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RESUMO

AFONSO, Paulo de Almeida. Navegação Autônoma em Ambientes Dinâmicos
com Interação com Humanos baseada em Aprendizado por Reforço Profundo
e Visão Computacional. Orientador: Paulo Roberto Ferreira Jr.. 2023. 103 f. Tese
(Doutorado em Ciência da Computação) – Centro de Desenvolvimento Tecnológico,
Universidade Federal de Pelotas, Pelotas, 2023.

Pesquisas recentes demonstram que a navegação autônoma em ambientes di-
nâmicos, compartilhados com humanos, permanece como um problema em aberto.
Nesse tipo de ambiente a movimentação das pessoas pode gerar obstruções, dificul-
tando o sensoriamento e prejudicando a percepção do robô em relação à sua posição.
Além disso, a incerteza do comportamento humano pode levar a situações inseguras
para o robô e para as pessoas em seu entorno. Frente a esse cenário, tem se desta-
cado o estudo de métodos baseados em aprendizado, assim como a implementação
de estruturas híbridas, combinando diferentes arquiteturas e algoritmos, em busca de
uma solução eficiente. Este trabalho propõe a combinação de técnicas de aprendizado
por reforço profundo com técnicas de visão computacional para o desenvolvimento de
uma solução capaz de permitir que o robô navegue de forma autônoma e segura
em ambientes internos compartilhados com humanos, considerando as característi-
cas particularmente associadas ao problema em questão. Assim, a navegação deve
considerar questões de segurança, como o distanciamento entre o robô e as pessoas.
Para isso, foi desenvolvida uma abordagem inédita, baseada em aprendizado por re-
forço profundo, que utiliza o algoritmo Deep Deterministic Policy Gradient (DDPG),
combinado com técnicas de visão computacional. Foram conduzidos testes compara-
tivos entre os algoritmos DDPG e Deep Q-Network (DQN), abordando quatro etapas,
cada uma representando dois cenários diferentes do ambiente de treinamento e com
níveis de complexidade superiores ao que o robô foi treinado. O DDPG demonstrou
ser mais eficiente e estável que o DQN, com taxas médias de sucesso superiores
em todas as etapas, demonstrando melhor capacidade de generalização e apresen-
tando resultados consistentemente melhores. Por outro lado, o DQN teve dificuldades
em evitar colisões e obteve taxas médias de sucesso significativamente mais baixas.
Essas descobertas destacam a superioridade do DDPG e demonstram que a solução
proposta é promissora, contribuindo para o avanço da pesquisa na área, possibilitando
a análise de experimentos em ambiente simulado e realização de testes para posterior
implantação de sistemas robóticos em cenários do mundo real.

Palavras-chave: Robôs Móveis. Navegação Autônoma. Ambientes Lotados. Preven-
ção de Colisões.



ABSTRACT

AFONSO, Paulo de Almeida. Autonomous Navigation in Dynamic Environments
with Human Interaction based on Deep Reinforcement Learning and Computer
Vision. Advisor: Paulo Roberto Ferreira Jr.. 2023. 103 f. Thesis (Doctorate in
Computer Science) – Technology Development Center, Federal University of Pelotas,
Pelotas, 2023.

Recent research demonstrates that autonomous navigation in dynamic environ-
ments shared with humans remains an ongoing challenge. In such environments, the
movement of people can create obstacles, impeding sensing and hindering the robot’s
perception of its position. Furthermore, the uncertainty of human behavior can lead to
unsafe situations for both the robot and the people around it. Given this scenario, the
study of learning-based methods has gained prominence, along with the implementa-
tion of hybrid structures that combine different architectures and algorithms in pursuit
of an efficient solution. This work proposes the integration of deep reinforcement learn-
ing techniques with computer vision methods to develop a solution capable of enabling
the robot to navigate autonomously and safely in indoor environments shared with hu-
mans, considering the specific characteristics associated with the problem at hand.
Thus, the navigation must take into account safety concerns, such as the distancing
between the robot and the people in its vicinity. To achieve this, an innovative approach
based on deep reinforcement learning has been developed, utilizing the Deep Deter-
ministic Policy Gradient (DDPG) algorithm, combined with computer vision techniques.
Comparative tests between the DDPG and Deep Q-Network (DQN) algorithms were
conducted, addressing four distinct stages, each representing two different training en-
vironment scenarios and with complexity levels higher than what the robot was trained
on. The DDPG algorithm demonstrated greater efficiency and stability than the DQN,
with higher average success rates in all analyzed stages, showcasing excellent gen-
eralization capacity and consistently better results in different environments than the
training setting. On the other hand, the DQN struggled to avoid collisions and achieved
significantly lower average success rates. These findings underscore the superiority
of DDPG and demonstrate the promise of the proposed solution, contributing to the
advancement of research in the field. This allows for the analysis of experiments in
simulated environments and testing for the subsequent deployment of robotic systems
in real-world scenarios.

Keywords: Mobile Robots. Autonomous Navigation. Crowded Environments. Collision
Avoidance.
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1 INTRODUÇÃO

A robótica móvel é uma área multidisciplinar que envolve o desenvolvimento e a im-
plementação de robôs capazes de se movimentar de forma autônoma em diferentes
ambientes. Essa área de pesquisa combina conhecimentos de robótica, inteligência
artificial, visão computacional, aprendizado de máquina e planejamento de trajetória
para criar sistemas robóticos capazes de perceber, interpretar e interagir com o ambi-
ente ao seu redor.

Esses sistemas robóticos, ou simplesmente robôs, podem ser utilizados em diver-
sas aplicações, como logística, serviços domésticos, inspeção industrial, exploração
espacial, ambientes educacionais, entre outros, abrangendo desde pequenos robôs
terrestres e aéreos até veículos maiores, como carros autônomos (ROBOTS AND
THEIR APPLICATIONS, 2018).

Muitos robôs móveis são operados remotamente, executando tarefas que depen-
dem de um operador para controlar o dispositivo. Esses robôs não possuem autono-
mia total, geralmente são utilizados para proporcionar ao operador acesso remoto a
locais perigosos, distantes ou inacessíveis. Alguns deles podem ser semi-autônomos,
realizando algumas tarefas de forma automática.

Um robô é autônomo quando possui a capacidade de determinar as ações neces-
sárias para a execução das tarefas que devem ser realizadas, necessitando para tanto,
de um sistema de percepção e controle (RUBIO; VALERO; LLOPIS-ALBERT, 2019).
Isso significa que o robô deve ser capaz de planejar suas trajetórias, evitar obstáculos,
tomar decisões em tempo real e interagir com o ambiente de forma inteligente.

A navegação autônoma, por sua vez, é uma área específica da robótica móvel que
se dedica ao desenvolvimento de algoritmos e sistemas que permitem que os robôs
se movimentem de forma autônoma em seu ambiente, ou seja, sem a necessidade
de controle humano constante. Trata-se de um campo em constante evolução, impul-
sionado pela crescente demanda por sistemas robóticos, sendo uma funcionalidade
indispensável para diversas aplicações que envolvem a utilização de robôs móveis,
tais como: robótica de serviço, vigilância, logística, entre outros. Ao longo dos anos,
várias abordagens e técnicas foram desenvolvidas para enfrentar os desafios relacio-
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nados a essa área de pesquisa.
Uma das abordagens amplamente exploradas é a utilização de sistemas de locali-

zação e mapeamento simultâneos (SLAM). O SLAM permite que um robô construa um
mapa do ambiente enquanto simultaneamente estima sua própria posição no mapa
(CADENA et al., 2016). Isso é especialmente relevante em ambientes desconhecidos
ou dinâmicos, nos quais o robô precisa se adaptar e atualizar seu conhecimento do
ambiente em tempo real.

Apesar do sucesso do SLAM, a navegação autônoma em ambientes compartilha-
dos com humanos apresenta desafios adicionais, como garantir a segurança das pes-
soas em torno do robô. Nesse contexto, a revisão da literatura evidencia um grande
avanço na pesquisa de soluções baseadas em aprendizado por reforço (Reinforce-
ment Learning - RL), principalmente a partir de 2017.

O RL permite que os robôs aprendam comportamentos adequados por meio da
interação direta com o ambiente, recebendo feedback positivo ou negativo na forma
de recompensas ou punições. Ao utilizar o aprendizado por reforço, os robôs po-
dem adquirir habilidades de navegação segura e interação social (CIOU et al., 2018),
aprender a evitar colisões (LONG et al., 2018), ou antecipar o comportamento hu-
mano (ALAHI et al., 2016) para responder de maneira adequada e desempenhar com
sucesso a tarefa de navegação.

Além do aprendizado por reforço, a visão computacional desempenha um papel
fundamental para a navegação autônoma, especialmente em ambientes compartilha-
dos com humanos. Através da análise de dados visuais, como imagens ou vídeos
capturados por câmeras, os robôs podem extrair informações valiosas sobre o ambi-
ente e as pessoas ao seu redor. Essas informações são essenciais para a detecção de
obstáculos, reconhecimento de objetos e pessoas, e interpretação do comportamento
humano, proporcionando que o robô possa tomar decisões seguras e socialmente
adequadas durante a navegação.

Avanços em técnicas de visão computacional, como redes neurais convolucionais,
têm impulsionado o desenvolvimento de sistemas de percepção robustos. O trabalho
de Alom et al. (2019) apresenta uma análise detalhada de várias arquiteturas de última
geração, abordando diferentes modelos e suas aplicações.

A revisão da literatura demonstra que navegação autônoma tem evoluído com o de-
senvolvimento e a combinação de diferentes técnicas que abordam localização, ma-
peamento, planejamento de trajetória, navegação social, aprendizado por reforço e
visão computacional. Apesar disso, a navegação em ambientes compartilhados com
humanos permanece como um problema em aberto. Nesse sentido, novas soluções
continuam sendo pesquisadas para lidar com o problema em questão.



17

1.1 Motivação

À medida que os robôs se tornam cada vez mais integrados à sociedade, é funda-
mental que sejam capazes de navegar em espaços compartilhados sem representar
riscos para as pessoas. Os robôs devem ser capazes de compreender e responder às
complexidades do ambiente, como obstáculos em constante mudança, restrições de
espaço e comportamento humano imprevisível.

Trabalhos recentes têm demonstrado que a navegação autônoma nesse tipo de
ambiente é uma tarefa particularmente desafiadora. Em ambientes compartilhados
com pessoas, a incerteza do comportamento humano pode levar a situações insegu-
ras para o robô. Além disso, a movimentação das pessoas pode gerar obstruções,
dificultando o sensoriamento e prejudicando a percepção do robô em relação à sua
posição no ambiente.

A aplicação do aprendizado por reforço tem despertado um grande interesse e
motivado uma ampla gama de pesquisas (PANCHPOR; SHUE; CONRAD, 2018). Tal
fato é decorrente da crescente demanda por sistemas robóticos, capazes de operar
de forma autônoma e segura em ambientes sociais e dinâmicos, nos quais a intera-
ção com seres humanos é inevitável. Nesse tipo de cenário busca-se a aplicação de
métodos eficientes, capazes de realizar a tarefa de navegação com segurança, sem o
conhecimento prévio do ambiente ou das ações dos demais agentes e obstáculos.

A maioria das abordagens existentes dividem-se em métodos reativos, quando
o processo de tomada de decisão do agente é iniciado ao identificar uma colisão
iminente (ZHANG et al., 2015) e métodos preditivos, objetivando lidar com a incerteza
comportamental, característica de obstáculos dinâmicos (PFEIFFER et al., 2016).

Destaca-se ainda uma sub-divisão de técnicas, considerando estratégias basea-
das em aprendizado (FAN et al., 2018), ou o uso de algoritmos reativos (BAREISS;
BERG, 2015), por vezes combinados com técnicas de aprendizado, ou por meio da
modelagem do comportamento social dos seres humanos (CHEN et al., 2017).

Apesar da variedade de soluções existentes, a análise das pesquisas relacionadas
ao tema demonstra que, do melhor do nosso conhecimento, esse problema ainda não
possui uma solução definitiva. Alguns trabalhos destacam que técnicas de preven-
ção de obstáculos puramente reativas não são suficientes para solucionar problemas
de navegação em ambientes dinâmicos (LORENTE; OWEN; MONTANO, 2018; FER-
RER; SANFELIU, 2018). Para os autores, nesse tipo de cenário, o robô deve coexistir
ou cooperar com humanos ou outros veículos em movimento. Outros observam que o
planejamento do movimento requer a capacidade de prever a evolução futura dos obs-
táculos, observando restrições de movimentos que envolvem a dinâmica da plataforma
móvel (velocidades e acelerações) para obtenção de trajetórias viáveis, considerando
segurança, manobrabilidade, além de restrições do ambiente (VEMULA; MUELLING;
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OH, 2017). Além disso, alguns trabalhos sugerem que o agente deve ser capaz de
aprender um modelo de interação a partir de dados de trajetória ou comportamento
humano real, modelando velocidades de outros agentes na multidão ou por meio da
identificação da personalidade cada pedestre (BERA et al., 2017).

A principal motivação para o desenvolvimento deste trabalho é impulsionada pelas
dificuldades identificadas e pela necessidade de desenvolver uma solução segura,
eficiente e adaptável, adequada para a navegação de robôs móveis autônomos em
ambientes compartilhados com humanos.

Assim, espera-se colaborar com o desenvolvimento de uma solução capaz de pro-
porcionar que os robôs possam navegar de forma autônoma, segura e confiável em
ambientes sociais complexos, proporcionando benefícios significativos para sua inte-
gração em atividades cotidianas e contribuindo para o avanço do estado da arte.

1.2 Objetivos de Pesquisa

1.2.1 Objetivos Gerais

O objetivo deste trabalho é desenvolver um sistema para navegação autônoma de
robôs móveis em ambientes internos compartilhados com humanos. Para isso, foi
desenvolvida uma abordagem que envolve a percepção do ambiente por meio de sen-
sores, aprendizado por reforço, visão computacional e técnicas para detecção e pre-
venção de obstáculos móveis e estáticos. Os experimentos e testes foram conduzidos
apenas em ambiente simulado, por meio da implementação de diferentes cenários no
simulador Gazebo.

1.2.2 Objetivos Específicos

Cadeiras de rodas motorizadas são dispositivos auxiliares destinados a melhorar
a qualidade de vida de pessoas com deficiência. A tecnologia embarcada nesses
dispositivos permite que indivíduos com mobilidade limitada naveguem para destinos
específicos sem a necessidade de auxílio de outras pessoas. No entanto, indivíduos
com deficiência motora, baixa acuidade visual ou falta de força muscular enfrentam
desafios para manipular um joystick e evitar obstáculos ao se mover pelo ambiente.

Frente a esse problema, um dos principais objetivos específicos deste trabalho
é o desenvolvimento de uma solução capaz de proporcionar que cadeiras de rodas
robóticas possam navegar de forma autônoma em ambientes como aeroportos,
museus e shoppings. Dessa forma, a plataforma robótica utilizada neste trabalho
é um modelo simulado de uma cadeira de rodas motorizada. O objetivo é realizar
um estudo de caso para avaliar a viabilidade de aplicação da solução proposta ao
problema em questão.
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A partir da construção e validação da abordagem aqui apresentada, espera-se:

• Desenvolver um sistema para navegação autônoma de cadeiras de rodas moto-
rizadas em ambientes internos compartilhados com humanos, utilizando apren-
dizado por reforço e visão computacional;

• Desenvolver um sistema de prevenção de colisões para navegação autônoma
eficiente, capaz de lidar com a incerteza comportamental dos seres humanos em
ambientes dinâmicos, garantindo a segurança das pessoas em torno do robô;

• Proporcionar que o sistema possa ser estendido à diferentes plataformas robóti-
cas, contribuindo para a integração de robôs em atividades humanas cotidianas
e para o estado da arte;

• Analisar o comportamento do robô durante a navegação em meio a testes si-
mulados, avaliando o aprendizado contínuo e sua adaptação à ambientes em
mudança e propor melhorias para experimentos futuros;

• Comparar o sistema desenvolvido com abordagens recentes e analisar o desem-
penho e robustez da solução proposta.

1.3 Contribuições

Este trabalho contribui para o avanço do estado-da-arte no estudo e desenvolvi-
mento de sistemas de navegação para robôs móveis autônomos em ambientes inter-
nos compartilhados com humanos, destacando-se:

• A abordagem proposta é nova e eficiente, contribuindo para o avanço da pes-
quisa na área, permitindo a análise de experimentos em ambiente simulado e
realização de testes para a implantação segura e eficiente de sistemas robóticos
em uma ampla gama de cenários;

• O algoritmo DDPG, combinado com a visão computacional, é capaz de resolver
tarefas em ambientes complexos, apresentando grande capacidade de aprendi-
zado e generalização. Essas características permitem que o robô adquira co-
nhecimento a partir de dados e experiências, e aplique esse conhecimento para
lidar com novas situações e ambientes de forma eficaz;

• A possibilidade de implantação do sistema em uma cadeira de rodas robótica
representa um grande avanço tecnológico, com potencial de melhorar a quali-
dade de vida das pessoas, facilitando tarefas cotidianas, proporcionando maior
independência e inclusão social para os usuários;
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• O estudo realizado demonstra a importância de avaliar a capacidade de genera-
lização do conhecimento adquirido através do aprendizado por reforço, por meio
da aplicação de testes em diferentes cenários. Para que um robô autônomo
navegue de forma segura em ambientes do mundo real, ele deve ser capaz de
generalizar suas habilidades de navegação para além das situações específicas
em que foi treinado.

1.4 Organização dos Capítulos

No restante desta tese, serão apresentados estudos aprofundados, experimentos
e análises dos resultados obtidos, bem como discussões sobre os desafios e as pers-
pectivas futuras.

Este trabalho está organizado da seguinte forma:
Capítulo 2: Neste capítulo são apresentados os conceitos relacionados ao tema

da pesquisa, abordando o Aprendizado por Reforço, Aprendizado Profundo e o Apren-
dizado por Reforço Profundo. Por fim, são apresentados o algoritmo Deep Q-Network
(DQN), implementado para comparação com a solução proposta por este trabalho, e
as considerações finais acerca deste capítulo.

Capítulo 3: Neste capítulo são apresentados os trabalhos relacionados ao tema
desta pesquisa. São abordadas soluções referentes à prevenção de colisões, consi-
derando métodos reativos e métodos preditivos, além de abordagens para detecção
de pessoas. Por fim, são apresentadas as considerações finais acerca deste capítulo;

Capítulo 4: Neste capítulo é detalhada a abordagem proposta, apresentando a
metodologia utilizada, a plataforma robótica simulada, a estrutura do ambiente de
aprendizado e os ambientes implementados para aplicação de treinamento e de tes-
tes. Por fim, é descrito o algoritmo Deep Deterministic Policy Gradient (DDPG), sua
arquitetura e aplicação neste trabalho;

Capítulo 5: Neste capítulo são apresentados os experimentos e resultados. São
abordadas as etapas de treinamento, configurações, testes realizados, validação dos
experimentos e resultados obtidos. Por fim, são apresentadas as considerações finais
acerca deste capítulo;

Capítulo 6: Neste capítulo são apresentadas as conclusões, as contribuições de-
correntes deste trabalho, publicações relacionadas à tese, dificuldades encontradas
durante a realização dos experimentos e perspectivas para o desenvolvimento de tra-
balhos futuros.



2 FUNDAMENTAÇÃO TEÓRICA

2.1 Aprendizado por Reforço

Os problemas de Aprendizado por Reforço (Reinforcement Learning - RL) envol-
vem aprender o que fazer, mapeando situações para ações, objetivando maximizar
um valor de recompensa (SUTTON, 1992, 1998).

Em situações que abordam a complexidade do mundo real, para utilização do RL,
os agentes devem derivar representações eficientes do ambiente e, a partir de en-
tradas sensoriais recebidas, utilizá-las para generalizar a experiência passada, com
vistas à aplicação em situações futuras (MNIH et al., 2015).

Existem quatro componentes básicos em RL: agente, ambiente, recompensa e
ação. Um algoritmo de RL típico opera apenas com conhecimento limitado do ambi-
ente e com feedback limitado sobre a qualidade das decisões (ZHANG; HAN; DENG,
2018). Os algoritmos mais populares de RL incluem o Q-learning, SARSA (State - Ac-
tion - Reward - State - Action), DQN (Deep Q-Network ) e DDPG (Deep Deterministic
Policy Gradient).

Em uma abordagem RL, um agente autônomo, controlado por um algoritmo de
aprendizado de máquina, observa um estado st de seu ambiente em uma determinada
etapa t do tempo. Na ocorrência de uma interação entre o agente e o ambiente,
executando uma ação no estado st, ambos fazem uma transição para um novo estado
st+1 (ARULKUMARAN et al., 2017a).

O estado é representado por uma estatística do ambiente, devendo incluir as in-
formações necessárias para que o agente tome a melhor ação. A melhor sequência
de ações é determinada pelas recompensas fornecidas pelo ambiente, que ao passar
para um novo estado, fornece uma recompensa escalar rt+1 ao agente como feedback.

