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ABSTRACT

SILVA, Lidiane Costa da. Theoretical Advances on Interval Entropy Concept
Addressing a New Methodology to Multi-criteria Decision-making Problems.
2023. 142 f. Tese (Doutorado em Computer Science ) – Post Graduate Program in
Computation, Center of Technological Development, Universidade Federal de Pelotas,
Pelotas, 2023.

This work focuses on entropy measurements in the context of fuzzy set theory and their
corresponding multi-valued logic, as it is a metric capable of quantifying not only the uncer-
tainty of experts in data analysis but also the lack of information in systems of reasoning to
which it is applied. In this research we consider the intersection of Atanassov Intuitionist Fuzzy
Logic (A-IFL) and Interval-valued Fuzzy Logic (IvFL), supporting Atanassov’s Interval-valued
Intuitionistic Fuzzy Logic (A-IvIFL), in view of the characteristic inherent to this approach of
enabling work with indeterminate and imprecise information. In this sense, we study the
concept of Atanassov’s Generalized Intuition Fuzzy Index (A-GIFIx), including its constructive
methodology based on negation operators and automorphisms. And, from that, we built
the interval version, preserving its main properties. The methodology for obtaining Entropy
in A-IvIFL via aggregation of Generalized Atanassov’s Interval-valued Intuitionistic Fuzzy
Index (A-GIvIFIx) contributes to the analysis of decision-making systems based on multiple
criteria. In the conception of the interval entropy ωA-IvE, the notion of preservation of the
interval diameters is respected, considering for its obtaining interval-valued fuzzy connectives
that also have this characteristic. We use the concept of admissible orders to compare
interval data. This study also contributes with a new admissible order, defined by only one
injective and increasing function. This order is illustrated by a Decimal Digit Interleaving
(DDI) function. Merge order promotes various method expressions for ωA-IvE, described
by compositions between negations with equilibrium functions, aggregation as means, and
constrained equivalence functions. Finally, as a practical contribution, we apply the proposed
methods in a decision-making problem related to video streaming traffic classification. Entropy
analyzes the set of attributes, explaining the input-output relationship of data that model the
FuzzyNetClass. In this computational approach for classifying traffic related to streaming
video, which integrates fuzzy inference systems and machine learning algorithms, the results
obtained by ωA-IvE show promise and indicate the continuity of studies and research efforts in
the area.

Keywords: atanassov’s interval-valued intuitionistic fuzzy logic; intuitionistic fuzzy index; fuzzy
entropy; conjugation



RESUMO

SILVA, Lidiane Costa da. Avanços Teóricos no Conceito de Entropia Intervalar
Endereçando Nova Metodologia para Problemas de Tomada de Decisão em
Múltiplos Critérios. 2023. 142 f. Tese (Doutorado em Computer Science ) – Post
Graduate Program in Computation, Center of Technological Development, Universi-
dade Federal de Pelotas, Pelotas, 2023.

