

DIFERENCIAÇÃO MORFOMÉTRICA DE *Tabanus triangulum* Wiedemann, 1828 e *Tabanus occidentalis* Philip, 1976 (DIPTERA: TABANIDAE)

GRATCHELA DUTRA RODRIGUES¹; BOAVENTURA LOBO CENTENO FILHO; RODRIGO FERREIRA KRUGER²

¹UFPel – <u>gratirodrigues.gdr@gmail.com</u> ²UFPel –rfkruger@gmail.com

1. INTRODUCÃO

As mutucas (Diptera: Tabanidae) correspondem a 4400 espécies com 27% na região neotropical (COSCARÓN & PAPAVERO 2009b). No bioma Pampa, existem 30 espécies e 15 gêneros de mutucas (KROLOW et al 2007), sendo a mais abundante *Tabanus triangulum* Wiedemann, 1828 (Krüger & Krolow 2015).

As fêmeas de Tabanidade realizam repasto sanguíneo em vertebrados (BARROS, 2001) para a maturação dos ovócitos (RAFAEL & CHARLWOOD, 1980). O comportamento hematófago e a intermitência entre os repastos tornamnas excelentes vetores de agentes patogênicos causadores de doenças, como vírus, bactérias e protozoários (KRINSKY, 1976), com relevante importância econômica, principalmente na produção de rebanhos equinos e bovinos (SILVA et al. 2002).

Além de *T. triangulum*, no bioma Pampa ocorre *Tabanus occidentalis* Philip, 1976. As duas espécies são muito conspícuas quanto a identificação morfológica, diferenciando-se principalmente pelos padrões de coloração (LEITE 2016). Por isso, outros métodos como a morfometria geométrica podem ser empregados para e elucidação de questões relacionadas ao criptismo (KITTHAWEE e DUJARDIN 2009). Este tipo de análise tem sido eficiente na separação de espécies baseando-se em estudos estatísticos dos padrões de forma da asa, por exemplo, com baixo custo (MARTIN et al., 2016).

Assim, considerando que *T. occidentalis* e *T. triangulum* são espécies crípticas capazes de causar impactos econômicos, o presente estudo tem como objetivo diferenciar intra e inter-especificamente populações destas duas espécies coletadas na Planície Costeira do Rio Grande do Sul (PCRS) e Tocantins (TO), utilizando como ferramenta a morfometria geométrica.

2. METODOLOGIA

As coletas dos tabanídeos foram realizadas com armadilhas do tipo Malaise, modelo Townes e ocorreram de 27 de outubro de 2011 a 12 de fevereiro de 2012 na PCRS em três regiões: Região 1, arredores dos Arroios Pelotas, Corrientes e Turuçu; Região 2, reserva biológica do Lami, Vila Pacheca no Rio Camaquã e RPPN Barba Negra; e Região 3, Estação Ecológica do Taim. Além dos exemplares coletados na PCRS, utilizou-se indivíduos de *T. occidentalis* coletados em 2012 por LIMA *et al.* (2015) na Fazenda Encantada, Taquaraçu, Palmas, TO.

Tabela 1: Espécies e número de espécimes por localidade utilizada no estudo.

Espécie/ local	Região 1	Região 2	Região 3	Tocantins	Total
T. occidentalis	30	-	-	28	58
T. triangulum	30	30	30	-	90

Após todo o procedimento de retirada, fixação em lâmina e obtenção das imagens das asas, do lado direito, de cada indivíduo foram determinados seus marcos anatômicos (FIGURA1) com o auxílio do Software TPSDig.

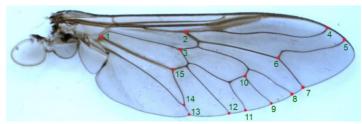


Figura 1: Asa direita do tabanídeo com os marcos anatômicos digitalizados, em uma ordem de 1 a 15, com o software TPSDig.

No presente estudo utilizou-se números próximos de indivíduos em cada grupo com o intuito de diminuir possíveis erros estatísticos (CARDINI et al. 2015) (TABELA 1). Os 15 marcos do tipo I (FIGURA 1) foram usados por apresentarem uma homologia mais clara, serem mais objetivos, por possuírem maior replicabilidade na análise e tendência em diminuir o erro intra-operador durante a digitalização. (BOOKSTEIN, 1991).

