-derrotante. Se
o aluno acredita em sua conclusão, então ele não aguardará a prova. Logo, se ele receber
uma prova, será uma surpresa. O evento será ainda mais inesperado porque o aluno se
iludiu pensando que a prova era impossível.

Assim como a consciência de alguém sobre uma previsão pode afetar a probabilidade
de ela ser verdadeira, a consciência dessa sensibilidade à sua consciência também pode
afetar sua verdade. Se cada ciclo de consciência é autodestrutivo, então não há espaço
estável para tirar uma conclusão.

Suponha que um psicólogo lhe ofereça uma caixa vermelha e uma caixa azul (Skyrms
1982). O psicólogo pode prever qual caixa você escolherá com 90% de precisão. Ele colocou
um dólar na caixa que ele prevê que você escolherá e dez dólares na outra caixa. Você deve
escolher a caixa vermelha ou a caixa azul? Não há como tomar uma decisão, pois qualquer
escolha se torna uma razão para revertê-la.

Paradoxos epistêmicos afetam a teoria da decisão porque escolhas racionais são ba-
seadas em crenças e desejos. Se o agente não consegue formar uma crença racional, é
difícil interpretar seu comportamento como uma escolha. Na teoria da decisão, todo o ponto
de atribuir crenças e desejos é estabelecer silogismos práticos que dão sentido às ações
como meios para fins. Subtrair a racionalidade do agente torna esse esquema inútil. Dado
esse compromisso com a interpretação caridosa, não há a possibilidade de você escolher
racionalmente uma opção que você acredita ser inferior. Assim, ao realizar uma escolha,
você não pode realmente acreditar que estava operando como um anti-especialista, isto é,
alguém cujas opiniões sobre um tópico são confiavelmente erradas (Egan e Elga 2005).
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O filósofo medieval John Buridan (Sophismata, Sophism 13) deu um exemplo notavel-
mente minimalista de tal instabilidade:

(B) Você não acredita nesta sentença.

Se você acredita em (B), então ela é falsa. Se você não acredita em (B), então é ver-
dadeira. Você é um anti-especialista sobre (B); sua opinião está confiavelmente errada. Um
estranho que monitora sua opinião pode avaliar se (B) é verdadeira, mas você não é capaz
de fazer uso de sua anti-especialização.

O lado positivo disso é que você é capaz de explorar a anti-especialização dos outros.
Quatro em cada cinco anti-especialistas recomendam parar agora a leitura!

1.6.1 O Paradoxo do Conhecedor

David Kaplan e Richard Montague (1960) consideram que o anúncio da professora em
nosso exemplo da prova surpresa é equivalente ao autorreferencial

(K-3)

Ou a prova é na segunda-feira, mas você não sabe disso antes de segunda-
feira, ou a prova é na quarta-feira, e você não sabe disso antes de quarta-feira,
ou a prova é na sexta-feira, mas você não sabe disso antes de sexta-feira, ou
este anúncio é sabidamente falso.

Kaplan e Montague observam que o número de datas alternativas da prova pode ser au-
mentado indefinidamente. Surpreendentemente, eles afirmam que o número de alternativas
pode ser reduzido a zero! O anúncio é então equivalente a

(K-0)

Esta frase é sabidamente falsa.

Se (K-0) é verdadeiro, então é sabido que é falsa. Tudo o que é sabidamente falso
é falso. Como nenhuma proposição pode ser verdadeira e falsa, provamos que (K-0) é
falsa. Dado que a prova produz conhecimento, (K-0) é sabidamente falsa. Mas espere! É
exatamente isso que (K-0) diz — então (K-0) deve ser verdadeira.
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O argumento (K-0) tem uma semelhança suspeita com o paradoxo do mentiroso. Co-
mentadores subsequentes trocam desleixadamente o sinal de negação nas apresentações
formais do raciocínio de𝐾¬𝑝 para¬𝐾𝑝 (isto é, de “é sabido que não-𝑝”, para “não é o caso
que é sabido que 𝑝”). Ironicamente, essa transmissão distorcida resulta em uma variação
mais limpa do conhecedor:

(K) Ninguém sabe esta sentença.
(K) é verdadeira? Por um lado, se (K) é verdadeira, então o que ela diz é verdadeiro

e, portanto, ninguém a sabe. Por outro lado, esse mesmo raciocínio parece ser uma prova
de (K). Acreditar em uma proposição ao vê-la ser provada é suficiente para o conhecimento
dela, então alguém deve saber (K), mas então (K) é falsa! Já que ninguém pode saber uma
proposição que é falsa, (K) não é sabida.

Um cético poderia esperar resolver (K-0) negando que qualquer coisa seja conhecida.
Essa tática, contudo, não remedia (K). Se nada é conhecido, então (K) é verdadeira. Pode-
ria o cético, em vez disso, desafiar a premissa de que uma prova sua é suficiente para seu
conhecimento? Esta solução seria particularmente embaraçosa para o cético, que se apre-
senta como um defensor da prova. Se acontecer de nem mesmo a prova o influenciar, ele
terá uma semelhança condenável com o dogmático por ele tão frequentemente repreendido.

Mas o cético não deve perder a cabeça. Provas nem sempre produzem conhecimento.
Considere um aluno que adivinha corretamente que um passo em sua prova é válido. O
aluno não sabe a conclusão, mas provou o teorema. Seu instrutor pode ter dificuldade em
fazer o aluno entender por que sua resposta constitui uma prova válida. A intransigência
pode advir da inteligência daquele que realiza a prova, e não de sua estupidez. L. E. J.
Brouwer é mais conhecido em matemática por seu brilhante teorema do ponto fixo. Mas
uma leitura duvidosa da filosofia da matemática de Immanuel Kant levou Brouwer a retratar
sua prova. Brouwer também tinha dúvidas filosóficas sobre o Axioma da Escolha e a Lei do
Terceiro Excluído. Brouwer persuadiu uma minoria de matemáticos e filósofos, conhecidos
como intuicionistas, a imitar sua abstenção de provas não construtivas. Isso os levou a
desenvolver provas construtivas de teoremas que foram provados anteriormente por meios
menos informativos.

Todos concordam que aprende-se mais com uma prova de uma generalização existen-
cial que procede a partir de uma instância provada do que com uma reductio ad absurdum
inespecífica da generalização universal correspondente. Mas isso não justifica a recusa dos
intuicionistas em serem persuadidos pela reductio ad absurdum. O intuicionista, mesmo aos
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olhos do cético, tem um padrão de prova muito alto, e um padrão de prova excessivamente
alto pode impedir o conhecimento por prova.

O mito lógico de que “Você não pode provar uma negativa universal” é em si uma nega-
tiva universal, implicando sua própria improvabilidade. Essa implicação de improvabilidade
está correta somente porque o princípio é falso. Por exemplo, uma inspeção exaustiva prova
a negativa universal “Não há advérbios de lugar nesta frase”4. Uma reductio ad absurdum
prova a negativa universal “Não há maior número primo”.

Trivialmente, proposições falsas não podem ser provadas como verdadeiras. Há alguma
proposição verdadeira que não pode ser provada como verdadeira?

Sim, há uma infinidade. O teorema da incompletude de Kurt Gödel demonstrou que
qualquer sistema que seja forte o suficiente para expressar a aritmética também é forte o
suficiente para expressar uma contraparte formal da proposição autorreferencial presente
no exemplo da prova surpresa “Esta afirmação não pode ser provada neste sistema”. Se
o sistema não puder provar sua “sentença de Gödel”, então esta frase é verdadeira. Se o
sistema puder provar sua sentença de Gödel, o sistema é inconsistente. Então, ou o sistema
é incompleto ou inconsistente. (Veja a entrada sobre Kurt Gödel.)

Com efeito, esse resultado diz respeito à provabilidade relativa a um sistema. Um sis-
tema pode provar a sentença de Gödel de outro sistema. Kurt Gödel (1983, p. 271) conside-
rava que provas não eram necessárias para o conhecimento de que a aritmética é consis-
tente.

J. R. Lucas (1964) afirma que isso revela que os seres humanos não são máquinas. Um
computador é uma instância concreta de um sistema formal. Portanto, seu “conhecimento” é
restrito ao que ele pode provar. Pelo teorema de Gödel, o computador será inconsistente ou
incompleto. No entanto, qualquer ser humano poderia ter um conhecimento consistente e
completo de aritmética. Portanto, necessariamente, nenhum ser humano é um computador.

Os críticos de Lucas defendem a paridade entre pessoas e computadores. Eles acham
que temos nossas próprias sentenças de Gödel (Lewis 1999, pp. 166–173). Nesse espírito
igualitário, G. C. Nerlich (1961) modela as crenças do aluno no exemplo da prova surpresa
como um sistema lógico. O anúncio da professora é então uma sentença de Gödel sobre o
aluno: Haverá uma prova na próxima semana, mas você não será capaz de provar em que
dia ela ocorrerá com base nesse anúncio e na memória do que aconteceu nos dias de exame
4N.T. Em inglês “No adverbs appear in this sentence”. Contudo, “não” é considerado um advérbio da língua
portuguesa, enquanto “no” tende a não ser classificado como advérbio por gramáticas do inglês.
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anteriores. Quando o número de dias de exame é igual a zero, o anúncio é equivalente à
sentença K.

Vários comentadores do paradoxo da prova surpresa objetam que interpretar surpresa
como improvabilidade muda o tópico em questão. Ao invés de propor o paradoxo da prova
surpresa, propõe-se uma variação do paradoxo do mentiroso. Outros conceitos podem ser
misturados com o mentiroso como, por exemplo, noções aléticas, gerando o mentiroso pos-
sível: “Esta afirmação é possivelmente falsa” é verdadeira? (Posts 1970) (Se for falsa, então
é falso que seja possivelmente falsa. O que não pode ser falso é necessariamente verda-
deiro. Mas se for necessariamente verdadeiro, então não pode ser possivelmente falso).
Dado que o conceito semântico de validade envolve a noção de possibilidade, também se
pode derivar mentirosos da validade como o paradoxo de Pseudo-Scotus: “Quadrados são
quadrados, portanto, este argumento é inválido” (Read 1979).

Suponha que o argumento de Pseudo-Scotus seja válido. Como a premissa é neces-
sariamente verdadeira, a conclusão seria necessariamente verdadeira. Mas a conclusão
contradiz a suposição de que o argumento é válido. Portanto, por reductio, o argumento é
necessariamente inválido. Espere! O argumento pode ser inválido somente se for possível
que a premissa seja verdadeira e a conclusão seja falsa. Mas já provamos que a conclu-
são de “Quadrados são quadrados, portanto, este argumento é inválido” é necessariamente
verdadeira. Não há julgamento consistente da validade do argumento. Uma situação se-
melhante decorre de “A prova é na sexta-feira, mas esta previsão não pode ser deduzida
corretamente deste anúncio”.

Pode-se criar um complicado paradoxo do mentiroso que se assemelha ao paradoxo da
prova surpresa, mas essa variante complexa do mentiroso não é um paradoxo epistêmico.
Isso porque tais paradoxos giram em torno do conceito semântico de verdade, em vez de
um conceito epistêmico.

1.6.2 O “Paradoxo da Cognoscibilidade”

Frederic Fitch (1963) relata que em 1945 ele soube pela primeira vez dessa prova de
verdades não conhecíveis por meio do relatório de um parecerista sobre um manuscrito que
ele nunca veio a publicar. Graças à pesquisa arquivística de Joe Salerno (2009), agora
sabemos que o parecerista foi Alonzo Church.

Assuma que há uma sentença verdadeira da forma “p mas p não é conhecida”. Embora
esta frase seja consistente, princípios modestos de lógica epistêmica implicam que senten-
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ças desta forma são incognoscíveis.

1. 𝐾(𝑝 ∧ ¬𝐾𝑝) (Hipótese).

2. 𝐾𝑝 ∧ 𝐾¬𝐾𝑝 (de 1; conhecimento distribui sobre a conjunção).

3. ¬𝐾𝑝 (de 2; conhecimento implica verdade, do segundo membro).

4. 𝐾𝑝 ∧ ¬𝐾𝑝 (de 2 e 3, por eliminação do segundo membro e depois introdução da
conjunção).

5. ¬𝐾(𝑝 ∧ ¬𝐾𝑝) (de 1 e 4, reductio ad absurdum).

Como todas as suposições foram descartadas, a conclusão é uma verdade necessária.
Portanto, é uma verdade necessária que 𝑝 ∧ ¬𝐾𝑝 não é conhecida. Em outras palavras,
𝑝 ∧ ¬𝐾𝑝 é incognoscível.

Os cautelosos tiram uma conclusão condicional: se há verdades realmente desconhe-
cidas, há verdades incognoscíveis. Não obstante, alguns filósofos rejeitam o antecedente
porque acreditam que há um ser onisciente.

Mas idealistas seculares e positivistas lógicos admitem que há algumas verdades atuais
desconhecidas. Como eles podem continuar a acreditar que todas as verdades são cog-
noscíveis? Surpreendentemente, esses eminentes filósofos parecem refutados pela pitada
de lógica epistêmica que acabamos de ver. Também são prejudicados aqueles que limitam
suas alegações de cognoscibilidade universal a um domínio restrito. Por exemplo, Immanuel
Kant (A223/B272) afirma que todas as proposições empíricas são cognoscíveis. Esse pouco
de otimismo seria suficiente para acender a contradição (Stephenson 2015).

Timothy Williamson duvida que essa lista de posições atingidas seja suficiente para que
o resultado se qualifique como um paradoxo:

A conclusão de que há verdades incognoscíveis é uma afronta a várias teorias
filosóficas, mas não ao senso comum. Se os proponentes (e oponentes) des-
sas teorias ignoraram por muito tempo um simples contraexemplo, isso é um
constrangimento, não um paradoxo. (2000, 271)

Aqueles que acreditam que o resultado de Church-Fitch é um paradoxo genuíno podem
responder a Williamson com paradoxos que concordam com o senso comum (e com a ci-
ência e a ortodoxia religiosa). Por exemplo, o senso comum concorda convictamente com
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a conclusão de que algo existe. Mas é surpreendente que isso possa ser provado sem pre-
missas empíricas. Como os quantificadores da lógica tradicional (lógica de predicados de
primeira ordem com identidade) têm uma conotação existencial, o lógico pode deduzir que
algo existe a partir do princípio de que tudo é idêntico a si mesmo. A maioria dos filósofos
se opõe a essa prova simples porque eles sentem que a existência de algo não pode ser
provada por pura lógica. Eles não estão se opondo à afirmação que está de acordo com
o senso comum (de que algo existe), mas à afirmação de que isso possa ser provado por
pura lógica. Da mesma forma, muitos filósofos que concordam que há sentenças incognos-
cíveis resistem unicamente à ideia de que um resultado tão profundo possa ser alcançado
por meios tão restritos.

1.6.3 O problema de Moore

O parecer de Church foi escrito em 1945. O momento e a estrutura de seu argumento
das sentenças incognoscíveis sugerem que Church pode ter sido inspirado pela sentença
de G. E. Moore (1942, 543):

(M)

Fui ao cinema na terça-feira passada, mas não acredito que eu tenha ido.

O problema de Moore é explicar a estranheza presente em proferimentos declarativos
como (M). Esta explicação precisa abranger ambas as leituras de (M): “𝑝 ∧ 𝐵¬𝑝” e “𝑝 ∧
¬𝐵𝑝”. (Essa ambiguidade de escopo é explorada por uma piada popular: René Descartes
está sentado em um bar, tomando uma bebida. O barman pergunta “O senhor pensa em
pedir mais alguma coisa?”, Descartes responde “Não penso” e então desaparece. A piada
é comumente criticada por ser falaciosa — não faz parte da crença de Descartes ele ser
essencialmente pensante).

Uma explicação usual da absurdidade presente na sentença de Moore é que o falante
conseguiu se contradizer sem proferir uma contradição. Portanto, a frase seria estranha por
ser um contraexemplo à generalização de que qualquer um que se contradiz profere uma
contradição.

Não há problema com contrapartes em terceira pessoa do proferimento (M). Qualquer
outra pessoa pode dizer sobre Moore, sem paradoxo, “G. E. Moore foi ao cinema na terça-
feira passada, mas não acredita nisso”. (M) também pode ser incorporada sem paradoxo em
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condicionais: “Se eu fui ao cinema na terça-feira passada, mas não acredito, então estou
sofrendo de um lapso de memória preocupante”. No pretérito também funciona: “Fui ao
cinema na terça-feira passada, mas não acreditei ter ido”. No tempo futuro fica um pouco
mais forçado: “Fui ao cinema na terça-feira passada, mas não vou acreditar nisso” (Bovens
1995). Temos a tendência de imaginar nossos eus futuros como mais bem informados. Eus
do futuro são, por assim dizer, especialistas a quem eus anteriores devem se submeter.
Quando um eu anterior prevê que seu eu do futuro acredita que 𝑝, essa predição passa a
ser uma razão para crer que 𝑝. Bas van Fraassen (1984, 244) chama isso de “princípio da
reflexão”: devo acreditar em uma proposição, dado que acreditarei nela em algum momento
futuro.

Robert Binkley (1968) antecipa van Fraassen ao aplicar o princípio da reflexão ao para-
doxo da prova surpresa. O aluno pode prever que não acreditará na declaração se nenhuma
prova for dada até quinta-feira. A conjunção da história dos dias sem prova mais a declara-
ção implicará na sentença mooreana:

(A’) O teste é na sexta-feira, mas você não acredita nisso.

Como o membro menos evidente da conjunção é a declaração, o aluno escolherá não
acreditar nela. No começo da semana, o aluno prevê que seu eu futuro pode não acreditar no
anúncio. Portanto, o aluno no domingo não acreditará na declaração quando ela for proferida
pela primeira vez.

Binkley ilumina esse raciocínio com lógica doxástica (“doxa” é o termo grego para crença).
As regras de inferência para essa lógica de crença podem ser entendidas como idealizando
o aluno para ser um raciocinador ideal. Em termos gerais, um raciocinador ideal é alguém
que infere o que deve inferir e se abstém de inferir mais do que deve. Como não há res-
trição em suas premissas, podemos discordar do raciocinador ideal. Mas se concordamos
com as premissas do raciocinador ideal, parece que somos obrigados a concordar com sua
conclusão. Binkley especifica alguns requisitos para dar força ao status do aluno como um
raciocinador ideal: o aluno é perfeitamente consistente, acredita em todas as consequên-
cias lógicas de suas crenças e não se esquece. Binkley ainda assume que o raciocinador
ideal está ciente de que ele é um raciocinador ideal. Segundo Binkley, isso garante que se
o raciocinador ideal acredita que 𝑝, então ele acredita que acreditará que 𝑝 posteriormente.

A descrição de Binkley sobre o estado epistêmico hipotético do aluno na quinta-feira é
convincente. Mas seu argumento para espalhar a incredulidade do futuro para o passado
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está sujeito a três desafios.
A primeira objeção é que ela fornece o resultado errado. O aluno é informado pela

declaração da professora, então Binkley não deveria usar um modelo em que o anúncio é
tão absurdo quanto a conjunção “Fui ao cinema na terça-feira passada, mas não acredito
nisso”.

Em segundo lugar, o futuro estado mental previsto por Binkley é apenas hipotético: se
nenhum teste for dado até quinta-feira, o aluno achará a declaração inacreditável. No co-
meço da semana, o aluno não sabe (ou acredita) que o professor vai esperar tanto tempo. O
princípio da reflexão “Deferir às opiniões do meu eu futuro” não implica que eu deva me sub-
meter às opiniões do meu eu futuro hipotético, pois meu eu futuro hipotético está reagindo a
proposições que não precisam ser realmente verdadeiras.

Em terceiro lugar, o princípio da reflexão pode precisar de mais qualificações do que
Binkley antecipa. Binkley percebe que um agente comum prevê que esquecerá detalhes. É
por isso que escrevemos lembretes para nós mesmos. Um agente comum prevê que pode
passar por períodos de juízo prejudicado. É por isso que limitamos quanto dinheiro levamos
ao bar.

Binkley estipula que os alunos não se esquecem. Ele precisa acrescentar que os alunos
sabem que não esquecerão, pois a mera ameaça de um lapso de memória às vezes é su-
ficiente para minar o conhecimento. Considere o esquema do Professor de Anestesiologia
para provas surpresa: “Uma prova surpresa será dada na quarta ou sexta-feira com a ajuda
de um medicamento para amnésia. Se o teste ocorrer na quarta-feira, o medicamento será
administrado cinco minutos após a aula de quarta-feira. O medicamento apagará instanta-
neamente a memória da prova e os alunos preencherão a lacuna por confabulação”. Você
acabou de concluir a aula de quarta-feira e, portanto, sabe temporariamente que a prova
será na sexta-feira. Dez minutos após a aula, você perde esse conhecimento. Nenhuma
droga foi administrada e não há nada de errado com sua memória. Você está se lembrando
corretamente de que nenhuma prova foi dada na quarta-feira. No entanto, você não sabe
se sua memória é acurada porque também sabe que se o teste fosse dado na quarta-feira,
você teria uma pseudo memória indistinguível de sua memória atual.

Apesar de não ganhar nenhuma nova evidência, você muda de ideia sobre a prova
ocorrer na quarta-feira e perde seu conhecimento de que a prova será na sexta-feira. (A
mudança de crença não é crucial; você ainda não teria conhecimento prévio da prova mesmo
se persistisse dogmaticamente em acreditar que a prova será na sexta-feira).
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Se os alunos sabem que não esquecerão e sabem que não haverá enfraquecimento
por evidências externas, então podemos estar inclinados a concordar com a formulação de
Binkley, segundo a qual seu aluno idealizado nunca perde o conhecimento que acumula.
Como veremos, no entanto, isso ignora outras maneiras pelas quais agentes racionais po-
dem perder conhecimento.

1.6.4 Pontos Cegos

“Eu sou um poeta, mas não sei disso” expressa uma proposição que não posso saber,
mas que posso acessar por meio de outras atitudes, como esperar e desejar. Um ponto
cego para uma atitude proposicional é uma proposição consistente que não pode ser aces-
sada por essa atitude. Pontos cegos são relativos aos meios de acessar a proposição, à
pessoa que faz a tentativa e ao momento em que ela tenta acessá-la. Embora eu não possa
racionalmente acreditar que “ursos polares têm pele negra, mas eu acredito que eles não
têm pele negra”, você pode acreditar que eu erroneamente acredito que ursos polares não
têm pele negra. A evidência que o convence de que estou cometendo esse erro não pode
me convencer de que estou cometendo esse erro. Essa é uma assimetria imposta pela ra-
cionalidade ao invés da irracionalidade. Atribuições de erros específicos são pontos cegos
pessoais para a pessoa que supostamente errou.

O antropólogo Gontran de Poncins começa seu capítulo sobre o missionário ártico, Pa-
dre Henry, com uma previsão:

Vou dizer a você que um ser humano pode viver sem reclamar em uma casa
de gelo construída para focas a uma temperatura de cinquenta e cinco graus
abaixo de zero, e você vai duvidar da minha palavra. No entanto, o que eu digo
é verdade, pois era assim que o Padre Henry vivia; …. (Poncins 1941 [1988],
240)

O testemunho subsequente de Gontran de Poncins pode levar o leitor a acreditar que
alguém pode de fato se contentar em viver em uma casa de gelo. O mesmo testemunho
pode levar outro leitor a acreditar que Poncins não está dizendo a verdade. Mas nenhum
leitor deve acreditar que “Alguém pode se contentar em viver em uma casa de gelo e todo
mundo acredita que isso não é o caso”. Esse é um ponto cego universal.

Se Gontran acredita em uma proposição que é um ponto cego para seu leitor, então
ele não pode fornecer bons motivos para que seu leitor compartilhe sua crença. Isso vale
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mesmo se eles forem raciocinadores ideais. Por conseguinte, uma implicação dos pontos
cegos pessoais é que pode haver desacordo entre raciocinadores ideais na medida em que
eles diferem no que concerne aos seus pontos cegos.

Isso é relevante para o paradoxo da prova surpresa. Os alunos são os surpreendidos
pela prova. Como a declaração implica que a data da prova surpresa é um ponto cego para
eles, os não surpreendidos não podem persuadi-los.

O mesmo ponto vale para desacordos intrapessoais ao longo do tempo. Evidências que
me persuadiram no domingo de que “Este código de segurança é 390524, mas na sexta-feira
não vou acreditar nisso” não devem mais me persuadir na sexta-feira (dada minha crença de
que o dia é sexta-feira), pois essa proposição é um ponto cego para o meu eu de sexta-feira.

Embora cada ponto cego seja inacessível, uma disjunção de pontos cegos normalmente
não é um ponto cego. Posso racionalmente acreditar que “Ou o número de estrelas é par e
eu não acredito nisso, ou o número de estrelas é ímpar e eu não acredito nisso”. A declara-
ção do autor no prefácio de que há algum erro em seu livro é equivalente a uma disjunção
muito longa de pontos cegos. O autor está dizendo que ele ou acredita falsamente em sua
primeira declaração, ou acredita falsamente em sua segunda declaração, ou …, ou acredita
falsamente em sua última declaração.

O anúncio da professora de que haverá uma prova surpresa equivale a uma disjunção de
erros futuros: “Ou haverá uma prova na segunda-feira e o aluno não acreditará de antemão,
ou haverá uma prova na quarta-feira e o aluno não acreditará de antemão, ou a prova será
na sexta-feira e o aluno não acreditará de antemão.”

Os pontos levantados até agora sugerem uma solução para o paradoxo da prova sur-
presa (Sorensen 1988, 328–343). Como Binkley (1968) afirma, a prova seria uma surpresa
mesmo se a professora esperasse até o último dia para aplicá-la, e ainda poderia ser verdade
que o anúncio da professora é informativo. No início da semana, os alunos estão justificados
em acreditar no anúncio da professora de que haverá uma prova surpresa. Esse anúncio é
equivalente a:

(A) Ou
i. o teste é na segunda-feira e o aluno não sabe disso antes de segunda-feira,
ou
ii. o teste é na quarta-feira e o aluno não sabe disso antes de quarta-feira, ou
iii. o teste é na sexta-feira e o aluno não sabe disso antes de sexta-feira.
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Considere a situação do aluno na quinta-feira (dado que o teste não foi na segunda ou
quarta-feira). Se ele sabe que nenhum teste foi dado, ele não pode saber também que (A) é
verdadeira. Porque isso implicaria:

iii. O teste é na sexta-feira e o aluno não sabe disso antes de sexta-feira.

Embora (iii) seja consistente e possa ser sabida por outras pessoas, (iii) não pode ser
sabida pelo aluno antes de sexta-feira. (iii) é um ponto cego para os alunos, mas não para,
digamos, os colegas da professora. Portanto, a professora pode dar uma prova surpresa na
sexta-feira na medida em que isso forçaria os alunos a perderem o conhecimento do anúncio
original (A). O conhecimento pode ser perdido sem que nada seja esquecido.

Esta solução torna quem você é um fator relevante para o que você pode saber. Além de
comprometer a impessoalidade do conhecimento, compromete-se também sua neutralidade
temporal.

Como o paradoxo da prova surpresa também pode ser formulado em termos de crença
racional, haverá ajustes paralelos para o que devemos acreditar. Somos criticados por falhar
em crer nas consequências lógicas do que acreditamos e criticados por acreditar em proposi-
ções que entram em conflito entre si. Qualquer um que atenda a esses ideais de completude
e consistência será incapaz de acreditar em uma gama de proposições consistentes que são
acessíveis a outros pensadores completos e consistentes. Em particular, essas pessoas não
serão capazes de acreditar em proposições que atribuem erros específicos a elas próprias,
e proposições que implicam essas proposições inacessíveis.

Algumas pessoas usam camisetas com Question Authority! escrito nelas. Questionar
autoridade é geralmente considerado uma questão de critério individual. O paradoxo da
prova surpresa mostra que às vezes é obrigatório. O aluno é racionalmente obrigado a
duvidar da declaração da professora, mesmo que a professora não tenha dado nenhuma
nova evidência de não ser confiável. Isso porque quando resta apenas um dia, o anúncio
implica (iii), uma declaração que é impossível para o aluno saber. O aluno pode prever que
essa perda forçada de conhecimento abre uma oportunidade para a professora dar a prova
surpresa. Esse conhecimento prévio está disponível no momento da declaração.

Essa solução implica que pode haver desacordo entre raciocinadores ideais que concor-
dam com os mesmos dados impessoais. Considere os colegas dos professores. Eles não
estão entre aqueles que a professora almeja para a surpresa. Como “surpresa” aqui significa
“surpresa para os alunos”, os colegas da professora podem consistentemente inferir que a
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prova será no último dia a partir da premissa de que ela não foi dada em nenhum dia anterior.
Mas esses colegas não são úteis para os alunos como informantes.

1.7 Paradoxos Epistêmicos Dinâmicos

As anomalias acima (perder conhecimento sem esquecê-lo, discordância entre racioci-
nadores ideais igualmente bem informados, racionalmente mudar de ideia sem a aquisição
de contraevidências) seriam mais toleráveis se reforçadas por linhas separadas de raciocí-
nio. A fonte mais fértil desse tipo de suporte paralelo está em enigmas sobre atualização de
crenças.

A estratégia natural é focar no conhecedor estático. No entanto, assim como é mais fácil
para um esquimó observar uma raposa do ártico quando ela se move, frequentemente obte-
mos uma melhor compreensão do conhecedor dinamicamente, quando ele está no processo
de ganhar ou perder conhecimento.

1.7.1 Paradoxo da investigação de Mênon: Um enigma sobre a obtenção de conhe-
cimento

Quando em julgamento por impiedade, Sócrates levou sua curiosidade até o Oráculo
de Delfos (Apologia 21d em Cooper 1997). Antes de começar sua missão de investigação,
Querefonte perguntou ao Oráculo: “Quem é o mais sábio dos homens?”, e o Oráculo respon-
deu: “Ninguém é mais sábio do que Sócrates”. Isso surpreendeu Sócrates, que acreditava
não saber de nada. Enquanto um filósofo menos piedoso poderia ter questionado a con-
fiabilidade do Oráculo de Delfos, Sócrates seguiu a prática costumeira de tratar o Oráculo
como infalível. A única cogitação apropriada para uma resposta infalível é a interpretação.
Consequentemente, Sócrates resolveu sua perplexidade inferindo que sua sabedoria estava
em reconhecer sua própria ignorância. Enquanto outros podem não saber nada, Sócrates
sabe que ele não sabe nada.