As ações do sistema de aprendizado influenciam suas entradas posteriores e po-
dem afetar não apenas a recompensa imediata, mas também a próxima situação e,
consequentemente, todas as recompensas subsequentes.

Geralmente, um problema sequencial de tomada de decisão pode ser formulado
como um processo de decisão de Markov (MDP), descrito como M = (S,A,R, P, γ),
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onde S é o espaço de estados, A é o espaço de ação, R é a função de recompensa,
P é o modelo de transição de estado e γ é um fator de desconto. Os principais
elementos podem ser descritos conforme a seguir (XUE et al., 2019):

• Espaço de estados: o estado de entrada de todo o sistema é composto pelo
estado do próprio robô e pelo estado do obstáculo (assim como outros robôs),
que pode ser expresso como sc = [s, so] ∈ ℜ10

• Espaço de ação: uma série de conjuntos de ações pré-projetados, denotados
por a(st) = at = v for v < vmax

• Função de recompensa: Utilizada para recompensar o robô móvel para alcançar
um determinado alvo ou aplicar uma penalidade por obstáculos de colisão. Con-
siste em quatro partes, e pode ser representada por R(sc, a) = R1+R2+R3+R4

onde:

– R1 = k · (dgt−1 − dgt): utilizada para estimular o robô a se aproximar da
posição de destino, onde:
dgt−1 = distância linear entre o robô e a posição alvo no passo anterior;
dgt = distância linear entre o robô e a posição alvo no próximo passo; e
k é um coeficiente constante.

– R2: indica a penalidade de colisão. As variáveis da e damin representam,
respectivamente, a distância atual entre o robô e o obstáculo e a distância
mínima de segurança entre o robô e o obstáculo. O valor de R2 é obtido da
seguinte forma:

R2 =

−x if da < damin

0 else

– R3 = −c.timer: um valor negativo para o tempo atual é utilizado. Quanto
maior o custo de tempo, maior a punição imposta ao robô. É utilizado como
um estímulo para encontrar o caminho ideal no processo de treinamento,
objetivando que o tempo gasto para atingir a posição alvo seja o mais curto.

– R4: se o robô chegar à posição alvo, uma recompensa é dada, caso contrá-
rio, não é recompensado. O valor de R4 é obtido da seguinte forma:

R4 =

x if reach goal

0 else
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Figura 1 – Aprendizado por Reforço
Fonte: (KAELBLING; LITTMAN; MOORE, 1996)

A Figura 1 ilustra o modelo de aprendizado por reforço padrão, onde um agente é
conectado ao ambiente por meio de percepções e ações.

Em cada etapa da interação com o ambiente T , o agente B recebe como entrada
i alguma indicação do estado atual s e escolhe uma ação a para gerar como saída. A
ação altera o estado do ambiente e o valor dessa transição de estado é comunicado
ao agente por meio de um sinal de reforço escalar r.

O comportamento do agente a longo prazo deve ser capaz de escolher ações que
tendem a aumentar a soma dos valores do sinal de reforço. Ele pode aprender a
fazer isso ao longo do tempo por tentativa e erro sistemáticos, guiado por uma ampla
variedade de algoritmos.

Métodos tradicionais de RL podem ser utilizados para modelar comportamentos
reativos ou preditivos, a partir do processamento de dados de leitura dos sensores e
posições relativas dos objetos que compõem o ambiente de navegação. Nesse tipo de
solução, a prevenção de colisões é realizada com base em um modelo de velocidade
e direção, onde a tarefa de navegação ocorre através do processamento dos dados
recebidos, emitindo comandos de velocidade linear e angular para controlar o robô e
evitar obstáculos (LIU; LIU; WANG, 2017; QIANG et al., 2018).

Geralmente, os dados de treinamento são pré-processados através de uma rede
neural e, na etapa posterior, o mapa de recursos extraído do modelo de aprendizado
supervisionado é utilizado como entrada de dados para a rede, resultando em um
conjunto de comandos para determinar as ações do robô (TAI; LIU, 2016a).

Como forma de melhorar o desempenho dos algoritmos e reduzir o custo com-
putacional, podem ser utilizados mapas gerados artificialmente e conjuntos de dados
de treinamento contendo amostragens do mundo real (LIU; XU; CHEN, 2018), ou por
meio da criação de modelos independentes de decisão, utilizando simulações offline
repetidas (LONG; LIU; PAN, 2017).

Para minimizar o tempo de aprendizado, é possível armazenar transações de ex-
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periência, através da utilização de um módulo de memória (WU et al., 2017). O tempo
de computação também pode ser reduzido por meio da remoção de repetições des-
necessárias durante a etapa de treinamento da rede.

2.2 Aprendizado Profundo

O Aprendizado Profundo (Deep Learning - DL) permite a descoberta de estruturas
complexas em grandes conjuntos de dados. Para isso, utiliza um algoritmo de retro-
propagação para indicar como uma máquina deve alterar seus parâmetros internos,
usados para calcular a representação em cada camada a partir da camada anterior
(LECUN; BENGIO; HINTON, 2015).

Essa capacidade proporciona que modelos computacionais, compostos por várias
camadas de processamento, aprendam representações de dados com vários níveis de
abstração, resultando em melhorias significativas para o estado da arte em diversos
domínios, como reconhecimento de fala, reconhecimento visual de objetos, detecção
de objetos, entre outros.

Métodos baseados em DL são compostos por vários níveis de representação, obti-
dos pela composição de módulos simples, mas não lineares, que transformam dados
brutos de entrada em um nível de representação mais alto e mais abstrato, neces-
sários para detecção ou classificação (PRABHA; UMARANI SRIKANTH, 2019). O
aprendizado se dá por meio da utilização de redes neurais profundas.

Conforme Prabha; Umarani srikanth (2019), o número de camadas ocultas entre
as camadas de entrada e saída são determinantes para o aprendizado. As camadas
iniciais são responsáveis pela extração dos recursos abstratos e, à medida que o
aprendizado avança, as camadas profundas são responsáveis pelo fornecimento de
informações importantes acerca dos recursos processados.

O DL pode ser classificado em duas arquiteturas principais: Redes Neurais Con-
volucionais (CNN) e Redes Neurais Recorrentes (RNN), descritas conforme a seguir,
segundo a visão dos autores.

2.2.1 Redes Neurais Convolucionais

CNNs são algoritmos de aprendizado profundo amplamente utilizados e a catego-
ria mais proeminente de redes neurais, principalmente para aplicações que envolvem
dados de alta dimensionalidade, como imagens e vídeos (ALOM et al., 2019). Sua
arquitetura é inspirada na neurobiologia do córtex visual e possui uma estrutura otimi-
zada para processamento de imagens 2D e 3D, sendo muito eficazes no aprendizado
e extração de abstrações de recursos 2D, com significativamente menos parâmetros
do que uma rede totalmente conectada de tamanho semelhante.

A estrutura de rede foi proposta pela primeira vez por Fukushima em 1988 (FU-
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KUSHIMA, 1988), sendo modificada na década de 1990, através da aplicação de um
algoritmo de aprendizado baseado em gradiente para lidar com o problema de classi-
ficação de dígitos manuscritos (LECUN et al., 1998).

A CNN é uma rede feedforward utilizada principalmente para o processamento de
imagens. A capacidade da CNN depende do número de camadas ocultas usadas
entre as camadas de entrada e saída e cada camada é responsável pela extração de
um conjunto de características. Os mapas de recursos são gerados pela aplicação de
uma série de filtros sobre a entrada e cada filtro percorre toda a entrada, multiplicando
seus pesos pelos valores obtidos.

O resultado é passado para uma função de ativação como ReLU (Rectified Li-
near Units), sigmoide ou tangente hiperbólica (tanh), enquanto uma função de perda
é usada para avaliar o conjunto de pesos. Os mapas de recursos gerados pelos fil-
tros destacam diferentes características dos dados de entrada. A CNN tem quatro
tipos de camadas principais: camada de convolução; camada ReLU; camada de su-
bamostragem (ou pooling) e; camada totalmente conectada. De acordo com Prabha;
Umarani srikanth (2019), sua principal desvantagem é que a CNN não pode lidar com
dados sequenciais.

Conforme Lecun; Bengio; Hinton (2015), diversas aplicações de aprendizado pro-
fundo usam arquiteturas de rede neural feedforward, que aprendem a mapear entradas
de tamanho fixo, como imagens, para uma saída de tamanho fixo, como por exemplo,
uma probabilidade para cada uma das várias categorias. Esse aprendizado se dá por
meio de transição entre camadas, utilizando um conjunto de unidades para calcular
uma soma ponderada de suas entradas da camada anterior e passar o resultado por
uma função não linear.

A função não linear mais popular é a ReLU, um retificador de meia onda f(z) =

max(z, 0). Segundo os autores, nas últimas décadas, as redes neurais usavam não
linearidades mais suaves, como tanh(z) ou 1

1+exp(−z)
, no entanto, a ReLU tende a

aprende mais rápido em redes com muitas camadas, permitindo o treinamento de
uma rede supervisionada profunda sem pré-treinamento não supervisionado. Unida-
des que não estão na camada de entrada ou saída são chamadas de camadas ocul-
tas, responsáveis pelo processamento da camada de entrada de maneira não linear,
de modo que as categorias se tornem linearmente separáveis pela última camada.

2.2.2 Redes Neurais Recorrentes

Ao contrário da CNN, que é uma rede de alimentação direta, Redes Neurais Re-
correntes (RNNs) utilizam propagação reversa. Ou seja, as entradas atuais também
consideram as entradas anteriores. RNNs foram projetadas com base no princípio de
que os humanos não pensam do zero, podendo processar dados sequenciais com a
ajuda de uma memória interna. As principais características das RNNs são:
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• Propagação reversa: A RNN usa propagação reversa no tempo durante o treina-
mento. Isso significa que ela começa a processar a sequência de dados desde o
final até o início, o que permite que a rede capture dependências de longo prazo,
levando em consideração as entradas anteriores enquanto processa as atuais.

• Entradas sequenciais e memória interna: RNNs são projetadas para trabalhar
com dados sequenciais, como sequências de texto, áudio ou séries temporais.
Elas possuem uma memória interna que lhes permite "lembrar" informações das
etapas anteriores ao processar cada elemento da sequência.

• Inspiradas no princípio do pensamento humano: A ideia de usar memória interna
nas RNNs é inspirada na forma como os humanos processam as informações,
ou seja, as informações não são processadas a partir do zero, mas sim com base
no conhecimento adquirido anteriormente. Essa capacidade das RNNs de man-
ter um estado interno e usar informações anteriores para influenciar decisões
futuras as torna adequadas para tarefas que envolvem dependências sequenci-
ais, como aplicações em NLP (Natural Language Processing), reconhecimento
de voz e tradução, entre outros.

Apesar de suas vantagens, as RNNs também têm algumas limitações, como difi-
culdades em lidar com dependências de longo prazo devido ao problema de desva-
necimento ou explosão do gradiente, o que dificulta a aprendizagem em sequências
muito longas. Para resolver esses problemas, foram desenvolvidas outras arquiteturas
de redes neurais, como as redes LSTM (Long Short-Term Memory ), que são variantes
das RNNs, projetadas para mitigar os problemas de dependências de longo prazo.

Atualmente, existem diferentes tipos de arquiteturas de aprendizado profundo, dis-
poníveis para uma variedade de soluções, de acordo com o contexto de aplicação
(ZHANG; HAN; DENG, 2018): Máquina de Boltzmann (BM), Redes DBN (Deep Be-
lief Network, Redes FDN Feedforward Neural Network, Redes Neurais Convolucio-
nais (CNN), Redes Neurais Recorrentes (RNN), Redes de Memória de Longo Prazo
(LSTM), Redes GAN Generative Adversarial Networks, entre outras.

2.2.3 Detecção de pessoas

A detecção de pessoas desempenha um papel fundamental na navegação autô-
noma, é crucial para garantir a segurança e a interação eficiente entre os robôs e as
pessoas que compartilham o mesmo espaço.

A capacidade de detectar e reconhecer pessoas com precisão permite que os
robôs tomem decisões informadas e naveguem com mais segurança. Ao reconhe-
cer a presença de pessoas, o robô pode adaptar seu comportamento e movimento
para garantir uma navegação suave e não invasiva e evitar caminhos congestionados.
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Isso é especialmente importante em ambientes dinâmicos, como hospitais, fábricas
ou espaços públicos, onde há um alto fluxo de pessoas.

As CNNs têm se destacado na detecção de pessoas devido à sua capacidade
de aprender características discriminativas diretamente dos dados de entrada. Esse
tipo de arquitetura é amplamente utilizado em tarefas de visão computacional, como
classificação de textos (WANG et al., 2019), segmentação de imagem, classificação de
imagens e detecção de objetos (PATHAK; PANDEY; RAUTARAY, 2018; DRUZHKOV;
KUSTIKOVA, 2016) e reconhecimento facial.

A detecção de pedestres com base em CNN tem se dividido em duas categorias
distintas (XIAO et al., 2021). Uma delas é conhecida como estrutura de dois estágios,
também chamada de método baseado em região. Nesse método, inicialmente são
geradas propostas de regiões que podem conter pedestres. Em seguida, as carac-
terísticas dessas regiões são extraídas utilizando CNN e, por fim, um classificador é
utilizado para classificar e reconhecer os pedestres nessas regiões.

Conforme Xiao et al. (2021), o outro método de detecção é denominado estrutura
de estágio único, também conhecida como método de detecção direta, que visa acele-
rar a velocidade de detecção ao eliminar a etapa de geração de propostas regionais e,
em vez disso, realizar uma regressão direta na área predefinida. Nessa abordagem,
a CNN é treinada diretamente para regredir e identificar a área predefinida onde os
pedestres podem estar presentes. O objetivo é reduzir a complexidade computacional
e melhorar a eficiência do sistema.

A seguir são listadas as principais estruturas de detecção de dois estágios e estru-
turas de estágio único:

2.2.3.1 Estruturas de detecção de dois estágios

• Regions with CNN features (R-CNN): Combina redes neurais convolucionais
(CNNs) de alta capacidade a propostas de regiões independentes de catego-
ria para localizar e segmentar objetos. Utiliza um algoritmo de busca seletiva
para extrair e combinar apenas 2.000 regiões da imagem a ser classificada
(GIRSHICK et al., 2014).

• Fast R-CNN: Abordagem semelhante ao algoritmo R-CNN, porém mais rápida.
Não é necessário alimentar 2.000 propostas de região para a rede neural convo-
lucional a cada etapa de convolução. Em vez disso, a operação de convolução
é feita apenas uma vez por imagem e um mapa de características é gerado a
partir dela (WANG; SHRIVASTAVA; GUPTA, 2017).

• Faster R-CNN: Essa abordagem elimina o algoritmo de busca seletiva e permite
que a rede aprenda as propostas de região. De forma similar ao Fast R-CNN,
uma imagem é fornecida como entrada para uma rede convolucional que retorna
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um mapa de características, então uma rede separada é usada para prever as
propostas de região (REN et al., 2015).

• Mask R-CNN: Método para detecção de objetos em uma imagem, capaz de
gerar simultaneamente uma máscara de segmentação de alta qualidade para
cada instância, além de estimar poses humanas na mesma estrutura (HE et al.,
2017). O Mask R-CNN estende o Faster R-CNN adicionando uma ramificação
para prever uma máscara de objeto em paralelo com a ramificação existente para
reconhecimento de caixas delimitadoras.

• Focal loss for dense object detection (RetinaNet): Detector de um estágio convo-
lucional que aplica um termo modulador à perda de entropia cruzada para lidar
com o problema de desequilíbrio de classe atribuindo mais pesos a exemplos
difíceis ou facilmente mal classificados (LIN et al., 2017).

2.2.3.2 Estruturas de detecção de estágio único

• Single Shot MultiBox Detector (SSD): Método para detecção de objetos em ima-
gens usando uma única rede neural profunda. A abordagem SSD é baseada em
uma rede convolucional feedforward que produz uma coleção de tamanho fixo
de caixas delimitadoras e pontuações para a presença de instâncias de classe
de objeto nessas caixas, seguida por uma etapa de supressão não máxima para
produzir as detecções finais (LIU et al., 2016).

• You Only Look Once (YOLO): Método para detecção unificada de objetos em
tempo real. Uma única rede neural prevê caixas delimitadoras e probabilida-
des de classe diretamente de imagens completas em uma avaliação (REDMON
et al., 2016). O algoritmo utiliza uma única propagação direta através da CNN
para detecção de objetos. Atualmente, várias versões foram atualizadas para
melhorar seu desempenho.

De acordo com o estudo realizado por Xiao et al. (2021), o SSD tem vantagens
sobre o YOLO na resolução de problemas de pequena escala e localização, po-
rém, apresenta limitações na redução de falsos positivos ao lidar com pedestres
em cenários complexos.

2.3 Aprendizado por Reforço Profundo

Conforme descrito na seção anterior, o Aprendizado Profundo consiste em aproxi-
mar funções não lineares através do treinamento de redes neurais profundas. Essa
capacidade de representação proporcionou um avanço para o RL ao integrar-se com
redes neurais profundas, formando o Aprendizado por Reforço Profundo (Deep Rein-
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forcement Learning - DRL), uma combinação do aprendizado por reforço com o apren-
dizado profundo.

Figura 2 – DL, RL e DRL
Fonte: Adaptado de Fenjiro; Benbrahim (2018)

O DRL foi proposto pela primeira vez em 2013 para o aprendizado de políticas de
controle aplicadas aos jogos de computador Atari 2600 (MNIH et al., 2013). A solução
utilizou uma variante do algoritmo Q-Learning, conectado a uma rede neural profunda,
para o processamento de dados de treinamento a partir de imagens RGB.

Desde então, sua utilização tem sido pesquisada para uma variedade de aplica-
ções, tais como navegação autônoma em ambientes internos (TAI; LIU, 2016b), con-
dução de veículos autônomos em cenários urbanos (SALLAB et al., 2017; WULF-
MEIER et al., 2017), reconhecimento de objetos estáticos e móveis (ZUO; DU; LU,
2017), prevenção de colisões durante a tarefa de navegação autônoma (RUAN et al.,
2019), entre outras.

Diferente de métodos puramente reativos, em uma abordagem DRL busca-se co-
dificar comportamentos cooperativos através do aprendizado de uma função de valor
(CHEN et al., 2017), ou aprender com as experiências de vários agentes durante as
etapas de treinamento (EVERETT; CHEN; HOW, 2018). Essas estratégias permitem
que os algoritmos escolham as ações a serem realizadas, com base nas observações
de um número arbitrário de agentes próximos, sem assumir que outros agentes sigam
qualquer modelo comportamental específico.

O DRL pode ser classificado em três abordagens: métodos baseados em va-
lor, métodos baseados em políticas e métodos ator-crítico, uma abordagem híbrida
que combina as duas primeiras, descritas conforme a seguir (ARULKUMARAN et al.,
2017b):
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2.3.1 Métodos baseados em valor

Métodos baseados em valor obtêm indiretamente a política do agente ao atualizar
iterativamente a função de valor. Quando a função de valor alcança seu valor ótimo, a
política do agente é obtida a partir dessa função. São baseados na estimativa do valor
(retorno esperado) de estar em um determinado estado. A função de valor do estado
Vπ(s) representa o retorno esperado ao iniciar no estado s e seguir a política π a partir
daquele ponto em diante:

Vπ(s) = E[R | s, π]

Onde:
Vπ(s) é a função de valor do estado s sob a política π; e
E[R | s, π] é o valor esperado do retorno (recompensa acumulada) ao seguir a polí-

tica π a partir do estado s.
A política ótima π∗ tem uma função de valor do estado correspondente V ∗(s) e

vice-versa, a função de valor do estado ótima pode ser definida como:

V ∗(s) = max
π

V π(s) para todo s ∈ S.

Onde:
V ∗(s) é a função de valor ótima do estado s;
V π(s) é a função de valor do estado s sob a política π;
S é o conjunto de todos os estados possíveis.
Com V ∗(s) disponível, a política ótima pode ser recuperada escolhendo entre

todas as ações disponíveis no estado st e selecionando a ação a que maximiza
Est+1∼T [V

∗(st+1)].
No cenário de RL, a dinâmica de transição T não está disponível. Portanto, outra

função é necessária, a função valor estado-ação ou função qualidade Qπ(s, a), que é
similar a Vπ, exceto que a ação inicial a é fornecida, e a política π é seguida somente
a partir do próximo estado em diante:

Qπ(s, a) = E[R | s, a, π].

A melhor política, dada a função Qπ(s, a), pode ser encontrada escolhendo a de
forma gananciosa em cada estado: argmaxaQπ(s, a). Sob essa política, também é
possível definir Vπ(s) maximizando Qπ(s, a):

Vπ(s) = max
a

Qπ(s, a).

Ou seja, o valor do estado s sob a política π é igual ao máximo valor da função
Qπ(s, a) em relação a todas as ações possíveis a.
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Algoritmos típicos de DRL, baseados em valor, incluem o Q-Learning, Deep Q-
Network (DQN), Double Q-Learning, Dueling DQN, SARSA (State-Action-Reward-
State-Action), entre outros.