Em relação à análise morfométrica seguiu-se a metodologia de TORRES & ESQUIVEL (2015), em que primeiramente foi realizada Análise Generalizada dos Procrustes (GPA) para todo o conjunto de asas, utilizando o critério dos mínimos quadrados (ROHLF & SLICE 1990). A partir do alinhamento dos procrustes foi realizado a Análise dos Componentes Principais (PCA) com o intuito de se reduzir a dimensionalidade dos dados e para observar a tendência da variação interespecífica e intraespecífica. Do total das PC's geradas foram utilizadas até àquela que apresentasse um valor cumulativo superior ou igual 85%, descartando os outros PC's. Após os conjuntos de PC's selecionados, foram determinados: os números de clusters em todo o conjunto de dados usando o critério de informação Bayesiana (BIC) para o modelo baseado em agrupamento (FRALEY & RAFTERY, 2007), confirmando com outros dois testes: a estatística "gap" e o índice de Calinski e Harabasz (CH). A partir das distâncias de Mahalanobis calculadas pelo conjunto dos PC's geradas, foi realizado o método do grupo de pares não ponderados com média hierárquica (UPGMA), objetivando visualizar a proximidade entre os grupos. Já a distância Riemanniana foi utilizada para quantificar as diferencas geométricas da forma da asa e, utilizando como teste estatístico o teste F de Goodall. Todas as análises estatísticas foram realizadas com o auxílio do Software R Studio.

RESULTADOS E DISCUSSÃO

Para se obter uma porcentagem de variância cumulativa igual ou superior a 85% utilizou-se as dez primeiras PC's. Além disso, tanto na variação intraespecífica quanto na variação interespecífica da asa direita, as duas primeiras PC's contribuíram com um valor entre 36% e 39% (Tabela 2).

Tabela 2: Porcentagem da variância cumulativa obtida das primeiras 10 componentes principais.

	PC1	PC2	PC3	PC4	PC5	PC6	PC7	PC8	PC9	PC10
Gênero Tabanus	0,20	0,36	0,50	0,60	0,66	0,72	0,76	0,80	0,84	0,86

COCIC XXVIII CONGRESSO DE INICIAÇÃO CIENTÍFICA

T. triangulum	0,20	0,39	0,53	0,61	0,69	0,74	0,79	0,82	0,86	0,88
T. Occidentalis	0,23	0,38	0,50	0,59	0,66	0,72	0,77	0,81	0,84	0,87

Em relação à variação intraespecífica das espécies de *T. triangulum*, coletados nas três localidades, utilizando as duas componentes principais (PC1 e PC2) não foi possível diferenciar os espécimes coletados nas três regiões. Já, com os espécimes de *T. occidentalis* coletados no RS e TO, foi possível observar, com as duas PC's a diferença do morfoespaço.

Em se tratando da estatística de gap, BIC e CH para T. occidentalis o número ótimo de cluster para os dados de geometria da asa foi de um, enquanto que para T. triangulum foi de três. Por fim, com o teste multivariado realizado a partir das distâncias Riemmanianas foi possível observar que os espécimes de T. occidentalis do RS são diferentes da população de T. occidentalis de Tocantins (p<0,05). Já para os espécimes de T. triangulum coletados nas três regiões da PCRS, os três grupos não apresentaram diferenças estatisticamente significativas (p>0,05).

Para a variação interespecífica da asa, considerou-se *T. occidentalis* do estado de Tocantins como sendo outro grupo de *Tabanus* ou mesmo uma subespécie de *T. occidentalis* quando comparada às populações do RS. Desse modo, na variação geométrica interespecífica da asa utilizou-se três grupos: *T. triangulum*, *T. occidentalis* do RS e *T. occidentalis* de TO. Assim como nas duas análises anteriores a porcentagem de variância cumulativa registrada pelas duas primeiras PC's foi de 34% e, para obtenção da porcentagem cumulativa superior a 85% utilizou-se as 10 primeiras PC's.

De acordo com a estatística Gap, BIC e CH o número ideal de cluster dos três grupos de *Tabanus* para os dados de geometria da asa foi de um. E, como resultado final, com base no teste F de Goodall realizado a partir das distâncias Riemmanianas, os três grupos apresentaram diferenças significativas em relação ao formato da asa (p<0,05).

Assim, análises de morfometria geométrica corroboram com os resultados da taxonomia clássica quando se trata das duas espécies presentes no RS. Contudo, com a mesma análise pode-se perceber a diferença de *T. occidentalis* de TO dos outros exemplares, incluindo *T. occidentalis* do RS. Assim, este resultado vem em contramão do proposto pela taxonomia usual, mostrando que tais espécimes podem representar uma nova espécie, ou uma nova subespécie, diferentemente, do que até então é descrito na literatura. Dentre os motivos que podem justificar a variação intraespecífica de *T. occidentalis* do RS e TO e que podem ser considerados em estudos futuros são condições ecológicas, ambientais, fatores genéticos além de variáveis adaptativas e fatores geográficos (FRANCO et al 2008).

