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RESUMO

AFONSO, Paulo de Almeida. Navegacao Autobnoma em Ambientes Dindmicos
com Interacao com Humanos baseada em Aprendizado por Refor¢co Profundo
e Visao Computacional. Orientador: Paulo Roberto Ferreira Jr.. 2023. 103 f. Tese
(Doutorado em Ciéncia da Computacao) — Centro de Desenvolvimento Tecnolégico,
Universidade Federal de Pelotas, Pelotas, 2023.

Pesquisas recentes demonstram que a navegacao autbnoma em ambientes di-
namicos, compartilhados com humanos, permanece como um problema em aberto.
Nesse tipo de ambiente a movimentacao das pessoas pode gerar obstrugdes, dificul-
tando o sensoriamento e prejudicando a percepgao do robd em relacao a sua posicao.
Além disso, a incerteza do comportamento humano pode levar a situagdes inseguras
para o robd e para as pessoas em seu entorno. Frente a esse cenario, tem se desta-
cado o estudo de métodos baseados em aprendizado, assim como a implementacao
de estruturas hibridas, combinando diferentes arquiteturas e algoritmos, em busca de
uma solugao eficiente. Este trabalho propde a combinagao de técnicas de aprendizado
por refor¢co profundo com técnicas de visdo computacional para o desenvolvimento de
uma solucdo capaz de permitir que o rob6é navegue de forma autbnoma e segura
em ambientes internos compartilhados com humanos, considerando as caracteristi-
cas particularmente associadas ao problema em questdo. Assim, a navegacao deve
considerar questdes de seguranga, como o distanciamento entre o robd e as pessoas.
Para isso, foi desenvolvida uma abordagem inédita, baseada em aprendizado por re-
forco profundo, que utiliza o algoritmo Deep Deterministic Policy Gradient (DDPG),
combinado com técnicas de visdo computacional. Foram conduzidos testes compara-
tivos entre os algoritmos DDPG e Deep Q-Network (DQN), abordando quatro etapas,
cada uma representando dois cenarios diferentes do ambiente de treinamento e com
niveis de complexidade superiores ao que o robd foi treinado. O DDPG demonstrou
ser mais eficiente e estavel que o DQN, com taxas médias de sucesso superiores
em todas as etapas, demonstrando melhor capacidade de generalizacao e apresen-
tando resultados consistentemente melhores. Por outro lado, o DQN teve dificuldades
em evitar colisdes e obteve taxas médias de sucesso significativamente mais baixas.
Essas descobertas destacam a superioridade do DDPG e demonstram que a solugéo
proposta é promissora, contribuindo para o avango da pesquisa na area, possibilitando
a anadlise de experimentos em ambiente simulado e realizacdo de testes para posterior
implantagéo de sistemas roboticos em cenarios do mundo real.

Palavras-chave: Robds Méveis. Navegacao Autbnoma. Ambientes Lotados. Preven-
cao de Colisoes.



ABSTRACT

AFONSO, Paulo de Almeida. Autonomous Navigation in Dynamic Environments
with Human Interaction based on Deep Reinforcement Learning and Computer
Vision. Advisor: Paulo Roberto Ferreira Jr.. 2023. 103 f. Thesis (Doctorate in
Computer Science) — Technology Development Center, Federal University of Pelotas,
Pelotas, 2023.

Recent research demonstrates that autonomous navigation in dynamic environ-
ments shared with humans remains an ongoing challenge. In such environments, the
movement of people can create obstacles, impeding sensing and hindering the robot’s
perception of its position. Furthermore, the uncertainty of human behavior can lead to
unsafe situations for both the robot and the people around it. Given this scenario, the
study of learning-based methods has gained prominence, along with the implementa-
tion of hybrid structures that combine different architectures and algorithms in pursuit
of an efficient solution. This work proposes the integration of deep reinforcement learn-
ing techniques with computer vision methods to develop a solution capable of enabling
the robot to navigate autonomously and safely in indoor environments shared with hu-
mans, considering the specific characteristics associated with the problem at hand.
Thus, the navigation must take into account safety concerns, such as the distancing
between the robot and the people in its vicinity. To achieve this, an innovative approach
based on deep reinforcement learning has been developed, utilizing the Deep Deter-
ministic Policy Gradient (DDPG) algorithm, combined with computer vision techniques.
Comparative tests between the DDPG and Deep Q-Network (DQN) algorithms were
conducted, addressing four distinct stages, each representing two different training en-
vironment scenarios and with complexity levels higher than what the robot was trained
on. The DDPG algorithm demonstrated greater efficiency and stability than the DQN,
with higher average success rates in all analyzed stages, showcasing excellent gen-
eralization capacity and consistently better results in different environments than the
training setting. On the other hand, the DQN struggled to avoid collisions and achieved
significantly lower average success rates. These findings underscore the superiority
of DDPG and demonstrate the promise of the proposed solution, contributing to the
advancement of research in the field. This allows for the analysis of experiments in
simulated environments and testing for the subsequent deployment of robotic systems
in real-world scenarios.

Keywords: Mobile Robots. Autonomous Navigation. Crowded Environments. Collision
Avoidance.
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1 INTRODUCAO

A robdtica mével € uma area multidisciplinar que envolve o desenvolvimento e a im-
plementacao de robds capazes de se movimentar de forma autbnoma em diferentes
ambientes. Essa area de pesquisa combina conhecimentos de robdtica, inteligéncia
artificial, visdo computacional, aprendizado de maquina e planejamento de trajetéria
para criar sistemas robéticos capazes de perceber, interpretar e interagir com o ambi-
ente ao seu redor.

Esses sistemas robdéticos, ou simplesmente robds, podem ser utilizados em diver-
sas aplicagdes, como logistica, servicos domésticos, inspecao industrial, exploracdo
espacial, ambientes educacionais, entre outros, abrangendo desde pequenos robds
terrestres e aéreos até veiculos maiores, como carros autbnomos (ROBOTS AND
THEIR APPLICATIONS, 2018).

Muitos robds moveis sdo operados remotamente, executando tarefas que depen-
dem de um operador para controlar o dispositivo. Esses robds nao possuem autono-
mia total, geralmente sado utilizados para proporcionar ao operador acesso remoto a
locais perigosos, distantes ou inacessiveis. Alguns deles podem ser semi-autbnomos,
realizando algumas tarefas de forma automatica.

Um robé é autbnomo quando possui a capacidade de determinar as agdes neces-
sarias para a execugao das tarefas que devem ser realizadas, necessitando para tanto,
de um sistema de percepcéao e controle (RUBIO; VALERO; LLOPIS-ALBERT, 2019).
Isso significa que o robd deve ser capaz de planejar suas trajetorias, evitar obstaculos,
tomar decisbes em tempo real e interagir com o ambiente de forma inteligente.

A navegacao autbnoma, por sua vez, € uma area especifica da robética mével que
se dedica ao desenvolvimento de algoritmos e sistemas que permitem que os robds
se movimentem de forma autdnoma em seu ambiente, ou seja, sem a necessidade
de controle humano constante. Trata-se de um campo em constante evolugéo, impul-
sionado pela crescente demanda por sistemas robéticos, sendo uma funcionalidade
indispensavel para diversas aplicacbes que envolvem a utilizacdo de robds moveis,
tais como: robdtica de servico, vigilancia, logistica, entre outros. Ao longo dos anos,
varias abordagens e técnicas foram desenvolvidas para enfrentar os desafios relacio-
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nados a essa area de pesquisa.

Uma das abordagens amplamente exploradas € a utilizacdo de sistemas de locali-
zacao e mapeamento simultdneos (SLAM). O SLAM permite que um robé construa um
mapa do ambiente enquanto simultaneamente estima sua prépria posicado no mapa
(CADENA et al., 2016). Isso é especialmente relevante em ambientes desconhecidos
ou dinamicos, nos quais o robd precisa se adaptar e atualizar seu conhecimento do
ambiente em tempo real.

Apesar do sucesso do SLAM, a navegacao autbnoma em ambientes compartilha-
dos com humanos apresenta desafios adicionais, como garantir a seguranga das pes-
soas em torno do robd. Nesse contexto, a revisao da literatura evidencia um grande
avanco na pesquisa de solugdes baseadas em aprendizado por reforgo (Reinforce-
ment Learning - RL), principalmente a partir de 2017.

O RL permite que os robds aprendam comportamentos adequados por meio da
interacdo direta com o ambiente, recebendo feedback positivo ou negativo na forma
de recompensas ou puni¢cdes. Ao utilizar o aprendizado por reforco, os robds po-
dem adquirir habilidades de navegacao segura e interagao social (CIOU et al., 2018),
aprender a evitar colisdbes (LONG et al., 2018), ou antecipar o comportamento hu-
mano (ALAHI et al., 2016) para responder de maneira adequada e desempenhar com
sucesso a tarefa de navegacéo.

Além do aprendizado por reforgco, a visdo computacional desempenha um papel
fundamental para a navegacao autbnoma, especialmente em ambientes compartilha-
dos com humanos. Através da andlise de dados visuais, como imagens ou videos
capturados por cameras, os robds podem extrair informacdes valiosas sobre o ambi-
ente e as pessoas ao seu redor. Essas informacdes sao essenciais para a deteccao de
obstaculos, reconhecimento de objetos e pessoas, e interpretacao do comportamento
humano, proporcionando que o robd possa tomar decisdes seguras e socialmente
adequadas durante a navegacao.

Avangos em técnicas de visdo computacional, como redes neurais convolucionais,
tém impulsionado o desenvolvimento de sistemas de percepgéao robustos. O trabalho
de Alom et al. (2019) apresenta uma analise detalhada de varias arquiteturas de ultima
geracao, abordando diferentes modelos e suas aplicacdes.

A revisdo da literatura demonstra que navegacgao autbnoma tem evoluido com o de-
senvolvimento e a combinagao de diferentes técnicas que abordam localizacdo, ma-
peamento, planejamento de trajetéria, navegacao social, aprendizado por reforco e
visdo computacional. Apesar disso, a navegacao em ambientes compartilhados com
humanos permanece como um problema em aberto. Nesse sentido, novas solucdes
continuam sendo pesquisadas para lidar com o problema em questao.
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1.1 Motivacao

A medida que os robds se tornam cada vez mais integrados a sociedade, é funda-
mental que sejam capazes de navegar em espagos compartilhados sem representar
riscos para as pessoas. Os robds devem ser capazes de compreender e responder as
complexidades do ambiente, como obstaculos em constante mudancga, restricbes de
espaco e comportamento humano imprevisivel.

Trabalhos recentes tém demonstrado que a navegacdo autbnoma nesse tipo de
ambiente € uma tarefa particularmente desafiadora. Em ambientes compartilhados
com pessoas, a incerteza do comportamento humano pode levar a situagdes insegu-
ras para o robd. Além disso, a movimentacao das pessoas pode gerar obstrugdes,
dificultando o sensoriamento e prejudicando a percepcao do robd em relacdo a sua
posicdo no ambiente.

A aplicacao do aprendizado por refor¢co tem despertado um grande interesse e
motivado uma ampla gama de pesquisas (PANCHPOR; SHUE; CONRAD, 2018). Tal
fato é decorrente da crescente demanda por sistemas roboéticos, capazes de operar
de forma autbnoma e segura em ambientes sociais e dindmicos, nos quais a intera-
¢éo com seres humanos é inevitavel. Nesse tipo de cenario busca-se a aplicacao de
métodos eficientes, capazes de realizar a tarefa de navegacado com seguranga, sem o
conhecimento prévio do ambiente ou das acdes dos demais agentes e obstaculos.

A maioria das abordagens existentes dividem-se em meétodos reativos, quando
0 processo de tomada de decisdo do agente € iniciado ao identificar uma colisdo
iminente (ZHANG et al., 2015) e métodos preditivos, objetivando lidar com a incerteza
comportamental, caracteristica de obstaculos dinamicos (PFEIFFER et al., 2016).

Destaca-se ainda uma sub-divisdo de técnicas, considerando estratégias basea-
das em aprendizado (FAN et al., 2018), ou o0 uso de algoritmos reativos (BAREISS;
BERG, 2015), por vezes combinados com técnicas de aprendizado, ou por meio da
modelagem do comportamento social dos seres humanos (CHEN et al., 2017).

Apesar da variedade de solucoes existentes, a analise das pesquisas relacionadas
ao tema demonstra que, do melhor do nosso conhecimento, esse problema ainda nao
possui uma solugdo definitiva. Alguns trabalhos destacam que técnicas de preven-
cao de obstaculos puramente reativas ndo sao suficientes para solucionar problemas
de navegacao em ambientes dinamicos (LORENTE; OWEN; MONTANO, 2018; FER-
RER; SANFELIU, 2018). Para os autores, nesse tipo de cenario, o robd deve coexistir
ou cooperar com humanos ou outros veiculos em movimento. Outros observam que o
planejamento do movimento requer a capacidade de prever a evolugao futura dos obs-
taculos, observando restricdes de movimentos que envolvem a dindmica da plataforma
mével (velocidades e aceleragdes) para obtengéo de trajetorias viaveis, considerando
seguranca, manobrabilidade, além de restricoes do ambiente (VEMULA; MUELLING;
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OH, 2017). Além disso, alguns trabalhos sugerem que o agente deve ser capaz de
aprender um modelo de interacdo a partir de dados de trajetoria ou comportamento
humano real, modelando velocidades de outros agentes na multiddo ou por meio da
identificacdo da personalidade cada pedestre (BERA et al., 2017).

A principal motivagéo para o desenvolvimento deste trabalho € impulsionada pelas
dificuldades identificadas e pela necessidade de desenvolver uma solucao segura,
eficiente e adaptavel, adequada para a navegacao de robés méveis autbnomos em
ambientes compartilhados com humanos.

Assim, espera-se colaborar com o desenvolvimento de uma solug¢éo capaz de pro-
porcionar que os robds possam navegar de forma autbnoma, segura e confiavel em
ambientes sociais complexos, proporcionando beneficios significativos para sua inte-
gragcado em atividades cotidianas e contribuindo para o avancgo do estado da arte.

1.2 Objetivos de Pesquisa

1.2.1 Objetivos Gerais

O objetivo deste trabalho é desenvolver um sistema para navegacao autbnoma de
robés médveis em ambientes internos compartilhados com humanos. Para isso, foi
desenvolvida uma abordagem que envolve a percepg¢ao do ambiente por meio de sen-
sores, aprendizado por reforco, visdo computacional e técnicas para deteccao e pre-
vencgao de obstaculos moveis e estaticos. Os experimentos e testes foram conduzidos
apenas em ambiente simulado, por meio da implementagéo de diferentes cenarios no
simulador Gazebo.

1.2.2 Objetivos Especificos

Cadeiras de rodas motorizadas sao dispositivos auxiliares destinados a melhorar
a qualidade de vida de pessoas com deficiéncia. A tecnologia embarcada nesses
dispositivos permite que individuos com mobilidade limitada naveguem para destinos
especificos sem a necessidade de auxilio de outras pessoas. No entanto, individuos
com deficiéncia motora, baixa acuidade visual ou falta de forga muscular enfrentam
desafios para manipular um joystick e evitar obstaculos ao se mover pelo ambiente.

Frente a esse problema, um dos principais objetivos especificos deste trabalho
€ o desenvolvimento de uma solugdo capaz de proporcionar que cadeiras de rodas
roboticas possam navegar de forma autbnoma em ambientes como aeroportos,
museus e shoppings. Dessa forma, a plataforma roboética utilizada neste trabalho
€ um modelo simulado de uma cadeira de rodas motorizada. O objetivo € realizar
um estudo de caso para avaliar a viabilidade de aplicacdo da solugdo proposta ao
problema em questao.
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A partir da construcao e validacdo da abordagem aqui apresentada, espera-se:

» Desenvolver um sistema para navegacao autbnoma de cadeiras de rodas moto-
rizadas em ambientes internos compartilhados com humanos, utilizando apren-
dizado por reforgo e visdo computacional;

» Desenvolver um sistema de prevencao de colisdes para navegacao autbnoma
eficiente, capaz de lidar com a incerteza comportamental dos seres humanos em
ambientes dindmicos, garantindo a seguranca das pessoas em torno do robd;

» Proporcionar que o sistema possa ser estendido a diferentes plataformas roboti-
cas, contribuindo para a integracao de rob6s em atividades humanas cotidianas
e para o estado da arte;

* Analisar o comportamento do robd durante a navegacdo em meio a testes si-
mulados, avaliando o aprendizado continuo e sua adaptacdo a ambientes em
mudancga e propor melhorias para experimentos futuros;

» Comparar o sistema desenvolvido com abordagens recentes e analisar o desem-
penho e robustez da solugao proposta.

1.3 Contribuicoes

Este trabalho contribui para o avanco do estado-da-arte no estudo e desenvolvi-
mento de sistemas de navegacao para robés méveis autbnomos em ambientes inter-
nos compartilhados com humanos, destacando-se:

» A abordagem proposta é nova e eficiente, contribuindo para o avanco da pes-
quisa na area, permitindo a analise de experimentos em ambiente simulado e
realizacao de testes para a implantacao segura e eficiente de sistemas robéticos
em uma ampla gama de cenarios;

» O algoritmo DDPG, combinado com a visdo computacional, é capaz de resolver
tarefas em ambientes complexos, apresentando grande capacidade de aprendi-
zado e generalizacdo. Essas caracteristicas permitem que o robé adquira co-
nhecimento a partir de dados e experiéncias, e aplique esse conhecimento para
lidar com novas situagdes e ambientes de forma eficaz;

* A possibilidade de implantacdo do sistema em uma cadeira de rodas robdtica
representa um grande avanco tecnolégico, com potencial de melhorar a quali-
dade de vida das pessoas, facilitando tarefas cotidianas, proporcionando maior
independéncia e inclusdo social para os usuarios;
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» O estudo realizado demonstra a importancia de avaliar a capacidade de genera-
lizacdo do conhecimento adquirido através do aprendizado por reforgo, por meio
da aplicacdo de testes em diferentes cenarios. Para que um robd autbnomo
navegue de forma segura em ambientes do mundo real, ele deve ser capaz de
generalizar suas habilidades de navegacao para além das situacdes especificas
em que foi treinado.

1.4 Organizacao dos Capitulos

No restante desta tese, serdo apresentados estudos aprofundados, experimentos
e andlises dos resultados obtidos, bem como discussbes sobre os desafios e as pers-
pectivas futuras.

Este trabalho esta organizado da seguinte forma:

Capitulo 2: Neste capitulo sdo apresentados os conceitos relacionados ao tema
da pesquisa, abordando o Aprendizado por Reforgo, Aprendizado Profundo e o Apren-
dizado por Reforco Profundo. Por fim, sdo apresentados o algoritmo Deep Q-Network
(DQN), implementado para comparacao com a solugao proposta por este trabalho, e
as consideragoes finais acerca deste capitulo.

Capitulo 3: Neste capitulo sdo apresentados os trabalhos relacionados ao tema
desta pesquisa. Sao abordadas solugoes referentes a prevencao de colisdes, consi-
derando métodos reativos e métodos preditivos, além de abordagens para deteccéo
de pessoas. Por fim, sdo apresentadas as consideracgdes finais acerca deste capitulo;

Capitulo 4: Neste capitulo é detalhada a abordagem proposta, apresentando a
metodologia utilizada, a plataforma roboética simulada, a estrutura do ambiente de
aprendizado e os ambientes implementados para aplicagdo de treinamento e de tes-
tes. Por fim, é descrito o algoritmo Deep Deterministic Policy Gradient (DDPG), sua
arquitetura e aplicagao neste trabalho;

Capitulo 5: Neste capitulo sdo apresentados os experimentos e resultados. Sao
abordadas as etapas de treinamento, configuracoes, testes realizados, validacao dos
experimentos e resultados obtidos. Por fim, sdo apresentadas as consideragdes finais
acerca deste capitulo;

Capitulo 6: Neste capitulo sao apresentadas as conclusdes, as contribuicées de-
correntes deste trabalho, publicacdes relacionadas a tese, dificuldades encontradas
durante a realizacao dos experimentos e perspectivas para o desenvolvimento de tra-
balhos futuros.



2 FUNDAMENTACAO TEORICA

2.1 Aprendizado por Reforco

Os problemas de Aprendizado por Reforco (Reinforcement Learning - RL) envol-
vem aprender o que fazer, mapeando situagdes para agdes, objetivando maximizar
um valor de recompensa (SUTTON, 1992, 1998).

Em situagcbes que abordam a complexidade do mundo real, para utilizagdo do RL,
0s agentes devem derivar representagdes eficientes do ambiente e, a partir de en-
tradas sensoriais recebidas, utiliza-las para generalizar a experiéncia passada, com
vistas a aplicacéo em situacoes futuras (MNIH et al., 2015).

Existem quatro componentes basicos em RL: agente, ambiente, recompensa e
acdo. Um algoritmo de RL tipico opera apenas com conhecimento limitado do ambi-
ente e com feedback limitado sobre a qualidade das decisées (ZHANG; HAN; DENG,
2018). Os algoritmos mais populares de RL incluem o Q-learning, SARSA (State - Ac-
tion - Reward - State - Action), DQN (Deep Q-Network) e DDPG (Deep Deterministic
Policy Gradient).

Em uma abordagem RL, um agente autbnomo, controlado por um algoritmo de
aprendizado de maquina, observa um estado s; de seu ambiente em uma determinada
etapa t do tempo. Na ocorréncia de uma interagdo entre o agente e o ambiente,
executando uma agao no estado s;, ambos fazem uma transicdo para um novo estado
si+1 (ARULKUMARAN et al., 2017a).

O estado é representado por uma estatistica do ambiente, devendo incluir as in-
formacdes necessarias para que o agente tome a melhor acao. A melhor sequéncia
de acoes € determinada pelas recompensas fornecidas pelo ambiente, que ao passar
para um novo estado, fornece uma recompensa escalar r; . ; ao agente como feedback.