Este trabalho tem como foco as medidas de entropia no contexto da teoria dos conjun-
tos fuzzy e suas correspondentes lógicas multi-valoradas, por se tratar de uma métrica capaz
de quantificar não só a incerteza dos especialistas na análise de dados como também a falta
ou desconhecimento de informações em sistemas de raciocinio aos quais é aplicada. Nesta
pesquisa consideramos à interseção da Lógica Fuzzy Intuicionista (A-IFL) e da Lógica Fuzzy
valorada Intervalarmente (IvFL), fundamentando a Lógica Fuzzy Intuicionista de Atanassov
Valorada Intervalarmente (A-IvIFL), tendo em vista a característica inerente a esta abordagem
de possibilitar o trabalho com informações indeterminadas e imprecisas. Nesse sentido,
estudamos o conceito de Índice Fuzzy Intuicionista Generalizado de Atanassov (A-GIFIx),
incluindo sua metodologia construtiva baseada em operadores de negações e automorfismos.
E, a partir disso, construímos a versão intervalar, preservando suas principais proprieda-
des. A metodologia para obtenção da Entropia em A-IvIFL via agregação do Índice Fuzzy
Intuicionista valorado Intervalarmente Generalizado de Atanassov (A-GIvIFIx) contribui para
análise de sistemas de tomada de decisão baseados em multiplos critérios. Na concepção da
entropia intervalar ωA-IvE, respeita-se a noção de preservação dos diâmetros dos intervalos,
considerando para sua obtenção conectivos fuzzy valorados intervalarmente que também
possuam esta característica. Utizamos o conceito de ordens admissíveis para comparação
de dados intervalares. Este estudo contribui ainda com uma nova ordem admissível, definida
por apenas uma função injetiva e crescente. Essa ordem é ilustrada por uma função Decimal
Digit Interleaving (DDI). A ordem de intercalação promove várias expressões de métodos para
ωA-IvE, descritos por composições entre negações com funções de equilíbrio, agregação
como médias e funções de equivalência restrita. Por fim, como contribuição prática, aplicamos
os métodos propostos em um problema de tomada de decisão relacionado à classificação
de tráfego de streaming de vídeo. A entropia analisa o conjunto de atributos, explicitando
a relação de entrada-saída de dados que modelam o FuzzyNetClass. Nesta abordagem
computacional para classificação de tráfego relacionado a streaming de vídeo, que integra
sistemas de inferência fuzzy e algoritmos de aprendizado de máquina, os resultados obtidos
pelo ωA-IvE mostram-se promissores e indicam a continuidade dos estudos e esforços de
pesquisa na área.

Palavras-Chave: lógica fuzzy intuicionista valorada intervalarmente; índice fuzzy intuicionista;
entropia fuzzy; conjugação
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6 Constructing A-GIvIFIx from Classes of Implications. . . . . . . . . . 70

7 FuzzyNetClass Architecture . . . . . . . . . . . . . . . . . . . . . . . 115
8 Entropy Measures for Input Data . . . . . . . . . . . . . . . . . . . . 121
9 Entropy Analysis of Output Attribute . . . . . . . . . . . . . . . . . . 125



LIST OF TABLES

1 Aggregations Obtained from the OWA Operator . . . . . . . . . . . 30
2 Examples of Fuzzy Triangular (Co)Norms. . . . . . . . . . . . . . . . 31
3 Fuzzy Implications, Coimplications and Duality Related. . . . . . . . 33
4 Historical Papers on Fuzzy Entropy. . . . . . . . . . . . . . . . . . . 34

5 Generalized Intuitionistic Fuzzy Index Associated with the Standard
Negation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6 A-GIFIx Obtained by Conjugate Functions . . . . . . . . . . . . . . 47
7 A-IFE is Obtained from the A-GIFIx ΠLK with respect to NS-Dual

Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
8 The Bibliographic Revision Integrating Entropy on A-IFS. . . . . . . 53

9 Interval-valued Fuzzy Implications and NS-Dual Constructions. . . . 61
10 The Bibliographic Revision Integrating Entropy on IvFS. . . . . . . . 62

11 Generalized Interval-valued Intuitionistic Fuzzy Index Associated
with the Standard Negation. . . . . . . . . . . . . . . . . . . . . . . . 71

12 The Bibliographic Revision Integrating Entropy on IvFS. . . . . . . . 74

13 Selected Input Attributes in the FuzzyNetClass Approach . . . . . . 116
14 Entropy Measures for Input Data . . . . . . . . . . . . . . . . . . . . 118
15 Entropy Measures for Output IvFS - Center of Sets and Centroid . . 122

