

MODULAÇÃO GÊNICA PELO ÁCIDO TÂNICO EM MODELO ANIMAL DE HIPERMETIONINEMIA CRÔNICA: UM ESTUDO EM HIPOCAMPO E ESTRIADO

BERNARDO DE MORAES MEINE¹; MAYARA SANDRIELLY SOARES DE AGUIAR²; WILLIAM BORGES DOMINGUES³; VINICIUS FARIAS CAMPOS⁴; JULIA EISENHARDT DE MELLO⁵; FRANCIELI MORO STEFANELLO⁶

¹Universidade Federal de Pelotas – bemeine15@hotmail.com ²Universidade Federal de Pelotas – mspereirasoares@gmail.com ³Universidade Federal de Pelotas – williamwwe@yahoo.com.br ⁴Universidade Federal de Pelotas) – fariascampos@gmail.com ⁵Universidade Federal de Pelotas) – eisenhardtju@gmail.com ⁶Universidade Federal de Pelotas) – fmstefanello@gmail.com

1. INTRODUÇÃO

A hipermetioninemia é uma aminoacidopatia que ocorre quando há um aumento tecidual e plasmático do aminoácido metionina (Met) e de seus metabólitos como a metionina sulfóxido (MetO) (MUDD, 2011). As principais alterações encontradas nos pacientes afetam principalmente os tecidos hepáticos e cerebrais (MUDD, 2011). O tratamento disponibilizado atualmente para hipermetioninemia é bastante limitado, e se resume a uma restrição dietética de Met em conjunto com suplementação de S-adenosilmetionina (FURUJO et al, 2012). Sendo assim, a busca por alternativas terapêuticas para essa doença é de grande relevância.

Nos últimos anos, o nosso grupo de pesquisa têm demonstrado diversas alterações que podem estar envolvidas nos mecanismos fisiopatológicos da hipermetioninemia. Dentre os principais achados destaca-se o estresse oxidativo e o processo inflamatório tanto nos tecidos periféricos quanto no sistema nervoso central (STEFANELLO et al. 2005; SOARES et al. 2018).

Frente ao exposto, compostos isolados de produtos naturais que possuem comprovada atividade antioxidante e anti-inflamatória são alvos terapêuticos promissores para o tratamento de pacientes hipermetioninêmicos. Nesse contexto, ressalta-se o ácido tânico (AT), um polifenol hidrolisado derivado da uva, chás e café, que possui sua atividade extensamente descrita na literatura, como atividade neuroprotetora (GERZSON et al, 2020; LUDUVICO et al, 2020), antioxidante (MEINE et al, 2020) e anti-inflamatória (WU et al, 2019).

Nesse contexto, o propósito deste estudo consistiu em avaliar a capacidade de modulação genética do AT em relação aos genes associados ao estresse oxidativo e à neuroinflamação em hipocampo e estriado de ratos jovens submetidos a um protocolo experimental de hipermetioninemia crônica.

2. METODOLOGIA

2.1 Animais

Foram utilizados ratos *Wistar* de 6 dias obtidos do Biotério Central da UFPel, os quais foram mantidos em ambiente com temperatura (20-24°C) e umidade (40-60%) controladas, água e alimento *ad libitum* e ciclo claro/escuro de 12 h. Todos os procedimentos envolvendo os animais foram aprovados pela Comissão de Ética em Experimentação Animal da UFPel (CEEA 38255-2019).

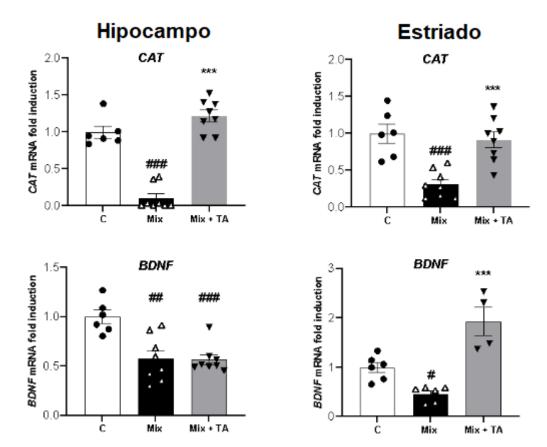
2.2 Modelo experimental de hipermetioninemia e tratamento com AT