As acdes do sistema de aprendizado influenciam suas entradas posteriores e po-
dem afetar ndo apenas a recompensa imediata, mas também a préxima situagao e,
consequentemente, todas as recompensas subsequentes.

Geralmente, um problema sequencial de tomada de decisdo pode ser formulado
como um processo de decisdo de Markov (MDP), descrito como M = (S, A, R, P,~),
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onde S é o espaco de estados, A € 0 espaco de acao, R é a fungcao de recompensa,
P é o modelo de transicdo de estado e v é um fator de desconto. Os principais
elementos podem ser descritos conforme a seguir (XUE et al., 2019):

» Espaco de estados: o estado de entrada de todo o sistema é composto pelo
estado do préprio robd e pelo estado do obstaculo (assim como outros robds),
que pode ser expresso como s¢ = [s, s°| € R

» Espaco de acdo: uma série de conjuntos de acdes pré-projetados, denotados

por a(s;) = a; = v for v < Ve

» Funcgéo de recompensa: Utilizada para recompensar o robd mével para alcancar
um determinado alvo ou aplicar uma penalidade por obstaculos de colisdo. Con-
siste em quatro partes, e pode ser representada por R(s¢, a) = Ry + Ry + R+ Ry
onde:

- Ry = k- (dg:—1 — dg:): utilizada para estimular o rob6é a se aproximar da
posicao de destino, onde:
dg;_, = distancia linear entre o rob0 e a posi¢ao alvo no passo anterior;
dg, = distancia linear entre o robd e a posi¢ao alvo no préximo passo; e
k é um coeficiente constante.

— R,: indica a penalidade de colisdo. As variaveis da € da,,;, representam,
respectivamente, a distancia atual entre o robd e o obstaculo e a distancia
minima de seguranga entre o robd e o obstaculo. O valor de R, € obtido da
seguinte forma:

R, — —xif da < damn
0 else
— R3 = —c.timer: um valor negativo para o tempo atual é utilizado. Quanto
maior o custo de tempo, maior a puni¢do imposta ao robd. E utilizado como
um estimulo para encontrar o caminho ideal no processo de treinamento,

objetivando que o tempo gasto para atingir a posicao alvo seja o mais curto.

— Ry4: se o robd chegar a posicao alvo, uma recompensa é dada, caso contra-
rio, ndo € recompensado. O valor de R, € obtido da seguinte forma:
x i.f reach goal

Ry =
0 else
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Figura 1 — Aprendizado por Reforgo
Fonte: (KAELBLING; LITTMAN; MOORE, 1996)

A Figura 1 ilustra 0 modelo de aprendizado por refor¢o padrao, onde um agente é
conectado ao ambiente por meio de percepcdes e agdes.

Em cada etapa da interacdo com o ambiente 7', 0 agente B recebe como entrada
i alguma indicacao do estado atual s e escolhe uma acao « para gerar como saida. A
acao altera o estado do ambiente e o valor dessa transicdo de estado é comunicado
ao agente por meio de um sinal de reforco escalar r.

O comportamento do agente a longo prazo deve ser capaz de escolher acées que
tendem a aumentar a soma dos valores do sinal de reforco. Ele pode aprender a
fazer isso ao longo do tempo por tentativa e erro sistematicos, guiado por uma ampla
variedade de algoritmos.

Métodos tradicionais de RL podem ser utilizados para modelar comportamentos
reativos ou preditivos, a partir do processamento de dados de leitura dos sensores e
posicoes relativas dos objetos que compdem o ambiente de navegacdo. Nesse tipo de
solugéao, a prevengéo de colisdes é realizada com base em um modelo de velocidade
e direcdo, onde a tarefa de navegagéao ocorre através do processamento dos dados
recebidos, emitindo comandos de velocidade linear e angular para controlar o rob6 e
evitar obstaculos (LIU; LIU; WANG, 2017; QIANG et al., 2018).

Geralmente, os dados de treinamento sdo pré-processados através de uma rede
neural e, na etapa posterior, 0 mapa de recursos extraido do modelo de aprendizado
supervisionado é utilizado como entrada de dados para a rede, resultando em um
conjunto de comandos para determinar as agcbes do robd (TAI; LIU, 2016a).

Como forma de melhorar o desempenho dos algoritmos e reduzir o custo com-
putacional, podem ser utilizados mapas gerados artificialmente e conjuntos de dados
de treinamento contendo amostragens do mundo real (LIU; XU; CHEN, 2018), ou por
meio da criacdo de modelos independentes de deciséo, utilizando simulagdes offline
repetidas (LONG; LIU; PAN, 2017).

Para minimizar o tempo de aprendizado, € possivel armazenar transacoes de ex-
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periéncia, através da utilizacdo de um médulo de meméria (WU et al., 2017). O tempo
de computagdo também pode ser reduzido por meio da remogao de repeticdes des-
necessarias durante a etapa de treinamento da rede.

2.2 Aprendizado Profundo

O Aprendizado Profundo (Deep Learning - DL) permite a descoberta de estruturas
complexas em grandes conjuntos de dados. Para isso, utiliza um algoritmo de retro-
propagacao para indicar como uma maquina deve alterar seus parametros internos,
usados para calcular a representacdo em cada camada a partir da camada anterior
(LECUN; BENGIO; HINTON, 2015).

Essa capacidade proporciona que modelos computacionais, compostos por varias
camadas de processamento, aprendam representacdes de dados com varios niveis de
abstracao, resultando em melhorias significativas para o estado da arte em diversos
dominios, como reconhecimento de fala, reconhecimento visual de objetos, deteccéo
de objetos, entre outros.

Métodos baseados em DL sdo compostos por varios niveis de representacao, obti-
dos pela composi¢cdo de mddulos simples, mas néo lineares, que transformam dados
brutos de entrada em um nivel de representagdo mais alto e mais abstrato, neces-
sarios para deteccao ou classificacdo (PRABHA; UMARANI SRIKANTH, 2019). O
aprendizado se da por meio da utilizagdo de redes neurais profundas.

Conforme Prabha; Umarani srikanth (2019), o numero de camadas ocultas entre
as camadas de entrada e saida sao determinantes para o aprendizado. As camadas
iniciais sdo responsaveis pela extracdo dos recursos abstratos e, a medida que o
aprendizado avanga, as camadas profundas sao responsaveis pelo fornecimento de
informagdes importantes acerca dos recursos processados.

O DL pode ser classificado em duas arquiteturas principais: Redes Neurais Con-
volucionais (CNN) e Redes Neurais Recorrentes (RNN), descritas conforme a seguir,
segundo a visdo dos autores.

2.2.1 Redes Neurais Convolucionais

CNNs séao algoritmos de aprendizado profundo amplamente utilizados e a catego-
ria mais proeminente de redes neurais, principalmente para aplicacbes que envolvem
dados de alta dimensionalidade, como imagens e videos (ALOM et al., 2019). Sua
arquitetura é inspirada na neurobiologia do cértex visual e possui uma estrutura otimi-
zada para processamento de imagens 2D e 3D, sendo muito eficazes no aprendizado
e extracao de abstracdes de recursos 2D, com significativamente menos parametros
do que uma rede totalmente conectada de tamanho semelhante.

A estrutura de rede foi proposta pela primeira vez por Fukushima em 1988 (FU-
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KUSHIMA, 1988), sendo modificada na década de 1990, através da aplicagdo de um
algoritmo de aprendizado baseado em gradiente para lidar com o problema de classi-
ficacdo de digitos manuscritos (LECUN et al., 1998).

A CNN é uma rede feedforward utilizada principalmente para o processamento de
imagens. A capacidade da CNN depende do numero de camadas ocultas usadas
entre as camadas de entrada e saida e cada camada € responsavel pela extracédo de
um conjunto de caracteristicas. Os mapas de recursos sao gerados pela aplicagao de
uma série de filtros sobre a entrada e cada filtro percorre toda a entrada, multiplicando
seus pesos pelos valores obtidos.

O resultado é passado para uma funcdo de ativagdo como RelLU (Rectified Li-
near Units), sigmoide ou tangente hiperbdlica (tanh), enquanto uma fung¢éao de perda
€ usada para avaliar o conjunto de pesos. Os mapas de recursos gerados pelos fil-
tros destacam diferentes caracteristicas dos dados de entrada. A CNN tem quatro
tipos de camadas principais: camada de convolugdo; camada RelLU; camada de su-
bamostragem (ou pooling) e; camada totalmente conectada. De acordo com Prabha;
Umarani srikanth (2019), sua principal desvantagem é que a CNN n&o pode lidar com
dados sequenciais.

Conforme Lecun; Bengio; Hinton (2015), diversas aplicacdes de aprendizado pro-
fundo usam arquiteturas de rede neural feedforward, que aprendem a mapear entradas
de tamanho fixo, como imagens, para uma saida de tamanho fixo, como por exemplo,
uma probabilidade para cada uma das varias categorias. Esse aprendizado se da por
meio de transi¢cdo entre camadas, utilizando um conjunto de unidades para calcular
uma soma ponderada de suas entradas da camada anterior e passar o resultado por
uma funcéo nao linear.

A fungéo nao linear mais popular € a ReLU, um retificador de meia onda f(z) =
max(z,0). Segundo os autores, nas ultimas décadas, as redes neurais usavam nao
linearidades mais suaves, como tanh(z) ou m no entanto, a ReLU tende a
aprende mais rapido em redes com muitas camadas, permitindo o treinamento de
uma rede supervisionada profunda sem pré-treinamento ndo supervisionado. Unida-
des que nao estdo na camada de entrada ou saida sdo chamadas de camadas ocul-
tas, responsaveis pelo processamento da camada de entrada de maneira nao linear,
de modo que as categorias se tornem linearmente separaveis pela ultima camada.

2.2.2 Redes Neurais Recorrentes

Ao contrario da CNN, que é uma rede de alimentagéo direta, Redes Neurais Re-
correntes (RNNSs) utilizam propagacéao reversa. Ou seja, as entradas atuais também
consideram as entradas anteriores. RNNs foram projetadas com base no principio de
que os humanos nao pensam do zero, podendo processar dados sequenciais com a
ajuda de uma memoria interna. As principais caracteristicas das RNNs sao:
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» Propagacéo reversa: A RNN usa propagacéao reversa no tempo durante o treina-
mento. Isso significa que ela comeca a processar a sequéncia de dados desde o
final até o inicio, o que permite que a rede capture dependéncias de longo prazo,
levando em consideragao as entradas anteriores enquanto processa as atuais.

» Entradas sequenciais e memoria interna: RNNs s&o projetadas para trabalhar
com dados sequenciais, como sequéncias de texto, udio ou séries temporais.
Elas possuem uma memoria interna que Ihes permite "lembrar" informacdes das
etapas anteriores ao processar cada elemento da sequéncia.

* Inspiradas no principio do pensamento humano: A ideia de usar memaria interna
nas RNNs é inspirada na forma como os humanos processam as informagdes,
ou seja, as informagdes nao sao processadas a partir do zero, mas sim com base
no conhecimento adquirido anteriormente. Essa capacidade das RNNs de man-
ter um estado interno e usar informagdes anteriores para influenciar decisées
futuras as torna adequadas para tarefas que envolvem dependéncias sequenci-
ais, como aplicagdées em NLP (Natural Language Processing), reconhecimento
de voz e traducao, entre outros.

Apesar de suas vantagens, as RNNs também tém algumas limitagcdes, como difi-
culdades em lidar com dependéncias de longo prazo devido ao problema de desva-
necimento ou explosédo do gradiente, o que dificulta a aprendizagem em sequéncias
muito longas. Para resolver esses problemas, foram desenvolvidas outras arquiteturas
de redes neurais, como as redes LSTM (Long Short-Term Memory), que sao variantes
das RNNs, projetadas para mitigar os problemas de dependéncias de longo prazo.

Atualmente, existem diferentes tipos de arquiteturas de aprendizado profundo, dis-
poniveis para uma variedade de solucdes, de acordo com o contexto de aplicacao
(ZHANG; HAN; DENG, 2018): Maquina de Boltzmann (BM), Redes DBN (Deep Be-
lief Network, Redes FDN Feedforward Neural Network, Redes Neurais Convolucio-
nais (CNN), Redes Neurais Recorrentes (RNN), Redes de Meméria de Longo Prazo
(LSTM), Redes GAN Generative Adversarial Networks, entre outras.

2.2.3 Deteccao de pessoas

A deteccao de pessoas desempenha um papel fundamental na navegacao auté-
noma, € crucial para garantir a seguranca e a interacao eficiente entre os robds e as
pessoas que compartilham o mesmo espaco.

A capacidade de detectar e reconhecer pessoas com precisao permite que o0s
robds tomem decisdes informadas e naveguem com mais seguranga. Ao reconhe-
cer a presenca de pessoas, 0 robd pode adaptar seu comportamento € movimento
para garantir uma navegacao suave e nao invasiva e evitar caminhos congestionados.
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Isso é especialmente importante em ambientes dinamicos, como hospitais, fabricas
ou espacos publicos, onde ha um alto fluxo de pessoas.

As CNNs tém se destacado na deteccédo de pessoas devido a sua capacidade
de aprender caracteristicas discriminativas diretamente dos dados de entrada. Esse
tipo de arquitetura € amplamente utilizado em tarefas de visdo computacional, como
classificagédo de textos (WANG et al., 2019), segmentagédo de imagem, classificacao de
imagens e deteccao de objetos (PATHAK; PANDEY; RAUTARAY, 2018; DRUZHKQV;
KUSTIKOVA, 2016) e reconhecimento facial.

A deteccao de pedestres com base em CNN tem se dividido em duas categorias
distintas (XIAO et al., 2021). Uma delas é conhecida como estrutura de dois estagios,
também chamada de método baseado em regido. Nesse método, inicialmente sédo
geradas propostas de regides que podem conter pedestres. Em seguida, as carac-
teristicas dessas regides sao extraidas utilizando CNN e, por fim, um classificador &
utilizado para classificar e reconhecer os pedestres nessas regides.

Conforme Xiao et al. (2021), o outro método de detecgdo é denominado estrutura
de estagio unico, também conhecida como método de detecgédo direta, que visa acele-
rar a velocidade de deteccao ao eliminar a etapa de geracéo de propostas regionais e,
em vez disso, realizar uma regressao direta na area predefinida. Nessa abordagem,
a CNN é treinada diretamente para regredir e identificar a area predefinida onde os
pedestres podem estar presentes. O objetivo é reduzir a complexidade computacional
e melhorar a eficiéncia do sistema.

A seguir sao listadas as principais estruturas de deteccao de dois estagios e estru-
turas de estagio unico:

2.2.3.1 Estruturas de deteccdo de dois estagios

* Regions with CNN features (R-CNN). Combina redes neurais convolucionais
(CNNs) de alta capacidade a propostas de regides independentes de catego-
ria para localizar e segmentar objetos. Utiliza um algoritmo de busca seletiva
para extrair e combinar apenas 2.000 regides da imagem a ser classificada
(GIRSHICK et al., 2014).

» Fast R-CNN: Abordagem semelhante ao algoritmo R-CNN, porém mais rapida.
Nao é necessario alimentar 2.000 propostas de regiao para a rede neural convo-
lucional a cada etapa de convolugdo. Em vez disso, a operagao de convolugao
e feita apenas uma vez por imagem e um mapa de caracteristicas € gerado a
partir dela (WANG; SHRIVASTAVA; GUPTA, 2017).

» Faster R-CNN: Essa abordagem elimina o algoritmo de busca seletiva e permite
qgue a rede aprenda as propostas de regiao. De forma similar ao Fast R-CNN,
uma imagem é fornecida como entrada para uma rede convolucional que retorna
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um mapa de caracteristicas, entdo uma rede separada é usada para prever as
propostas de regido (REN et al., 2015).

* Mask R-CNN: Método para deteccdo de objetos em uma imagem, capaz de
gerar simultaneamente uma mascara de segmentacdo de alta qualidade para
cada instancia, além de estimar poses humanas na mesma estrutura (HE et al.,
2017). O Mask R-CNN estende o Faster R-CNN adicionando uma ramificagao
para prever uma mascara de objeto em paralelo com a ramificacao existente para
reconhecimento de caixas delimitadoras.

» Focal loss for dense object detection (RetinaNet): Detector de um estagio convo-
lucional que aplica um termo modulador a perda de entropia cruzada para lidar
com o problema de desequilibrio de classe atribuindo mais pesos a exemplos
dificeis ou facilmente mal classificados (LIN et al., 2017).

2.2.3.2 Estruturas de detecgao de estagio unico

» Single Shot MultiBox Detector (SSD). Método para deteccéo de objetos em ima-
gens usando uma unica rede neural profunda. A abordagem SSD é baseada em
uma rede convolucional feedforward que produz uma colecdo de tamanho fixo
de caixas delimitadoras e pontuacdes para a presenca de instancias de classe
de objeto nessas caixas, seguida por uma etapa de supressdo nao maxima para
produzir as detecgoes finais (LIU et al., 2016).

» You Only Look Once (YOLO): Método para detecgédo unificada de objetos em
tempo real. Uma unica rede neural prevé caixas delimitadoras e probabilida-
des de classe diretamente de imagens completas em uma avaliagdo (REDMON
et al., 2016). O algoritmo utiliza uma uUnica propagacao direta através da CNN
para deteccdo de objetos. Atualmente, varias versdes foram atualizadas para
melhorar seu desempenho.

De acordo com o estudo realizado por Xiao et al. (2021), o SSD tem vantagens
sobre 0 YOLO na resolucao de problemas de pequena escala e localizacao, po-
rém, apresenta limitacdes na reducao de falsos positivos ao lidar com pedestres
em cenarios complexos.

2.3 Aprendizado por Reforco Profundo

Conforme descrito na secao anterior, o Aprendizado Profundo consiste em aproxi-
mar fungdes ndo lineares através do treinamento de redes neurais profundas. Essa
capacidade de representagcdo proporcionou um avango para o RL ao integrar-se com
redes neurais profundas, formando o Aprendizado por Reforco Profundo (Deep Rein-
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forcement Learning - DRL), uma combinacéo do aprendizado por reforco com o apren-
dizado profundo.

/ Deep Learning \ ﬂ?eintorcement Learninh

Artificial Neural Network Trial-and-Error Learning
1943 1911
Perceptron Dynamic Programming, MDPs
1969 1940, 1953
Recurrent Neural Network Reinforcement Learning
1980 1979

Temporal-Difference Leaming]

Neocognitron
1988 1959, 1987
Convolutional Neural Network Actor-Critic
1998 1983
Long Short-Term Memory Q-Learning, Sarsa
\ 1997 / 1989, 1994 /

[ v I

Deep Reinforcement Learning

Deep Q-Learning | | Deep Actor-Critic | | Deep Policy Gradient
2015 2016 2016

Figura 2 — DL, RL e DRL
Fonte: Adaptado de Fenjiro; Benbrahim (2018)

O DRL foi proposto pela primeira vez em 2013 para o aprendizado de politicas de
controle aplicadas aos jogos de computador Atari 2600 (MNIH et al., 2013). A solucéo
utilizou uma variante do algoritmo Q-Learning, conectado a uma rede neural profunda,
para o processamento de dados de treinamento a partir de imagens RGB.

Desde entao, sua utilizacdo tem sido pesquisada para uma variedade de aplica-
cOes, tais como navegacao autbnoma em ambientes internos (TAI; LIU, 2016b), con-
ducdo de veiculos autbnomos em cenarios urbanos (SALLAB et al., 2017; WULF-
MEIER et al., 2017), reconhecimento de objetos estaticos e moveis (ZUO; DU; LU,
2017), prevencao de colisdes durante a tarefa de navegacao auténoma (RUAN et al.,
2019), entre outras.

Diferente de métodos puramente reativos, em uma abordagem DRL busca-se co-
dificar comportamentos cooperativos através do aprendizado de uma fungéo de valor
(CHEN et al., 2017), ou aprender com as experiéncias de varios agentes durante as
etapas de treinamento (EVERETT; CHEN; HOW, 2018). Essas estratégias permitem
que os algoritmos escolham as acdes a serem realizadas, com base nas observacoes
de um numero arbitrario de agentes préximos, sem assumir que outros agentes sigam
qualquer modelo comportamental especifico.

O DRL pode ser classificado em trés abordagens: métodos baseados em va-
lor, métodos baseados em politicas e métodos ator-critico, uma abordagem hibrida
que combina as duas primeiras, descritas conforme a seguir (ARULKUMARAN et al.,
2017b):
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2.3.1 Métodos baseados em valor

Métodos baseados em valor obtém indiretamente a politica do agente ao atualizar
iterativamente a funcao de valor. Quando a funcéo de valor alcanca seu valor 6timo, a
politica do agente € obtida a partir dessa fungao. Sao baseados na estimativa do valor
(retorno esperado) de estar em um determinado estado. A fungéo de valor do estado
V. (s) representa o retorno esperado ao iniciar no estado s e seguir a politica = a partir
daquele ponto em diante:

V.(s) = E[R]|s, 7]

Onde:

Vz(s) é a fungéo de valor do estado s sob a politica r; e

E[R|s,n]| € o valor esperado do retorno (recompensa acumulada) ao seguir a poli-
tica 7 a partir do estado s.

A politica 6tima 7* tem uma funcédo de valor do estado correspondente V*(s) e
vice-versa, a funcéo de valor do estado 6tima pode ser definida como:

V*(s) =maxV™(s) paratodo s e S.

Onde:

V*(s) é a fungao de valor étima do estado s;

V7™ (s) € a funcdo de valor do estado s sob a politica ;

S é o conjunto de todos os estados possiveis.

Com V*(s) disponivel, a politica étima pode ser recuperada escolhendo entre
todas as agOes disponiveis no estado s, e selecionando a agdo a que maximiza
Est+1~T[V*(St+l)]-

No cenario de RL, a dindmica de transicdo 7' ndo esté disponivel. Portanto, outra
funcé@o € necesséria, a fungao valor estado-agéo ou fungéo qualidade Q. (s, a), que é
similar a V., exceto que a acao inicial a € fornecida, e a politica = é seguida somente
a partir do proximo estado em diante:

Qx(s,a) = E[R|s,a,7].