Ainda hoje Sócrates continua a ser elogiado por sua perspicácia, mas, na realidade, sua
“descoberta” é uma contradição. Se Sócrates sabe que não sabe nada, então ele sabe algo
(a proposição de que ele não sabe nada) e ainda assim não sabe nada (porque conhecimento
implica verdade).

Sócrates poderia recuperar a consistência ao rebaixar seu metaconhecimento ao status
de uma crença. Se ele acredita que não sabe nada, então ele naturalmente deseja remediar
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sua ignorância perguntando sobre tudo. Com efeito, esse raciocínio está presente ao longo
dos primeiros diálogos. Mas quando chegamos ao Mênon, um de seus interlocutores tem
uma epifania. Depois de receber o tratamento padrão oferecido por Sócrates no contexto de
uma discussão acerca da natureza da virtude, Mênon observa um conflito entre a ignorância
e a investigação socrática (Mênon 80d, em Cooper 1997). Como Sócrates reconheceria a
resposta correta mesmo se Mênon a fornecesse?

A estrutura geral do paradoxo de Mênon é um dilema: Se você sabe a resposta para a
pergunta que está fazendo, então nada pode ser aprendido perguntando; se você não sabe
a resposta, então você não pode reconhecer uma resposta correta mesmo que ela seja dada
a você. Portanto, não se pode aprender nada fazendo perguntas.

A solução natural para o paradoxo de Mênon é caracterizar o inquiridor como apenas
parcialmente ignorante. Ele sabe o suficiente para reconhecer uma resposta correta, mas
não o suficiente para responder sozinho. Dicionários ortográficos são inúteis para crianças
de seis anos porque elas raramente sabem mais do que a primeira letra da palavra buscada.
Crianças de dez anos têm conhecimento parcial suficiente da grafia da palavra para reduzir
o número de possíveis grafias. Dicionários de ortografia também são inúteis para aqueles
com conhecimento total de ortografia e aqueles com total ignorância de ortografia. Mas a
maioria de nós tem uma quantidade intermediária de conhecimento.

É natural analisar conhecimento parcial como conhecimento de condicionais. A criança
de dez anos conhece a versão falada de “Se o dicionário ortográfico soletra o mês após ja-
neiro como f-e-v-e-r-e-i-r-o, então essa grafia está correta”. Consultar o dicionário ortográfico
lhe dá conhecimento do antecedente do condicional.

Grande parte do nosso aprendizado com condicionais ocorre tão suavemente quanto
esse exemplo sugere. Como conhecemos o condicional, estamos preparados para aprender
o consequente meramente aprendendo o antecedente (e aplicando a regra de inferência
modus ponens: Se 𝑃 então 𝑄, 𝑃 , portanto 𝑄). Mas a próxima seção é dedicada a alguns
condicionais conhecidos que são repudiados quando aprendemos seus antecedentes.

1.7.2 Paradoxo do dogmatismo: Um enigma sobre a perda de conhecimento

As ruminações de Saul Kripke sobre o paradoxo da prova surpresa o levaram a um para-
doxo sobre o dogmatismo. Ele deu uma palestra sobre ambos os paradoxos na Universidade
de Cambridge para o Moral Sciences Club em 1972. (Uma versão da palestra agora apa-
rece como Kripke 2011.) Gilbert Harman apresentou o novo paradoxo de Kripke da seguinte
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forma:

Se eu sei que h é verdadeira, eu sei que qualquer evidência contra h é uma
evidência contra algo que é verdade; eu sei que tal evidência é enganosa. Mas
eu deveria desconsiderar evidências que eu sei que são enganosas. Então,
uma vez que eu saiba que h é verdadeira, estou em posição de desconsiderar
qualquer evidência futura que pareça ir contra h. (1973, 148)

Os dogmáticos aceitam esse raciocínio. Para eles, o conhecimento encerra a inves-
tigação. Qualquer “evidência” que entre em conflito com o que já é conhecido pode ser
descartada como evidência enganosa. Quem é prevenido vale por dois.

Esse conservadorismo cruza a linha que vai da confiança para a intransigência. Para
ilustrar a inflexibilidade excessiva, aqui está um argumento em cadeia para a conclusão
dogmática de que meu confiável colega Doug me deu um relato enganoso (corrigido de
Sorensen 1988b):

(C1) Meu carro está no estacionamento.

(C2) Semeu carro estiver no estacionamento e Doug fornecer evidências de quemeu carro
não está no estacionamento, então as evidências de Doug são enganosas.

(C3) Se Doug relata que viu um carro igual ao meu sendo rebocado do estacionamento,
então seu relato é uma evidência enganosa.

(C4) Doug relata que um carro igual ao meu foi rebocado do estacionamento.

(C5) O relato de Doug é uma evidência enganosa.

Por hipótese, estou justificado em acreditar em (C1). A premissa (C2) é uma certeza
porque é analiticamente verdadeira. O argumento que leva de (C1) e (C2) para (C3) é vá-
lido. Portanto, meu grau de confiança em (C3) deve ser igual ao meu grau de confiança em
(C1). Uma vez que também estamos assumindo que obtenho justificação suficiente para
(C4), parece seguir-se que estou justificado a acreditar em (C5) por modus ponens. Argu-
mentos semelhantes me levarão a rejeitar novas evidências, como um telefonema do serviço
de reboque e minha falha em ver meu carro quando caminho confiantemente até o estacio-
namento.

Gilbert Harman diagnostica o paradoxo da seguinte forma:
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O argumento para o paradoxo ignora a maneira como realmente ter evidên-
cias pode fazer a diferença. Como agora sei [que meu carro está no estacio-
namento], agora sei que qualquer evidência que pareça indicar outra coisa é
enganosa. Isso não me autoriza a simplesmente desconsiderar qualquer evi-
dência adicional, pois obter essa evidência adicional pode mudar o que eu sei.
Em particular, depois de obter essa evidência adicional, posso não saber mais
que ela é enganosa. Pois ter a nova evidência pode tornar verdade que não
sei mais que a nova evidência é enganosa. (1973, 149)

Na verdade, Harman nega a robustez do conhecimento. O princípio da robustez afirma
que alguém só detém conhecimento sobre algo se não houver nenhuma evidência tal que,
caso a pessoa soubesse dessa evidência, ela não estaria justificada em acreditar em sua
conclusão.

A conclusão de Harman de que novos conhecimentos podem minar conhecimentos an-
tigos pode ser aplicada ao paradoxo da prova surpresa: os alunos perdem o conhecimento
do anúncio da prova, embora não se esqueçam do anúncio ou façam qualquer outra coisa
incompatível com suas credenciais como raciocinadores ideais. Um aluno na quinta-feira
está mais bem informado sobre os resultados dos dias da prova do que estava no domingo.
Ele sabe que a prova não foi na segunda-feira e nem na quarta-feira. Mas ele só pode prever
que o teste será na sexta-feira se continuar a saber o anúncio. O conhecimento extra dos
dias sem prova mina o conhecimento do anúncio.

A maioria dos epistemólogos aceitou o apelo de Harman aos derrotadores. Alguns tenta-
ram torná-lo mais preciso com detalhes sobre a atualização de condicionais indicativos (So-
rensen 1988b). Isso pode justificar e generalizar a previsão de Harman de que as evidências
futuras mudarão sua opinião sobre o que são evidências enganosas. O conhecimento de
tais condicionais é inútil para um modus ponens futuro. O dogmático diz corretamente que
conhecemos o condicional “Se eu sei que p, então qualquer evidência conflitando com p é
uma evidência enganosa”. De fato, é uma tautologia! Mas o dogmático falha em reconhecer
que essa tautologia conhecida é um conhecimento inútil. Adquirir a evidência enganosa me
fará deixar de conhecer p. Se um auditor prevê ser apresentado a uma lista tendenciosa de
fatos, ele pode proferir a tautologia ao seu assistente para transmitir outra proposição para
a qual ele tem suporte empírico. Essa proposição empírica não precisa ser conhecimento
inútil. Quando a lista prevista é apresentada, o auditor prevenido ignora os fatos. Mas a
base não é seu conhecimento a priori da tautologia do dogmático.
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Kripke observa que essa solução não impedirá o dogmático de raciocínio rápido que
toma medidas para impedir a aquisição de evidências que ele agora considera enganosas
(Kripke 2011, 43–44). Uma segunda preocupação é que o dogmático ainda pode ignorar
evidências fracas. Se eu sei que uma moeda é justa, então sei que, se os primeiros vinte
lançamentos derem cara, essa é uma evidência enganosa de que a moeda não é justa.
Tal sequência não derrota minha alegação de conhecimento. (Substitua por uma sequência
mais curta se você acha que ela derrota a alegação de conhecimento). Sendo assim, a
solução de Harman não se aplica. No entanto, é dogmatismo ignorar essa evidência.

Além desse problema do dogmatismo fraco, Rachel Fraser (2022) acrescenta um ter-
ceiro problema: o da ancoragem5 dogmática. Quando Robert Millikan e Harvey Fletcher
mediram a carga elétrica elementar com gotículas eletricamente carregadas, eles descarta-
ram algumas gotas por estarem enganadoramente fora do intervalo plausível para o valor
verdadeiro. Gotas localizadas mais centralmente dentro do intervalo eram consideradas “be-
las”. A exclusão dos valores discrepantes proporcionou a Millikan uma medição mais precisa
— e um Prêmio Nobel em 1923. Em 1978, o físico Gerald Holton examinou os cadernos de
anotações e ficou chocado com a quantidade de dados contrários que haviam sido omitidos
por Millikan. Fraser considera que há uma circularidade viciosa na purificação dos dados.

Mas a ancoragem dogmática considerará a circularidade como virtuosa. Quando as evi-
dências são uma mescla de evidências fortes e contra evidências fracas, o corpo de evidên-
cias mais forte expõe o corpo mais fraco como sendo de evidências enganosas. Pense em
um quebra-cabeça que foi misturado com peças perdidas de outro quebra-cabeça. Quando
você consegue obter uma imagem completa com um subconjunto das peças, as peças res-
tantes são jogadas fora. Escurecer as evidências enganosas permite com que as evidências
principais brilhem mais visivelmente. Portanto, podemos de fato estar mais confiantes do
que estávamos antes de descartar as evidências fracas. Millikan estava sendo um guardião
responsável em vez de um esperançoso ingênuo. Assim como os dados devem contro-
lar a teoria, a teoria deve controlar os dados. O experimentador deve atingir um equilíbrio
delicado entre descartar dados contrários em excesso e descartá-los menos que o devido.
As soluções propostas para o paradoxo do dogmatismo têm dificuldade em sustentar esse
equilíbrio.

I. J. Good (1967) demonstrou que, quando o custo das evidências é insignificante, a
obtenção de novas evidências maximiza o valor epistêmico esperado. Sob essa suposi-
5N.T. “Bootstrapping” no original.
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ção simplificadora, Good mostra que desvios do princípio da evidência total são, no mínimo,
imprudentes. Dado o utilitarismo epistêmico, essa irracionalidade prática se torna irraciona-
lidade teórica. Bob Beddor (2019) agora adiciona a premissa de que é irracional pretender
fazer o que se prevê ser irracional. Por exemplo, se fosse oferecido um milhão de dólares
para beber uma toxina amanhã que o deixaria doente por um dia, você poderia lucrar com a
oferta (Kavka 1983). Contudo, se o milhão fosse ganho imediatamente após você ter a in-
tenção de beber a toxina, então você não poderia lucrar porque você sabe que não haveria
razão para seguir adiante. Por analogia, Beddor conclui que seria irracional pretender evitar
contra evidências (Beddor 2019, 738). Ninguém nunca tem o direito de descartar evidências,
mesmo depois de terem sido previstas como evidências enganosas.

Mas se o custo da evidência for significativo, a conexão entre racionalidade prática e
racionalidade teórica favorece ignorar evidências contrárias. Julgar que p incorpora uma
resolução de não investigar mais a questão de se p é verdadeiro. Ou ao menos assim
responde o volicionista (Fraser 2022).

1.7.3 O futuro dos paradoxos epistêmicos

Não podemos prever que algum novo paradoxo epistêmico específico aguarda para ser
descoberto. Para ver o porquê, considere a previsão que Jon Wynne-Tyson atribui a Leo-
nardo Da Vinci:

Aprendi desde cedo a abjurar o uso da carne, e chegará o tempo em que
homens como eu olharão para o assassinato de animais como agora olham
para o assassinato de homens. (1985, 65)

Ao prever esse progresso, Leonardo inadvertidamente revela que ele já acredita que o
assassinato de animais é o mesmo que o assassinato de homens. Se você acredita que uma
proposição é verdadeira, mas também que só se acreditará nela num momento futuro, então
você já a acredita agora — e, portanto, há uma inconsistência (o que é realmente verdade é
irrelevante).

Regressos específicos podem ser antecipados. Quando tento prever minha crença fu-
tura em uma verdade específica, eu me antecipo. Quando tento prever minha crença futura
em uma falsidade específica, não há preempção.

Não haveria problema em prever o progresso se Leonardo pensasse que o progresso
moral reside na preferibilidade moral da crença vegetariana em vez da verdade das crenças
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vegetarianas. Alguém pode admirar o vegetarianismo sem aceitar a correção do vegetari-
anismo. Mas Leonardo está endossando a correção da crença. Essa frase incorpora um
absurdo mooreano. É como dizer: “Leonardo levou vinte e cinco anos para completar A Vir-
gem das Rochas, mas só acreditarei nisso a partir de amanhã”. (Este absurdo levará alguns
a objetar que interpretei Leonardo de forma pouco caridosa; ele deve ter pretendido abrir
uma exceção para si mesmo e estar se referindo apenas a homens de seu tipo.)

Não posso antecipar especificamente a aquisição inicial da crença verdadeira de que p,
pois essa previsão mostraria que eu já tenho a crença verdadeira de que p. A verdade não
espera. A impaciência da verdade impõe um limite à previsão de descobertas.
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(IV) Paradoxo de Zenão1

Título Original: Zeno’s Paradox
Autor: Nick Huggett

Tradução: Rafael Cavalcanti de Souza
Revisão: Maria Amélia Reis de Castro Rodrigues

Quase tudo o que sabemos sobre Zenão de Eleia está nas páginas iniciais do Parmê-
nides de Platão. No diálogo, aprendemos que Zenão tinha quase 40 anos quando Sócrates
era um jovem, por volta de 20 anos. Como Sócrates nasceu em 469 a.C., podemos esti-
mar que Zenão tenha nascido por volta de 490 a.C. Além disso, o que realmente sabemos
é que ele estava próximo de Parmênides (Platão relata o boato de que eles tiveram um
relacionamento sexual quando Zenão era jovem) e que escreveu um livro de paradoxos de-
fendendo a filosofia de Parmênides. Infelizmente, esse livro não sobreviveu ao passar do
tempo, e o que sabemos de seus argumentos é por terceiros, principalmente por meio de
Aristóteles e seus comentadores (aqui nos baseamos especialmente em Simplício, que, em-
bora tenha escrito mil anos após Zenão, aparentemente possuía ao menos alguns de seus
livros). Aparentemente, havia 40 ‘paradoxos da pluralidade’, que tentavam mostrar que o
pluralismo ontológico – a crença na existência de várias coisas em vez de apenas uma –
leva a conclusões absurdas; desses paradoxos, apenas dois definitivamente sobreviveram,
embora um terceiro argumento possa ser atribuído a Zenão. Aristóteles fala de mais quatro
1HUGGETT, Nick, “Zeno’s Paradoxes”, In: ZALTA, E. N.; NODELMAN, U. (eds.). The Stanford Encyclopedia
of Philosophy (Fall 2024 Edition). Stanford, CA: The Metaphysics Research Lab, 2024. Disponível em: https:
//plato.stanford.edu/archives/fall2024/entries/paradox-zeno/.
A seguir está a tradução da entrada sobre os Paradoxos de Zenão de Nick Huggett na Stanford Encyclopedia of
Philosophy. A tradução segue a versão da entrada nos arquivos da SEP em https://plato.stanford.edu/archives/
fall2024/entries/paradox-zeno/. Esta versão traduzida pode diferir da versão atual da entrada, que pode ter
sido atualizada desde o momento desta tradução. A versão atual está localizada em https://plato.stanford.edu/
entries/paradox-zeno/. Agradecemos aos editores Edward N. Zalta e Uri Nodelman pela permissão para traduzir
e publicar esta entrada.
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argumentos contra o movimento (e por extensão a mudança em geral), todos os quais ele
apresenta e tenta refutar. Aristóteles atribui dois outros paradoxos a Zenão. Infelizmente,
mais uma vez, quase nenhum desses paradoxos é citado nas palavras originais de Zenão,
sendo reproduzido em paráfrases por vários comentadores.

1. Contexto

1.1 Contexto Antigo

Antes de nós olharmos para os paradoxos mesmo será útil esboçar algumas das suas
significâncias histórica e lógica. Primeiro, Zenão procurou defender Parmênides atacando os
seus críticos. Parmênides rejeitou o pluralismo e a realidade de qualquer tipo de mudança:
para ele, tudo era um indivisível, realidade imutável, e qualquer aparências do contrário eram
ilusões, para serem dissolvida pela razão e relelação. Não surpreendentemente, essa filoso-
fia encontrou muitos críticos, que ridicularizaram a sugestão; afinal, ela contradiz algumas de
nossas crenças mais básicas sobre o mundo. Em resposta a essas críticas, Zenão fez algo
que pode parecer óbvio, mas que teve um impacto profundo na filosofia grega sentido até os
dias de hoje: ele tentou demonstrar que absurdos igualmente graves decorriam logicamente
da negação das ideias de Parmênides. Você acredita que existem muitas coisas? Você
precisa concluir, então, que tudo é ao mesmo tempo infinitamente pequeno e infinitamente
grande! Você acredita que o movimento é infinitamente divisível? Então, disso decorre que
nada se move! (É isso que se entende por ‘paradoxo’: uma demonstração de que uma
contradição ou consequência absurda decorre de premissas aparentemente razoáveis.)

Ao analisarmos os argumentos, é crucial manter esse método em mente. Eles são sem-
pre direcionados a um alvo mais ou menos específico: as visões de alguma pessoa ou
escola. Devemos lembrar que tais argumentos são ‘ad hominem’ no sentido literal do latim
– dirigidos às posições ou crenças das pessoas – e não no sentido de atacar as pessoas em
si que apresentam essas visões, em vez de atacar as próprias visões. Esses argumentos
operam assumindo temporariamente, pro argumento, que as afirmações são verdadeiras,
e depois argumentam que, se forem verdadeiras, consequências absurdas se seguem—
como, por exemplo, que nada se move. Esses são argumentos de ‘reductio ad absurdum’
(ou ‘dialética’ no sentido da época). Assim, se o argumento for logicamente válido e a con-
clusão for genuinamente inaceitável, então as afirmações devem ser falsas. Ao analisarmos
os argumentos de Zenão, portanto, devemos fazer duas perguntas relacionadas: quem ou
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qual posição Zenão está atacando, e o que exatamente é assumido para que o argumento
possa ser feito? Se descobrirmos que Zenão faz suposições ocultas além do que a posição
atacada implica, então a conclusão absurda pode ser evitada ao negar uma dessas supo-
sições ocultas, enquanto se mantém a posição. De fato, comentaristas, pelo menos desde
Aristóteles, têm respondido a Zenão dessa maneira.

Então, de quem são as visões que os argumentos de Zenão atacam? Há uma vasta lite-
ratura debatendo o alvo histórico exato de Zenão. Como discutiremos brevemente adiante,
alguns argumentam que o alvo era uma doutrina técnica dos pitagóricos, mas a maioria dos
estudiosos hoje interpreta Zenão como se opondo às noções sobre pluralidade e movimento
do senso comum. Abordaremos os paradoxos nesse espírito e direcionaremos o leitor à
literatura que trata do debate interpretativo.

1.2 Contexto Moderno
Seguindo uma indicação dada por Russell (1929, pp. 182–198), diversos filósofos –

notavelmente Grünbaum (1967), mas também Salmon (2001) – empreenderam a tarefa de
demonstrar como a matemática moderna poderia resolver todos os paradoxos de Zenão (ver
§5 para uma importante ampliação desse projeto). Esse trabalho permanece como a visão
“recebida”e influencia profundamente a discussão a seguir, tanto na abordagem quanto nas
análises específicas.

Essa abordagem sustenta que – com certas qualificações – os paradoxos de Zenão re-
velam problemas que não podem ser resolvidos sem os recursos completos da matemática
desenvolvida no século XIX (e possivelmente além disso). Isso não significa (necessaria-
mente), contudo, que a matemática moderna seja indispensável para responder aos proble-
mas que Zenão pretendia levantar; é possível argumentar que Aristóteles e outros antigos
já ofereceram respostas que poderiam – ou deveriam – ter satisfeito Zenão. (Além disso,
não faremos nenhuma alegação específica sobre a influência de Zenão na história da ma-
temática.) No entanto, à medida que a matemática se desenvolveu e os paradoxos foram
mais analisados, surgiram novas dificuldades a partir deles, dificuldades essas que exigem
a matemática moderna para serem resolvidas. Essas novas dificuldades derivam, em parte,
da evolução da nossa compreensão sobre o que o rigor matemático exige: soluções que
atenderiam aos padrões de rigor de Zenão não satisfariam os nossos. Assim, abordaremos
vários dos paradoxos, desde suas formulações de senso comum até suas resoluções na
matemática moderna. (Uma qualificação: apresentaremos resoluções em termos da ma-
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temática “padrão”, mas outras formulações modernas também são capazes de lidar com
Zenão, e, possivelmente, de modos que melhor representam seus conceitos matemáticos.)

Embora muitos continuem a considerar frutífera a abordagem geral de Russell e Grün-
baum, mais recentemente, diversos comentaristas têm questionado as interpretações es-
pecíficas da visão predominante. Caso estejam corretas, essas críticas enriquecem nossa
compreensão tanto da matemática antiga quanto da matemática do século XIX, como vere-
mos a seguir.

2. Os Paradoxos da Pluralidade

2.1 O Argumento da Densidade

Se há muitos, devem ser tantos quantos são, nem mais nem menos do que
isso. Mas, se são tantos quantos são, seriam limitados. Se há muitos, as coi-
sas que existem são ilimitadas. Pois há sempre outros entre as coisas que
existem, e ainda outros entre estes, e assim as coisas que existem são ilimita-
das. (Simplício, Sobre a Física de Aristóteles, 140.29)

Esse primeiro argumento, apresentado nas palavras de Zenão segundo Simplício, tenta
demonstrar que não poderia haver mais de uma coisa, sob pena de contradição: se hámuitas
coisas, então elas são ao mesmo tempo “limitadas”e “ilimitadas”, o que é uma contradição.
Por um lado, ele afirma que qualquer conjunto deve conter um número definido de coisas,
ou, em suas palavras, “nem mais nem menos”. Mas, se há um número definido de coisas,
conclui ele, então esse número deve ser finito – ou seja, ‘limitado’. Ao inferir isso, Zenão
pressupõe que ter infinitas coisas seria o mesmo que ter um número indefinido delas. Por
outro lado, imagine qualquer coleção de “muitas”coisas dispostas no espaço – para maior
clareza, visualize-as alinhadas em uma dimensão. Entre quaisquer duas delas, ele afirma,
há uma terceira; e entre essas três, outras duas; e entre essas cinco, outras quatro; e assim
por diante, sem fim. Portanto, a coleção também é ‘ilimitada’. Assim, nossa suposição inicial
de uma pluralidade leva a uma contradição e, consequentemente, é falsa: no fim das contas,
não há muitas coisas. Pelo menos, é assim que o raciocínio de Zenão se desenvolve.

Consideremos os dois argumentos subordinados, em ordem inversa. Primeiro: haveria
“sempre outros entre as coisas que existem”? (Em terminologia moderna: por que os ob-
jetos deveriam estar sempre ordenados de forma ”densa”?) Suponha que imaginássemos
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uma fileira de dez maçãs; de fato, há uma maçã entre a sexta e a oitava, mas não há uma
entre a sétima e a oitava! Se assumirmos que Zenão não está simplesmente confuso, o
que ele tinha em mente? Os textos não dizem, mas há duas possibilidades: primeiro, pode-
se defender que, para qualquer par de objetos físicos (digamos, duas maçãs) serem dois
objetos distintos e não apenas um (uma ‘maçã dupla’), deve haver um terceiro entre eles,
separando-os fisicamente – mesmo que seja apenas ar. E pode-se pensar que, para esses
três serem distintos, deve haver mais dois objetos separando-os, e assim por diante (essa vi-
são pressupõe que o fato de serem feitos de substâncias diferentes não basta para torná-los
distintos). Assim, talvez Zenão esteja argumentando contra a pluralidade com base em uma
certa concepção de distinção física. Mas, em segundo lugar, também se poderia sustentar
que qualquer corpo tem partes que podem ser ordenadas de forma densa. Claro, metades,
quartos, oitavos etc. de maçãs não são densos – tais partes podem ser adjacentes —, mas
pode haver partes suficientemente pequenas – digamos, ‘partes-ponto’ – que o sejam. De
fato, se entre quaisquer duas partes-ponto houver uma distância finita, e se essas partes-
ponto puderem estar arbitrariamente próximas, então elas são densas; uma terceira estaria
no ponto médio entre quaisquer duas. Em particular, os pontos geométricos familiares são
assim e, portanto, são densos. Logo, talvez Zenão esteja apresentando um argumento sobre
a divisibilidade dos corpos. De qualquer forma, a suposição de densidade feita por Zenão
exige alguma suposição adicional sobre a pluralidade em questão e, consequentemente,
direciona o alvo de seu paradoxo.

Mas suponha que alguém sustente que certo conjunto (como os pontos em uma reta)
é densa e, portanto, ‘ilimitada’ ou infinita. O primeiro aspecto do ataque de Zenão pretende
mostrar que, por conter um número definido de elementos, ela também é ‘limitada’, ou finita.
Seria possível escapar dessa contradição? A suposição de que qualquer número definido é
finito parece intuitiva, mas hoje sabemos, graças ao trabalho de Cantor no século XIX, como
entender números infinitos de modo que eles sejam tão definidos quanto os números fini-
tos. O elemento central dessa teoria dos ‘números transfinitos’ é uma definição precisa de
quando conjuntos infinitos têm o mesmo tamanho e quando uma é maior que a outra. Com
tal definição, é possível ordenar os números infinitos assim como os finitos: por exemplo,
há diferentes números infinitos definidos para frações e para pontos geométricos em uma
reta, mesmo que ambos sejam densos. (Veja as Leituras Adicionais abaixo para referên-
cias sobre essas ideias matemáticas e sua história.) Portanto, ao contrário da suposição
de Zenão, é significativo comparar conjuntos infinitos quanto ao número de seus elementos,
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afirmando se uma temmais, menos ou ‘tantos quanto’ outra: há, por exemplo, mais números
decimais do que números inteiros, mas há tantos números pares quanto números inteiros.
Assim, matematicamente, o raciocínio de Zenão é incorreto quando ele afirma que, por uma
coleção ter um número definido, ela deve ser finita, tornando o primeiro subargumento fa-
lacioso. (Embora, é claro, isso apenas mostre que coleções infinitas são matematicamente
consistentes, não que existam fisicamente.)

2.2 O Argumento da Extensão Finita
... se fosse adicionado a algo já existente, não o tornaria maior. Pois, se não
tivesse tamanho e fosse adicionado, não poderia aumentar de tamanho. E,
portanto, segue-se imediatamente que o que é adicionado é nada. Mas se,
quando subtraído, a outra coisa não é menor, nem aumenta quando é adici-
onada, claramente a coisa adicionada ou subtraída é nada. (Simplício Sobre
a Física de Aristóteles, 139.9) Mas, se existe, cada coisa deve ter algum ta-
manho e espessura, e parte dela deve estar separada do resto. E o mesmo
raciocínio se aplica à parte que está na frente. Pois esta também terá tama-
nho e parte dela estará na frente. Ora, é a mesma coisa dizer isso uma vez e
continuar dizendo para sempre. Pois nenhuma parte dela será a última, nem
haverá uma parte que não esteja relacionada a outra. Portanto, se há muitas
coisas, elas devem ser pequenas e grandes; tão pequenas que não tenham
tamanho, mas tão grandes que sejam ilimitadas. (Simplício Sobre a Física de
Aristóteles, 141.2)

Mais uma vez temos as próprias palavras de Zenão. Segundo sua conclusão, há três
partes neste argumento, mas apenas duas sobrevivem. O primeiro argumento – ausente –
pretende mostrar que, se muitas coisas existem, elas não devem ter tamanho algum. Em
segundo lugar, a partir disso Zenão argumenta que segue-se que elas não existem de forma
alguma; como o resultado de juntar (ou remover) um objeto sem tamanho a qualquer coisa
não produz mudança alguma, ele conclui que a coisa adicionada (ou removida) é literalmente
nada. O argumento até este ponto é uma refutação autossuficiente do pluralismo, mas Zenão
continua gerando um problema adicional para quem insiste na existência de uma pluralidade.
Essa terceira parte do argumento é formulada de maneira bastante inadequada, mas parece
ser algo assim: suponha que há uma pluralidade, então algum objeto espacialmente extenso
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existe (afinal, ele acabou de argumentar que coisas não extenso não existem). Como é es-
tendido, tem duas partes espacialmente distintas (uma ‘à frente’ da outra). E como as partes
existem, elas têm extensão, e portanto cada uma também tem duas partes espacialmente
distintas; e assim por diante sem fim. E portanto, a conclusão final do argumento parece ser
que o objeto, se é extenso de fato, é infinito em extensão.

