

ESTUDO DE CASO DO PLANEJAMENTO DE UM SISTEMA INTEGRADO DE PRODUÇÃO EM UMA UNIDADE DE PRODUÇÃO AGRÍCOLA FAMILIAR.

JACIR JOÃO CHIES¹; ANA BEATRIZ DEVANTIER HENZEL¹; FRANCINE DAMIAN DA SILVA; FLÁVIO SACCO DOS ANJOS

¹Universidade Federal de Pelotas - Programa de Pós-graduação em Sistemas de Produção Agrícola Familiar (SPAF) – <u>jacirchies @yahoo.com.br</u>; anabhenzel @gmail.com: frandamian @hotmail.com: saccodosanjos @gmail.com

1. INTRODUÇÃO

Sistemas Integrados de Produção Agropecuária (SIPA) que integram a produção de grãos e a pecuária representam uma oportunidade para melhorar a sustentabilidade dos sistemas agrícolas; aumentar a produção por hectare e com isso potencialmente reduzir o desmatamento e a competição de terras entre culturas e animais; promover a eficiência, autossuficiência e a diversificação de unidades de produção agrícola, além de aumentar a resiliência do sistema as oscilações do mercado (BONAUDO et al., 2014; MORAES, et al., 2014).

O estudo objetiva projetar através da utilização de planilha eletrônica (MORAES, 2020) a implantação de um Sistema Integrado de Produção (SIPA) de forma a apresentar uma alternativa que possibilite a uma família de agricultores familiares, conciliar produção de leite, soja e bovinos de corte, uma vez que atualmente a família vive diante de um impasse, onde o filho deseja investir apenas na produção de soja e encerrar as demais atividades, enquanto os pais têm preferência pela leitaria.

2. METODOLOGIA

O projeto foi desenvolvido em uma Unidade de Produção Agrícola Familiar, localizada no Assentamento Simon Bolívar, no município de Jóia (RS). A propriedade apresenta área total de 10 hectares, onde três pessoas integram a família, um casal (62 e 57 anos), ambos aposentados e um filho com 28 anos. A principal fonte de renda da família, além da aposentadoria, é oriunda da atividade leiteira, uma vez que o assentamento conta com uma Agroindustria de queijos e manteiga. Entretanto, atualmente a família conta com 12 vacas em lactação, duas vacas secas, quatro novilhas e três terneiras.

Inicialmente, os agricultores foram consultados com o objetivo de identificar as potencialidades e possíveis gargalos da propriedade. Posteriormente, com a utilização de uma planilha eletrônica de balanço forrageiro e de planejamento espaço temporal da propriedade, desenvolvida pela Universidade Federal do Paraná (UFPR), projetou-se a implantação de um SIPA

3. RESULTADOS E DISCUSSÃO

A proposta foi dividir a área em seis glebas (Figura 1), onde: Gleba 01 (1,8 ha) — sorgo forrageiro (verão) e consórcio de aveia preta e azevém (inverno); Gleba 2 (2,0 ha) — milho para silagem (verão) e consórcio de aveia preta e azevém (inverno); Gleba 3 (2,2 ha) — sorgo forrageiro (verão) e consórcio de aveia

preta e azevém (inverno); Gleba 4 (2,0 ha)— tifton (verão) com sobressemeadura de aveia preta e azevém (inverno); Gleba 5 (1,6 ha) — Campo nativo; Gleba 6 (0,4) - policultivo . Além disso, projetou-se a plantação de eucaliptos nas bordas que dividem as glebas 01, 02 e 04 (representado pelos traços verdes na Figura 1).

Figura 1 - Demarcação das glebas

Moradia

06

07

08

Google

Fonte: Google Earth, 2020.

Os resultados apresentados estão relacionados ao primeiro ano imediatamente a implantação do SIPA.

A planilha 1 da UFPR (Figura 2) demonstra o planejamento forrageiro anual de cada gleba, evidenciando a produção mensal estimada de matéria seca da pastagem. A produção anual das forrageiras foi estimada levando em consideração a produção média da propriedade e a produção sugerida pela UFPR. Com o pastejo rotativo em piquetes menores, busca-se o melhor aproveitamento das forrageiras produzidas, com a possibilidade de proporcionar às gramíneas tempo suficiente de rebrote.

Figura 2 – Planejamento forrageiro anual em cada gleba da propriedade

PASTAGEM	ÁREA	PRODUÇAO ANUAL ESTIMADA	PRODUÇAO COLHÍVEL (70%)	PRODUÇÃO MENSAL ESTIMADA (% e T.MS/mês)											TOTA L ANO	
	(ha)	(T.MS/ha.ano)	(T.MS/ha.ano)	JAN	FEV	MA R	ABR	MAI	JUN	JUL	AGO	SET	оит	NOV	DEZ	(T.MS
Gleba 1	1,8	11,0	7,7	14	14	25	25	22	-	-	-	-	-	-	-	100,0
milheto + sorgo	1,0			2	2	3	3	3	-	1	•	-	-	-	-	14
Gleba 2	2,0	11,0	7,7	20	20	30	30			•	-	-	-		-	100,0
milheto + sorgo	2,0	11,0		3	3	5	5	-	-	1	•	-	-	-	-	15
Gleba 2	2,0	7,0	4,9	-	-	-	-	25	40	35	-	-	-	-	-	100,0
aveia + azevem	2,0			-	-	-	-	2	4	3	-	-	-	-	-	10
Gleba 3	2,2	0.0	6,3	-	-	-	-	•	11	13	23	31	22	-	-	100,0
aveia + azevém	2,2	9,0		-	-	-	-	-	2	2	3	4	3	-	-	14
Gleba 4	2,0	15,0	10,5	15	15	10	10	-		-	-	10	8	16	16	100,0
tifton	2,0	13,0		3	3	2	2	-	-	1	•	2	2	3	3	21
Gleba 4	1,6	10,0	7,0				-	15	19	24	36	6	-			100,0
aveia + azevem + tre		10,0		-	-	1	1	2	2	3	4	1				11
Gleba 5	2,0	5,0	3,5	12	12	10	6	6	-	-	6	10	6	16	16	100,0
campo nativo				1	1	1	0	0	-	-	0	1	0	1	1	7
Área Total	13,6															
PRODUÇÃO TOTAL	(T.MS)			9	9	11	11	8	8	8	8	8	5	4	4	92

