METODOLOGIA DE COLETA DE SANGUE EM MORCEGOS DE PEQUENO PORTE

<u>IVES FEITOSA DUARTE¹</u>; THASSIANE TARGINO DA SILVA¹; PAULO QUADROS DE MENEZES²; ANA MARIA RUI²

Núcleo de Reabilitação da Fauna Silvestre – <u>ivesfeitosa @gmail.com</u>; thassiane.vet @gmail.com ²Programa de Pós-graduação em Biologia Animal, DEZG/ IB, Universidade Federal de Pelotas – pauloquadros.vet @gmail.com; ana.rui @ufpel.edu.br

1. INTRODUÇÃO

Análises hematológicas são importantes ferramentas na medicina humana e animal dando suporte para o diagnóstico de doenças e decisões sobre tratamentos (ALMOSNY; MONTEIRO, 2007). Análises hematológicas em espécies de animais silvestres podem ter aplicações ainda mais amplas, porém, há uma série de desafios metodológicos envolvidos nesses estudos, que são mais complexos quando se trata de espécies de pequeno porte.

Em morcegos, algumas técnicas de obtenção de sangue já foram descritas, porém, para pequenos morcegos a maioria das técnicas reconhecidas envolve a decapitação do animal ou extravasamento de sangue por dilaceração vascular (LEWIS, 1977; RODRÍGUES-DURÁN; PADILLA-RODRÍGUEZ, 2008; LIUDIMILA et al., 2017; KIZHINA et al., 2018) sendo raras as citações que não afetem a sobrevivência do indivíduo (ESHAR; WEINBERG, 2010; HOLZ et al., 2020). Um exemplo de técnica comumente utilizada em morcegos de pequeno porte é a obtenção de sangue por cardiocentese (ESCHAR; WEINBERG, 2010). Contudo, além de ser um processo invasivo, pode levar o morcego a óbito.

Todas as técnicas que extraem os indivíduos não podem ser empregadas para espécies de morcegos endêmicas, raras, com populações pequenas e ameaçadas de extinção devido ao risco de danos em suas populações. Além disso, há questões éticas envolvidas na morte de um número suficiente de indivíduos para análises hematológicas consistentes. Dada a dificuldade para colheita de sangue em pequenos morcegos, são necessários estudos metodológicos que viabilizem a colheita de sangue nesses animais e que possam ser amplamente empregados em estudos hematológicos. O objetivo desse trabalho foi descrever de forma abrangente a metodologia para colheita de sangue em morcegos, a fim de diminuir os riscos à saúde dos espécimes coletados e obter amostras satisfatórias do ponto de vista qualitativo e quantitativo.

2. METODOLOGIA

Um total de 173 indivíduos adultos de ambos os sexos de *T. brasiliensis* foram capturados em dois prédios situados no Campus Capão do Leão da UFPel, no munícipio de Capão do Leão (RS) (31°48'02"S 52°24'51"W), com auxílio de redes de neblina ou armadilhas de harpa. As capturas foram realizadas entre o outono de 2019 e o verão de 2020.

As amostras foram obtidas de espécimes que apresentaram boa cobertura pilosa, bom estado corporal, ausência de lesões externas, mucosas normocoradas e alta atividade. Não houve necessidade de tricotomia, uma vez que a pelagem da região é curta e esparsa.

Os métodos empregados foram sendo testados conforme indicado na literatura e as técnicas foram sendo substituidas ou aperfeiçoadas conforme a necessidade.

3. RESULTADOS E DISCUSSÃO

A colheita de sangue foi realizada por dois médicos veterinários treinados, sendo um deles responsável pela contenção física do morcego, enquanto o outro foi responsável pela coleta do sangue. O método foi executado com o veterinário responsável pela contenção imobilizando, com uma das mãos, a cabeça e asas do morcego, e com a outra mão, os membros pélvicos. Assim, o veterináio responsável pela colheita de sangue pode abduzir, com uma das mãos, o membro pélvico eleito para colheita, expondo sua face medial, e utilizar sua outra mão para a colheita do sangue. Somente a contenção física foi empregada, sem necessidade de sedação ou anestesia geral, pois poderia alterar o perfil hematológico, uma vez que já foi demonstrado que cinco minutos de anestesia com isoflurano a 4% resultam em uma leve diminuição dos parâmetros eritrocitários, além de poder afetar o tempo de coagulação (THRALL et al., 2015).