Mas o que poderia justificar esse último passo? Não parece que pelo fato de um objeto
ter duas partes ele deva ser infinitamente grande! E tampouco segue-se de qualquer outra
das divisões que Zenão descreve aqui; quatro, oito, dezesseis, ou qualquer número finito
de partes formam um todo finito. Novamente, certamente Zenão está ciente desses fatos,
e portanto deve ter algo mais em mente, presumivelmente o seguinte: ele assume que se
a série infinita de divisões que descreve fosse repetida infinitas vezes, então resultaria um
conjunto definido de partes. E note que ele não precisa assumir que alguém poderia real-
mente realizar as divisões – não há tempo suficiente e as facas não são afiadas o suficiente
- apenas que um objeto pode ser decomposto geometricamente em tais partes (ele também
não assume que essas partes sejam o que naturalmente categorizaríamos como objetos
físicos distintos como maçãs, células, moléculas, elétrons ou algo assim, mas apenas que
são partes geométricas desses objetos). Agora, se – como um pluralista poderia muito bem
aceitar – tais partes existem, segue-se da segunda parte de seu argumento que elas são
extensas, e, ele aparentemente assume, uma soma infinita de partes finitas é infinita.

Aqui devemos notar que há duas maneiras pelas quais ele pode estar imaginando o
resultado da divisão infinita.

Primeiro, poderíamos lê-lo como primeiro dividindo o objeto em metades, então uma
das metades – digamos a segunda – em dois quartos, então um dos quartos – digamos o
segundo novamente – em dois oitavos e assim por diante. Neste caso, o resultado da divisão
infinita resulta em uma sequência interminável de pedaços de tamanho 1/2 do comprimento
total, 1/4 do comprimento, 1/8 do comprimento... E então o comprimento total é (1/2 +
1/4 + 1/8 + ...) do comprimento, o qual Zenão conclui ser uma distância infinita, de modo
que o pluralista está comprometido com o absurdo de que corpos finitos são ‘tão grandes
quanto ser ilimitado’.

O que frequentemente é apontado em resposta é que Zenão não nos dá nenhuma razão
para pensar que a soma é infinita em vez de finita. Ele pode ter tido a intuição de que qualquer
soma infinita de quantidades finitas, já que cresce incessantemente com cada novo termo,
deve ser infinita, mas também se poderia tomar esse tipo de exemplo como mostrando que
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algumas somas infinitas são, afinal, finitas. Assim, ao contrário do que ele pensava, Zenão
não provou que a conclusão absurda se segue. No entanto, o que nem sempre é apreciado
é que o pluralista não escapa tão facilmente, pois não basta apenas dizer que a soma pode
ser finita, ela também deve mostrar que é finita – caso contrário permanecemos incertos
sobre a sustentabilidade de sua posição. Como ilustração da dificuldade enfrentada aqui,
considere o seguinte: muitos comentaristas falam como se fosse simplesmente óbvio que
a soma infinita das frações é 1, que não há nada a somar infinitamente. Mas e a seguinte
soma:1 − 1 + 1 − 1 + 1 − ... Obviamente, parece, a soma pode ser reescrita como
(1 − 1) + (1 − 1) + ... = 0 + 0 + ... = 0. Certamente esta resposta parece tão intuitiva
quanto a soma das frações. Mas esta soma também pode ser reescrita como 1 − (1 −
1 + 1 − 1 + ...) = 1 − 0 – já que acabamos de mostrar que o termo entre parênteses
desaparece – =1. Confiar em intuições sobre como realizar somas infinitas leva à conclusão
de que 1 = 0. Até que se possa dar uma teoria de somas infinitas que possa dar uma
resposta satisfatória a qualquer problema, não se pode dizer que a soma infinita de Zenão é
obviamente finita. Tal teoria só foi totalmente desenvolvida no século XIX por Cauchy. (No
sistema de Cauchy,1/2 + 1/4 + ... = 1, mas 1 − 1 + 1 − ... é indefinido.)

Em segundo lugar, pode ser que Zenão queira dizer que o objeto é dividido ao meio,
então ambas as metades são divididas ao meio, então todos os quartos são divididos ao
meio e assim por diante. Nesse caso, os pedaços em qualquer estágio particular têm todos
o mesmo tamanho finito, e assim poderia-se concluir que o resultado de continuar o proce-
dimento infinitamente seria pedaços do mesmo tamanho, que, se existem - de acordo com
Zenão - são maiores que zero; mas um infinito de partes extensas iguais é de fato infinita-
mente grande.

Mas essa linha de pensamento pode ser resistida. Primeiro, suponha que o procedi-
mento descrito divida completamente o objeto em partes não sobrepostas. (Há um problema
com essa suposição que veremos logo abaixo.) Envolve dobrar o número de pedaços após
cada divisão e assim após N divisões há 2𝑁 pedaços. Mas acontece que para qualquer
número natural ou infinito, N, 2𝑁 > 𝑁 , e assim o número de (supostas) partes obtidas pela
infinidade de divisões descritas é um infinito ainda maior. Este resultado não apresenta di-
ficuldade imediata, pois, como mencionamos acima, infinitos vêm em tamanhos diferentes.
O número de vezes que tudo é dividido em dois é dito ser ’infinito contável’: há um infinito
contável de coisas em uma coleção se elas puderem ser rotuladas pelos números 1, 2, 3, ...
sem sobra em nenhum dos lados. Mas o número de pedaços que a divisão infinita produz é
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’infinito incontável’, o que significa que não há como rotulá-los 1, 2, 3, ... sem perder alguns
deles - de fato, infinitos deles. No entanto, a definição de Cauchy de uma soma infinita só
se aplica a séries infinitas contáveis de números, e portanto não se aplica aos pedaços que
estamos considerando. No entanto, poderíamos considerar apenas um número contável
deles, cujos comprimentos, de acordo com Zenão - já que ele afirma que são todos iguais
e não nulos - somariam um comprimento infinito; o comprimento de todos os pedaços não
poderia ser menor que isso.

Nesse ponto, o pluralista que acredita que a divisão de Zenão divide completamente os
objetos em partes não sobrepostas (veja o parágrafo seguinte) poderia responder que as
partes de fato não têm extensão, mesmo que existam. Isso bloquearia a conclusão de que
objetos finitos são infinitos, mas parece empurrá-la de volta para o outro chifre do argumento
de Zenão, pois como todas essas partes de comprimento zero podem formar um todo de
tamanho não nulo? (Note que, de acordo com Cauchy, 0+0+0+...=0, mas este resultado
não mostra nada aqui, pois, como vimos, há incontáveis pedaços para adicionar - mais do
que são adicionados nesta soma.) Adiaremos essa questão para a discussão do próximo
paradoxo, na qual ela surge explicitamente.

O segundo problema com interpretar a divisão infinita como uma divisão repetida de
todas as partes é que ela não divide um objeto em partes distintas, se os objetos são com-
postos da maneira natural. Para ver isso, vamos fazer a pergunta sobre quais partes são
obtidas por essa divisão em metades, quartos, oitavos, ... Como a divisão é repetida in-
determinavelmente, não há um último pedaço que possamos dar como resposta, e assim
precisamos pensar na questão de uma maneira diferente. Se supomos que um objeto pode
ser representado por um segmento de linha de comprimento unitário, então a divisão produz
conjuntos de segmentos, dos quais o primeiro é a primeira ou a segunda metade do seg-
mento inteiro, o segundo é o primeiro ou segundo quarto, ou terceiro ou quarto quarto, e em
geral o segmento produzido por N divisões é a primeira ou segunda metade do segmento
anterior. Por exemplo, escrevendo o segmento com extremidades a e b como [a,b], alguns
desses conjuntos (tecnicamente conhecidas como ’cadeias’, já que os elementos da cole-
ção são ordenados por tamanho) começariam [0,1], [0,1/2], [1/4,1/2], [1/4,3/8], .... (Quando
argumentamos antes que a divisão de Zenão produzia incontáveis pedaços do objeto, o que
deveríamos ter dito com mais cuidado é que produz incontáveis cadeias como essa.)

A questão de quais partes a divisão seleciona é então a questão de qual parte qualquer
cadeia dada seleciona; é natural dizer que uma cadeia seleciona a parte da linha que está
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contida em cada um de seus elementos. Considere, por exemplo, a cadeia [0,1/2], [1/4,1/2],
[3/8,1/2], ..., em outras palavras, a cadeia que começa com a metade esquerda da linha e
para a qual cada outro elemento é a metade direita do anterior. O ponto médio está em cada
um dos segmentos dessa cadeia; é o ponto final direito de cada um. Mas nenhum outro
ponto está em todos os seus elementos: claramente nenhum ponto além do meio está; e
escolha qualquer ponto p antes do meio, se você tomar metades direitas de [0,1/2] vezes
suficientes, o final esquerdo do segmento estará à direita de p. Por consequinte, a única
parte da linha que está em todos os elementos desta cadeia é o ponto médio, e, portanto,
esse é a parte da linha selecionada pela cadeia. (De fato, segue-se de um postulado da teoria
dos números que há exatamente um ponto que todos os membros de qualquer cadeia desse
tipo têm em comum.) O problema é que, por raciocínio paralelo, o ponto médio também é
selecionado pela cadeia distinta [1/2,1], [1/2,3/4], [1/2,5/8], ..., onde cada segmento após o
primeiro é a metade esquerda do precedente. E desse modo ambas as cadeias selecionam
o mesmo pedaço da linha: o ponto médio. E assim por diante para muitos outros pares de
cadeias. Assim, o argumento de Zenão, interpretado em termos de uma divisão repetida
de todas as partes ao meio, não divide a linha em partes distintas. Portanto, se pensarmos
que os objetos são compostos da mesma maneira que a linha, segue-se que, apesar das
aparências, essa versão do argumento não corta os objetos em partes cujo tamanho total
pode adequadamente ser discutido.

(Você pode pensar que esse problema poderia ser corrigido tomando os elementos das
cadeias como segmentos sem ponto final à direita. Então, a primeira das duas cadeias
que consideramos não tem mais o ponto médio em nenhum de seus segmentos, e, conse-
quentemente, não seleciona aquele ponto. O problema agora é que ela falha em selecionar
qualquer parte da linha: o raciocínio anterior mostrou que ela não seleciona nenhum ponto
maior ou menor que o ponto médio, e agora nem mesmo seleciona aquele ponto!)

2.3 O Argumento da Divisibilidade Completa
... Sempre que um corpo for, por natureza, divisível completamente, seja por
bisseção, seja, de modo geral, por qualquer outro método, nada impossível
terá ocorrido se ele de fato tiver sido dividido – embora, talvez, ninguém na
prática pudesse dividi-lo assim. O que, então, restará? Uma magnitude? Não:
isso é impossível, pois então haveria algo não dividido, enquanto, ex hypothesi,
o corpo era divisível completamente. Mas, se se admitir que não restará nem
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um corpo nem uma magnitude... o corpo consistirá ou de pontos (e seus cons-
tituintes serão destituídos de magnitude) ou será absolutamente nada. Se for
este último caso, então poderia tanto vir a ser a partir do nada quanto existir
como um composto de nada; e, assim, presumivelmente, o corpo todo não
será nada além de uma aparência. Mas, se consistir de pontos, não possuirá
nenhuma magnitude. (Aristóteles, Da Geração e da Corrupção, 316a19)

Estas palavras são de Aristóteles, não de Zenão, e, de fato, o argumento nem sequer
é atribuído a Zenão por Aristóteles. No entanto, temos a opinião de Simplício (Sobre a
Física de Aristóteles, 139.24) de que ele se origina com Zenão, razão pela qual está incluído
aqui. Aristóteles começa supondo que algum corpo é completamente divisível, “através e
através”; o segundo passo do argumento deixa claro que, com isso, ele quer dizer que o
corpo é divisível em partes que, elas mesmas, não possuem tamanho – partes que possuem
qualquer magnitude permanecem incompletamente divididas. (Mais uma vez, o que importa
é que o corpo seja genuinamente composto de tais partes, não que alguém tenha tempo
e ferramentas para realizar a divisão; e lembrando, da seção anterior, que não se obtêm
tais partes por meio de divisões sucessivas de todas as partes pela metade.) Suponha-se,
então, que o corpo seja dividido em suas partes sem dimensão. Essas partes poderiam ser
ou nada – como Zenão argumentou acima – ou “partes-ponto”. Se as partes forem nada,
então o corpo também o será: trata-se apenas de uma ilusão.

E quanto ao passo final? Por que algo composto inteiramente de pontos não teria tama-
nho? Aristóteles não diz. Uma compreensão natural – e padrão – é que Aristóteles entende
que o problema reside em somar os comprimentos de partes de comprimento zero. Cer-
tamente qualquer soma – mesmo uma infinita – de zeros é zero; isso certamente é o caso
(como observado acima) na definição de somas infinitas de Cauchy. No entanto, Grünbaum
(1967) apontou que essa definição se aplica apenas a somas enumeráveis, e Cantor forne-
ceu uma bela, surpreendente e extremamente influente prova “diagonal” de que o número
de pontos em um segmento é não enumeravelmente infinito. Não há como rotular todos os
pontos de uma linha com a infinidade dos números 1, 2, 3, ..., de modo que há mais pontos
em um segmento de linha do que somandos em uma soma de Cauchy. Em suma, a análise
empregada para divisões infinitas enumeráveis não se aplica aqui.

Suponha, então, que sejam dados apenas o número de pontos em uma linha e que
seus comprimentos sejam todos zero; como se determinaria o comprimento? Precisaríamos
de uma nova definição, uma que estendesse a de Cauchy para somas não enumeráveis?
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Acontece que isso não ajudaria, porque Cantor mostrou que qualquer segmento, de qual-
quer comprimento que seja (e, de fato, uma linha infinita inteira), possui exatamente omesmo
número de pontos que nosso segmento unitário. Assim, saber o número de pontos não de-
terminará o comprimento da linha, e, portanto, nada semelhante à adição familiar – na qual o
todo é determinado pelas partes – é possível. Em vez disso, devemos considerar as propri-
edades de distância de uma linha como logicamente posteriores à sua composição pontual:
primeiro temos um conjunto de pontos (ordenados de certa maneira, demodo que haja algum
fato, por exemplo, sobre qual dos três está entre os outros) e, então, definimos uma função
dos pares de pontos que especifica quão distantes eles estão (satisfazendo condições como
a de que a distância entre A e B somada à distância entre B e C é igual à distância entre A
e C – se B está entre A e C). Assim, respondemos a Zenão da seguinte forma: o argumento
pressupunha que o tamanho do corpo era a soma dos tamanhos das partes-ponto, mas esse
não é o caso; segundo a matemática moderna, um segmento de linha geométrica é uma in-
finidade não enumerável de pontos mais uma função de distância. (Note-se que Grünbaum
utilizou o fato de que a composição pontual não determina um comprimento para sustentar
sua visão ‘convencionalista’ de que uma linha não possui comprimento determinado algum,
independente de um padrão de medida.)

Como enfatiza Ehrlich (2014), poderíamos até mesmo estipular que uma “soma não
enumerável” de zeros é zero, porque o comprimento de uma linha não é igual à soma dos
comprimentos dos pontos que ela contém (respondendo à preocupação de Sherry (1988)
de que recusar-se a estender a definição seria ad hoc). Assim, se se estipula que o com-
primento de uma linha é a soma de qualquer conjunto completo de partes próprias, então
decorre que os pontos não são, propriamente falando, partes de uma linha (ao contrário de
metades, quartos e assim por diante de uma linha). Em um sentido estrito, na teoria da
medida moderna (que generaliza a estrutura de Grünbaum), os pontos de uma linha são in-
comensuráveis com ela, e a própria formulação dada por Aristóteles, na qual o comprimento
do todo é analisado em termos de seus pontos, é ilegítima.

A resposta de Grünbaum, embora aborde um paradoxo, foi recentemente significativa-
mente contestada quanto à sua precisão, tanto no que se refere à matemática antiga quanto
à matemática do século XIX. Reese et al. (2022) interpretam o paradoxo – especificamente
o raciocínio de Aristóteles na frase final – de uma forma que não depende de somar zeros,
mas pressupõe apenas que o tamanho de um ponto é limitado pelo tamanho das linhas das
quais ele faz parte. O paradoxo resultante, eles demonstram, teria causado problemas para
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os princípios da matemática antiga; além disso, causou problemas na matemática da dé-
cada de 1880, sendo, por fim, resolvido por Borel. Embora essa solução dependa do fato de
que o número de pontos em uma linha é não enumerável, ela não se baseou na prova de
Cantor nem em ideias sobre somas infinitas. Pesquisas futuras sérias sobre esse paradoxo
precisarão levar esse trabalho em consideração.

3. Os Paradoxos do Movimento

3.1 A Dicotomia

O primeiro [argumento] afirma a não existência do movimento com base na
ideia de que aquilo que está em locomoção deve chegar à metade do caminho
antes de chegar ao destino. (Aristóteles, Física, 239b11)

Esse paradoxo é conhecido como ‘dicotomia’ porque envolve uma divisão repetida em
dois (assim como o segundo paradoxo da pluralidade). Como os outros paradoxos do movi-
mento, ele nos foi transmitido por Aristóteles, que buscou refutá-lo.

Suponha que uma corredora muito rápida – como a mítica Atalanta – precise correr para
pegar o ônibus. Claramente, antes de chegar ao ponto de ônibus, ela deve percorrer a me-
tade do caminho, como diz Aristóteles. Não há problema nisso; supondo um movimento
constante, ela levará metade do tempo para percorrer a metade do caminho, e a outra me-
tade do tempo para percorrer o restante. Agora, ela também deve percorrer a metade da
metade do caminho – ou seja, um quarto da distância total – antes de chegar à metade,
mas novamente, ela tem um número finito de distâncias finitas a percorrer, e bastante tempo
para isso. E antes de percorrer 1/4 do caminho, ela deve percorrer 1/2 de 1/4, que é 1/8 do
caminho; e antes disso, 1/16; e assim por diante. Não há problema em nenhum ponto finito
dessa série, mas e se essa divisão pela metade for feita infinitas vezes? A série resultante
não contém uma primeira distância a ser percorrida, pois qualquer possível primeira distân-
cia poderia ser dividida ao meio e, portanto, não seria realmente a primeira. No entanto, ela
contém uma última distância, que é 1/2 do caminho; uma penúltima, que é 1/4 do caminho;
uma antepenúltima, que é 1/8 do caminho; e assim por diante. Assim, a sequência de distân-
cias que Atalanta precisa percorrer é: …, depois 1/16 do caminho, depois 1/8 do caminho,
depois 1/4 do caminho e, finalmente, 1/2 do caminho (e aqui não estamos sugerindo que ela
pare no fim de cada segmento e comece novamente no próximo – estamos pensando na sua
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corrida contínua, composta por essas partes). E agora surge um problema, pois essa des-
crição de sua corrida a faz percorrer um número infinito de distâncias finitas, o que, segundo
Zenão, nos levaria à conclusão de que isso deveria levar um tempo infinito, ou seja, nunca
seria concluído. E, como o argumento não depende da distância nem de quem ou do que
seja o movimento, conclui-se que nenhuma distância finita pode jamais ser percorrida – ou
seja, todo movimento é impossível. (Note que o paradoxo pode ser formulado facilmente na
direção oposta, de modo que Atalanta deve primeiro percorrer metade do caminho, depois
metade do restante, depois metade disso, e assim por diante, levando-a a uma sequência
infinita de frações da distância total: 1/2, depois 1/4, depois 1/8, e assim sucessivamente.)

Algumas respostas comuns não são adequadas. Alguém poderia – como Simplicio (So-
bre a Física de Aristóteles, 1012.22) relata que Diógenes, o Cínico, fez – simplesmente se
levantar e começar a andar em silêncio, apontando que é uma questão de experiência co-
mum que as coisas de fato se movem, e que sabemos muito bem que Atalanta não teria
dificuldade em chegar ao ponto de ônibus. Mas isso não impressionaria Zenão, que, como
um seguidor fiel de Parmênides, sustentava que muitas coisas não são como parecem: pode
parecer que Diógenes está andando ou que Atalanta está correndo, mas as aparências po-
dem enganar – e, afinal, temos uma prova lógica de que eles, na verdade, não estão se
movendo. Alternativamente, se alguém não aceita que Zenão tenha realmente provado que
o movimento é ilusório – como, esperançosamente, não aceitamos – então essa pessoa tem
a obrigação de explicar o que há de errado em seu argumento: ele forneceu razões pelas
quais o movimento é impossível, então uma resposta adequada precisa mostrar por que es-
sas razões não são suficientes. E não basta simplesmente apontar que existem maneiras
de dividir a corrida de Atalanta – por exemplo, apenas em duas metades – em que não há
problema. Pois, se você aceita todos os passos do argumento de Zenão, então deve aceitar
sua conclusão (assumindo que ele tenha raciocinado de forma logicamente dedutiva): não
basta apresentar uma divisão não problemática, é necessário também mostrar por que essa
divisão específica não apresenta problemas.

Outra resposta – dada pelo próprio Aristóteles – é apontar que, à medida que dividimos
as distâncias percorridas, devemos também dividir o tempo total gasto: há 1/2 do tempo
para percorrer a última metade, 1/4 do tempo para o quarto anterior, 1/8 do tempo para o
oitavo de corrida, e assim por diante. Assim, cada fração da distância tem exatamente a
fração correspondente do tempo total finito para que Atalanta a complete, e, portanto, a dis-
tância pode ser percorrida em um tempo finito. Essa resposta pode parecer trivial aos olhos
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modernos, mas, em um estudo importante, Sattler (2020) argumenta que entender o movi-
mento por meio dessa correspondência matemática entre distância e duração foi um avanço
crucial feito por Aristóteles, em resposta aos seus predecessores. Certamente, Aristóteles
considerava que sua resposta deveria satisfazer Zenão. No entanto, ele também percebeu
(Física, 263a15) que isso não encerrava completamente a questão. Afinal, agora estamos
dizendo que o tempo que Atalanta leva para chegar ao ponto de ônibus é composto por um
número infinito de partes finitas – ..., 1/8, 1/4 e 1/2 do tempo total – e isso não seria um tempo
infinito?

É claro que alguém poderia novamente argumentar que algumas somas infinitas têm
totais finitos e, em particular, que a soma dessas partes é exatamente 1× o tempo total, que,
evidentemente, é finito (e, novamente, uma solução completa exigiria uma explicação rigo-
rosa sobre somas infinitas, como a desenvolvida por Cauchy). No entanto, Aristóteles não
fez esse passo. Em vez disso, ele traçou uma distinção rigorosa entre o que ele chamou de
linha ‘contínua’ e uma linha dividida em partes. Considere uma divisão simples de uma linha
em duas: de um lado, há a linha não dividida; de outro, a linha com um ponto médio seleci-
onado como fronteira entre as duas metades. Aristóteles afirma que essas são duas coisas
distintas e que a segunda é apenas ‘potencialmente’ derivada da primeira. Em seguida,
Aristóteles adota a visão do senso comum de que o tempo é como uma linha geométrica e
considera o tempo necessário para completar a corrida. Podemos novamente distinguir os
dois casos: há o intervalo contínuo do início ao fim e há o intervalo dividido na infinidade de
meias-corridas de Zenão. O primeiro é ‘potencialmente infinito’ no sentido de que poderia
ser dividido no segundo, que é uma ‘infinidade atual’. Aqui está o ponto crucial: Aristóteles
acredita que, uma vez que esses intervalos são geometricamente distintos, eles também
devem ser fisicamente distintos. Mas como isso seria possível? Ele afirma que a corredora
deve fazer algo no fim de cada meia-corrida para torná-la distinta da próxima: ela deve pa-
rar, tornando a própria corrida descontínua. (Não está claro por que alguma outra ação não
seria suficiente para dividir o intervalo.) Assim, a resposta completa de Aristóteles ao para-
doxo é que a questão de saber se a série infinita de corridas é possível ou não é ambígua:
a série potencialmente infinita de metades em uma corrida contínua é possível, enquanto
uma infinidade atual de meias-corridas descontínuas não é – Zenão, de fato, identifica uma
impossibilidade, mas ela não descreve a maneira usual de correr por uma pista!

É difícil – talvez do nosso ponto de vista moderno— ver como essa resposta poderia
ser completamente satisfatória. Em primeiro lugar, ela assume que é possível traçar uma
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distinção clara entre infinitos potenciais e infinitos atuais, algo que nunca foi plenamente al-
cançado. Em segundo lugar, suponha que o problema de Zenão dependa da afirmação de
que somas infinitas de quantidades finitas são invariavelmente infinitas. Então, a distinção
de Aristóteles só ajudaria se ele pudesse explicar por que somas potencialmente infinitas
são, de fato, finitas (não poderíamos, potencialmente, somar 1 + 1 + 1 + ..., o que não tem
um total finito); ou se ele pudesse apresentar uma razão pela qual somas potencialmente
infinitas simplesmente não existem. Ou talvez Aristóteles não visse as somas infinitas como
o problema, mas sim saber se completar uma infinidade de ações finitas é metafisicamente,
conceitualmente e fisicamente possível. Discutiremos brevemente essa questão – das ‘su-
pertarefas’ – mais adiante, mas vale notar que existe uma corrida bem definida na qual os
estágios da corrida de Atalanta são pontuados por descansos finitos, o que, por argumen-
tos, mostra a possibilidade de completar uma série infinita de tarefas finitas em um tempo
finito (Huggett 2010, pp. 21–22). Por fim, a distinção entre infinito potencial e infinito atual
não desempenha nenhum papel na matemática desde que Cantor domou os números trans-
finitos – certamente o infinito potencial não tem desempenhado papel algum nas soluções
matemáticas modernas discutidas aqui.

3.2 Aquiles e a Tartaruga
O [segundo] argumento foi chamado “Aquiles”, consequentemente, a partir do
fato de que Aquiles foi tomado [como personagem] nele, e o argumento diz que
é impossível para ele alcançar a tartaruga quando a persegue. Pois, de fato, é
necessário que aquilo que está para alcançar [algo], antes de alcançar [isso],
primeiro alcance o limite de onde aquilo que está fugindo partiu. No [tempo no]
qual aquilo que persegue chega a isso, aquilo que está fugindo avançará um
certo intervalo, mesmo se for menor do que aquele que aquilo que persegue
avançou... E no tempo, de novo, no qual aquilo que persegue irá percorrer
esse [intervalo] que aquilo que está fugindo avançou, nesse tempo, de novo,
aquilo que está fugindo irá percorrer alguma quantidade... E assim, em todo
tempo no qual aquilo que persegue irá percorrer o [intervalo] que aquilo que
está fugindo, sendo mais lento, já avançou, aquilo que está fugindo também irá
avançar alguma distância. (Simplício, Sobre a Física de Aristóteles 6, 1014.10)

Esse paradoxo gira em torno de considerações muito semelhantes ao anterior. Imagine
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Aquiles perseguindo uma tartaruga e suponha que Aquiles corre a 1 m/s, que a tartaruga
rasteja a 0,1m/s e que a tartaruga começa 0,9m à frente de Aquiles. Aparentemente, Aquiles
deveria alcançar a tartaruga após 1s, a uma distância de 1m de onde ele começa (e, portanto,
0,1m de onde a tartaruga começa). Poderíamos dividir o movimento de Aquiles emmetades,
como fizemos com Atalanta, ou da seguinte forma: antes que Aquiles possa alcançar a
tartaruga, ele deve chegar ao ponto onde a tartaruga começou. Mas no tempo que ele
leva para fazer isso, a tartaruga rasteja um pouco mais para frente. Então, Aquiles deve
alcançar esse novo ponto. Porém, no tempo que Aquiles leva para isso, a tartaruga avança
um pouquinho mais. E assim até o infinito: toda vez que Aquiles chega ao lugar onde a
tartaruga estava, ela teve tempo suficiente para avançar mais um pouco, e então Aquiles
tem outra corrida a fazer. Assim, Aquiles tem um número infinito de alcançadas finitas antes
de pegar a tartaruga e, portanto, Zenão conclui que ele nunca a alcança.

Um aspecto do paradoxo, então, é que Aquiles deve percorrer a seguinte série infinita de
distâncias antes de alcançar a tartaruga: primeiro 0,9m, depois mais 0,09m, depois 0,009m,
… Essas são as distâncias que a tartaruga percorre no início de cada alcançada de Aquiles.
Visto dessa forma, o quebra-cabeça é idêntico à Dicotomia, pois é o mesmo que dizer que
“aquilo que está em movimento deve chegar [a nove décimos do caminho] antes de chegar
ao objetivo”. E, assim, tudo o que dissemos antes se aplica aqui também.

Mas o que esse paradoxo evidencia de forma mais vívida é o problema de completar
uma série de ações que não tem um membro final – nesse caso, a série infinita de alcan-
çadas antes que Aquiles atinja a tartaruga. Mas qual é exatamente o problema? Talvez o
seguinte: a corrida de Aquiles até o ponto em que ele deveria alcançar a tartaruga pode, apa-
rentemente, ser completamente decomposta na série de alcançadas, nenhuma das quais o
leva à tartaruga. Portanto, em nenhum momento de sua corrida ele de fato a alcança. Mas,
se isso era o que Zenão tinha em mente, não funciona. É claro que Aquiles não alcança a
tartaruga em nenhum ponto da sequência, pois cada corrida na sequência ocorre antes que
esperemos que ele a alcance! Pensando em termos dos pontos que Aquiles deve atingir
em sua corrida, 1m não aparece na sequência 0,9m, 0,99m, 0,999m, …, então é óbvio que
ele nunca pega a tartaruga durante essa sequência de corridas! (E a mesma situação surge
na Dicotomia: não há uma primeira distância na série, então ela não inclui a partida de Ata-
lanta!) Assim, a série de alcançadas não decompõe completamente a corrida: o ponto final
– no qual Aquiles de fato alcança a tartaruga – deve ser adicionado a ela. Então, há algum
paradoxo? Argumentavelmente, sim.
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A corrida de Aquiles passa pela sequência de pontos 0,9m, 0,99m, 0,999m, …, 1m.
Mas uma sequência tão estranha—composta por uma infinidade de membros seguida por
mais um—faz sentido matematicamente? Se não, então nossa descrição matemática da
corrida não pode estar correta, mas então qual é? Felizmente, a teoria dos transfinitos, com
relação à qual Cantor é pioneiro, nos assegura que tal série é perfeitamente respeitável.
Percebeu-se que as propriedades de ordem das séries infinitas são muito mais elaboradas
que as das séries finitas. Qualquer forma de organizar os números 1, 2 e 3 resulta em uma
série com o mesmo padrão, por exemplo, mas há muitas maneiras distintas de ordenar os
números naturais: 1, 2, 3, … por exemplo. Ou …, 3, 2, 1. Ou …, 4, 2, 1, 3, 5, …. Ou
2, 3, 4, …, 1, que é exatamente o mesmo tipo de série que as posições que Aquiles deve
percorrer. Assim, a teoria dos transfinitos trata não apenas dos números ‘cardinais’—que
dependem apenas de quantas coisas existem—mas também dos números ‘ordinais’, que
dependem ainda de como as coisas estão ordenadas. Como os ordinais são normalmente
considerados números matematicamente legítimos, e como a série de pontos que Aquiles
deve passar tem um número ordinal, assumiremos que a série é matematicamente legítima.
(Novamente, veja ‘Supertarefas’ abaixo para outro tipo de problema que pode surgir para
Aquiles.)

