MODELAGEM MATEMÁTICA PARA DISPERSÃO DE POLUENTES EM UM CORPO HÍDRICO

SILVANA BARBOSA COSTA GARCIA¹; GUILHERME JAHNECKE WEYMAR²; IGOR DA CUNHA FURTADO³; HUGO ALEXANDRE SOARES GUEDES⁴; DANIELA BUSKE⁵

¹ Universidade Federal de Pelotas – silbcg@gmail.com
 ² Universidade Federal de Pelotas – guilhermejahnecke@gmail.com
 ³ Instituto Federal Sul-rio-grandense – igorjara@gmail.com
 ⁴ Universidade Federal de Pelotas – hugo.hydro@gmail.com
 ⁵ Universidade Federal de Pelotas – danielabuske@gmail.com

1. INTRODUÇÃO

A preocupação em cuidar do meio ambiente e a adequação ao uso consciente dos recursos naturais, fomentam a criação de alternativas que possibilitem o controle e a análise da poluição e dos riscos ambientais no meio ambiente.

Dentre esses recursos destaca-se a água, importante para sobrevivência humana, onde ressalta-se a importância da gestão dos recursos hídricos, responsáveis pela regulação do uso da água, conforme citado no Plano Nacional de Recursos Hídricos (BRASIL, 2006).

Ao estudar a gestão e a qualidade da água, de acordo com BARROS (2004), é necessário ressaltar a interligação entre qualidade e quantidade desse recurso.

Observa-se que muitos problemas de qualidade estão associados à quantidade de água disponível para diluição de poluentes, por isso a necessidade de pesquisar formas de reduzir poluentes e além disso, estudar os processos de dispersão de poluentes no meio hídrico, buscando assim melhorar a qualidade da água.

Nesse cenário de grande preocupação ambiental, a modelagem matemática se apresenta como um recurso útil em estudos dos ecossistemas e na avaliação de impactos ambientais.

A modelagem permite estimar diferentes impactos como, por exemplo, os efeitos de um efluente líquido na qualidade da água, mostrando não somente os impactos pós lançamento como também garante a realização de prognósticos através da simulação de cenários futuros.

Cabe ressaltar, que em uma análise de modelos de transporte e dispersão em corpos hídricos, recomenda-se realizar um estudo sobre suas capacidades e características do ambiente. Pois cada corpo d'água tem uma capacidade natural de voltar ao equilíbrio do meio, processo chamado de autodepuração (ANDRADE, 2010).

Neste contexto, o enfoque do presente trabalho é o estudo do transporte e dispersão de poluentes em um corpo hídrico através da modelagem matemática. A equação de advecção-difusão é utilizada para representar o problema em estudo. Para obter a solução da equação, aplica-se a abordagem GILTT (*Generalized Integral Laplace Transform Technique*). O modelo é validado com dados de um trabalho *in situ*, realizado no rio Paraibuna – Minas Gerais, que utilizou traçadores fluorescentes, dos autores SOARES; RIBEIRO; GUEDES (2006).

2. METODOLOGIA

A metodologia utilizada neste estudo foi baseada em modelagem matemática ambiental. É pertinente ressaltar conforme BASSANEZI (2002) cita em seu livro

que "a modelagem matemática consiste na arte de transformar problemas da realidade em problemas matemáticos e resolvê-los interpretando suas soluções na linguagem do mundo real".

Sendo assim, nesta pesquisa considera-se avaliar o problema da dispersão de poluentes em um rio, onde esse é representado matematicamente pelo processo de advecção-difusão, sendo resolvido através da abordagem GILTT, a qual uma revisão completa pode ser encontrada em BUSKE et al. (2012).

De acordo com o problema deste estudo, após aplicação das hipóteses simplificadoras, conforme SOARES; RIBEIRO; GUEDES (2006), a equação que define a dispersão e transporte unidimensional de um poluente está representada abaixo:

$$\frac{\partial C}{\partial t} + U \frac{\partial C}{\partial x} = D_x \frac{\partial^2 C}{\partial x^2} \tag{1}$$

onde C(x,t) representa a concentração média do poluente em meio aquático (mg), x o componente longitudinal (m), U a componente da velocidade média na direção longitudinal (m/s) do eixo x e D_x o coeficiente de difusão turbulenta (m^2/s) .

As condições iniciais e de contorno utilizadas são apresentadas a seguir:

$$C(x,t=0) = \frac{M}{A}\delta(x)$$
, $\frac{\partial C}{\partial x}\Big|_{x=0} = 0$, $C(L_x,t) = 0$ (2)

sendo A a área molhada em m^2 e M a quantidade de poluente liberado em mg. Note que a condição de fonte é representada pela delta de Dirac, onde essa função é definida como nula em t=0, exceto em x=0, onde é infinita nesse ponto. Para o domínio em estudo considerou-se $0 \le x \le L_x$.

A representação analítica obtida através da técnica GILTT assume a seguinte forma:

$$C(x,t) = \sum_{n=1}^{\infty} \psi_n(x)c_n(t)$$
 (3)

3. RESULTADOS E DISCUSSÃO

Até o momento, nesta pesquisa foram analisados os dados da área de estudo, tendo como base o relatório dos autores SOARES; RIBEIRO; GUEDES (2006). Realizou-se a simulação através da abordagem GILTT para uma das seções de monitoramento do traçador de Amidorodamina G Extra e a comparação desse resultado com os resultados do experimento *in situ*.

