

# SULFETO DE COBRE: SÍNTESE, CARACTERIZAÇÃO E APLICAÇÃO NA ADSORBÂNCIA E FOTOCATALÍSE DO CORANTE INDUSTRIAL AZUL DE METILENO.

VINICIUS PEREIRA DIAS<sup>1</sup>; CÁTIA LIANE ÜCKER<sup>2</sup>; CRISTIANE WIENKE RAUBACH<sup>3</sup>.

<sup>1</sup>Universidade Federal de Pelotas – viniciusdiassvp @gmail.com
<sup>2</sup>Universidade Federal de Pelotas – catiaucker @gmail.com
<sup>3</sup>Universidade Federal de Pelotas – craubach.iqg @ufpel.edu.br

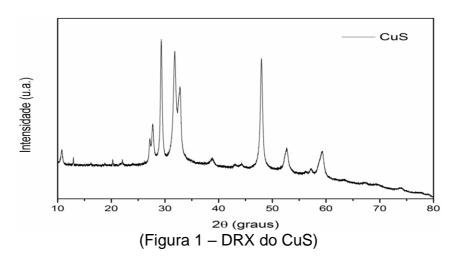
# 1. INTRODUÇÃO

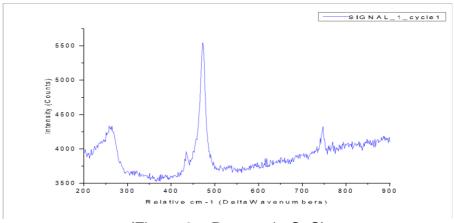
O Sulfeto de Cobre (CuS) é um material cerâmico, nano estruturado, interessante semicondutor que apresenta um *Band Gap* de aproximadamente 1,87 eV, além de uma maior condutividade em temperaturas mais elevadas. Os corantes industriais, comumente tóxicos e não-degradáveis sob a luz solar, representam uma ameaça aos ecossistemas hídricos, devido ao seu descarte inadequado. Desse modo, o desenvolvimento de pesquisas em torno da degradação desses compostos se faz extremamente necessário (SARANYA, 2013).

#### 2. METODOLOGIA

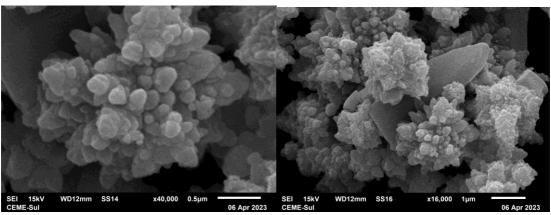
Escolheu-se o método hidrotérmico assistido por micro-ondas (HAM) como rota de síntese, em razão de promover um aquecimento homogêneo e acelerado, até o ponto de nucleação da amostra (ÜCKER, 2023). Utilizaram-se os reagentes Nitrato de Cobre (Cu (NO<sub>3</sub>) <sub>2</sub>) e Tioureia (H<sub>4</sub>CSN<sub>2</sub>) como precursores, na razão molar 1:1, diluídos em 40 mL de água destilada. Agitou-se a solução a 50°C por 5 minutos, para melhor solubilização. Submeteu-se a solução ao método HAM na temperatura de 170°C por 1 hora. Obteve-se um particulado de coloração preta, que foi lavado para ajuste de pH e seco em uma estufa na temperatura de 100°C por 24 horas.

Foram feitas as caracterizações Difração de Raios X (DRX), Espectroscopia Raman e Microscopia Eletrônica por Varredura (MEV). Realizou-se o processo fotocatalítico do CuS na degradação do corante azul de metileno (AM), neste processo, o material ficou sob agitação constante por 30 minutos no escuro, para atingir o equilíbrio de adsorção, retirando amostras de 10 em 10 minutos, após isso, ligou-se a luz ultravioleta e, retirou-se amostras de 30 em 30 minutos, até a conclusão de 90 minutos decorridos. Para plotar o gráfico da degradação do corante AM na presença do CuS, centrifugou-se as amostras e, mediu-se a absorbância de cada amostra utilizando um espectrofotômetro.