3.3 A flecha

O terceiro [paradoxo] é... que a flecha em voo está em repouso, conclusão que
decorre da suposição de que o tempo é composto de momentos... Ele afirma
que, se tudo que ocupa um espaço igual está em repouso, e se aquilo que
está em movimento está sempre em um ‘agora’, então a flecha em voo está,
portanto, imóvel. (Aristóteles, Física, 239b30).

Zenão suprime omovimento, dizendo: “O que está emmovimento não semove
nem no lugar onde está, nem no lugar onde não está”. (Diógenes Laércio,
Vidas e Doutrinas dos Filósofos Ilustres, IX.72)

Esse argumento contra o movimento baseia-se explicitamente em um tipo específico de
suposição de pluralidade: a de que o tempo é composto de momentos (ou ‘agoras’) e nada
mais. (De acordo com Pemberton, 2022, Aristóteles rejeita por completo a afirmação de que
o tempo é composto de instantes.) Considere uma flecha, aparentemente em movimento,
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em qualquer instante. Primeiro, Zenão assume que ela não percorre nenhuma distância
durante esse momento – ‘ela ocupa um espaço igual’ durante todo o instante. Mas todo o
período de seu movimento contém apenas instantes, todos os quais contêm a flecha em
repouso e, portanto, Zenão conclui que a flecha não pode estar se movendo.

Uma preocupação imediata é entender por que Zenão está justificado ao assumir que
a flecha está em repouso em qualquer instante. Isso decorre de modo imediato se assumir-
mos que um instante dura 0s: qualquer que seja a velocidade da flecha, ela não chegará
a lugar algum se não tiver tempo algum. Mas e se considerarmos que as menores partes
do tempo são finitas—ainda que minúsculas—, de modo que uma flecha em movimento po-
deria, de fato, percorrer alguma distância durante um instante? Uma maneira de sustentar
essa suposição – que exige uma interpretação mais elaborada do texto – começa assumindo
que os instantes são indivisíveis. Em seguida, suponha que a flecha realmente se moveu
durante um instante. Ela estaria em lugares diferentes no início e no fim do instante, o que
implica que o instante tem um ‘início’ e um ‘fim’, o que, por sua vez, sugere que ele tem pelo
menos duas partes e, portanto, é divisível—contrariando nossa suposição inicial. (Observe
que esse argumento apenas estabelece que nada pode se mover durante um instante, não
que os instantes não podem ser finitos.)

Assim, nada se move durante qualquer instante, mas o tempo é inteiramente composto
de instantes; logo, nada jamais se move. Uma primeira resposta é observar que determinar
a velocidade da flecha implica dividir a distância percorrida em certo tempo pela duração
desse tempo. Mas – assumindo, a partir de agora, que os instantes têm duração zero—essa
fórmula não faz sentido no caso de um instante: a flecha percorre 0m em 0s (a duração do
instante), mas 0/0 m/s não é um número. Portanto, é falacioso concluir, a partir do fato de
que a flecha não percorre distância alguma em um instante, que ela está em repouso; se ela
está ou não em movimento em um instante depende se ela percorre alguma distância em
um intervalo finito que inclua o instante em questão.

A resposta está correta, mas traz uma implicação contraintuitiva: o movimento não é
algo que acontece em qualquer instante, mas apenas ao longo de períodos finitos de tempo.
Pense da seguinte maneira: o tempo, como dissemos, é composto apenas de instantes. Ne-
nhuma distância é percorrida durante qualquer instante. Então, quando a flecha realmente
se move? Como ela vai de um lugar a outro em ummomento posterior? Há apenas uma res-
posta: a flecha vai do ponto X no tempo 1 ao ponto Y no tempo 2 simplesmente em virtude de
estar em pontos intermediárias sucessivas em tempos intermediários sucessivos—a flecha
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nunca muda sua posição durante um instante, mas apenas ao longo de intervalos compostos
de instantes, pela ocupação de diferentes posições em diferentes momentos. Nas palavras
memoráveis de Bergson – que ele considerava expressar um absurdo –, “o movimento é
composto de imobilidades”(1911, 308): ir de X a Y consiste em ocupar exatamente um lugar
intermediário em cada instante (na ordem correta, é claro). Para uma discussão mais apro-
fundada dessa concepção ‘ponto a ponto’ do tempo, consulte Arntzenius (2000) e Salmon
(2001, 23-4).

3.4 O Estádio
O quarto argumento é o que diz respeito a corpos iguais que se movem ao
lado de corpos iguais no estádio a partir de direções opostas – uns do final
do estádio, outros do meio – em velocidades iguais, no qual ele pensa que se
segue que metade do tempo é igual ao seu dobro…. (Física de Aristóteles,
239b33)

Aristóteles prossegue elaborando e refutando um argumento para o paradoxo final do
movimento de Zenão. O texto é bastante enigmático, mas geralmente é interpretado da
seguinte maneira: imagine três conjuntos de cubos idênticos e justapostos em movimento
relativo. Um conjunto—os As—permanece em repouso, enquanto os outros—os Bs e Cs—
movem-se para a direita e para a esquerda, respectivamente, em velocidades iguais e cons-
tantes. Suponha ainda que, em certo momento, o B mais à direita e o C mais à esquerda
estejam alinhados com o A central, conforme ilustrado (três de cada são representados por
simplicidade):

A A A
B B B
C C C

Como os Bs e Cs se movem na mesma velocidade, eles se alinharão simultaneamente
com os As em um momento posterior:

A A A
B B B
C C C
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Nesse instante, o B mais à direita terá passado por todos os Cs, mas apenas pela me-
tade dos As. Como os cubos são do mesmo tamanho, ele terá percorrido uma certa distância
e também metade dessa distância. No entanto, a contradição não é explicitada aqui, pre-
sumivelmente porque é claro que essas distâncias contraditórias são relativas aos Cs e As,
respectivamente—e não há contradição geral em estar em relações diferentes com coisas
diferentes. Em vez disso, as distâncias são convertidas em tempos ao serem divididas pela
velocidade dos Bs: metade da distância, a uma dada velocidade, leva metade do tempo.
Surge então uma contradição, pois o tempo entre os estados é de fato inequívoco, não
relativo—o processo leva um tempo (não nulo) e metade desse tempo.

O veredito geral é que Zenão estava profundamente confuso sobre velocidades relativas
nesse paradoxo. Se os Bs se movem a uma velocidade V m/s para a direita em relação aos
As, e os Cs a V m/s para a esquerda em relação aos As, então os Cs se movem a 2V m/s
para a esquerda em relação aos Bs. Assim, embora os Bs percorram o dobro da distância em
relação aos Cs do que em relação aos As, fazem-no com o dobro da velocidade relativa, de
modo que os tempos são iguais em ambos os casos. Mas será que Zenão poderia estar tão
confuso? (Sattler, 2015, argumenta contra essa e outras interpretações comuns do estádio.)

Talvez (Davey, 2007) ele tivesse em mente o seguinte (embora essa leitura, que atribui
mais perspicácia a Zenão, não se encaixe tão bem nas palavras de Aristóteles): suponha
que os As, Bs e Cs tenham a menor extensão espacial possível—sejam “pontuais”—, onde
“pontos”têm tamanho zero se o espaço for contínuo, ou tamanho finito se o espaço for “atô-
mico”. Suponha ainda que não haja espaços entre os As, Bs ou Cs. Durante o movimento
descrito, o B mais à frente passa por todos os Cs e pela metade dos As—ou seja, por me-
tade do número de As em relação aos Cs. Agora, como um ponto se move continuamente
ao longo de uma linha sem lacunas, há uma correspondência biunívoca entre os instantes
de tempo e os pontos na linha—para cada instante, um ponto; para cada ponto, um instante.
Portanto, o número de “instantes-A”que o B está na frete leva para passar pelos As é metade
do número de “instantes-C”necessários para passar pelos Cs—mesmo que esses proces-
sos levem o mesmo tempo. Se então, crucialmente, assumirmos que metade dos instantes
significa metade do tempo, concluímos que metade do tempo é igual ao tempo total, uma
contradição.

Como vimos na discussão sobre divisibilidade completa, há um problema nesse raciocí-
nio aplicado a linhas contínuas: qualquer segmento de linha tem omesmo número de pontos,
logo nada pode ser inferido a partir do número de pontos dessa maneira— certamente não
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pode ser inferido que metade dos pontos (aqui, instantes) signifique metade do comprimento
(ou tempo). O paradoxo, como formulado, falha. Mas a própria afirmação de que os interva-
los contêm o mesmo número de instantes não entra em conflito com a conclusão de que há
metade de instantes-A em relação aos instantes-C? A questão é sutil para conjuntos infini-
tos: por exemplo, 1, 2, 3, … está em correspondência biunívoca com 2, 4, 6, …, e portanto
há o mesmo ”número”de cada. É nesse sentido de correspondência—o sentido matemático
preciso de ”mesmo número”—que qualquer segmento finito tem a mesma quantidade de
pontos que outro. No entanto, informalmente, há ”metade”dos números pares em relação
aos inteiros: os pares (1,2), (3,4), (5,6), … também podem ser postos em correspondência
biunívoca com 2, 4, 6, …. Analogamente, há—informalmente—metade dos instantes-A em
relação aos instantes-C: os instantes-A correspondem biunivocamente a pares de instantes-
C. Assim, não há contradição na contagem de pontos: a metade informal equivale ao todo
estrito (uma solução diferente é necessária para uma teoria atômica, conforme sugerido no
parágrafo final dessa seção).

(Permita-memencionar um paradoxo similar domovimento—a “roda demoinho”—atribuído
a Maimônides. Imagine duas rodas, uma com o dobro do raio e circunferência da outra, fixas
a um mesmo eixo. Deixe-as rolar sobre um trilho, com um dos lados elevado para manter o
eixo horizontal, para que ambas as rodas deem uma volta [elas giram na mesma velocidade
por causa do eixo, cada ponto de cada roda entra em contato com exatamente um ponto do
trilho correspondente, e cada ponto de cada trilho com exatamente um ponto de sua roda
correspondente. Após uma volta completa, a montagem percorreu uma distância igual à
circunferência da roda maior? Da menor? De Ambas? De alguma outra? Como? Esse
problema também exige compreensão do contínuo, mas não é um paradoxo de Zenão—
deixemos sua resolução à engenhosidade do leitor.)

Uma última reconstrução possível do Estádio de Zenão o interpreta como um argumento
contra uma teoria atômica do espaço e tempo—o que é interessante porque a física contem-
porânea explora essa ideia ao tentar “quantizar”o espaço-tempo. Suponha, então, que os
lados de cada cubo equivalem ao “quantum”de comprimento e que os dois momentos consi-
derados estão separados por um único quantum de tempo. Algo estranho deve ocorrer: o B
mais à direita e o C central passam um pelo outro durante omovimento, mas não hámomento
em que estejam alinhados—já que os dois momentos estão separados pelo menor tempo
possível, não pode haver um instante intermediário (seria um tempo menor que o menor
intervalo considerado). Por outro lado, se insistíssemos que, ao passarem, deve haver um
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momento de alinhamento, isso provaria que não pode haver um intervalo finito maiscurto—
qualquer que fosse, esse argumento o refutaria. Mas por que insistir nessa suposição? O
problema é que se imagina naturalmente o espaço quantizado como um tabuleiro de xadrez,
no qual as peças permanecem imóveis durante cada quantum de tempo. Então, pergunta-
se quando a rainha vermelha, por exemplo, vai de uma casa à outra, ou como ultrapassa a
rainha branca sem se alinhar a ela. Mas a analogia é enganosa. É melhor pensar no espaço
quantizado como umamatriz gigante de lâmpadas, onde cada padrão de luzes acesas repre-
senta um quantum de tempo. Nessa analogia, uma lâmpada acesa representa a presença
de um objeto—por exemplo, uma sequência de luzes acendendo-se em linha representa um
corpo em movimento retilíneo. Aqui, não há tentação de perguntar quando a luz “chega”de
uma lâmpada à próxima—ou, em analogia, como o corpo se move de um local a outro. (Aqui
tangenciamos questões sobre partes temporais e se objetos “perduram”ou “subsistir”.)

4. Dois Paradoxos Adicionais

Dois outros paradoxos são atribuídos a Zenão por Aristóteles, mas eles são apresenta-
dos no contexto de outros argumentos que ele desenvolve, de modo que a intenção original
de Zenão não pode ser determinada com certeza—nem mesmo se eles foram concebidos
para argumentar contra a pluralidade e o movimento. Discutiremos brevemente esses para-
doxos para que a exposição seja completa.

4.1 O Paradoxo do Lugar

A dificuldade levantada por Zenão exige uma explicação; pois, se tudo o que
existe ocupa um lugar, então o próprio lugar também deverá ter um lugar, e
assim sucessivamente, ad infinitum. (Aristóteles, Física, 209a23)

Quando Aristóteles estabelece sua teoria do lugar - noção espacial crucial em sua teoria
do movimento - ele enumera várias teorias e problemas que seus predecessores, incluindo
Zenão, formularam sobre o assunto. O argumento novamente levanta questões sobre o in-
finito, já que a segunda etapa do argumento defende uma regressão infinita de lugares. No
entanto, Aristóteles o apresenta como um argumento contra a própria ideia de lugar, em vez
de pluralidade (provavelmente tirando-o de contexto). ÉÉ difícil entender a necessidade da
conclusão, pois por que não deveria haver uma série infinita de lugares de lugares de lu-
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gares...? Presumivelmente, a preocupação seria maior para alguém que (como Aristóteles)
acreditasse que não poderia haver um infinito real de coisas, pois o argumento parece mos-
trar que há. Mas como discutimos acima, hoje não precisamos ter tais preocupações; não
parece haver nada problemático com um infinito real de lugares.

A única outra maneira pela qual alguém poderia achar a regressão problemática é se
sustentasse que os corpos têm lugares ‘absolutos’, no sentido de que há sempre uma res-
posta privilegiada única para a pergunta ‘onde está’? O problema então não é que existam
infinitos lugares, mas apenas que existem muitos. E Aristóteles pode ter tido essa preocu-
pação, pois em sua teoria do movimento, o movimento natural de um corpo é determinado
pela relação de seu lugar com o centro do universo: uma explicação que exige que o lugar
seja determinado, porque o movimento natural é. (Veja Sorabji 1988 e Morrison 2002 para
considerações gerais e concorrentes sobre as visões de Aristóteles sobre o lugar; capítulo 3
deste último especialmente para uma discussão sobre o tratamento do paradoxo por Aristó-
teles.) Mas supondo que alguém sustente que o lugar é absoluto por qualquer motivo, então,
por exemplo, onde estou enquanto escrevo? Se o paradoxo estiver correto, então estou no
meu lugar, e também no lugar do meu lugar, e no lugar do lugar do meu lugar... Como estou
em todos esses lugares, qualquer um pode parecer uma resposta apropriada à pergunta.
Várias respostas são concebíveis: negar lugares absolutos (especialmente porque nossa
física não os exige), definir uma noção de lugar que seja única em todos os casos (prova-
velmente a solução de Aristóteles), ou talvez afirmar que lugares são seus próprios lugares,
interrompendo assim a regressão!

4.2 O grão de Trigo
O raciocínio de Zenão é falso ao afirmar que não existe parte alguma do trigo
que não produza som, pois não há razão pela qual qualquer parte deva - em
qualquer intervalo de tempo - mover o ar que a medida inteira move ao cair.
(Aristóteles, Física, 250a19)

No contexto, Aristóteles explica que uma fração de força pode não produzir proporcio-
nalmente a mesma fração de movimento. Por exemplo, enquanto cem estivadores podem
rebocar um barco, um único estivador pode não conseguir movê-lo de forma alguma, muito
menos a 1/100 da velocidade; portanto, mesmo com tempo ilimitado, ele não o moveria na
mesma proporção que os cem (hoje atribuímos isso ao efeito do atrito). Da mesma forma,
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apenas porque umamedida de trigo em queda produz um ruído, não se segue que cada grão
individual faça: mesmo com tempo ilimitado, um grão não moveria o mesmo volume de ar
que a medida completa. Entretanto, ao refutar essa premissa, Aristóteles não esclarece qual
função ela cumpria no argumento de Zenão, restando-nos apenas conjecturar. Nem mesmo
está claro se fazia parte de um paradoxo ou de outra discussão: teria Zenão também ale-
gado que um único grão de trigo não produz som? Uma hipótese é que nossos sentidos
confirmariam que não, já que não ouvimos um grão isolado cair. Nesse caso, a resposta de
Aristóteles seria apropriada - assim como a observação correlata de que a própria audição
requer movimento do ar acima de determinado limiar.

5. A Influência de Zenão na Filosofia

Nesta seção final, devemos considerar brevemente o impacto que Zenão teve em vários
filósofos; uma pesquisa da literatura revelará que esses debates continuam.

Os Pitagóricos: Na primeira metade do século XX, a interpretação predominante - se-
guindo Tannery (1885) - sustentava que os argumentos de Zenão eram dirigidos contra uma
doutrina técnica dos pitagóricos. Segundo essa leitura, eles acreditavam que todas as coi-
sas eram compostas de elementos que tinham as propriedades de um número unitário, um
ponto geométrico e um átomo físico: essa posição se alinharia com sua doutrina de que a
realidade é fundamentalmente matemática. No entanto, em meados do século, uma série
de comentaristas (Vlastos, 1967, resume o argumento e contém referências) argumentou
vigorosamente que o alvo de Zenão era, em vez disso, uma compreensão comum da plurali-
dade e do movimento - baseada em noções geométricas familiares - e que essa doutrina não
era uma parte importante do pensamento pitagórico. Assumimos implicitamente que esses
argumentos estão corretos em nossas leituras dos paradoxos. Dito isso, a interpretação de
Tannery ainda tem seus defensores (ver, por exemplo, Matson 2001).

Os Atomistas: Aristóteles (Sobre a Geração e Corrupção 316b34) afirma que nosso ter-
ceiro argumento - aquele sobre a divisibilidade completa - foi o que convenceu os atomistas
de que deveria haver partes mínimas e indivisíveis da matéria. Ver Abraham (1972) para
uma discussão mais aprofundada sobre a conexão de Zenão com os atomistas.

O Devir Temporal: No início do século XX, vários filósofos influentes tentaram empre-
gar os argumentos de Zenão a serviço de uma metafísica do ”devir temporal”, o (suposto)
processo pelo qual o presente vem a ser. Pensadores como Bergson (1911), James (1911,
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Cap. 10-11) e Whitehead (1929) argumentaram que os paradoxos de Zenão mostram que o
espaço e o tempo não estão estruturados como um continuummatemático: eles argumenta-
ram que a maneira de preservar a realidade do movimento era negar que o espaço e o tempo
são compostos de pontos e instantes. No entanto, vimos claramente que as ferramentas da
matemática moderna padrão são capazes de resolver os paradoxos, portanto nenhuma con-
clusão desse tipo parece justificada: se o presente de fato “vem a ser”, não há razão para
pensar que o processo não seja capturado pelo continuum.

Aplicando o Continuum Matemático ao Espaço e Tempo Físicos: Como observado na
§1.2, a “visão recebida”de Zenão (desenvolvida na segunda metade do século XX por fi-
lósofos que elaboraram as ideias de Grünbaum, 1967) visava mostrar como a matemática
moderna resolve os paradoxos. No entanto, central para esse projeto era o reconhecimento
de que uma solução puramente matemática não é suficiente: os paradoxos questionam não
apenas a matemática abstrata, mas também a natureza da realidade física. Portanto, o que
eles buscavam era um argumento não apenas de que Zenão não representava uma ame-
aça à matemática do infinito, mas também de que essa matemática descreve corretamente
objetos, tempo e espaço. Não seria uma resposta aos paradoxos de Zenão se o arcabouço
matemático que invocamos não fosse uma boa descrição do espaço, tempo e movimento
reais! A ideia de que uma lei matemática - digamos, a lei da gravitação universal de Newton
- pode ou não descrever corretamente as coisas é familiar, mas alguns aspectos da mate-
mática do infinito - a natureza do continuum, a definição de somas infinitas etc. - parecem
tão básicos que pode ser difícil perceber a princípio que eles também se aplicam contingen-
temente. Mas certamente o fazem: nada garante a priori que o espaço tenha a estrutura
do continuum, ou mesmo que partes do espaço se somem de acordo com a definição de
Cauchy. (Salmon oferece um bom exemplo para ajudar a esclarecer o ponto: como o álcool
se dissolve na água, se você misturar os dois, acabará com menos do que a soma de seus
volumes, mostrando que mesmo a adição comum não é aplicável a todo tipo de sistema.)
Nossa crença de que a teoria matemática do infinito descreve o espaço e o tempo é justi-
ficada na medida em que as leis da física assumem que sim, e na medida em que essas
leis são confirmadas pela experiência. Embora seja verdade que quase todas as teorias
físicas assumem que o espaço e o tempo de fato têm a estrutura do continuum, também é
o caso que teorias quânticas da gravidade provavelmente implicam que não. Embora nin-
guém saiba ao certo onde essa pesquisa levará, é bem possível que o espaço e o tempo
acabem sendo, no nível mais fundamental, muito diferentes do continuum matemático que
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assumimos aqui.
Deve-se notar também que Grünbaum considerou que a tarefa de mostrar que a ma-

temática moderna descreve o espaço e o tempo envolvia algo bastante diferente de argu-
mentar que ela é confirmada pela experiência. A visão dominante na época (embora não
atualmente) era que os termos científicos tinham significado na medida em que se referiam
diretamente a objetos de experiência - como “uma régua de 1m- ou, se se referissem a en-
tidades ”teóricas”em vez de “observáveis- como “um ponto do espaço”ou “1/2 de 1/2 de ...
1/2 de uma pista- então eles obtinham significado por suas relações lógicas - por meio de
definições e leis teóricas - com tais termos de observação. Assim, Grünbaum empreendeu
um programa impressionante para dar significado a todos os termos envolvidos na teoria
moderna do infinito, interpretada como uma descrição do espaço e do tempo.

Supertarefas: Uma linha adicional de pensamento diz respeito ao que Black (1950-51)
chamou de “máquinas infinitas”. Black e seus seguidores queriam mostrar que, embora os
paradoxos de Zenão não representassem um problema para a matemática, eles mostravam
que, afinal, a matemática não era aplicável ao espaço, tempo e movimento. Mais drastica-
mente, nossa resolução para a Dicotomia e Aquiles assumiu que a corrida completa poderia
ser dividida em uma série infinita de meias corridas, que poderiam ser somadas. Mas é re-
almente possível completar qualquer série infinita de ações: completar o que é conhecido
como uma ”supertarefa”? Se não, e assumindo que Atalanta e Aquiles podem completar
suas tarefas, suas corridas completas não podem ser corretamente descritas como uma sé-
rie infinita de meias corridas, embora a matemática moderna as descreva assim. O que as
máquinas infinitas supostamente estabelecem é que uma série infinita de tarefas não pode
ser completada - portanto, qualquer tarefa completável não pode ser dividida em uma infini-
dade de tarefas menores, independentemente do que a matemática sugira.

Infinitesimais: Finalmente, vimos como abordar os paradoxos usando os recursos da
matemática desenvolvida no século XIX. Por muito tempo, considerou-se uma das grandes
virtudes desse sistema que ele finalmente mostrou que quantidades infinitesimais, menores
que qualquer número finito, mas maiores que zero, são desnecessárias. (O cálculo de New-
ton, por exemplo, efetivamente fazia uso de tais números, tratando-os às vezes como zero
e às vezes como finitos; o problema com essa abordagem é que a forma de tratar os núme-
ros é uma questão de intuição, não de rigor.) No entanto, no século XX, Robinson mostrou
como introduzir números infinitesimais na matemática: esse é o sistema da ”análise não-
padrão”(o sistema familiar de números reais, fundamentado rigorosamente por Dedekind,
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é, em contraste, apenas “análise”). Analogamente, Bell (1988) explica como segmentos de
linha infinitesimais podem ser introduzidos na geometria e comenta sua relação com Zenão.
Além disso, McLaughlin e Miller (1992) e McLaughlin (1994) mostram como os paradoxos de
Zenão podem ser resolvidos na análise não-padrão; eles não são mais um argumento con-
tra a análise não-padrão do que contra a matemática padrão que assumimos aqui. Deve-se
enfatizar, no entanto, que - ao contrário das sugestões de McLaughlin e Miller - não há ne-
cessidade de análise não-padrão para resolver os paradoxos: qualquer um dos sistemas
é igualmente bem-sucedido. (Reeder, 2015, argumenta que a análise não-padrão é insa-
tisfatória em relação à flecha e oferece uma explicação alternativa usando uma concepção
diferente de infinitesimais.) A construção da análise não-padrão levanta, no entanto, uma
questão adicional sobre a aplicabilidade da análise ao espaço e tempo físicos: parece plausí-
vel que todas as teorias físicas possam ser formuladas em ambos os termos e, portanto, até
onde nossa experiência se estende, ambas parecem igualmente confirmadas. Mas ambas
não podem ser verdadeiras para o espaço e o tempo: ou o espaço tem partes infinitesimais
ou não.

6. Leituras Complementares

Após as entradas relevantes nessa enciclopédia, o ponto de partida para qualquer inves-
tigação adicional é Salmon (2001), que contém alguns dos artigos mais importantes sobre
Zenão até 1970, além de uma bibliografia impressionantemente abrangente de obras em in-
glês no século XX. Um tratamento mais recente e aprofundado, que contextualiza o debate
no desenvolvimento do conceito de movimento na Antiguidade, é Sattler (2020).

Também se pode consultar Huggett (1999, cap. 3) e Huggett (2010, caps. 2–3) para
mais trechos de fontes e discussões. Para introduções às ideias matemáticas por trás das
resoluções modernas, o Apêndice de Salmon (2001) ou Stewart (2017) são bons pontos de
partida; Russell (1919) e Courant et al. (1996, caps. 2 e 9) também são excelentes fontes.
Por fim, três coletâneas de fontes originais sobre os paradoxos de Zenão: Lee (1936 [2015])
contém tudo o que se conhece, Kirk et al. (1983, cap. 9) reúne uma grande quantidade de
material (em inglês e grego) com comentários úteis, e Cohen et al. (1995) também apresenta
os principais trechos.
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(V) Paradoxo de Skolem1

Título Original: Skolem’s Paradox
Autor: Thimothy Bays
Tradução: Mahan Vaz2

Revisão: Diego Fernandes

O paradoxo de Skolem envolve um conflito aparente entre dois teoremas da lógica clás-
sica. O teorema de Löwenheim-Skolem diz que se uma teoria de primeira ordem possui
modelos infinitos, então ela tem modelos cujos domínios são enumeráveis . O teorema
de Cantor diz que alguns conjuntos são não-enumeráveis. O paradoxo de Skolem ocorre
quando percebemos que os princípios básicos da teoria de conjuntos de Cantor – i.e., aque-
les princípios utilizados para provar o teorema de Cantor sobre a existência de conjuntos
não-enumeráveis – podem eles próprios serem formulados como uma coleção de senten-
ças de primeira ordem. Como podem os mesmos princípios que provam a existência de
conjuntos não-enumeráveis serem satisfeitos por um modelo que é ele próprio apenas enu-
merável? Como pode um modelo enumerável satisfazer uma sentença de primeira ordem
1“Skolem’s Paradox”, In: ZALTA, E. N. (ed.). Stanford Encyclopedia of Philosophy. Stanford, CA: The Metaphy-
sics Research Lab. Disponível em: https://plato.stanford.edu/entries/paradox-skolem/.
A seguir está a tradução da entrada sobre o Paradoxo de Skolem na Stanford Encyclopedia of Philosophy.
A tradução segue a versão da entrada nos arquivos da SEP em https://plato.stanford.edu/archives/spr2025/
entries/paradox-skolem/. Esta versão traduzida pode diferir da versão atual da entrada, que pode ter sido atu-
alizada desde o momento desta tradução. A versão atual está localizada em https://plato.stanford.edu/entries/
paradox-skolem/. Gostaríamos de agradecer aos editores da Stanford Encyclopedia of Philosophy, em especial
o Prof. Dr. Edward N. Zalta, por concederem permissão para traduzir e publicar esta entrada.
2Faz-se aqui indispensável a menção à colaboração das agências de fomento que financiam o desenvol-
vimento deste trabalho. O presente trabalho foi realizado com apoio da Fundação de Amparo à Pesquisa
do Estado de São Paulo (FAPESP), Brasil. Processo nº 2022/16816-9 e pela DAAD, sob o programa Bi-
nationallysupervised/Cotutelle Doctoral Degree. As opiniões, hipóteses e conclusões ou recomendações expres-
sas neste material são de responsabilidade do(s) autor(es) e não necessariamente refletem a visão da FAPESP
ou da DAAD.
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que diz que há uma quantidade não-enumerável de objetos – por exemplo, uma quantidade
não-enumerável de números reais?

A discussão filosófica deste paradoxo teve uma tendência de se focar em três questões
principais. Primeiro, há uma questão puramente matemática: por que o paradoxo da Skolem
não introduz uma contradição imediata à teoria de conjuntos? Segundo, há uma questão
histórica: o próprio Skolem deu uma explicação muito boa do porquê esse paradoxo não
constitui uma contradição matemática imediata; por que, então, Skolem e suas contemporâ-
neas continuaram a considerar o paradoxo tão problemático filosoficamente? Finalmente há
a questão filosófica: o que nos diz o Paradoxo de Skolem sobre nosso entendimento sobre
teoria de conjuntos e/ou sobre a semântica da linguagem da teoria de conjuntos?