Os ratos receberam a associação de Met (0,1 g/Kg-0,4 g/Kg) + MetO (0,025 g/Kg-0,1 g/Kg) (Mix) ou salina duas vezes ao dia por via subcutânea do 6° ao 28° dia de vida. Após esse período, os animais foram divididos em 4 grupos: grupo 1 (controle), grupo 2 (salina + AT 30 mg/kg), grupo 3 (Met 0,4 g/Kg e MetO 0,1 g/Kg + água) e grupo 4 (Met 0,4 g/Kg e MetO 0,1 g/Kg + AT 30 mg/kg). Os animais dos grupos 2 e 4 receberam AT, por via intragástrica, aos 28 dias de idade durante 7 dias, e no dia seguinte foram submetidos a eutanásia e as estruturas cerebrais foram dissecadas para a análise da expressão da enzima catalase (CAT) e do fator neurotrófico derivado do cérebro (BDNF).

2.3 Extração de RNA, síntese de cDNA e reação em cadeia da polimerase quantitativa em tempo real

Inicialmente, o RNA mensageiro (mRNA) total foi extraído de tecido do hipocampo e estriado usando o reagente TRIzol, seguido de tratamento com DNase para minimizar a contaminação de DNA. O RNA isolado foi quantificado e sua pureza foi verificada. Em seguida, a síntese de cDNA foi realizada usando um kit de transcrição reversa, utilizando 1000 ng de RNA total. A amplificação foi feita com o uso de GoTaq qPCR Master Mix e um termociclador QuantStudio 3 Real-Time PCR. Os valores Ct foram determinados para cada amostra baseado na **Tabela 1** e a normalização das expressões gênicas foi feita pelo método $2-\Delta\Delta$ CT, usando β -actina como gene de referência.

Nome do Primer	Sequência	Referência
CAT Forward	5'AGAGAGCGGATTCCTGAGAGA 3'	D'AVILA et al., 2018
CAT Reverse	5'ACCTTTCCCTTGGAGTATCTG 3'	D'AVILA et al., 2018
BDNF Forward	5'AAGGACGCGGACTTGTACAC 3'	FUKUCHI et al., 2017
BDNF Reverse	5'CGCTAATACTGTCACACACGC 3'	FUKUCHI et al., 2017
Bactin Forward	5'AGAGGGAAATCGTGCGTGAC 3'	GIONGO et al., 2017
Bactin Reverse	5'CAATAGTGATGACCTGGCCGT 3'	GIONGO et al., 2017


Tabela 1: Sequência dos primers utilizados para reação em cadeia da polimerase quantitativa em tempo real

3. RESULTADOS E DISCUSSÃO

É possível observar na **Figura 1** que tanto em hipocampo quanto em estriado houve uma redução na expressão gênica tanto do gene da CAT (p<0,001), quanto do gene do BDNF (p<0,05 e p<0,01 respectivamente). No entanto, os animais do grupo Mix + AT conseguiram reverter a maior parte dessas reduções na expressão (p<0,001).

A redução na expressão de CAT pode ser relacionada ao aumento de estresse oxidativo presente na região cerebral de modelos hipermetioninêmicos previamente descritos (STEFANELLO et al, 2007; SOARES et al, 2017), uma vez que esta enzima é responsável pela detoxificação do peróxido de hidrogênio. Além disso, a redução na expressão de BDNF também tem associação com o déficit de memória de curto prazo demonstrado em outros estudos que utilizaram modelos similares (STEFANELLO et al, 2007; SOARES et al, 2020).

Figura 1 Efeitos terapêuticos do ácido tânico (AT) (30mg/kg) nos níveis de expressão de CAT e BDNF no hipocampo e corpo estriado de ratos *Wistar* jovens submetidos ao protocolo de hipermetioninemia crônica (Mix). Os níveis de CAT e BDNF são expressos como indução de dobramento de mRNA. Os dados são relatados como média \pm SEM. #p<0,05; ##p<0,01; ### p<0,001, comparado ao grupo controle e ***p<0,001 comparado ao grupo Mix (n=5 por grupo).

No entanto, o AT foi capaz de reverter a maioria das alterações causadas pelo Mix. A capacidade de reverter a redução de expressão tanto da CAT quanto do BDNF não foi descrita na literatura, porém o AT é conhecido por sua extensa capacidade antioxidante e neuroprotetora (BASU et al., 2018; GERZSON et al., 2020). Ademais, um estudo demonstrou que um extrato rico em taninos e tendo como principal composto ativo o AT foi capaz de prevenir o déficit cognitivo de animais causados por um tratamento de escopolamina, e os autores associaram isso à modulação e ao aumento na expressão de BDNF (PARK et al., 2019).