A melhor politica, dada a fungdo Q. (s, a), pode ser encontrada escolhendo a de
forma gananciosa em cada estado: argmax,(Q).(s,a). Sob essa politica, também é
possivel definir V.(s) maximizando Q(s, a):

Va(s) = max Qr(s. )

Ou seja, o valor do estado s sob a politica = é igual ao maximo valor da funcéo
Q- (s,a) em relagdo a todas as agdes possiveis a.
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Algoritmos tipicos de DRL, baseados em valor, incluem o Q-Learning, Deep Q-
Network (DQN), Double Q-Learning, Dueling DQN, SARSA (State-Action-Reward-
State-Action), entre outros.

2.3.2 Métodos baseados em politica

Métodos baseados em politicas utilizam diretamente o método de aproximacao de
funcao para estabelecer uma rede de politicas. As acdes sao entdo selecionadas por
meio dessa rede para obtencao do valor de recompensa, enquanto os parametros da
rede de politicas sdo otimizados ao longo da direcdo do gradiente para obter uma
politica capaz de maximizar o valor de recompensa.

Conforme Arulkumaran et al. (2017b), nessa abordagem nao € necessario manter
um modelo de fungéo de valor, mas buscar diretamente uma politica 6tima =*. Tipica-
mente, uma politica parametrizada 7, € escolhida, cujos parametros ¢ sao atualizados
para maximizar o retorno esperado E[R | 6], utilizando otimiza¢do baseada em gradi-
entes ou sem gradientes.

Segundo os autores, a otimizacao sem gradiente pode abranger efetivamente es-
pacos de parametros de baixa dimensao, mas apesar de alguns sucessos em aplica-
los a redes grandes, o treinamento baseado em gradiente continua sendo o método
de escolha para a maioria dos algoritmos de DRL, sendo mais eficiente em termos de
amostras, ao lidar com politicas que possuem um grande nimero de parametros.

2.3.3 Métodos Ator-Critico

A combinacdo de funcdes de valor com uma representacédo explicita da politica
resulta em métodos ator-critico. O "ator" (politica) aprende usando o feedback do
"critico" (funcéo de valor). Dessa forma, esses métodos proporcionam um equilibrio
entre a reducao da variancia dos gradientes de politica e a introdugéo de viés a partir
dos métodos de funcao de valor.

Em métodos ator-critico a funcao de valor é utilizada como uma linha de base para
os gradientes de politica, de modo que a principal diferenga com outros métodos de
linha de base é que os métodos ator-critico utilizam uma funcao de valor aprendida
(ARULKUMARAN et al., 2017b).

Os autores observam que em vez de utilizar a média de varios resultados de Monte
Carlo, como a linha de base para os métodos de gradiente de politica, abordagens
ator-critico ganharam popularidade como um meio eficaz de combinar os beneficios
dos métodos de busca de politica com funcdes de valor aprendidas. Dessa forma,
podem aprender a partir de retornos completos e/ou erros TD (Temporal Difference) e
também se beneficiar de melhorias tanto dos métodos de gradiente de politica, quanto
dos métodos de funcéo de valor.
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2.4 Deep-Q Network

O Deep-Q Network (DQN) foi a primeira aplicacao do Q-learnin ao aprendizado
profundo, constituindo uma das abordagens mais conhecidas e bem-sucedidas para
aprender politicas 6timas em ambientes de aprendizado por reforgo.

O DQN é uma variagao do algoritmo Q-Learning, composto por trés principais me-
lhorias em sua arquitetura: uma rede neural convolucional profunda para aproximagao
da funcédo Q; utilizacdo de mini-lotes de dados de treinamento aleatérios, em vez
de atualizacdo de um Unico passo na ultima experiéncia; e o uso de parametros de
rede mais antigos para estimar os valores ) do proximo estado (RODERICK; MAC-
GLASHAN; TELLEX, 2017).

O pseudocadigo a seguir descreve o algoritmo DQN, conforme proposto por (MNIH
et al., 2015):

Algorithm 1 Algoritmo DQN
Initialize replay memory D to capacity N
Initialize action-value function @ with random weights ¢

Initialize target action-value function Q with weights 6= = ¢
for episode = 1, M do
Initialize sequence s; = {z1} and preprocessed sequence ¢; = ¢(s1)
fort =1do
With probability ¢, select a random action a,
Otherwise, select a; = arg max, Q(¢(st), a;0)
Execute action a; in the emulator and observe reward r; and image x4
Set si11 = st, ar, 7141 and preprocess ¢r1 = P(s,, )
Store experience (¢, at, ¢, ¢ry1) in D
Sample random minibatch of experiences (¢, at, ¢, ¢¢+1) from D

~

T if episode terminates at step j + 1
Set Yj =
ri + v mazy Q(¢j41,a’;67) otherwise
Perform a gradient descent step on (y; — Q(¢;,a;; 0))* with respect to the weights ¢
Every C steps reset Q = Q
end for
end for

As principais caracteristicas do DQN s&o descritas conforme a seguir (FENJIRO;
BENBRAHIM, 2018):

* Rede-alvo: configurada para lidar separadamente com o erro de diferenca tem-
poral (TD) no algoritmo. O paréametro 6, da rede Q atual Q(s, a; 6;) é copiado para
0! da rede-alvo Q(s',d’; 0)) a cada n passos de tempo, o que evita a instabilidade
da rede-alvo devido as alteracdes feitas na rede () atual durante o treinamento.
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A ideia consiste em usar uma rede separada para estimar os valores @@ — alvo
gue serdo usados para calcular a perda para cada acao. Essa rede-alvo possui
a mesma arquitetura do aproximador de funcdo, mas com pesos fixos. A cada
T passos (por exemplo, a cada 1000 passos), 0s pesos da rede () sdo copiados
para a rede-alvo, o que proporciona maior estabilidade ao DQN.

 Pool de experiéncias (Experience Pool - EP) U(D): usado para armazenar e
gerenciar amostras (s, a,r, s’), enquanto um mecanismo de repeticdo de experi-
éncias (Experience Replay - ER) é utilizado para selecionar as amostras. Essas
amostras sao armazenadas no EP, de onde lotes sao selecionados aleatoria-
mente para treinar a rede Q. O mecanismo de ER ajuda a eliminar a correlagéo
entre as amostras.

A repeticado de experiéncias quebra a similaridade entre as amostras de treina-
mento subsequentes, o0 que poderia levar a rede a um minimo local, e resolve
os desafios de correlacdo de dados e distribuicbes de dados nédo estacionarias.
Essa técnica permite que a rede aprenda de maneira mais estavel, reduzindo
a dependéncia excessiva das amostras temporais e melhorando a eficacia do
aprendizado com base em experiéncias passadas.

Os parametros da rede neural sao atualizados por meio do gradiente descendente.
A funcéao de perda do DQN é representada como:

L(B:) = E [(r+ymax Q(s',a's6}) — Q(s,;6,))? (1)

Onde:

* 0, representa os parametros da rede @ atual Q(s, a;6;);

* theta) representa os parametros da rede @ alvo Q(s, a; 0.);

* s € 0 estado atual;

* a é a acado tomada no estado atual;

» r € a recompensa recebida ap6s tomar a agao a no estado s;

* s é o0 proximo estado apds tomar a acao a;

* a € a agao selecionada no proximo estado;

» v é o fator de desconto, que determina a importancia das recompensas futuras.

A funcao de perda representa o erro quadratico médio entre o valor () previsto
para o par estado-acao atual e o valor Q — alvo, que é a recompensa recebida mais
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o valor ) maximo descontado de todas as possiveis acoes no préximo estado. O
objetivo do treinamento € minimizar essa funcao de perda para melhorar a precisdo
das estimativas dos valores () e, consequentemente, o desempenho do agente.

Segundo Roderick; Macglashan; Tellex (2017), durante o treinamento usando o
DQN, as curvas de aprendizado médio do Q-learning em configuragdes tabulares ge-
ralmente mostram melhorias relativamente estaveis, e problemas de aprendizado pro-
fundo supervisionado também costumam ter melhorias médias bastante estaveis a
medida que mais dados se tornam disponiveis. No entanto, os autores observam que
nao é incomum no DQN ocorrer o chamado "esquecimento catastréfico”, no qual o
desempenho do agente pode cair drasticamente apds um periodo de aprendizado.

Diante desse problema, os autores destacam a solucao proposta por Mnih et al.
(2015), que consiste em salvar os parametros da rede que resultaram no melhor de-
sempenho nos testes. Assim, é possivel restaura-los posteriormente, permitindo que
0 agente mantenha a capacidade de atingir pontuacdes mais altas e continue apren-
dendo sem regredir significativamente em seu desempenho.

Essa abordagem é uma forma de mitigar o problema do esquecimento catastrofico
e ajudar o agente a se manter em niveis de desempenho mais altos ao longo do tempo,
mesmo durante o treinamento continuo.

2.5 Consideracoes finais

Este capitulo apresentou os principais conceitos relacionados ao tema desta pes-
quisa. A solugcao proposta neste trabalho fundamenta-se nesses conceitos, consti-
tuindo um sistema baseado em Aprendizado por Reforco Profundo, uma combinacao
do aprendizado por reforco com o aprendizado profundo. Essa abordagem permite
gue um agente aprenda a tomar decisées, através da interacdo com o ambiente, uti-
lizando redes neurais profundas para extrair padrées complexos e representacoes de
alto nivel a partir dos dados recebidos. Foram apresentados conceitos acerca do al-
goritmo DQN, uma das técnicas mais proeminentes nessa interse¢ao, que introduziu
a ideia de usar redes neurais para aproximar fungcdes ) e tornar o aprendizado por
reforco mais eficiente e estavel. Em seguida, exploramos o algoritmo DDPG, utilizado
nesta abordagem e que se destaca ao permitir o aprendizado de politicas determinis-
ticas em ambientes de acao continua. Por fim, foram apresentados conceitos relacio-
nados as principais estruturas de deteccao, abordando um problema fundamental em
visdo computacional que € a detecgcdo de pessoas. Ao unir esses conceitos, perce-
bemos que o aprendizado por refor¢co profundo e a deteccdo de pessoas podem se
complementar em cenarios de robédtica avangada, onde um agente pode aprender a
navegar em ambientes desconhecidos de forma segura e eficiente.



3 TRABALHOS RELACIONADOS

A seguir serao apresentados e discutidos os trabalhos relacionados a este que
foram realizados na area de navegacgao autbnoma em ambientes internos.

Foram utilizados como principal fonte de consultas para esta pesquisa a biblioteca
digital IEEEXplore', a base de dados SCOPUS? e o Portal de Periédicos da Coorde-
nagao de Aperfeicoamento de Pessoal de Nivel Superior CAPES®.

Através da busca por palavras-chave relacionadas ao tema em questao: (autono-
mous navigation, crowded scenarios, crowd navigation, collision avoidance in crowd,
robot navigation in crowded), foram selecionados trabalhos publicados em importantes
periédicos cientificos e conferéncias da area de robética International Journal of Robo-
tics Research, Autonomous Robots, International Conference on Autonomous Robot
Systems and Competitions (ICARSC), International Conference on Robotics and Auto-
mation (ICRA) e International Conference on Intelligent Robots and Systems (IROS).

Primeiramente serdo apresentados os trabalhos que utilizam abordagens reativas
para prevencao de colisdes. Nesse contexto destacam-se solugbes baseadas em
Campo de Poténcia Artificial, Velocity Obstacle e métodos baseados em aprendizado
que utilizam estruturas livres de modelos. A secdo 3.1.2 apresenta os trabalhos base-
ados em aprendizado cujas solugcdes constituem métodos de prevencao de colisdes
preditivos, abordando solugdes baseadas em modelos e solugdes baseadas em traje-
toria. Por fim, sdo apresentados os trabalhos relacionados a detecgédo de pessoas.

https://ieeexplore.ieee.org/
2https://www.scopus.com/home.uri
3https://www.periodicos.capes.gov.br/
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O Quadro 1 apresenta uma listagem dos trabalhos que foram estudados para esta
pesquisa e as caracteristicas gerais de acordo com a abordagem proposta.

Tabela 1 — Abordagens Utilizadas e Caracteristicas Gerais

Método | Base do Modelo | Cenario
AUTOR R P BAARICH PT D E ALGORITMOS
(CHEN et al., 2017) X | x X X SA-CADRL - Socially Aware CADRL
(GYENES; SZADECZKY-KARDOSS, 2018) X X X SVO - Safety Velocity Obstacle
(RUAN et al., 2019) X X X X | Dueling Double DQN
(XUE et al., 2019) X X X x | Deep Double Q-Learning
(CAO; TRAUTMAN; IBA, 2019) X X X Timed A*
(SASAKI et al., 2019) X | X X X A3C - Asynchronous Advantage Actor-Critic
CADRL - Collision Avoidance with
(CHEN etal,, 2017) X X x X Deep Reinforcement Learning
DB-SCAN - Density- Based Spatial
(BRESSON et al., 2019) X X X Clustering of Applications with Noise
. . GA3C-CADRL - GPU/CPU Asynch.
(EVERETT; CHEN; HOW, 2018) X S X Advantage Actor-Critic CADRL
. ESFM - Extended Social Force Model
(FERRER; SANFELIU, 2018) X x X RRT - Rapidly-exploring Random Tree
F-RVO - Frontal RVO
(CHEN et al., 2021) X X X DensePeds
PPO - Proximal Policy Optimization
553%81352021(?1)3) X X X X PPO - Proximal Policy Optimization
(FIORINI; SHILLER, 1998) ) .
(LORENTE: OWEN: MONTANO, 2018) X X | x VO - Velocity Obstacle
(BAREISS; BERG, 2015)
(BERG; LIN; MANOCHA, 2008) X X X RVO - Reciprocal Velocity Obstacle
(KIM et al., 2015)
(DOUTHWAITE; ZHAO; MIHAYLOVA, 2018)
(SNAPE et al., 2011) X X X HRVO - Hybrid RVO
(BERA et al., 2017)
(LIU; LIU; WANG, 2017)
(QIANG et al., 2018) X X X x | Q-Learning
(YANG; LI, 2017)
(ZHANG et al., 2015) A )
(VAN DEN BERG et al., 2011) x| x | x x | x ORCA - Optimal Reciprocal
(LONG: LIU: PAN, 2017) Collision Avoidance
(ALAHI et al., 2016)
(LISOTTO; COSCIA; BALLAN, 2019)
Eggglﬁégaét §I0128())18) X | X X X X LSTM - Long Short-Term Memory
(CHOl et al., 2019)
(SUN; ZHAI; QIN, 2019)
(CIOU et al., 2018)
(RIBEIRO et al., 2019)
(OKUYAMA; GONSALVES; UPADHAY, 2018)
EQ.AAOI.HL/?NJJ e2t0a1lé)201 7) X X X X x| x | Deep Q - Network
(TAI; LIU, 2016a)
(TAI; LIU, 2016b)
(WU et al., 2017)
(CHIANG et al., 2015)
(MALONE et al., 2017)
E\(’;’G';‘S‘QIB‘;'(\)'% 5 ® x x| x| x | APF- Artificial Potential Field
(WU et al., 2015)
(LEE et al., 2017)

R: Reativo; P: Preditivo; BA: Baseado em Aprendizado; AR: Aprendizado por Reforgo; CH:

PT: Previsao de Trajetérias; D: Dinamico; E: Estatico.

Comportamento Humano;
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3.1 Prevencao de Colisoes

3.1.1 Métodos Reativos
3.1.1.1 Baseados em Campos Potenciais Artificiais

Varias solugdes baseadas no algoritmo Artificial Potential Field (APF) tem sido
propostas na literatura, combinando diferentes técnicas, ou propondo modificacdes
para melhorar o planejamento de caminhos e evitar obstaculos.

A ideia principal por tras do algoritmo APF é criar um campo de for¢a ao redor do
robd, onde os obstaculos sao representados como fontes de forga repulsiva e a meta
de navegacao é representada como uma fonte de forga atrativa. O objetivo é guiar o
robd em direcdo a meta enquanto evita colisbes com obstaculos.

O campo potencial artificial € definido como a soma dos campos repulsivos e atra-
tivos. Os campos repulsivos sdo criados em torno dos obstaculos e aumentam em
intensidade a medida que o robd se aproxima deles. Esses campos repulsivos incen-
tivam o robd a se afastar dos obstaculos e evita-los.

Por outro lado, 0 campo atrativo é criado em torno da meta de navegacéao e atrai o
robd em direcdo a ela. O campo atrativo é mais forte perto da meta e diminui a medida
qgue o robb se distancia.

Combinando os campos repulsivos e atrativos, o robd é direcionado para se mover
em direcdo a meta enquanto evita colidir com obstaculos. Isso € feito calculando-se a
forca resultante do campo potencial e, em seguida, aplicando essa forca ao robd para
orientar seu movimento.

A figura 3 mostra como o algoritmo APF age ao detectar um obstaculo durante o
processo de navegacao:

Obstacle Goal
0a
(X0, ¥o) (xg, ¥g)
’
(N td
\ e
\
= do \ Fatt(pm) ", dg
g L - \\
>I" - \\\ .......... -'Unl
n. | | N
*— o Fiot (pm)
Mobile Robot
(ems Ym) F;'ep (o)

X-axis

Figura 3 — Artificial Potential Field
Fonte: (LEE et al., 2017)

O Algoritmo APF, proposto por Khatib (1986), é descrito da seguinte forma: campo
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potencial atrativo, relacionado ao objetivo U, (p,,) € campo potencial repulsivo, relaci-
onado aos obstaculos U, ., (p.,)-
O campo potencial total U, (p,,,) € definido conforme a equacao 2:

Utot(pm) - Uatt(pm) + Urep(pm) (2)

onde:
Pm = (Zm,ym)? € 0 vetor de posicdo do robé mével em coordenadas cartesianas.
A forca é o gradiente negativo do campo potencial, obtida da seguinte forma:

Eot(pm) = _VUtot<pm) - Fatt(pm) + Frep(pm) (3)

onde:

F.u(pm) representa a forga atrativa gerada pelo objetivo e F..,(p.,) € a forca repul-
siva gerada pelos obstaculos. F,,(p.) € a soma de duas forgas, denotando a forca
total que atua no rob6é movel.

onde:

dy = (2o, yo)" € dy = (x4,y,)" representam, respectivamente, os vetores de posi¢ao
em relacao a um obstaculo e o objetivo do robd mével.

A forca atrativa e a forga repulsiva sdo descritas conforme a seguir:

Fatt (pm) = katt . dg (4)

o (p) = 0, [ldo| > dg (5)
’ —krep(1/[do|| = 1/de)(1/ (I1do][)*)(do/l|dol[), |1do|| < d

g =/ (xm — 24)* + (ym — y,)*: representa a distancia do robd mével em relagéo
ao seu objetivo.

Os parametros k,; € k,., s80 fatores de escala da forga atrativa e da forga repulsiva,
respectivamente.

O parametro d, utilizado para o célculo da forgca repulsiva, representa a distancia
limite entre o robé moével e um obstaculo. O vetor p,, € o vetor de velocidade atual do
robd movel.

Modificagdes no algoritmo APF podem ser adotadas para criar novos pontos de
forca atrativa e ajudar o robé mével a escapar dos minimos locais (WU et al., 2015;
LEE et al., 2017). Nesse tipo de solucédo o robd realiza o percurso utilizando o al-
goritmo APF tradicional e, ao atingir um minimo local, uma funcado baseada no APF
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modificado é aplicada para estimular o robd a alterar sua trajetéria e, posteriormente,
retomar o percurso em diregdo ao seu objetivo.

Técnicas baseadas em amostragem, para identificar caminhos sem colisdes em
ambientes dindmicos, podem ser combinadas com métodos de planejamento de cam-
pos potenciais artificiais para navegacao em ambientes dindmicos (CHIANG et al.,
2015; MALONE et al., 2017). A solucao consiste em calcular um caminho sem coli-
sOes, com relacdo a obstaculos estaticos que é utilizado como um atributo intermedia-
rio para atingir o objetivo. Para melhorar a seguranga do algoritmo é incorporado um
campo potencial repulsivo para cada obstaculo em movimento, tomando-se por base
conjuntos estocasticos pré-computados.

Outras solucdes buscam predizer trajetérias livres de colisdo com base no estado
dos obstaculos em movimento. Um modelo de previsdo baseado na rede neural de
Elman foi projetado por Wang; Ban (2018) para estimar o estado de obstaculos em mo-
vimento para a navegagao segura de USVs (Unmanned Surface Vehicles). A distancia
relativa e o tempo de colisdo entre o agente mdvel e os obstaculos foram utilizados
para melhorar o desempenho do algoritmo e evitar o problema de minimos locais.

Uma modificagdo na funcdo do campo de repulsdo, introduzindo um valor de dis-
tancia relativa entre o ponto de objetivo e o robd, foi apresentada por Gu et al. (2019).
A solugéo adotou uma combinagéo do algoritmo APF com o algoritmo Fuzzy Control,
criando uma fungao para ampliar a percepgao do robé mével para além da distancia
com os obstaculos. A medida que o robd se aproxima do objetivo, a forca de repulséao
€ atualizada por um fator de regulagéo, tendendo a zero, até alcangar o objetivo.

3.1.1.2 Baseados no Método Velocity Obstacle

O método Velocity Obstacle (obstaculo de velocidade, em portugués) baseia-se
na ideia de que cada agente tem uma regido em torno dele, chamada de "espago
de velocidade segura”, na qual ele pode se mover sem colidir com outros agentes.
Essa regido € definida pelas velocidades relativas permitidas em relacdo aos outros
agentes.