2.3.2 Métodos baseados em política

Métodos baseados em políticas utilizam diretamente o método de aproximação de
função para estabelecer uma rede de políticas. As ações são então selecionadas por
meio dessa rede para obtenção do valor de recompensa, enquanto os parâmetros da
rede de políticas são otimizados ao longo da direção do gradiente para obter uma
política capaz de maximizar o valor de recompensa.

Conforme Arulkumaran et al. (2017b), nessa abordagem não é necessário manter
um modelo de função de valor, mas buscar diretamente uma política ótima π∗. Tipica-
mente, uma política parametrizada πθ é escolhida, cujos parâmetros θ são atualizados
para maximizar o retorno esperado E[R | θ], utilizando otimização baseada em gradi-
entes ou sem gradientes.

Segundo os autores, a otimização sem gradiente pode abranger efetivamente es-
paços de parâmetros de baixa dimensão, mas apesar de alguns sucessos em aplicá-
los a redes grandes, o treinamento baseado em gradiente continua sendo o método
de escolha para a maioria dos algoritmos de DRL, sendo mais eficiente em termos de
amostras, ao lidar com políticas que possuem um grande número de parâmetros.

2.3.3 Métodos Ator-Crítico

A combinação de funções de valor com uma representação explícita da política
resulta em métodos ator-crítico. O "ator" (política) aprende usando o feedback do
"crítico" (função de valor). Dessa forma, esses métodos proporcionam um equilíbrio
entre a redução da variância dos gradientes de política e a introdução de viés a partir
dos métodos de função de valor.

Em métodos ator-crítico a função de valor é utilizada como uma linha de base para
os gradientes de política, de modo que a principal diferença com outros métodos de
linha de base é que os métodos ator-crítico utilizam uma função de valor aprendida
(ARULKUMARAN et al., 2017b).

Os autores observam que em vez de utilizar a média de vários resultados de Monte
Carlo, como a linha de base para os métodos de gradiente de política, abordagens
ator-crítico ganharam popularidade como um meio eficaz de combinar os benefícios
dos métodos de busca de política com funções de valor aprendidas. Dessa forma,
podem aprender a partir de retornos completos e/ou erros TD (Temporal Difference) e
também se beneficiar de melhorias tanto dos métodos de gradiente de política, quanto
dos métodos de função de valor.
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2.4 Deep-Q Network

O Deep-Q Network (DQN) foi a primeira aplicação do Q-learnin ao aprendizado
profundo, constituindo uma das abordagens mais conhecidas e bem-sucedidas para
aprender políticas ótimas em ambientes de aprendizado por reforço.

O DQN é uma variação do algoritmo Q-Learning, composto por três principais me-
lhorias em sua arquitetura: uma rede neural convolucional profunda para aproximação
da função Q; utilização de mini-lotes de dados de treinamento aleatórios, em vez
de atualização de um único passo na última experiência; e o uso de parâmetros de
rede mais antigos para estimar os valores Q do próximo estado (RODERICK; MAC-
GLASHAN; TELLEX, 2017).

O pseudocódigo a seguir descreve o algoritmo DQN, conforme proposto por (MNIH
et al., 2015):

Algorithm 1 Algoritmo DQN
Initialize replay memory D to capacity N

Initialize action-value function Q with random weights θ

Initialize target action-value function Q̂ with weights θ− = θ

for episode = 1,M do
Initialize sequence s1 = {x1} and preprocessed sequence ϕ1 = ϕ(s1)

for t = 1 do
With probability ε, select a random action at

Otherwise, select at = argmaxaQ(ϕ(st), a; θ)

Execute action at in the emulator and observe reward rt and image xt+1

Set st+1 = st, at, xt+1 and preprocess ϕt+1 = ϕ(St+1)

Store experience (ϕt, at, rt, ϕt+1) in D

Sample random minibatch of experiences (ϕt, at, rt, ϕt+1) from D

Set yj =

rj if episode terminates at step j + 1

rj + γ maxa′ Q̂(ϕj+1, a
′; θ−) otherwise

Perform a gradient descent step on (yj −Q(ϕj , aj ; θ))
2 with respect to the weights θ

Every C steps reset Q̂ = Q

end for
end for

As principais características do DQN são descritas conforme a seguir (FENJIRO;
BENBRAHIM, 2018):

• Rede-alvo: configurada para lidar separadamente com o erro de diferença tem-
poral (TD) no algoritmo. O parâmetro θi da rede Q atual Q(s, a; θi) é copiado para
θ′i da rede-alvo Q(s′, a′; θ′i) a cada n passos de tempo, o que evita a instabilidade
da rede-alvo devido às alterações feitas na rede Q atual durante o treinamento.
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A ideia consiste em usar uma rede separada para estimar os valores Q − alvo

que serão usados para calcular a perda para cada ação. Essa rede-alvo possui
a mesma arquitetura do aproximador de função, mas com pesos fixos. A cada
T passos (por exemplo, a cada 1000 passos), os pesos da rede Q são copiados
para a rede-alvo, o que proporciona maior estabilidade ao DQN.

• Pool de experiências (Experience Pool - EP) U(D): usado para armazenar e
gerenciar amostras (s, a, r, s′), enquanto um mecanismo de repetição de experi-
ências (Experience Replay - ER) é utilizado para selecionar as amostras. Essas
amostras são armazenadas no EP, de onde lotes são selecionados aleatoria-
mente para treinar a rede Q. O mecanismo de ER ajuda a eliminar a correlação
entre as amostras.

A repetição de experiências quebra a similaridade entre as amostras de treina-
mento subsequentes, o que poderia levar a rede a um mínimo local, e resolve
os desafios de correlação de dados e distribuições de dados não estacionárias.
Essa técnica permite que a rede aprenda de maneira mais estável, reduzindo
a dependência excessiva das amostras temporais e melhorando a eficácia do
aprendizado com base em experiências passadas.

Os parâmetros da rede neural são atualizados por meio do gradiente descendente.
A função de perda do DQN é representada como:

L(θi) = E
[
(r + γmax

a′
Q(s′, a′; θ′i)−Q(s, a; θi))

2
]

(1)

Onde:

• θi representa os parâmetros da rede Q atual Q(s, a; θi);

• theta′i representa os parâmetros da rede Q alvo Q(s, a; θ′i);

• s é o estado atual;

• a é a ação tomada no estado atual;

• r é a recompensa recebida após tomar a ação a no estado s;

• s é o próximo estado após tomar a ação a;

• a é a ação selecionada no próximo estado;

• γ é o fator de desconto, que determina a importância das recompensas futuras.

A função de perda representa o erro quadrático médio entre o valor Q previsto
para o par estado-ação atual e o valor Q − alvo, que é a recompensa recebida mais
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o valor Q máximo descontado de todas as possíveis ações no próximo estado. O
objetivo do treinamento é minimizar essa função de perda para melhorar a precisão
das estimativas dos valores Q e, consequentemente, o desempenho do agente.

Segundo Roderick; Macglashan; Tellex (2017), durante o treinamento usando o
DQN, as curvas de aprendizado médio do Q-learning em configurações tabulares ge-
ralmente mostram melhorias relativamente estáveis, e problemas de aprendizado pro-
fundo supervisionado também costumam ter melhorias médias bastante estáveis à
medida que mais dados se tornam disponíveis. No entanto, os autores observam que
não é incomum no DQN ocorrer o chamado "esquecimento catastrófico", no qual o
desempenho do agente pode cair drasticamente após um período de aprendizado.

Diante desse problema, os autores destacam a solução proposta por Mnih et al.
(2015), que consiste em salvar os parâmetros da rede que resultaram no melhor de-
sempenho nos testes. Assim, é possível restaurá-los posteriormente, permitindo que
o agente mantenha a capacidade de atingir pontuações mais altas e continue apren-
dendo sem regredir significativamente em seu desempenho.

Essa abordagem é uma forma de mitigar o problema do esquecimento catastrófico
e ajudar o agente a se manter em níveis de desempenho mais altos ao longo do tempo,
mesmo durante o treinamento contínuo.

2.5 Considerações finais

Este capítulo apresentou os principais conceitos relacionados ao tema desta pes-
quisa. A solução proposta neste trabalho fundamenta-se nesses conceitos, consti-
tuindo um sistema baseado em Aprendizado por Reforço Profundo, uma combinação
do aprendizado por reforço com o aprendizado profundo. Essa abordagem permite
que um agente aprenda a tomar decisões, através da interação com o ambiente, uti-
lizando redes neurais profundas para extrair padrões complexos e representações de
alto nível a partir dos dados recebidos. Foram apresentados conceitos acerca do al-
goritmo DQN, uma das técnicas mais proeminentes nessa interseção, que introduziu
a ideia de usar redes neurais para aproximar funções Q e tornar o aprendizado por
reforço mais eficiente e estável. Em seguida, exploramos o algoritmo DDPG, utilizado
nesta abordagem e que se destaca ao permitir o aprendizado de políticas determinís-
ticas em ambientes de ação contínua. Por fim, foram apresentados conceitos relacio-
nados às principais estruturas de detecção, abordando um problema fundamental em
visão computacional que é a detecção de pessoas. Ao unir esses conceitos, perce-
bemos que o aprendizado por reforço profundo e a detecção de pessoas podem se
complementar em cenários de robótica avançada, onde um agente pode aprender a
navegar em ambientes desconhecidos de forma segura e eficiente.



3 TRABALHOS RELACIONADOS

A seguir serão apresentados e discutidos os trabalhos relacionados a este que
foram realizados na área de navegação autônoma em ambientes internos.

Foram utilizados como principal fonte de consultas para esta pesquisa a biblioteca
digital IEEEXplore1, a base de dados SCOPUS2 e o Portal de Periódicos da Coorde-
nação de Aperfeiçoamento de Pessoal de Nível Superior CAPES3.

Através da busca por palavras-chave relacionadas ao tema em questão: (autono-
mous navigation, crowded scenarios, crowd navigation, collision avoidance in crowd,
robot navigation in crowded), foram selecionados trabalhos publicados em importantes
periódicos científicos e conferências da área de robótica International Journal of Robo-
tics Research, Autonomous Robots, International Conference on Autonomous Robot
Systems and Competitions (ICARSC), International Conference on Robotics and Auto-
mation (ICRA) e International Conference on Intelligent Robots and Systems (IROS).

Primeiramente serão apresentados os trabalhos que utilizam abordagens reativas
para prevenção de colisões. Nesse contexto destacam-se soluções baseadas em
Campo de Potência Artificial, Velocity Obstacle e métodos baseados em aprendizado
que utilizam estruturas livres de modelos. A seção 3.1.2 apresenta os trabalhos base-
ados em aprendizado cujas soluções constituem métodos de prevenção de colisões
preditivos, abordando soluções baseadas em modelos e soluções baseadas em traje-
tória. Por fim, são apresentados os trabalhos relacionados à detecção de pessoas.

1https://ieeexplore.ieee.org/
2https://www.scopus.com/home.uri
3https://www.periodicos.capes.gov.br/
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O Quadro 1 apresenta uma listagem dos trabalhos que foram estudados para esta
pesquisa e as características gerais de acordo com a abordagem proposta.

Tabela 1 – Abordagens Utilizadas e Características Gerais
Método Base do Modelo CenárioAUTOR R P BA AR CH PT D E ALGORITMOS

(CHEN et al., 2017) x x x x SA-CADRL - Socially Aware CADRL
(GYENES; SZADECZKY-KARDOSS, 2018) x x x SVO - Safety Velocity Obstacle
(RUAN et al., 2019) x x x x Dueling Double DQN
(XUE et al., 2019) x x x x Deep Double Q-Learning
(CAO; TRAUTMAN; IBA, 2019) x x x Timed A*
(SASAKI et al., 2019) x x x x A3C - Asynchronous Advantage Actor-Critic

(CHEN et al., 2017) x x x x CADRL - Collision Avoidance with
Deep Reinforcement Learning

(BRESSON et al., 2019) x x x DB-SCAN - Density- Based Spatial
Clustering of Applications with Noise

(EVERETT; CHEN; HOW, 2018) x x x x GA3C-CADRL - GPU/CPU Asynch.
Advantage Actor-Critic CADRL

(FERRER; SANFELIU, 2018) x x x ESFM - Extended Social Force Model
RRT - Rapidly-exploring Random Tree

(CHEN et al., 2021) x x x
F-RVO - Frontal RVO
DensePeds
PPO - Proximal Policy Optimization

(FAN et al., 2018)
(LONG et al., 2018) x x x x PPO - Proximal Policy Optimization

(FIORINI; SHILLER, 1998)
(LORENTE; OWEN; MONTANO, 2018) x x x VO - Velocity Obstacle

(BAREISS; BERG, 2015)
(BERG; LIN; MANOCHA, 2008)
(KIM et al., 2015)

x x x RVO - Reciprocal Velocity Obstacle

(DOUTHWAITE; ZHAO; MIHAYLOVA, 2018)
(SNAPE et al., 2011)
(BERA et al., 2017)

x x x HRVO - Hybrid RVO

(LIU; LIU; WANG, 2017)
(QIANG et al., 2018)
(YANG; LI, 2017)

x x x x Q-Learning

(ZHANG et al., 2015)
(VAN DEN BERG et al., 2011)
(LONG; LIU; PAN, 2017)

x x x x x ORCA - Optimal Reciprocal
Collision Avoidance

(ALAHI et al., 2016)
(LISOTTO; COSCIA; BALLAN, 2019)
(GUPTA et al., 2018)
(PFEIFFER et al., 2018)
(CHOI et al., 2019)
(SUN; ZHAI; QIN, 2019)

x x x x x LSTM - Long Short-Term Memory

(CIOU et al., 2018)
(RIBEIRO et al., 2019)
(OKUYAMA; GONSALVES; UPADHAY, 2018)
(MOHANTY et al., 2017)
(TAI; LI; LIU, 2016)
(TAI; LIU, 2016a)
(TAI; LIU, 2016b)
(WU et al., 2017)

x x x x x x Deep Q - Network

(CHIANG et al., 2015)
(MALONE et al., 2017)
(WANG; BAN, 2018)
(GU et al., 2019)
(WU et al., 2015)
(LEE et al., 2017)

x x x x APF - Artificial Potential Field

R: Reativo; P: Preditivo; BA: Baseado em Aprendizado; AR: Aprendizado por Reforço; CH: Comportamento Humano;
PT: Previsão de Trajetórias; D: Dinâmico; E: Estático.
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3.1 Prevenção de Colisões

3.1.1 Métodos Reativos

3.1.1.1 Baseados em Campos Potenciais Artificiais

Várias soluções baseadas no algoritmo Artificial Potential Field (APF) tem sido
propostas na literatura, combinando diferentes técnicas, ou propondo modificações
para melhorar o planejamento de caminhos e evitar obstáculos.

A ideia principal por trás do algoritmo APF é criar um campo de força ao redor do
robô, onde os obstáculos são representados como fontes de força repulsiva e a meta
de navegação é representada como uma fonte de força atrativa. O objetivo é guiar o
robô em direção à meta enquanto evita colisões com obstáculos.

O campo potencial artificial é definido como a soma dos campos repulsivos e atra-
tivos. Os campos repulsivos são criados em torno dos obstáculos e aumentam em
intensidade à medida que o robô se aproxima deles. Esses campos repulsivos incen-
tivam o robô a se afastar dos obstáculos e evitá-los.

Por outro lado, o campo atrativo é criado em torno da meta de navegação e atrai o
robô em direção a ela. O campo atrativo é mais forte perto da meta e diminui à medida
que o robô se distancia.

Combinando os campos repulsivos e atrativos, o robô é direcionado para se mover
em direção à meta enquanto evita colidir com obstáculos. Isso é feito calculando-se a
força resultante do campo potencial e, em seguida, aplicando essa força ao robô para
orientar seu movimento.

A figura 3 mostra como o algoritmo APF age ao detectar um obstáculo durante o
processo de navegação:

Figura 3 – Artificial Potential Field

Fonte: (LEE et al., 2017)

O Algoritmo APF, proposto por Khatib (1986), é descrito da seguinte forma: campo
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potencial atrativo, relacionado ao objetivo Uatt(pm) e campo potencial repulsivo, relaci-
onado aos obstáculos Urep(pm).

O campo potencial total Utot(pm) é definido conforme a equação 2:

Utot(pm) = Uatt(pm) + Urep(pm) (2)

onde:
pm = (xm, ym)

T é o vetor de posição do robô móvel em coordenadas cartesianas.
A força é o gradiente negativo do campo potencial, obtida da seguinte forma:

Ftot(pm) = −∇Utot(pm) = Fatt(pm) + Frep(pm) (3)

onde:
Fatt(pm) representa a força atrativa gerada pelo objetivo e Frep(pm) é a força repul-

siva gerada pelos obstáculos. Ftot(pm) é a soma de duas forças, denotando a força
total que atua no robô móvel.

onde:
do = (xo, yo)

T e dg = (xg, yg)
T representam, respectivamente, os vetores de posição

em relação a um obstáculo e o objetivo do robô móvel.
A força atrativa e a força repulsiva são descritas conforme a seguir:

Fatt(pm) = katt · dg (4)

Frep(pm) =

0, ||do|| > dg

−krep(1/||do|| − 1/dt)(1/(||do||)2)(do/||do||), ||do|| ≤ dg
(5)

onde:
do =

√
(xm − xo)2 + (ym − yo)2: representa a distância do robô móvel a um obstá-

culo e;
dg =

√
(xm − xg)2 + (ym − yg)2: representa a distância do robô móvel em relação

ao seu objetivo.
Os parâmetros katt e krep são fatores de escala da força atrativa e da força repulsiva,

respectivamente.
O parâmetro dg utilizado para o cálculo da força repulsiva, representa a distância

limite entre o robô móvel e um obstáculo. O vetor pm é o vetor de velocidade atual do
robô móvel.

Modificações no algoritmo APF podem ser adotadas para criar novos pontos de
força atrativa e ajudar o robô móvel a escapar dos mínimos locais (WU et al., 2015;
LEE et al., 2017). Nesse tipo de solução o robô realiza o percurso utilizando o al-
goritmo APF tradicional e, ao atingir um mínimo local, uma função baseada no APF
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modificado é aplicada para estimular o robô a alterar sua trajetória e, posteriormente,
retomar o percurso em direção ao seu objetivo.

Técnicas baseadas em amostragem, para identificar caminhos sem colisões em
ambientes dinâmicos, podem ser combinadas com métodos de planejamento de cam-
pos potenciais artificiais para navegação em ambientes dinâmicos (CHIANG et al.,
2015; MALONE et al., 2017). A solução consiste em calcular um caminho sem coli-
sões, com relação a obstáculos estáticos que é utilizado como um atributo intermediá-
rio para atingir o objetivo. Para melhorar a segurança do algoritmo é incorporado um
campo potencial repulsivo para cada obstáculo em movimento, tomando-se por base
conjuntos estocásticos pré-computados.

Outras soluções buscam predizer trajetórias livres de colisão com base no estado
dos obstáculos em movimento. Um modelo de previsão baseado na rede neural de
Elman foi projetado por Wang; Ban (2018) para estimar o estado de obstáculos em mo-
vimento para a navegação segura de USVs (Unmanned Surface Vehicles). A distância
relativa e o tempo de colisão entre o agente móvel e os obstáculos foram utilizados
para melhorar o desempenho do algoritmo e evitar o problema de mínimos locais.

Uma modificação na função do campo de repulsão, introduzindo um valor de dis-
tância relativa entre o ponto de objetivo e o robô, foi apresentada por Gu et al. (2019).
A solução adotou uma combinação do algoritmo APF com o algoritmo Fuzzy Control,
criando uma função para ampliar a percepção do robô móvel para além da distância
com os obstáculos. A medida que o robô se aproxima do objetivo, a força de repulsão
é atualizada por um fator de regulação, tendendo a zero, até alcançar o objetivo.

3.1.1.2 Baseados no Método Velocity Obstacle

O método Velocity Obstacle (obstáculo de velocidade, em português) baseia-se
na ideia de que cada agente tem uma região em torno dele, chamada de "espaço
de velocidade segura", na qual ele pode se mover sem colidir com outros agentes.
Essa região é definida pelas velocidades relativas permitidas em relação aos outros
agentes.

Nessa abordagem, cada agente avalia as velocidades relativas dos outros agen-
tes e determina os obstáculos de velocidade correspondentes. Esses obstáculos são
representados geometricamente como regiões no espaço de velocidade. O agente
então seleciona uma velocidade de movimento que esteja fora dessas regiões de obs-
táculo de velocidade, permitindo que ele se mova em segurança.

Uma vez que cada agente tenha escolhido uma velocidade segura, ele pode ser
combinado com outras técnicas de planejamento de trajetória para determinar a traje-
tória final do agente, levando em consideração outros fatores, como metas e restrições
do ambiente.

