

CONTROLE DO PROCESSO DEGRADATIVO EM SOLO CONTROLADO DE BLENDAS POLIMÉRICAS POR FTIR

MARIANA PINETTI ANGONESE¹; GABRIELA OLIVEIRA CAMPOS²; FABIULA DANIELLI BASTOS DE SOUSA³

¹Centro de Engenharias, Universidade Federal de Pelotas – angonesemari @gmail.com ^{2,3} Centro de desenvolvimento Tecnológico, Universidade Federal de Pelotas – gabriela.oliveira2218 @gmail.com, fabiuladesousa @gmail.com

1. INTRODUÇÃO

Alguns polímeros são fabricados para serem utilizados uma única vez e então descartados, porém, eles possuem um longo tempo de degradação natural e como muitas vezes entram em contato com alimentos e outras substancias biológicas, a reciclagem não se torna viável (EL-NAGGAR, 2010). Para tratar dessas questões que causam problemas ambientais, como a disposição final desses resíduos, a necessidade de se criar polímeros degradáveis tornou-se um tópico de pesquisa fundamental (VIEYRA et al., 2013).

A biodegradação de produtos plásticos pode ser possibilitada por meio de aditivos como o amido, o qual tem tomado a atenção da indústria de polímeros devido ao seu baixo custo. Visando o seu processamento e aplicação, o amido pode ser transformado em amido termoplástico (TPS) para um melhor resultado (HEJNA et al., 2019).

Esse trabalho tem por objetivo a busca por novas composições de materiais poliméricos partindo de dois principais pontos: ecológico e financeiro. Esses pontos foram pensados de forma a produzir blendas poliméricas que pudessem utilizar materiais sem um gasto elevado e que auxiliassem para a diminuição do impacto negativo causado pelo polímero ao meio ambiente.

2. METODOLOGIA

Materiais

Foi utilizado polietileno de alta densidade (PEAD) proveniente de embalagens de materiais de limpeza descartados da Universidade Federal de Pelotas. Todas as embalagens apresentam o código 2 (referente ao PEAD), de acordo com a Norma ABNT NBR 13230:2008. Utilizou-se também o amido de milho comum, glicerol, e ácido esteárico.

Métodos

As embalagens passaram por um processo de lavagem em água corrente, secagem em temperatura ambiente por 24h e foram cortadas e moídas em moinho de facas da marca Marconi.

A mistura do amido e glicerol foi realizada em misturador industrial tipo argamassadeira, e secagem por 24h a temperatura de 50°C em estufa.

O processamento das blendas foi realizado em extrusora monorrosca da marca ECO, com temperaturas do barril de: 96°C (primeira zona), 177°C (segunda zona), 180°C (terceira zona) e com uma rotação de 100 rpm. Após a extrusão as amostras foram picotadas em picotador. Foram preparadas quatro blendas poliméricas, a saber: 20/80 HDPE/TPS, 40/60 HDPE/TPS, 60/40

HDPE/TPS e 80/20 HDPE/TPS (% massa), e mesma concentração de ácido esteárico.

Os corpos de prova de dimensões aproximadas de 3,0 x 1,5 x 0,3 cm foram enterrados em solo controlado, de acordo com a norma ASTM G-160. Nos primeiros 6 meses, as amostras foram retiradas do solo a cada 15 dias, e após esse período foram retiradas a cada 30 dias. Das amostras retiradas de tempos em tempos do solo controlado, foram retirados pedaços para serem analisados por infravermelho com transformada de Fourier com reflexão total atenuada (FTIR-ATR).

A análise de FTIR-ATR foi realizada com o intuito de analisar a estrutura química das amostras, e modificações químicas ocorridas ao longo do período. A análise foi realizada utilizando-se um espectrofotômetro IRPrestige-21, da marca Shimadzu do Laboratório Centro de Desenvolvimento e Controle de Biomateriais (CDC-Bio) da UFPel, na faixa de espectro de 4000 cm⁻¹ a 500 cm⁻¹, e 21 varreduras.

3. RESULTADOS E DISCUSSÕES

Os espectros de FTIR-ATR obtidos estão apresentados nas Figuras 1 a 4.

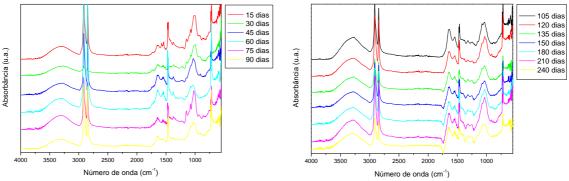


Figura 1. Espectros de FTIR para acompanhamento de amostras retiradas periodicamente de solo controlado, amostra 20/80 HDPE/TPS.