16 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130



LIST OF ABBREVIATIONS AND ACRONYMS

A-GIFIx Generalized Atanassov’s Intuitionistic Fuzzy Index

A-GIvIFIx Generalized Interval-valued Atanassov’s Intuitionistic Fuzzy Index

A-IFE Atanassov‘s Intuitionistic Fuzzy Entropy

A-IFL Atanassov‘s Intuitionistic Fuzzy Logic

A-IFS Intuitionistic Fuzzy Set

A-IFIx Intuitionistic Fuzzy Index

A-IvIFE Atanassov‘s Interval-valued Intuitionistic Fuzzy Entropy

A-IvIFIx Interval-valued Intuitionistic Fuzzy Index

A-IvIFL Atanassov‘s Interval-valued Intuitionistic Fuzzy Logic

A-IvIFS Interval-valued Intuitionistic Fuzzy Set

DDI Decimal-digit Interleaving

DM Decision Making

FA Fuzzy Aggregation

FE Fuzzy Entropy

FL Fuzzy Logic

FN Fuzzy Negation

FS Fuzzy Set

IFN Intuitionistic Fuzzy Negation

IvC Interval valued Fuzzy Coimplication

IvA Interval-valued Fuzzy Aggregation

IvFE Interval-valued Fuzzy Entropy

IvFL Interval-valued Fuzzy Logic

IvFN Interval-valued Fuzzy Negation

IvFS Interval-valued Fuzzy Set

IvI Interval valued Fuzzy Implication

IvIFN Interval valued Intuitionistic Fuzzy Negation



IvREF Restricted Equivalence Interval-valued Function

IvRDF Restricted Dissimilarity Interval-valued Function

LI Lack of Information

LS Lack of Specificity

MADM Multiple Attribute Decision Making

MCDM Multiple criteria Decision Making

OWA Ordered Weighted Averaging Operator

SN Standard Negation

SFN Strong Fuzzy Negation

SIFN Strong Intuitionistic Fuzzy Negation

SIvIFN Strong Interval valued Intuitionistic Fuzzy Negation

T1FL Type-1 Fuzzy Logic

T1R Type-1 Reduction Techniques

T2FL Type-2 Fuzzy Logic

TFS Theory of Fuzzy Sets

TU Type of uncertainly

ω-IvRDF Width-preserving Interval-valued Restrict Dissimilarity Function

ω-IvREF Width-preserving Interval-valued Restrict Equivalence Function

ω-IvE Width-preserving Interval-valued Entropy w.r.t. the ⪯XY -order

ωA-IvE Width-preserving Interval-valued Entropy w.r.t. the ⪯A-order



LIST OF SYMBOLS

χ Universe of Discourse

AU Set of Fuzzy Sets
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1 INTRODUCTION

Although research involving applied areas has grown in recent years, the recog-
nized limitations of Fuzzy Logic (FL) stimulate the search for higher levels of abstrac-
tion, using extensions for the representation of information in fuzzy reasoning systems.
The main concepts on Type-2 Fuzzy Logic (T2FL) were mathematically defined by
Mendel and Karnik in 1998 (Karnik; Mendel, 1998), including the study of first opera-
tions on such sets.

This work considers the intersection of two relevant areas of T2FL, (i) the Intuition-
istic Fuzzy Logic (A-IFL) (Atanassov, 1986) and (ii) the Interval-valued Fuzzy Logic
(IvFL) (Moore, 1962). The Interval-valued Intuitionistic Fuzzy Logic (A-IvIFL) intro-
duced by Krassimir T. Atanassov in 1969 considers the imprecision modeled by interval
data as the membership function and the hesitation in determining its complementary
interval-valued relation, as the non-membership functions (Atanassov, 1999).

In the A-IvIFL approach, the principles of A-IFL are preserved and the forms of data
representation are expanded, adding not only the uncertainty information related to
experts concerning non-necessarily complementary relations but also the imprecision
information provided by the interval-valued intuitionistic fuzzy index(Reiser; Bedregal;
Visintin, 2013).

Thus, we consider the study of the main properties of fuzzy entropy verified by their
axiomatic concept. We considered the interval entropy of Atanossov’s interval-valued
intuitionistic fuzzy sets (A-IvIFE) related to the total orders proposed. The proposal
is obtained by aggregation of the generalized Atanassov’s intuitionistic fuzzy index (A-
GIFIx) (Barrenechea et al., 2009), and corresponding constructive methodology based
on fuzzy implications and involutive negations related to admissible orders are dis-
cussed.