O conceito denominado Velocity Obstacle (VO), baseado na estrutura geométrica
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do Cone de Colisão (CC), foi apresentado pela primeira vez por Fiorini; Shiller (1998).
Na estrutura proposta os obstáculos são observados no plano horizontal local (XY) do
agente, com sua seção transversal plana centrada em p⃗j (Fig. 4):

Figura 4 – Velocity Obstacles

Fonte: (DOUTHWAITE; ZHAO; MIHAYLOVA, 2018)

A estrutura geométrica do cone de colisão para o obstáculo j é definido como CCij

a partir das propriedades da posição relativa dos obstáculos λ⃗ij, raio de configuração
rc e velocidade v⃗j. As velocidades que causam colisão com o obstáculo j são re-
presentadas no espaço de velocidade, substituindo CCij por v⃗j através da soma de
Minkowski (LEE; KIM; ELBER, 1998): V Oij = CCij ⊕ v⃗j .

Na consideração de múltiplos obstáculos, a união de múltiplos V O1:n é adotada.
As velocidades do agente são consideradas válidas se v⃗i,k+1 /∈ V Ok = ∪nj=1V Oj,k.

As velocidades que satisfazem essa restrição descrevem uma trajetória livre de colisão
para o agente i na presença de obstáculos V Oj=1:n para o tempo tk.

O algoritmo Optimal Reciprocal Collision Avoidance (ORCA) é uma estratégia des-
centralizada de prevenção de colisões para vários agentes móveis, baseado no Velo-
city Obstacle - VO.

No ORCA, cada agente produz um obstáculo de velocidade para agentes vizinhos,
com base em suas posições e velocidades. A união desses obstáculos de veloci-
dade compõe o espaço de velocidades possíveis que levarão a uma colisão (o cone
representado na Fig. 5).

A interpretação geométrica dos obstáculos de velocidade é mostrada na Fig. 5.
Observe que V Oγ

A|B e V Oγ
B|A são simétricos na origem. Seja vA e vB atuais as ve-

locidades dos robôs A e B, respectivamente. A definição do obstáculo à velocidade
implica que, se vA − vB ∈ V Oγ

A|B, ou equivalente se vB − vA ∈ V Oγ
B|A, A e B colidi-

rão em algum momento antes do tempo γ se continuarem se movendo na velocidade
atual. Por outro lado, se vA − vB /∈ V Oγ

A|B, os robôs A e B são livres de colisão por
pelo menos γ tempo.
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Figura 5 – ORCA - Representação geométrica para dois robôs móveis
Fonte: (VAN DEN BERG et al., 2011)

De maneira mais geral, X ⊕ Y denota a soma de Minkowski dos conjuntos X e Y ;

X ⊕ Y = {x+ y|x ∈ X, y ∈ Y }, (6)

então, para qualquer conjunto VB, se vB ∈ VB e vA /∈ V Oγ
A|B ⊕ VB, então A e B

permanecem livres de colisões nas velocidades atuais, por pelo menos γ. Isso leva
à definição do conjunto de velocidades de prevenção de colisões CAγ

A|B(VB) para A,
dado que B seleciona sua velocidade de VB, conforme pode ser visto na figura 6:

CAγ
A|B(VB) = {v|v /∈ V Oγ

A|B ⊕ VB} (7)

Chamamos um par de conjuntos VA e VB de velocidades para A e B que evitam
colisão reciprocamente se VA ⊆ CAγ

A|B(VB) e VB ⊆ CAγ
B|A(VA).

Se VA = CAγ
A|B(VB) e V B = CAγ

B|A(VA), dizemos que VA e VB tem reciprocidade
máxima.

Dada a configuração do robô da Fig. 5 (a), o conjunto de velocidades para evitar
colisões (Fig. 6) CAγ

A|B(V B) para o robô A, uma vez que o robô B selecione sua velo-
cidade de algum conjunto VB (cinza escuro), é o complemento da soma de Minkowski
(cinza claro) de V Oγ

A|B (ver Fig. 5 (b)) e VB.
O trabalho de Gyenes; Szadeczky-kardoss (2018) apresentou uma extensão do

método VO, objetivando encontrar, não apenas o caminho mais rápido, mas também
o caminho mais seguro entre a posição atual do robô e sua posição de destino. Na
solução proposta os autores assumem que as velocidades do robô e os obstáculos
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Figura 6 – ORCA - Conjunto de velocidades para evitar colisões
Fonte: (VAN DEN BERG et al., 2011)

são conhecidos ou mensuráveis. O método, denominado Safety Velocity Obstacle
(SVO), utiliza um componente do vetor de velocidade para calcular a velocidade mais
segura a cada etapa de amostragem. Dependendo da necessidade de aplicação, se o
tempo não for a propriedade mais importante, o método pode ser adotado como forma
de garantir maior segurança durante a navegação.

Um estudo realizado por Douthwaite; Zhao; Mihaylova (2018) analisou e comparou
o desempenho de várias abordagens bem estabelecidas para evitar colisões em sis-
temas multiagentes não cooperativos: os algoritmos Velocity Obstacle - VO (FIORINI;
SHILLER, 1998), Reciprocal Velocity Obstacle - RVO, (BERG; LIN; MANOCHA, 2008),
Hybrid Reciprocal Velocity Obstacle - HRVO (SNAPE et al., 2011) e Optimal Recipro-
cal Collision Avoidance - ORCA (VAN DEN BERG et al., 2011) foram estudados em
vários cenários com diferentes níveis de dificuldade.

A análise dos resultados demonstrou que os métodos de prevenção de colisões
reativos podem ser suficientes para evitar várias colisões em ambientes onde não há
comunicação entre agentes. Os métodos HRVO e ORCA demonstraram ser mais efi-
cientes em ambientes densos, ao lidar com incertezas na trajetória. O método ORCA
também apresentou trajetórias mais suaves e melhor tempo de computação.

3.1.1.3 Baseados em Aprendizado

O algoritmo Q-learning, proposto por C. J. Watkins and P. Dayan (WATKINS;
DAYAN, 1992), é um dos algoritmos de aprendizado por reforço mais populares. Sua
aplicação tem sido adotada em diversos trabalhos para o planejamento de diferentes
modelos de navegação e prevenção de colisões (RIBEIRO et al., 2019; OKUYAMA;
GONSALVES; UPADHAY, 2018; MOHANTY et al., 2017).
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O Q-learning foi aplicado com sucesso em estratégias de controle de navegação
utilizando a definição do espaço de estado e o espaço de ação do robô móvel em
ambientes de simulação (YANG; LI, 2017). A solução apresentada utilizou a distância
do robô ao obstáculo e o ângulo do robô em relação ao seu objetivo, enquanto o
processo de aprendizado para a seleção de ações se deu através do mecanismo de
seleção de Boltzmann (CESA-BIANCHI et al., 2017), um método clássico para tomada
de decisão sequencial sob incerteza.

Um sistema baseado na estrutura Deep Q-Network (DQN), foi utilizado para explo-
rar um ambiente com informações obtidas apenas de um sensor RGB-D. O modelo
proposto separa o DQN em duas etapas, constituindo uma estrutura de aprendizado
profundo supervisionado e uma rede Q-learning (TAI; LIU, 2016a). Inicialmente, os
dados de treinamento são pré-processados através de uma rede neural convolucional
de três camadas. Na etapa posterior, o mapa de recursos, extraído do modelo de
aprendizado supervisionado, é utilizado como entrada de dados para a rede, gerando
como saída um conjunto de comandos para determinar a ação do robô.

Uma solução baseada em DRL para navegação autônoma de robôs em ambien-
tes desconhecidos utilizou apenas dados fundidos de um scanner a laser 2D e uma
câmera RGB-D para treinar o agente (SURMANN et al., 2020). As ações de saída de
uma rede neural, usando o algoritmo Asynchronous Advantage Actor-Critic (GA3C),
foram usadas para determinar as velocidades lineares e angulares do robô. A rede do
controlador foi pré-treinada em um ambiente de simulação e implantada no robô real.
Nos testes realizados, os obstáculos foram representados por combinações de círcu-
los e linhas, e a plataforma do robô foi modelada como uma forma circular simples.

Uma extensão do algoritmo Double Q-learning (HASSELT, 2010), denominada
Deep Double Q-Learning (DDQN), incluindo redes neurais profundas, foi capaz de
retornar estimativas de valor bastante precisas durante a tomada de decisão na ta-
refa de navegação autônoma. No trabalho de Xue et al. (2019), um planejador de
movimento reativo, baseado no DDQN, foi projetado para reduzir o atraso da reação
ao detectar uma colisão iminente, apresentando velocidade de resposta superior em
comparação com o algoritmo CADRL, reduzindo também o tempo de treinamento em
relação ao método Deep Deterministic Policy Gradient (DDPG).

Alguns autores sugerem a utilização de um módulo de memória para armazenar
transações de experiência e minimizar o tempo de aprendizado (WU et al., 2017).
Além disso, demonstram que o tempo de computação pode ser reduzido por meio da
remoção de repetições desnecessárias durante a etapa de treinamento da rede.

No trabalho de Rodríguez-teiles et al. (2014) foi aplicada uma versão aprimorada
do algoritmo Simple Linear Iterative Clustering (SLIC) para segmentação de imagens
e prevenção de colisão com obstáculos em tempo real durante a navegação de veícu-
los subaquáticos autônomos (AUVs), utilizando apenas informações visuais. Depois
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disso, um classificador de vizinho mais próximo foi aplicado para separar e detectar
objetos na água. A partir da classificação resultante e a direção e orientação atuais do
robô, a próxima rota livre de colisão (denominada direção de fuga) pode ser estimada.

Em uma abordagem semelhante, Gaya et al. (2016) utilizaram uma rede neural
convolucional, previamente treinada, para estimar mapas de profundidade relativa e
obter direções livres de colisão ao detectar obstáculos na trajetória do veículo autô-
nomo. Ao identificar uma colisão iminente a direção é calculada pela maior média
de distância em uma área previamente determinada com base nas dimensões do
robô e nas características da câmera. Os testes realizados foram bem sucedidos, de-
monstrando que o método pode ser aplicado para a prevenção reativa de colisões e
navegação segura de veículos aéreos não tripulados (UAVs).

Uma solução abordando redes neurais convolucionais para evitar obstáculos du-
rante a navegação de robôs móveis foi proposta por (TAI; LI; LIU, 2016). A partir de
imagens de profundidade brutas, recebidas como a única entrada da rede, são gera-
dos os mapas de recursos, responsáveis pelo fornecimento de informações referentes
à capacidade de travessia e comandos de controle para determinar as ações do robô.
O processo de treinamento foi realizado por um agente humano, responsável por guiar
o robô móvel durante a exploração de um ambiente interno desconhecido, sem colidir
com obstáculos. O robô aprende as experiências e as adapta a novos ambientes.

Outro método pode ser implementado por meio da criação de modelos indepen-
dentes de decisão, utilizando simulações offline repetidas. Essa solução foi proposta
por Long; Liu; Pan (2017), aplicando o aprendizado por reforço para calcular uma
política de prevenção de colisões com base em um modelo de velocidade e direção.

Em Liu; Xu; Chen (2018) foi proposta a utilização de mapas de ocupação local
pré-processados, para a construção de uma política de prevenção de obstáculos. Na
solução apresentada, conjuntos de dados de treinamento, contendo amostragens do
mundo real e mapas gerados artificialmente, foram utilizados para melhorar o desem-
penho dos algoritmos e reduzir o custo computacional.

3.1.2 Métodos Preditivos

Apesar da variedade de aplicações existentes, alguns trabalhos destacam que téc-
nicas de prevenção de obstáculos puramente reativas não são suficientes para solu-
cionar problemas de navegação em ambientes dinâmicos (LORENTE; OWEN; MON-
TANO, 2018; FERRER; SANFELIU, 2018). Para os autores, nesse tipo de cenário, o
robô deve coexistir ou cooperar com humanos ou outros veículos em movimento.

Outros observam que o planejamento do movimento requer a capacidade de prever
a evolução futura dos obstáculos, observando restrições kinodinâmicas para obtenção
de trajetórias viáveis, considerando segurança, manobrabilidade, além de restrições
do robô e do ambiente (VEMULA; MUELLING; OH, 2017). Além disso, o agente deve
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ser capaz de aprender um modelo de interação a partir de dados de trajetória ou
comportamento humano real, modelando velocidades de outros agentes na multidão
ou por meio da identificação da personalidade variável no tempo de cada pedestre
(BERA et al., 2017).

Alguns autores destacam a observância de métodos colaborativos para o cálculo
de uma função de custo capaz de modelar o comportamento humano. A função pode
ser calculada por meio da utilização do aprendizado por reforço inverso (IRL), atra-
vés de dados obtidos a partir da interação humano-robô (HADFIELD-MENELL et al.,
2016), ou com base na aprendizagem de um modelo de comportamento de navegação
cooperativa entre humanos (KRETZSCHMAR et al., 2016).

3.1.2.1 Baseados em Modelos

Uma solução para criação de uma política para prevenção de colisões em um am-
biente descentralizado, foi apresentada por Long et al. (2018). Os dados utilizados no
planejamento foram coletados apenas de sensores laser e aplicados como entrada em
uma rede neural profunda de quatro camadas. Uma extensão do algoritmo de apren-
dizado por reforço, Proximal Policy Optimization (PPO) (SCHULMAN et al., 2017), foi
utilizado para a etapa de treinamento e atualização da política de prevenção de coli-
sões com dados recebidos de cada agente móvel pertencente ao cenário. A política
foi comparada com outros métodos em vários cenários simulados, demonstrando boa
capacidade de generalização em diferentes situações.

No trabalho de Chen et al. (2017), foi implementada uma solução para codificar
comportamentos cooperativos, através do aprendizado de uma função de valor, uti-
lizando um algoritmo denominado CADRL (Collision Avoidance with Deep Reinforce-
ment Learning). Nos testes realizados o algoritmo mostrou-se eficiente, com aplicação
em tempo real, para um sistema descentralizado de dez agentes. Além disso, apesar
de não ser um algoritmo voltado para planejamento de caminhos, nos resultados da
simulação o CADRL apresentou performance superior em relação ao algoritmo ORCA
(Optimal Reciprocal Collision Avoidance)(VAN DEN BERG et al., 2011), na qualidade
dos caminhos percorridos.

Algumas aplicações utilizam a integração do algoritmo Long Short-Term Memory
(LSTM) descrito por (HOCHREITER; SCHMIDHUBER, 1997), para refletir as carac-
terísticas de memória dos seres humanos e acelerar o aprendizado de políticas para
navegação de agentes autônomos (ALAHI et al., 2016; GUPTA et al., 2018).

A construção de uma política de navegação em ambientes dinâmicos desconhe-
cidos, utilizando uma abordagem multiagente, foi apresentada por Sun; Zhai; Qin
(2019). A solução aplicou o aprendizado por reforço profundo, combinando o LSTM
com o algoritmo Proximal Policy Optimization (PPO) e o algoritmo Reciprocal Velo-
city Obstacle (RVO). O algoritmo PPO, baseado no método ator/crítico, foi empregado
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para treinar os agentes a aprender como atingir seus objetivos, enquanto o algoritmo
RVO foi utilizado para evitar colisões durante a tarefa de navegação.

Os testes realizados demonstraram que a solução proposta foi capaz de trei-
nar, simultaneamente, multiagentes com diferentes objetivos, obtendo bons resulta-
dos durante o planejamento de caminhos e apresentando boa capacidade de auto-
aprendizado. Além disso, os autores destacam que o LSTM é capaz de lidar com dois
problemas comuns que podem ocorrer ao treinar redes neurais recorrentes tradicio-
nais tradicionais: Vanishing Gradient Problem e Exploding Gradient Problem.

O LSTM é composto por uma célula de memória, um gate de entrada, um gate de
saída e um gate de esquecimento. A célula lembra valores em intervalos de tempo
arbitrários e os três gate’s são responsáveis pela regulagem do fluxo de informações.

A arquitetura da unidade LSTM pode ser representada conforme a figura 8. Na
qual Ct é o estado da célula, ht é a saída, ft é a ativação do gate de esquecimento, it
é a ativação do gate de entrada e ot é a ativação do gate de saída.

Figura 7 – Long Short-Term Memory
Fonte: (SUN; ZHAI; QIN, 2019)

O gate de esquecimento controla até que ponto um valor permanece na célula e
sua saída é dada por ft, que é representada conforme a equação 8:

ft = σ(Wf · [ht−1, xt] + bf ) (8)

onde σ é a função sigmoide.
O gate de entrada controla até que ponto um novo valor flui para a célula, o que é

dado por:

it = σ(Wi · [ht−1, xt] + bi) (9)

Ct = tanh(WC · [ht−1, xt] + bC) (10)
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O antigo estado da célula (Ct−1) é atualizado pelo novo estado da célula Ct:

Ct = ft ∗ Ct−1 + it ∗ C̃t (11)

O gate de saída controla até que ponto o valor na célula é usado para calcular a
ativação de saída da unidade LSTM, que é dado por:

ot = σ(Wo · [ht−1, xt] + bo) (12)

ht = ot ∗ tanh(Ct) (13)

Uma abordagem orientada a dados para modelar a interação e o movimento de
pedestres, baseada em redes neurais LSTM foi apresentada por Pfeiffer et al. (2018).
Na solução proposta o problema de previsão é tratado como uma tarefa de mode-
lagem de sequência que funde três canais de informação por pedestre: velocidade
atual do pedestre, informações sobre os obstáculos estáticos ao redor do pedestre e
informações sobre os pedestres ao redor. A abordagem proposta foi capaz de prever
interações entre pedestres e evitar obstáculos estáticos e dinâmicos ao mesmo tempo,
superando outras soluções eficientes nos testes realizados.

Sabe-se também que o grande desafio para evitar colisões em ambientes dinâmi-
cos é que o número de outros agentes é variável. Dessa forma, algumas abordagens
tem buscado soluções para aprender uma política de prevenção de colisões sem pre-
ver um modelo comportamental de outros agentes.

A exemplo disso, em Everett; Chen; How (2018) foi apresentado um algoritmo de
prevenção de colisões denominado GA3C-CADRL. A rede foi treinada em simulação
com DRL sem assumir que outros agentes sigam qualquer modelo comportamental
específico. A solução proposta utilizou o algoritmo Long Short Term Memory (LSTM)
na entrada da rede, combinada com uma extensão do algoritmo GA3C, para aprender
com as experiências de vários agentes a cada episódio de treinamento. A estratégia
permite que o algoritmo selecione as ações a serem realizadas com base nas obser-
vações de um número arbitrário de agentes próximos.

3.1.2.2 Baseados em trajetórias

Diferente dos métodos reativos, métodos baseados em trajetória objetivam anteci-
par o movimento de outros agentes para prever a evolução futura dos estados conjun-
tos (caminhos, agente e vizinhos).

Estruturas modernas de aprendizado por reforço profundo e interação humano-
robô (HRI) podem ser utilizadas para codificar o conhecimento prévio do ser humano
(CIOU et al., 2018). O objetivo é introduzir características comportamentais coopera-
tivas às ações do robô, reforçando a segurança da tarefa de navegação autônoma.
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Figura 8 – Previsão de trajetórias
Fonte: (ALAHI et al., 2016)

Esses comportamentos podem ser usados para previsão de caminhos, assim como
para calcular distâncias proxêmicas para navegação social e evitar colisões.

Alguns trabalhos buscam classificar automaticamente o comportamento dinâmico
ou a personalidade de pedestres com base em seus movimentos na multidão. O
trabalho de Bera; Randhavane; Manocha (2017) baseou-se na teoria dos traços de
personalidade para aprender dinamicamente o comportamento de todos os pedestres
em uma determinada cena e calcular um modelo de movimento para um pedestre.
Esse modelo é combinado com as características globais da multidão e utilizados para
calcular os padrões e a dinâmica do movimento, que também podem ser aplicados
para prever o movimento e o comportamento da multidão.

Um método, baseado em agente, para previsão de trajetórias de pedestres utili-
zando o raciocínio velocidade-espaço, foi apresentado por Kim et al. (2015). A técnica
proposta não depende de conhecimento prévio do ambiente e foi capaz de aprender
modelos de movimento para prever trajetórias futuras. Segundo os autores, a solução
pode ser integrada a outras técnicas de navegação local para melhorar as taxas de
conclusão de tarefas e reduzir instâncias relacionadas ao problema de congelamento
do robô.

Em Mujahed; Mertsching (2017) é apresentada uma solução para evitar obstáculos
em tempo real, denominada Admissible Gap (AG). Na solução proposta um intervalo é
admissível se for possível encontrar um comando de movimento, que uma vez execu-
tado, o robô seja capaz de atravessar com segurança por esse intervalo, respeitando
suas restrições de forma e movimento. A abordagem proposta considera diretamente
a forma do robô e as restrições cinemáticas. A ideia básica consiste em descobrir um
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conjunto de espaços visíveis a partir da localização atual do robô e selecionar aquele
que estiver mais próximo ao seu objetivo. Os experimentos realizados demostraram
que a abordagem AG é capaz de gerar trajetórias eficientes, no entanto não foram
realizados teste em ambientes com obstáculos em movimento.

