AVALIAÇÃO DO ÍNDICE DE SEVERIDADE DE SECA DE PALMER (PDSI) PARA O MUNICÍPIO DE CRUZ ALTA/RS

<u>SUÉLEN CRISTIANE RIEMER DA SILVEIRA</u>¹; EMANUELE BAIFUS MANKE¹; RITA DE CÁSSIA FRAGA DAMÉ²; CLAUDIA FERNANDA ALMEIDA TEIXEIRA-GANDRA³

¹Programa de Pós-Graduação em Manejo e Conservação do Solo e da Água/MACSA, UFPel – <u>silveira.suelen@gmail.com</u>; manumanke@gmail.com

²Centro de Engenharias, UFPel – <u>ritah2o@hotmail.com</u>

³Centro de Engenharias, UFPel – <u>cfteixei@ig.com.br</u>

1. INTRODUÇÃO

A seca é uma anomalia que ocorre em todos os regimes climáticos com alta ou baixa precipitação pluvial e pode afetar milhões de pessoas, refletindo-se na baixa disponibilidade de umidade no solo. Esse fenômeno corresponde a uma característica temporária do clima de uma região, decorrente de precipitações abaixo da normal. Os impactos da seca têm influência direta nas atividades agrícolas e na econômia (SANTOS, 2008).

Segundo a Emater-RS, os prejuízos no Rio Grande do Sul decorrentes de eventos relacionados ao baixo déficit hídrico já somam mais de R\$ 350 milhões. As atividades econômicas desenvolvidas no RS como pecuária bovina, a pecuária ovina, o plantio de arroz e o plantio de soja, entre outros, sofrem grande impactos tanto no desenvolvimento quanto na arrecadação do Estado.

O monitoramento dos períodos de secas pode ser realizado através do emprego de vários índices, possibilitando o desenvolvimento de um sistema de acompanhamento das características dos períodos problemáticos, assim como as possíveis medidas a serem tomadas, de acordo com os valores atingidos por tais parâmetros. Desta forma, a investigação da distribuição espacial e temporal dos períodos de secas, quando da utilização dos referidos índices, tem sido considerado satisfatório (BLAIN e BRUNINI, 2007; FERNANDES et al., 2010).

Um dos índices mais utilizados e mundialmente reconhecidos para a quantificação da seca é o Índice de Severidade de Seca de Palmer (PDSI), estabelecido por Palmer (1965), que considera o total de precipitação mensal, o balanço hídrico e a evapotranspiração. Palmer (1965) desenvolveu o PDSI, a partir de definições de períodos secos, como sendo um espaço de tempo, de um modo geral, de ordem de meses ou anos de duração, no qual o suprimento de água é menor do que o climaticamente esperado ou apropriado. O PDSI é amplamente utilizado pelo Departamento de Agricultura dos Estados Unidos para determinar quando financiar a assistência de emergência à seca.

Diante da problemática atual da seca são necessários estudos que busquem analisar o comportamento das mesmas, tanto a nível local quanto regional. Nesse sentido objetivou-se avaliar o Índice de Severidade de Seca de Palmer, utilizando a classificação do mesmo para avaliar seu comportamento e suas alterações, ao longo do tempo, na localidade de Cruz Alta/RS.

2. METODOLOGIA

Foram utilizados dados de precipitação mensal, temperatura máxima e temperatura mínima mensal, do período de 1980 a 2015 (35 anos) da localidade de Cruz Alta/RS (estação 2835005; 28°37'28"S; 53°36'12"W; a 432 m de altitude) obtidos da Agência Nacional de Águas (ANA) e do Instituto Nacional de Meteorologia (INMET). A partir dos valores de temperaturas máxima e mínima

obteve-se a média das mesmas, necessária para o cálculo da evapotranspiração potencial, determinada pelo método proposto por Thornthwaite (1948), adotando uma capacidade de água disponível (CAD) de 100 mm. O PDSI considera que o total de precipitação exigida, para manter uma área sob condições econômicas estáveis, depende da média histórica dos elementos meteorológicos e das condições hídricas dos meses precedentes e do mês considerado. Para calcular os parâmetros "Climaticamente Apropriados às Condições Existentes (CAFEC)" foram considerados os seguintes coeficientes:

Coeficiente de evapotranspiração:

$$\alpha = \frac{\overline{\mathsf{ETr}}}{\mathsf{ET}_0} \tag{1}$$

Coeficiente de recarga:

$$\beta = \frac{\overline{R}}{PR} \tag{2}$$

Coeficiente de escoamento:

$$\gamma = \frac{\overline{\mathsf{RO}}}{\mathsf{PRO}} \tag{3}$$

Coeficiente de perda:

$$\delta = \frac{\bar{L}}{PL} \tag{4}$$

Esses coeficientes são usados para calcular os valores CAFEC de evapotranspiração ($\hat{E}T$), de recarga (\hat{R}), de escoamento ($\hat{R}O$), de perda (\hat{L}) e de precipitação (\hat{P}), calculados como segue:

$$\hat{\mathsf{E}}\mathsf{T} = \alpha.\,\mathsf{E}\mathsf{T}\mathsf{o} \tag{5}$$

$$\hat{R} = \beta . PR \tag{6}$$

$$\hat{\mathsf{R}}\mathsf{O} = \gamma \,.\, \mathsf{PRO}$$
 (7)

$$\hat{\mathsf{L}} = \delta \,.\,\mathsf{PL} \tag{8}$$

$$\hat{P} = \hat{E}T + \hat{R} + \hat{R}O - \hat{L}$$
(9)