1. Introdução

Para entendermos o Paradoxo de Skolem, precisamos lembrar de dois teoremas da
lógica clássica3. O primeiro data do final do século XIX. Em 1873, Georg Cantor formulou
uma nova técnica para mediar o tamanho – ou cardinalidade – de um conjunto de objetos. A
ideia de Cantor era a de que dois conjuntos deveriam ter o mesmo tamanho apenas no caso
em que seus elementos pudessem ser colocados numa correspondência um-para-um entre

3Aqui é provavelmente o local para destacar algumas convenções notacionais. Nessa entrada, assumiremos que
=, ¬, →, e ∃ constituem o vocabulário oficial da lógica de primeira-ordem, e trataremos ∧, ∨, ↔, e ∀ como
abreviações. (Faremos uso livre dessas abreviações quando elas pareçam melhorar a leitura). A menos quando
dito o contrário, trabalharemos na linguagem da teoria de conjuntos de primeira-ordem – isto é, a linguagem que
possui “∈” como seu único primitivo não-lógico. Dizemos que uma fórmula está nesta linguagem quando ela é
construída a partir de ∈ juntamente com os conectivos padrão da lógica.
Nessa entrada utilizaremos letras em negrito para denotar modelos e suas letras correspondentes sem negrito
para denotar os domínios desses modelos. Assim, M é um modelo e 𝑀 é seu domínio, N é um modelo e
𝑀 é seu domínio, etc. Tendo dito isto, frequentemente abusamos a notação e escrevemos coisas como “M é
enumerável” ou “𝑚 ∈ M” quando na verdade queremos dizer “𝑀 é enumerável” e “𝑚 ∈ 𝑀”; no contexto,
isso nunca deve causar confusão. Finalmente, a menos que especificado o contrário, assume-se que todos os
modelos são para a linguagem da teoria de conjuntos – isto é, como o caso acima, a linguagem com ∈ como
seu único primitivo não-lógico.
A menos quando observado o contrário, utilizaremos ⊨ para denotar a satisfação de primeira-ordem e ⊢ para
provabilidade de primeira ordem. Se 𝑚 é um elemento de algum modelo M e 𝜙(𝑥) é uma fórmula com apenas
𝑥 livre, então escreveremosM ⊨ 𝜑[𝑚] para dizer que 𝑚 habita o subconjnto deM em que𝜑(𝑥) é verdadeira.
Para mais sobre notação de teoria de modelos, veja as entradas em teoria de modelos e teoria de modelos de
primeira ordem. Para o básico de notação em teoria de conjuntos, veja a entrada em teoria de conjuntos.
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eles. Por exemplo, o conjunto {1, 2, … , 26} pode ser colocado em uma correspondência
um-para-um com o conjunto {𝐴, 𝐵, … , 𝑍}, através domapemamento natural que relaciona
1 a 𝐴, 2 a 𝐵, 3 a 𝐶 , etc., etc; de modo similar, o conjunto dos números naturais pode ser
colocado em uma correspondência um-para-um com o conjunto dos números pares através
do mapeamento: 𝑥 ↦ 2𝑥.

Ao aplicar este conceito de cardinalidade a conjuntos infinitos, Cantor chegou à conclu-
são inicialmente surpreendente de que há diferentes tipos de infinitude. Há conjuntos infinitos
relativamente pequenos, como o conjunto dos números pares, o conjunto dos inteiros, ou o
conjunto dos números racionais. Estes são conjuntos que podem todos ser colocados em
uma correspondência um-para-um com o conjuntos dos números naturais; eles são cha-
mados infinitos enumeráveis. Em contraste, há conjuntos infinitos muitos “maiores”, como o
conjuntos dos números reais, o conjunto dos números complexos, ou o conjuntos de todos os
subconjuntos dos números naturais. Estes conjuntos são muito grandes para serem coloca-
dos em correspondência um-para-um com os números naturais; eles são chamados infinitos
não-enumeráveis. O Teorema de Cantor, então, é apenas a asserção de que há conjuntos
infinitos não-enumeráveis – conjuntos que são, como vistos na época, muito grandes para
serem enumeráveis4.

Nosso segundo teorema data do início do século XX. Em 1915, Leopold Löwenheim
demonstrou que se uma sentença de primeira-ordem tem um modelo, então ela tem um mo-
delo cujo domínio é enumerável5. Em 1922, Thoralf Skolem generalizou este resultado para

4Dissemos acima que a conclusão de Cantor de que há diferentes tipos de infinito pode ser inicialmente surpre-
endente. Isso necessita qualificação. Num primeiro momento, afinal, parece óbvio que alguns conjuntos infinitos
são maiores que outros. Se, por exemplo, medirmos o “tamanho” de um conjunto por meio de uma relação de
subconjunto – assim, 𝐴 é menor que 𝐵 se, e somente se, 𝐴 é um subuconjunto próprio de 𝐵 – então pode
ser trivial mostrar que há diferentes tipos de infinito. Nessa definição, afinal, o conjunto dos números pares é
menor que o conjunto dos números naturais, o conjunto dos naturais é menor que o conjunto dos inteiros e o
conjunto dos inteiros é menor que o conjuntos dos racionais. É só quando filtramos toda a nossa análise através
da nova definição de Cantor de cardinalidade – e então descobrimos que toda a sequência dos números pares,
naturais, inteiros, racionais, etc, consiste em conjuntos com o mesmo tamanho – que começamos a suspeitar
que todos os conjuntos infinitos possuem o mesmo tamanho, o que, de um jeito ou de outro, por bem ou por mal,
deveríamos ser capazes de encontrar uma bijeção entre quaisquer dois conjuntos infinitos. Tendo esse pano de
fundo é que o teorema de Cantor começa a parecer surpreendente.
5Essa não é a forma como Löwenheim teria formulado o teorema, mas é a formulação mais clara para nossos
fins. Para uma discussão detalhada de formulação e demonstração deste teorema pelo próprio Löwenheim, veja
(Badesa, 2004)
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conjuntos de sentenças . Ele demonstrou que se uma coleção enumerável de sentenças de
primeira-ordem tem um modelo infinito, então ela tem um modelo que é apenas enumerá-
vel. Este é o resultado que tipicamente recebe o nome de Teorema de Löwenheim-Skolem.
Antes de prosseguirmos, é importante mencionarmos três, de algum modo mais refinadas,
versões deste teorema6.

Seja 𝑇 uma coleção enumerável de sentenças de primeira-ordem e seja 𝐴 um conjunto
infinito. O Teorema Ascendente de Löwenheim-Skolem diz que se 𝑇 possui algum modelo,
então 𝑇 possui um modelo cujo domínio tem o mesmo tamanho de 𝐴 (de fato, podemos as-
sumir sem perda de generalidade que o domínio deste segundo modelo é justamente 𝐴)7.O
Teorema Descendente de Löwenheim-Skolem diz que se N é um modelo de cardinalidade
(infinita) 𝜅 e se 𝜆 é um cardinal infinito menor que 𝜅, então N tem um submodelo de cardi-
nalidade 𝜆 que satisfaz exatamente as mesmas sentenças que N8.

Finalmente, o Teorema do Submodelo Transitivo diz que se nosso N inicial vem a ser
um modelo transitivo de ZF, então ele contém um submodelo transitivo enumerável, que

6Para uma investigação completa da matemática que circunda os Teoremas de Löwenheim Skolem, veja (Eb-
binghaus, 2007).
7Este teorema é originalmente atribuído a Tarski. Ele possui este nome por conta do fato que nos permite
iniciarmos com um modelo enumerável de 𝑇 e gerarmos modelos de cardinalidade arbitrariamente grande.
8Este teorema é, mais uma vez, atribuído a Tarski. Chama-se teorema descendente porque permite-nos co-
meçar com um modelo grande e depois gerarmos um submodelo (menor). Duas observações adicionais são
aqui necessárias. Primeira, ao dizermos que nosso modelo novo, N, é um submodelo do nosso modelo origi-
nal, M, queremos dizer que o domínio de N é um subconjunto do domínio de M e que os dois modelos con-
cordam na interpretação das constantes, predicados, relações e funções na nossa linguagem – por exemplo,
para todos 𝑛1, … , 𝑛𝑚 no domínio de N e qualquer 𝑅 na nossa linguagem, N ⊨ 𝑅[𝑛1, … , 𝑛𝑚] ⇔ M ⊨
𝑅[𝑛1, … , 𝑛𝑚]. Segunda, comomencionado acima, o teorema descendente depende da suposição que nossa
linguagem é enumerável. (Se nossa linguagem não é enumerável, então precisaríamos da suposição adicional
de que 𝜆 é pelo menos tão grande quando o tamanho da nossa linguagem). Por conveniência de exposição,
o restante desta entrada se limitará ao caso de linguagens enumeráveis – portanto, deste ponto em diante “lin-
guagem” = “linguagem enumerável”.
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também satisfaz ZF9.
Voltando, agora, para a versão original do teorema de Löwenheim-Skolem – aquele que

diz que qualquer teoria que possua um modelo infinito também possui um modelo infinito
enumerável. O Paradoxo de Skolem surge quando percebemos que os axiomas clássicos da
teoria de conjuntos podem, eles próprios, serem formulados como uma coleção (enumerável)
de sentenças de primeira-ordem. Se é o caso que esses axiomas possuem um modelo,
então o teorema de Löwenheim-Skolem garante que eles possuem um modelo com domínio
enumerável10 . Isto, porém, parece deveras intrigante. De que modo podem os axiomas que
demonstram o teorema de Cantor sobre a existência de conjuntos não-enumeráveis serem
satisfeitos por um modelo que é, ele próprio, enumerável? Como é possível um modelo
enumerável satisfazer a sentença de primeira-ordem que “diz que” há uma quantidade não-
enumerável de coisas?

Essas questões podem ser tornadas mais concretas ao considerarmos um caso espe-
cífico. Seja 𝑇 uma axiomatização padrão, em primeira-ordem da teoria de conjuntos. (Por
conveniência, esta entrada focará no caso em que 𝑇 é ZFC, mas qualquer outra axioma-
tização padrão da teoria de conjuntos teria um resultado semelhante.) Assumindo que 𝑇
possui um modelo, os teoremas de Löwenheim-Skolem garantem que 𝑇 possui um modelo
enumerável. Chame este modelo de M. Agora, como 𝑇 ⊢ ∃𝑥 “ 𝑥 é enumerável”, então

9De fato, há um único modelo transitivo e enumerável – o modelo chamado de modelo minimal, que satisfaz
ZFC + 𝑉 = 𝐿 e que é um submodelo de todo modelo transitivo de ZF. Se quisermos que nosso submodelo
enumerável satisfaça exatamente as mesmas sentenças que o original 𝑁 , então as coisas ficam um pouco mais
complicadas. Em muitos casos podemos fazê-lo – por exemplo, quando 𝑁 tem a forma 𝑉𝛾 para algum ordinal
𝛾. Hamkins, Woodin e Button, porém, recentemente mostraram que há casos em que um modelo transitivo
de ZF não possui submodelos transitivos enumeráveis que satisfaçam exatamente a mesma teoria. Para uma
definição de transitividade – e uma discussão de seu significado filosófico no contexto do Paradoxo de Skolem
– veja a seção 2.3.
10Devemos observar aqui que a suposição inicial de que nossos axiomas possuem qualquer modelo não é trivial
– afinal, o segundo teorema de Incompletude garante que não podemos provar a existência de tais modelos
de dentro de nossa axiomatização. Além disso, alguns dos resultados que analisaremos mais adiante nesta
entrada envolvem suposições de existência de modelos ainda mais fortes – por exemplo, a existência de um
modelo transitivo para nossos axiomas é estritamente mais forte que a de mera existência de um modelo para
nossos axiomas. Agora, tendo destacado esses tipos de preocupação aqui, nós vamos suprimi-los do restante
dessa entrada (então, daqui em diante, simplesmente assumiremos que nossos axiomas possuem modelos,
modelos transitivos, etc.). Para uma discussão mais detalhada dos problemas filosóficos levantados pela possí-
vel não-existência de tais modelos, veja (Bays, 2007b). Para informações mais técnicas sobre a força de várias
suposições de existência de modelos, veja (Ebbinghaus, 2007) e a seção 1 de (Bays, 2007a).
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deve existir algum 𝑚̂ ∈ M tal que M ⊨ “𝑚̂ é não-enumerável”. Mas, como M é somente
enumerável, há apenas uma quantidade enumerável de 𝑚 ∈ M tais que M ⊨ 𝑚 ∈ 𝑚̂. Su-
perficialmente, então, pode parecer que há uma contradição imediata: de uma perspectiva,
𝑚̂ parece não-enumerável, enquanto de outra perspectiva, 𝑚̂ é claramente enumerável.

Isto, portanto, nos dá uma formulação bastante simples do Paradoxo de Skolem. An-
tes de nos voltarmos à solução deste paradoxo, um ponto sobre a sua motivação deve ser
levantado. De uma perspectiva, não há nada surpreendente no fato de que um modelo
em particular falha ao capturar acuradamente toda característica da realidade da qual ele
é modelo. Um modelo matemático de uma teoria física, por exemplo, pode conter apenas
números reais e conjuntos de números reais, ainda que a teoria, ela própria seja sobre, diga-
mos, partículas subatômicas e regiões do espaço-tempo. Semelhantemente, uma maquete
do sistema solar reproduzirá corretamente certos aspectos do sistema solar, enquanto repro-
duzirá outros erroneamente. Assim, por exemplo, ela pode reproduzir os tamanhos relativos
do planetas corretamente, ao passo que reproduz seus tamanhos absolutos (ou até seus ta-
manhos proporcionais) erroneamente; ou pode estar correta sobre o fato de que os planetas
se movem ao redor do Sol, estando incorreta sobre os mecanismos deste movimento (por
exemplo, os planetas não se movem ao redor do Sol porque um demonstrador gira uma ala-
vanca!). Dados todos esses fatos, pode não ser claro por quê deveríamos esperar modelos
de primeira-ordem de teoria de conjuntos capturem acuradamente a distinção entre conjun-
tos enumeráveis e não-enumeráveis. Logo, de início pode não ser claro por que deveríamos
pensar que o Paradoxo de Skolem aparenta ser paradoxal.

Ainda que falaremos mais sobre esse tipo de problema (veja em especial as seções
2.1 e 3.1), algumas notas preliminares são apropriadas neste momento. Primeiro, é impor-
tante notar que há alguns conceitos de teoria de conjuntos que modelos de primeira-ordem
capturam com bastante precisão. Como veremos na seção 3.1, modelos de primeira-ordem
capturam noções de cardinalidade finita – por exemplo, “𝑥 é vazio”, “𝑥 tem dois elementos”,
“𝑥 tem dezessete elementos”, etc –muito bem11 . Se nos permitirmos utilizar uma quantidade

11É preciso ter algum cuidado aqui. Há muitas maneiras de se entender o que significa para um modelo “cap-
turar” uma noção da teoria de conjuntos; em alguns deles, mesmo noções finitas de cardinalidade não podem
ser adequadamente capturadas. Por enquanto, a consideração importante é apenas de que há um modo de
entender o que significa para um modelo “capturar” uma noção da teoria de conjuntos sobre a qual noções de
cardinalidade finita podem ser capturadas, mas não a distinção enumerável/não-enumerável. Veja a seção 3.1
para um discussão detalhada das distinções relevantes.
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infinita de fórmulas, então podemos também capturar a noção mais geral “𝑥 é infinito”12.
Finalmente, se fixarmos nosso entendimento de pertencimento – isto é, se restringirmos

nossa atenção aos modelos que utilizam a relação real de pertencimento para interpretarmos
o símbolo “∈” – então podemos também capturar a noção geral de “𝑥 é finito”13.

Dados todos estes pontos, o Paradoxo de Skolem mostra que a linha entre conjuntos
enumeráveis e não-enumeráveis é, em um sentido bastante profundo, o primeiro lugar em
que a nossa teoria de modelos perde a habilidade de capturar noções de cardinalidade. Esse
fato ajuda a explicar por quê o Paradoxo de Skolem pode continuar aparentando ser para-
doxal, mesmo após termos absorvido os pontos gerais sobre modelos e teoria de modelos
que foram apresentados no penúltimo parágrafo. Em suma: é exatamente pelo fato de que
conseguimos capturar tantas noções de cardinalidade que habitam, por assim dizer, abaixo
da distinção enumerável/não-enumerável o que faz a nossa repentina falta de habilidade de
capturar a distinção enumerável/não-enumerável ela própria a princípio tão surpreendente.

Segundo, o Paradoxo de Skolem não depende da axiomatização específica da teoria de
conjuntos que porventura estejamos usando. Qualquer axiomatização de primeira-ordem
da teoria de conjuntos pode ter os teoremas de Löwenheim-Skolem aplicadas a ela, logo
toda axiomatização é sujeita ao Paradoxo de Skolem. Isso significa, em particular, que não
podemos resolver o paradoxo apenas escolhendo uma nova axiomatização da teoria de
conjuntos (ou adicionado alguns novos axiomas à axiomatização que já estamos usando).
O fato de que o paradoxo de Skolem é, desse modo, intrínseco ao contexto de primeira-
ordem – que ele é um fato inescapável sobre axiomatizações de primeira-ordem da teoria
de conjuntos – é outra razão pela qual o Paradoxo de Skolem aparenta inicialmente ser tão
intrigante.

Isto, portanto, nos dá um primeiro passo para a formulação do Paradoxo de Skolem. Na

12Em particular, seja 𝜙𝑛(𝑥) a formula que diz que 𝑥 tem ao menos 𝑛 elementos (para 𝑛 um número natural).
Então, para qualquer modelo M e qualquer elemento 𝑚 ∈ M:

∀𝑥(M ⊨ 𝜙𝑛[𝑚]) ⇔ {𝑚′ ∈ M ∶ M ⊨ 𝑚′ ∈ M} é infinito.

Então podemos utilizar todo o conjunto de 𝜙𝑛 ’s para capturar a noção de “𝑥 tem uma quantidade infinita de
elementos”.
13Qualquer modelo que obtenha corretamente pertencimento necessita possuir uma relação de pertencimento
bem-fundada. Logo, ele também obterá a estrutura dos números naturais corretamente. Portanto, a formulação
corriqueira de “𝑥 é finito” selecionará todos e apenas aqueles conjuntos que possuem um número finito de
elementos em M – isto é, aqueles 𝑚 ∈ M tal que {𝑚′ ∈ M ∶ M ⊢ 𝑚′ ∈ 𝑚}.
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próxima seção, explicaremos por que essa versão simples do paradoxo não constitui uma
contradição genuína, e veremos a formulações mais refinadas do paradoxo. Na seção 3,
voltamo-nos para questões históricas e filosóficas. A seção 3.1 olha para o entendimento do
próprio Skolem de seu paradoxo. Seções 3.2–3.4 olham para tentativas mais recentes de
argumentar que, ainda que o paradoxo não constitua uma contradição matemática genuína,
ele ainda nos diz algo filosoficamente importante sobre a natureza do entendimento da teoria
de conjuntos.

2. Questões Matemáticas

Em uma introdução ao artigo de 1922, em que Thoralf Skolem apresentou o Paradoxo
de Skolem pela primeira vez, Jean van Heijenoort escreve que o paradoxo “não é um pa-
radoxo no sentido de uma antinomia … é uma propriedade nova e inesperada de sistemas
formais.”14. Esse comentário reflete o consenso geral sobre o Paradoxo de Skolem dentro
da comunidade matemática. Quaisquer que sejam os problemas filosóficos que o paradoxo
supostamente engendre, ele não constitui um problema para a matemática.

Para entender porque o paradoxo não constitui um problema para a matemática, preci-
samos levantar duas questões. Na formulação simples do paradoxo dada acima, notamos
que há um 𝑚̂ ∈ M específico tal que M ⊨ “𝑚 é não-enumerável”. Literalmente, é claro,
isso não está de todo correto. O que realmente queremos dizer aqui é que há uma fórmula
de certo modo complicada na linguagem de teoria formal de conjuntos – uma fórmula que
matemáticas às vezes acham conveniente abreviar pela expressão em português “𝑥 é não-
enumerável” – e queM satisfaz essa fórmula particular em 𝑚̂. Por conveniência, denotemos
a fórmula relevante por “Ω(𝑥)”. Então podemos reformular o fato mencionado acima dizendo
que M ⊨ Ω[𝑚̂] 15. Nossas duas questões, portanto, são essas:

1. Por que é tão natural abreviar Ω(𝑥) por “𝑥 é não-enumerável”? Por que, em particular,
alguém iria pensar que o fato de M ⊨ Ω[𝑚̂] implicaria 𝑚̂ ser não-enumerável?

2. Por que o fato de M ⊨ Ω[𝑚̂]) não implica, de fato, 𝑚̂ é não-enumerável?

14A introdução foi escrita para uma reimpressão do artigo em (Van Heijenoort, 1967). Veja pp. 290–291.
15Logo, Ω(𝑥) é uma fórmula aberta tendo 𝑥 como sua única variável livre e Ω[𝑚̂] é o resultado de avaliar essa
fórmula em M sob a suposição de que 𝑥 designa 𝑚̂ (veja a nota de rodapé 1).
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Com efeito, a primeira dessas questões indaga se o Paradoxo de Skolem é simples-
mente um efeito colateral das nossas abreviações, efeito este que poderia desaparecer se
o Paradoxo de Skolem fosse formulado de maneira mais cuidadosa e clara. Assumindo que
ele não desapareceria, a segunda questão pede uma explicação mais detalhada de como o
paradoxo pode ser de fato dissolvido.

2.1 A Aparência de Paradoxo

Há duas maneiras de se abordar a primeira questão. Por um lado, poderíamos começar
com a fórmula Ω(𝑥) e dar a essa fórmula o que podemos chamar de sua interpretação
em “português comum”. Essa é a interpretação em que “∈” se refere à relação real de
pertencimento da teoria de conjuntos, em que “∀” e “∃” abrangem todo o universo (real)
da teoria de conjuntos, e em que “=” e os conectivos proposicionais são interpretados de
maneira usual16. Então para qualquer conjunto 𝑚, Ω(𝑚) será verdadeira se, e somente
se, 𝑚 é não-enumerável17. Isso mostra que há pelo menos uma interpretação de Ω(𝑥) em
que esta fórmula realmente captura – ao menos de uma perspectiva extensional – o noção
matemática comum de não-enumerabilidade. Portanto, há ao menos uma interpretação em
que Ω(𝑚̂) realmente diz que 𝑚̂ é não-enumerável.

Por outro lado, poderíamos começar, não com a fórmula Ω(𝑥), mas com a frase em
português “𝑥 é não-enumerável”. Se perguntada o que essa frase significa, uma teórica de
conjuntos diria algo sobre a falta de bijeção entre 𝑥 e os números naturais18. Se pergun-
tada sobre a frase “é uma bijeção”, ela passará a falar sobre coleções de pares ordenados
satisfazendo determinadas propriedades desejáveis, e se perguntada sobre o termo “pares
ordenados”, ela dirá algo sobre os modos que alguém pode identificar pares ordenados e
conjuntos particulares. Se ela leva o processo adiante por uma distância suficiente – e se
ela economiza tempo usando símbolos por exemplo ¬ e ∃𝑦 como abreviações para “não”

16Então “¬” significa não, “∨” significa ou, “∧” significa e, etc.
17Como anteriormente, Ω(𝑥) é uma fórmula aberta com 𝑥 sendo sua única variável livre; Ω(𝑚) é o resultado
de substituir as instâncias livres de 𝑥 com um nome nome para 𝑚. Em particular, portanto, Ω(𝑚̂) é obtida ao
se trocar as instâncias relevantes de 𝑥 com um nome para 𝑚̂.
18Relembre aqui que uma bijeção entre os conjuntos 𝑥 e 𝑦é apenas uma correspondência um-para-um entre os
elementos de 𝑥 e os elementos de 𝑦. Como vimos na seção 1, dizer que 𝑥 é enumerável é apenas dizer que
existe uma tal bijeção entre 𝑥 e os números naturais; Dizer que 𝑥 é não-enumerável é dizer que não existem
tais bijeções.

167



e “existe um conjunto 𝑦 tal que” – então ela obterá eventualmente uma explicação deta-
lhada de “𝑥 é não-enumerável” que se parece exatamente com a fórmula Ω(𝑥). Isto é, se
compararmos apenas a sintaxe de sua explicação de “𝑥 é não-enumerável” com a sintaxe
de Ω(𝑥), então descobriremos que ambas as expressões contém exatamente os mesmos
símbolos exatamente na mesma ordem19. Mais uma vez, por conseguinte, descobrimos
que há uma semelhança real, ainda que de certo modo superficial, entre Ω(𝑥) e “𝑥 é não-
enumerável” – uma semelhança que se mantém mesmo depois de pararmos de utilizar “𝑥 é
não-enumerável” como uma abreviação imediata de Ω(𝑥) e uma semelhança que explica o
porquê de até uma versão claramente formulada do Paradoxo de Skolem poder continuar a
parecer, de algum modo, enigmática.

Estes são, assim, os dois modos de se pensar sobre a relação entre Ω(𝑥) e “𝑥 é não-
enumerável”. Juntas, elas podem explicar por que é tão natural para matemáticas utilizar “𝑥
é contável” como uma abreviação de Ω(𝑥) e (portanto) por que alguém pode estar inclinada
a pensar que o fato de M ⊨ Ω[𝑚̂] deveria implicar 𝑚̂ é não-enumerável. Elas também
nos remontam à segunda questão: Por que o fato de M ⊨ Ω[𝑚̂] não implica, de fato, 𝑚̂ é
não-enumerável?

2.2 Uma Solução Genérica

Para responder a esta segunda questão, é útil começarmos por comparar a interpretação
em português cotidiano de Ω(𝑥) – aquela introduzida há três parágrafos e que realmente
implica 𝑥 ser não-enumerável – com a interpretação de Ω(𝑥) na teoria de modelos dada por
M e ⊨. Claramente, é esta última interpretação em teoria de modelos a mais relevanta para
se entender o fato de M ⊨ Ω[𝑚̂]. Além disso, é apenas no caso em que essa interpretação
em teoria de modelos seja intimamente ligada à interpretação em português comum – e
então, derivadamente, à interpretação em português comum de “𝑥 é não-enumerável” – que
teremos algum fundamento real para acreditarmos no fato de queM ⊨ Ω[𝑚̂] deveria implicar
𝑚̂ é não-enumerável.

Felizmente, mesmo uma descrição grosseira da interpretação em teoria de modelos é
19Devemos observar aqui que há muitas maneiras distintas de se explicar “𝑥 é não-enumerável”, a depender
de como decidimos “codificar” noções básicas tais como pares ordenados ou números naturais. A discussão
acima assume que nossa teóric de conjuntos tomou as mesmas decisões que nós tomamos ao fomularmos
originalmente Ω(𝑥). Como qualquer formulação particular de Ω(𝑥) corresponde a uma dessas explanações,
essa suposição não envolve perda de generalidade.

168



suficiente para mostrar que não há tais “ligações íntimas”. A interpretação em teoria de mo-
delos é obtida ao se assumir que o significado de “∈” seja fixado pela interpretação da função
interpretação de M, assumindo que os quantificadores em Ω(𝑋) abranjam o domínio de M,
e assumindo que o significado de “=” e dos conectivos proposicionais sejam fixados pelas
cláusulas recursivas na definição de satisfação em primeira-ordem. Essa descrição salienta
duas diferenças fundamentais entre a interpretação em teoria de modelos e a interpretação
em português comum.

Em primeiro lugar, a interpretação em teoria de modelos entende que “∈” se refere a
qualquer relação binária emM que por acaso seja capturada pela função interpretação deM;
em contraste, a interpretação em português deΩ(𝑥) entende que “∈” se refere à verdadeira
relação de pertencimento em teoria de conjuntos. Não há razão, porém, para pensar que
esses dois entendimentos concordam entre si. Podemos encontrar caso em queM ⊨ 𝑚1 ∈
𝑚2, apesar do fato de que nem 𝑚1, nem 𝑚2 são conjuntos (de fato, em se tratando de
teoria de modelos, 𝑚1 e 𝑚2 poderiam ser ambos gatos, ou coelhos, ou ouriços, ou … )20.
Ademais, até quando todos os elementos de M são conjuntos, isto não nos dá garantia de
que o entendimento de “∈” em teoria de modelos concordará com o entendimento de “∈” em
português usual. Podemos encontrar um caso em que 𝑚1 e 𝑚2 são conjuntos genuínos
e que M ⊨ 𝑚1 ∈ 𝑚2, apesar do fato de que 𝑚1 não seja elemento de 𝑚2; de modo
semelhante, podemos encontrar um caso em que M ⊨ 𝑚1 ∉ 𝑚2, apesar do fato de que
𝑚1 seja realmente um elemento de 𝑚2 (e num caso em que, novamente, 𝑚1 e 𝑚2 são
conjuntos genuínos)21.

Depois, a interpretação em teoria demodelos entende “∃𝑦” e “∀𝑦” abrangendo apenas o
domínio deM, enquanto a interpretação em português usual entende que esses quantificado-
res abrangem todo o universo da teoria de conjuntos. Claramente, esses dois entendimentos
são deveras distintos. Além disso, as diferenças em questão são fortemente relacionadas
aos tipos de conjuntos envolvidos no Paradoxo de Skolem. Suponha, por exemplo, queM ⊨
“𝑚̂ é o conjunto dos números reais”. Então um simples argumento por cardinalidade mostra
que há 2ℵ0 números reais, que não estão no domínio deM (e então, em particular, não estão
em {𝑚 ∶ M ⊨ 𝑚 ∈ 𝑚̂}). Logo, há uma diferença real entre o conjunto genuinamente não-

20Em geral, para quaisquer dois objetos, 𝑎 e 𝑏, podemos encontrar um modelo enumerável M tal que 1.) M ⊨
𝑍𝐹𝐶 e 2.) 𝑎 e 𝑏 são elementos de tal que M ⊨ 𝑎 ∈ 𝑏. Para mais detalhes sobre essa construção, veja a
seção 2 de (Bays, 2007a)
21Novamente, veja a seção 2 de (Bays, 2007a) para mais detalhes sobre essas construções.
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enumerável ℜ e o conjunto meramente enumerável {𝑚 ∶ M ⊨ 𝑚 ∈ 𝑚̂} – isto é, entre o
verdadeiro conjunto de números reais e o conjunto de coisas queMmeramente pensa ser nú-
meros reais. Na interpretação em teoria de modelos de Ω(𝑥), os quantificadores abrangem
apenas o último conjunto, que émenor, enquanto que a interpretação em português, abrange
a conjunto maior por completo. Semelhantemente, suponha que M ⊨ “𝑥 é infinito”. Então
podemos mostrar que há exatamente 2ℵ0 bijeções 𝑓 ∶ 𝜔 → {𝑚′ ∈ M ∶ M ⊨ 𝑚′ ∈ 𝑚}22.
Não obstante, há no máximo uma quantidade enumerável destas bijeções no domínio de M.
Portanto, apenas uma quantidade enumerável delas são “vistas” por ∃𝑥 e ∀𝑥 na interpre-
tação em teoria de modelos de Ω(𝑥), ainda que todas as 2ℵ0 delas sejam “vistas” sob a
interpretação em português usual.