3.1.3 Detecção de Pessoas

Um sistema de aprendizado online de classificadores humanos por robôs de servi-
ços móveis com sensores 3D LiDAR, utilizou um algoritmo de agrupamento em tempo
real para segmentação de dados de nuvem de pontos 3D e obteve bons resultados
durante a navegação com pessoas se movendo em um grande espaço público interno
(YAN; DUCKETT; BELLOTTO, 2020). O sistema utilizou perfis humanos em nuvens de
pontos com mudanças de distância, aumentando a sensibilidade do classificador para
amostras distantes do robô. Segundo os autores o agrupamento de profundidade é um
método rápido e com baixa demanda computacional. Além disso, destacam que a de-
tecção humana pode ser melhorada combinando rastreamento e aprendizado online
com um robô móvel, mesmo em ambientes altamente dinâmicos, e que tal abordagem
fornece resultados comparáveis ou superiores em relação à métodos anteriores.

Um método para detecção de pernas, baseado em Filtros de Kalman, foi capaz
de rastrear pessoas e seus movimentos, evitando obstáculos durante a navegação
(ADIWAHONO et al., 2017). A abordagem proposta utilizou um scanner a laser 2D,
alimentado por um algoritmo de rastreamento e duas camadas de filtro de Kalman
para garantir a robustez do rastreamento, mesmo diante da proximidade de outras
pessoas e da perda temporária da linha de visão para os grupos de pernas. Segundo
os autores a solução não requer informações prévias de mapas e mostrou-se eficiente
em qualquer condição de iluminação.

Um sistema para detecção e rastreamento de pessoas baseado em uma rede neu-
ral convolucional, treinada offline, foi capaz de rastrear pares de pernas em um ambi-
ente desordenado, utilizando como entrada um mapa de ocupação construído a partir
de medições do sensor LiDAR (GUERRERO-HIGUERAS et al., 2019). Segundo os
autores, os resultados obtidos apresentaram melhor precisão do que o Leg Detector
(LD), a solução padrão para robôs baseados no Robot Operating System (ROS)4.

Um estudo comparativo sobre cinco algoritmos independentes baseados em
aprendizado profundo (R-FCN, Mask R-CNN, SSD, RetinaNet, YOLOv4) para detec-
ção de objetos rodoviários, utilizou o conjunto de dados BDD100K para treinar, validar
e testar os modelos individuais de aprendizado profundo para detectar quatro objetos
de estrada: veículos, pedestres, sinais de trânsito e semáforos (HARIS; GLOWACZ,
2021). Seus pontos fortes e limitações foram analisados com base em parâmetros
como precisão (com/sem oclusão e truncamento), tempo de computação e curva de

4http://www.ros.org/
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recuperação de precisão. Os resultados experimentais mostraram que o YOLOv4 no
modelo de detecção de um estágio atinge a maior precisão de detecção para detecção
de alvo em todos os níveis, enquanto no modelo de detecção de dois estágios, Mask
R-CNN mostrou melhor precisão de detecção sobre RetinaNet, R-FCN, e SDD.

Um sistema baseado em aprendizagem profunda, com detector de distância para
cadeira de rodas e andador, foi estendido para a tarefa de detecção de pessoas, cons-
tituindo, segundo os autores, o maior conjunto de dados publicamente disponível para
detecção de pessoas em dados de alcance 2D (BEYER; HERMANS; LEIBE, 2017;
BEYER et al., 2018). A abordagem consistiu em três etapas: pré-processamento, que
corta uma janela reamostrada em torno de cada ponto do laser e calcula os locais
de detecção em um sistema de coordenadas local; uma CNN que classifica essas
janelas e prevê os locais de detecção relativos e; finalmente, um esquema de vota-
ção e supressão não máxima transformando previsões em detecções. A análise dos
resultados demonstrou que o pré-processamento de profundidade e o esquema de
votação adotados, permitem que as CNNs superem amplamente as linhas de base de
detecção de CNN ingênuas e obtenham resultados de última geração em comparação
à métodos anteriores.

3.2 Considerações finais

Este capítulo apresentou os trabalhos relacionados ao tema desta pesquisa. Des-
ses, 55% abordam o uso de métodos reativos para prevenção de colisões durante
a tarefa de navegação e 45% utilizam métodos preditivos. Destaca-se também um
grande avanço do uso de técnicas baseadas em aprendizado, especialmente após o
ano de 2017, correspondendo à 61% dos trabalhos estudados.

Percebe-se também um significativo avanço nas pesquisas voltadas para a nave-
gação social, abordando o uso do aprendizado por reforço e métodos de análise com-
portamental de seres humanos. Esses trabalhos reforçam a necessidade da adoção
de políticas para prevenção de colisões e combinação de técnicas que proporcionem
uma navegação eficiente, sem colocar em risco as pessoas em torno do robô.

Com relação à detecção de pessoas, percebe-se que soluções baseadas na iden-
tificação de pernas podem enfrentar alguns desafios e problemas específicos, que
podem afetar a precisão e o desempenho geral do sistema. Em cenários populosos,
as pernas das pessoas podem ser parcialmente ocultas por objetos ou outras pes-
soas, resultando em falsos negativos ou detecções imprecisas. Além disso, pernas
podem aparecer em diferentes escalas e distâncias da câmera, o que requer técnicas
de detecção robustas que possam lidar com essas variações. Nesse contexto, solu-
ções baseadas em arquiteturas de detecção de estágio único têm apresentado bons
resultados, emergindo como soluções eficientes e que exigem menor custo computa-
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cional para aplicação ao problema em questão.
Apesar da quantidade de trabalhos existentes, a revisão da literatura acerca do

tema demonstra que a navegação de robôs autônomos em cenários compartilhados
com humanos permanece como um problema em evidência. A maioria das aborda-
gens desconsideram que o número de agentes é uma variável dinâmica, ou conside-
ram que a trajetória ou velocidade dos demais agentes são conhecidas. Além disso,
a maioria das soluções propostas consideram as pessoas como simples obstáculos
móveis, o que pode afetar a segurança da navegação em aplicações do mundo real.

Alguns autores destacam que nesse tipo de cenário o robô deve ter a capaci-
dade de navegar sem o conhecimento prévio do ambiente ou das ações dos demais
agentes e obstáculos. Dessa forma, a análise dos trabalhos relacionados ao tema
desta pesquisa evidencia que, para a navegação autônoma em ambientes dinâmicos,
compartilhados com humanos, alguns pontos essenciais devem ser observados: a) A
necessidade de uma política de prevenção de colisões, por meio de comportamentos
reativos ou preditivos; b) O cálculo de uma trajetória viável, rápido e capaz de alterar
a trajetória do robô, de acordo com informações atualizadas do ambiente e; c) A ca-
pacidade de identificar pessoas para melhorar a tomada de decisão e realizar a tarefa
de navegação de forma mais segura.



4 ABORDAGEM PROPOSTA

Aplicar o aprendizado por reforço em robótica móvel requer um ambiente de simu-
lação, definição adequada de estado, ações e recompensas, seleção de algoritmos de
aprendizado, etapas de treinamento, além de avaliação contínua do desempenho do
agente.

Neste trabalho foi utilizado o ambiente desenvolvido pela Robotis1 para o treina-
mento e teste do agente em ambientes simulados. O ambiente utilizado tem como
principal característica a fácil integração com o ROS e o simulador Gazebo, permi-
tindo a implementação de estruturas de aprendizado por reforço e testes em diferentes
cenários.

Na solução proposta, o algoritmo Deep Deterministic Policy Gradient (DDPG), ori-
ginalmente proposto para resolver o problema do pêndulo invertido2, foi combinado
com técnicas de visão computacional para detecção de pessoas, resultando em uma
abordagem para navegação autônoma em cenários complexos, doravante denomi-
nada Social Attention Navigation - DDPG (SAN-DDPG). Para validação da solução
proposta foram conduzidos testes comparativos utilizando o Deep Q-Network (DQN),
um algoritmo amplamente utilizado para navegação autônoma em ambientes internos.

Este capítulo apresenta de forma detalhada a abordagem proposta e está orga-
nizado da seguinte forma: na seção 4.1 são descritos os recursos de software e
hardware utilizados; a seção 4.2 apresenta a plataforma robótica simulada para a
realização dos experimentos e aplicação dos testes; a seção 4.3 apresenta o sistema
utilizado para detecção de pessoas; a seção 4.4 descreve o algoritmo de aprendizado
utilizado nesta abordagem; a seção 4.5 descreve a arquitetura do ambiente de apren-
dizado; por fim, a seção 4.6 apresenta os ambientes de treinamento, desenvolvidos
no simulador Gazebo para aplicação dos experimentos e análise dos resultados.

1https://emanual.robotis.com/docs/en/platform/turtlebot3/machine_learning
2https://blog.paperspace.com/physics-control-tasks-with-deep-reinforcement-learning/
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4.1 Ambiente de simulação

4.1.1 Software

As principais ferramentas de software utilizadas neste trabalho foram o ROS (Me-
lodic Morenia3) e o simulador Gazebo.

O ROS é uma estrutura de software de código aberto para programação de robôs
que fornece uma camada de abstração na qual os desenvolvedores podem criar apli-
cativos de robótica sem se preocupar com a camada de hardware (KOUBÂA et al.,
2017). O software é organizado em pacotes oferecendo boa modularidade e reusa-
bilidade, além de disponibilizar diferentes ferramentas de software para visualizar e
depurar dados do robô. O núcleo do framework ROS é um middleware de passagem
de mensagens no qual os processos podem se comunicar e trocar dados entre si,
localmente ou em rede.

O projeto ROS foi iniciado em 2007 na Universidade de Stanford sob o nome Swit-
chyard. Mais tarde, em 2008, o desenvolvimento foi realizado por uma start-up de
pesquisa robótica chamada Willow Garage. O grande desenvolvimento no ROS acon-
teceu na Willow Garage. Em 2013, os pesquisadores da Willow Garage formaram a
Open Source Robotics Foundation (OSRF)4, responsável por manter o sistema até os
dias atuais.

Gazebo5 é um simulador de robôs 3D de código aberto, originalmente desenvolvido
pela OSRF, tornando-se parte do projeto ROS, posteriormente.

O Gazebo permite simular ambientes complexos e interações entre robôs, senso-
res, atuadores e objetos em um ambiente virtual bastante realista. Entre as principais
características do simulador, destacam-se:

• Modelagem de Robôs: é possível modelar robôs com detalhes precisos, in-
cluindo geometria, cinemática, dinâmica e sensores. O Gazebo permite a cri-
ação de modelos baseados em robôs reais ou a criação de modelos personali-
zados para fins de simulação;

• Ambientes 3D: O simulador oferece uma representação 3D detalhada dos ambi-
entes virtuais, permitindo a criação de cenários realistas para testar e avaliar o
comportamento de robôs em diferentes cenários;

• Simulação Física: O simulador oferece um mecanismo de simulação física que
inclui colisões, forças, atrito e outras propriedades físicas, permitindo que os
robôs se movam e interajam com o ambiente de forma mais realista;

3http://wiki.ros.org/melodic
4https://www.openrobotics.org/
5http://gazebosim.org/
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• Sensores e Atuadores: Gazebo oferece suporte a uma variedade de sensores e
atuadores, como câmeras, sensor laser LiDAR (Light Detection and Ranging),
sensores de proximidade, juntas articuladas, rodas, entre outros, permitindo
simular facilmente o funcionamento de sistemas de percepção e controle dos
robôs;

• Integração com ROS: Sua integração com o ROS permite combinar a simulação
com o desenvolvimento e teste de algoritmos de controle e sistemas de percep-
ção em um ambiente estável e de fácil configuração.

4.1.2 Hardware

Para realização dos experimentos foi utilizado um computador desktop com 16Gb
de memória RAM, SSD de 500Gb, Processador 11th Gen Intel® Core™ i5-11400
2.60GHz com 06 núcleos, Sistema operacional Ubuntu 18.04.6 LTS (Bionic Beaver)
64 bits e GPU NVIDIA TITAN de 12GB.

4.2 Plataforma Robótica

A pesquisa relacionada a este trabalho teve início utilizando a plataforma robótica
The Home-Environment Technological-Agent (Theta), um robô de serviço projetado
para ser um sistema autônomo capaz de resolver tarefas domésticas.

A base do Theta é composta por uma cadeira de rodas, adaptada pela Freedom
Veículos Elétricos LTDA. Sua estrutura foi modificada e equipada com câmera Kinect
na parte superior para realização de visão computacional, microfone e alto-falante
para interação humano-robô, sensor LiDAR (Light Detection & Ranging) para mape-
amento e localização, hodômetros para realização de movimentos e um monitor de
vídeo para representação de expressões faciais (Figura 9).

Figura 9 – The Home-Environment Technological-Agent (Theta)

Fonte: Autor
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O Theta possui vários sensores que auxiliam nas tarefas domésticas e foi cons-
truído para atender alguns dos desafios clássicos do LARC/CBR @Home. O projeto
é continuamente aprimorado, visando obter melhor desempenho nas tarefas, dentre
as quais destaca-se a navegação autônoma em ambientes dinâmicos, compartilhados
com humanos.

Devido à pandemia de Covid-19 as atividades de pesquisa em ambiente real fo-
ram suspensas. Dessa forma, os experimentos e testes passaram a ser realizados
exclusivamente em ambiente simulado.

Assim, a plataforma robótica utilizada neste trabalho é um modelo simulado de uma
cadeira de rodas motorizada. O objetivo é realizar um estudo de caso para avaliar a
viabilidade de aplicação da solução proposta ao problema em questão.

Figura 10 – Simulação da cadeira de rodas

Fonte: Autor

A realização de experimentos e testes aplicados ao modelo específico permitirá
uma análise mais detalhada do comportamento do robô, propiciando identificar pro-
blemas e ajustes necessários para uma navegação mais eficiente e segura.

(a) Sensores Infravermelhos (b) Sensor LiDAR
Figura 11 – Sensores infravermelhos e sensor LiDAR

Fonte: Autor

O modelo de cadeira de rodas 3D usado na simulação foi adaptado do projeto
desenvolvido por Patil (2021). A versão original, com tração dianteira, foi adaptada
para uma cadeira de rodas com tração traseira. Essa modificação foi necessária para
implementação de um modelo mais próximo ao Theta.
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Além da modificação na tração, foi necessário realizar ajustes no sensor laser de-
vido à movimentação do caster e das rodas dianteiras. Também foram adicionados
quatro sensores infravermelhos, dois na lateral esquerda e dois na lateral direita da
cadeira, para detecção de colisões durante as etapas de treinamento (Fig. 11a).

Os sensores infravermelhos foram utilizados apenas para detecção de colisões
com obstáculos ou com as paredes em torno do robô. Os dados de distância do robô
em relação aos objetos que compõem o ambiente são obtidos do sensor LiDAR (Fig.
11b) e compõem as informações de estado para o algoritmo de aprendizado.

4.3 Detecção de pessoas

Para a detecção de pessoas, foi adotado o DarknetRos(BJELONIC, 2016–2018),
um pacote disponível no ROS, projetado para detecção de objetos em imagens de
câmera. O DarknetRos utiliza o You Only Look Once (YOLO), um sistema de visão
computacional que pode identificar com precisão múltiplos objetos em uma única ima-
gem, comparável ao RetinaNet, porém com velocidade de inferência mais rápida em
comparação com outros sistemas avançados como SSD, R-FCN (Region-based Fully
Convolutional Networks) e FPN (Feature pyramid networks) FRCN (Faster Region ba-
sed convolutional neural networks) (REYES et al., 2019). Sua velocidade o torna
altamente adequado para detecção de objetos em tempo real, o que é essencial em
sistemas como robôs de serviço.

As imagens são capturadas usando um sensor Kinect acoplado a uma montagem
no encosto da cadeira de rodas (Fig. 12a e 12b).

(a) Detecção de pessoas próximas (b) Detecção de pessoas distantes
Figura 12 – Detecção de pessoas

Fonte: Autor

Nos testes realizados, o DarknetRos processou as imagens a mais de 30 FPS (Fra-
mes per Second) e alcançou uma precisão de 90% a 100% na detecção de pessoas
no ambiente simulado.
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4.4 Deep Deterministic Policy Gradient

Deep Deterministic Policy Gradient (DDPG) é um algoritmo proposto por Lillicrap
et al. (2015) que utiliza uma arquitetura actor-critic baseada no algoritmo Deterministic
Policy Gradient (DPG) (SILVER et al., 2014), livre de modelo e off-policy, com apro-
ximadores de função profunda capazes de aprender políticas em espaços de ação
contínuos e de alta dimensão.

Uma das principais características do DDPG é a sua abordagem baseada em po-
líticas, que estima diretamente uma política determinística mapeando estados para
ações. Essa política é representada por uma rede neural, conhecida como ator, que é
treinada para fornecer a melhor ação possível para cada estado.

O pseudocódigo a seguir descreve o algoritmo DDPG, conforme proposto por Lilli-
crap et al. (2015):

Algorithm 2 DDPG algorithm

Randomly initialize critic network Q(s, a|θQ) and actor µ(s|θµ) with weights θQ and θµ.
Initialize target network Q′ and µ′ with weights θQ

′ ← θQ, θµ
′ ← θµ

Initialize replay buffer R
for episode = 1,M do

Initialize a random process N for action exploration
Receive initial observation state s1

for t = 1, T do
Select action at = µ(st|θµ) +Nt according to the current policy and exploration noise
Execute action at and observe reward rt and observe new state st+1

Store transition (st, at, rt, st+1) in R

Sample a random minibatch of N transitions (si, ai, ri, si+1) from R

Set yi = ri + γQ′(si + 1, µ′(si + 1|θµ′
)|θQ′

)

Update critic by minimizing the loss: L = 1
N

∑
i(yi −Q(si, ai|θQ))2

Update the actor policy using the sampled policy gradient:

∇θµJ ≈
1

N

∑
i

∇aQ(s, a|θQ)|s = si, a = µ(si)∇θµµ(s|θµ)|si

Update the target networks:

θQ
′ ← τθQ + (1− τ)θQ

′

θµ
′ ← τθµ + (1− τ)θµ

′

end for
end for

A função de ator parametrizada µ(s|θµ), especifica a política atual mapeando de-
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terministicamente estados para uma ação específica. Nesse caso, a saída da política
de rede é um valor que corresponde à ação a ser executada no ambiente.

Além do ator, o DDPG também utiliza uma rede neural chamada crítico, que es-
tima o valor Q para o estado atual e ação selecionada pelo ator. O crítico Q(s, a) é
aprendido utilizando a equação de Bellman como no Q-learning. O ator é atualizado
seguindo a regra de cadeia aplicada ao retorno esperado da distribuição inicial J em
relação aos parâmetros do ator.

Segundo os autores, um desafio ao usar redes neurais para aprendizado por re-
forço é que a maioria dos algoritmos de otimização assume que as amostras são
distribuídas de forma independente e idêntica. No entanto, quando as amostras são
geradas a partir da exploração sequencial em um ambiente, essa suposição não é
mais válida. Além disso, para fazer uso eficiente das otimizações de hardware, os
autores destacam que é essencial aprender em minilotes, em vez de online.

O DDPG utiliza um buffer de repetição para resolver esses problemas. O buffer de
repetição é um cache R de tamanho finito. As transições são amostras obtidas do am-
biente, de acordo com a política de exploração, resultando em uma tupla (st, at, rt, st+1)

armazenada em R. Quando o buffer está cheio, as amostras mais antigas são des-
cartadas. A cada passo de tempo, o ator e o crítico são atualizados amostrando um
minilote uniformemente de R. Como o DDPG é um algoritmo fora da política, o espaço
de R pode ser grande, permitindo que o algoritmo se beneficie do aprendizado em um
conjunto de transições não correlacionadas.

Outra vantagem do DDPG é que ele utiliza atualizações de destino “suaves” em
vez de copiar diretamente os pesos da rede. Para calcular os valores de destino
são criadas cópias das redes ator Q(s, a|θQ) e crítico µ(s|θµ), respectivamente. Os
pesos dessas redes de destino são então atualizados fazendo com que rastreiem
lentamente as redes aprendidas: θ′ ← τθ + (1 − τ)θ′ onde τ ≪ 1. Essa característica
proporciona que os valores de destino mudem lentamente, melhorando a estabilidade
do aprendizado.

Para os autores um grande desafio da aprendizagem em espaços de ação con-
tínua é a exploração. Uma vantagem dos algoritmos off-policies como o DDPG é a
possibilidade de tratar o problema de exploração independentemente do algoritmo de
aprendizado. No DDPG a política de exploração µ′ é construída adicionando ruído à
um processo N da política do ator: µ′(st) = µ(st|θµt ) +N

O DDPG também utiliza a técnica de gradiente ascendente para ajustar os parâme-
tros do ator e do crítico. O ator é atualizado procurando maximizar o valor Q estimado
pelo crítico para a ação selecionada.

∇θµJ ≈
1

N

∑
i

∇aQ(s, a|θQ)|s = si, a = µ(si)∇θµµ(s|θµ)|si (14)
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O crítico, por sua vez, é atualizado procurando minimizar a diferença entre o valor
Q estimado e o valor Q real calculado com base na recompensa obtida e nos valores
Q do próximo estado.

L =
1

N

∑
i

(yi −Q(si, ai|θQ))2 (15)

O objetivo é melhorar a medida de desempenho J para acompanhar a maximiza-
ção da função de valor Q, minimizando a perda de diferença temporal como aconteceu
com o Deep Q-Network para jogos de Atari.