In such context, this work introduces an interval extension of this methodology
which can preserve properties by making use of dual and conjugate operators. The
axiomatic concept and related constructive methodology are characterized in terms
of interval-valued fuzzy implications and strong negations, preserving the main prop-
erties of an A-GIFIx. The generalized Atanassov’s interval-valued intuitionistic fuzzy
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index and related entropy construction are proposed based on the comparison ob-
tained by using admissible orders, in this case, focusing on Xu and Yager’s admissible
order (Costa et al., 2019). The new methods proposed in this research to obtain en-
tropy are expressed by interval-valued data, resulting from the aggregation of imprecise
and hesitant information. So, this work considers the concept of admissible linear or-
ders, supporting the comparison of entropy data resulting from distinct possible input
data (DE MIGUEL et al., 2016).

Focusing on the width-base interval-valued fuzzy entropy (ωA-IvE) notion as pro-
posed in (Takáč et al., 2019), our research is based on two relevant concepts which
are described here as follows:

(i) First, consider the width of the membership intervals, which are modeled by the
diameter of such interval data, as a measure of the lack of knowledge and un-
certainty related to the precise membership degrees of IvFS elements. Such a
concept here generates a new entropy by applying average functions;

(ii) And thus, regarding admissible orders to compare interval data and applying width-
based fuzzy connectives in the data fuzzy computations. The new proposal total
order requests an injective and increasing function, instanced by a Decimal Digit
Interleaving (DDI) function.

The proposed width-based interval-entropy methods analyze the information not
only related to the input attributes but also to the output interval-valued fuzzy sets,
which result from a fuzzy inference in the fuzzy control system.

Several applications of the interval fuzzy entropy are dealing with similarity, corre-
lation, and distance measures(Meng; Chen, 2015; Ye; Du, 2017; Saad; Abdalla; John,
2019; Tiwari, 2019). We introduce a methodology to obtain the entropy via aggrega-
tions, considering Restricted Similarity (or Dissimilarity) Interval-valued Fuzzy Function
(IvREF or IvRDF) w.r.t. total orders, contributing with multi-attribute systems based on
IvFL and A-IvIFL.

Finally, in this research, we illustrate the application of the proposed methods for
solving a video streaming traffic classification problem.

1.1 Entropy Relevance for Interval-valued Fuzzy Sets

The relevance of entropy measures is studied in two senses, their historical and
theoretical context and their application in many fields of sciences, as a special case,
applied to computer science research.

Conceived as a measure of uncertainty in a fuzzy set, the fuzzy entropy measure
analyzes the disorganized information, which means, the fuzziness in the fuzzy set the-
ory. De Luca and Termini (Luca; Termini, 1972) introduced an axiomatic construction
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of entropy of a fuzzy set, and other preliminary approaches have been used the notion
of distance measures to define fuzzy entropy and the distance from a fuzzy set and its
complement (Ebanks, 1983).

The recent research of fuzzy entropy received relevant contributions from many
approaches and applications of multi-valued fuzzy logic (Kabir; Papadopoulos, 2018).
In (Jing; Min, 2013) and (Zhang et al., 2014), we can check entropy measures for
interval-valued intuitionistic fuzzy sets (A-IvIFS), discussing their relations with similar-
ity and inclusion measures. Also, it is possible to check on (Ji et al., 2023) a relevant
research work introducing the concept of fusion information entropy.

The results in (Zhang; Zhang; Mei, 2009) promote a new axiomatic definition of
entropy for interval-valued fuzzy sets (IvFS) based on distance. They investigate the
relationship between entropy and the similarity measure of IvFS. In (DE MIGUEL et al.,
2017), the study focuses on type-2 fuzzy entropy sets. Additionally, the research pre-
sented in (Che; Suo; Li, 2021) introduces a constructive approach within the context
of A-IvIFS, exploring the properties between the distance function and the distance
measure.

In (Yuan; Zheng, 2022), based on the deviation between membership and non-
membership functions and the influence of hesitation, the general expression of en-
tropy on A-IvIFS is constructed. In (Santos et al., 2019) and (Takáč et al., 2018) fuzzy
entropy is obtained from fuzzy subsethood measures. And, in (Song; Wang; Xu, 2022),
the hesitant entropy is performed over hesitant fuzzy sets.

Moreover, the literature shows a wide interest in the application of the entropy no-
tions to deal with interval-valued fuzzy sets and entropy measures in medical treatment
selection (Jin; Garg, 2023), image processing (segmentation cells in image threshold-
ing), in finances (extraction and classification), in medicine (diseased cells) and in the
industry (detect disconnected elements) (Al-sharhan et al., 2001).