Nessa abordagem, cada agente avalia as velocidades relativas dos outros agen-
tes e determina os obstaculos de velocidade correspondentes. Esses obstaculos sdo
representados geometricamente como regides no espacgo de velocidade. O agente
entdo seleciona uma velocidade de movimento que esteja fora dessas regides de obs-
taculo de velocidade, permitindo que ele se mova em seguranga.

Uma vez que cada agente tenha escolhido uma velocidade segura, ele pode ser
combinado com outras técnicas de planejamento de trajetéria para determinar a traje-
toria final do agente, levando em consideracao outros fatores, como metas e restricoes
do ambiente.

O conceito denominado Velocity Obstacle (VO), baseado na estrutura geométrica
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do Cone de Colisao (CC), foi apresentado pela primeira vez por Fiorini; Shiller (1998).
Na estrutura proposta os obstaculos sdo observados no plano horizontal local (XY) do
agente, com sua segao transversal plana centrada em pj; (Fig. 4):

)

Figura 4 — Velocity Obstacles
Fonte: (DOUTHWAITE; ZHAO; MIHAYLOVA, 2018)

A estrutura geométrica do cone de colisdo para o obstaculo j é definido como CC;j
a partir das propriedades da posicao relativa dos obstaculos by j, raio de configuracao
r. e velocidade ;. As velocidades que causam colisdo com o obstaculo j séo re-
presentadas no espago de velocidade, substituindo C'C;;j por v; através da soma de
Minkowski (LEE; KIM; ELBER, 1998): VO,j = CC,j & 7; .

Na consideragcdo de multiplos obstaculos, a unido de mdaltiplos VO,.,, é adotada.

As velocidades do agente sdo consideradas validas se @1 ¢ VO, = U7 VO
As velocidades que satisfazem essa restricdo descrevem uma trajetéria livre de colisdo
para o agente i na presenga de obstaculos VO,_,., para o tempo t.

O algoritmo Optimal Reciprocal Collision Avoidance (ORCA) € uma estratégia des-
centralizada de prevencao de colisbes para varios agentes moveis, baseado no Velo-
city Obstacle - VO.

No ORCA, cada agente produz um obstaculo de velocidade para agentes vizinhos,
com base em suas posi¢oes e velocidades. A unido desses obstaculos de veloci-
dade compde o espaco de velocidades possiveis que levarao a uma colisdo (o cone
representado na Fig. 5).

A interpretacdo geométrica dos obstaculos de velocidade é mostrada na Fig. 5.
Observe que VO),; e VO, séo simétricos na origem. Seja v4 e vp atuais as ve-
locidades dos robés A e B, respectivamente. A definicdo do obstaculo a velocidade
implica que, se vy — vg € VO 5, ou equivalente se vp — va € VOy,, A e B colidi-
rdo em algum momento antes do tempo ~ se continuarem se movendo na velocidade
atual. Por outro lado, se vy — v ¢ VO, 0s robds A e B s&o livres de colisao por
pelo menos ~ tempo.
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Figura 5 — ORCA - Representacdo geométrica para dois robés moveis
Fonte: (VAN DEN BERG et al., 2011)

De maneira mais geral, X @ Y denota a soma de Minkowski dos conjuntos X e Y;

XY ={r+ylre X,yeY}, (6)

entdo, para qualquer conjunto Vg, se vp € Vg e vy ¢ VOZHB @ Vg, entdo Ae B
permanecem livres de colisdes nas velocidades atuais, por pelo menos . Isso leva
a definicdo do conjunto de velocidades de prevencao de colisdes CA}‘B(VB) para A,
dado que B seleciona sua velocidade de Vg, conforme pode ser visto na figura 6:

CAYp(Ve) ={vlv ¢ VO, 5 ® Vi} (7)

Chamamos um par de conjuntos V4 e Vi de velocidades para A e B que evitam
colisao reciprocamente se V4 C C A}y 5(Vi) e Vg C CAL ,(Va).

SeV, = CA74|B(VB) e VB = CA73|A(VA)s dizemos que V, e Vi tem reciprocidade
maxima.

Dada a configuracao do rob6 da Fig. 5 (a), o conjunto de velocidades para evitar
colisbes (Fig. 6) CA}|B(VB) para o robd A, uma vez que o robd B selecione sua velo-
cidade de algum conjunto V (cinza escuro), € o complemento da soma de Minkowski
(cinza claro) de VOZX\B (ver Fig. 5 (b)) e V3.

O trabalho de Gyenes; Szadeczky-kardoss (2018) apresentou uma extensao do
método VO, objetivando encontrar, ndo apenas o caminho mais rapido, mas também
0 caminho mais seguro entre a posi¢cao atual do rob6 e sua posicédo de destino. Na
solugao proposta os autores assumem que as velocidades do robd e os obstaculos
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Figura 6 — ORCA - Conjunto de velocidades para evitar colisdes
Fonte: (VAN DEN BERG et al., 2011)

sédo conhecidos ou mensuraveis. O método, denominado Safety Velocity Obstacle
(SVO), utiliza um componente do vetor de velocidade para calcular a velocidade mais
segura a cada etapa de amostragem. Dependendo da necessidade de aplicagao, se o
tempo nao for a propriedade mais importante, 0 método pode ser adotado como forma
de garantir maior seguranca durante a navegacao.

Um estudo realizado por Douthwaite; Zhao; Mihaylova (2018) analisou e comparou
o desempenho de varias abordagens bem estabelecidas para evitar colisbes em sis-
temas multiagentes ndo cooperativos: os algoritmos Velocity Obstacle - VO (FIORINI;
SHILLER, 1998), Reciprocal Velocity Obstacle - RVO, (BERG; LIN; MANOCHA, 2008),
Hybrid Reciprocal Velocity Obstacle - HRVO (SNAPE et al., 2011) e Optimal Recipro-
cal Collision Avoidance - ORCA (VAN DEN BERG et al., 2011) foram estudados em
varios cenarios com diferentes niveis de dificuldade.

A analise dos resultados demonstrou que os métodos de prevencao de colisées
reativos podem ser suficientes para evitar varias colisbes em ambientes onde ndo ha
comunicacao entre agentes. Os métodos HRVO e ORCA demonstraram ser mais efi-
cientes em ambientes densos, ao lidar com incertezas na trajetéria. O método ORCA
também apresentou trajetérias mais suaves e melhor tempo de computacao.

3.1.1.3 Baseados em Aprendizado

O algoritmo Q-learning, proposto por C. J. Watkins and P. Dayan (WATKINS;
DAYAN, 1992), € um dos algoritmos de aprendizado por reforgo mais populares. Sua
aplicacao tem sido adotada em diversos trabalhos para o planejamento de diferentes
modelos de navegacao e prevencao de colisdes (RIBEIRO et al., 2019; OKUYAMA;
GONSALVES; UPADHAY, 2018; MOHANTY et al., 2017).
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O Q-learning foi aplicado com sucesso em estratégias de controle de navegacao
utilizando a definicdo do espago de estado e o0 espaco de agdo do robé6 mével em
ambientes de simulacao (YANG; LI, 2017). A solucdo apresentada utilizou a distancia
do robd ao obstaculo e o angulo do robé em relacdo ao seu objetivo, enquanto o
processo de aprendizado para a selecao de acdes se deu através do mecanismo de
selecao de Boltzmann (CESA-BIANCHI et al., 2017), um método classico para tomada
de decisao sequencial sob incerteza.

Um sistema baseado na estrutura Deep Q-Network (DQN), foi utilizado para explo-
rar um ambiente com informacdes obtidas apenas de um sensor RGB-D. O modelo
proposto separa o DQN em duas etapas, constituindo uma estrutura de aprendizado
profundo supervisionado e uma rede Q-learning (TAl; LIU, 2016a). Inicialmente, os
dados de treinamento séo pré-processados através de uma rede neural convolucional
de trés camadas. Na etapa posterior, 0 mapa de recursos, extraido do modelo de
aprendizado supervisionado, é utilizado como entrada de dados para a rede, gerando
como saida um conjunto de comandos para determinar a acao do robd.

Uma solugéo baseada em DRL para navegacao autbnoma de robds em ambien-
tes desconhecidos utilizou apenas dados fundidos de um scanner a laser 2D e uma
camera RGB-D para treinar o agente (SURMANN et al., 2020). As acdes de saida de
uma rede neural, usando o algoritmo Asynchronous Advantage Actor-Critic (GA3C),
foram usadas para determinar as velocidades lineares e angulares do robé. A rede do
controlador foi pré-treinada em um ambiente de simulag@o e implantada no robé real.
Nos testes realizados, os obstaculos foram representados por combinagdes de circu-
los e linhas, e a plataforma do rob6 foi modelada como uma forma circular simples.

Uma extensao do algoritmo Double Q-learning (HASSELT, 2010), denominada
Deep Double Q-Learning (DDQN), incluindo redes neurais profundas, foi capaz de
retornar estimativas de valor bastante precisas durante a tomada de decisdo na ta-
refa de navegacao autbnoma. No trabalho de Xue et al. (2019), um planejador de
movimento reativo, baseado no DDQN, foi projetado para reduzir o atraso da reagéao
ao detectar uma colisdo iminente, apresentando velocidade de resposta superior em
comparacao com o algoritmo CADRL, reduzindo também o tempo de treinamento em
relacdo ao método Deep Deterministic Policy Gradient (DDPG).

Alguns autores sugerem a utilizagdo de um modulo de memoria para armazenar
transagdes de experiéncia e minimizar o tempo de aprendizado (WU et al., 2017).
Além disso, demonstram que o tempo de computagédo pode ser reduzido por meio da
remocao de repeticdes desnecessarias durante a etapa de treinamento da rede.

No trabalho de Rodriguez-teiles et al. (2014) foi aplicada uma verséo aprimorada
do algoritmo Simple Linear Iterative Clustering (SLIC) para segmentacao de imagens
e prevencao de colisdo com obstaculos em tempo real durante a navegacao de veicu-
los subaquaticos autbnomos (AUVSs), utilizando apenas informagdes visuais. Depois
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disso, um classificador de vizinho mais préximo foi aplicado para separar e detectar
objetos na 4gua. A partir da classificagcao resultante e a direcédo e orientagédo atuais do
robd, a préxima rota livre de colisdo (denominada dire¢do de fuga) pode ser estimada.

Em uma abordagem semelhante, Gaya et al. (2016) utilizaram uma rede neural
convolucional, previamente treinada, para estimar mapas de profundidade relativa e
obter direcbes livres de colisdo ao detectar obstaculos na trajetéria do veiculo auté-
nomo. Ao identificar uma colisdo iminente a direcao € calculada pela maior média
de distdncia em uma éarea previamente determinada com base nas dimensdes do
robd e nas caracteristicas da camera. Os testes realizados foram bem sucedidos, de-
monstrando que 0 método pode ser aplicado para a prevencao reativa de colisdes e
navegacao segura de veiculos aéreos nao tripulados (UAVS).

Uma solugdo abordando redes neurais convolucionais para evitar obstaculos du-
rante a navegacao de robés méveis foi proposta por (TAI; LI; LIU, 2016). A partir de
imagens de profundidade brutas, recebidas como a Unica entrada da rede, sao gera-
dos os mapas de recursos, responsaveis pelo fornecimento de informacdes referentes
a capacidade de travessia e comandos de controle para determinar as a¢des do robd.
O processo de treinamento foi realizado por um agente humano, responsavel por guiar
o robé movel durante a exploracdo de um ambiente interno desconhecido, sem colidir
com obstaculos. O robd aprende as experiéncias e as adapta a novos ambientes.

Outro método pode ser implementado por meio da criagdo de modelos indepen-
dentes de decisao, utilizando simulag¢des offline repetidas. Essa solucao foi proposta
por Long; Liu; Pan (2017), aplicando o aprendizado por refor¢o para calcular uma
politica de prevencgao de colisbes com base em um modelo de velocidade e diregéo.

Em Liu; Xu; Chen (2018) foi proposta a utilizacdo de mapas de ocupacgéao local
pré-processados, para a construcao de uma politica de prevencao de obstaculos. Na
solucéo apresentada, conjuntos de dados de treinamento, contendo amostragens do
mundo real e mapas gerados artificialmente, foram utilizados para melhorar o desem-
penho dos algoritmos e reduzir o custo computacional.

3.1.2 Meétodos Preditivos

Apesar da variedade de aplicacbes existentes, alguns trabalhos destacam que téc-
nicas de prevencgao de obstaculos puramente reativas ndo sao suficientes para solu-
cionar problemas de navegacado em ambientes dindmicos (LORENTE; OWEN; MON-
TANO, 2018; FERRER; SANFELIU, 2018). Para os autores, nesse tipo de cenario, o
robd deve coexistir ou cooperar com humanos ou outros veiculos em movimento.

Outros observam que o planejamento do movimento requer a capacidade de prever
a evolucao futura dos obstaculos, observando restricoes kinodinamicas para obtencao
de trajetérias viaveis, considerando seguranca, manobrabilidade, além de restricdes
do rob6 e do ambiente (VEMULA; MUELLING; OH, 2017). Além disso, o agente deve



45

ser capaz de aprender um modelo de interacdo a partir de dados de trajetéria ou
comportamento humano real, modelando velocidades de outros agentes na multidao
ou por meio da identificacdo da personalidade variavel no tempo de cada pedestre
(BERA et al., 2017).

Alguns autores destacam a observancia de métodos colaborativos para o calculo
de uma fungéo de custo capaz de modelar o comportamento humano. A fungéo pode
ser calculada por meio da utilizacdo do aprendizado por refor¢o inverso (IRL), atra-
vés de dados obtidos a partir da interacao humano-robé (HADFIELD-MENELL et al.,
2016), ou com base na aprendizagem de um modelo de comportamento de navegacao
cooperativa entre humanos (KRETZSCHMAR et al., 2016).

3.1.2.1 Baseados em Modelos

Uma solugéo para criagdo de uma politica para prevencéao de colisbes em um am-
biente descentralizado, foi apresentada por Long et al. (2018). Os dados utilizados no
planejamento foram coletados apenas de sensores laser e aplicados como entrada em
uma rede neural profunda de quatro camadas. Uma extens&o do algoritmo de apren-
dizado por reforgo, Proximal Policy Optimization (PPO) (SCHULMAN et al., 2017), foi
utilizado para a etapa de treinamento e atualizacao da politica de prevencao de coli-
sbes com dados recebidos de cada agente movel pertencente ao cenario. A politica
foi comparada com outros métodos em varios cenarios simulados, demonstrando boa
capacidade de generalizacdo em diferentes situacoes.

No trabalho de Chen et al. (2017), foi implementada uma solucao para codificar
comportamentos cooperativos, através do aprendizado de uma funcao de valor, uti-
lizando um algoritmo denominado CADRL (Collision Avoidance with Deep Reinforce-
ment Learning). Nos testes realizados o algoritmo mostrou-se eficiente, com aplicagéo
em tempo real, para um sistema descentralizado de dez agentes. Além disso, apesar
de ndo ser um algoritmo voltado para planejamento de caminhos, nos resultados da
simulacao o CADRL apresentou performance superior em relagédo ao algoritmo ORCA
(Optimal Reciprocal Collision Avoidance)(VAN DEN BERG et al., 2011), na qualidade
dos caminhos percorridos.

Algumas aplicagdes utilizam a integracao do algoritmo Long Short-Term Memory
(LSTM) descrito por (HOCHREITER; SCHMIDHUBER, 1997), para refletir as carac-
teristicas de memaria dos seres humanos e acelerar o aprendizado de politicas para
navegacao de agentes autbnomos (ALAHI et al., 2016; GUPTA et al., 2018).

A construcao de uma politica de navegacdao em ambientes dinamicos desconhe-
cidos, utilizando uma abordagem multiagente, foi apresentada por Sun; Zhai; Qin
(2019). A solucao aplicou o aprendizado por reforco profundo, combinando o LSTM
com o algoritmo Proximal Policy Optimization (PPO) e o algoritmo Reciprocal Velo-
city Obstacle (RVO). O algoritmo PPO, baseado no método ator/critico, foi empregado
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para treinar os agentes a aprender como atingir seus objetivos, enquanto o algoritmo
RVO foi utilizado para evitar colisdes durante a tarefa de navegacao.

Os testes realizados demonstraram que a solucdo proposta foi capaz de trei-
nar, simultaneamente, multiagentes com diferentes objetivos, obtendo bons resulta-
dos durante o planejamento de caminhos e apresentando boa capacidade de auto-
aprendizado. Além disso, os autores destacam que o LSTM é capaz de lidar com dois
problemas comuns que podem ocorrer ao treinar redes neurais recorrentes tradicio-
nais tradicionais: Vanishing Gradient Problem e Exploding Gradient Problem.

O LSTM é composto por uma célula de meméria, um gate de entrada, um gate de
saida e um gate de esquecimento. A célula lembra valores em intervalos de tempo
arbitrarios e os trés gate’s sao responsaveis pela regulagem do fluxo de informacdes.

A arquitetura da unidade LSTM pode ser representada conforme a figura 8. Na
qual C; é o estado da célula, h; é a saida, f; € a ativacdo do gate de esquecimento, i,
€ a ativacao do gate de entrada e o; € a ativagao do gate de saida.

A
hy
Cf-f /;\ 1 C‘
i O_f ©
(e] O Tanh (9)
I | | | Lo ]| (] [o] v i,

)

Figura 7 — Long Short-Term Memory
Fonte: (SUN; ZHAI; QIN, 2019)

O gate de esquecimento controla até que ponto um valor permanece na célula e
sua saida é dada por f;, que é representada conforme a equacéao 8:

fr =Wy [ht—1, 2] + by) (8)

onde ¢ € a fungdo sigmoide.
O gate de entrada controla até que ponto um novo valor flui para a célula, o que é
dado por:

iy = o (Wi - (1, 2] + b;) (9)

Cy = tanh(We - [hy_1, 2] + bo) (10)
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O antigo estado da célula (C;_,) é atualizado pelo novo estado da célula C;:

Ct:ft*Ct—1+it*C~'t (11)

O gate de saida controla até que ponto o valor na célula € usado para calcular a
ativacao de saida da unidade LSTM, que é dado por:

or = 0(Wy+ [hy_1, ] + by) (12)

ht = O * tanh(C’t) (13)

Uma abordagem orientada a dados para modelar a interacdo e o movimento de
pedestres, baseada em redes neurais LSTM foi apresentada por Pfeiffer et al. (2018).
Na solucao proposta o problema de previsdo é tratado como uma tarefa de mode-
lagem de sequéncia que funde trés canais de informacao por pedestre: velocidade
atual do pedestre, informagdes sobre os obstaculos estaticos ao redor do pedestre e
informacgdes sobre os pedestres ao redor. A abordagem proposta foi capaz de prever
interacdes entre pedestres e evitar obstaculos estaticos e dindmicos ao mesmo tempo,
superando outras solugdes eficientes nos testes realizados.

Sabe-se também que o grande desafio para evitar colisbes em ambientes dinami-
cos é que o numero de outros agentes é variavel. Dessa forma, algumas abordagens
tem buscado solugdes para aprender uma politica de prevencgao de colisdes sem pre-
ver um modelo comportamental de outros agentes.

A exemplo disso, em Everett; Chen; How (2018) foi apresentado um algoritmo de
prevencgao de colisbes denominado GA3C-CADRL. A rede foi treinada em simulacao
com DRL sem assumir que outros agentes sigam qualquer modelo comportamental
especifico. A solugao proposta utilizou o algoritmo Long Short Term Memory (LSTM)
na entrada da rede, combinada com uma extensao do algoritmo GA3C, para aprender
com as experiéncias de varios agentes a cada episodio de treinamento. A estratégia
permite que o algoritmo selecione as agdes a serem realizadas com base nas obser-
vagOes de um numero arbitrario de agentes proximos.

3.1.2.2 Baseados em trajetorias

Diferente dos métodos reativos, métodos baseados em trajetéria objetivam anteci-
par o movimento de outros agentes para prever a evolucao futura dos estados conjun-
tos (caminhos, agente e vizinhos).

Estruturas modernas de aprendizado por reforco profundo e interacdo humano-
robd (HRI) podem ser utilizadas para codificar o conhecimento prévio do ser humano
(CIOU et al., 2018). O objetivo é introduzir caracteristicas comportamentais coopera-
tivas as acoes do robd, reforcando a seguranca da tarefa de navegacao autbnoma.
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Figura 8 — Previséo de trajetorias
Fonte: (ALAHI et al., 2016)

Esses comportamentos podem ser usados para previsdo de caminhos, assim como
para calcular distancias proxémicas para navegacao social e evitar colisées.

Alguns trabalhos buscam classificar automaticamente o comportamento dindmico
ou a personalidade de pedestres com base em seus movimentos na multiddo. O
trabalho de Bera; Randhavane; Manocha (2017) baseou-se na teoria dos tracos de
personalidade para aprender dinamicamente o comportamento de todos os pedestres
em uma determinada cena e calcular um modelo de movimento para um pedestre.
Esse modelo € combinado com as caracteristicas globais da multiddo e utilizados para
calcular os padrbées e a dinamica do movimento, que também podem ser aplicados
para prever o movimento e o comportamento da multidao.

Um método, baseado em agente, para previsdo de trajetorias de pedestres utili-
zando o raciocinio velocidade-espaco, foi apresentado por Kim et al. (2015). A técnica
proposta ndo depende de conhecimento prévio do ambiente e foi capaz de aprender
modelos de movimento para prever trajetérias futuras. Segundo os autores, a solugéo
pode ser integrada a outras técnicas de navegacéao local para melhorar as taxas de
conclusao de tarefas e reduzir instancias relacionadas ao problema de congelamento
do robb.

