

ÍNDICE DE QUALIDADE DE AGUA DOS AFLUENTES DA LAGOA MIRIM

JOSIAS BIAZIN DA SILVA¹; MARLON HEITOR K. VALENTINI²; ANDRESSA DRÖSE³; MARÍLIA GUIDOTTI CORRÊA⁴; MARCOS ANTONIO DA SILVA ⁵; BRUNO MÜLLER VIEIRA⁶

¹Universidade Federal de Pelotas – <u>josiasbiazin@gmail.com</u>
²Universidade Federal de Pelotas – marlon.valentini@hotmail.com
³Universidade Federal de Pelotas – andressa_drose@hotmail.com
⁴Universidade Federal de Pelotas – mariliaguidotti@yahoo.com.br
⁵Universidade Federal de Pelotas – marcos_silvap1@hotmail.com
⁶Universidade Federal de Pelotas – bruno.prppg@hotmail.com

1. INTRODUÇÃO

A água é um dos elementos mais importantes do planeta Terra, constituindo um bem essencial a todo ser vivo. Embora seja um recurso altamente escasso, o volume dos recursos hídricos disponíveis no planeta atualmente atende todas as necessidades dos indivíduos. No entanto, o problema frente à escassez da água está associado a má distribuição entre todas as regiões, à poluição e mal gerenciamento dos recursos naturais(REBOUÇAS *et al.*, 2006).

A Lagoa Mirim está situada na Bacia do Atlântico Sul, contando com uma área superficial de 3.750 km², sendo desses 2.750 km² pertencentes ao território brasileiro e 1.000 km² ao território uruguaio. Cujos principais afluentes do território brasileiro é a bacia do Arroio Grande (4.080 km²) – que incorpora, dentre outros, o próprio Arroio Grande e o Arroio Chasqueiro – a bacia do Litoral (6.416 km²), onde estão localizados o Banhado do Taim e a Lagoa Mangueira – e na divisa entre o Brasil e o Uruguai, está a Bacia do Rio Jaguarão (8.188 km²). Este sistema lagunar tem uma grande importância econômica e socioambiental para a região sul do Rio Grande do Sul (Agência Lagoa Mirim, 2017).

Segundo PIEDRAS (2012) os usos consuntivos do recurso hídrico Lagoa Mirim, são especialmente o uso para a irrigação, recreação, navegação, pesca artesanal e indiretamente o abastecimento público. Portanto, essas utilizações podem acarretar na redução dos índices da qualidade da água da Lagoa Mirim.

O Índice de qualidade de água da Companhia Ambiental do Estado de São Paulo (CETESB) foi desenvolvido para avaliar a qualidade da água bruta visando seu uso para o abastecimento público, após tratamento (ANA, 2016). IQA, tem como base, uma série de parâmetros físico-químico e microbiológico que melhor representa na caraterização da qualidade da água, que são convertidos em um único número, não sendo um instrumento para avaliação de atendimento a legislação ambiental, e sim uma comunicação de fácil entendimento para o publico em geral sobre as condições ambientais dos recursos hídricos. (SPERLING, 2007).

O objetivo deste trabalho foi de monitorar a qualidade da água do Arroio Chasqueiro, Rio Jaguarão e o Rio Arroio Grande, que são afluentes da Lagoa Mirim, por meio de um Índice de Qualidade de Água.

2. METODOLOGIA

O monitoramento foi realizado em três afluentes da Lagoa Mirim, com um ponto de coleta em cada um deles, conforme mostrado na Figura 1.

Figura 1 – Localização dos afluentes da Lagoa Mirim

O período de amostragem ocorreu nos anos de 2016 e 2017. Todas as análises procederam-se de acordo com as metodologias descritos no APHA (2005), e analisadas em duplicata no laboratório de águas e efluentes da Agência da Lagoa Mirim.

A determinação do Índice de Qualidade de Água dos afluentes da Lagoa Mirim foi realizada por meio de um produto ponderado de nove parâmetros: Fósforo Total (PT), pH, Coliformes Termotolerantes, DBO5, Nitrogênio Total Kjeldahl (NTK), Temperatura, Oxigênio Dissolvido(OD), Sólidos Totais(ST) e Turbidez. Utiliza-se à seguinte equação:

$$IQA = \prod_{i=1}^{n} q_i^{w_i}$$

IQA = Índice de Qualidade das Águas. Um número entre 0 e 100;

qi = qualidade do i-ésimo parâmetro. Um número entre 0 e 100, obtido do respectivo gráfico de qualidade, em função de sua concentração ou medida (resultado da análise):

wi = peso correspondente ao i-ésimo parâmetro fixado em função da sua importância para a conformação global da qualidade, isto é, um número entre 0 e 1.