Following a more recent contribution for classification accuracy on streaming fea-
ture selection using entropy-based uncertainty measures for fuzzy neighborhood rough
sets (Xu et al., 2022). The proposed methods in this paper promote an information
evaluation provided for stream video streaming traffic classification systems.

In this work, for the application of the proposal theoretical constructions for interval-
valued fuzzy entropy and, of the related methods generated from these constructions,
we explore the information provided by the fuzzy controller of the FuzzyNetClass ap-
proach. This hybrid approach promotes the video streaming traffic classification related
to “On Demand” and “Live Streaming” video, by exploring the integration of inference
systems based on interval-valued fuzzy logic and machine learning algorithms.

In this perspective, the FuzzyNetClass approach extends the related works explor-
ing machine learning algorithms for the classification of video streaming in the flows
fuzzy classifier, but preserving the specialist opinions and aspects related to its inter-
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pretability.

1.2 Principal Objective

Focusing on interval-valued entropy measures and related studies presented
in (Bustince et al., 2019; Takáč et al., 2019), this proposal aims to contribute with
different ways to explore the width-preserve interval-valued fuzzy entropy, offering ap-
plication developers a new methodology of construction entropy measures, enabling
the information analysis on interval-valued fuzzy sets. And, in addition, consider the
ranking data by using total orders to compare the related information.

Based on formal studies, this work can contribute to multi-criteria decision-making
problems (Ze-shui, 2007; Jin et al., 2014; Xie; Lv, 2016; Mishra; Rani, 2017), rank-
ing the alternatives based on another way for the interval-valued intuitionistic fuzzy set
model, and also offering to application developers another method of entropy construc-
tion by the intuitionistic fuzzy index, which means, obtaining A-IvIFE from A-GIvIFIx via
interval-valued fuzzy implications, interval-valued idempotent aggregation and involu-
tive negation operators.

More specifically, the following partial objectives are considered in this work.

(i) Characterization of the state-of-the-art on A-IvIFL and revision of the main con-
cepts of A-IvIFL and A-IFL entropy measures, study definitions of basic connec-
tives such as fuzzy implications, fuzzy negations and aggregations focusing on
their algebraic properties, dual and conjugate construction based on total order
defined by admissible linear order.

(ii) Revision of the axiomatic definition of A-IFIx (Bustince; Barrenechea; Mohedano,
2004) in the sense of A-GIvIFIx including concepts and main properties of repre-
sentable fuzzy connectives;

(iii) Study of IvFL, main properties of interval-valued fuzzy connectives focusing on
the class of representable fuzzy (co)implications based on the concept of admis-
sible orders;

(iv) Introduction of the axiomatic definition of the A-GIvIFIx in terms of conjugated
function using automorphisms and also analyzing properties of dual functions
associated with the class of interval fuzzy (co)implications generated by idempo-
tent interval aggregations;

(v) Introduction of the width-based interval fuzzy entropy notion, considering the in-
terval data diameter as a measure of the lack of knowledge and uncertainty re-
lated to the precise membership degrees of elements in an interval-valued fuzzy
set;
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(vi) Generation of a new interval entropy methodology by applying width-based av-
erage functions and admissible order to compare interval data and define width-
based fuzzy connectives in data fuzzy computations;

(vii) Proposal of the axiomatic definition of a constructive method to obtain interval-
valued entropy; and

(viii) Exemplification and discussion related to possible applications of interval-valued
entropy obtained by the constructed methodology.

1.3 Thesis Outline

The introductory chapter presents the relevance of entropy studies from the logical
approaches that contextualize this research topic. Also, this chapter describes the
proposals of this study and the main objectives that meet them, including this work
outline at the end.

The rest of the text is organized into three main groups of chapters, starting with
the preliminaries from Chapters 2 to 6. In this first part, the basic concepts of all
logical approaches used in the development of this research are defined. The second
group of chapters presents the main constructions developed throughout our studies
and our theoretical contribution regarding entropy measures. The last group refers to
the application of the methodology of interval entropy constructions, considering the 5
methods proposed and the method introduced by the case studies that were applied to
network traffic classification, more specifically video streaming classes.