Uma diferença fundamental entre o DDPG e o DQN é o uso de uma política deter-
minística em vez de uma política estocástica. Enquanto o DQN lida com ações incer-
tas e estocásticas, o DDPG assume que há uma ação determinística ótima para cada
estado. Isso simplifica o processo de tomada de decisão, permitindo que o agente
aprenda diretamente uma política determinística sem a necessidade de exploração
estocástica.

4.5 Configuração do Ambiente

Da mesma forma que em abordagens tradicionais de RL, o agente autônomo pro-
posto aqui, controlado pelo algoritmo DDPG, observa um estado st do ambiente em
um determinado momento t do tempo. Durante a interação entre o agente e o ambi-
ente, ao executar uma ação no estado st, ambos fazem uma transição para um novo
estado st+1.

O estado é representado por uma estatística do ambiente e deve conter as infor-
mações necessárias para que o agente tome a melhor ação.

A sequência ótima de ações é determinada pelas recompensas fornecidas pelo
ambiente. Ao fazer a transição para um novo estado, o ambiente fornece uma recom-
pensa escalar rt+1 ao agente como feedback.

As ações do sistema de aprendizado têm influência nas próximas entradas e po-
dem afetar não apenas a recompensa imediata, mas também a situação subsequente
e, consequentemente, todas as recompensas subsequentes.

A abordagem consiste em um problema sequencial de tomada de decisão, que
pode ser formulado como um Processo de Decisão de Markov (MDP), descrito por
Xue et al. (2019) da seguinte forma: M = (S,A,R, P, γ), onde S é o espaço de esta-
dos, A é o espaço de ação, R é a função de recompensa, P é o modelo de transição
de estado e γ é um fator de desconto. Os principais elementos que compõem o ambi-
ente aqui representado utilizam os parâmetros de configuração adotados pela Robotis,
conforme descrito a seguir:
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4.5.1 Espaço de estados

O estado representa as informações sobre o ambiente que são relevantes para o
agente. Refere-se a uma representação do ambiente em um determinado instante de
tempo, capturando as informações necessárias para a tomada de decisão e determi-
nação das próximas ações.

A configuração do ambiente utilizado neste trabalho compreende as seguintes in-
formações:

• Odometria: Utilizada para retornar os valores relacionados à posição e orien-
tação (pose) do robô no ambiente, além de fornecer dados para representação
de orientação em um conjunto de ângulos de Euler para o cálculo do ângulo de
movimento angular do robô (yaw).

• Sensoriamento: neste trabalho são utilizadas 24 amostras do sensor LiDAR. Os
dados coletados são utilizados para o cálculo da distância entre o robô e os
obstáculos em seu entorno e também são fornecidos como dados de entrada
para o algoritmo de aprendizado, juntamente com outras informações obtidas do
ambiente.

• Ângulo do robô em relação ao objetivo: Corresponde à diferença entre dois ân-
gulos, o ângulo de destino e o ângulo de guinada do robô.

θ = θgoal − θyaw

onde:

θ representa o ângulo de orientação, θgoal representa o ângulo de destino dese-
jado e θyaw representa o ângulo de guinada atual. O resultado corresponde a
diferença angular necessária para que o agente alcance o ângulo desejado, re-
tornando a direção a ser seguida para alinhar-se com o ângulo do objetivo. Por
exemplo, se o valor de θ for positivo, significa que o agente precisa girar no sen-
tido horário, enquanto um valor negativo indica a necessidade de girar no sentido
anti-horário.

• Distância atual até o objetivo: Utilizado para calcular a distância euclidiana entre
a posição atual do robô e a posição do objetivo. Esse valor é utilizado no cálculo
da recompensa, servindo para estimular o agente a seguir em direção ao objetivo
e também para identificar quando o agente atinge o objetivo.

dc =
√

(xg − xp)2 + (yg − yp)2

onde:
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xg e yg são as coordenadas x e y do objetivo desejado, respectivamente. xp e yp

são as coordenadas x e y da posição atual do robô.

• Menor distância até um obstáculo: Corresponde ao valor mínimo encontrado em
um conjunto de leituras do sensor LiDAR. É utilizado para determinar a distância
entre o robô e o obstáculo mais próximo, servindo também para estimular o
agente a manter uma distância segura dos obstáculos durante a navegação. Na
configuração adotada para este trabalho, o agente é penalizado ao manter uma
distância menor do que um limiar pré-estabelecido.

rmin = min(r)

onde:

rmin representa a menor distância encontrada no conjunto de leituras do sensor
LiDAR, representado por r.

• Ângulo do obstáculo mais próximo: Corresponde ao índice do menor valor em
um conjunto de leituras do sensor LiDAR. É utilizado para determinar o ângulo
do obstáculo mais próximo em relação ao robô.

θobs = argmin(r)

onde:

θobs representa o ângulo no qual a menor distância é encontrada no conjunto de
leituras do sensor LiDAR, representado por r.

• Detecção de pessoas: Corresponde ao número de pessoas detectadas em um
determinado instante de tempo durante a navegação. Essa informação é utili-
zada em conjunto com a posição dos obstáculos (ângulo e distância) para o cál-
culo da recompensa, objetivando estimular um comportamento seguro durante a
navegação.

• Distância de colisão: Utilizada para identificar quando o robô efetua uma colisão.
Essa informação é obtida a partir da leitura dos dados fornecidos pelo sensor
LiDAR e dos sensores infravermelhos. Uma colisão é identificada quando os
sensores detectam uma distância menor do que um limiar pré-estabelecido.

4.5.2 Espaço de ação

O espaço de ação define as ações que o robô pode executar em um determinado
momento. As ações representam os movimentos que o robô irá executar com base
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em seu estado atual no ambiente. Elas correspondem às velocidades angulares do
robô e são determinadas pelo algoritmo de aprendizado por reforço (Tabela 2).

Tabela 2 – Ações
Ação Velocidade angular (rad/s)

0 -1.5
1 -0.75
2 0
3 0.75
4 1.5

Se a ação retornada pelo algoritmo for 2, a velocidade angular será 0. Portanto, o
robô se moverá em linha reta de acordo com a velocidade linear configurada para o
ambiente. Caso contrário, assumirá velocidades angulares, que podem ser negativas
(esquerda) ou positivas (direita).

Quando o agente realiza uma ação em um determinado estado, ele recebe uma
recompensa que pode ser negativa ou positiva.

Na configuração adotada por este trabalho, quando o agente se aproxima de uma
certa distância do objetivo desejado, a recompensa acumulada é positiva, e quando
atinge o objetivo o agente recebe uma recompensa maior. Da mesma forma, se o
agente se afasta do objetivo desejado, a recompensa acumulada é negativa, e ele
recebe uma recompensa negativa significativa por colidir com um obstáculo.

Nas etapas de treinamento com pessoas paradas e em movimento, o agente re-
cebe uma recompensa negativa sempre que sua distância para uma pessoa detectada
for menor que a distância mínima especificada. O objetivo é manter uma distância se-
gura entre o robô e as pessoas durante a tarefa de navegação.

As configurações foram ajustadas de acordo com os objetivos de cada etapa de
treinamento, visando avaliar a capacidade de aprendizado do agente em diferentes
cenários e situações.

4.5.3 Recompensa

A recompensa é uma medida usada para fornecer feedback ao agente sobre a
qualidade de suas ações. É utilizada para recompensar o robô por atingir o objetivo
ou aplicar penalidades por aproximação ou colisões com obstáculos.

Na abordagem aqui proposta, a recompensa consiste em cinco partes, e pode ser
representada conforme a seguir:

R = (Rd ·Rθ) +Ra +Rc +Rs

• Rd = 2(
dc
da

): utilizada para ajustar a taxa de distância com base na proximidade
atual em relação ao objetivo. Quanto mais próxima a distância atual estiver da
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distância do objetivo, maior será o valor da taxa de distância. Por outro lado, se a
distância atual for grande em relação à distância do objetivo, a taxa de distância
será menor, onde:

dc = representa a distância atual até o objetivo;
da = representa a distância absoluta até o objetivo.

Rd =



if dc < da

rd > 2

else

1 < rd ≤ 2

• Rθ = 5 ∗ 1−θ: recompensa angular, assim como Rd, é utilizada para estimular o
robô a realizar ações que maximizem a recompensa, onde:

θ representa o ângulo do robô até o objetivo;

Rθ =



if − 1
2
π < θ < 1

2
π

Rθ ≥ 0

else

Rθ < 0

• Ra: indica a penalidade por aproximação de obstáculos ou pessoas. É obtido da
seguinte forma:

Ra =



if hd > 0 and da < damin

Ra = hd · (−k)

elif hd == 0 and da < damin

Ra = −k

0 otherwise

da e damin representam, respectivamente, a distância atual entre o robô e o obs-
táculo e a distância mínima de segurança entre o robô e o obstáculo;
hd representa o número de pessoas detectadas em determinado instante;
k é um valor atribuído para penalizar o robô;
Ra representa o valor total da penalidade aplicada, tomando-se por base o nú-
mero de detecções de pessoas.

• Rc: recompensa por colisão. Representa um valor negativo, dado quando o
robô colide com algum obstáculo ou pessoa. Esse valor pode ser ajustado de



64

acordo com a complexidade do ambiente e serve para estimular o agente a evitar
colisões. Na configuração utilizada neste trabalho ao colidir o agente recebe a
recompensa negativa e o episódio é encerrado.

• Rs: recompensa de sucesso. Se o agente chegar ao objetivo ele recebe uma
recompensa positiva, caso contrário, não é recompensado. O valor de Rs é
pré-definido na configuração do ambiente e é obtido da seguinte forma:

Rs =

Rs if reach goal

0 else

Para evitar que o agente permaneça por um longo tempo sem atingir o objetivo
um tempo máximo de navegação é determinado (t). Quando o episódio atinge o
tempo determinado por t, o episódio é encerrado e é iniciado um novo episódio
de treinamento.

4.5.4 Aplicação do Algoritmo DDPG

A rede neural do algoritmo Deep Deterministic Policy Gradient (DDPG) é composta
por duas partes principais: o ator (actor ) e o crítico (critic). Essas duas partes tra-
balham em conjunto para aprender e otimizar uma política determinística que guia o
agente a tomar ações no ambiente (Fig. 13).

Figura 13 – Arquitetura Actor-critic (AC)

Fonte: (ZENG; WANG; GE, 2020)

O ator é responsável por mapear os estados do ambiente para ações. A rede
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possui três camadas lineares, onde a primeira camada recebe o estado como entrada,
a segunda camada recebe a saída da primeira camada, e a terceira camada gera as
ações escolhidas pelo ator. A entrada da rede são os estados do ambiente, conforme
detalhado na seção 5.1.1 e descritas a seguir:

Neste trabalho a entrada da rede é dada por: [ lr, θ, dc, rmin, θobs, hd ] onde:

• lr: representa o número de amostras do sensor LiDAR. Nos experimentos reali-
zados foram utilizadas 24 amostras, porém podem ser utilizados valores diferen-
tes, bastando ajustar os parâmetros do algoritmo;

• θ: é o ângulo do robô em relação ao objetivo;

• dc: é a distância atual até o objetivo;

• rmin: corresponde à distância do obstáculo mais próximo;

• θobs: corresponde ao ângulo do obstáculo mais próximo em relação ao robô;

• hd: corresponde ao número de pessoas detectadas;

O crítico, por sua vez, tem como objetivo estimar a função Q (valor de ação) para o
par estado-ação. A rede crítico possui três camadas lineares, onde a primeira camada
recebe o estado como entrada, a segunda camada combina as informações do estado
e da ação, e a terceira camada gera uma estimativa do valor Q para o par estado-ação.
A função de ativação ReLU é aplicada após cada camada linear. O objetivo do crítico é
aprender uma função Q que forneça uma boa estimativa do retorno esperado, levando
em consideração as ações escolhidas pelo ator.

Durante o treinamento do DDPG, o agente interage com o ambiente, observando
estados, tomando ações com base nas políticas aprendidas e recebendo recompen-
sas. Essas experiências são armazenadas em um buffer de repetição (SCHAUL et al.,
2015), que consiste em uma memória para armazenar uma coleção de transições pas-
sadas. Periodicamente, amostras são retiradas desse buffer para o treinamento da
rede neural do ator e do crítico.

A otimização dos pesos da rede neural é realizada utilizando a técnica de gradiente
ascendente para ajustar os parâmetros do ator e do crítico. Durante o treinamento,
a diferença entre o valor estimado pelo crítico e o retorno real obtido é usada para
calcular a perda (loss) e atualizar os pesos da rede.

A saída da rede são as ações escolhidas pelo agente. Conforme descrito na seção
5.2.2, elas representam os movimentos que o robô irá executar com base em seu
estado atual no ambiente e correspondem às velocidades angulares do robô (Fig. 14).



66

Figura 14 – Ações - Velocidade angular

Fonte: Autor

A função de ativação final do ator é escolhida de acordo com o intervalo de ação
requerido pelo ambiente. O espaço de ação corresponde a um espaço tridimensional
onde cada ação é um valor contínuo dentro de um limiar pré-estabelecido. O objetivo
do ator é aprender uma política determinística que maximize a recompensa esperada.

4.6 Ambientes de Treinamento

A etapa de treinamento envolve diversos ciclos de interação entre o agente e o am-
biente. Esta seção descreve os ambientes implementados para realização do treina-
mento e as configurações e métricas utilizadas para avaliar o desempenho do agente.

Para os experimentos e análises de resultados, foram configurados quatro ambi-
entes de navegação. Esses ambientes possuem características distintas e níveis de
complexidade variados.

Os quatro ambientes implementados possuem o mesmo tamanho, representando
um cenário de 10x10 metros, implementado no simulador Gazebo. A posição alvo é
gerada de forma randômica, com base nas coordenadas do ambiente. Nos ambientes
02 e 03 são consideradas também as coordenadas dos obstáculos estáticos, dessa
forma é possível evitar gerar alvos na mesma posição dos obstáculos.

4.6.1 Etapa 01: Ambiente sem obstáculos

Nesta etapa o objetivo principal é avaliar a capacidade do robô de navegar até o
ponto de destino com base na leitura dos sensores e em sua posição em relação ao
ambiente (Fig. 15). Essa análise preliminar é fundamental para aferir a capacidade de
aplicação da solução em ambientes mais complexos.

Apesar de não conter outros obstáculos, além das paredes em torno do robô, esse
cenário permite avaliar se o sensoriamento está sendo executado de forma correta e
também comparar o desempenho dos algoritmos em relação ao tempo de aprendi-
zado, considerando o número de vezes que o robô atingiu o objetivo alvo e as recom-
pensas obtidas.
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Figura 15 – Etapa de treinamento 01: Ambiente sem obstáculos

Fonte: Autor

4.6.2 Etapa 02: Ambiente com obstáculos estáticos

O ambiente desenvolvido nesta etapa objetiva treinar o robô para alcançar o ponto
de destino evitando colisões com obstáculos estáticos ao seu redor. (Fig. 16). Foram
adicionados quatro obstáculos estáticos, como se representassem pilares em torno
do robô.

Figura 16 – Etapa de treinamento 02: Ambiente com obstáculos estáticos

Fonte: Autor

4.6.3 Etapa 03: Ambiente com pessoas paradas

Nesta etapa o robô deve ser capaz de detectar pessoas e é treinado para alcançar
o ponto de destino, evitando colisões e mantendo uma distância segura em relação às
pessoas paradas no ambiente de navegação. (Fig. 17).
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Figura 17 – Etapa de treinamento 03: Ambiente com pessoas paradas

Fonte: Autor

4.6.4 Etapa 04: Ambiente com pessoas dinâmicas

Nesta etapa o robô deve ser capaz de detectar pessoas e é treinado para alcançar
o ponto de destino, evitando colisões e mantendo uma distância segura em relação
às pessoas que estão caminhando no ambiente de navegação. Na configuração do
ambiente 04 as pessoas simuladas movem-se numa determinada linha, seguindo um
trajeto específico, não aleatório, de ida e volta em linha reta (Fig. 18);

Figura 18 – Etapa de treinamento 04: Ambiente com pessoas em movimento

Fonte: Autor

4.6.5 Configurações

Um ambiente de aprendizado por reforço é composto por vários elementos que
determinam a dinâmica do processo de aprendizado. O agente é o componente que
está aprendendo a tomar decisões e realizar ações no ambiente para maximizar uma
recompensa cumulativa ao longo do tempo, sendo representado pela cadeira de rodas
robótica, conforme descrito na seção 4.2.

A tabela a seguir apresenta os parâmetros de configuração referentes ao espaço
de estados e ao espaço de ação, assim como a duração e o número de episódios
adotado para cada etapa de treinamento. Laser Distance Sensor (LDS) refere-se ao
número de amostras do sensor LiDAR que foram utilizadas durante os experimentos.

As informações de estado, são obtidas a partir da leitura dos dados dos sensores
conectados ao robô. Neste trabalho, em todas as etapas de treinamento foram utiliza-
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Tabela 3 – Parâmetros de Treinamento

Ambiente Espaço
de estados

Espaço
de ação

Amostras
LDS

Nº máx. de
episódios

Duração de
um episódio

Etapa 01 26 5 24 500 300
Etapa 02 28 5 24 1500 500
Etapa 03 29 5 24 1500 500
Etapa 04 29 5 24 2000 500

das 24 amostras do sensor LiDAR, informações de odometria e dados de 04 sensores
infravermelhos conectados nas laterais do robô. As imagens obtidas do sensor Kinect
foram utilizadas apenas nas etapas de treinamento 03 e 04.

Conforme descrito na seção 4.5.1, o estado refere-se a uma representação do
ambiente em um determinado instante de tempo, capturando as informações neces-
sárias para a tomada de decisão e determinação das próximas ações. Portanto, as
configurações referentes ao espaço de estados diferem de acordo com a etapa de
treinamento. Essa diferença ocorre porque os componentes de entrada da rede va-
riam de acordo com a etapa de treinamento e a complexidade do ambiente, conforme
descrito a seguir:

• Etapa 01: Nesta etapa a entrada da rede não necessita de informações sobre
ângulo e distância em relação à obstáculos, nem sobre pessoas detectadas.
Portanto, é dada por: [ lr, θ, dc ] onde:

– lr: representa o número de amostras do sensor LiDAR;

– θ: é o ângulo do robô em relação ao objetivo;

– dc: é a distância atual até o objetivo;

• Etapa 02: Nesta etapa, além dos dados coletados na etapa 01, são necessárias
informações referentes aos obstáculos estáticos em torno do robô. Portanto, a
entrada da rede é dada por: [ lr, θ, dc, rmin, θobs ] onde:

– lr: representa o número de amostras do sensor LiDAR;

– θ: é o ângulo do robô em relação ao objetivo;

– dc: é a distância atual até o objetivo;

– rmin: corresponde à distância do obstáculo mais próximo;

– θobs: corresponde ao ângulo do obstáculo mais próximo em relação ao robô;

• Etapas 03 e 04: Correspondem às etapas em que o robô deve ser capaz de
aprender a navegar em meio à pessoas paradas e em movimento. Dessa forma,
a entrada da rede recebe um novo parâmetro referente ao número de pessoas
detectadas, e é dada por: [ lr, θ, dc, rmin, θobs, hd ] onde:
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– lr: representa o número de amostras do sensor LiDAR;

– θ: é o ângulo do robô em relação ao objetivo;

– dc: é a distância atual até o objetivo;

– rmin: corresponde à distância do obstáculo mais próximo;

– θobs: corresponde ao ângulo do obstáculo mais próximo em relação ao robô;

– hd: corresponde ao número de pessoas detectadas.

As configurações referentes ao número de episódios e ao tempo de duração de
um determinado episódio foram ajustadas de acordo com a etapa de treinamento,
tomando-se por base a complexidade do ambiente (Tabela 3, colunas 04 e 05). Esses
valores foram determinados após a realização de testes que permitiram avaliar se o
tempo de treinamento especificado seria suficiente para o agente navegar atingindo
os objetivos sem colidir com obstáculos.

Além das configurações anteriormente descritas, a configuração correta do algo-
ritmo de aprendizado é fundamental para o treinamento do agente.