4. CONCLUSÕES

Com base no que foi apresentado, é possível concluir que o AT apresentou um efeito modulador de genes responsáveis por estresse oxidativo e neuroproteção. Dessa forma, esse polifenol demonstrou ser um alvo promissor para o manejo clínico de pacientes hipermetioninêmicos.

5. REFERÊNCIAS BIBLIOGRÁFICAS

- BASU, T. et al (2018). A natural antioxidant, tannic acid mitigates iron-overload induced hepatotoxicity in Swiss albino mice through ROS regulation. **Environmental Toxicology**, v. 33, p. 603-618.

- D'AVILA, J.C. et al. (2018). Age-related cognitive impairment is associated with long-term neuroinflammation and oxidative stress in a mouse model of episodic systemic inflammation. **Journal of Neuroinflammation**, 15, 28.
- FUKUCHI, M. et al. (2017). Visualizing changes in brain-derived neurotrophic factor (BDNF) expression using bioluminescence imaging in living mice. **Scientific Reports**, 7, 4949.
- FURUJO, M. (2012). S-adenosylmethionine treatment in methionine adenosyltransferase deficiency, a case report. **Molecular Genetics and Metabolism**, 105, 516-518.
- GERZSON, M.F.B. et al. (2020). Tannic Acid Ameliorates STZ-Induced Alzheimer's Disease-Like Impairment of Memory, Neuroinflammation, Neuronal Death and Modulates Akt Expression. **Neurotoxicity Research**, 37, 1009-1017.
- GIONGO, J.L. et al. (2017). Anti-inflammatory effect of geranium nanoemulsion macrophages induced with soluble protein of Candida albicans. **Microbial Pathogenesis**, 110. 694-702.
- LUDUVICO, K.P. et al. (2020). Antidepressant Effect and Modulation of the Redox System Mediated by Tannic Acid on Lipopolysaccharide-Induced Depressive and Inflammatory Changes in Mice. **Neurochemical Research**, 45, 2032-2043.
- MEINE, B. et al (2020). Ameliorative effect of tannic acid on hypermethioninemia-induced oxidative and nitrosative damage in rats: biochemical-based evidences in liver, kidney, brain, and serum. **Amino Acids**, 52, 1545-1558.
- MUDD, S.H. (2011). Hypermethioninemias of genetic and non-genetic origin: A review. **American Journal of Medical Genetics Part C**, 157, 3-32.
- PARK, J.W. et al. (2019). Anti-Oxidant Activity of Gallotannin-Enriched Extract of Galla Rhois Can Associate with the Protection of the Cognitive Impairment through the Regulation of BDNF Signaling Pathway and Neuronal Cell Function in the Scopolamine-Treated ICR Mice. **Antioxidants (Basel)**, 8, 10:450.
- SOARES M.S.P. et al. (2017). Acute administration of methionine and/or methionine sulfoxide impairs redox status and induces apoptosis in rat cerebral cortex. **Metabolic Brain Disease**, 32, 1693–1703.
- SOARES, M.S.P. et al. (2018). Acute administration of methionine and/or methionine sulfoxide impairs redox status and induces apoptosis in rat cerebral cortex. **Metabolic Brain Disease**, v.32, p.1693-1703.
- SOARES, M.S.P. et al. (2020). Hypermethioninemia induces memory deficits and morphological changes in hippocampus of young rats: implications on pathogenesis. **Amino Acids**, 52, 371-385.
- STEFANELLO, F.M. et al. (2005). Methionine alters Na⁺, K⁺-ATPase activity, lipid peroxidation and nonenzymatic antioxidant defenses in rat hippocampus. **International Journal of Developmental Neuroscience**, 23, 651-656.
- STEFANELLO F.M. et al. (2007). Hypermethioninemia increases cerebral acetylcholinesterase activity and impairs memory in rats. **Neurochemical Research** 32, 1868–1874.
- WU, Y. et al. (2019). Anti-neuroinflammatory effects of tannic acid against lipopolysaccharide-induced BV2 microglial cells via inhibition of NF-κB activation. **Drug Development Research**, 80, 262–268.