Para que o índice fosse comparável em diferentes localidades e em qualquer período, Palmer (1965) propôs um fator de ponderação designado pela letra K (Equação 10).

$$K = \frac{17,67 \cdot K'}{\sum_{1}^{12} \hat{D}K'}$$
 (10)

em que,

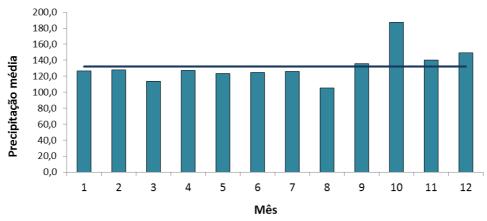
$$K' = 1,50 \cdot \log_{10} \left[\frac{\left(\frac{\overline{ET_0} + \overline{R} + \overline{RO}}{\overline{P} + \overline{L}} + 2,80 \right)}{\overline{D}} \right] + 0,50$$
(11)

D - média mensal dos valores absolutos de d'.

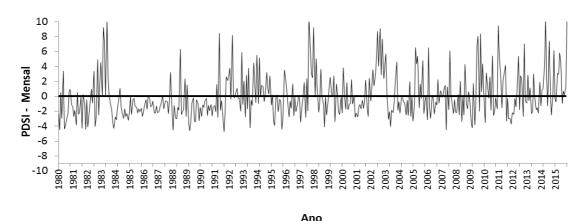
O produto entre o fator K de caracterização climática e a anomalia hídrica resulta em um índice de anomalia de umidade (índice Z). Após são selecionados os periodos mais secos e realizada a regressão linear com os valores de Z, buscando-se obter melhor ajuste. Na Tabela 1 é apresentada a classificação da intensidade da seca, de acordo com o PDSI.

Tabela 1- Classificação da intensidade da seca, de acordo com o Índice de Severidade de Palmer (PDSI) (PALMER, 1965)

Categoria
Normal
Seca Inicial
Seca Suave
Seca Moderada
Seca Severa
Seca Extrema


3. RESULTADOS E DISCUSSÃO

Na Figura 1 são apresentados os valores das médias totais de precipitação do período de 1980 a 2015, no qual a média total anual foi de 132,4 mm. Observa-se que nos meses de setembro, outubro, novembro e dezembro, os valores médios foram superiores à média total, enquanto nos restantes dos meses foram menores. O mês de agosto foi o que alcançou a menor média 105,3 mm, caracterizando-se como o período menos chuvoso. Na Figura 2 é apresentado o comportamento mensal do Índice PDSI, o qual variou de valores positivos, que denotam períodos úmidos, a valores negativos, para períodos secos. O índice PDSI apresentou alguns valores de seca severa e extrema, sendo observado que a maioria dos períodos correspondem a seca suave a moderada, e períodos extremamente úmidos. No período que varia de 1983 a 1988 verificase que houve um período de seca classificado como suave a severa.


Limeira et al. (2007) calcularam o PDSI para a Paraíba, no período entre 1979 e 1983, cujos resultados encontrados mostraram que no ano de 1983 ocorreu seca severa (-3,00 a -3,99), segundo a classificação de Palmer. O PDSI apresentou-se coerente com a climatologia no local estudado, não apresentando resultados distorcidos, em comparação com os eventos de chuva observados, dentro do período analisado.

4. CONCLUSÕES

Na análise do Indice de Severidade de Seca de Palmer na localidade de Cruz Alta/RS, para o período de 1980 a 2015 (35 anos), verificou-se que ocorreram alguns anos classificados na categoria de seca extrema e severa. No entanto, para a maioria do período, a seca foi classificada como suave a moderada.

Figura 1- Médias totais mensais e anual de precipitação no período de 1980 a 2015, para a localidade de Cruz Alta/RS

Figura 2 - Comportamento do Índice de Severidade de Seca de Palmer (PDSI) para o período de 1980 a 2015.

5. REFERÊNCIAS BIBLIOGRÁFICAS

BLAIN, G.C.; BRUNINI, O. Análise comparativa dos índices de seca de Palmer, Palmer adaptado e índice padronizado de precipitação no estado de São Paulo. **Revista Brasileira de Meteorologia**, v.22, n.1, p.105-111, 2007.

FERNANDES, D.S.; HEINEMANN, A.B.; PAZ, R.L.F.E.; AMORIM, A.O. Desempenho de índices quantitativos de seca na estimativa da produtividade de arroz de terras altas. **Pesquisa Agropecuária Brasileira**, v.45, n.8, p.771-779, 2010.

PALMER, W.C. Meteorological drought. US Weather Bureau, (Research Paper, nº45). Washington, 58p, 1965

SANTOS, R. S. Avaliação da seca/produtividade agrícola considerando cenários de mudanças climáticas. 70f. Dissertação (Mestrado em Meteorologia Agrícola). Universidade de Viçosa. Viçosa-MG. 2008.

THORNTHWAITE, C. W. An approach toward rational classification of climate. **Geographical Review**, v.38; p.55–94, 1948.