A seguir são listados os principais hiperparâmetros utilizados na configuração dos
algoritmos utilizados neste trabalho:

• buffer_size: representa o número de experiências (amostras) armazenadas em
memória. É usado para armazenar transições passadas (estado, ação, recom-
pensa, próximo estado) e realizar amostragem aleatória durante o treinamento;

• batch_size: Número de amostras retiradas do buffer de repetição em cada atuali-
zação da rede neural. Um lote (batch) é usado para calcular gradientes e realizar
atualizações mais frequentes e estáveis;

• gamma: Fator de desconto, corresponde a um valor no intervalo [0, 1] que de-
termina o quão importante é a recompensa futura em relação à recompensa
imediata. Um valor de gamma próximo de 1 indica que o agente valoriza recom-
pensas futuras mais fortemente, enquanto um valor próximo de 0 indica que o
agente se concentra apenas em recompensas imediatas;

• TAU: Representa a taxa utilizada para atualizar os parâmetros da rede-alvo (tar-
get network ) com os parâmetros da rede principal. Ajuda a melhorar a estabili-
dade do treinamento, evitando atualizações bruscas;

• learning_rate_actor: É a taxa de aprendizado usada para atualizar os parâme-
tros da rede neural do ator (policy network );

• learning_rate_critic: É a taxa de aprendizado usada para atualizar os parâmetros
da rede neural do crítico (valor da função Q);
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• buffer_start: O tamanho inicial do buffer de repetição. É o número mínimo de
experiências coletadas antes de começar o treinamento;

• epsilon: representa o valor de exploração inicial, utilizado para equilibrar a explo-
ração e a prospecção (exploitation) durante o treinamento. É a probabilidade do
agente escolher uma ação aleatória em vez de seguir a política aprendida;

• epsilon_decay: Fator de decaimento aplicado ao valor de epsilon ao longo do
tempo. Permite que a estratégia de prospecção seja reduzida gradualmente à
medida que o agente aprende.

• action_space_high: Representa o limite superior do espaço de ações contínuas.
É um vetor que define o valor máximo para cada dimensão da ação, definido
entre -1.5 e 1.5.

• action_space_low: Representa o limite inferior do espaço de ações contínuas. É
um vetor que define o valor mínimo para cada dimensão da ação, definido entre
-1.5 e 1.5.

• H1 e H2: Número de neurônios na 1ª e 2ª camadas. Estes são os hiperparâme-
tros que definem o número de neurônios (unidades) em cada camada da rede
neural do ator e do crítico, que podem variar, dependendo do problema a ser
resolvido.

As tabelas 4 e 5 apresentam os valores adotados para cada hiperparâmetro, de
acordo com o algoritmo utilizado:

Tabela 4 – Configurações do algoritmo DDPG
Hiperparâmetro Valor Descrição
buffer_size 1000000 Tamanho do buffer de repetição
batch_size 64 Tamanho de um grupo de amostras de treinamento
gamma 0.99 Taxa de redução de recompensas futuras em relação às recompensas imediatas
TAU 0.001 Taxa de atualização de hiperparâmetros da rede de destino
LRA 0.00025 Taxa de aprendizado da rede ator
LRC 0.0025 Taxa de aprendizado da rede crítico
H1 400 Número de neurônios da 1ª camada
H2 300 Número de neurônios da 2ª camada
buffer_start 100 Número de transições que antecedem a amostragem aleatória
epsilon 1.0 Taxa de exploração
epsilon_decay 0.1 Redução da taxa de exploração (influencia o ruído aplicado à ação)
action_space_high 1.5 Valor máximo que cada dimensão da ação pode assumir
action_space_low -1.5 Valor mínimo que cada dimensão da ação pode assumir

4.6.6 Métricas

A seguir são apresentadas as métricas utilizadas para medir o desempenho do
agente em cada etapa de treinamento específica:
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Tabela 5 – Configurações do algoritmo DQN
Hiperparâmetro Valor Descrição
TAU 2000 Taxa de atualização da rede de destino.
gamma 0.99 Taxa de redução de recompensas futuras em relação às recompensas imediatas.
learning_rate 0.00025 Taxa de aprendizado.
epsilon 1.0 A probabilidade de escolher uma ação aleatória.
epsilon_decay 0.99 Taxa de redução de epsilon ao término de um episódio.
epsilon_min 0.05 Valor mínimo de epsilon
batch_size 64 Tamanho de um grupo de amostras de treinamento.
train_start 64 Início do treinamento de acordo com o tamanho da memória de repetição.
buffer_size 1000000 O tamanho do buffer de repetição.

• Taxa de Sucesso (Success Rate - SR): A porcentagem de vezes em que o robô
concluiu com sucesso a etapa de treinamento, dada por SR = g

stmax
× 100, onde

g é o número de vezes que o robô alcançou o objetivo sem colidir, e stmax repre-
senta o tempo máximo de execução do experimento.

• Taxa de Colisão (Collision Rate - CR): A porcentagem de vezes em que o robô
colidiu, dada por CR = c

nemax
× 100, onde c é o número de vezes que o robô

colidiu, e nemax é o número total de episódios durante um experimento.

• Taxa de Tempo excedido (Time Out rate - TR): A porcentagem de vezes em que
o limite de tempo foi excedido sem que o robô alcançasse o objetivo, dado por
TR = t

nemax
×100, onde t é o número de vezes que o limite de tempo foi excedido,

e nemax é o número total de episódios durante um experimento.



5 EXPERIMENTOS E RESULTADOS

5.1 Treinamento

Esta seção apresenta os resultados obtidos durante cada etapa de treinamento. Os
experimentos foram conduzidos em ambiente simulado e demonstram a capacidade
de aprendizado e aplicabilidade desses algoritmos em diferentes cenários.

5.1.1 Resultados do Treinamento

Os valores na Tabela 6 correspondem aos resultados obtidos ao longo de todo
o tempo de treinamento em cada ambiente específico. Esses valores são derivados
com base em stmax = nemax ∗ nsmax, onde stmax é o tempo máximo de execução do
experimento, nemax é o número máximo de episódios e nsmax é o número máximo de
passos (steps). Os valores em negrito correspondem aos melhores resultados obtidos
durante as etapas de experimentos em cada ambiente de treinamento.

Métricas avaliadas Ambiente 01 Ambiente 02 Ambiente 03 Ambiente 04
SAN-DDPG DQN SAN-DDPG DQN SAN-DDPG DQN SAN-DDPG DQN

Sucesso (g) 850 691 2656 1563 3167 1780 3021 1282
Colisões (c) 53 46 705 949 631 882 1179 1482
Tempo excedido (t) 75 72 55 9 36 14 9 21
Taxa de sucesso (%) 56,67 46,07 35,41 20,84 42,23 23,73 30,21 12,82
Taxa de colisão (%) 10,60 9,20 47,00 63,27 42,07 58,80 58,95 74,10
Taxa p/tempo excedido (%) 15,00 14,40 3,67 0,60 2,40 0,93 0,45 1,05

Tabela 6 – Resultados do Treinamento

Um episódio corresponde a uma etapa de treinamento, conforme definido na tabela
3. O número máximo de passos (steps) é utilizado para definir o tempo de duração de
um episódio, que pode encerrar de duas formas: quando o robô realiza uma colisão
ou quando excede o tempo máximo de execução do experimento.



74

(a) Etapa 01 (b) Etapa 02

(c) Etapa 03 (d) Etapa 04
Figura 19 – Recompensas por episódio - Os valores correspondentes ao eixo Y (à esquerda)
apresentam as recompensas obtidas por episódio, o eixo X corresponde aos episódios de
treinamento.

A Figura 19 apresenta a evolução das recompensas obtidas por episódio em cada
estágio de treinamento.

(a) Etapa 01 (b) Etapa 02

(c) Etapa 03 (d) Etapa 04
Figura 20 – Recompensa Média - O eixo Y (à esquerda) apresenta os valores correspondentes
à média de recompensas obtidas ao longo do treinamento, o eixo X corresponde aos episódios
de treinamento.
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A recompensa por episódio é a soma das recompensas obtidas pelo agente du-
rante todo um episódio de interação com o ambiente. Essa métrica permite avaliar
como o agente está progredindo em direção ao seu objetivo, analisando a eficácia das
políticas aprendidas e a capacidade de maximizar as recompensas acumuladas ao
longo do tempo.

Ao monitorar as recompensas por episódio, é possível identificar tendências de
melhoria ou piora no desempenho do agente à medida que o treinamento progride.
Essa análise possibilita identificar problemas, ajustar os hiperparâmetros do algoritmo,
refinar as funções de recompensa ou melhorar a política de exploração do agente
durante as etapas de treinamento.

A Figura 20, apresenta uma medida consolidada do desempenho médio do agente
em cada etapa de treinamento e permite visualizar de forma mais clara o avanço do
aprendizado ao longo do tempo.

(a) Etapa 01 (b) Etapa 02

(c) Etapa 03 (d) Etapa 04
Figura 21 – Desvio padrão sobre a média de recompensas recebidas - O eixo Y (à esquerda)
apresenta os valores correspondentes à média de recompensas obtidas ao longo do treina-
mento.
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A Figura 21, apresenta o desvio padrão sobre as recompensas recebidas. Essa
medida indica a variabilidade dos valores de recompensa obtidos pelo agente durante
o treinamento. Um desvio padrão mais amplo indica que as recompensas estão mais
dispersas em torno da média, enquanto um desvio padrão menor indica maior consis-
tência e estabilidade nas recompensas.

5.1.2 Análise dos resultados

• Etapa 01: Nesta etapa a abordagem proposta e o DQN apresentaram desem-
penhos próximos, com baixas taxas de colisão e altas taxas de sucesso. A
abordagem SAN-DDPG apresentou maior estabilidade nas recompensas rece-
bidas, enquanto o DQN obteve recompensas baixas mesmo após 300 episódios
de treinamento (Fig. 19a e 20a). Como pode ser visto na tabela 6, a taxa de
colisão apresentada pelo DQN foi inferior à taxa apresentada pela abordagem
SAN-DDPG, no entanto, esse resultado pode estar relacionado a uma prospec-
ção menor, resultando em recompensas mais baixas e taxa de sucesso inferior.

• Etapa 02: Na etapa 02 ambos os algoritmos apresentaram dificuldades no iní-
cio do treinamento, resultando na obtenção de recompensas baixas durante os
primeiros 250 episódios. O DQN obteve recompensas melhores no início do trei-
namento, enquanto SAN-DDPG demorou mais para convergir. Apesar disso, os
resultados da tabela 6 demonstram que a abordagem SAN-DDPG apresentou
uma taxa de sucesso cerca de 15% superior ao DQN, além de melhor capaci-
dade de aprendizado, adquirindo maior estabilidade na obtenção de recompen-
sas positivas a partir de 400 episódios de treinamento (Fig. 20b). Por outro lado,
o DQN apresentou uma elevada taxa de colisão, o que demonstra que teve difi-
culdades em tomar decisões em um ambiente com obstáculos em seu entorno,
resultando na baixa taxa de sucesso obtida.

• Etapa 03: Nesta etapa os algoritmos passaram a ter um comportamento mais ex-
ploratório após 180 episódios de treinamento (Fig. 20b). A solução proposta por
este trabalho atingiu estabilidade na obtenção de recompensas positivas após
350 episódios. O DQN por sua vez apresentou uma alta taxa de colisão, resul-
tando em recompensas negativas, mesmo após 700 episódios de treinamento.
Como pode ser visto na figura 20c, essa característica menos exploratória do
DQN resultou em um aprendizado mais demorado para o agente, demonstrando
dificuldade em maximizar as recompensas obtidas ao longo do tempo.

• Etapa 04: Nesta etapa a abordagem SAN-DDPG apresentou uma taxa de su-
cesso cerca de 17% superior em relação ao DQN, com poucas colisões no iní-
cio do treinamento, passando a maximizar as recompensas obtidas de forma
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mais significativa após 300 episódios de treinamento. O gráfico de recompensas
(Fig. 19d) demonstra que ambos os algoritmos obtiveram recompensas negati-
vas mesmo após 500 episódios de treinamento. No entanto percebe-se que a
abordagem SAN-DDPG manteve o aprendizado constante, maximizando o valor
das recompensas durante todo o treinamento, obtendo resultados significativa-
mente melhores que o DQN ao longo do tempo.

De forma geral a análise dos experimentos realizados demonstra que ambos os al-
goritmos obtiveram bons resultados, proporcionando que o agente aprenda e ao final
do tempo de treinamento navegue de forma autônoma apresentando baixas taxas de
colisão nos cenários em que foi treinado. No entanto, é possível perceber que a abor-
dagem SAN-DDPG possui características que a tornam superior ao DQN, como maior
capacidade exploratória, aprendizado constante, maior estabilidade e capacidade de
maximizar as recompensas obtidas, convergindo para soluções melhores em todos as
etapas.

Os gráficos demonstram que no início dos experimentos o algoritmo DQN foi capaz
de obter recompensas melhores que o SAN-DDPG em todas as etapas (Figuras 20a,
20b, 20c e 20d). No entanto, percebe-se que o DQN tende a estabilizar o aprendizado,
enquanto o SAN-DDPG apresenta uma evolução contínua, obtendo resultados signi-
ficativamente melhores ao longo do tempo. Essa característica pode ser percebida
por meio da análise da recompensa média, que fornece uma medida consolidada do
desempenho médio do agente ao longo do tempo.

Assim como a recompensa por episódio, a recompensa média é utilizada para mo-
nitorar o progresso, identificar problemas de aprendizado e ajustar a política de ação
durante o treinamento. Os experimentos demonstram que a recompensa média utili-
zando o algoritmo DDPG foi significativamente maior em comparação ao DQN, eviden-
ciando que a abordagem SAN-DDPG foi mais eficaz em maximizar as recompensas
ao longo do treinamento em todas as etapas (Figuras 20a, 20b, 20c e 20d).

Percebe-se ainda que a solução proposta por este trabalho apresentou um desvio
padrão mais amplo em relação à média de recompensas quando comparada ao DQN,
no entanto, também obteve recompensas positivas significativamente maiores, resul-
tando em um desempenho geral melhor em termos de recompensas totais recebidas
(Fig. 21).

Um desvio padrão mais amplo pode estar relacionado ao comportamento mais ex-
ploratório do algoritmo DDPG, não necessariamente resultando em um desempenho
inferior. Isso sugere que o agente está explorando diferentes estratégias e ações em
busca de uma política ótima, resultando em maior variabilidade nos resultados.

O DQN obteve um desvio padrão mais elevado em termos de recompensas nega-
tivas, principalmente nas etapas 2, 3 e 4, onde os cenários são mais desafiadores e
consequente sujeitam o agente à um número maior de colisões.
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Ao analisar a plataforma robótica durante as etapas de treinamento com o algo-
ritmo DQN é possível perceber uma maior instabilidade nos movimentos executados,
resultando em movimentos angulares mais bruscos o que, consequentemente, pode
ter resultado na elevada taxa de colisões. Por outro lado, o SAN-DDPG apresentou
uma navegação mais suave, proporcionando o atingimento dos objetivos de forma
mais rápida e melhor capacidade para evitar colisões com obstáculos próximos.

5.2 Validação e Testes

Como forma de validar a eficiência e robustez da solução proposta, foram aplica-
dos diversos testes em cenários distintos aos que o agente foi treinado. Esta seção
apresenta as configurações utilizadas durante a etapa de testes, a avaliação dos re-
sultados obtidos e as considerações acerca desses resultados. Cumpre destacar que
os experimentos com simulação de humanos não envolveram qualquer tipo de co-
laboração durante a navegação. Cabendo, portanto, apenas ao robô, com base no
aprendizado adquirido, evitar colisões enquanto busca atingir seu objetivo.

5.2.1 Ambientes de Teste

Os ambientes de teste foram configurados com tamanhos diferentes e com níveis
de complexidade superiores aos ambientes de treinamento. O objetivo é avaliar a
robustez da solução proposta e verificar se o agente é capaz de generalizar o conhe-
cimento aprendido em um ambiente específico para situações novas e desconhecidas,
aplicando o conhecimento aprendido anteriormente em novos contextos.

Além disso, os testes realizados em ambientes diferentes, permitem coletar e ana-
lisar novos dados e feedback que podem ser utilizados para fornecer uma validação
mais abrangente do seu desempenho.
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5.2.1.1 Etapa 01: Ambientes sem obstáculos

(a) Corredor sem
obstáculos (b) Circuito 10x15 sem obstáculos
Figura 22 – Etapa de testes 01: Ambientes sem obstáculos

Fonte: Autor

5.2.1.2 Etapa 02: Ambientes com obstáculos estáticos

(a) Corredor com obs-
táculos estáticos (b) Circuito 10x15 com obstáculos estáticos
Figura 23 – Etapa de testes 02: Ambientes com obstáculos estáticos

Fonte: Autor
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5.2.1.3 Etapa 03: Ambientes com pessoas paradas

(a) Corredor com pessoas paradas
individualmente

(b) Corredor com grupos de pes-
soas paradas

Figura 24 – Etapa de testes 03: Corredor com pessoas paradas individualmente e em grupos.

Fonte: Autor

5.2.1.4 Etapa 04: Ambientes com pessoas dinâmicas

(a) Corredor com pessoas em movi-
mento - obstrução horizontal em re-
lação ao alvo

(b) Pessoas em movimento - obstru-
ção vertical em relação ao alvo

Figura 25 – Etapa de testes 04 - Pessoas em movimento

Fonte: Autor
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5.2.2 Configurações

Para realização dos testes, com exceção da etapa 01, foram utilizadas as mes-
mas configurações adotadas durante as etapas de treinamento, de acordo com cada
ambiente, conforme definido na seção 4.6.5.

5.2.2.1 Etapa de testes 01

A etapa de testes 01 foi realizada em dois cenários distintos: corredor sem obstá-
culos (Fig. 22a) e um circuito 10x15 sem obstáculos (Fig 22b).

Esta etapa objetiva avaliar o comportamento do agente em diferentes situações
relacionadas à alterações na dimensão do ambiente. O circuito 10x15 é mais estreito
nas laterais, submetendo o robô a uma área de travessia que corresponde à metade
da largura do corredor e menos de 1/3 em relação à área de treinamento. Além disso, o
circuito possui um obstáculo central, como uma parede, dessa forma são necessárias
informações adicionais para que o robô possa navegar nesse ambiente.

Portanto, a entrada da rede é dada por: [ lr, θ, dc, rmin, θobs ] onde:

• lr: representa o número de amostras do sensor LiDAR;

• θ: é o ângulo do robô em relação ao objetivo;

• dc: é a distância atual até o objetivo;

• rmin: corresponde à distância do obstáculo mais próximo;

• θobs: corresponde ao ângulo do obstáculo mais próximo em relação ao robô;

5.2.2.2 Etapa de testes 02

Nesta etapa as configurações de entrada da rede foram as mesmas anteriormente
descritas para a etapa de testes 01.

Os testes foram realizados em dois cenários distintos: corredor com obstáculos
estáticos (Fig. 23a) e um circuito 10x15 com obstáculos estáticos (Fig. 23b). Como
pode ser visto nas figuras 23a e 23b, o tamanho dos obstáculos também é diferente,
havendo obstáculos maiores no corredor.

O objetivo nesta etapa é avaliar se o agente é capaz de lidar com cenários comple-
xos, repletos de obstáculos e ter uma avaliação mais abrangente do seu desempenho.

5.2.2.3 Etapa de testes 03

A etapa de testes 03 foi realizada em dois cenários distintos: corredor com pessoas
paradas individualmente (Fig. 22a) e corredor com grupos de pessoas paradas (Fig
22b). O objetivo é avaliar se o robô é capaz de navegar em meio à pessoas paradas,
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abordando situações diversas daquela para a qual foi treinado e em ambientes mais
complexos.

Conforme pode ser visto na Figura 17, o robô foi treinado em um ambiente mais
amplo e com apenas 04 pessoas em seu entorno. Entretanto, para lidar com cenários
da vida real, ele deve ser capaz de generalizar o conhecimento adquirido para lidar
com situações inesperadas, como grupos de pessoas ou pessoas paradas individual-
mente durante o percurso até seu objetivo. Dessa forma, os ambientes de teste foram
implementados considerando essas situações.

Nas etapas 03 e 04 a entrada da rede recebe um parâmetro referente ao número
de pessoas detectadas, e é dada por: [ lr, θ, dc, rmin, θobs, hd ] onde:

• lr: representa o número de amostras do sensor LiDAR;

• θ: é o ângulo do robô em relação ao objetivo;

• dc: é a distância atual até o objetivo;

• rmin: corresponde à distância do obstáculo mais próximo;

• θobs: corresponde ao ângulo do obstáculo mais próximo em relação ao robô;

• hd: corresponde ao número de pessoas detectadas.

5.2.2.4 Etapa de testes 04

A etapa de testes 04 foi realizada em dois cenários, com pessoas em movimento
em diferentes direções: no primeiro cenário as pessoas movimentam-se transversal-
mente em relação à pose do robô (Fig. 25a) e no segundo cenário o movimento das
pessoas segue a trajetória entre o robô e o ponto alvo (Fig 25b). Assim como na etapa
03, o objetivo é avaliar se o robô é capaz de navegar em meio à pessoas em movi-
mento, abordando situações diversas daquela para a qual foi treinado e em ambientes
de maior complexidade.

5.2.3 Métricas

A seguir são apresentadas as métricas utilizadas para avaliar o desempenho do
agente em cada etapa de testes:

• Taxa de Sucesso (SR): A porcentagem de vezes em que o robô concluiu com
sucesso a etapa de testes, dada por SR = g

ntmax
× 100, onde g é o número de

vezes que o robô alcançou o objetivo sem colidir, e ntmax representa o número
máximo de testes realizados.