4. CONCLUSÕES

Neste trabalho foi elucidado que *T. triangulum* e *T. occidentalis* são espécies distintas entre si quanto a forma da asa direita. Já, em relação análise intraespecífica, dentro de *T. triangulum*, as localidades R1, R2 e R3 foram consideradas significativamente iguais. E, em se tratando de *T. occidentalis*, as subpopulações do RS e TO são significativamente distintas quanto a forma da asa. Em se tratando da subpopulação de *T. occidentalis* de TO, esta se mostrou mais próxima significativamente de *T. triangulum* do que de *T. occidentalis* do RS, mostrando que são necessários mais estudos sobre tal proximidade entre ambas as espécies dos dois estados.

5. REFERÊNCIAS BIBLIOGRÁFICAS

- BARROS, A. T. M. Seasonality and Relative Abundance of Tabanidae (Diptera) Captured on Horses in the Pantanal, Brazil. **Memórias do Instituto Oswaldo Cruz**, v. 96, n. 7, p. 917–923, 2001.
- BOOKSTEIN, F. L. Morphometric Tools for Landmark Data, Geometry and Biology. **New York: Cambridge University Press**, 1991.
- CARDINI, A.; SEETAH, K.; BARKER, G. How many specimens do I need? Sampling error in geometric morphometrics: testing the sensitivity of means and variances in simple randomized selection experiments. **Zoomorphology**, v. 134, n. 2, p. 149–163, 2015.
- COSCARÓN, S; PAPAVERO, N. Catalogue of Neotropical Diptera. Tabanidae **Neotrop Dipter** v.16, p.1–199, 2009b.
- FRALEY, C.; RAFTERY, A.E. Model-based methods of classification: using the mclust software in chemometrics. J Stat Softw. v.18, n.6, p.1–13, 2007.
- KROLOW, T. K.; KRÜGER, R. F.; RIBEIRO, P. B. Chave pictórica para os gêneros de Tabanidae (Insecta: Diptera) do bioma Campos Sulinos, Rio Grande do Sul, Brasil. **Biota Neotropica**, v. 7, n. 2, p. 253–264, 2007.
- KRÜGER, R. F.; KROLOW, T. K. Seasonal patterns of horse fly richness and abundance in the Pampa biome of southern Brazil. **Journal of Vector Ecology**, v. 40, n. 2, p. 364–372, 2015.
- LIMA, H. I. L. D. L. **Tabanidae (Diptera) da Planície Costeira do Rio Grande do Sul. 2016. Universidade Federal de Pelotas.** 2016. 119f. Dissertação (Mestrado em Entomologia) Curso de Pós-graduação em Entomologia, Universidade Federal de Pelotas.
- LIMA, H. I. L.; T.K. KROLOW, A. L. HENRIQUES. Checklist of horse flies (Diptera:Tabanidae) from Taquaraçu, Tocantins, Brazil, with new records for the state. **Check List**, v.11, p.1596, 2015.
- MARTIN, M. A.; CRAIOVEANU, C.; SITAR, C.; RÁKOSY, L. Why morphometrics: a short review and a case study on Zygaena carniolica (Scopoli, 1763). **Entomologica romanica**, v. 20, n. April, p. 57–62, 2016.
- MORITA, S.I. A phylogeny of long-tongued horse flies (Diptera:Tabanidae: Philoliche) with the first cladistic review of higher relationships within the family. **Invertebr Syst.** v.22, p.311–327, 2008.
- RAFAEL J. A.; CHARLWOOD J D. Idade fisiológica, variação sazonal e periodicidade diurna de quatro populações de Tabanidae (Diptera) no Campus Universitário, Manaus, Brasil. **Acta Amazon** v. 10, p. 907-927, 1980.
- ROHLF, F.J.; SLICE, D.E. Extensions of the Procrustes method for the optimal superimposition of landmarks. **Syst Zool**. v.39, p.40–59, 1990.
- SILVA, R. A. M. S; SEIDL, A; RAMIREZ, L.; DÁVILA, A. M. R. Biologia, Diagnóstico e Controle. **Embrapa**. p.137. 2002.
- TORRES, A.; MIRANDA-ESQUIVEL, D. R. Wing Shape Variation in the Taxonomic Recognition of Species of Diachlorus Osten-Sacken (Diptera: Tabanidae) from Colombia. **Neotropical Entomology**, v. 45, n. 2, p. 180–191, 2016.