As categorias da qualidade da água é de acordo com o resultado do cálculo do IQA, conforme a tabela 1.

Tabela 1: Parâmetros da qualidade de água.

	CETESB
Ótima	80 ≤ IQA ≤ 100
Boa	52 ≤ IQA < 80
Aceitável	37 ≤ IQA < 52
Ruim	20 ≤ IQA < 37
Péssima	$00 \le IQA < 20$

Fonte: ANA (Agência Nacional da Águas)

3. RESULTADOS E DISCUSSÃO

Os resultados obtidos através das variáveis de cada afluente estão apresentados na tabela 2. Analisando os resultados, pode-se observar que houve uma redução na qualidade de água de 2016 para 2017, principalmente coliformes e DBO. Destaca-se que o Arroio Chasqueiro teve uma redução levemente significativa, no IQA, conforme a tabela 3, em relação a 2016. Já o Rio Arroio Grande e o Rio Jaguarão obtiveram redução pequena em relação ao ano anterior. Porém, através dos parâmetros da CETESB, todos os índices que foram encontrados estão dentro de uma faixa considerada Boa, conforme a tabela 4.

Tabela 2- Resultados referentes à média geral das amostragens.

Parâmetros								
2016	Р	Ν	Col	DBO	OD	Turb	рН	ST
P01	0,18	0,96	193,50	1,42	6,23	17,34	6,77	6,78
P02	0,35	1,41	1600	0,79	7,65	31,23	7,02	97,20
P03	0,59	0,81	1206,25	0,77	6,40	41,93	6,9	131,70
2017	Р	N	Col	DBO	OD	Turb	рН	ST
P01	0,17	0,94	1117,50	2,66	4,61	12,31	6,96	108,38
P02	0,39	1,20	1600	3,08	6,98	37,70	7,27	133,00
P03	0,69	0,53	1430	5,52	6,04	33,95	7,00	134,75

Legenda:

P01 - Arroio Chasqueiro

P02 - Rio Arroio Grande

P03 – Rio Jaguarão

Tabela 3 - Valores de IQA dos anos 2016 e 2017.

LOCAL	2016	2017
Arroio Chasqueiro	70	60
Rio Arroio Grande	62	59
Rio Jaguarão	59	57

Tabela 4 – Classificação de qualidade para cada rio.

LOCAL	2016	2017
Arroio Chasqueiro	Boa	Boa
Rio Arroio Grande	Boa	Boa
Rio Jaguarão	Boa	Boa

4. CONCLUSÕES

O valor do IQA do Arroio Chasqueiro, Rio Arroio Grande e Rio Jaguarão no período de amostragem foi bom, de acordo com os parâmetros da CETESB. Em uma comparação entre os anos em que o estudo foi abordado, verificou-se que o IQA de todos os rios diminuíram, porém, salienta-se que as pesquisas sobre esses afluentes ainda permanecem.

5. REFERÊNCIAS BIBLIOGRÁFICAS

SPERLING, M. V. Estudos e modelagem da qualidade da água de rios. Belo Horizonte: Departamento de Engenharia Sanitária e Ambiental da UFMG, 2007.

APHA, AWWA and WEF, **Standard Methods for the Examination of Water & Wastewater**. Washington, D.C, 2005. 21th edition.

PIEDRAS, S.R.N et al. Caracterização da atividade pesqueira na Lagoa Mirim, Rio Grande do Sul- Brasil. **Revista Brasileira Agrociência**, Pelotas, v.18, n.2-4, p. 107-116, 2012.

REBOUÇAS, A.C.; BRAGA, B.et al. **Águas doces no Brasil**. São Paulo: Escrituras Editora, 2006.

ANA, Indicadores de qualidade – Índice de qualidade das águas. Brasília. - DF, 2017. Acessado em: 04 de outubro de 2017. Online. Disponível em: http://www.ana.gov.br.

Agência de Desenvolvimento da Lagoa Mirim, **Bacia da Lagoa Mirim.** Acessado em: 04 de outubro de 2017. Online. Disponível em: http://wp.ufpel.edu.br/alm/