Quando tomados em conjunto, esses resultados sugerem que o Paradoxo de Skolem
pode simplesmente resultar de um colapso sub-reptício de duas interpretações distintas de
Ω(𝑥). Dado um modelo enumerável de ZFC, apenas a interpretação em teoria de modelos
de Ω(𝑥) permite-nos encontrar um elemento 𝑚̂ ∈ M tal que M ⊨ Ω[𝑚̂]. No entanto, ape-
nas a interpretação em português usual nos dá os verdadeiros fundamentos para pensarmos
que Ω(𝑚̂) implica 𝑚̂ ser enumerável. Além disso, e como acabamos de ver, há bastantes
diferenças entre a interpretação em teoria de modelos e aquela em português usual para
que suspeitemos de qualquer colapso imediato entre ambas (mesmo que não soubésse-
mos que esse colapso eventualmente nos levaria longinquamente ao Paradoxo de Skolem).
Particularmente, portanto, deveríamos resistir a qualquer tentativa de passar do fato de que
M ⊨ Ω[𝑚̂] para a afirmação de que 𝑚̂ é não-enumerável.

Com efeito, essa análise trata o Paradoxo de Skolem como um caso imediato de equi-
vocação. Há uma interpretação de Ω(𝑚̂) na qual esta fórmula realmente implica 𝑚̂ ser
um conjunto não-enumerável; há uma outra – assaz distinta – garantindo que M ⊨ Ω[𝑚̂];
o Paradoxo de Skolem depende da confusão entre essas duas interpretações. À princípio,
notar que essa confusão nos induz ao erro não deveria ser mais surpreendente que notar
que o banco da praça não é o lugar mais adequado para depositar nosso dinheiro. De fato,
o caso de teoria de modelos pode ser até ligeiramente pior do que o caso do banco; alguém
poderia ter sorte e encontrar um banco de praça confiável para depositar seu dinheiro, en-
22Relembre que essas são precisamente as bijeções que demonstram que o conjunto {𝑚′ ∶ M ⊨ 𝑚′ ∈ 𝑚}
é enumerável; logo, essas são bijeções que, por uma razão ou outra, M falha em propriamente compreender
(veja a seção 2.3 para um modo de como isso pode acontecer; veja as seções 3–5 de (Bays, 2007a) para mais
detalhes e outras possibilidades).
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quanto é um teorema imediato que se M é enumerável, então {𝑚 ∶ M ⊨ 𝑚 ∈ 𝑚̂} também
é enumerável.

Isso nos dá, por conseguinte, uma solução bastante simples para o Paradoxo de Skolem.
É uma solução que explica por que a maioria das matemáticas não considera o paradoxo
muito preocupante além de ser deveras popular na literatura filosófica. Ela é, por exemplo,
essencialmente a solução que o próprio Skolem deu em 1922 (Skolem 1922), e variações
desta solução apareceram em discussões mais recentes do paradoxo (Resnik 1966; Myhill
1967; Hart 1970; McIntosh 1979; Benacerraf 1985; Shapiro 1991; Giaquinto 2002). Tam-
bém aparece em vários livros-texto introdutórios recentes (Shoenfield 1967; Kleene 1967;
Fraenkel et al. 1984; Ebbinghaus et al. 1994; van Dalen 1997).

2.3 Submodelos Transitivos

Antes de examinarmos alguns dos problemas mais puramente filosóficos relacionados
ao Paradoxo de Skolem, há algumas considerações adicionais sobre a matemática do para-
doxo. Em primeiro lugar, para se ter uma intuição de como as diferenças entre as interpre-
tações em teoria de modelos e português usual de fato dão origem ao Paradoxo de Skolem,
é importante olhar para essas diferenças por meio de uma versão um tanto mais refinada do
paradoxo. Dizemos que𝑋 é transitivo se todo elemento de𝑋 é um conjunto e todo elemento
de um elemento de 𝑋 também pertence a 𝑋 (assim, 𝑦 ∈ 𝑥 ∈ 𝑋 ⇒ 𝑦 ∈ 𝑋).Dizemos que
ummodelo para a linguagem de teoria de conjuntos é transitivo se o domínio do modelo é um
conjunto transitivo e sua relação de “pertencimento” é justamente a relação de pertencimento
verdadeira, restrita ao domínio do modelo (assim, para todo 𝑚1, 𝑚2 ∈ M, 𝑚1 ∈ 𝑚2 ⟺
M ⊨ 𝑚1 ∈ 𝑚2). Logo, como observado na seção 1, o Teorema do Submodelo Transitivo
diz que se iniciarmos com qualquer modelo transitivo de ZFC, então podemos encontrar um
modelo transitivo cujo domínio é enumerável (de fato, podemos assumir que esse modelo
enumerável é submodelo do modelo com o qual iniciamos).

Suponha, então, que M é um modelo transitivo enumerável de ZFC. Isso tem dois efei-
tos na análise do Paradoxo de Skolem dada na seção anterior. Primeiro, garante que as
interpretações em teoria de modelos e português usual de Ω(𝑥) coincidam ao interpretar
“∈”: para 𝑚1, 𝑚2 ∈ M, M ⊨ 𝑚1 ∈ 𝑚2 se, e somente se, 𝑚1 é realmente um elemento
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de 𝑚2
23. Nesse caso, portanto, a explicação do Paradoxo de Skolem tem que envolver a

interpretação dos quantificadores. Segundo, o fato de M ser transitivo garante que M acerte
mais do que apenas a noção de pertencimento. Em particular, se 𝑓 e 𝑚 habitarem o domí-
nio de M, então M ⊨ “𝑓 ∶ 𝜔 → 𝑚 é uma bijeção” se, e somente se, 𝑓 realmente for uma
bijeção entre os números naturais e 𝑚24.

Em conjunto, esses fatos ajudam-nos a isolar o que realmente acontece na versão do
submodelo transitivo do Paradoxo de Skolem. Considere mais uma vez a fórmula que cha-
mamos Ω(𝑥). Esta fórmula tem a forma:

Ω(𝑥) ≡ ¬∃𝑓 “𝑓 ∶ 𝜔 → 𝑥 é uma bijeção”

Sob a interpretação em português comum, essa fórmula diz que o universo da teoria de
conjuntos não contém bijeções entre os números naturais e 𝑥. Em particular, Ω(𝑚̂) diz que
não há bijeções entre os números naturais e 𝑚̂. Em contraste, a interpretação em teoria de
modelos de Ω(𝑚̂) – aquela que é relevante para o fato de M ⊨ Ω[𝑚̂] – diz apenas que
o domínio de M não contém bijeções entre os números naturais e 𝑚̂25. Claramente, essas
duas interpretações têm potencial para serem distinguidas.

Essa versão do submodelo transitivo do paradoxo foi amplamente discutida na literatura
(McIntosh, 1979; Benacerraf and Wright, 1985b; McCarty and Tennant, 1987). De fato, vá-
rios autores sugeriram que a transitividade talvez seja necessária para formular uma versão

23Na verdade, nós obtemos algo um pouco mais forte que isso. Se 𝑚2 ∈ M, então para qualquer conjunto
𝑚1, 𝑚1 ∈ 𝑚2 ⇔ M ⊨ 𝑚1 ∈ 𝑚2. Assim, modelos transitivos não apenas determina pertencimento
corretamente, eles também capturam completamente a noção “𝑥 é elemento de 𝑚”, em que o próprio 𝑚 é
elemento do modelo relevante.
24Aqui, a expressão “𝑓 ∶ 𝜔 → 𝑚 é uma bijeção” é a abreviação (natural) para uma formula muito mais
longa de linguagem da teoria de conjuntos formal. A relação entre essa fórmula e a expressão em Português
comum “𝑓 ∶ 𝜔 → 𝑚 é uma bijeção” é similar àquela entre Ω(𝑥) e “𝑥 é não-enumerável”. Observe também
que, por M ser transitivo, 𝑚 = {𝑚′ ∈ M ∶ M ⊨ 𝑚′ ∈ 𝑚}. Logo não há diferença entre dizermos que
“𝑓 ∶ 𝜔 → {𝑚′ ∈ M ∶ M ⊨ 𝑚′ ∈ 𝑚} é uma bijeção” e dizermos que “𝑓 ∶ 𝜔 → 𝑚 é uma bijeção”. Por
conveniência, portanto, utilizaremos esta última notação pelo restante desse exemplo.

25Observe aqui que é apenas porM ser transitivo que podemos com confiança construir a interpretação em teoria
de modelos de Ω(𝑥) como se ela dissesse algo sobre bijeções. (Este é o significado da segunda consideração
no parágrafo anterior). Se M não fosse transitivo, então não haveria nenhuma razão geral para pensarmos que
a interpretação em teoria de modelos do porção de Ω(𝑥) após o quantificador existencial inicial tenha algo a
ver com bijeções.
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filosoficamente significativa do paradoxo (Benacerraf and Wright, 1985b; Button and Walsh,
2018). Ver McCarty and Tennant (1987) para algumas objeções a esta posição.

2.4 ZFC, Conjuntos Potência e Números Reais

A análise das seções 2.2–2.3 explica em termos gerais de que maneira um modelo enu-
merável pode satisfazer uma fórmula como Ω(𝑥) em um elemento particular. Ela pode,
porém, ainda deixar uma questão óbvia sem resposta: como é possível um modelo enume-
rável de ZFC satisfazer tal fórmula? Dado que um modelo arbitrário pode interpretar uma
fórmula tal como Ω(𝑥) de maneira peculiar, de que modo um modelo poderia satisfazer
todos os axiomas da teoria de conjuntos e ainda manter essa interpretação peculiar? Não
deveria o fato de que M satisfaz ZFC garantir que M também captura as noções básicas da
teoria de conjuntos, tais como enumerabilidade e não-enumerabilidade, corretamente?

A resposta breve para tais questões é esta: modelos enumeráveis “interpretam tão mal”
os axiomas da teoria de conjuntos, quanto eles interpretam mal a fórmula Ω(𝑥). Por agora,
permaneçamos com a suposição de queM é transitivo e consideremos o conjunto potência26:

∀𝑥∃𝑦∀𝑧[𝑧 ⊆ 𝑥 ⟺ 𝑧 ∈ 𝑦]

Em sua interpretação em português usual, este axioma diz que todo conjunto possui um
conjunto potência – um conjunto que contém todos e apenas os subconjuntos do conjunto
com o qual iniciamos27. Em sua interpretação em teoria de modelos, no entanto, o axioma
diz algo muito mais fraco. Para todo 𝑥 ∈ M, o axioma garante que podemos encontrar um
𝑦 ∈ M que contém exatamente aqueles subconjuntos de 𝑥 que também habitamM (portanto
𝑦 = {𝑧 ∶ 𝑧 ⊆ 𝑥∧𝑧 ∈ M}). Contudo, se 𝑥 for infinito, então a maioria dos subconjuntos de
𝑥 não habitarão o domínio deM (afinal, há 2ℵ0 subconjuntos de 𝑥, enquanto o domínio deM
é apenas enumerável). Logo, o conjunto 𝑦 gerado pela interpretação em teoria de modelos
do axioma do conjunto potência será muito menor do que o verdadeiro conjunto potência de

26Ao formularmos esse axioma, utilizamos “⊆″ como uma abreviação para uma expressão um pouco mais longa
na linguagem oficial da teoria de conjuntos. Como a relação de subconjunto é absoluta para modelos transitivos
– isto é, como modelos transitivos capturam corretamente a relação “𝑥 é subconjunto de 𝑦” – essa abreviação
é inócua.

27Então se𝑋 = {1, 2, 3}, o conjunto potência de𝑋 é {∅, {1}, {2}, {3}, {1, 2}, {2, 3}, {1, 3}, {1, 2, 3}}
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𝑥 (Fraenkel et al., 1973; McCarty and Tennant, 1987; Shapiro, 1991; Hallett, 1994; Giaquinto,
2002; Bays, 2007a).

Neste caso, portanto, diferenças nos modos como a interpretação em teoria de modelos
e aquela em português comum lidam com o quantificador ∀𝑧 inicial – e, em particular, dife-
renças relacionadas a quais subconjuntos de 𝑥 são “vistos” por este quantificador – explica
como um modelo enumerável pode satisfazer um axioma que “supostamente” geraria um
conjunto não-enumerável. E esse tipo de fenômeno é deveras geral. Em (Resnik, 1966),
Michael Resnik observa esse fenômeno por meio do caso dos números reais. Como an-
teriormente, assuma que M é enumerável e que M é um modelo transitivo enumerável de
ZFC28. Então haverá um 𝑟 ∈ M particular tal que, a menos de algumas abreviações,

M ⊨ “𝑟 é o conjunto dos números reais.”

Resnik nota que, ainda que M satisfaça esta fórmula, 𝑅 não contém de fato todos os
números reais – 𝑅 contém apenas aqueles números reais que por acaso habitam o domínio
deM29. Assim, o mero fato de𝑅 ser enumerável não gera, em nenhum sentido interessante,
uma situação paradoxal na qual o conjunto de todos os números reais é também enumerável.

Tomados em conjunto, esses exemplos salientam um fato crucial: as “más interpreta-
ções” que explicam de que maneira modelos enumeráveis podem satisfazer uma sentença
como Ω(𝑚̂) são de fato bastante sistemáticas. Elas também explicam como esses mode-
los conseguem satisfazer sentenças tais como “𝑟 é o conjunto dos números reais” ou “𝑦 é
o conjunto potência de 𝜔”; e eles explicam até como esses modelos conseguem satisfazer
os axiomas da teoria de conjuntos (por exemplo, o axioma do conjunto potência). Quando
se reúnem suficientes interpretações errôneas, elas em conjunto explicam de que maneira é
possível um modelo enumerável satisfazer tanto os axiomas da teoria de conjuntos quanto,
28Por razões dialéticas, o argumento original de Resnik era focado no sistema de Wang de teoria de conjuntos,
ao invés de ZFC. Mas a consideração básica é transferível para o contexto de ZFC, e, para nossos propósitos,
é mais sensato discuti-la aqui.
29Como no caso do conjunto potência, essa análise se baseia no modo como M interpreta um quantificador
universal particular. Como M é transitivo, M captura corretamente os números reais: Se 𝑚 ∈ M, então
M ⊨ “ 𝑚 é um numero real” se, e somente se 𝑚 realmente é um número real. Considere, então, a sentença:
∀𝑥[𝑥 ∈ 𝑅 ↔ “ 𝑥 é um numero real”]. Na sua interpretação em Português comum, essa sentença diz que 𝑅
contém todos os números reais. Na sua interpretação em teoria de modelos, no entanto, a sentença diz apenas
que 𝑅 contém todos os números reais que por acaso habitam M, como se esses fossem os únicos números
reais “vistos” pelo quantificador inicial ∀𝑥 na sentença.
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ao mesmo tempo, manter a interpretação peculiar de Ω(𝑥) que discutimos nas seções 2.2–
2.3. Ao final, portanto, enquanto o teorema de Löwenheim-Skolem pode ainda ser um fato
interessante tecnicamente – “uma propriedade nova e inesperada de sistemas formais”, nas
palavras de van Heijenoort –, o Paradoxo de Skolem não mais deveria aparentar tão para-
doxal.

2.5 Quatro considerações finais
Finalizaremos essa discussão da parte matemática do Paradoxo de Skolem com quatro

considerações finais. Primeiro, a discussão em 2.3–2.4 teve seu foco no caso do submo-
delo transitivo do Paradoxo de Skolem. Esse caso é relativamente simples de analisar, e
(portanto) é o caso mais discutido na literatura. Mas ele também pode ser um tanto enga-
noso. Uma boa parte da análise de 2.3–2.4 se baseia no fato de que modelos transitivos
capturam muitas coisas “corretamente” sobre o universo da teoria de conjuntos (pertenci-
mento, bijeções, números reais, etc.). Mais importante, se M é transitivo e 𝑚 ∈ M, então
𝑚 ∈ {𝑚′ ∈ M ∶ M ⊨ 𝑚′ ∈ 𝑚}.

Contudo, se M não é transitivo, então quase tudo isso desmorona. Bays argumenta
que há versões do Paradoxo de Skolem que se baseiam apenas no modo como certos mo-
delos não-transitivos interpretam alguns poucos exemplos específicos da relação de per-
tencimento em Ω(𝑥) (Bays, 2007a, seções 4–5). Considerações similares poderiam ser
transferidas para a nossa discussão de conjuntos potência e números reais na seção 2.4.
Podemos, por exemplo, encontrar um modelo enumerável de ZFC que contém todo o con-
junto dos números reais como elemento – o modelo permanece enumerável apenas porque
ℜ ≠ {𝑚 ∶ M ⊨ 𝑚 ∈ ℜ} (Benacerraf and Wright, 1985b; Bays, 2007a, seção 1). Em
suma, embora a explicação genérica do Paradoxo de Skolem dada na seção 2.2 – aquela
que simplesmente observa que há algumas diferenças entre as interpretações em teoria de
modelos e em português comum de Ω(𝑥) e então atribui o Paradoxo de Skolem a algum
tipo de equivocação entre elas – se sustente quando passamos paramodelos não-transitivos,
nas análises mais detalhadas de 2.3–2.4 tudo se desfaz. No caso geral não-transitivo, por-
tanto, a análise da seção 2.2 pode ser o melhor que podemos fazer ao dar uma explicação
para o Paradoxo de Skolem. (O que não quer dizer que não podemos dar explicações mais
detalhadas no contexto de qualquer modelo não-transitivo particular).

Isso nos leva a uma segunda consideração. O Paradoxo de Skolem depende crucial-
mente do fato que estamos usando uma axiomatização da teoria de conjuntos em lógica de
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primeira-ordem. Mais precisamente, depende do fato que estamos usando teoria demodelos
de primeira-ordem para interpretar essa axiomatização. Em 1930, Zermelo demonstrou que
modelos (de segunda-ordem) de ZFC de segunda-ordem calculam cardinalidades e conjun-
tos potência corretamente30. Em particular, assim, seM émodelo de ZFC de segunda-ordem
e se 𝑚̂ ∈ M, então M ⊨ “𝑚̂ é não-enumerável” se, e somente se, {𝑚 ∶ M ⊨ 𝑚 ∈ 𝑚̂} é
realmente não-enumerável. Disto decorre que o Paradoxo de Skolem não surge no contexto
de segunda-ordem (Zermelo, 1930; Shapiro, 1991).

Esse segundo ponto mostra que o Paradoxo de Skolem se esvai se nossa lógica é su-
ficientemente forte. O terceiro ponto mostra que enfraquecer nossa lógica tem um efeito
semelhante. Em (McCarty and Tennant, 1987), Tennant e McCarty mostram que as de-
monstrações tradicionais do teorema de Löwenheim-Skolem falham em teoria de conjuntos
construtivista, além de argumentarem que o teorema por si mesmo é provavelmente inválido
construtivamente31. Isso significa que não há meios de se gerar o Paradoxo de Skolem den-
tro do arcabouço da matemática construtivista. Para construtivistas, portanto, assim como
para aquelas pessoas que desejam fomentar axiomatizações de segunda-ordem da teoria
de conjuntos, o Paradoxo de Skolem não surge.

Juntas, as últimas duas considerações salientam exatamente quão central é a lógica de
primeira-ordem para o Paradoxo de Skolem. Do ponto de vista da matemática, isso não de-
veria ser tão surpreendente. Lindström mostrou que o teorema de Löwenheim-Skolem cum-
pre um papel fundamental na caracterização da própria lógica de primeira-ordem (Lindström,
1966, 1969; Ebbinghaus, 2007). Dado isso, não deveria uma surpresa que o enigma que
se associa mais intimamente com esses teoremas também se mostra ligado fortemente às

30Isto é, se M é um modelo de ZFC de segunda-ordem, então M ⊨ “𝑚 tem cardinalidade 𝜅” se, e somente
se, o conjunto {𝑚′ ∈ M ∶ M ⊨ 𝑚′ ∈ 𝑚} de fato possuir cardinalidade 𝜅. Um fato semelhante, embora
ligeiramente mais complicado, ocorre no caso do conjunto potência. Devemos observar aqui que o argumento de
Zermelo assume que estamos utilizando modelos padrão para a lógica de segunda-ordem. O argumento falha
se admitirmos o uso de modelos de Henkin de primeira-ordem para interpretar o formalismo de segunda-ordem.
Para ler mais sobre a diferença entre modelos padrão e modelos de Henkin, veja as seções 2 e 3 na entrada
sobre lógica de segunda-ordem e de ordens superiores.
31Mais precisamente, eles demonstram que todas as formulações habituais do teorema de Löwenheim-Skolem
são independentes de uma certa forme forte de teoria de conjuntos intuicionista e mostram que essas formula-
ções são imediatamente falsificadas por princípios que muitas construtivistas desejariam aceitar. Obviamente,
isso não exclui a possibilidade de que alguma variação incomum do teorema venha a ser demonstrável em
alguma forma não-standard de teoria de conjuntos “construtivista”; no momento, porém, esse cenário parece
distante. Veja pp. 35–36 do artigo de Tennant e McCarty para a visão dos próprios autores sobre o assunto.
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peculiaridades da situação em primeira-ordem. Ainda que o paradoxo, como já vimos, não
configure uma contradição matemática imediata, ele nos ajuda a entender a natureza e os
limites da lógica clássica de primeira-ordem.

Isso nos leva a uma consideração final. A discussão acima explica por quê aquelas de
nós que desejam assumir uma atitude genuinamente realista em relação à linguagem da
teoria de conjuntos – por exemplo, aquelas de nós que não sentem desconfortos quanto a
expressões tais como “a interpretação em português comum de Ω(𝑥)” – deveriam se man-
ter inabaladas pelo Paradoxo de Skolem. É importante enfatizar que esta análise também
explica por que o Paradoxo de Skolem não introduz contradições em várias formas de se
axiomatizar a teoria de conjuntos, mesmo quando essas axiomatizações são elas mesmas
entendidas formalmente ou em teoria demodelos. De um ponto de vista da teoria da demons-
tração, por exemplo, há uma diferença entre quantificação não-relativizada e quantificação
que foi explicitamente relativizada para uma fórmula na nossa linguagem (em que esta fór-
mula é tal que, intuitivamente, atua para “determinar” o domínio do modelo enumerável de
ZFC). Então, não há razões a priori para se pensar que uma sentença com quantificadores
não-relativizados conflitará com a contraparte completamente relativizada daquela sentença
32. De modo semelhante, do ponto de vista da teoria de modelos, há uma diferença en-
tre quantificadores que abrangem todo o domínio de um modelo e aqueles que abrangem
apenas os “elementos” de um elemento particular do modelo (em que, mais uma vez, este
elemento é tal que o modelo maior “pensa” ser um modelo de ZFC). Portanto, ainda que o
realismo ingênuo das seções 2.1–2.4 seja útil para fins de exposição, ele não é essencial
para a análise subjacente do Paradoxo de Skolem.

3. Problemas Filosóficos

A seção anterior explicou por que o Paradoxo de Skolem não constitui um problema
para a matemática. Isto, é claro, não evitou que filósofas argumentassem que o paradoxo
constitui um problema para a filosofia. Nesta seção, exploraremos diversas tentativas de
se derivar conclusões filosóficas a partir da matemática envolvida no Paradoxo de Skolem.
Antes de fazê-lo, porém, são necessárias duas observações cautelares. Primeira, muitas

32Por exemplo, não há conflito automático entre uma sentença da forma ∃𝑥𝜙(𝑥) e outra da forma¬∃𝑥[𝜓(𝑥)∧
𝜙(𝑥)]. Com efeito, essa consideração é uma versão mais formal da consideração sobre quantificação feita na
seção 2.2.

177



das discussões mais provocativas do Paradoxo de Skolem são bastante breves – se resu-
mindo a pouco mais do que comentários sugestivos feitos de passagem. Logo, muitas das
discussões desses comentários terão de ser de algum modo conjeturais. Segunda, muitas
discussões críticas do Paradoxo de Skolem focaram apenas em cuidadosamente destrin-
char a matemática do paradoxo e depois explicar o por quê de o paradoxo não constituir
uma contradição matemática genuína. Como esse material já foi coberto na seção 2, nós
não diremos mais nada sobre esses problemas nessa seção.

3.1 Visões de Skolem

No artigo de 1922 em que Skolem originalmente apresentou o Paradoxo de Skolem, ele
usou o paradoxo para argumentar a favor de duas conclusões filosóficas: que a teoria de
conjuntos não funciona como uma “fundamentação para a matemática” e que axiomatizar a
teoria de conjuntos leva a uma “relatividade das noções em teoria de conjuntos” (Skolem,
1922). Essas afirmações, e os argumentos de Skolem a favor delas, atraíram considerável
atenção na literatura. Infelizmente, o artigo de Skolem é bastante condensado, sendo pois
difícil de determinar a que exatamente se resumem essas afirmações. Atualmente, há três
interpretações do artigo de Skolem que possuem algum valor na literatura filosófica.

Começaremos com a afirmação de Skolem que a axiomatização da teoria de conjuntos
leva a uma relativização das noções da teoria de conjuntos. Uma maneira de se entender
essa afirmação é vê-la diante de um cenário que podemos chamar de uma concepção al-
gébrica ou de teoria de modelos de axiomatização. Nessa concepção os axiomas da teoria
de conjuntos caracterizam – ou talvez até definam – noções básicas da teoria de conjun-
tos, tais como conjunto, pertencimento, e universo da teoria conjuntos. Assim, um universo
da teoria de conjuntos é simplesmente um modelo para os axiomas da teoria de conjun-
tos, um conjunto é simplesmente um elemento em algum universo da teoria de conjuntos e
pertencimento refere-se apenas a qualquer relação binária que um universo em particular
utilize para interpretar o símbolo “∈”. Nessa concepção de axiomatização, portanto, os axi-
omas da teoria de conjuntos não deveriam ser encarados como tentativas de descrever –
ou ainda descrever parcialmente – algum “modelo pretendido” da teoria de conjunto previa-
mente dado; pelo contrário, osmodelos pretendidos da teoria de conjuntos são simplesmente
aqueles modelos que por acaso satisfazem nossas coleções iniciais de axiomas da teoria de
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conjuntos33.
Deveríamos enfatizar aqui que essa concepção algébrica da axiomatização era bastante

familiar para matemáticas trabalhando à época em que Skolem escreveu seu artigo de 1922.
O próprio Skolem foi treinado na escola algébrica de lógica de Schröder, e esta seria, pois, a
via natural para ele pensar sobre axiomas. Até pessoas que não foram treinadas na escola
de Schröder tinham familiaridade com essa concepção. É esta concepção que está por trás
da famosa axiomatização da geometria proposta por Hilbert (sobre a qual Hilbert suposta-
mente afirmou, um tanto notavelmente, que podemos substituir pontos, linhas e planos por
mesas, cadeiras e canecas de cerveja, desde que os últimos objetos mantenham os tipos
corretos de relações). É também a concepção que está por trás dos resultados do século XIX
que afirmam que à aritmética e à análise podem ser dadas axiomatizações categoriais (de
segunda-ordem). Finalmente, e mais importante, é esta a concepção que Skolem atribuiu a
Zermelo no mesmo artigo que discutimos neste momento e, por conseguinte, Skolem está
preocupado em criticar a concepção dos axiomas de Zermelo34.

Dada essa concepção algébrica de axiomatização, então, Skolem considera os teore-
mas de Löwenheim-Skolem para argumentar que falta aos axiomas da teoria de conjun-
tos recursos para assegurar a noção de não-enumerabilidade. Dada qualquer axiomatiza-
ção da teoria de conjuntos e qualquer fórmula Ω(𝑥) que deveria capturar a noção de não-
enumerabilidade, os teoremas de Löwenheim-Skolem mostram que podemos encontrar um
modelo enumerável M que satisfaz nossos axiomas. Como na seção 1, portanto, podemos
encontrar um elemento 𝑚̂ ∈ M tal que M ⊨ Ω(𝑚̂), mas {𝑚 ∶ M ⊨ 𝑚 ∈ 𝑚̂} é apenas
enumerável. Assim, desde que as noções básicas de teoria de conjuntos sejam caracteri-
zadas apenas olhando para a teoria de modelos das axiomatizações em primeira-ordem da

33Em termos atuais, essa é a concepção de axiomas sobre a qual se baseia uma boa parte da álgebra moderna.
Os axiomas da teoria de grupos, por exemplo, caracterizam o que significa uma estrutura matemática ser con-
siderada um grupo, o que é necessário para que um elemento em particular dessa estrutura seja a identidade
e o que é considerado o inverso de um elemento particular. Mas não existe um grupo ur (primitivo) que os axi-
omas tentam descrever – há apenas uma classe toda de grupos (igualmente pretendidos) caracterizados pelos
axiomas.
34Veja pp. 295–296 de (Skolem, 1922) para a caracterização de Skolem dos axiomas de Zermelo. Devemos ob-
servar que é uma questão em aberto se Skolem de fato entendeu Zermelo nesse assunto. Em seus escritos mais
tardios – incluindo naqueles em que ele diretamente responde ao Paradoxo de Skolem – Zermelo claramente
aplica uma concepção algébrica de axiomas (veja, por exemplo, (Zermelo, 1930)). Não é claro, no entanto, se
deveríamos aplicar essa concepção a uma leitura da axiomatização original de 1908, à qual Skolem respondia.
Veja (Taylor, 1993) e (Ebbinghaus, 2003) para mais sobre essa questão interpretativa.
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teoria de conjuntos, muitas dessas noções – e, em particular, as noções de enumerabilidade
e não-enumerabilidade – tornar-se-ão inevitavelmente relativas35.