Para a colheita de sangue, foram utilizadas seringas de insulina de 100UI preparadas com etilenodiamino tetra-acético (EDTA), na dosagem de 0,02ml de EDTA para 0,1ml de sangue. As amostras de sangue foram inicialmente colhidas pelas veias braquial ou cefálica (propatagial) conforme recomendado por RACEY et al. (2011). No entanto, durante o trabalho foi notória a dificuldade de obter o volume necessário de sangue utilizando as técnicas de dilaceração vascular, que implicavam em repetidas tentativas em sítios de coleta diferentes, além de não ser incomum que a colheita de sangue por esses vasos seja acompanhada de hematomas (SMITH et al., 2010). Portanto, optou-se, a posteriori, pela colheita através da veia femoral, junto ao trígono femoral, posicionando a agulha em ângulo de 45º em relação ao corpo do animal, introduzindo aproximadamente 1/3 da agulha no tecido cutâneo e adiacentes (Figura 1). Em machos foi necessário desviar do testículo, que se localiza próximo ao trígono (utilizado como ponto de referência para a introdução da agulha), passando a agulha ventralmente ao mesmo. A quantidade de sangue colhido foi de até 1% do peso corporal, evitando debilitar os animais ou prejudicar sua capacidade de voo (ESHAR; WEINBERG, 2010). As amostras foram armazenadas sob refrigeração (4°C), onde permaneceram por até 12 horas para posterior transporte ao laboratório.

O procedimento em geral foi rápido, em torno de dois minutos entre contenção e finalização da colheita, minimizando o estresse. Além da redução da mortalidade a técnica proposta é mais rápida e eficiente que as técnicas de sangramento/ punção das veias braquial, patagial e interfemoral descritas em estudos prévios em pequenos morcegos (WINSATT et al., 2005; SMITH et al., 2010), se aplicada por operadores experientes. Por ser mais calibroso, o acesso femoral permitiu a obtenção de volumes relativamente maiores de sangue (0,12ml) de forma fácil e sem a formação de hematomas ou colabação de paredes vasculares. O volume de sangue colhido, em geral, foi suficiente para realização de hematimetria e leucometria. Um total de 54 amostras foi considerado inviável para estudos hematológicos em decorrência de hemólises e agregações plaquetárias que inviabilizaram a análise.

Embora alguns trabalhos apontem que procedimentos de coleta de sangue não afetam a sobrevivência de morcegos (WINSATT et al., 2005; ELLISON et al., 2006; ESHAR; WEINBER, 2010; HOLZ et al., 2020), não existem estudo póscaptura para avaliação e sabe-se que não é incomum que técnicas de

sangramento/ punção sejam acompanhadas de hematomas ou mesmo hipovolemia, o que pode vir a afetar o desempenho de voo dos morcegos ou mesmo leva-los a óbito (RACEY et al., 2011).

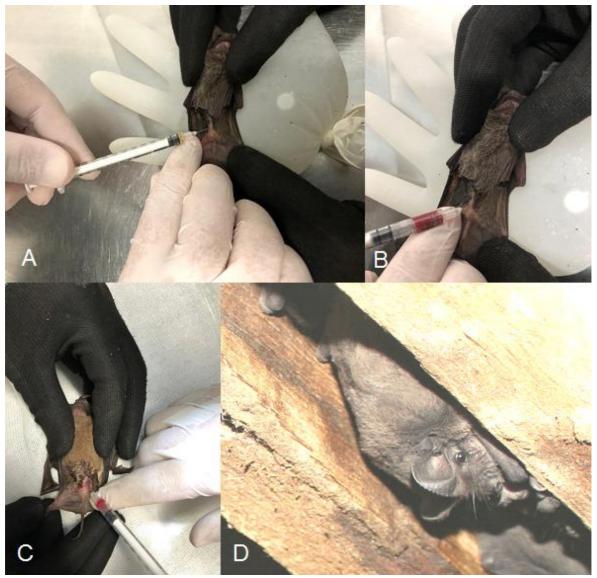


Figura 1: (A) posicionamento para coleta de sangue; (B e C) coleta de sangue através da veia femoral direita e esquerda, respectivamente; (D) espécime de *Tadarida brasiliensis*.