O trecho estudado se refere a uma porção do rio Paraibuna, localizado no município de Juiz de Fora, MG, que compreende o trecho de $27 \, km$ localizado entre o Distrito Industrial I do município, situado no Bairro Benfica e a Usina Hidrelétrica de Marmelos Zero, localizada no Bairro Retiro.

Foram definidas 4 seções de monitoramento dos traçadores fluorescentes (Uranina e Amidorodamina G Extra) e uma de injeção, conforme imagem:

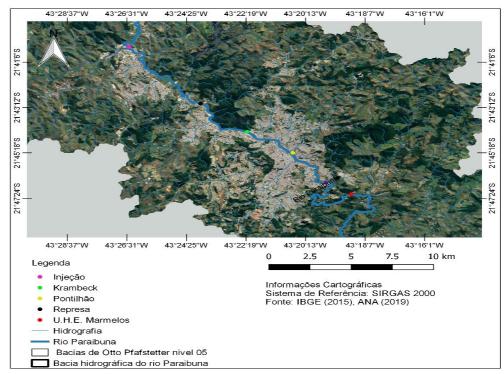


Figura 1 - Localização ilustrativa das seções de monitoramento no rio Paraibuna Fonte: AUTORA (2020).

Apresenta-se os gráficos das curvas com a evolução da concentração, do traçador de Amidorodamina G Extra, para solução GILTT. Foram realizadas simulações para N=20, N=40, N=80 e N=160 termos na expansão em série da solução (equação 3). Nos gráficos são apresentadas também as curvas dos dados observados do experimento para fins de comparação dos resultados.

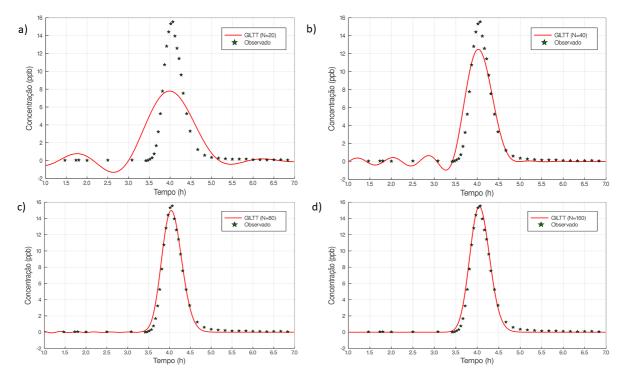


Figura 2 - Curvas de distribuições das concentrações da GILTT, comparadas com os dados observados na posição de 7600m - Represa afastado do local de liberação do poluente (Injeção)

Fonte: AUTORA (2020).

Nota-se na Figura 2 uma estabilidade da solução na medida em que se aumenta os elementos da série. Conforme Figura 2(d), a partir de N=160 a solução GILTT não tem mais alterações e apresenta maior proximidade com os dados experimentais, sendo que a solução (linha vermelha) encontram-se praticamente sobre os dados observados, indicando a boa proximidade da solução analítica para com os dados observados.

Isso mostra que a GILTT conseguiu modelar de forma satisfatória o fenômeno da dispersão de poluentes, apresentando resultados próximos aos resultados experimentais.

4. CONCLUSÕES

Observou-se a boa concordância entre a abordagem e o experimento, sendo a grande vantagem da abordagem GILTT, o fato de que essa permite a utilização de parâmetros variáveis, como por exemplo o coeficiente de difusão turbulenta.

Como perspectiva futura, pretende-se realizar, a simulação do restante das campanhas de campo, para ambos traçadores do experimento no rio Paraibuna.

Por fim, salienta-se que esses resultados parciais que confirmam a boa concordância, não esgotam a necessidade da pesquisa, pois o estudo de um modelo matemático, requer sua validação com dados de experimentos realísticos, assegurando assim sua aplicabilidade antes do uso real.

5. REFERÊNCIAS BIBLIOGRÁFICAS

ANDRADE, L. N. de. Autodepuração dos corpos d'água. **Revista da Biologia**, Vitória, v. 5, p. 16-19, 2010. Disponível em: https://www.revistas.usp.br/revbiologia/article/view/108617/106924. Acesso em: 11 ago. 2020.

BARROS, F. P. J. de. **Modelos multidimensionais para dispersão de contaminantes em rios e canais**: soluções híbridas por transformação integral. 2004. Tese (Doutorado em Engenharia Mecânica) — UFRJ, Rio de Janeiro, 2004.

BASSANEZI, R. C. Ensino aprendizagem com modelagem matemática: uma nova estratégia. São Paulo: Contexto, 2002.

BRASIL. Ministério do Meio Ambiente. Secretaria de Recursos Hídricos. **Plano nacional de recursos hídricos**: águas para o futuro: cenários para 2020. Brasília, DF: MMA, 2006. Disponível em: https://www.mma.gov.br/estruturas/161/publicacao/161_publicacao/3032011025235.pdf. Acesso em: 20 ago. 2020.

BUSKE, D.; VILHENA, M. T.; TIRABASSI, T.; BODMANN, B. . **Air pollution steady-state advection-diffusion equation**: the general three-dimensional solution. Journal of Environmental Protection (Print), v. 3, p. 1124-1134, 2012.

SOARES, J. H. P.; RIBEIRO, A. C.; GUEDES, H. A. **Avaliação da capacidade de transporte e dispersão do Rio Paraibuna utilizando traçadores fluorescentes**: Juiz de Fora/MG. 2006. Relatório 159/05 — UFJF, Juiz de Fora, 2006.

SOFTWARE JULIA 1.4.1, 2020. Disponível em: http://docs.junolab.org/stable/man/installation/index.html.Install-Atom-1. Acesso em: 20 mar. 2020.