Isto, então, fornece o conteúdo para a afirmação de Skolem de que axiomatizar a teoria
de conjuntos levaria a uma relativização das noções da teoria de conjuntos. É importante
aqui distinguir essa afirmação de uma afirmação mais trivial que pode ser imaginada como
feita por Skolem. De um ponto de vista, a concepção algébrica de axiomatização leva a uma
forma óbvia de relatividade: os elementos considerados conjuntos em um modelo podem
não o ser em outro modelo, a relação de pertencimento de um modelo pode ser diferente
daquela em outro modelo, e esta última diferença nas relações de pertencimento pode ocor-
rer até se acontecer de dois modelos partilharem o mesmo domínio. Nessa noção trivial
de relatividade, portanto, quase tudo se torna relativo, mesmo noções simples como “𝑥 é o
conjunto vazio” ou “𝑥 é um conjunto unitário”. Afinal, um objeto poderia ser um “conjunto uni-
tário” em um modelo, e um “conjunto diádico” em outro conjunto, ou poderia ser “o conjunto
vazio” em um modelo e ser omitido completamente do domínio de outro modelo.

É importante enfatizar que a noção de relatividade do próprio Skolem é mais sofisticada
do que isso. Permitamos que o elemento específico que atua como “o conjunto vazio” não
permanecerá constante quando nos movemos de um modelo da teoria de conjuntos para
outro – em que o conjunto vazio do primeiro modelo torne-se, talvez, um conjunto unitário no
segundo. De qualquer modo, podemos ainda usar uma fórmula na linguagem da teoria de
conjuntos que capture a noção de “𝑥 é o conjunto vazio” de uma maneira essencialmente
absoluta. Em qualquer modelo dos nossos axiomas, um elemento 𝑚̂ ∈ M satisfará a fórmula
aberta “∀𝑦 𝑦 ∉ 𝑥” se, e somente se, o conjunto {𝑚 ∶ M ⊨ 𝑚 ∈ 𝑚̂} é realmente vazio.
Portanto, há ao menos um sentido em que ainda podemos capturar a noção “𝑥 é o conjunto
vazio” de dentro do arcabouço algébrico. E essa consideração estende-se mais amplamente
– um argumento semelhante poderia ser aplicado a noções como “𝑥 é um conjunto unitário”
ou “𝑥 tem dezessete elementos”. Até na concepção algébrica de axiomatização, portanto,
há ainda algumas noções da teoria de conjuntos que podemos fixar com grande precisão.
O que os teoremas de Löwenheim-Skolem mostram é que, não importa quão ricos sejam
os nossos axiomas da teoria de conjuntos (de primeira-ordem), não é possível fixar com
esse tipo de técnica a noção “𝑥 é não-enumerável”. Esse é o resultado por trás de todo

35Skolem também sugere, sem demonstrar, que as noções de sequência finita e sequência simplesmente infinita
também acabarão sendo relativas. De fato, Skolem estava certo sobre isso, como mostra uma simples aplicação
do teorema de compacidade.
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discurso de Skolem sobre “relatividade” e um resultado que destaca uma fraqueza genuína
na abordagem algébrica para axiomatização da teoria de conjuntos36.

Em suma, então, a vantagem dessa discussão é esta: se admitirmos uma abordagem
puramente algébrica para os axiomas da teoria de conjuntos, então muitas noções básicas
da teoria de conjuntos – incluindo as noções de enumerabilidade e não-enumerabilidade –
se tornarão relativas. Nas palavras de Skolem: “axiomatizar a teoria de conjuntos leva a uma
relatividade das noções da teoria de conjuntos, e essa relatividade está inseparavelmente
ligada a toda axiomatização minuciosa e completa” (Skolem, 1922, p. 296). Obviamente,
isso ainda deixa aberta a questão de se essas noções são, por assim dizer, absolutamente
relativas – de se há algum outro modo não algébrico e não minucioso ou completo de se
entender nossos axiomas que não nos levaria ao tipo de relatividade que temos discutido
até então. É quando nos voltamos para esta última questão que as diversas interpretações
do artigo de Skolem começam a se desfazer.

A interpretação mais tradicional do artigo vê Skolem como a preparar um ataque à teoria
de conjuntos. Skolem inicia o artigo notando que os paradoxos clássicos da teoria de con-
juntos deveriam nos levar a sermos céticas a entendimentos informais da teoria de conjuntos
– do “raciocínio ingênuo com conjuntos”, para utilizar a expressão do próprio Skolem. Dado
isto, nossa única opção de fato é retomar a algum tipo de teoria de conjuntos axiomatizada
e o único modo respeitável de se entender os axiomas é algebricamente (já que entendê-
los intuitivamente resultaria em retornamos à ingenuidade previamente descreditada). O
Paradoxo de Skolem, porém, mostra que as noções da teoria de conjuntos são relativas à
concepção algébrica de axiomatização. Logo, essas noções são de fato relativas. Breve-
mente: os paradoxos clássicos mostram que a concepção algébrica de teoria de conjuntos
é a melhor concepção que temos e portanto o Paradoxo de Skolem mostra que a noções da
36Uma consideração semelhante se aplica ao exemplo de teoria de grupos na nota 31. Claramente, o objeto
particular considerado a “identidade” variará quando passamos de grupo a grupo, assim como o escopo dos nos-
sos quantificadores. Mas nós ainda conseguimos utilizar fórmulas na nossa linguagem para capturar noções de
teoria de grupos – por exemplo, que um elemento habita no centro de um grupo ou ainda que um elemento pos-
sui ordem 17. E se expandirmos nossa linguagem, então podemos capturar ainda mais noções – por exemplo,
que o predicado “𝑃 ” separa um subgrupo normal de um grupo maior que estamos estudando. Claramente, não
conseguimos fazer isso para toda noção da teoria de grupos – não existe uma fórmula que capture exatamente
a noção “𝑥 habita o subgrupo gerado por 𝑦 e 𝑧”. Mas o fato de que não podemos ter sucesso nesse caso é
um teorema matemática interessante – não é algo que apenas se segue trivialmente do natureza algébrica dos
nossos axiomas. O que Skolem demonstrou, com efeito, é que a noção “𝑥 é enumerável” da teoria de conjuntos
é mais próxima da noção “𝑥 é um subgrupo normal gerado por 𝑦 e 𝑧” do que da noção “𝑥 possui ordem 17”.
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teoria de conjuntos são inevitavelmente relativas. Essa leitura tradicional é bastante preva-
lente na concepção popular; variações dela são discutidas em (Hart, 1970; McIntosh, 1979;
Muller, 2005; Bellotti, 2006).

A segunda interpretação foca na afirmação de Skolem de que a teoria de conjuntos não
fornece uma fundamentação adequada para a matemática. Em particular, Skolem pensa
que à teoria de conjuntos faltam os recursos para fornecer uma fundamentação para a arit-
mética comum – em sua visão, a aritmética é “límpida, natural e não é passível de questio-
namentos”, enquanto a teoria de conjuntos é bem mais problemática. Para mostrar que ela
é problemática, Skolem recorre a diferentes maneiras de se interpretar teoria de conjuntos
– teoria de conjuntos ingênua, teoria de conjuntos axiomatizada construída com teoria da
prova, teoria de conjuntos construída algebricamente, etc.– e ele argumenta que cada um
desses entendimentos da teoria de conjuntos é inadequado para fins de fundamentação.
Nessa leitura, o Paradoxo de Skolem assume um papel modesto em todo o argumento de
Skolem. Ele atua para destacar alguns problemas existentes em uma concepção particular
de teoria de conjuntos (a concepção algébrica), mas não atua nos argumentos de Skolem
contrários a outras concepções de teoria de conjuntos. Além disso, esses outros argumentos
não mostram – ou até afirmam mostrar – que as várias concepções não-algébricas da teoria
de conjuntos levam a nenhum tipo de relatividade (ainda que elas tenham, é claro, outros
problemas que as tornam inadequadas para fins fundacionalistas)37. Versões dessa leitura
fundacionalista do artigo de Skolem podem ser encontradas em George (1985) e Benacerraf
and Wright (1985b); veja Jané (2001) para algumas críticas a esta linha de interpretação.

A última interpretação do argumento de Skolem está presente em um artigo de Ignacio
Jané (2001). A leitura dada por Jané concorda com a interpretação clássica que assume
que Skolem prepara um ataque bastante geral à teoria de conjuntos – e, em particular, à
noção de conjunto absolutamente não-enumerável. Mas ele concorda com a interpretação
fundacionalista ao entender que os ataques são preparados pouco a pouco, com o Paradoxo
de Skolem atuando modestamente em uma linha de ataque. Grosseiramente, Jané pensa
que Skolem tenta mostrar que não há um modo rigoroso para inicialmente se introduzir a
noção de conjunto não-enumerável à matemática. Os paradoxos da teoria de conjuntos
37Esse modo de apresentação pode ser um tanto enganoso. O foco primário de Skolem em seu artigo é sobre a
axiomatização da teoria de conjuntos de Zermelo, de 1908, e Skolem claramente entende essa axiomatização
algebricamente. Assim, o argumento de relatividade contra Zermelo é de fato o argumento central do artigo,
ainda que o argumento sirva para um projeto maior anti-fundacionalista e ainda que não leve a argumentos mais
gerais em favor da relatividade da teoria de conjuntos.
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mostram que não deveríamos ser ingênuas e levar o Teorema de Cantor ao pé da letra – logo,
a própria demonstração de Cantor não nos força a aceitarmos conjuntos não-enumeráveis.
O Paradoxo de Skolem mostra que adotar um entendimento algébrico da teoria de conjuntos
também não nos força a aceitar conjuntos não-enumeráveis, uma vez que sempre podemos
interpretar esses axiomas como sendo aplicados a modelos que são apenas enumeráveis.

É óbvio, como observa Jané, que há uma quantidade de estratégias que poderíamos
usar para evitarmos essa aplicação do Paradoxo de Skolem: poderíamos usar uma quan-
tidade não-enumerável de de axiomas, forçando nossos modelos a possuírem uma quanti-
dade não-enumerável de domínios, poderíamos recorrer ao teoremaAscendente de Löwenheim-
Skolem para mostrarmos que os axiomas de Zermelo também tem uma quantidade não-
enumerável demodelos (ver seção 1), ou poderíamos nosmover para uma versão de segunda-
ordem dos axiomas de Zermelo e então provarmos que esses axiomas podem ser satisfei-
tos apenas por modelos com domínios não-enumeráveis (ver seção 2.5). Infelizmente, cada
uma dessas estratégias pressupõe que nós já tivéssemos um registro preliminar da noção
de um conjunto não-enumerável – por exemplo, para inicialmente caracterizarmos um con-
junto não-enumerável de axiomas, para formularmos o teorema Ascendente de Löwenheim-
Skolem, ou para demonstrarmos que ZFC de segunda-ordem tem apenas modelos não-
enumeráveis. Assim, a princípio nenhuma dessas estratégias pode ser utilizada para intro-
duzir conjuntos não-enumeráveis à matemática. Ao menos, de qualquer modo, é o que Jané
considera que Skolem está argumentando.

Essas são, portanto, as três principais interpretações do artigo de Skolem. Sem nos posi-
cionarmos sobre qual dessas interpretações melhor captura as intenções do próprio Skolem,
notamos que a maioria das contemporâneas de SKolem interpretaram-no como se estivesse
dando algo como o argumento “tradicional” descrito acima e suas respostas ao Paradoxo de
SKolem refletem essa interpretação. O próprio Zermelo aceitou a concepção algébrica de
seus axiomas, embora ele tenha então insistido que eles deveriam ser interpretados em ter-
mos de segunda-ordem e que, assim interpretados, eles não seria vítimas do Paradoxo de
Skolem (Zermelo, 1930; Taylor, 1993; Ebbinghaus, 2003). Semelhantemente, Tarski sugeriu
que o Paradoxo de Skolem poderia ser neutralizado ao se tratar “∈” como uma constante ló-
gica em alguma versão da teoria de tipos (ver as observações publicadas ao fim de (Skolem,
1958)). Mas, enquanto ambas as sugestões permitiriam que matemáticas evitassem o Pa-
radoxo de Skolem, elas dependem de se aceitar peças de um maquinário matematicamente
poderoso, os quais Skolem – em qualquer leitura de seu artigo – quase certamente desejaria
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rejeitar. Dados os fins filosóficos de Skolem, portanto, essas respostas contemporâneas a
seu paradoxo não pareceriam muito ameaçadoras (veja (Skolem, 1955) e (Skolem, 1958)
para algumas das reflexões do próprio Skolem sobre esses tipos de respostas).

3.2 Ceticismo Skolemita
Ao longo dos anos, houve uma pequena, embora consistente, corrente de filósofas e

lógicas que teriam considerado filosoficamente convincente o que se chamou de interpre-
tação tradicional do artigo de Skolem – isto é, convincente enquanto argumento filosófico
independente e não apenas enquanto uma interpretação do artigo de Skolem. A posição
delas, a qual Michael Resnik denominou a posição “Skolemita”, defende que os teoremas
de Löwenheim-Skolem de fato mostram que as noções da teoria de conjuntos são relati-
vas. Na verdade, Skolemitas costumam ir um pouco além, afirmando que, embora um dado
conjunto possa ser não-enumerável, “relativo aos meios de expressão de um sistema axi-
omático”, todo conjunto é enumerável quando considerado de uma perspectiva “absoluta”
(Kneale and Kneale, 1962; Goodstein, 1963; Wang, 1962; Fine, 1968; Thomas, 1968, 1971).

Nesta seção, isolaremos a ideia central por trás de alguns desenvolvimentos dessas afir-
mações Skolemitas, e então consideraremos algumas das respostas a elas as quais apare-
ceram na literatura recente. (Na seção 3.3, consideramos uma nova abordagem interessante
da posição Skolemita). Começaremos com o argumento Skolemita. De modo amplo, este
argumento se dá em três passos. Primeiro, argumenta-se que a concepção algébrica de
teoria de conjuntos é a única concepção respeitável para matemáticas e filósofas contem-
porâneas adotarem. Segundo, segue-se Skolem ao argumentar que a concepção algébrica
da teoria de conjuntos leva uma relatividade das noções da teoria de conjuntos. Finalmente,
estende o argumento de Skolem para defender uma forma forte de relatividade mencionada
no fim do parágrafo anterior – isto é, aquela em que todo conjunto é enumerável quando
observado de uma perspectiva “absoluta”.

Para nossos propósitos, o segundo passo deste argumento já foi considerado em sufici-
ente detalhamento no contexto da nossa discussão de Skolem; então vamos apenas revisar
os pontos principais aqui. Na concepção algébrica da teoria de conjuntos, as noções bási-
cas da teoria de conjuntos são caracterizadas ao se olhar para as axiomatizações em teoria
de modelos da teoria de conjuntos de primeira-ordem. As noções que permanecem fixas
quando nos movimentamos de modelo para modelo – no sentido de “fixas” que discutimos
na seção anterior – têm um significado “absoluto”; noções que variam quando nos move-
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mos de modelo para modelo têm um significado “relativo” apenas. Dado isso, os teoremas
de Löwenheim-Skolem mostram que as noções de enumerabilidade e não-enumerabilidade
irão de fato variar quando nos movimentamos de um modelo a outro. Na concepção algé-
brica da teoria de modelos, portanto, as noções são apenas “relativas”38.

Isso nos leva aos passos 1 e 3 no argumento Skolemita. No passo 1 é onde diferentes
versões deste argumentomostrammaior variabilidade. Emalguns casos, o passo 1 é apenas
pressuposto, portanto é difícil ter uma noção de como o argumento subjacente deveria de
fato se desenvolver (Kneale and Kneale, 1962; Goodstein, 1963; Wang, 1962). Em outros
casos, é sugerido que qualquer rejeição da concepção algébrica – e, em particular, qualquer
movimento para simplesmente se levar a sério expressões como “todos os conjuntos” ou “é
de fato enumerável” – leva a um retorno a alguma forma inaceitável de “Platonismo” (Fine,
1968; Thomas, 1968, 1971; Klenk, 1976). Ainda em outros casos, Skolemitas seguem a
liderança de Skolem e recorrem aos paradoxos da teoria de conjuntos para fomentar sua
rejeição ao Platonismo; elas então sugerem que o abandono do Platonismo leva a concepção
algébrica da teoria de conjuntos a ser a única opção viável (Klenk, 1976).

Há uma outra estratégia disponível aqui: algumas autoras defendem a posição Skole-
mita ao utilizarem outros enigmas sobre a interpretação da linguagem matemática – isto é,
enigmas outros que não o Paradoxo de Skolem – para motivar o movimento inicial do Pla-
tonismo para a concepção algébrica. Então, por exemplo, Klenk argumenta que podemos
combinar um dos enigmas clássicos de Benacerraf – aquele apresentado em Benacerraf Be-
nacerraf (1965) – a este tipo de argumento (Klenk, 1976)39. Do mesmo modo, Wright recorre
a considerações Wittgensteinianas sobre a relação entre significado e uso para motivar uma
posição Skolemita restrita (Benacerraf and Wright, 1985a). Finalmente, várias autoras suge-

38Devemos aqui enfatizar que esse passo no argumento skolemita beira ser um teorema. Tendo-se um entendi-
mento forte o suficiente da concepção algébrica de teoria de conjuntos e o correto entendimento de “relatividade”,
a afirmação condicional de que a concepção algébrica implica alguma forma de relatividade da teoria de con-
juntos apenas se segue dos teoremas de Löwenheim-Skolem. Àquelas que fariam objeções à relatividade da
teoria de conjuntos, portanto, recomenda-se focar sua atenção aos argumentos skolemitas iniciais a favor da
concepção algébrica, ao invés de focá-la em seus argumentos subsequentes a favor da relatividade.
39O argumento de Klenk é um pouco mais complicado do que essa sentença sugere. Klenk inicia por apresentar
vários argumentos a favor do que estamos chamando de concepção algébrica de conjuntos e ela então observa
que qualquer um desses argumentos tende a fazer a posição Skolemita parecer de algum modo plausível. Ela
também observa, porém, que uma análise como aquela apresentada na seção 2 permitirá uma realista já com-
prometida a se esquivar das conclusões Skolemitas. Ela termina sugerindo que nós resolvamos esse impasse
adotando algum tipo de formalismo sobre teoria de conjuntos.

185



riram que todo o desenvolvimento da teoria de conjuntos no século XX favorece a abordagem
algébrica – afinal, toda a história do tema consistiu em um afastamento de abordagens ingê-
nuas da teoria de conjuntos em direção a uma axiomatização formal (e especialmente uma
formalização em primeira-ordem). Ver Klenk (1976) para este tipo de análise.

Voltemos, agora, ao terceiro passo no argumento Skolemita. O teorema matemático
que se esconde sob esse passo é claro. Seja 𝜙(𝑥) uma fórmula que supostamente define
um conjunto único – por exemplo, “𝑥 é o conjunto potência de 𝜔” ou “𝑥 é o conjunto dos
números reais”40. Então podemos encontrar um modelo M ⊨ 𝑍𝐹𝐶 e um elemento 𝑚 ∈ M
tal que M ⊨ 𝜙(𝑚) e {𝑚′ ∈ M ∶ M ⊨ 𝑚′ ∈ 𝑚} é apenas enumerável. Então, se
quisermos conceder que tudo o que é preciso para ser, digamos, o conjunto potência de 𝜔 é
satisfazer a fórmula relevante que o define em algum modelo da teoria de conjuntos, então
podemos dar sentido à afirmação de que ao menos uma instância do conjunto potência de
𝜔 é “de fato” enumerável. Se desejamos assumir além disso que é necessário apenas uma
bijeção em uma dessas instâncias do conjunto potência de 𝜔 para torná-lo “absolutamente”
enumerável, então podemos entender a afirmação Skolemita forte sobre enumerabilidade
absoluta. É claro, nenhum desses movimentos finais se seguem no sentido estrito a partir da
concepção algébrica de axiomatização; ambos são, porém, movimentos que um proponente
da concepção algébrica pode muito bem achar convenientes.

Isto, portanto, nos dá a estrutura básica dos diversos argumentos Skolemitas. Antes de
nos voltarmos a algumas respostas a esses argumentos que aparecem na literatura recente,
é importante sermos claras sobre o papel que o próprio Paradoxo de Skolem pode e não
pode desempenhar nesses argumentos. Por vezes, aparenta como se algumas Skolemitas
pensassem que os teoremas de Löwenheim–Skolem por si mesmos mostrassem que há um
problema com a nossa concepção usual de conjuntos: assim, os teoremas mostram que as
noções da teoria de conjuntos são relativas, relatividade é incompatível com nossa concep-
ção usual de conjuntos e então nossa concepção usual de conjuntos deve ser abandonada
(Kneale and Kneale, 1962; Goodstein, 1963). Deveria ser claro da seção 2, no entanto, que
essa linha de argumentação não tem chances de prosperar. A análise na seção 2 mostra
que aquelas de nós que desejam adotar uma atitude ingenuamente realista em relação à
teoria de conjuntos – ou até mesmo aquelas que adotam posições mais sofisticadas que se
baseiam na concepção iterativa de conjuntos e/ou em alguma forma de estruturalismo de
segunda-ordem – não terão problemas com o Paradoxo de Skolem. Daí, o paradoxo por si
40Mais formalmente, suponha que 𝑍𝐹𝐶 ⊨ ∃𝑥[𝜙(𝑥) ∧ ∀𝑦(𝜙(𝑦) → 𝑥 = 𝑦)].
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mesmo não pode nos forçar a abandonar a nossa concepção usual de conjuntos.
Ao invés disso, a Skolemita bem-sucedida precisa seguir a abordagem clássica descrita

no começo desta seção. Ela inicia com um argumento independente para a concepção algé-
brica da teoria de conjuntos – isto é, um argumento que nos levaria a abandonar a concepção
usual de conjuntos em favor de uma concepção algébrica e (crucialmente) um argumento
que, ele mesmo, não se baseia em questões relacionadas ao Paradoxo de Skolem. Tendo
completado esse argumento, a Skolemita pode então passar a utilizar a concepção algébrica
de conjuntos (além, é claro, dos teoremas de Löwenheim-Skolem) para defender afirmações
sobre a relatividade da teoria de conjuntos feitas nos passos 2 e 3 de seu argumento.

Dois comentários adicionais sobre essa abordagem são necessários. Primeiro, deve-
mos notar que essa abordagem fornece à Skolemita uma resposta para os tipos de argu-
mentos que fizemos na seção 2. Em particular, permite a ela desafiar todos os nossos usos
muito ingênuos de expressões como “o entendimento em português usual de ‘∈’ ”, “os ver-
dadeiros elementos de 𝑚”, “quantificadores os quais abrangem todo o universo da teoria de
conjuntos”, etc. Tendo um argumento independente contra a concepção usual de conjuntos,
a Skolemita não se impressionará com uma “solução” para o Paradoxo de Skolem que se
baseia no emprego ingênuo desses tipos de expressões. Veja (Thomas, 1968, 1971; Klenk,
1976).

Depois, deveríamos notar que, ainda que essa abordagem requeira que a Skolemita
inicie com um argumento independente contra nossa concepção usual de conjuntos, ela não
é necessária para tornar os teoremas de Löwenheim-Skolem eles próprios completamente
supérfluos. Afinal, continua sendo um teorema que noções da teoria de conjuntos tais como
enumerabilidade e não-enumerabilidade tornam-se relativas na concepção algébrica. Isso
não é algo que aconteça em todas as noções da teoria de conjuntos – por exemplo, “𝑥
é o conjunto vazio” ou “𝑥 tem dezessete elementos” – e não é algo que apenas ocorra à
concepção algébrica de axiomatização.

Tendo dito isso, este é um ponto onde a Skolemita precisa tomar cuidado. A menos que
as considerações levantadas no passo 1 de seu argumento estejam intimamente ligadas
aos detalhes da concepção algébrica – e ligadas de tal modo que torne esta concepção ge-
nuinamente atrativa como um entendimento positivo da teoria de conjuntos – o argumento
Skolemita mais amplo está ameaçado por uma certa trivialidade retórica. Afinal, tendo a
Skolemita os recursos para nos levar em direção à concepção algébrica da teoria de con-
juntos – como no passo 1 deste argumento – então ela também tem os recursos para minar
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diretamente nossa concepção usual de conjuntos e de fazê-lo sem trazer o próprio Paradoxo
de Skolem para a discussão. Se isto está correto, então o argumento Skolemita mais amplo
bem poderia se resumir a criticar as noções usuais de teoria de conjuntos por serem “rela-
tivas” num contexto retórico em que a Skolemita já apresentara críticas ainda mais fortes a
essas noções enquanto defendia o passo inicial em seu argumento. Isto iria além de ser
apenas um pouco estranho41.

Para evitar esse tipo de estranheza, pensamos que a Skolemita deveria estruturar seu
argumento menos como uma crítica às nossas noções de teoria de conjuntos e mais como
uma análise construtiva de uma concepção algébrica da teoria de conjuntos. Isto é, ela de-
veria focar primariamente em defender a concepção algébrica da teoria de conjuntos como
uma concepção independentemente plausível de teoria de conjuntos (passo 1) e ela deve-
ria então apresentar a relatividade da teoria de conjuntos simplesmente como uma nova e
surpreendente consequência dessa concepção positiva (passos 2–3).Essa estratégia argu-
mentativa abre espaço para que os teoremas de Löwenheim-Skolem realizem de fato algum
trabalho filosófico – por exemplo, como descrito há dois parágrafos. Também dá ao passo 1
um foco mais preciso – e mais construtivo. Nessa leitura, o passo 1 atua principalmente para
destacar as virtudes positivas da concepção algébrica; criticar as noções usuais da teoria de
conjuntos é (no máximo) uma preocupação secundária42. (Veja a seção 3.3 para mais sobre
esse tipo de consideração).

Isso nos leva à crítica do argumento Skolemita que aparece na literatura recente. É
importante mencionar três formas gerais de crítica. Primeira, várias autoras responderam
ao argumento Skolemita apenas vagarosa e cuidadosamente desembrulhando a matemá-
tica envolvendo os teoremas de Löwenheim-Skolem a fim de mostrar que os teoremas por
si mesmos não causam problemas mesmo para entendimentos ingênuos da teoria de con-

41Com efeito, nossa preocupação aqui é que os argumentos iniciais no passo 1 fazem todo o trabalho filosófico
para a Skolemita e que os teoremas de Löwenheim-Skolem apenas pegam carona (e, talvez, fazem um papel
de levantar uma bandeira para promover o argumento Skolemita). Conforme indicado no texto principal, nós
pensamos que há ao menos uma leitura do argumento Skolemita que evita esse tipo de trivialização e que
permite aos teoremas de Löwenheim-Skolem fazer algum trabalho genuíno. Dito isso, esse é um argumento um
tanto delicado de se fazer e não fica claro que nenhuma Skolemita real o tenha feito com sucesso.
42Obviamente, isso também deixa o passo 1 substancialmente mais difícil para a Skolemita. Suspeitamos que
muitas das considerações discutidas na nossa exposição inicial do passo 1 – por exemplo, o kit de emergência
de argumentos contra o “platonismo” que aparece em muitos desenvolvimentos da posição Skolemita – serão
inadequadas nessa nova leitura do argumento.
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juntos (Resnik, 1966; Benacerraf and Wright, 1985b; Bays, 2007a). Ainda que esse tipo
de resposta seja efetiva contra a versão simplista do argumento Skolemita que discutimos
há seis parágrafos, ela pouco contribui contra os argumentos mais sofisticados que con-
sideramos no momento – por exemplo, argumentos que agora começam com uma crítica
independente desses entendimentos ingênuos 43. Dado isto, e dado que nós já discutimos
esse tipo de resposta com algum detalhe na seção 2, não diremos mais nada sobre ele aqui.

Segunda, várias autoras responderam ao argumento Skolemita ao criticarem direta-
mente a concepção algébrica da teoria de conjuntos e defendendo entendimentos mais usu-
ais e intuitivos da linguagem da teoria de conjuntos (Myhill, 1951; Resnik, 1969; Hart, 1970;
Benacerraf and Wright, 1985b). Há três questões que devemos destacar aqui. Primeira, é
difícil ver como a concepção algébrica forneceria uma versão geral da linguagem matemá-
tica, dado que a própria concepção parece pressupor uma teoria intuitiva de antemão, na
qual os resultados em teoria de modelos são formulados e demonstrados (por exemplo, os
teoremas de Löwenheim-Skolem). Essa questão é exacerbada quando nos atentamos para
o terceiro passo no argumento Skolemita, uma vez que este passo parece requerer tanto
uma versão absoluta dos números naturais, quanto uma versão absoluta de enumeração, a
fim de formular sua concepção de “enumerabilidade absoluta” (veja Resnik (1969); Benacer-
raf and Wright (1985b); e Shapiro (1991); veja Thomas (1971); Klenk (1976); e Bellotti (2006)
para algumas preocupações sobre essa linha de argumentação).