4. CONCLUSÕES

A metodologia descrita no presente estudo, principalmente a utilização do acesso femoral como método de coleta de sangue em pequenos morcegos assegura que um grande número de indivíduos tenha seu sangue colhido sem que haja comprometimento do desempenho de voo ou óbito. A partir desse método, pesquisas hematológicas podem ser realizadas sem necessidade de sacrificar os indivíduos, o que é inviável para muitas espécies devido as suas características populacionais e implicaria também em questões éticas.

5. REFERÊNCIAS BIBLIOGRÁFICAS

ALMOSNY, N. R. P.; MONTEIRO, A. Patologia clínica. In: CUBAS, Z. S.; SILVA, J. C. R.; CATÃO-DIAS, J. L. **Tratado de Animais Selvagens: medicina veterinária**. São Paulo: Roca, 2007, 59, p.939-966.

ELLISON, L. E.; O'SHEA, T. J.; WIMSATT, J.; PEARCE, R. D.; NEUBAUM, D. J.; NEUBAUM, M. A.; BOWEN, R. A. Sampling blood from big brown bats (*Eptesicus fuscus*) in the field with and without anesthesia: impacts on survival. **Journal of Wildlife Diseases**, v.42, p.849-852, 2006.

ESHAR, D.; WEINBERG, M. Venipucture in bats. Lab animal, v.39, n.6, p.175-176, 2010.

HOLZ, P. H.; CLARK, P.; MCLELLAND, D. J.; LUMSDEN, L. F.; HUFSCHMIND, J. Haematology of southern bent-winged bats (Miniopterus orianae bassanii) from the Naracoorte Caves National Park, South Australia. **Comparative Clinical Pathology**, v.29, n.1, p.231-237, 2020.

KIZHINA, A.; UZENBAEVA, L.; ANTONOVA, E.; BELKIN, V.; ILYUKHA, V.; KHIZHKIN, E. Hematological parameters in Hibernating *Eptesicus nilssonii* (Mammalia: Chiroptera) collected in northern European Russia. **Acta Chiropterologica**, v.20, n.1, p.273-283, 2018.

LEWIS, J. H. Comparative Hematology: studies on chiroptera, *Pteropus giganteus*. **Comparative Biochemistry Physiology**, v.58A, n.1, p.103-107, 1977.

LIUDMILA, K.; VLADIMIR, M.; LIUDMILA, C.; VLADIMIR, S.; NIKOLAY, M. Haematological parameters of pond bats (*Myotis dasycneme* Boie, 1825 Chiroptera: Vespertilionidae) in the Ural Mountains. **Zoology and Ecology**, v.27, n.2, p.168-175, 2017.

RACEY, P.A.; SWIFT, S. M.; MACKIE, I. Recommended methods for bleeding small bats... Comment on Smith et al. 2009. **Acta Chiropterologica**, v.13, n.1, p.223–225, 2011.

RODRÍGUEZ-DURÁN, A.; PADILLA-RODRÍGUEZ, E. Blood characteristics, heart mass, and wing morphology of Antillean bats. **Caribbean Journal of Science**, v.44, n.3, p.375-379, 2008.

SMITH, C. S., DE JONG, C. E.; FIELD, H. E. Sampling small quantities of blood from microbats. **Acta Chiropterologica**, v.12, n.1, p.255-258, 2010.

THRALL, M. A.; WEISER, G.; ALLISON, R. W.; CAMPBELL, T. W. Hematologia e Bioquímica Clínica Veterinária. 3 ed. São Paulo: Roca, 2015.

WIMSATT, J.; O'SHEA, T. J.; ELLISON, L. E.; PEARCE, R. D.; PRICE, V. R. Anesthesia and blood sampling of wild big brown bats (*Eptesicus fuscus*) with an assessment of impacts on survival. **Journal of Wildlife Diseases**, v.41, n.1, p.87-95, 2005.