Em Mujahed; Mertsching (2017) € apresentada uma solugéo para evitar obstaculos
em tempo real, denominada Admissible Gap (AG). Na solucao proposta um intervalo é
admissivel se for possivel encontrar um comando de movimento, que uma vez execu-
tado, o robd seja capaz de atravessar com seguranga por esse intervalo, respeitando
suas restricdes de forma e movimento. A abordagem proposta considera diretamente
a forma do robd e as restricdes cinematicas. A ideia basica consiste em descobrir um
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conjunto de espacos visiveis a partir da localizagao atual do robd e selecionar aquele
gue estiver mais proximo ao seu objetivo. Os experimentos realizados demostraram
que a abordagem AG é capaz de gerar trajetérias eficientes, no entanto ndo foram
realizados teste em ambientes com obstaculos em movimento.

3.1.3 Deteccao de Pessoas

Um sistema de aprendizado online de classificadores humanos por robés de servi-
¢os moéveis com sensores 3D LiDAR, utilizou um algoritmo de agrupamento em tempo
real para segmentagdo de dados de nuvem de pontos 3D e obteve bons resultados
durante a navegacao com pessoas se movendo em um grande espaco publico interno
(YAN; DUCKETT; BELLOTTO, 2020). O sistema utilizou perfis humanos em nuvens de
pontos com mudancgas de distancia, aumentando a sensibilidade do classificador para
amostras distantes do robd. Segundo os autores o agrupamento de profundidade é um
método rapido e com baixa demanda computacional. Além disso, destacam que a de-
teccdo humana pode ser melhorada combinando rastreamento e aprendizado online
com um robd movel, mesmo em ambientes altamente dindmicos, e que tal abordagem
fornece resultados comparaveis ou superiores em relacao a métodos anteriores.

Um método para deteccdo de pernas, baseado em Filtros de Kalman, foi capaz
de rastrear pessoas e seus movimentos, evitando obstaculos durante a navegacéo
(ADIWAHONO et al., 2017). A abordagem proposta utilizou um scanner a laser 2D,
alimentado por um algoritmo de rastreamento e duas camadas de filtro de Kalman
para garantir a robustez do rastreamento, mesmo diante da proximidade de outras
pessoas e da perda temporaria da linha de visdo para os grupos de pernas. Segundo
0s autores a solugédo nao requer informacdes prévias de mapas e mostrou-se eficiente
em qualquer condi¢ao de iluminagao.

Um sistema para detecgéo e rastreamento de pessoas baseado em uma rede neu-
ral convolucional, treinada offline, foi capaz de rastrear pares de pernas em um ambi-
ente desordenado, utilizando como entrada um mapa de ocupacgao construido a partir
de medicbes do sensor LIDAR (GUERRERO-HIGUERAS et al., 2019). Segundo os
autores, os resultados obtidos apresentaram melhor precisdo do que o Leg Detector
(LD), a solugéo padrao para robds baseados no Robot Operating System (ROS)*.

Um estudo comparativo sobre cinco algoritmos independentes baseados em
aprendizado profundo (R-FCN, Mask R-CNN, SSD, RetinaNet, YOLOv4) para detec-
cao de objetos rodoviarios, utilizou o conjunto de dados BDD100K para treinar, validar
e testar os modelos individuais de aprendizado profundo para detectar quatro objetos
de estrada: veiculos, pedestres, sinais de transito e semaforos (HARIS; GLOWACZ,
2021). Seus pontos fortes e limitagées foram analisados com base em parametros
como precisdo (com/sem oclusao e truncamento), tempo de computagao e curva de

*http://www.ros.org/
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recuperacao de precisao. Os resultados experimentais mostraram que o YOLOv4 no
modelo de detec¢do de um estagio atinge a maior precisao de detec¢ao para detecgéao
de alvo em todos os niveis, enquanto no modelo de detec¢ao de dois estagios, Mask
R-CNN mostrou melhor precisdo de deteccao sobre RetinaNet, R-FCN, e SDD.

Um sistema baseado em aprendizagem profunda, com detector de distancia para
cadeira de rodas e andador, foi estendido para a tarefa de detecg¢do de pessoas, cons-
tituindo, segundo os autores, o maior conjunto de dados publicamente disponivel para
deteccao de pessoas em dados de alcance 2D (BEYER; HERMANS; LEIBE, 2017;
BEYER et al., 2018). A abordagem consistiu em trés etapas: pré-processamento, que
corta uma janela reamostrada em torno de cada ponto do laser e calcula os locais
de detecgcdo em um sistema de coordenadas local; uma CNN que classifica essas
janelas e prevé os locais de deteccgao relativos e; finalmente, um esquema de vota-
cao e supressao ndo maxima transformando previsbes em deteccdes. A analise dos
resultados demonstrou que o pré-processamento de profundidade e o esquema de
votacao adotados, permitem que as CNNs superem amplamente as linhas de base de
deteccédo de CNN ingénuas e obtenham resultados de ultima geragdo em comparacéo
a métodos anteriores.

3.2 Consideracoes finais

Este capitulo apresentou os trabalhos relacionados ao tema desta pesquisa. Des-
ses, 55% abordam o uso de métodos reativos para prevencdo de colisdes durante
a tarefa de navegacao e 45% utilizam métodos preditivos. Destaca-se também um
grande avanco do uso de técnicas baseadas em aprendizado, especialmente apds o
ano de 2017, correspondendo a 61% dos trabalhos estudados.

Percebe-se também um significativo avango nas pesquisas voltadas para a nave-
gacao social, abordando o uso do aprendizado por reforco e métodos de anélise com-
portamental de seres humanos. Esses trabalhos reforcam a necessidade da adogao
de politicas para prevengao de colisbes e combinacao de técnicas que proporcionem
uma navegacao eficiente, sem colocar em risco as pessoas em torno do robd.

Com relagéo a detecgéo de pessoas, percebe-se que solugdes baseadas na iden-
tificacdo de pernas podem enfrentar alguns desafios e problemas especificos, que
podem afetar a precisao e o desempenho geral do sistema. Em cenarios populosos,
as pernas das pessoas podem ser parcialmente ocultas por objetos ou outras pes-
soas, resultando em falsos negativos ou detecgdes imprecisas. Além disso, pernas
podem aparecer em diferentes escalas e distancias da camera, o que requer técnicas
de deteccgao robustas que possam lidar com essas variagbes. Nesse contexto, solu-
cbes baseadas em arquiteturas de detecgédo de estagio unico tém apresentado bons
resultados, emergindo como solucdes eficientes e que exigem menor custo computa-
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cional para aplicacao ao problema em questao.

Apesar da quantidade de trabalhos existentes, a revisdo da literatura acerca do
tema demonstra que a navegacao de rob6s autbnomos em cenarios compartilhados
com humanos permanece como um problema em evidéncia. A maioria das aborda-
gens desconsideram que o numero de agentes € uma variavel dinamica, ou conside-
ram que a trajetoria ou velocidade dos demais agentes sdo conhecidas. Além disso,
a maioria das solugdes propostas consideram as pessoas como simples obstaculos
méveis, o que pode afetar a seguranca da navegacao em aplicagdes do mundo real.

Alguns autores destacam que nesse tipo de cenario o rob6 deve ter a capaci-
dade de navegar sem o conhecimento prévio do ambiente ou das acdes dos demais
agentes e obstaculos. Dessa forma, a analise dos trabalhos relacionados ao tema
desta pesquisa evidencia que, para a navegacao autbnoma em ambientes dindmicos,
compartilhados com humanos, alguns pontos essenciais devem ser observados: a) A
necessidade de uma politica de prevencao de colisdes, por meio de comportamentos
reativos ou preditivos; b) O céalculo de uma trajetéria viavel, rapido e capaz de alterar
a trajetdria do robd, de acordo com informagdes atualizadas do ambiente e; ¢) A ca-
pacidade de identificar pessoas para melhorar a tomada de decisao e realizar a tarefa
de navegacao de forma mais segura.



4 ABORDAGEM PROPOSTA

Aplicar o aprendizado por refor¢o em robotica mével requer um ambiente de simu-
lacéo, definicdo adequada de estado, acdes e recompensas, selecéo de algoritmos de
aprendizado, etapas de treinamento, além de avaliacao continua do desempenho do
agente.

Neste trabalho foi utilizado o ambiente desenvolvido pela Robotis' para o treina-
mento e teste do agente em ambientes simulados. O ambiente utilizado tem como
principal caracteristica a facil integracdo com o ROS e o simulador Gazebo, permi-
tindo a implementacgéo de estruturas de aprendizado por reforgo e testes em diferentes
cenarios.

Na solucao proposta, o algoritmo Deep Deterministic Policy Gradient (DDPG), ori-
ginalmente proposto para resolver o problema do péndulo invertido?, foi combinado
com técnicas de visdo computacional para deteccédo de pessoas, resultando em uma
abordagem para navegacao autbnoma em cenarios complexos, doravante denomi-
nada Social Attention Navigation - DDPG (SAN-DDPG). Para validacdo da solugéo
proposta foram conduzidos testes comparativos utilizando o Deep Q-Network (DQN),
um algoritmo amplamente utilizado para navegacao autbnoma em ambientes internos.

Este capitulo apresenta de forma detalhada a abordagem proposta e esta orga-
nizado da seguinte forma: na secdo 4.1 sdo descritos os recursos de software e
hardware utilizados; a secdo 4.2 apresenta a plataforma robética simulada para a
realizacao dos experimentos e aplicagao dos testes; a se¢ao 4.3 apresenta o sistema
utilizado para deteccao de pessoas; a se¢cao 4.4 descreve o algoritmo de aprendizado
utilizado nesta abordagem; a secao 4.5 descreve a arquitetura do ambiente de apren-
dizado; por fim, a segédo 4.6 apresenta os ambientes de treinamento, desenvolvidos
no simulador Gazebo para aplicacdo dos experimentos e analise dos resultados.

'https://emanual.robotis.com/docs/en/platform/turtlebot3/machine_learning
2https://blog.paperspace.com/physics-control-tasks-with-deep-reinforcement-learning/
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4.1 Ambiente de simulacao

4.1.1 Software

As principais ferramentas de software utilizadas neste trabalho foram o ROS (Me-
lodic Morenia®) e o simulador Gazebo.

O ROS é uma estrutura de software de cédigo aberto para programacao de robds
gue fornece uma camada de abstracdo na qual os desenvolvedores podem criar apli-
cativos de robética sem se preocupar com a camada de hardware (KOUBAA et al.,
2017). O software é organizado em pacotes oferecendo boa modularidade e reusa-
bilidade, além de disponibilizar diferentes ferramentas de software para visualizar e
depurar dados do robé. O nucleo do framework ROS é um middleware de passagem
de mensagens no qual os processos podem se comunicar e trocar dados entre si,
localmente ou em rede.

O projeto ROS foi iniciado em 2007 na Universidade de Stanford sob o nome Swit-
chyard. Mais tarde, em 2008, o desenvolvimento foi realizado por uma start-up de
pesquisa robdtica chamada Willow Garage. O grande desenvolvimento no ROS acon-
teceu na Willow Garage. Em 2013, os pesquisadores da Willow Garage formaram a
Open Source Robotics Foundation (OSRF)*, responsavel por manter o sistema até os
dias atuais.

Gazebo® é um simulador de robds 3D de codigo aberto, originalmente desenvolvido
pela OSRF, tornando-se parte do projeto ROS, posteriormente.

O Gazebo permite simular ambientes complexos e interacées entre robds, senso-
res, atuadores e objetos em um ambiente virtual bastante realista. Entre as principais
caracteristicas do simulador, destacam-se:

* Modelagem de Robds: é possivel modelar robés com detalhes precisos, in-
cluindo geometria, cinematica, dindmica e sensores. O Gazebo permite a cri-
acao de modelos baseados em robds reais ou a criagdo de modelos personali-
zados para fins de simulacao;

» Ambientes 3D: O simulador oferece uma representacao 3D detalhada dos ambi-
entes virtuais, permitindo a criacao de cenarios realistas para testar e avaliar o
comportamento de robds em diferentes cenarios;

» Simulacgao Fisica: O simulador oferece um mecanismo de simulacao fisica que
inclui colisdes, forcas, atrito e outras propriedades fisicas, permitindo que os
robds se movam e interajam com o ambiente de forma mais realista;

3hitp://wiki.ros.org/melodic
“https://www.openrobotics.org/
Shttp://gazebosim.org/
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» Sensores e Atuadores: Gazebo oferece suporte a uma variedade de sensores e
atuadores, como cameras, sensor laser LiDAR (Light Detection and Ranging),
sensores de proximidade, juntas articuladas, rodas, entre outros, permitindo
simular facilmente o funcionamento de sistemas de percepcéo e controle dos
robés;

* Integracdo com ROS: Sua integracdo com o ROS permite combinar a simulacao
com o desenvolvimento e teste de algoritmos de controle e sistemas de percep-
¢ao em um ambiente estavel e de facil configuragao.

4.1.2 Hardware

Para realizacdo dos experimentos foi utilizado um computador desktop com 16Gb
de memoéria RAM, SSD de 500Gb, Processador 11th Gen Intel® Core™ i5-11400
2.60GHz com 06 nucleos, Sistema operacional Ubuntu 18.04.6 LTS (Bionic Beaver)
64 bits e GPU NVIDIA TITAN de 12GB.

4.2 Plataforma Robadtica

A pesquisa relacionada a este trabalho teve inicio utilizando a plataforma robética
The Home-Environment Technological-Agent (Theta), um robd de servico projetado
para ser um sistema autbnomo capaz de resolver tarefas domésticas.

A base do Theta é composta por uma cadeira de rodas, adaptada pela Freedom
Veiculos Elétricos LTDA. Sua estrutura foi modificada e equipada com camera Kinect
na parte superior para realizagdo de visdo computacional, microfone e alto-falante
para interagdo humano-robd, sensor LiDAR (Light Detection & Ranging) para mape-
amento e localizacdo, hodémetros para realizagdo de movimentos e um monitor de
video para representacao de expressodes faciais (Figura 9).

Figura 9 — The Home-Environment Technological-Agent (Theta)
Fonte: Autor



55

O Theta possui varios sensores que auxiliam nas tarefas domésticas e foi cons-
truido para atender alguns dos desafios classicos do LARC/CBR @Home. O projeto
€ continuamente aprimorado, visando obter melhor desempenho nas tarefas, dentre
as quais destaca-se a navegacao autbnoma em ambientes dinamicos, compartilhados
com humanos.

Devido a pandemia de Covid-19 as atividades de pesquisa em ambiente real fo-
ram suspensas. Dessa forma, os experimentos e testes passaram a ser realizados
exclusivamente em ambiente simulado.

Assim, a plataforma robotica utilizada neste trabalho € um modelo simulado de uma
cadeira de rodas motorizada. O objetivo é realizar um estudo de caso para avaliar a
viabilidade de aplicacdo da solugéo proposta ao problema em questéao.

Figura 10 — Simulacdo da cadeira de rodas
Fonte: Autor

A realizacdo de experimentos e testes aplicados ao modelo especifico permitira
uma analise mais detalhada do comportamento do robd, propiciando identificar pro-
blemas e ajustes necessarios para uma navegacao mais eficiente e segura.

a) Sensores Infravermelhos (b) Sensor LiDAR
Flgura 11 — Sensores infravermelhos e sensor LiDAR

Fonte: Autor

O modelo de cadeira de rodas 3D usado na simulagao foi adaptado do projeto
desenvolvido por Patil (2021). A versao original, com tragdo dianteira, foi adaptada
para uma cadeira de rodas com tracao traseira. Essa modificacao foi necessaria para
implementacdo de um modelo mais préximo ao Theta.
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Além da modificacao na tragao, foi necessario realizar ajustes no sensor laser de-
vido a movimentag&o do caster e das rodas dianteiras. Também foram adicionados
quatro sensores infravermelhos, dois na lateral esquerda e dois na lateral direita da
cadeira, para deteccao de colisdes durante as etapas de treinamento (Fig. 11a).

Os sensores infravermelhos foram utilizados apenas para deteccao de colisGes
com obstaculos ou com as paredes em torno do robd. Os dados de disténcia do robd
em relacdo aos objetos que compdem o ambiente sdo obtidos do sensor LiDAR (Fig.
11b) e compdem as informacgdes de estado para o algoritmo de aprendizado.

4.3 Deteccao de pessoas

Para a deteccado de pessoas, foi adotado o DarknetRos(BJELONIC, 2016—2018),
um pacote disponivel no ROS, projetado para deteccdo de objetos em imagens de
camera. O DarknetRos utiliza o You Only Look Once (YOLO), um sistema de visdo
computacional que pode identificar com precisdo multiplos objetos em uma unica ima-
gem, comparavel ao RetinaNet, porém com velocidade de inferéncia mais rapida em
comparacao com outros sistemas avangados como SSD, R-FCN (Region-based Fully
Convolutional Networks) e FPN (Feature pyramid networks) FRCN (Faster Region ba-
sed convolutional neural networks) (REYES et al., 2019). Sua velocidade o torna
altamente adequado para deteccao de objetos em tempo real, o que é essencial em
sistemas como robds de servigo.

As imagens sao capturadas usando um sensor Kinect acoplado a uma montagem
no encosto da cadeira de rodas (Fig. 12a e 12b).

(a) Deteccao de pessoas proximas (b) Deteccgéo de pessoas distantes
Figura 12 — Deteccéo de pessoas

Fonte: Autor

Nos testes realizados, o DarknetRos processou as imagens a mais de 30 FPS (Fra-
mes per Second) e alcangou uma precisdo de 90% a 100% na deteccao de pessoas
no ambiente simulado.
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4.4 Deep Deterministic Policy Gradient

Deep Deterministic Policy Gradient (DDPG) é um algoritmo proposto por Lillicrap
et al. (2015) que utiliza uma arquitetura actor-critic baseada no algoritmo Deterministic
Policy Gradient (DPG) (SILVER et al., 2014), livre de modelo e off-policy, com apro-
ximadores de funcao profunda capazes de aprender politicas em espacos de acao
continuos e de alta dimenséo.

Uma das principais caracteristicas do DDPG € a sua abordagem baseada em po-
liticas, que estima diretamente uma politica deterministica mapeando estados para
acoOes. Essa politica é representada por uma rede neural, conhecida como ator, que €
treinada para fornecer a melhor agdo possivel para cada estado.

O pseudocédigo a seguir descreve o algoritmo DDPG, conforme proposto por Lilli-
crap et al. (2015):

Algorithm 2 DDPG algorithm

Randomly initialize critic network Q(s, a|#?) and actor u(s|6*) with weights 62 and 6*.
Initialize target network Q' and ;/ with weights 09' « 69, 9»" « o~

Initialize replay buffer R

for episode = 1, M do

Initialize a random process N for action exploration
Receive initial observation state s;
fort=1,T do
Select action a; = pu(s¢|6") + N; according to the current policy and exploration noise
Execute action a; and observe reward r; and observe new state s;, 1
Store transition (s, as, r¢, s¢+1) iIN R
Sample a random minibatch of N transitions (s;, a;, 74, si+1) from R
Sety; = ri + Q' (si + 1, 1/ (i + 1]60#)[69")
Update critic by minimizing the loss: L = + 3. (y; — Q(si, a;]69))?
Update the actor policy using the sampled policy gradient:

1
Vol ~ ZVQQ(S, al09)|s = si,a = pu(s;)Vonu(s|0™)]|s;

Update the target networks:
09 — 109 + (1 —7)0%

O " + (1 7)o"

end for
end for

A funcéo de ator parametrizada p(s|0u), especifica a politica atual mapeando de-
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terministicamente estados para uma acao especifica. Nesse caso, a saida da politica
de rede € um valor que corresponde a acao a ser executada no ambiente.

Além do ator, o DDPG também utiliza uma rede neural chamada critico, que es-
tima o valor @) para o estado atual e acao selecionada pelo ator. O critico Q(s,a) €
aprendido utilizando a equagéo de Bellman como no Q-learning. O ator é atualizado
seguindo a regra de cadeia aplicada ao retorno esperado da distribui¢do inicial J em
relacdo aos parametros do ator.

Segundo os autores, um desafio ao usar redes neurais para aprendizado por re-
forco € que a maioria dos algoritmos de otimizagcdo assume que as amostras sédo
distribuidas de forma independente e idéntica. No entanto, quando as amostras sao
geradas a partir da exploragdo sequencial em um ambiente, essa suposicao nao €
mais valida. Além disso, para fazer uso eficiente das otimizagdes de hardware, os
autores destacam que é essencial aprender em minilotes, em vez de online.

O DDPG utiliza um buffer de repeticao para resolver esses problemas. O buffer de
repeticdo € um cache R de tamanho finito. As transicées sdo amostras obtidas do am-
biente, de acordo com a politica de exploracao, resultando em uma tupla (s, a;, r¢, S¢41)
armazenada em R. Quando o buffer esta cheio, as amostras mais antigas sao des-
cartadas. A cada passo de tempo, o ator e o critico sdo atualizados amostrando um
minilote uniformemente de R. Como o DDPG é um algoritmo fora da politica, o espago
de R pode ser grande, permitindo que o algoritmo se beneficie do aprendizado em um
conjunto de transi¢ées nao correlacionadas.

Outra vantagem do DDPG é que ele utiliza atualizagdes de destino “suaves” em
vez de copiar diretamente os pesos da rede. Para calcular os valores de destino
séo criadas copias das redes ator (s, a|0%) e critico u(s|6#), respectivamente. Os
pesos dessas redes de destino sdo entdo atualizados fazendo com que rastreiem
lentamente as redes aprendidas: ¢’ + 76 + (1 — 7)¢’ onde 7 < 1. Essa caracteristica
proporciona que os valores de destino mudem lentamente, melhorando a estabilidade
do aprendizado.

Para os autores um grande desafio da aprendizagem em espagos de a¢ao con-
tinua é a exploragdo. Uma vantagem dos algoritmos off-policies como o DDPG ¢é a
possibilidade de tratar o problema de exploracédo independentemente do algoritmo de
aprendizado. No DDPG a politica de exploragéo i/ € construida adicionando ruido a
um processo N da politica do ator: 1i/(s;) = u(s]6)) + N

O DDPG também utiliza a técnica de gradiente ascendente para ajustar os parame-
tros do ator e do critico. O ator é atualizado procurando maximizar o valor () estimado
pelo critico para a acao selecionada.