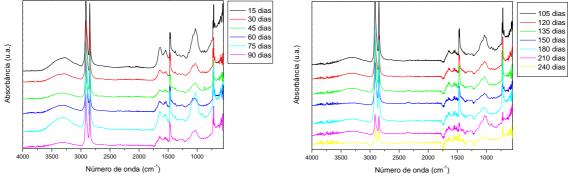


Figura 2. Espectros de FTIR para acompanhamento de amostras retiradas periodicamente de solo controlado, amostra 40/60 HDPE/TPS.

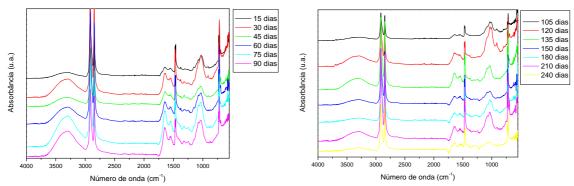


Figura 3. Espectros de FTIR para acompanhamento de amostras retiradas periodicamente de solo controlado, amostra 60/40 HDPE/TPS.

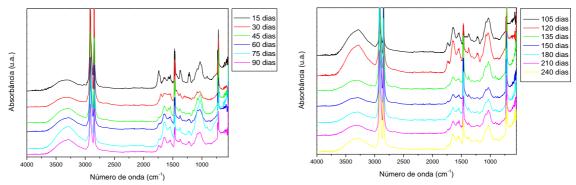


Figura 4. Espectros de FTIR para acompanhamento de amostras retiradas periodicamente de solo controlado, amostra 80/20 HDPE/TPS.

Para a amostra contendo 60% de TPS ocorreu a redução do pico atribuído a vibração do grupo -OH (3600-3000 cm⁻¹) pertencente ao amido, de tal forma que o mesmo não pode ser mais distinguido na curva correspondente ao dia 240. Um ligeiro aumento deste sinal, como é possível notar para todas as amostras, em intervalos de dias diferentes, pode estar associado à reação do TPS com o polímero (HEJNA et al., 2019).

Outros dois picos intensos podem ser observados entre 2770-3000 cm⁻¹, estes são atribuídos às vibrações simétricas e assimétricas das ligações que contém os grupos -CH₂ e -CH₃ do polietileno (VIEYRA et al., 2013; AMIN et al., 2013). Uma redução evidente desses dois picos pode ser detectada para a amostra 20/80 na curva do dia 240 e também para a amostra 40/60 a partir da curva do dia 210.

Vibrações de deformação das ligações -CH do polietileno podem ser atribuídas ao pico detectado por volta de 1500 cm⁻¹ (HEJNA et al., 2019; AMIN et al., 2013), os quais obtiveram um decaimento significativo na curva do dia 240 na blenda de 80% TPS e a partir da curva do dia 210 da blenda com 60% de TPS

Os picos localizados por volta de 1000 e 750 cm⁻¹ são atribuídos à vibração de deformação da ligação -C-C- que ocorre na cadeia polimérica principal do polietileno (AMIN et al., 2013). Para o pico em 1000 cm⁻¹ as amostras 60/40 e 40/60 foram as que mais reduziram sua intensidade com o aumento do tempo, enquanto que para o pico em 750 cm⁻¹ as amostras mais afetadas foram a 40/60 e 20/80.

4. CONCLUSÕES

Por meio da análise de FTIR observou-se que a adição de amido ao polietileno de alta densidade causou alterações na estruta química das blendas de diferentes concentrações ao longo do tempo. No geral, houve enfraquecimento e redução das ligações químicas em todas as amostras apresentadas.

5. REFERÊNCIAS BIBLIOGRÁFICAS

AGRELA, S; GUIMARÃES, D; CARVALHO, G; CARVALHO, R; JOSÉ, N. Preparação e caracterização de compósitos de polietileno de alta densidade com resíduos de fibras de piaçava da espécie *Attalea Funifera Mart.* **Anais do 10º Congresso Brasileiro de Polímeros**. Foz do Iguaçu. 2009.

AMIN, R. M. et al. Natural weather ageing of the low-density polyethylene: Effect of polystarch N. **Journal of Applied Polymer Science**, v. 127, n. 2, p. 1122–1127, 2013.

El-Naggar, M. M. A., & Farag, M. G.. Physical and biological treatments of polyethylene–rice starch plastic films. **Journal of Hazardous Materials**, v. 176, n.1-3, p. 878-883, 2010.

HEJNA, A. et al. Studies on the Combined Impact of Starch Source and Multiple Processing on Selected Properties of Thermoplastic Starch/Ethylene-Vinyl Acetate Blends. **Journal of Polymers and the Environment**, v. 27, n. 5, p. 1112–1126, 2019.

VIEYRA, H.; AGUILAR-MÉNDEZ, M. A.; SAN MARTÍN-MARTÍNEZ, E. Study of biodegradation evolution during composting of polyethylene-starch blends using scanning electron microscopy. **Journal of Applied Polymer Science**, v. 127, n. 2, p. 845–853, 2013.