• Taxa de Colisão (CR): A porcentagem de vezes em que o robô colidiu, dada por
CR = c

ntmax
× 100, onde c é o número de vezes que o robô colidiu, e ntmax é o

número máximo de testes realizados.
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• Tempo médio (AT ): A média de tempo que o robô levou para alcançar o objetivo,
considerando todas as etapas de testes que resultaram em sucesso, dado por
AT = t

ntmax
× 100, onde t é o tempo que o robô levou para atingir o objetivo

durante uma execução, e ntmax é o número total de testes realizados.

5.2.4 Resultados dos testes

Esta seção apresenta os resultados obtidos durante cada etapa de testes. Os ex-
perimentos foram conduzidos em ambiente simulado e demonstram a eficiência da so-
lução proposta, considerando a capacidade de generalização e adaptação do agente
em diferentes cenários e variados níveis de complexidade.

5.2.4.1 Etapa 01

A tabela 7 apresenta os resultados da primeira etapa de testes. Cada coluna re-
presenta uma métrica específica, e os valores correspondem às estatísticas obtidas
após a execução dos testes.

Tabela 7 – Resultados da etapa de testes 01

Métricas avaliadas Etapa 01 (a) Etapa 01 (b)
SAN-DDPG DQN SAN-DDPG DQN

Taxa de sucesso (%) 100% 100% 98% 16%
Taxa de colisão (%) 0% 0% 2% 84%
Taxa de tempo excedido (%) 0% 0% 0% 0%
Média de tempo em segundos (tr) 40,97 41,31 58,85 51,65

Tanto o SAN-DDPG quanto o DQN alcançaram uma alta taxa de sucesso na Etapa
01(a), atingindo o objetivo alvo em todas as execuções. No entanto, na Etapa 01(b),
o SAN-DDPG registrou uma taxa de sucesso ligeiramente menor, atingindo 98%, en-
quanto o DQN obteve um desempenho significativamente inferior, com apenas 16%
de taxa de sucesso.

Com relação à taxa de colisão, ambos os algoritmos apresentaram uma taxa de
0% na Etapa 01(a), o que indica que conseguiram evitar colisões com sucesso. No
entanto, na Etapa 01(b), o SAN-DDPG teve uma taxa de colisão de 2%, enquanto
o DQN apresentou uma taxa alarmantemente alta, colidindo 84% das vezes, apre-
sentando dificuldades significativas em evitar colisões, mesmo em um ambiente sem
obstáculos.

Em relação ao tempo médio para atingir o objetivo, na Etapa 01(a) o SAN-DDPG
obteve um desempenho de 40,97 segundos, enquanto o DQN registrou um tempo
ligeiramente maior, com 41,31 segundos. Na Etapa 01(b), o SAN-DDPG apresentou
um aumento significativo no tempo médio, com 58,85 segundos, enquanto o DQN
teve um tempo médio de 51,65 segundos. Embora a abordagem SAN-DDPG tenha
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tido tempos médios mais altos na Etapa 01(b), apresentou uma taxa de sucesso 82%
superior em relação ao DQN.

Os resultados da etapa 01 demonstram que a abordagem SAN-DDPG possui boa
capacidade de generalização, proporcionando que o robô navegue de forma eficiente
em cenários com dimensões diferentes do ambiente de treinamento, atingindo o obje-
tivo com quase 100% de sucesso nos testes realizados.

5.2.4.2 Etapa 02

Tabela 8 – Resultados da etapa de testes 02

Métricas avaliadas Etapa 02 (a) Etapa 02 (b)
SAN-DDPG DQN SAN-DDPG DQN

Taxa de sucesso (%) 85% 0% 93% 1%
Taxa de colisão (%) 15% 99% 7% 99%
Taxa de tempo excedido 0% 1% 0% 0%
Média de tempo em segundos (tr) 52,08 0,00 67,17 68,24

Na Etapa 02(a) os testes foram realizados em um ambiente extremamente mais
complexo que o ambiente de treinamento. Além da redução no espaço, foram colo-
cados 07 obstáculos na área de travessia do robô. Nesta etapa o SAN-DDPG obteve
uma taxa de sucesso de 85%, enquanto o DQN não obteve sucesso em nenhuma
execução. Na Etapa 02(b), o SAN-DDPG teve um desempenho ainda melhor, alcan-
çando uma taxa de sucesso de 93%, enquanto o DQN manteve a taxa de sucesso
extremamente baixa, com apenas 1%.

Em relação a taxa de colisão, na Etapa 02(a), a abordagem SAN-DDPG obteve
uma taxa de 15%, enquanto o DQN apresentou um valor extremamente alto, colidindo
99% das vezes, indicando que quase todas as execuções resultaram em colisões. Na
Etapa 02(b), o SAN-DDPG teve uma taxa de colisão ainda menor, com apenas 7%,
enquanto o DQN manteve a taxa de 99%. Esses resultados mostram que o DQN
enfrentou dificuldades significativas em evitar colisões em ambas as etapas, enquanto
o SAN-DDPG teve um desempenho consideravelmente melhor.

Com relação ao tempo, na Etapa 02(a), o SAN-DDPG obteve um tempo médio
de 52,08 segundos, enquanto o DQN não teve sucesso em nenhuma execução. Na
Etapa 02(b) o SAN-DDPG apresentou um tempo médio de 67,17 segundos, e o DQN
teve um tempo médio de 68,24 segundos, decorrente da única execução realizada
com sucesso.

Os resultados da etapa 02 demonstram que a solução implementada utilizando a
abordagem SAN-DDPG é capaz de lidar com ambientes complexos, proporcionando
que o robô navegue de forma eficiente em meio à obstáculos estáticos de diferentes
dimensões, em um espaço significativamente menor que o ambiente de treinamento
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e obtendo uma taxa média de sucesso superior a 90% nos testes realizados.

5.2.4.3 Etapa 03

Tabela 9 – Resultados da etapa de testes 03

Métricas avaliadas Etapa 03 (a) Etapa 03 (b)
SAN-DDPG DQN SAN-DDPG DQN

Taxa de sucesso (%) 100% 35% 96% 2%
Taxa de colisão (%) 0% 65% 4% 98%
Taxa de tempo excedido 0% 0% 0% 0%
Média de tempo em segundos (tr) 58,62 85,90 53,42 92,49

Na Etapa 03(a), a abordagem SAN-DDPG alcançou 100% de sucesso, concluindo
todas as execuções sem colisões ou tempo excedido. Por outro lado, o DQN obteve
uma taxa de sucesso de apenas 35%. Na Etapa 03(b) o SAN-DDPG manteve um bom
desempenho, com 96% de sucesso, enquanto o DQN obteve um desempenho muito
baixo, com apenas 2% de sucesso.

Em relação à taxa de colisão, na Etapa 03(a), o SAN-DDPG registrou uma taxa de
0%, evitando colisões em todas as execuções, enquanto o DQN obteve uma taxa de
colisão de 65%. Na Etapa 03(b) o SAN-DDPG manteve uma taxa de colisão baixa,
com apenas 4%, enquanto o DQN apresentou uma taxa de colisão extremamente
alta, de 98%. Esses resultados mostram que o DQN continuou a ter dificuldades
significativas em evitar colisões em ambas as etapas, enquanto a abordagem SAN-
DDPG apresentou um desempenho consideravelmente melhor.

Com relação ao tempo médio, na Etapa 03(a), o SAN-DDPG levou em média 58,62
segundos para atingir o objetivo, enquanto o DQN teve um tempo médio mais elevado
de 85,90 segundos. Na Etapa 03(b) o SAN-DDPG apresentou um tempo médio de
53,42 segundos, enquanto o DQN teve um tempo médio significativamente maior, com
92,49 segundos.

Os resultados da Etapa 03 mostram mais uma vez que a abordagem proposta por
este trabalho foi superior ao DQN. O SAN-DDPG registrou altas taxas de sucesso,
baixa taxa de colisão e tempos médios razoáveis, enquanto o DQN, apesar de ter
apresentado resultados melhores do que na etapa 02, continuou enfrentando dificul-
dades significativas, obtendo taxas de sucesso baixas e altas taxas de colisão.

Conforme descrito anteriormente, nas etapas 03 e 04 a entrada da rede recebe um
parâmetro referente ao número de pessoas detectadas. Essa informação é disponi-
bilizada pelo pacote DarknetRos a partir das imagens detectadas pela câmera RGB
do sensor kinect e atua como um mecanismo de atenção social. Dessa forma, ao
invés de utilizar apenas dados de distância do sensor laser, o número de pessoas de-
tectadas é fornecido como um parâmetro adicional para o algoritmo que utiliza essas
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informações para calcular a recompensa, conforme descrito na seção 4.5.3.
Os resultados obtidos na etapa 03 demonstram que ambos os algoritmos obtive-

ram melhor desempenho ao receber informações de detecção de pessoas a partir de
imagens de vídeo. A taxa de punição atribuída ao robô por se aproximar demais das
pessoas contribuiu para reduzir o número de colisões, demonstrando que o robô man-
teve uma distância maior dos obstáculos em relação à etapa 02. Esse resultado é
evidenciado tanto nos experimentos de treinamento (Tabela 6) quanto nos testes de
navegação (Tabelas 8 e 9).

5.2.4.4 Etapa 04

Tabela 10 – Resultados da etapa de testes 04

Métricas avaliadas Etapa 04 (a) Etapa 04 (b)
SAN-DDPG DQN SAN-DDPG DQN

Taxa de sucesso (%) 80% 30% 92% 26%
Taxa de colisão (%) 20% 70% 6% 73%
Taxa de tempo excedido 0% 0% 2% 1%
Média de tempo em segundos (tr) 45,20 38,43 43,04 41,64

Na Etapa 04(a), o SAN-DDPG alcançou sucesso em 80% das execuções, en-
quanto o DQN obteve sucesso em apenas 30% delas. Na Etapa 04(b) o SAN-DDPG
obteve um desempenho ainda melhor, com 92% de sucesso, enquanto o DQN obteve
apenas 26% de sucesso.

Em relação à taxa de colisão, na Etapa 04(a), o SAN-DDPG registrou uma taxa de
20%, enquanto o DQN teve uma taxa mais alta, resultando em 70% de colisões. Na
Etapa 04(b) o SAN-DDPG manteve uma baixa taxa de colisão, com apenas 6%. O
DQN por sua vez, apresentou uma taxa de colisão de 73%, o que demonstra que o al-
goritmo continuou enfrentando dificuldades significativas em evitar colisões, enquanto
o SAN-DDPG manteve um bom desempenho.

Com relação ao tempo médio, na Etapa 04(a), o SAN-DDPG levou em torno de
45,20 segundos para atingir o objetivo, enquanto o DQN, apesar de apresentar uma
taxa de sucesso significativamente inferior, registrou um tempo médio um pouco me-
nor, com 38,43 segundos. Na Etapa 04(b), o SAN-DDPG apresentou um tempo médio
de 43,04 segundos, e o DQN teve um tempo médio de 41,64 segundos.

Os resultados da etapa 04 demonstram que a abordagem SAN-DDPG é capaz de
lidar com ambientes complexos, proporcionando que o robô navegue de forma efici-
ente em meio à pessoas em movimento, obtendo uma taxa média de sucesso superior
a 80% nos testes realizados. Necessário observar que os testes foram aplicados em
ambientes mais complexos que o ambiente de treinamento e sem qualquer coopera-
ção dos demais agentes para evitar colisões.
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5.3 Considerações finais

Testar o desempenho do agente em cenários diferentes do ambiente de treina-
mento é fundamental para avaliar sua capacidade de generalização. Se o agente só
consegue tomar boas decisões no ambiente em que foi treinado, mas falha quando
submetido a novos cenários, pode ser arriscado submetê-lo à aplicações do mundo
real, onde poderá encontrar situações diferentes. Além disso, treiná-lo novamente,
demanda tempo e uso de recursos computacionais que podem não estar disponíveis
em determinadas situações, como por exemplo, simular o novo ambiente em que o
robô deverá atuar.

Os resultados dos testes realizados demonstram a superioridade da abordagem
SAN-DDPG em relação ao DQN. A abordagem SAN-DDPG obteve altas taxas de
sucesso e baixa taxa de colisão em todas as etapas. Por outro lado, o DQN enfrentou
dificuldades para atingir o objetivo em praticamente todos os cenários, registrando
uma taxa de colisão consideravelmente maior em todas as etapas de testes.

É importante observar que o desempenho dos algoritmos pode variar dependendo
da natureza da tarefa e de outros fatores, como hiperparâmetros, arquitetura de rede
neural e estratégias de exploração empregadas. Apesar disso, os experimentos rea-
lizados neste trabalho evidenciam que a abordagem SAN-DDPG supera o DQN, de-
monstrando que a solução proposta é robusta e eficiente, proporcionando que o robô
navegue de forma autônoma em ambientes dinâmicos, compartilhados com humanos,
mesmo quando exposto à cenários distintos do ambiente de treinamento.



6 CONCLUSÃO

Este trabalho apresentou o desenvolvimento de uma solução baseada em aprendi-
zado por reforço profundo e visão computacional para navegação autônoma de robôs
móveis em ambientes dinâmicos compartilhados com humanos. Nesse sentido, a
abordagem proposta considerou questões de segurança, como o distanciamento en-
tre o robô e as pessoas em seu entorno, além de adaptação do aprendizado e gene-
ralização do conhecimento adquirido à diferentes situações.

Foram conduzidos testes comparativos entre a abordagem proposta por este tra-
balho, denominada Social Attention Navigation - DDPG e o algoritmo Deep Q-Network
(DQN). Nos experimentos realizados a abordagem SAN-DDPG demonstrou ser mais
eficiente e estável que o algoritmo DQN, apresentando taxas médias de sucesso supe-
riores em todas as etapas analisadas: 98% (Etapa 01), 89% (Etapa 02), 86% (Etapa
03) e 86% (Etapa 04), demonstrando excelente capacidade de generalização e re-
sultados consistentemente melhores em ambientes diferentes do ambiente de treina-
mento.

Apesar da variedade de soluções que abordam o uso do algoritmo DQN como
uma solução viável para navegação autônoma em ambientes internos (Tabela 1), os
resultados dos testes demonstram que o agente treinado pelo DQN não foi capaz de
generalizar o conhecimento para aplicação em ambientes diferentes daquele no qual
foi treinado. Além disso, a análise dos experimentos (Figuras 20a, 20b, 20c e 20d)
demonstra que o DQN tende a estabilizar o aprendizado, além de necessitar de mais
tempo de treinamento para convergir para uma boa solução.

Essas descobertas destacam a superioridade da abordagem SAN-DDPG e de-
monstram que a solução proposta é promissora, contribuindo para o avanço da pes-
quisa na área, possibilitando a análise de experimentos em ambiente simulado e re-
alização de testes para posterior implantação de sistemas robóticos em cenários do
mundo real.
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6.1 Contribuições

Neste trabalho foi desenvolvida uma abordagem para navegação autônoma de
robôs móveis em ambientes internos compartilhados com humanos, denominada So-
cial Attention Navigation - DDPG. A arquitetura dessa abordagem é baseada em DRL
e tem como base o algoritmo DDPG combinado com técnicas de visão computacional
para detecção de pessoas.

Os experimentos foram conduzidos em ambiente simulado, permitindo que os mo-
delos aprendidos sejam salvos e posteriormente utilizados em aplicações do mundo
real. Os resultados demonstram que a abordagem proposta é eficaz, apresentando
estabilidade e capacidade de aprendizado para lidar com diferentes cenários e situa-
ções. Além disso destacam-se as seguintes contribuições:

• Este trabalho contribui para o desenvolvimento de uma abordagem que combina
técnicas de visão computacional e aprendizado por reforço profundo para o trei-
namento de robôs em ambiente simulado. Os experimentos realizados foram
validados e demonstram que a abordagem é promissora, podendo ser estendida
à diferentes plataformas robóticas. Além disso, o código fonte e os ambientes
simulados implementados neste trabalho serão disponibilizados publicamente,
podendo ser aprimorados e aplicados à outras soluções, contribuindo para o
avanço do estado-da-arte;

• Além das vantagens óbvias de independência e mobilidade, o desenvolvimento
de um sistema para navegação autônoma de cadeiras de rodas motorizadas tem
o potencial de contribuir significativamente para a inclusão social. Ao permitir que
pessoas com mobilidade reduzida participem ativamente de ambientes comparti-
lhados, promove-se a normalização da interação entre indivíduos com diferentes
capacidades, melhorando a qualidade de vida de pessoas com deficiência;

• O estudo e análise do comportamento do robô durante a navegação em meio a
testes simulados oferece insights valiosos para aprimorar o aprendizado e avaliar
sua capacidade de adaptação a ambientes em constante mudança, além de
permitir identificar melhorias para a realização de experimentos futuros.

6.2 Publicações

P. de Almeida Afonso and P. R. Ferreira, “Autonomous robot navigation in crowd,”
in 2022 Latin American Robotics Symposium (LARS), 2022 Brazilian Symposium on
Robotics (SBR), and 2022 Workshop on Robotics in Education (WRE), 2022, pp.
139–144.
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Artigo submetido: Autonomous Robots (Springer) Resarch Square - Autonomous
Navigation of Wheelchairs in Indoor Environments using Deep Reinforcement Le-
arning and Computer Vision, 28 August 2023, PREPRINT (Version 1). Available at
Research Square [https://doi.org/10.21203/rs.3.rs-3287103/v1];

Artigo aceito: Autonomous Navigation of Wheelchairs in Indoor Environments using
Deep Reinforcement Learning and Computer Vision. SBR-LARS 2023 (15th Brazilian
Symposium on Robotics / 20th Latin American Robotics Symposium).

6.3 Trabalhos Futuros

Além de testar a abordagem proposta em cenários do mundo real, algumas ques-
tões foram identificadas e apontam direções para pesquisas futuras que podem con-
tribuir para melhorar a solução apresentada neste trabalho:

• Um ponto fundamental a ser observado são as características particularmente
associadas à plataforma robótica utilizada. Uma cadeira de rodas motorizada,
por exemplo, pode chegar a 55cm de largura e 47cm de comprimento, exigindo
maior espaço para interação no ambiente do que plataformas robóticas original-
mente desenvolvidas para atuar como robôs de serviço. Nesse aspecto destaca-
se uma das dificuldades enfrentadas neste trabalho, onde foi possível perceber
que o ângulo de rotação (yaw) da cadeira de rodas pode levar a um número de
colisões relativamente alto, constituindo um desafio para o algoritmo convergir
para uma solução que proporcione uma navegação mais suave e segura. Dessa
forma, devem ser estudados mecanismos relacionados aos movimentos diferen-
ciais para obtenção de velocidades compatíveis com o ambiente de aplicação,
especialmente em ambientes compartilhados com humanos;

• Durante os experimentos realizados foi possível perceber que o robô evitou co-
lisões com pessoas em movimento de forma eficiente. No entanto, não foram
respeitadas normas sociais, como por exemplo, evitar passar pela frente das
pessoas, interrompendo sua passagem. Como o sistema implementado não
previu colaboração por parte de outros agentes, essa foi uma das principais cau-
sas de colisões identificada, resultando na menor taxa de sucesso durante os
testes realizados com o DDPG, conforme pode ser visto na tabela 10. Portanto,
são necessários estudos complementares, capazes de identificar a orientação
da pessoa em relação ao robô, constituindo mais uma informação para o algo-
ritmo de aprendizado;

• A estrutura da cadeira de rodas também é um fator limitante para os sensores.
Neste trabalho, o sensor LiDAR foi posicionado na frente da plataforma robótica,
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reduzindo o ângulo de sensoriamento devido às dimensões da cadeira. Esse
problema pode ser agravado em situações reais, onde haverá uma pessoa sen-
tada na cadeira. Dessa forma, entende-se que devem ser utilizados sensores
LiDAR também nas laterais da plataforma robótica. Para isso devem ser estu-
dados meios de realizar a fusão dos dados obtidos a partir de vários sensores,
objetivando ampliar a percepção do robô em relação ao ambiente de navegação
que ele deverá atuar.
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APÊNDICE A – Links para acesso aos vídeos de treinamento e testes

A seguir são disponibilizados os links para acesso a alguns vídeos de treinamento
e de testes. Devido ao tempo necessário para treinamento e execução dos experimen-
tos, os vídeos disponibilizados apresentam demonstrações parciais dos experimentos
realizados.

Tabela 11 – Vídeos de treinamento

Etapa de treinamento
Etapa DQN DDPG

02 https://youtu.be/xCCiAXp4n5U https://youtu.be/-n2vzooPZCo

03 https://youtu.be/nsUqLHYcNCE https://youtu.be/v4lNtb0nZBo

04 https://youtu.be/BXsDgBBzpeE https://youtu.be/VqqsS1RywMI

Tabela 12 – Vídeos de testes

Testes utilizando o algoritmo DDPG
Etapa 02a https://youtu.be/yKeqTDyQClQ

Etapa 02b https://youtu.be/mZbnFQYCNX4

Etapa 03a https://youtu.be/fVLRNMI-VCg

Etapa 03b https://youtu.be/2LDr_yqhIn8

Etapa 04a https://youtu.be/2qPFWKNTdgE

Etapa 04b https://youtu.be/UGKHEvG3vc8

Link para acesso ao código fonte: https://github.com/poolafonso/deepbot

https://youtu.be/xCCiAXp4n5U
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