Fonte: UFPR

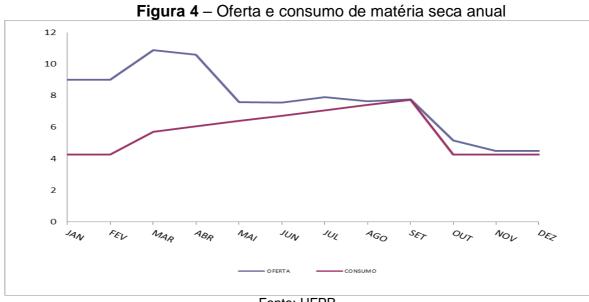

Mediante os resultados encontrados para a produção mensal de matéria seca (Figura 2) foi calculado o número de animais necessários para consumi-la e estes inseridos na planilha 2 (Figura 3). Anteriormente ao planejamento, a unidade de produção tinha no leite a principal fonte de renda da família, com além de uma pequena contribuição de hortaliças e derivados da cana-de-açúcar. Assim o ajuste proposto será possível manter os bezerros nascidos das vacas de leite e conduzi-los para a produção de carne. Portanto o lote 3 será mantido com os bezerros do nascimento até atingirem os 90 kg, após eles vão compor o lote 2 de animais de corte. O lote 2 será composto pelos bezerros nascidos na unidade de produção mais alguns animais comprados para completar a capacidade estipulado no planejamento.

Figura 3 – Planejamento do número de animais divididos em categorias e o consumo mensal estimado de matéria seca para a propriedade

CATEGORIA	NUMERO DE ANIMAIS	CONSUM O	CONSUMO MENSAL ESTIMADO (P.V. Animais e T.MS/mês)												TOTAL ANO
	(Cabeças)	(% PV)	JAN	FEV	MAR	ABR	MAI	JUN	JUL	AGO	SET	OUT	NOV	DEZ	(T.MS)
Lote 1(leite)	11	2,5	450	450	450	450	450	450	450	450	450	450	450	450	
			4	4	4	4	4	4	4	4	4	4	4	4	45
Lote 2 (corte)	15	2,5			130	160	190	220	250	280	310				
			0	0	1	2	2	2	3	3	3	0	0	0	17
Lote 3 (bezerros)	8	2,5	90	90	90	90	90	90	90	90	90	90	90	90	
		2,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	6,5
			0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
TOTAL DE ANIMA	34								, and the second						
CONSUMO (T.MS)		4	4	6	6	6	7	7	7	8	4	4	4	68	

Fonte: (UFPR

A partir dos dados inseridos na planilha 1 e 2, resultou-se o gráfico de oferta e consumo de matéria seca (Figura 4), onde foi possível visualizar a viabilidade da proposta.

Fonte: UFPR

Assim, com este planejamento foi possível construir uma proposta para a ampliação da renda familiar, consequentemente evitar a saída da família da zona rural, principalmente o filho, que buscaria emprego na zona urbana.

Outro aspecto importante a destacar é que a família poderá ampliar suas atividades produtivas, diversificando a unidade de produção, sem necessitar investimentos significativos. Desta forma, a possibilidade de o planejamento ser executado é maior.

Importante destacar que a região a qual o planejamento foi proposto apresenta uma logística agropecuária favorável, facilitando o escoamento das produções.

4. CONCLUSÕES

Concluímos então que é possível implantar o SIPA na unidade de produção estudada, pois, a mesma tem condições de produzir matéria seca suficiente para a demanda de animais planejada conforme a (Figura 4) nos mostra.

Também concluímos que a planilha eletrônica foi fundamental para viabilizar a construção do planejamento se mostrando como uma excelente ferramenta para administrar o manejo forrageiro. Além disso, apresenta-se como um instrumento de fácil manuseio para ser usada por extensionistas rurais ou pelo próprio agricultor, sem maiores complicações.

Ainda foi possível perceber como o diálogo entre o conhecimento técnico e o saber construído localmente, resulta em pequenos ajustes que possibilitam melhorias nas dinâmicas produtivas, ampliando a renda das famílias.

5. REFERÊNCIAS BIBLIOGRÁFICAS

BONAUDO, T.; BENDAHAN, A. B.; SABATIER, R.; RYSCHAWY, J.; BELLON, S.; LEGER, F.; MAGDA, D.; TICHIT, M. . Agroecological principles for the redesign of integrated crop–livestock systems. **European Journal of Agronomy**, v. 57, p. 43-51, 2014.

MORAES, A.; CARVALHO, P. C. F.; LUSTOSA, S. B. C.; LANG, C. R.; DEISS, L. Research on integrated crop-livestock systems in Brazil. Revista Ciência Agronômica, v.45, n.5, p.1024–1031, 2014.

MORAES, Anibal de. **Planejamento Forrageiro**. Universidade Federal do Paraná. 2020. (Planilha eletrônica).