1
Vo & Z VaQ(s,a|l09)|s = si,a = p(si)Veup(s|0)]s; (14)
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O critico, por sua vez, € atualizado procurando minimizar a diferenga entre o valor
() estimado e o valor @ real calculado com base na recompensa obtida e nos valores
() do proximo estado.

1

L= (i~ Qsiyail6?))’ (15)

O objetivo é melhorar a medida de desempenho J para acompanhar a maximiza-
cao da funcéo de valor (), minimizando a perda de diferenga temporal como aconteceu
com o Deep Q-Network para jogos de Atari.

Uma diferenga fundamental entre o DDPG e o DQN € o uso de uma politica deter-
ministica em vez de uma politica estocastica. Enquanto o DQN lida com agdes incer-
tas e estocasticas, o DDPG assume que ha uma acao deterministica 6tima para cada
estado. Isso simplifica o processo de tomada de decisédo, permitindo que o agente
aprenda diretamente uma politica deterministica sem a necessidade de exploracéo
estocéstica.

4.5 Configuracao do Ambiente

Da mesma forma que em abordagens tradicionais de RL, o agente autbnomo pro-
posto aqui, controlado pelo algoritmo DDPG, observa um estado s; do ambiente em
um determinado momento ¢ do tempo. Durante a interacdo entre o agente e o ambi-
ente, ao executar uma agao no estado s;, ambos fazem uma transigao para um novo
estado s;,1.

O estado é representado por uma estatistica do ambiente e deve conter as infor-
magcdes necessarias para que o agente tome a melhor acao.

A sequéncia 6tima de acOes é determinada pelas recompensas fornecidas pelo
ambiente. Ao fazer a transicdo para um novo estado, o0 ambiente fornece uma recom-
pensa escalar r,; ao agente como feedback.

As aclbes do sistema de aprendizado tém influéncia nas proximas entradas e po-
dem afetar ndo apenas a recompensa imediata, mas também a situagcédo subsequente
e, consequentemente, todas as recompensas subsequentes.

A abordagem consiste em um problema sequencial de tomada de decis&o, que
pode ser formulado como um Processo de Decisdo de Markov (MDP), descrito por
Xue et al. (2019) da seguinte forma: M = (S, A, R, P,v), onde S € o espago de esta-
dos, A é o0 espaco de acao, R é a funcao de recompensa, P é o modelo de transicao
de estado e v € um fator de desconto. Os principais elementos que compdem o ambi-
ente aqui representado utilizam os parametros de configuracao adotados pela Robotis,
conforme descrito a seguir:
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4.5.1 Espaco de estados

O estado representa as informagdes sobre o ambiente que séo relevantes para o
agente. Refere-se a uma representacdo do ambiente em um determinado instante de
tempo, capturando as informagdes necessarias para a tomada de decisado e determi-
nacao das préximas acoes.

A configuragdo do ambiente utilizado neste trabalho compreende as seguintes in-
formagdes:

» Odometria: Utilizada para retornar os valores relacionados a posicao e orien-
tacao (pose) do rob6é no ambiente, além de fornecer dados para representacao
de orientacdo em um conjunto de angulos de Euler para o célculo do angulo de
movimento angular do robé (yaw).

« Sensoriamento: neste trabalho sio utilizadas 24 amostras do sensor LiDAR. Os
dados coletados sdo utilizados para o calculo da distancia entre o robd e os
obstaculos em seu entorno e também sao fornecidos como dados de entrada
para o algoritmo de aprendizado, juntamente com outras informacdes obtidas do
ambiente.

« Angulo do robd em relacédo ao objetivo: Corresponde & diferenca entre dois an-
gulos, o angulo de destino e o angulo de guinada do robd.

0= Hgoal - eyaw
onde:

¢ representa o angulo de orientagao, 4.q representa o angulo de destino dese-
jado e 6,4, representa o angulo de guinada atual. O resultado corresponde a
diferenca angular necesséria para que o agente alcance o angulo desejado, re-
tornando a direcéo a ser seguida para alinhar-se com o angulo do objetivo. Por
exemplo, se o valor de ¢ for positivo, significa que o agente precisa girar no sen-
tido horario, enquanto um valor negativo indica a necessidade de girar no sentido
anti-horario.

+ Distancia atual até o objetivo: Utilizado para calcular a distancia euclidiana entre
a posicao atual do robd e a posi¢ao do objetivo. Esse valor € utilizado no calculo
da recompensa, servindo para estimular o agente a seguir em dire¢ao ao objetivo
e também para identificar quando o agente atinge o objetivo.

de = \/(339 —2p)? + (Yg — Yp)?

onde:
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T4 € Yy Sao as coordenadas x e y do objetivo desejado, respectivamente. z, e y,
séo as coordenadas x e y da posicao atual do robd.

» Menor distancia até um obstaculo: Corresponde ao valor minimo encontrado em
um conjunto de leituras do sensor LIDAR. E utilizado para determinar a distancia
entre o rob6 e o obstaculo mais préximo, servindo também para estimular o
agente a manter uma distancia segura dos obstaculos durante a navegacao. Na
configuracdo adotada para este trabalho, o agente é penalizado ao manter uma
distancia menor do que um limiar pré-estabelecido.

Tmin = min(r)

onde:

rmin representa a menor distancia encontrada no conjunto de leituras do sensor
LiDAR, representado por r.

« Angulo do obstaculo mais préximo: Corresponde ao indice do menor valor em
um conjunto de leituras do sensor LiDAR. E utilizado para determinar o angulo
do obstaculo mais préximo em relagdo ao robd.

Oops = arg min(r)
onde:

Bobs representa o angulo no qual a menor distancia é encontrada no conjunto de
leituras do sensor LiDAR, representado por r.

» Deteccao de pessoas: Corresponde ao numero de pessoas detectadas em um
determinado instante de tempo durante a navegacao. Essa informagéo é utili-
zada em conjunto com a posicao dos obstaculos (angulo e distancia) para o cal-
culo da recompensa, objetivando estimular um comportamento seguro durante a
navegacao.

» Distancia de colisdo: Utilizada para identificar quando o robd efetua uma colisao.
Essa informacao € obtida a partir da leitura dos dados fornecidos pelo sensor
LiDAR e dos sensores infravermelhos. Uma colisdo é identificada quando os
sensores detectam uma distancia menor do que um limiar pré-estabelecido.

4.5.2 Espaco de acao

O espaco de acao define as acdes que o robd pode executar em um determinado
momento. As acdes representam os movimentos que o robd ira executar com base
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em seu estado atual no ambiente. Elas correspondem as velocidades angulares do
robd e sdo determinadas pelo algoritmo de aprendizado por reforco (Tabela 2).

Tabela 2 — Acoes

Acao Velocidade angular (rad/s)
0 -1.5
1
2
3
4

-0.75
0
0.75
1.5

Se a acao retornada pelo algoritmo for 2, a velocidade angular sera 0. Portanto, o
robd se movera em linha reta de acordo com a velocidade linear configurada para o
ambiente. Caso contrario, assumira velocidades angulares, que podem ser negativas
(esquerda) ou positivas (direita).

Quando o agente realiza uma acao em um determinado estado, ele recebe uma
recompensa que pode ser negativa ou positiva.

Na configuragdao adotada por este trabalho, quando o agente se aproxima de uma
certa distancia do objetivo desejado, a recompensa acumulada é positiva, e quando
atinge o objetivo o agente recebe uma recompensa maior. Da mesma forma, se o
agente se afasta do objetivo desejado, a recompensa acumulada é negativa, e ele
recebe uma recompensa negativa significativa por colidir com um obstaculo.

Nas etapas de treinamento com pessoas paradas € em movimento, o agente re-
cebe uma recompensa negativa sempre que sua distancia para uma pessoa detectada
for menor que a distancia minima especificada. O objetivo € manter uma distancia se-
gura entre o robd e as pessoas durante a tarefa de navegacao.

As configuragdes foram ajustadas de acordo com os objetivos de cada etapa de
treinamento, visando avaliar a capacidade de aprendizado do agente em diferentes
cenarios e situacoes.

4.5.3 Recompensa

A recompensa é uma medida usada para fornecer feedback ao agente sobre a
qualidade de suas agdes. E utilizada para recompensar o robd por atingir o objetivo
ou aplicar penalidades por aproximacao ou colisbes com obstaculos.

Na abordagem aqui proposta, a recompensa consiste em cinco partes, e pode ser
representada conforme a seguir:

R=(Ry-Ry)+ R, + R.+ R,

* Ry = 9(@): utilizada para ajustar a taxa de distancia com base na proximidade
atual em relagcédo ao objetivo. Quanto mais proxima a distancia atual estiver da
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distancia do objetivo, maior serd o valor da taxa de distancia. Por outro lado, se a
distancia atual for grande em relagédo a distancia do objetivo, a taxa de distancia
sera menor, onde:

d. = representa a distancia atual até o obijetivo;
d, = representa a distancia absoluta até o objetivo.

if do < d,

rg > 2
Ry = !
else

1<ry; <2

« Ry = 5% 17%: recompensa angular, assim como Ry, € utilizada para estimular o
robd a realizar agbes que maximizem a recompensa, onde:

0 representa o angulo do robd até o obijetivo;

if —%71'<(9<%7T
Ry >0
Ry =

else

Ry <0

* R,: indica a penalidade por aproximagao de obstaculos ou pessoas. E obtido da
seguinte forma:

tf hd > 0 and da < dap,

R, =hd - (—k)
Rq = < elif hd == 0 and da < dann
Ra = —k

0 otherwise
\

da e da,,;, representam, respectivamente, a distancia atual entre o robé e o obs-
taculo e a distancia minima de seguranca entre o robd e o obstaculo;

hd representa o numero de pessoas detectadas em determinado instante;

k € um valor atribuido para penalizar o robg;

R, representa o valor total da penalidade aplicada, tomando-se por base o nu-
mero de deteccdes de pessoas.

* R.: recompensa por colisdo. Representa um valor negativo, dado quando o
robd colide com algum obstaculo ou pessoa. Esse valor pode ser ajustado de
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acordo com a complexidade do ambiente e serve para estimular o agente a evitar
colisbes. Na configuragéo utilizada neste trabalho ao colidir o agente recebe a
recompensa negativa e o episédio € encerrado.

* R,: recompensa de sucesso. Se o agente chegar ao objetivo ele recebe uma
recompensa positiva, caso contrario, ndo € recompensado. O valor de R, é
pré-definido na configuracdo do ambiente e é obtido da seguinte forma:

R — R if reach goal
0 else
Para evitar que o agente permaneca por um longo tempo sem atingir o objetivo
um tempo maximo de navegacao é determinado (t). Quando o episddio atinge o
tempo determinado por ¢, 0 episédio € encerrado e é iniciado um novo episodio
de treinamento.

4.5.4 Aplicacao do Algoritmo DDPG

A rede neural do algoritmo Deep Deterministic Policy Gradient (DDPG) é composta
por duas partes principais: o ator (actor) e o critico (critic). Essas duas partes tra-
balham em conjunto para aprender e otimizar uma politica deterministica que guia o
agente a tomar agcdées no ambiente (Fig. 13).

Environment |«

Reward
State

v

Critic Action

TD error

)

Figura 13 — Arquitetura Actor-critic (AC)
Fonte: (ZENG; WANG; GE, 2020)

O ator é responsavel por mapear os estados do ambiente para agdes. A rede
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possui trés camadas lineares, onde a primeira camada recebe o estado como entrada,
a segunda camada recebe a saida da primeira camada, e a terceira camada gera as
acodes escolhidas pelo ator. A entrada da rede sdo os estados do ambiente, conforme
detalhado na sec¢&o 5.1.1 e descritas a seqguir:

Neste trabalho a entrada da rede € dada por: [ [, 0, d., Tmin, Oobs, ha ] ONde:

* [.: representa o numero de amostras do sensor LiDAR. Nos experimentos reali-
zados foram utilizadas 24 amostras, porém podem ser utilizados valores diferen-
tes, bastando ajustar os parametros do algoritmo;

» : é 0 angulo do robd em relacéo ao obijetivo;
* d.: é a distancia atual até o objetivo;
* mint COrresponde a distancia do obstaculo mais préximo;

* O, corresponde ao angulo do obstaculo mais préximo em relagcao ao robo;

hq: corresponde ao numero de pessoas detectadas;

O critico, por sua vez, tem como objetivo estimar a fungéo @ (valor de acéo) para o
par estado-acao. A rede critico possui trés camadas lineares, onde a primeira camada
recebe o0 estado como entrada, a segunda camada combina as informacodes do estado
e da acao, e a terceira camada gera uma estimativa do valor ) para o par estado-acéao.
A funcéo de ativagdo RelLU é aplicada ap6s cada camada linear. O objetivo do critico é
aprender uma funcéo @ que forneca uma boa estimativa do retorno esperado, levando
em consideracao as agdes escolhidas pelo ator.

Durante o treinamento do DDPG, o agente interage com o ambiente, observando
estados, tomando acdées com base nas politicas aprendidas e recebendo recompen-
sas. Essas experiéncias sdo armazenadas em um buffer de repeticdo (SCHAUL et al.,
2015), que consiste em uma memoaria para armazenar uma colegao de transigdes pas-
sadas. Periodicamente, amostras sao retiradas desse buffer para o treinamento da
rede neural do ator e do critico.

A otimizacao dos pesos da rede neural € realizada utilizando a técnica de gradiente
ascendente para ajustar os parametros do ator e do critico. Durante o treinamento,
a diferenga entre o valor estimado pelo critico e o retorno real obtido é usada para
calcular a perda (loss) e atualizar os pesos da rede.

A saida da rede sao as acoes escolhidas pelo agente. Conforme descrito na secéao
5.2.2, elas representam os movimentos que o robd ir4 executar com base em seu
estado atual no ambiente e correspondem as velocidades angulares do robd (Fig. 14).
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Figura 14 — Acbes - Velocidade angular
Fonte: Autor

A funcéao de ativagao final do ator é escolhida de acordo com o intervalo de acéo
requerido pelo ambiente. O espago de acao corresponde a um espaco tridimensional
onde cada acao é um valor continuo dentro de um limiar pré-estabelecido. O objetivo
do ator é aprender uma politica deterministica que maximize a recompensa esperada.

4.6 Ambientes de Treinamento

A etapa de treinamento envolve diversos ciclos de interagao entre o agente e o am-
biente. Esta se¢do descreve os ambientes implementados para realizagao do treina-
mento e as configuracdes e métricas utilizadas para avaliar o desempenho do agente.

Para os experimentos e andlises de resultados, foram configurados quatro ambi-
entes de navegagado. Esses ambientes possuem caracteristicas distintas e niveis de
complexidade variados.

Os quatro ambientes implementados possuem o mesmo tamanho, representando
um cenario de 10x10 metros, implementado no simulador Gazebo. A posicéo alvo é
gerada de forma randdémica, com base nas coordenadas do ambiente. Nos ambientes
02 e 03 sao consideradas também as coordenadas dos obstaculos estaticos, dessa
forma é possivel evitar gerar alvos na mesma posi¢ao dos obstaculos.

4.6.1 Etapa 01: Ambiente sem obstaculos

Nesta etapa o objetivo principal é avaliar a capacidade do robé de navegar até o
ponto de destino com base na leitura dos sensores e em sua posi¢cao em relagdo ao
ambiente (Fig. 15). Essa analise preliminar € fundamental para aferir a capacidade de
aplicacao da solucdo em ambientes mais complexos.

Apesar de ndo conter outros obstaculos, além das paredes em torno do robd, esse
cenario permite avaliar se o sensoriamento esta sendo executado de forma correta e
também comparar o desempenho dos algoritmos em relagdo ao tempo de aprendi-
zado, considerando o niumero de vezes que o robd atingiu o objetivo alvo e as recom-
pensas obtidas.
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Figura 15 — Etapa de treinamento 01: Ambiente sem obstéculos
Fonte: Autor

4.6.2 Etapa 02: Ambiente com obstaculos estaticos

O ambiente desenvolvido nesta etapa objetiva treinar o robd para alcangar o ponto
de destino evitando colisbes com obstaculos estaticos ao seu redor. (Fig. 16). Foram
adicionados quatro obstaculos estaticos, como se representassem pilares em torno
do robéd.

Figura 16 — Etapa de treinamento 02: Ambiente com obstaculos estaticos
Fonte: Autor

4.6.3 Etapa 03: Ambiente com pessoas paradas

Nesta etapa o robd deve ser capaz de detectar pessoas e é treinado para alcangar
o ponto de destino, evitando colisdes e mantendo uma distancia segura em relagéo as
pessoas paradas no ambiente de navegagao. (Fig. 17).
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Figura 17 — Etapa de treinamento 03: Ambiente com pessoas paradas
Fonte: Autor

4.6.4 Etapa 04: Ambiente com pessoas dinamicas

Nesta etapa o robd deve ser capaz de detectar pessoas e é treinado para alcangar
o ponto de destino, evitando colisbes e mantendo uma distancia segura em relacao
as pessoas que estdo caminhando no ambiente de navegacédo. Na configuragdo do
ambiente 04 as pessoas simuladas movem-se numa determinada linha, seguindo um
trajeto especifico, ndo aleatério, de ida e volta em linha reta (Fig. 18);

Figura 18 — Etapa de treinamento 04: Ambiente com pessoas em movimento
Fonte: Autor

4.6.5 Configuracoes

Um ambiente de aprendizado por reforgo € composto por varios elementos que
determinam a dinamica do processo de aprendizado. O agente é o componente que
esta aprendendo a tomar decisdes e realizar acées no ambiente para maximizar uma
recompensa cumulativa ao longo do tempo, sendo representado pela cadeira de rodas
robética, conforme descrito na secao 4.2.

A tabela a seguir apresenta os parametros de configuracao referentes ao espaco
de estados e ao espaco de agdo, assim como a duragdo e o numero de episédios
adotado para cada etapa de treinamento. Laser Distance Sensor (LDS) refere-se ao
numero de amostras do sensor LIDAR que foram utilizadas durante os experimentos.

As informacdes de estado, sdo obtidas a partir da leitura dos dados dos sensores
conectados ao robd. Neste trabalho, em todas as etapas de treinamento foram utiliza-
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Espago Espago Amostras N°? méax. de Duragéo de

Ambiente de estados de acao LDS episédios um episddio
Etapa 01 26 5 24 500 300
Etapa 02 28 5 24 1500 500
Etapa 03 29 5 24 1500 500
Etapa 04 29 5 24 2000 500

das 24 amostras do sensor LiDAR, informacdes de odometria e dados de 04 sensores
infravermelhos conectados nas laterais do robd. As imagens obtidas do sensor Kinect

foram utilizadas apenas nas etapas de treinamento 03 e 04.

Conforme descrito na secao 4.5.1, o estado refere-se a uma representagcao do
ambiente em um determinado instante de tempo, capturando as informagdes neces-
sarias para a tomada de decisédo e determinacdo das proximas ag¢des. Portanto, as
configuracdes referentes ao espaco de estados diferem de acordo com a etapa de
treinamento. Essa diferenga ocorre porque os componentes de entrada da rede va-
riam de acordo com a etapa de treinamento e a complexidade do ambiente, conforme

descrito a seguir:

« Etapa 01: Nesta etapa a entrada da rede n&o necessita de informacdes sobre
angulo e distancia em relagdo a obstaculos, nem sobre pessoas detectadas.

Portanto, é dada por: [ [,,6,d.] onde:

— [,.: representa o numero de amostras do sensor LiDAR;
— 0: é o angulo do robbé em relacédo ao objetivo;

— d.: é a distancia atual até o obijetivo;

» Etapa 02: Nesta etapa, além dos dados coletados na etapa 01, sdo necessarias
informacdes referentes aos obstaculos estaticos em torno do robé. Portanto, a

entrada da rede é dada por: [ [, 0, d., rmin, Oops | Onde:

l.: representa o niumero de amostras do sensor LiDAR,;

0: é o angulo do robd em relagéo ao obijetivo;
— d,.: € a distancia atual até o objetivo;

— rmin: COrresponde a distancia do obstaculo mais préximo;

— 6,5: corresponde ao angulo do obstaculo mais préximo em relagao ao robd;

« Etapas 03 e 04: Correspondem as etapas em que o robd deve ser capaz de
aprender a navegar em meio a pessoas paradas e em movimento. Dessa forma,
a entrada da rede recebe um novo parametro referente ao numero de pessoas

detectadas, e é dada por: [ [, 0, d., rmin, Oobs, ha ] ONde:
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l.: representa o niumero de amostras do sensor LiDAR,;

0: € o angulo do robb em relacéo ao objetivo;

d.: é a distancia atual até o objetivo;

— Tmin: COrresponde a distancia do obstaculo mais préximo;

.55 corresponde ao angulo do obstaculo mais préximo em relagéo ao robb;

— hg: corresponde ao numero de pessoas detectadas.

As configuragdes referentes ao numero de episodios e ao tempo de duragédo de
um determinado episddio foram ajustadas de acordo com a etapa de treinamento,
tomando-se por base a complexidade do ambiente (Tabela 3, colunas 04 e 05). Esses
valores foram determinados apos a realizagdo de testes que permitiram avaliar se o
tempo de treinamento especificado seria suficiente para o agente navegar atingindo
0s objetivos sem colidir com obstaculos.

Além das configuracdes anteriormente descritas, a configuragdo correta do algo-
ritmo de aprendizado € fundamental para o treinamento do agente.