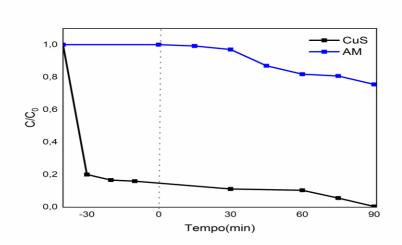

#### 3. RESULTADOS E DISCUSSÃO


Na Difração de Raios X (DRX) foram observados picos característicos de CuS e foi constatado, também, que o material possui ordem cristalina de longo alcance do tipo hexagonal, conforme a ficha cristalográfica [6-464; Covellite, syn] (Figura 1). Na Espectroscopia Raman, foram observados picos em 261 cm<sup>-1</sup>,




representando o modo vibracional de CuS e, em 471 cm<sup>-1</sup>, que representa os modos vibracionais S - S, característicos de uma estrutura hexagonal de CuS, de acordo com os dados previamente relatados na literatura (RAJARAM, 2020) (Figura 2). Na Microscopia Eletrônica de Varredura (MEV) foi observado que o particulado de CuS possui morfologia de nano esferas e nano flores em (Figura 3).

No processo fotocatalítico, foi possível verificar que o CuS puro, sintetizado através do método HAM, possui uma excelente propriedade de adsorbância, já que cerca de 80% do corante AM foi adsorvido em 30 minutos no escuro, demonstrando ser superior nesta característica, em comparação com o que a literatura nos fornece, visto que, nos seus melhores resultados, utilizando um CuS dopado, adsorve aproximadamente 40% do corante no mesmo tempo. O restante do Azul de Metileno foi degradado em 90 minutos na fotocatálise e, se comparado com a literatura, que realiza o processo na presença de peróxido de hidrogênio (H<sub>2</sub>O<sub>2</sub>), pode-se dizer que o obtivemos um resultado de boa eficiência, pois o nosso teste foi realizado sem H<sub>2</sub>O<sub>2</sub>. Vale ressaltar que, o peróxido de hidrogênio, fornece grupos hidroxila ao sistema, acabando por acelerar a fotodegradação, que atua utilizando esses grupos funcionais (SUDHAIK, 2022) (Figura 4).






(Figura 2 – Raman do CuS)



(Figura 3 – MEV do CuS)



(Figura 4 - Adsorbância e Fotocatálise do corante AM)

### 4. CONCLUSÕES

Foi possível sintetizar Sulfeto de Cobre através do Método Hidrotérmico Assistido por micro-ondas. Observou-se picos e bandas características do material nas análises DRX e Raman, junto com sua morfologia de nano esferas e nano flores no MEV. O CuS puro, sintetizado através do método HAM demonstrou-se ser superior aos da literatura em adsorção e foto reação. Este trabalho ainda está em desenvolvimento, onde serão realizadas mais caracterizações, como FTIR ,UV-VIS e EDX, além de uma análise mais detalhada no seu processo fotocatalítico, para certificação de sua eficiência.



### 5. REFERÊNCIAS BIBLIOGRÁFICAS

SARANYA, Murugan et al. Hydrothermal growth of CuS nanostructures and its photocatalytic properties. **Powder technology**, v. 252, p. 25-32, 2014.

ÜCKER, Cátia Liane et al. The photocatalytic performance of Fe inserted in Nb2O5 obtained by microwave-assisted hydrothermal synthesis: Factorial design of experiments. **Journal of Photochemistry and Photobiology A: Chemistry**, v. 435, p. 114294, 2023.

RAJARAM, Rajendran et al. Amperometric determination of Myo-inositol using a glassy carbon electrode modified with nanostructured copper sulfide. **Microchimica Acta**, v. 187, p. 1-9, 2020.

SUDHAIK, Anita et al. Copper sulfides based photocatalysts for degradation of environmental pollution hazards: A review on the recent catalyst design concepts and future perspectives. **Surfaces and Interfaces**, p. 102182, 2022.