Observe aqui que essas considerações iniciais parecem advocar contra o uso de qual-
quer crítica completamente geral ao realismo matemático a fim de direcionar as pessoas
à concepção algébrica dos axiomas. Superficialmente, afinal, qualquer crítica suficiente-
mente geral do realismo se aplicaria tanto ao próprio modelo da Skolemita quanto à teoria
de conjuntos clássica. É duvidoso, portanto, se a Skolemita pode realmente recorrer a, diga-
mos, simples preocupações sobre “platonismo” ou sobre nosso acesso epistêmico a objetos
matemáticos para motivar uma posição Skolemita absoluta. Em suma: o próprio fato de ar-
gumentos Skolemitas basearem-se em teoremas matemáticos substanciais parece forçar a
Skolemita a aceitar que algumas partes da matemática não estão sujeitas à relatividade Sko-
lemita. (Além das referências no parágrafo anterior, veja (Bays, 2001; Bellotti, 2005; Bays,
2007b) para uma discussão desse tipo de consideração no contexto do argumento sobre

43Para fazer jus, muitas das apresentações do argumento Skolemita se parecem bastante com o simples argu-
mento discutido há alguns parágrafos, logo essa resposta técnica ainda tem um papel importante para esclarecer
a dialética geral.
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teoria de modelos de Putnam).
Claramente, este primeiro argumento abre a possibilidade de que a teoria de conjuntos

seja um caso especial – isto, ainda que algumas áreas da matemática como teoria de núme-
ros e análise devessem ser entendidas absolutamente, teoria de conjuntos, como teoria de
grupos e topologia, deveria ainda ser entendida algebricamente. Infelizmente, há diversas
diferenças óbvias entre a prática da teoria de conjuntos e aquela das áreas mais claramente
algébricas, como a teoria de grupos. Assim, por exemplo, matemáticas tendem a tratar os
axiomas da teoria de conjuntos como sendo menos rígidos que aqueles da teoria de grupos
ou topologia. Em teoria de conjuntos, matemáticas às vezes levantam a questão se os axi-
omas de ZFC estão corretos – isto é, elas falam como se houvesse uma noção intuitiva de
conjunto em relação à qual os axiomas de ZFC podem ser checados e descobertos insufici-
entes. Em teoria de grupos e topologia, em contraste, simplesmente não faz sentido algum
falar em “noções intuitivas” que poderiam divergir da noção especificada pelos axiomas re-
levantes44. Numa mesma linha, teóricas de conjuntos às vezes debatem se deveríamos
adicionar novos axiomas aos axiomas padrão da teoria de conjuntos – por exemplo, axio-
mas de grandes cardinais, ou axiomas como V = L ou até mesmo apenas axiomas como
𝐶𝑜𝑛(𝑍𝐹𝐶). Em contraste, ninguém sonharia em fazer adições aos axiomas da teoria de
grupos ou da topologia. Nesse sentido, então, uma abordagem algébrica à teoria de conjun-
tos é revisionária da prática de teoria de conjuntos de um modo que a abordagem algébrica
à teoria de grupos não o é.

Finalmente, mesmo se aceitarmos uma concepção algébrica de teoria de conjuntos – tal-
vez porque tenhamos um comprometimento maior com algum tipo de filosofia estruturalista
da matemática – não é claro por que este comprometimento requer de nós que limitemo-nos
a axiomatizações em primeira-ordem da teoria de conjuntos. Afinal, muitos do exemplos
mais bem-sucedidos da abordagem algébrica à axiomatização – por exemplo, os resulta-
dos do século XIX de que a aritmética e a análise podem ter axiomatizações categóricas –
baseiam-se no uso de uma lógica de segunda-ordem ao fundo. E, como observamos na
seção 2, versões de segunda-ordem de ZFC não geram o Paradoxo de Skolem. Então, não
é suficiente que Skolemitas defendam uma abordagem algébrica à axiomatização da teo-
ria de conjuntos, elas precisam mostrar que uma abordagem algébrica de primeira-ordem é

44Claramente, algumas filósofas seguem uma linha semelhante sobre ZFC. Mas, no caso de ZFC, é ao menos
uma questão em aberto se essa é a linha correta de se seguir. No caso da teoria de grupos ou topologia, ela é
a única linha que de fato faz algum sentido.
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o caminho certo a ser seguido. Veja Hart (1970) e Shapiro (1991) para desenvolvimentos
desta linha de argumentação.

Chega, portanto, de falar sobre as críticas gerais da concepção algébrica de axioma-
tização e seu papel no argumento Skolemita. Nós nos voltamos agora para uma objeção
mais direcionada ao terceiro passo deste argumento. Para fins de argumento, vamos con-
ceder que a Skolemita mostrou que nossas noções de teoria de conjuntos são relativas e
que, para todo tipo de conjunto que nós podemos definir com uma fórmula, há uma instância
deste tipo de conjunto que é apenas enumerável. Então, há uma instância enumerável o
conjunto potência de 𝜔, uma instância dos números reais, etc45. Ainda assim, não é claro
por que isto mostra que todo conjunto é “absolutamente” enumerável. Afinal, assim como o
teorema Descendente de Löwenheim-Skolem46 mostra que que podemos encontrar instân-
cias enumeráveis de todos esses conjuntos, o axioma Ascendente de Löwenheim-Skolem
mostra que nós podemos também encontrar instâncias não-enumeráveis.

Dado isso, diversas críticas sugerem que as Skolemitas encaram dois problemas ex-
planatórios e que, até o momento, nenhuma delas foi capaz de resolvê-los. Primeiro, a
Skolemita precisa explicar como podemos identificar conjuntos através de diferentes mode-
los – isto é, por que deveríamos considerar que os diversos objetos que satisfazem “𝑥 é o
conjunto potência de 𝜔” em diferentes modelos da teoria de conjuntos são “o mesmo con-
junto”. Observe que alguma identificação do tipo é essencial se a Skolemita iniciará com a
demonstração de enumerabilidade de um desses objetos e então usar essa demonstração
para argumentar pela enumerabilidade absoluta de todos os outros (Resnik, 1966). Se-
gundo, a Skolemita precisa explicar sua preferência por conjuntos enumeráveis. Ainda que
a Skolemita possa identificar “instâncias” enumeráveis e não-enumeráveis de um determi-
nado conjunto, ela precisa explicar por que essa identificação leva à conclusão de que todos
os conjuntos são “absolutamente enumeráveis”, ao invés de levar à conclusão de que todos
os conjuntos são “absolutamente não-enumeráveis” (Resnik, 1966; Benacerraf and Wright,

45Recorde, mais uma vez, que nenhuma dessas conclusões são forçadas sobre a realista. A realista tem uma
explicação genuinamente boa para dizer porque essas diversas “instâncias” são, na melhor das hipóteses, apro-
ximações enumeráveis do verdadeiro conjunto potência de 𝜔 ou do verdadeiro conjunto dos números reais.
Assim, estamos fazendo algumas concessões bastante generosas para seguir a Skolemita mesmo até esse
ponto. Veja a seção 2.4 para um desenvolvimento mais detalhado desse tipo de consideração.
46Ainda que a palavra “descendente” não apareça no texto original, fica claro que o autor faz menção a esse
axioma em contraposição ao axioma Ascendente. Assim, a tradução se reserva o direito de adicioná-la aqui
para manter o sentido do texto.
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1985b).
Essas são, portanto, as principais críticas à posição Skolemita que apareceram na lite-

ratura. Tratá-las por completo requereria, infelizmente, que nós mergulhássemos profunda-
mente em questões relacionadas, por exemplo, ao status do nosso entendimento informal
da linguagem da teoria de conjuntos, a legitimidade da quantificação de segunda-ordem e
condições de identidade associadas a objetos matemáticos em filosofias estruturalistas da
matemática. Explorar essas questões nos distanciaria demais do Paradoxo de Skolem. Para
uma discussão recente de algumas das literaturas aqui relevantes, veja (Bellotti, 2006).

3.3 O Multiverso
Durante a última década, o teórico de conjuntos Joel Hamkins tem argumentado em

favor de uma concepção de teoria de conjuntos que se parece surpreendentemente com a
visão Skolemita tradicional (ainda que as motivações de Hamkins parece vir mais da própria
teoria de conjuntos do que de literatura filosófica tradicional). Hamkins nota que, enquanto
teóricas de conjuntos desenvolveram mais ferramentas e mais poderosas, a fim de construir
e comparar diferentes modelos de forcing em teoria de conjuntos, teoria de modelos inter-
nos, imersões de grandes cardinais, etc. – eles têm sido cada vez menos capazes de tratar
qualquer modelo em particular como canônico. Ao invés disso, a teoria de conjuntos tem se
concentrado em comparar diferentes modelos de teoria de conjuntos, em lugar de separar
um modelo como privilegiado. Hamkins argumenta, portanto, que teóricas de conjuntos de-
veriam aceitar o que ele chama de concepção “multiversista” de teoria de conjuntos – uma
concepção na qual nenhum modelo da teoria de conjuntos é privilegiado e o propósito da
teoria de conjuntos é simplesmente explorar as relações entre os diversos modelos.

Essa concepção multiversista está claramente relacionada à concepção algébrica discu-
tida nas seções 3.1–3.2. Além disso, ela satisfaz um dos desiderata chave que isolamos na
seção 3.2. Hamkins defende o multiverso como uma concepção independentemente plau-
sível de teoria de conjuntos e argumenta que a motivação para aceitá-lo vem de dentro da
prática matemática. (Isto é, Hamkins não argumenta que, porque as extensões via forcing
são possíveis, nós estamos presas com uma relatividade da teoria de conjuntos; pelo con-
trário, ele argumenta que, porque as extensões de forcing são naturais, deveríamos acatar
a relatividade da teoria de conjuntos). Nesse sentido, algo como o multiverso poderia muito
bem constituir o modo “correto” de se desenvolver uma concepção algébrica.

Além disso, a concepção multiversista leva naturalmente a tipos de conclusão com as
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quais Skolemitas tradicionais tenderiam a concordar. Seja 𝑎 um conjunto em algum modelo
M (em que M habita em algum lugar do multiverso). Logo M possui uma extensão via for-
cing, M[𝐺], em que 𝑎 é apenas enumerável. Isso fornece um verniz natural à afirmação
Skolemita que “todo conjunto é enumerável de alguma perspectiva”. Semelhantemente, o
viés Skolemita em favor de enumerabilidade (veja seção 3.2) pode ser explicado pelo fato
de que, se 𝑎 é enumerável em um modelo M, então ele permanece enumerável em todas
as extensões daquele modelo. Em contraste, conjuntos não-enumeráveis podem sempre
serem tornados enumeráveis ao passarmos para uma extensão via forcing apropriada. Para
mais sobre o multiverso, veja Hamkins 201147 e (Hamkins, 2012). Para mais críticas, veja
Koellner 2013 (em Outras referências da Internet48).

3.4 O Argumento Modelo-teórico de Putnam

Recentemente, a versão mais amplamente discutida do Paradoxo de Skolem veio (em
uma versão) do chamado “argumento modelo-teórico contra o realismo” de Hilary Putnam.
O objetivo geral de Putnam no argumento modelo-teórico é mostrar que a nossa linguagem é
semanticamente indeterminada – que não há nenhum fato a que se referem os termos e pre-
dicados da nossa linguagem. No caso da teoria de conjuntos, portanto, ele quer mostrar que
não há um único universo da teoria de conjuntos o qual nossos quantificadores percorram e
não há uma única relação à qual a palavra “pertencimento” se refira. Nos termos do próprio
Putnam, não há um único “modelo pretendido” para a linguagem da teoria de conjuntos.

Nas primeiras páginas de seu artigo de 1980, “Models and Reality”, Putnam argumenta
que há aomenos ummodelo pretendido para a linguagem da teoria de conjuntos que satisfaz

47N. da T.: A referência utilizada pelo autor para esse artigo devolve a mesma entrada que (Hamkins, 2012). A
decisão de manter a leitura é para se aproximar do original.
48N. da T.: Ainda que o artigo final tenha sido recentemente atualizado, a referência dada aqui leva a uma
página inexistente. Assim, mantive a linha de texto para manter a tradução, mas, infelizmente não há uma
correspondência para essa referência.
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o axioma da teoria de conjuntos V = L49. Para demonstrá-lo, Putnam começa por assumir
que há apenas duas coisas que poderiam atuar fixando o modelo pretendido para a lingua-
gem da teoria de conjuntos. Primeira, há o que Putnam chama “restrições teóricas”. Essas
incluem os axiomas padrão da teoria de conjuntos, assim como os princípios e teorias de ou-
tros ramos da ciência. Segunda, há “restrições operacionais”. Essas são apenas as diversas
observações empíricas e medições que fazemos no curso da investigação científica.

Dadas essas suposições, Putnam argumenta que encontrar um modelo pretendido que
satisfaz V = L requer simplesmente encontrar um modelo de ZF+V = L que satisfaça as
restrições teóricas e operacionais relevantes. Sua estratégia para encontrar esse modelos
se baseia no seguinte teorema:

Teorema 1 ZF mais V = L tem um 𝜔-modelo que contém qualquer conjunto enumerável
de números reais dado.

Aqui, o fato de que este modelo satisfaz ZFC supostamente garante que ele satisfaz
todas as restrições teóricas que vem da própria teoria de conjuntos, enquanto a riqueza de
ZFC garante que o modelo também tem os recursos pra codificar nossas melhores teorias
científicas (e assim satisfazer todas as restrições teóricas que vêm das ciências naturais).
Finalmente, o fato de que esse modelo contém um conjunto arbitrário de números reais
garante que ele pode codificar todas as diversas observações e medições que constituem
a as nossas “restrições observacionais”50. Logo, se Putnam estiver correto ao pensar que
49Nós provavelmente deveríamos dizer um pouco mais sobre o contexto local deste argumento. O objetivo de
Putnam nessa seção de seu artigo é mostrar que a indeterminação de referência leva a uma indeterminação no
valor de verdade para sentenças como 𝑉 = 𝐿, em suas palavras, essas sentenças “não possuem valor de
verdade determinado… elas são apenas verdadeiras em alguns modelos pretendidos e falsas em outros”. Como
resultado, não “faz sentido” pensar que “ ‘𝑉 = 𝐿’ é de fato falsa, mesmo que ela seja consistente com a teoria
de conjuntos” (p.5). Agora, porque Putnam assume estar argumentando contra Gödel – quem pensava que havia
apenas um único “modelo pretendido” da teoria de conjuntos e que 𝑉 = 𝐿 era falsa neste modelo –, Putnam
não sente a necessidade de argumentar a favor de ummodelo pretendido que satisfaça𝑉 ≠ 𝐿 (ele assume que
Gödel lhe concederá a existência de tal modelo). Logo, Putnam pensa que se ele puder simplesmente encontrar
um modelo pretendido que satisfaça 𝑉 = 𝐿, então ele terá concluído seu argumento; em suas palavras, ele
terá demonstrado que a famosa “ ‘relatividade das noções da teoria de conjuntos’ [de Skolem] estende-se para
o valor de verdade de 𝑉 = 𝐿’ ” (p. 8). Para ler mais sobre a matemática desse exemplo – por exemplo,
definições de 𝑉 e de 𝐿 – veja (Jech, 1978) e (Kunen, 1980).
50Para colocar todo o conteúdo acima nos termos de Putnam, seja 𝑂𝑃 um conjunto de números reais que
codifica todas as medições que seres humanos farão em toda sua existência. Então Putnam escreve:
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os modelos pretendidos da teoria de conjuntos são fixados somente pela estrutura formal
das nossas teorias científicas – incluindo nossos axiomas explícitos da teoria de conjuntos
– e pelas medições físicas que calhou de fazermos, então esse teorema gera um modelo
pretendido em que V = L é verdadeiro.

Essa versão do argumento modelo-teórico tem três conexões com o Paradoxo de Sko-
lem. Primeira, o próprio Putnam apresenta o argumento como um desenvolvimento natural
do paradoxo. No início de seu artigo, Putnam fornece um rápido rascunho do Paradoxo de
Skolem e então sugere que sua análise de V = L surge ao se tomarem os argumentos de
Skolem e “estendê-los mais ou menos na direção que ele [Skolem] pareceu indicar” (p.1).
Segunda, como evidenciada pelas passagens citadas na note de rodapé 44, as conclusões
gerais de Putnam se adequam bem aos entendimentos Skolemitas mais recentes do Pa-
radoxo de Skolem – veja, por exemplo, sua conclusão de que V = L não possui “valor de
verdade determinado” (p. 5) ou ainda que “ ‘a relatividade das noções da teoria de conjuntos’
[de Skolem] se estende a uma relatividade do valor de verdade de V = L” (p. 8). Finalmente,
e mais importante, a demonstração do teorema de Putnam se baseia crucialmente nos teore-
mas de Löwenheim-Skolem. (Muito grosseiramente, Putnam inicia por aplicar a L o teorema
Descendente de Löwenheim-Skolem, a fim de provar que seu teorema é verdadeiro em L;
ele então utiliza a noção de absoluto de Shoenfield para refletir o teorema de volta para V51).

O argumento de Putnam recebeu diversos tipos de críticas na literatura. No front técnico,
Bays argumenta que o uso de Putnam do teorema Descendente de Löwenheim-Skolem é ile-
gítimo, já que sistemas padrão da teoria de conjuntos não nos permitem aplicar esse teorema
a uma classe própria como L. De fato, ainda que deixássemos os detalhes da demonstra-
ção de Putnam de lado, considerações Gödelianas mostram que o teorema de Putnam não
pode de modo algum ser demonstrado em ZFC (já que o teorema implica a consistência de

Agora, suponha que formalizamos toda a linguagem da ciência dentro da teoria de conjuntos
ZF mais 𝑉 = 𝐿. Qualquer modelo de ZF que contenha um conjunto abstrato isomorfo a 𝑂𝑃
pode ser estendido a ummodelo para essa linguagem formalizada de ciência que é padrão com
respeito a 𝑂𝑃 ; logo …podemos encontrar um modelo para toda a linguagem da ciência que
satisfaz ‘tudo é construível’ e que atribui o valor correto a todas magnitudes físicas. (p. 7)

51São necessários mais alguns detalhes aqui. Seja 𝑥 a coleção enumerável de números reais. A demonstra-
ção de Putnam começa por observar que, no caso especial em que permitimos que nossos 𝜔-modelos sejam
enumeráveis, podemos codificar tanto o modelo e 𝑥 por reais únicos. Nesse caso, portanto, o teorema pode
ser formulado como uma sentença Π2 da forma: (Para todo real 𝑠)(existe um real 𝑀) tal que (… 𝑀, 𝑠 … ).
Deste ponto, Putnam argumenta conforme se segue:
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ZFC). É claro, se Putnam desejar utilizar um teoria de fundo mais forte para demonstrar seu
teorema – por exemplo, ZFC+“existe um cardinal inacessível” – então ele pode evitar esses
tipos de críticas. Nesse caso, porém, não fica claro por que ainda deveríamos considerar
que o modelo que resulta do teorema de Putnam satisfaz nossas restrições teóricas. Afi-
nal, qualquer pessoa que aceite os novos axiomas utilizados na demonstração revisada de
Putnam terá restrições teóricas que vão de algum modo para além de ZFC+V = L – por
exemplo, suas restrições teóricas podem muito bem incluir o axioma “há um cardinal inaces-
sível”. Veja Bays (2001) para a formulação original de Bays dessa objeção; veja Velleman
(1998) e Gaifman (2004) para algumas formulações alternativas; veja Bellotti (2005) e Bays
(2007b) para uma discussão crítica; e veja capítulo 3 esp. § 3.3.3) de (Hafner, 2005) para
discussão de uma consideração semelhante sobre o uso da transitividade por Putnam.

Button (2011) argumenta que, ainda que esse tipo de crítica técnica se posicione con-
tra a versão do argumento de Putnam que explicitamente invoca o teorema Descendente de
Lowenheim-Skolem, há formulações alternativas dele que podem evitar essa crítica. Em par-
ticular, Button observa que mesmo teorias muito fracas podem demonstrar teoremas como:
“se ZFC é consistente então ZFC tem um modelo enumerável”. Como qualquer proponente
de ZFC deve aceitar que ZFC é consistente, essas teorias fracas são suficientes para se
obter diversas variações do argumento de Putnam. Veja (Button, 2011) para desenvolvi-

Considere esta sentença no modelo interno 𝑉 = 𝐿. Para todo 𝑠 no modelo interno – isto é,
para todo 𝑠 em 𝐿 – existe um modelo – a saber, o próprio 𝐿 – que satisfaz ‘𝑉 = 𝐿’ e contém
𝑠. Pelo teorema Descendente de Löwenheim-Skolem, existe um modelo enumerável que é
elementarmente equivalente a 𝐿 e contém 𝑠. (Estritamente falando, não precisamos aqui
apenas do teorema Descendente de Löwenheim-Skolem, mas da construção do ‘Invólucro
de Skolem’ que é utilizada para se demonstrar o teorema). Pelo trabalho de Gödel, esse
submodelo enumerável está ele próprio em 𝐿, assim como, fato facilmente verificável, também
estão os reais que o codificam. Logo, a sentença Π2 acima é verdadeira no modelo interno
𝑉 = 𝐿.

Mas Shoenfield demonstrou que sentenças Π2 são absolutas: se uma sentença Π2 é verda-
deira em 𝐿, ela deve ser verdadeira em 𝑉 . Então a sentenças acima é verdadeira em 𝑉 . (p.
6)

Para discussões mais detalhadas do lado matemático deste argumento, veja Bays (2001); Bellotti (2005); Bays
(2007b); e Hafner (2005). Veja Jech (1978) e Kunen (1980) para o pano de fundo relevante em teoria de conjuntos
(por exemplo, sobre 𝐿 e noção de absoluto de Shoenfield).
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mento dessa consideração. Veja (Bellotti, 2005) e (Bays, 2007a) para a discussão de uma
consideração mais ou menos semelhante.

Permanecendo na linha técnica, diversas autoras observaram a tensão no modo como o
argumento de Putnam lida com a noção de finitude. Por um lado, Putnam precisa usar essa
noção para caracterizar seu modelo como um 𝜔-modelo e (até mesmo) para dar sentido
às definições formais de uma linguagem de primeira-ordem e da relação de satisfação de
primeira-ordem52. Por outro lado, Putnam não pode permitir que opositoras a seu argumento
utilizem essa noção para especificar o que elas pensam fazer um modelo pretendido. Se
suas oponentes pudessem usar essa noção, então elas poderiam definir a noção de um
modelo sendo “bem-fundado” e isto seria suficiente para descartar os modelos gerados pelo
teorema de Putnam. Nesse sentido, portanto, o argumento de Putnam parece se basear
numa assimetria semmotivação entre os tipos demaquinários técnicos que elemesmo utiliza
e os tipos de maquinários que ele expõe a críticas. Veja (Bays, 2001) e (Bellotti, 2005)
para desenvolvimentos dessa consideração; veja seção 3.4 de (Hafner, 2005) para algumas
reflexões críticas.

De um lado mais puramente filosófico, muitas autoras criticaram a suposição de Putnam
de que apenas satisfazer uma formalização em primeira-ordem de nossas restrições teóricas
é suficiente para que ummodelo seja “pretendido”. Então, por exemplo, Hacking argumentou
que deveríamos realmente estar comprometidos com uma formulação de teoria de conjuntos
de segunda-ordem e que o teorema-chave de Putnam não se aplica para tais formulações
(Hacking, 1983). Outras argumentaram que o modelo pretendido para a teoria de conjuntos
necessita ser transitivo e que, mais uma vez, não há razões para crer que omodelo produzido
pelo teorema de Putnam seja transitivo (Bays, 2001). Finalmente, como mencionado no
parágrafo anterior, muitas autoras sugeriram que um modelo pretendido para a teoria de
conjuntos deveria ao menos ser bem-fundado, mas não há razões para crer que o modelo
de Putnam seja bem-fundado (Bellotti, 2005).

52Aqui, um 𝜔-modelo é apenas um modelo que captura corretamente os números naturas – isto é, um modelo
em que os “números naturais” do modelo são isomorfos aos números reais de fato. Putnam necessita da noção
de finitude para capturar linguagens de primeira-ordem, porque as sentenças de uma linguagem de primeira-
ordem pode ser de comprimento arbitrário finito, mas não podem ser infinitas. Além disso, o fato que ZFC
utiliza esquemas de axiomas para capturar Substituição e Separação significa que realmente precisamos da
generalidade aqui – esses esquemas não podem sequer ser formulados sem que utilizemos a noção de fórmula
arbitrária. Uma consideração semelhante se aplica ao modo como a definição de satisfação de primeira-ordem
faz uso de recursão.
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A resposta de Putnam para esse tipo de objeção é interessante. Muito grosseiramente,
Putnam sugere que quaisquer condições impostas sobre modelos pretendidos as quais ou-
tras filósofas podem vir a propor – por exemplo, aquelas mencionadas no parágrafo anterior
– deveriam elas mesmas serem formalizadas em termos de primeira-ordem e tratadas como
novas restrições teóricas. Quando essas novas restrições teóricas são colocadas de volta
no argumento de Putnam, ele irá gerar mais uma vez um modelo que “satisfaz” essas restri-
ções. Assim, ao simplesmente adotar uma leitura particularmente flexível da frase “restrições
teóricas”, Putnam garante que quase todas as condições impostas sobre modelos pretendi-
dos podem simplesmente ser trazidas de volta para seu argumento original (Putnam, 1980,
1983, vii-xii)53.

Este argumento – geralmente chamado de “apenas mais teoria” – recebeu uma atenção
enorme na literatura. A resposta mais comum a ele envolve traçar uma distinção entre des-
crever as propriedades de um modelo que o fazem um modelo pretendido e simplesmente
adicionar novas sentenças para que um modelo as satisfaça. Dito de outro modo, envolve
distinguir entremudar a semântica na qual nossos axiomas são interpretados – por exemplo,
restringindo a classe de estruturas que contam como modelos para a nossa linguagem e/ou
fortalecendo a noção de satisfação que liga sentenças a modelos – e simplesmente adicionar
novos axiomas para serem interpretados utilizando a mesma semântica antiga. A resposta
então passa a argumentar que propostas como aquelas discutidas há dois parágrafos – por
exemplo, que modelos pretendidos deveriam ser transitivos ou bem-fundados ou satisfa-
zerem ZFC de segunda-ordem – deveriam ser entendidos como pertencentes à parte das
descrições nessa distinção, ao invés de pertencer à parte da “adição de sentenças” (ainda
que seja nesta onde o argumento “apenas mais teoria” de Putnam insiste resolutamente em
colocá-las).

Putnam, por sua vez, argumentou que esse tipo de resposta comete petição de princípio
contra seu argumento geral. O argumento de Putnam, afinal, se ocupa da questão se nossa
linguagem matemática tem algum significado determinado e a resposta que estamos consi-

53Isso reflete a leitura padrão do argumento de Putnam na literatura (Devitt (1984), capítulo 11; Lewis (1984);
and (1991); Cleve (1992); e Crispin Wright (1997)). Recentemente, no entanto, várias comentadoras desafia-
ram essa interpretação. Elas argumentam que a conversa de Putnam sobre “apenas mais teoria” meramente
deveria destacar a inadequação teórica de diversas teorias de referência particulares; não deveria providenciar
um argumento geral do tipo rascunhado acima (Anderson, 1993; Douven, 1999; Haukioja, 2001). Veja (García-
Carpintero, 1996) e (Bays, 2008) (§2) para algumas reflexões críticas nessas interpretações revisionistas do
argumento de Putnam.
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derando parece assumir simplesmente que tem esse tal significado quando a resposta usa
frases como “transitivo”, “bem-fundado” ou “conjunto potência completo de M” para descre-
ver sua noção de “modelo pretendido”. Em suma: enquanto a determinação da linguagem
matemática for um problema, será uma petição de princípio a questão para se fazer uso livre
dessa linguagem para descrever o modelo pretendido da teoria de conjuntos. Ao menos, de
qualquer forma, Putnam tenta argumentar.

Como indicado acima, esse aspecto do argumento de Putnam gerou uma enorme litera-
tura. Veja (Devitt, 1984), capítulo 11; (Lewis, 1984; and, 1991; Cleve, 1992; e Crispin Wright,
1997; Chambers, 2000; Bays, 2001, 2008) para algumas críticas representativas do argu-
mento de Putnam. Veja (Putnam, 1983), vii–xii e (Putnam, 1989) para a resposta de Putnam.
Veja (Anderson, 1993; Douven, 1999; Haukioja, 2001; Kroon, 2001) para algumas defesas
recentes desse aspecto do argumento de Putnam.

4. Conclusão

Fechamos essa entrada com uma breve retomada dos dois caminhos principais que
tentamos enfatizar. Primeiro, de um ponto de vista puramente matemático, não há conflitos
entre o teorema deCantor e os Teoremas de Löwenheim-Skolem. Há uma solução técnica ao
Paradoxo de Skolem que explica porque os teoremas de Löwenheim-Skolem não apresen-
tam problemas tanto para formas ingênuas do realismo em teoria de conjuntos, quanto para
diversas formas de teoria de conjuntos axiomatizadas. Logo, não há chances de se utilizar
apenas os teoremas de Löwenheim-Skolem para gerar conclusões Skolemitas substanciais.
É claro, há ainda algumas questões técnicas interessantes que circundam o Paradoxo de
Skolem. Por exemplo, podemos olhar como o paradoxo atua no contexto de modelos parti-
culares de primeira-ordem; podemos examinar o grau com que diversos tipos de lógicas que
não são de primeira-ordem são suscetíveis ao paradoxo; e podemos tentar isolar precisa-
mente as propriedades da lógica de primeira-ordem que permitem que o paradoxo se aplique
a ela. Cada um desses tópicos claramente se relaciona ao Paradoxo de Skolem e cada um
deles levanta questões sobre a relação entre teoria de modelos e teoria de conjuntos que
valem a pena serem exploradas. Quando considerado isoladamente, o Paradoxo de Skolem
não oferece ameaças à teoria de conjuntos clássica.

Segundo, se chegarmos ao Paradoxo de Skolem com dúvidas prévias sobre a teoria de
conjuntos clássica – por exemplo, os tipos de dúvidas que existem por trás de algumas das
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reconstruções mais sofisticadas do argumento original de Skolem, os tipos de dúvidas que
existem por trás das versões mais plausíveis do passo 1 no argumento Skolemita ou ainda
os tipos de dúvidas sobre a determinação da semântica que existe por trás do argumento
modelo-teórico de Putnam – então é bem possível que guiemos a discussão do Paradoxo
de Skolem em direção a algum tipo de conclusão filosófica interessante. Claramente ainda
haverão desafios aqui: precisamos da conta do status das teorias de fundo nas quais de-
monstramos os teoremas de Löwenheim-Skolem, explicar o significado especial das axio-
matizações da teoria de conjuntos em primeira-ordem, e talvez precisamos explicar como
podemos identificar elementos olhando para diferentes modelos da teoria de conjuntos. A
princípio, porém, esses tipos de usos sofisticados do Paradoxo de Skolem não são evitados
pela solução técnica ao paradoxo mencionada no parágrafo anterior. Se colocarmos filoso-
fia suficiente na nossa análise do Paradoxo de Skolem, então deveríamos esperar obter ao
menos um pouco de filosofia.
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