A seguir sao listados os principais hiperparametros utilizados na configuracédo dos
algoritmos utilizados neste trabalho:

* buffer_size: representa o nimero de experiéncias (amostras) armazenadas em
meméria. E usado para armazenar transicdes passadas (estado, acdo, recom-
pensa, proximo estado) e realizar amostragem aleatodria durante o treinamento;

 batch_size: NUumero de amostras retiradas do buffer de repeticdo em cada atuali-
zagao da rede neural. Um lote (batch) € usado para calcular gradientes e realizar
atualizacdes mais frequentes e estaveis;

« gamma: Fator de desconto, corresponde a um valor no intervalo [0, 1] que de-
termina o quao importante é a recompensa futura em relacdo a recompensa
imediata. Um valor de gamma préximo de 1 indica que o agente valoriza recom-
pensas futuras mais fortemente, enquanto um valor préximo de 0 indica que o
agente se concentra apenas em recompensas imediatas;

» TAU: Representa a taxa utilizada para atualizar os parametros da rede-alvo (tar-
get network) com os parametros da rede principal. Ajuda a melhorar a estabili-
dade do treinamento, evitando atualiza¢Ges bruscas;

- learning_rate_actor: E a taxa de aprendizado usada para atualizar os parame-
tros da rede neural do ator (policy network);

- learning_rate_critic: E a taxa de aprendizado usada para atualizar os parametros
da rede neural do critico (valor da fungéo Q);
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buffer_start: O tamanho inicial do buffer de repeticdo. E o nimero minimo de
experiéncias coletadas antes de comegar o treinamento;

epsilon: representa o valor de exploragao inicial, utilizado para equilibrar a explo-
racdo e a prospeccao (exploitation) durante o treinamento. E a probabilidade do
agente escolher uma acao aleatéria em vez de seguir a politica aprendida;

epsilon_decay: Fator de decaimento aplicado ao valor de epsilon ao longo do
tempo. Permite que a estratégia de prospeccao seja reduzida gradualmente a
medida que o agente aprende.

action_space_high: Representa o limite superior do espaco de ac¢des continuas.
E um vetor que define o valor maximo para cada dimens&o da acéo, definido
entre-1.5e 1.5.

action_space_low: Representa o limite inferior do espaco de a¢des continuas. E
um vetor que define o valor minimo para cada dimensao da acgao, definido entre
-1.5e1.5.

H1 e H2: Numero de neurbnios na 12 e 22 camadas. Estes sdo os hiperparame-
tros que definem o numero de neurénios (unidades) em cada camada da rede
neural do ator e do critico, que podem variar, dependendo do problema a ser
resolvido.

As tabelas 4 e 5 apresentam os valores adotados para cada hiperparametro, de
acordo com o algoritmo utilizado:

Tabela 4 — Configuragdes do algoritmo DDPG

Hiperparametro Valor Descricao

buffer_size 1000000 Tamanho do buffer de repeticao

batch_size 64 Tamanho de um grupo de amostras de treinamento

gamma 0.99 Taxa de redugao de recompensas futuras em relagdo as recompensas imediatas
TAU 0.001 Taxa de atualizagao de hiperparametros da rede de destino

LRA 0.00025 Taxa de aprendizado da rede ator

LRC 0.0025 Taxa de aprendizado da rede critico

HA1 400 Numero de neurdnios da 12 camada

H2 300 NUmero de neurdnios da 22 camada

buffer_start 100 Numero de transi¢des que antecedem a amostragem aleatéria
epsilon 1.0 Taxa de exploragéo

epsilon_decay 0.1 Redugéo da taxa de exploragao (influencia o ruido aplicado a agao)
action_space_high 1.5 Valor maximo que cada dimenséo da agdo pode assumir
action_space_low -1.5 Valor minimo que cada dimens&o da agao pode assumir

4.6.6 Meétricas

A seguir sdo apresentadas as métricas utilizadas para medir o desempenho do
agente em cada etapa de treinamento especifica:
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Tabela 5 — Configuragdes do algoritmo DQN

Hiperparametro Valor Descrigéo

TAU 2000 Taxa de atualizagdo da rede de destino.

gamma 0.99 Taxa de reducdo de recompensas futuras em relagdo as recompensas imediatas.
learning_rate 0.00025 Taxa de aprendizado.

epsilon 1.0 A probabilidade de escolher uma agao aleatéria.

epsilon_decay 0.99 Taxa de reducéo de epsilon ao término de um episédio.

epsilon_min 0.05 Valor minimo de epsilon

batch_size 64 Tamanho de um grupo de amostras de treinamento.

train_start 64 Inicio do treinamento de acordo com o tamanho da meméria de repeticéo.
buffer_size 1000000 O tamanho do buffer de repetigao.

» Taxa de Sucesso (Success Rate - SR): A porcentagem de vezes em que o robd

concluiu com sucesso a etapa de treinamento, dada por SR = —2— x 100, onde

Stmazx

g € 0 numero de vezes que o robd alcangou o objetivo sem colidir, e st,,.... repre-
senta o tempo maximo de execucao do experimento.

Taxa de Coliséo (Collision Rate - C' R): A porcentagem de vezes em que o robd
colidiu, dada por CR = .—<— x 100, onde ¢ € o numero de vezes que 0 robd

ne

colidiu, e ne,,., € 0 numero total de episddios durante um experimento.

Taxa de Tempo excedido (Time Out rate - T R): A porcentagem de vezes em que
o limite de tempo foi excedido sem que o robd alcangasse o objetivo, dado por
TR = —“—x100, onde t € o nUmero de vezes que o limite de tempo foi excedido,

N€maxzx

e nemqa: € 0 Numero total de episddios durante um experimento.




5 EXPERIMENTOS E RESULTADOS

5.1 Treinamento

Esta secéo apresenta os resultados obtidos durante cada etapa de treinamento. Os
experimentos foram conduzidos em ambiente simulado e demonstram a capacidade
de aprendizado e aplicabilidade desses algoritmos em diferentes cenarios.

5.1.1 Resultados do Treinamento

Os valores na Tabela 6 correspondem aos resultados obtidos ao longo de todo
o tempo de treinamento em cada ambiente especifico. Esses valores sdo derivados
com base em st,ux = Nemar * NSmaz, ONAE st,,.. € 0 tempo maximo de execugdo do
experimento, ne,,,, € 0 numero maximo de epis0dios e ns,,,, € 0 humero maximo de
passos (steps). Os valores em negrito correspondem aos melhores resultados obtidos
durante as etapas de experimentos em cada ambiente de treinamento.

Métricas avaliadas Ambiente 01 Ambiente 02 Ambiente 03 Ambiente 04
SAN-DDPG DQN SAN-DDPG DQN SAN-DDPG DQN SAN-DDPG DQN
Sucesso (g) 850 691 2656 1563 3167 1780 3021 1282
Colisdes (c) 53 46 705 949 631 882 1179 1482
Tempo excedido (1) 75 72 55 9 36 14 9 21
Taxa de sucesso (%) 56,67 46,07 35,41 20,84 42,23 23,73 30,21 12,82
Taxa de coliséo (%) 10,60 9,20 47,00 63,27 42,07 58,80 58,95 74,10
Taxa p/tempo excedido (%) 15,00 14,40 3,67 0,60 2,40 0,93 0,45 1,05

Tabela 6 — Resultados do Treinamento

Um episddio corresponde a uma etapa de treinamento, conforme definido na tabela
3. O numero maximo de passos (steps) é utilizado para definir o tempo de duragéo de
um episodio, que pode encerrar de duas formas: quando o robd realiza uma colisdo
ou quando excede o tempo maximo de execugao do experimento.
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(a) Etapa 01 (b) Etapa 02
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Figura 19 — Recompensas por episodio - Os valores correspondentes ao eixo Y (a esquerda)

apresentam as recompensas obtidas por episédio, o eixo X corresponde aos episodios de
treinamento.

A Figura 19 apresenta a evolugao das recompensas obtidas por episédio em cada
estagio de treinamento.
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Figura 20 — Recompensa Média - O eixo Y (a esquerda) apresenta os valores correspondentes

a média de recompensas obtidas ao longo do treinamento, o eixo X corresponde aos episodios
de treinamento.
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A recompensa por episddio é a soma das recompensas obtidas pelo agente du-
rante todo um episodio de interacdo com o ambiente. Essa métrica permite avaliar
como o agente esté progredindo em direcdo ao seu objetivo, analisando a eficacia das
politicas aprendidas e a capacidade de maximizar as recompensas acumuladas ao
longo do tempo.

Ao monitorar as recompensas por episédio, € possivel identificar tendéncias de
melhoria ou piora no desempenho do agente a medida que o treinamento progride.
Essa andlise possibilita identificar problemas, ajustar os hiperparametros do algoritmo,
refinar as funcées de recompensa ou melhorar a politica de exploragdo do agente
durante as etapas de treinamento.

A Figura 20, apresenta uma medida consolidada do desempenho médio do agente
em cada etapa de treinamento e permite visualizar de forma mais clara o avan¢o do
aprendizado ao longo do tempo.
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Figura 21 — Desvio padrao sobre a média de recompensas recebidas - O eixo Y (a esquerda)
apresenta os valores correspondentes a média de recompensas obtidas ao longo do treina-
mento.



76

A Figura 21, apresenta o desvio padrao sobre as recompensas recebidas. Essa
medida indica a variabilidade dos valores de recompensa obtidos pelo agente durante
o treinamento. Um desvio padrdo mais amplo indica que as recompensas estdo mais
dispersas em torno da média, enquanto um desvio padrao menor indica maior consis-
téncia e estabilidade nas recompensas.

5.1.2 Analise dos resultados

» Etapa 01: Nesta etapa a abordagem proposta e 0 DQN apresentaram desem-
penhos proximos, com baixas taxas de colisédo e altas taxas de sucesso. A
abordagem SAN-DDPG apresentou maior estabilidade nas recompensas rece-
bidas, enquanto o DQN obteve recompensas baixas mesmo apds 300 episoédios
de treinamento (Fig. 19a e 20a). Como pode ser visto na tabela 6, a taxa de
colisdo apresentada pelo DQN foi inferior a taxa apresentada pela abordagem
SAN-DDPG, no entanto, esse resultado pode estar relacionado a uma prospec-
¢ao menor, resultando em recompensas mais baixas e taxa de sucesso inferior.

» Etapa 02: Na etapa 02 ambos os algoritmos apresentaram dificuldades no ini-
cio do treinamento, resultando na obtengcédo de recompensas baixas durante os
primeiros 250 episddios. O DQN obteve recompensas melhores no inicio do trei-
namento, enquanto SAN-DDPG demorou mais para convergir. Apesar disso, 0s
resultados da tabela 6 demonstram que a abordagem SAN-DDPG apresentou
uma taxa de sucesso cerca de 15% superior ao DQN, além de melhor capaci-
dade de aprendizado, adquirindo maior estabilidade na obtengé&o de recompen-
sas positivas a partir de 400 episddios de treinamento (Fig. 20b). Por outro lado,
o DQN apresentou uma elevada taxa de colisdo, o que demonstra que teve difi-
culdades em tomar decisbes em um ambiente com obstaculos em seu entorno,
resultando na baixa taxa de sucesso obtida.

» Etapa 03: Nesta etapa os algoritmos passaram a ter um comportamento mais ex-
ploratério ap6s 180 episddios de treinamento (Fig. 20b). A solucao proposta por
este trabalho atingiu estabilidade na obtencdo de recompensas positivas apds
350 episddios. O DQN por sua vez apresentou uma alta taxa de colisao, resul-
tando em recompensas negativas, mesmo apds 700 episédios de treinamento.
Como pode ser visto na figura 20c, essa caracteristica menos exploratéria do
DQN resultou em um aprendizado mais demorado para o agente, demonstrando
dificuldade em maximizar as recompensas obtidas ao longo do tempo.

» Etapa 04: Nesta etapa a abordagem SAN-DDPG apresentou uma taxa de su-
cesso cerca de 17% superior em relacdo ao DQN, com poucas colisées no ini-
cio do treinamento, passando a maximizar as recompensas obtidas de forma
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mais significativa apds 300 episédios de treinamento. O grafico de recompensas
(Fig. 19d) demonstra que ambos os algoritmos obtiveram recompensas negati-
vas mesmo apoés 500 episddios de treinamento. No entanto percebe-se que a
abordagem SAN-DDPG manteve o aprendizado constante, maximizando o valor
das recompensas durante todo o treinamento, obtendo resultados significativa-
mente melhores que o DQN ao longo do tempo.

De forma geral a analise dos experimentos realizados demonstra que ambos os al-
goritmos obtiveram bons resultados, proporcionando que o agente aprenda e ao final
do tempo de treinamento navegue de forma autbnoma apresentando baixas taxas de
colisédo nos cenarios em que foi treinado. No entanto, é possivel perceber que a abor-
dagem SAN-DDPG possui caracteristicas que a tornam superior ao DQN, como maior
capacidade exploratéria, aprendizado constante, maior estabilidade e capacidade de
maximizar as recompensas obtidas, convergindo para solugdes melhores em todos as
etapas.

Os gréficos demonstram que no inicio dos experimentos o algoritmo DQN foi capaz
de obter recompensas melhores que o SAN-DDPG em todas as etapas (Figuras 20a,
20b, 20c e 20d). No entanto, percebe-se que o DQN tende a estabilizar o aprendizado,
enquanto o SAN-DDPG apresenta uma evolugao continua, obtendo resultados signi-
ficativamente melhores ao longo do tempo. Essa caracteristica pode ser percebida
por meio da analise da recompensa média, que fornece uma medida consolidada do
desempenho médio do agente ao longo do tempo.

Assim como a recompensa por episddio, a recompensa média é utilizada para mo-
nitorar o progresso, identificar problemas de aprendizado e ajustar a politica de agao
durante o treinamento. Os experimentos demonstram que a recompensa média utili-
zando o algoritmo DDPG foi significativamente maior em comparacao ao DQN, eviden-
ciando que a abordagem SAN-DDPG foi mais eficaz em maximizar as recompensas
ao longo do treinamento em todas as etapas (Figuras 20a, 20b, 20c e 20d).

Percebe-se ainda que a solugao proposta por este trabalho apresentou um desvio
padrao mais amplo em relacdo a média de recompensas quando comparada ao DQN,
no entanto, também obteve recompensas positivas significativamente maiores, resul-
tando em um desempenho geral melhor em termos de recompensas totais recebidas
(Fig. 21).

Um desvio padrdo mais amplo pode estar relacionado ao comportamento mais ex-
ploratério do algoritmo DDPG, nao necessariamente resultando em um desempenho
inferior. Isso sugere que o agente esta explorando diferentes estratégias e acbes em
busca de uma politica 6tima, resultando em maior variabilidade nos resultados.

O DQN obteve um desvio padrao mais elevado em termos de recompensas nega-
tivas, principalmente nas etapas 2, 3 e 4, onde os cenarios sdo mais desafiadores e
consequente sujeitam o agente a um numero maior de colisdes.



78

Ao analisar a plataforma roboética durante as etapas de treinamento com o algo-
ritmo DQN é possivel perceber uma maior instabilidade nos movimentos executados,
resultando em movimentos angulares mais bruscos o que, consequentemente, pode
ter resultado na elevada taxa de colisées. Por outro lado, o SAN-DDPG apresentou
uma navegagao mais suave, proporcionando o atingimento dos objetivos de forma
mais rapida e melhor capacidade para evitar colisées com obstaculos proximos.

5.2 Validacao e Testes

Como forma de validar a eficiéncia e robustez da solucao proposta, foram aplica-
dos diversos testes em cenarios distintos aos que o agente foi treinado. Esta secéo
apresenta as configuracdes utilizadas durante a etapa de testes, a avaliacdo dos re-
sultados obtidos e as consideragdes acerca desses resultados. Cumpre destacar que
0s experimentos com simulagdo de humanos nao envolveram qualquer tipo de co-
laboragédo durante a navegacdo. Cabendo, portanto, apenas ao robd, com base no
aprendizado adquirido, evitar colisdes enquanto busca atingir seu objetivo.

5.2.1 Ambientes de Teste

Os ambientes de teste foram configurados com tamanhos diferentes e com niveis
de complexidade superiores aos ambientes de treinamento. O objetivo € avaliar a
robustez da solucéo proposta e verificar se 0 agente é capaz de generalizar o conhe-
cimento aprendido em um ambiente especifico para situacdes novas e desconhecidas,
aplicando o conhecimento aprendido anteriormente em novos contextos.

Além disso, os testes realizados em ambientes diferentes, permitem coletar e ana-
lisar novos dados e feedback que podem ser utilizados para fornecer uma validagéo
mais abrangente do seu desempenho.
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5.2.1.1 Etapa 01: Ambientes sem obstaculos

(a) Corredor sem
obstaculos (b) Circuito 10x15 sem obstaculos

Figura 22 — Etapa de testes 01: Ambientes sem obstaculos
Fonte: Autor

5.2.1.2 Etapa 02: Ambientes com obstaculos estaticos

(a) Corredor com obs-
taculos estaticos (b) Circuito 10x15 com obstaculos estaticos

Figura 23 — Etapa de testes 02: Ambientes com obstaculos estaticos
Fonte: Autor
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5.2.1.3 Etapa 03: Ambientes com pessoas paradas

V"

a) Corredor com pessoas paradas (b) Corredor com grupos de pes-
mdmdualmente soas paradas

Figura 24 — Etapa de testes 03: Corredor com pessoas paradas individualmente e em grupos.
Fonte: Autor

5.2.1.4 Etapa 04: Ambientes com pessoas dindmicas

Y

a) Corredor com pessoas em movi-
mento obstrugéo horizontal em re- (b) Pessoas em movimento - obstru-
lacdo ao alvo ¢ao vertical em relacéo ao alvo

Figura 25 — Etapa de testes 04 - Pessoas em movimento
Fonte: Autor
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5.2.2 Configuracoes

Para realizacdo dos testes, com excegado da etapa 01, foram utilizadas as mes-
mas configuracdes adotadas durante as etapas de treinamento, de acordo com cada
ambiente, conforme definido na sec¢ao 4.6.5.

5.2.2.1 Etapa de testes 01

A etapa de testes 01 foi realizada em dois cenarios distintos: corredor sem obsta-
culos (Fig. 22a) e um circuito 10x15 sem obstaculos (Fig 22b).

Esta etapa objetiva avaliar o comportamento do agente em diferentes situagdes
relacionadas a alterag6es na dimensao do ambiente. O circuito 10x15 € mais estreito
nas laterais, submetendo o robé a uma area de travessia que corresponde a metade
da largura do corredor e menos de 1/3 em relagdo a area de treinamento. Além disso, o
circuito possui um obstaculo central, como uma parede, dessa forma s&o necessarias
informacdes adicionais para que o robd possa navegar nesse ambiente.

Portanto, a entrada da rede é dada por: [ [, 0, d., "min, Oops | ONde:

* [,: representa o numero de amostras do sensor LiDAR;

* 0: € 0 angulo do robd em relagdo ao objetivo;

* d.: é a distancia atual até o objetivo;

* rmin. COrresponde a distancia do obstaculo mais proximo;

* 0,5: corresponde ao angulo do obstaculo mais préximo em relagéo ao robd;

5.2.2.2 FEtapa de testes 02

Nesta etapa as configuracdes de entrada da rede foram as mesmas anteriormente
descritas para a etapa de testes 01.

Os testes foram realizados em dois cenarios distintos: corredor com obstaculos
estaticos (Fig. 23a) e um circuito 10x15 com obstaculos estaticos (Fig. 23b). Como
pode ser visto nas figuras 23a e 23b, o tamanho dos obstaculos também é diferente,
havendo obstaculos maiores no corredor.

O objetivo nesta etapa € avaliar se 0 agente é capaz de lidar com cendrios comple-
X0s, repletos de obstaculos e ter uma avaliacdo mais abrangente do seu desempenho.

5.2.2.3 Etapa de testes 03

A etapa de testes 03 foi realizada em dois cenarios distintos: corredor com pessoas
paradas individualmente (Fig. 22a) e corredor com grupos de pessoas paradas (Fig
22b). O objetivo é avaliar se o robd é capaz de navegar em meio a pessoas paradas,
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abordando situag¢des diversas daquela para a qual foi treinado e em ambientes mais
complexos.

Conforme pode ser visto na Figura 17, o robé foi treinado em um ambiente mais
amplo e com apenas 04 pessoas em seu entorno. Entretanto, para lidar com cenarios
da vida real, ele deve ser capaz de generalizar o conhecimento adquirido para lidar
com situagdes inesperadas, como grupos de pessoas ou pessoas paradas individual-
mente durante o percurso até seu objetivo. Dessa forma, os ambientes de teste foram
implementados considerando essas situagoes.

Nas etapas 03 e 04 a entrada da rede recebe um parametro referente ao numero
de pessoas detectadas, e € dada por: [ I, 0, dc, T'min, Oobs, ha ] ONde:

* [.: representa 0 niumero de amostras do sensor LiDAR;

» 0: é 0 angulo do robd em relacéo ao obijetivo;

* d.: é a distancia atual até o objetivo;

* T COrresponde a distancia do obstaculo mais proximo;

* O,,: corresponde ao angulo do obstaculo mais préximo em relagao ao robo;
* hg: corresponde ao numero de pessoas detectadas.

5.2.2.4 Etapa de testes 04

A etapa de testes 04 foi realizada em dois cenarios, com pessoas em movimento
em diferentes direcdes: no primeiro cenario as pessoas movimentam-se transversal-
mente em relagdo a pose do robd (Fig. 25a) e no segundo cenario 0 movimento das
pessoas segue a trajetoria entre o robd e o ponto alvo (Fig 25b). Assim como na etapa
03, o objetivo é avaliar se o robd é capaz de navegar em meio a pessoas em movi-
mento, abordando situac¢des diversas daquela para a qual foi treinado e em ambientes
de maior complexidade.

5.2.3 Meétricas

A seguir sdo apresentadas as métricas utilizadas para avaliar o desempenho do
agente em cada etapa de testes:

» Taxa de Sucesso (SR): A porcentagem de vezes em que o robd concluiu com
sucesso a etapa de testes, dada por SR = .-4— x 100, onde g € o numero de

vezes que o robd alcangou o objetivo sem colidir, € nt,,.. representa 0 nimero
maximo de testes realizados.

» Taxa de Colisdo (C'R): A porcentagem de vezes em que o robd colidiu, dada por
CR = —<— x 100, onde ¢ é o numero de vezes que o robd colidiu, e nt,,.. € 0

Nimaz

numero maximo de testes realizados.
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» Tempo médio (AT): A média de tempo que o robd levou para alcangar o objetivo,
considerando todas as etapas de testes que resultaram em sucesso, dado por
AT = —1— x 100, onde t é o tempo que o robd levou para atingir o objetivo

Nimax

durante uma execucgao, € nt,,., € 0 numero total de testes realizados.

5.2.4 Resultados dos testes

Esta secédo apresenta os resultados obtidos durante cada etapa de testes. Os ex-
perimentos foram conduzidos em ambiente simulado e demonstram a eficiéncia da so-
lugédo proposta, considerando a capacidade de generalizagao e adaptagao do agente
em diferentes cenarios e variados niveis de complexidade.

5.2.4.1 Etapa 01

A tabela 7 apresenta os resultados da primeira etapa de testes. Cada coluna re-
presenta uma métrica especifica, e os valores correspondem as estatisticas obtidas
apos a execucado dos testes.

Tabela 7 — Resultados da etapa de testes 01

Métricas avaliadas Etapa 01 (a) Etapa 01 (b)
SAN-DDPG DQN SAN-DDPG DQN
Taxa de sucesso (%) 100% 100% 98% 16%
Taxa de colisao (%) 0% 0% 2% 84%
Taxa de tempo excedido (%) 0% 0% 0% 0%
Média de tempo em segundos (tr) 40,97 41,31 58,85 51,65

Tanto o SAN-DDPG quanto o DQN alcancaram uma alta taxa de sucesso na Etapa
01(a), atingindo o objetivo alvo em todas as execugdes. No entanto, na Etapa 01(b),
o SAN-DDPG registrou uma taxa de sucesso ligeiramente menor, atingindo 98%, en-
quanto o DQN obteve um desempenho significativamente inferior, com apenas 16%
de taxa de sucesso.

Com relacao a taxa de colisdo, ambos os algoritmos apresentaram uma taxa de
0% na Etapa 01(a), o que indica que conseguiram evitar colisdes com sucesso. No
entanto, na Etapa 01(b), o SAN-DDPG teve uma taxa de colisdo de 2%, enquanto
o DQN apresentou uma taxa alarmantemente alta, colidindo 84% das vezes, apre-
sentando dificuldades significativas em evitar colisées, mesmo em um ambiente sem
obstaculos.

Em relacao ao tempo médio para atingir o objetivo, na Etapa 01(a) o SAN-DDPG
obteve um desempenho de 40,97 segundos, enquanto o DQN registrou um tempo
ligeiramente maior, com 41,31 segundos. Na Etapa 01(b), o SAN-DDPG apresentou
um aumento significativo no tempo médio, com 58,85 segundos, enquanto o DQN
teve um tempo médio de 51,65 segundos. Embora a abordagem SAN-DDPG tenha
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tido tempos médios mais altos na Etapa 01(b), apresentou uma taxa de sucesso 82%
superior em relagdo ao DQN.

Os resultados da etapa 01 demonstram que a abordagem SAN-DDPG possui boa
capacidade de generalizacao, proporcionando que o robd navegue de forma eficiente
em cenarios com dimensdes diferentes do ambiente de treinamento, atingindo o obje-
tivo com quase 100% de sucesso nos testes realizados.

5.2.4.2 Etapa 02

Tabela 8 — Resultados da etapa de testes 02

Métricas avaliadas Etapa 02 (a) Etapa 02 (b)
SAN-DDPG DQN SAN-DDPG DQN
Taxa de sucesso (%) 85% 0% 93% 1%
Taxa de colisao (%) 15% 99% 7% 99%
Taxa de tempo excedido 0% 1% 0% 0%
Média de tempo em segundos (tr) 52,08 0,00 67,17 68,24

Na Etapa 02(a) os testes foram realizados em um ambiente extremamente mais
complexo que o ambiente de treinamento. Além da reducdo no espaco, foram colo-
cados 07 obstaculos na area de travessia do robd. Nesta etapa o SAN-DDPG obteve
uma taxa de sucesso de 85%, enquanto o DQN nao obteve sucesso em nenhuma
execucao. Na Etapa 02(b), o SAN-DDPG teve um desempenho ainda melhor, alcan-
cando uma taxa de sucesso de 93%, enquanto o DQN manteve a taxa de sucesso
extremamente baixa, com apenas 1%.

Em relacdo a taxa de colisdo, na Etapa 02(a), a abordagem SAN-DDPG obteve
uma taxa de 15%, enquanto o DQN apresentou um valor extremamente alto, colidindo
99% das vezes, indicando que quase todas as execuc¢des resultaram em colisées. Na
Etapa 02(b), o SAN-DDPG teve uma taxa de colisdo ainda menor, com apenas 7%,
enquanto o DQN manteve a taxa de 99%. Esses resultados mostram que o DQN
enfrentou dificuldades significativas em evitar colisbes em ambas as etapas, enquanto
o SAN-DDPG teve um desempenho consideravelmente melhor.

Com relacao ao tempo, na Etapa 02(a), o SAN-DDPG obteve um tempo médio
de 52,08 segundos, enquanto o DQN nao teve sucesso em nenhuma execuc¢do. Na
Etapa 02(b) o SAN-DDPG apresentou um tempo médio de 67,17 segundos, e o DQN
teve um tempo médio de 68,24 segundos, decorrente da Unica execucgao realizada
CcOm sucesso.

Os resultados da etapa 02 demonstram que a solugdo implementada utilizando a
abordagem SAN-DDPG é capaz de lidar com ambientes complexos, proporcionando
gue o robd navegue de forma eficiente em meio a obstaculos estaticos de diferentes
dimensdes, em um espago significativamente menor que o ambiente de treinamento
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e obtendo uma taxa média de sucesso superior a 90% nos testes realizados.

5.2.4.3 Etapa 03

Tabela 9 — Resultados da etapa de testes 03

Métricas avaliadas Etapa 03 (a) Etapa 03 (b)
SAN-DDPG DQN SAN-DDPG DQN
Taxa de sucesso (%) 100% 35% 96% 2%
Taxa de coliséo (%) 0% 65% 4% 98%
Taxa de tempo excedido 0% 0% 0% 0%
Média de tempo em segundos (tr) 58,62 85,90 53,42 92,49

Na Etapa 03(a), a abordagem SAN-DDPG alcangou 100% de sucesso, concluindo
todas as execugdes sem colisdes ou tempo excedido. Por outro lado, o DQN obteve
uma taxa de sucesso de apenas 35%. Na Etapa 03(b) o SAN-DDPG manteve um bom
desempenho, com 96% de sucesso, enquanto o0 DQN obteve um desempenho muito
baixo, com apenas 2% de sucesso.

Em relagédo a taxa de colisdo, na Etapa 03(a), o SAN-DDPG registrou uma taxa de
0%, evitando colisdes em todas as execucdes, enquanto o DQN obteve uma taxa de
colisdo de 65%. Na Etapa 03(b) o SAN-DDPG manteve uma taxa de colisdo baixa,
com apenas 4%, enquanto o DQN apresentou uma taxa de colisdo extremamente
alta, de 98%. Esses resultados mostram que o DQN continuou a ter dificuldades
significativas em evitar colisdes em ambas as etapas, enquanto a abordagem SAN-
DDPG apresentou um desempenho consideravelmente melhor.

Com relacao ao tempo médio, na Etapa 03(a), o SAN-DDPG levou em média 58,62
segundos para atingir o objetivo, enquanto o DQN teve um tempo médio mais elevado
de 85,90 segundos. Na Etapa 03(b) o SAN-DDPG apresentou um tempo médio de
58,42 segundos, enquanto o DQN teve um tempo médio significativamente maior, com
92,49 segundos.

Os resultados da Etapa 03 mostram mais uma vez que a abordagem proposta por
este trabalho foi superior ao DQN. O SAN-DDPG registrou altas taxas de sucesso,
baixa taxa de colisdo e tempos médios razoaveis, enquanto o DQN, apesar de ter
apresentado resultados melhores do que na etapa 02, continuou enfrentando dificul-
dades significativas, obtendo taxas de sucesso baixas e altas taxas de coliséo.

Conforme descrito anteriormente, nas etapas 03 e 04 a entrada da rede recebe um
parametro referente ao niumero de pessoas detectadas. Essa informagéo é disponi-
bilizada pelo pacote DarknetRos a partir das imagens detectadas pela camera RGB
do sensor kinect e atua como um mecanismo de atencao social. Dessa forma, ao
invés de utilizar apenas dados de distancia do sensor laser, 0 nimero de pessoas de-
tectadas é fornecido como um parametro adicional para o algoritmo que utiliza essas
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informagodes para calcular a recompensa, conforme descrito na segéo 4.5.3.

Os resultados obtidos na etapa 03 demonstram que ambos os algoritmos obtive-
ram melhor desempenho ao receber informacdes de deteccido de pessoas a partir de
imagens de video. A taxa de punicao atribuida ao robd por se aproximar demais das
pessoas contribuiu para reduzir o numero de colisdes, demonstrando que o robd man-
teve uma distancia maior dos obstaculos em relagéo a etapa 02. Esse resultado €
evidenciado tanto nos experimentos de treinamento (Tabela 6) quanto nos testes de
navegacao (Tabelas 8 e 9).

5.2.4.4 Etapa 04

Tabela 10 — Resultados da etapa de testes 04

Métricas avaliadas Etapa 04 (a) Etapa 04 (b)
SAN-DDPG DQN SAN-DDPG DQN
Taxa de sucesso (%) 80% 30% 92% 26%
Taxa de colisao (%) 20% 70% 6% 73%
Taxa de tempo excedido 0% 0% 2% 1%
Média de tempo em segundos (tr) 45,20 38,43 43,04 41,64

Na Etapa 04(a), o SAN-DDPG alcangou sucesso em 80% das execugoes, en-
quanto o DQN obteve sucesso em apenas 30% delas. Na Etapa 04(b) o SAN-DDPG
obteve um desempenho ainda melhor, com 92% de sucesso, enquanto o DQN obteve
apenas 26% de sucesso.

Em relagéo a taxa de colisdo, na Etapa 04(a), o SAN-DDPG registrou uma taxa de
20%, enquanto o DQN teve uma taxa mais alta, resultando em 70% de colisbes. Na
Etapa 04(b) o SAN-DDPG manteve uma baixa taxa de colisdo, com apenas 6%. O
DQN por sua vez, apresentou uma taxa de colisédo de 73%, o que demonstra que o al-
goritmo continuou enfrentando dificuldades significativas em evitar colisdes, enquanto
o SAN-DDPG manteve um bom desempenho.

Com relagdo ao tempo médio, na Etapa 04(a), o SAN-DDPG levou em torno de
45,20 segundos para atingir o objetivo, enquanto o DQN, apesar de apresentar uma
taxa de sucesso significativamente inferior, registrou um tempo médio um pouco me-
nor, com 38,43 segundos. Na Etapa 04(b), o SAN-DDPG apresentou um tempo médio
de 43,04 segundos, e o DQN teve um tempo médio de 41,64 segundos.

Os resultados da etapa 04 demonstram que a abordagem SAN-DDPG é capaz de
lidar com ambientes complexos, proporcionando que o robd navegue de forma efici-
ente em meio a pessoas em movimento, obtendo uma taxa média de sucesso superior
a 80% nos testes realizados. Necessario observar que os testes foram aplicados em
ambientes mais complexos que 0 ambiente de treinamento e sem qualquer coopera-
céo dos demais agentes para evitar colisdes.
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5.3 Consideracoes finais

Testar o desempenho do agente em cenarios diferentes do ambiente de treina-
mento é fundamental para avaliar sua capacidade de generalizagdo. Se o agente sé
consegue tomar boas decisées no ambiente em que foi treinado, mas falha quando
submetido a novos cenarios, pode ser arriscado submeté-lo a aplicacdes do mundo
real, onde podera encontrar situagdes diferentes. Além disso, treind-lo novamente,
demanda tempo e uso de recursos computacionais que podem nao estar disponiveis
em determinadas situagdes, como por exemplo, simular o novo ambiente em que o
robd devera atuar.

Os resultados dos testes realizados demonstram a superioridade da abordagem
SAN-DDPG em relagdo ao DQN. A abordagem SAN-DDPG obteve altas taxas de
sucesso e baixa taxa de colisdo em todas as etapas. Por outro lado, o DQN enfrentou
dificuldades para atingir o objetivo em praticamente todos os cenarios, registrando
uma taxa de colisdo consideravelmente maior em todas as etapas de testes.

E importante observar que o desempenho dos algoritmos pode variar dependendo
da natureza da tarefa e de outros fatores, como hiperparametros, arquitetura de rede
neural e estratégias de exploragdo empregadas. Apesar disso, 0s experimentos rea-
lizados neste trabalho evidenciam que a abordagem SAN-DDPG supera o DQN, de-
monstrando que a solucao proposta é robusta e eficiente, proporcionando que o robé
navegue de forma autbnoma em ambientes dindmicos, compartilhados com humanos,
mesmo quando exposto a cenarios distintos do ambiente de treinamento.



6 CONCLUSAO

Este trabalho apresentou o desenvolvimento de uma solugao baseada em aprendi-
zado por reforco profundo e visdo computacional para navegacao autdbnoma de robds
méveis em ambientes dindmicos compartilhados com humanos. Nesse sentido, a
abordagem proposta considerou questbes de seguranga, como o distanciamento en-
tre o robd e as pessoas em seu entorno, além de adaptagédo do aprendizado e gene-
ralizacdo do conhecimento adquirido a diferentes situagdes.

Foram conduzidos testes comparativos entre a abordagem proposta por este tra-
balho, denominada Social Attention Navigation - DDPG e o algoritmo Deep Q-Network
(DQN). Nos experimentos realizados a abordagem SAN-DDPG demonstrou ser mais
eficiente e estavel que o algoritmo DQN, apresentando taxas médias de sucesso supe-
riores em todas as etapas analisadas: 98% (Etapa 01), 89% (Etapa 02), 86% (Etapa
03) e 86% (Etapa 04), demonstrando excelente capacidade de generalizacéo e re-
sultados consistentemente melhores em ambientes diferentes do ambiente de treina-
mento.

Apesar da variedade de solu¢cdes que abordam o uso do algoritmo DQN como
uma solugao viavel para navegacao autbnoma em ambientes internos (Tabela 1), os
resultados dos testes demonstram que o agente treinado pelo DQN néo foi capaz de
generalizar o conhecimento para aplicagdo em ambientes diferentes daquele no qual
foi treinado. Além disso, a analise dos experimentos (Figuras 20a, 20b, 20c e 20d)
demonstra que o DQN tende a estabilizar o aprendizado, além de necessitar de mais
tempo de treinamento para convergir para uma boa solucao.

Essas descobertas destacam a superioridade da abordagem SAN-DDPG e de-
monstram que a solugao proposta é promissora, contribuindo para o avanco da pes-
quisa na area, possibilitando a analise de experimentos em ambiente simulado e re-
alizacao de testes para posterior implantacdo de sistemas robdticos em cenarios do
mundo real.
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6.1 Contribuicoes

Neste trabalho foi desenvolvida uma abordagem para navegacao autbnoma de
robds moéveis em ambientes internos compartilhados com humanos, denominada So-
cial Attention Navigation - DDPG. A arquitetura dessa abordagem € baseada em DRL
e tem como base o algoritmo DDPG combinado com técnicas de visdo computacional
para deteccao de pessoas.

Os experimentos foram conduzidos em ambiente simulado, permitindo que os mo-
delos aprendidos sejam salvos e posteriormente utilizados em aplicacées do mundo
real. Os resultados demonstram que a abordagem proposta é eficaz, apresentando
estabilidade e capacidade de aprendizado para lidar com diferentes cenarios e situa-
coes. Além disso destacam-se as seguintes contribuicoes:

+ Este trabalho contribui para o desenvolvimento de uma abordagem que combina
técnicas de visdo computacional e aprendizado por reforgo profundo para o trei-
namento de robés em ambiente simulado. Os experimentos realizados foram
validados e demonstram que a abordagem € promissora, podendo ser estendida
a diferentes plataformas robéticas. Além disso, o cédigo fonte e os ambientes
simulados implementados neste trabalho serdo disponibilizados publicamente,
podendo ser aprimorados e aplicados a outras solugdes, contribuindo para o
avanco do estado-da-arte;

» Além das vantagens 6bvias de independéncia e mobilidade, o desenvolvimento
de um sistema para navegacao autbnoma de cadeiras de rodas motorizadas tem
o potencial de contribuir significativamente para a inclusdo social. Ao permitir que
pessoas com mobilidade reduzida participem ativamente de ambientes comparti-
lhados, promove-se a normalizagédo da interagdo entre individuos com diferentes
capacidades, melhorando a qualidade de vida de pessoas com deficiéncia;

* O estudo e andlise do comportamento do robd durante a navegacdo em meio a
testes simulados oferece insights valiosos para aprimorar o aprendizado e avaliar
sua capacidade de adaptacdo a ambientes em constante mudanca, além de
permitir identificar melhorias para a realizagéo de experimentos futuros.

6.2 Publicacoes

P. de Almeida Afonso and P. R. Ferreira, “Autonomous robot navigation in crowd,”
in 2022 Latin American Robotics Symposium (LARS), 2022 Brazilian Symposium on
Robotics (SBR), and 2022 Workshop on Robotics in Education (WRE), 2022, pp.
139-144.



90

Artigo submetido: Autonomous Robots (Springer) Resarch Square - Autonomous
Navigation of Wheelchairs in Indoor Environments using Deep Reinforcement Le-
arning and Computer Vision, 28 August 2023, PREPRINT (Version 1). Available at
Research Square [https://doi.org/10.21203/rs.3.rs-3287103/v1];

Artigo aceito: Autonomous Navigation of Wheelchairs in Indoor Environments using
Deep Reinforcement Learning and Computer Vision. SBR-LARS 2023 (15th Brazilian
Symposium on Robotics / 20th Latin American Robotics Symposium).

6.3 Trabalhos Futuros

Além de testar a abordagem proposta em cenarios do mundo real, algumas ques-
tdes foram identificadas e apontam dire¢des para pesquisas futuras que podem con-
tribuir para melhorar a solugao apresentada neste trabalho:

» Um ponto fundamental a ser observado séo as caracteristicas particularmente
associadas a plataforma robética utilizada. Uma cadeira de rodas motorizada,
por exemplo, pode chegar a 55cm de largura e 47cm de comprimento, exigindo
maior espacgo para interacao no ambiente do que plataformas robéticas original-
mente desenvolvidas para atuar como robds de servigo. Nesse aspecto destaca-
se uma das dificuldades enfrentadas neste trabalho, onde foi possivel perceber
qgue o angulo de rotacdo (yaw) da cadeira de rodas pode levar a um nimero de
colisbes relativamente alto, constituindo um desafio para o algoritmo convergir
para uma solugcao que proporcione uma navegag¢ao mais suave e segura. Dessa
forma, devem ser estudados mecanismos relacionados aos movimentos diferen-
ciais para obtencao de velocidades compativeis com o ambiente de aplicacao,
especialmente em ambientes compartilhados com humanos;

» Durante os experimentos realizados foi possivel perceber que o robd evitou co-
lisbes com pessoas em movimento de forma eficiente. No entanto, ndo foram
respeitadas normas sociais, como por exemplo, evitar passar pela frente das
pessoas, interrompendo sua passagem. Como o sistema implementado nao
previu colaboragao por parte de outros agentes, essa foi uma das principais cau-
sas de colisbes identificada, resultando na menor taxa de sucesso durante os
testes realizados com o DDPG, conforme pode ser visto na tabela 10. Portanto,
sé&o0 necessarios estudos complementares, capazes de identificar a orientacao
da pessoa em relagdo ao robd, constituindo mais uma informacéao para o algo-
ritmo de aprendizado;

* A estrutura da cadeira de rodas também é um fator limitante para os sensores.
Neste trabalho, o sensor LiDAR foi posicionado na frente da plataforma robdtica,
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reduzindo o angulo de sensoriamento devido as dimensdes da cadeira. Esse
problema pode ser agravado em situacdes reais, onde haverd uma pessoa sen-
tada na cadeira. Dessa forma, entende-se que devem ser utilizados sensores
LiDAR também nas laterais da plataforma robética. Para isso devem ser estu-
dados meios de realizar a fusdo dos dados obtidos a partir de varios sensores,
objetivando ampliar a percepgao do robé em relacdo ao ambiente de navegacao
gue ele devera atuar.
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APENDICE A — Links para acesso aos videos de treinamento e testes

A seguir sao disponibilizados os links para acesso a alguns videos de treinamento
e de testes. Devido ao tempo necessario para treinamento e execug¢ao dos experimen-
tos, os videos disponibilizados apresentam demonstracdes parciais dos experimentos
realizados.

Tabela 11 — Videos de treinamento

Etapa de treinamento

Etapa DQN DDPG
02 | https://youtu.be/xCCiAXp4n5U | https://youtu.be/-n2vzooPZCo
03 | https://youtu.be/nsUqLHYcNCE | https://youtu.be/v41NtbOnZBo
04 | https://youtu.be/BXsDgBBzpeE | https://youtu.be/VqqsS1RywMI

Tabela 12 — Videos de testes

Link para acesso ao cédigo fonte: https://github.com/poolafonso/deepbot

Testes utilizando o algoritmo DDPG

Etapa 02a

https://youtu.be/yKeqTDyQC1Q

Etapa 02b

https://youtu.be/mZbnFQYCNX4

Etapa 03a

https://youtu.be/fVLRNMI-VCg

Etapa 03b

https://youtu.be/2LDr_yqhIn8

Etapa 04a

https://youtu.be/2qPFWKNTAEE

Etapa 04b

https://youtu.be/UGKHEvVG3vc8
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