The Chapter 2 describes the basic concepts of Fuzzy Logic, as well as dual and
conjugation operators, aggregators, disjuntive and conjuntive, implications, and coim-
plications functions. The axiomatic structure for the fuzzy entropy and the historic
references in the area.

The basic concepts of intuitionistic fuzzy logic are studied in Chapter 3 describes
some intuitionistic fuzzy connectives and order relations. In addition, Atanassov’s intu-
itionistic fuzzy index is defined.

In Chapter 4 the generalized Atanassov’s intuitionistic fuzzy index is reported, with
its main axioms, obtaining dual and conjugate connectives in a special class of impli-
cations. In this chapter, we also present the concepts and properties of generalized
Atanassov’s intuitionistic fuzzy entropy, obtained through generalized Atanassov’s in-
tuitionistic fuzzy index considering a case study.

In Chapter 5, the main concepts of Interval-valued fuzzy logic, describing its con-
nectives, relations of order, and in the sequence the interval intuitionistic fuzzy logic is
also described from its main connectives.

The Chapter 6 presents the interval extension of generalized intuitionistic fuzzy in-
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dex and relations with interval-valued fuzzy connectives.
In Chapter 7, Interval-valued Intuitionistic Fuzzy Entropy is discussed. Relation-

ship with Intuitionistic Index and Conjugate Operators, preserving fuzzyness and in-
tuitionistic index based on IvIFE. In addition, the injective decimal-digit interleaving
A function and the related admissible ⪯A-order are introduced, in order to compare
interval-valued fuzzy data.

Chapter 8 introduces concepts and presents the constructions proposed in this
work, of width-based entropy. It exemplifies the contributions through the development
of five construction methods generated by ω-preserving interval-valued fuzzy aggrega-
tions and interval-valued fuzzy equivalence function w.r.t. admissible orders.

The Chapter 9 presents the constructions referring to the Interval-valued Intuition-
istic Fuzzy Entropy constructed through the aggregation of the Generalized Interval-
valued Intuitionistic Fuzzy Index. As well as its dual and conjugate constructions,
through negation operators and automorphisms.

In Chapter 10, we present the application of the Width-based Interval-valued Fuzzy
Entropy methodology to a real network traffic classification system. The FuzzyNetClass
system is described and the results are interpreted through comparison from the order
constructed in this research, ⪯A-order.

In Chapter 11 the main contributions of this work, as well as the possibilities of
continuity of activities.
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Part I

PRELIMINARIES



2 FUZZY LOGIC

This chapter presents the concepts of Fuzzy Logic or Type-1 Fuzzy Logic (T1FL).
Fuzzy Logic is an extension of classical logic which allows the representation and rea-
soning with uncertainty and imprecision. In this chapter, the main elements and oper-
ators of Fuzzy Logic are discussed.

A brief historical approach is presented, highlighting the development and evolution
of Fuzzy Logic over time. It will discuss how this field has emerged as a powerful tool
for dealing with complex and vague problems, providing a solid foundation for decision-
making in uncertain situations.

The basic operators of Fuzzy Logic are presented, such as automorphisms, con-
jugation operators, negations, and dual operators, exploring their interrelationships.
Additionally, the axiomatic definition and algebraic properties of aggregation operators
such as the Ordered Weighted Averaging operator (OWA), disjunctive and conjunctive
classes, are reported, as well as the notion of (co)implication operators. Examples of
such operators are also discussed.

This chapter also introduces the primary notions of fuzzy entropy, proposed as
a measure of uncertainty for inference information as logical support to applications
based on multi-criteria decision-making and system evaluation.

Finally, we will provide the main bibliographic references, serving as resources for
further study of Fuzzy Logic and its applications. Throughout this chapter, the crucial
role of Fuzzy Logic as a flexible and powerful approach to deal with uncertainty and
imprecision in various domains of knowledge is emphasized.

The understanding of fuzzy concepts and their practical application can contribute
to the development of more robust and hybrid intelligent systems, which consider fuzzy
inference as support to multi-criteria decision-making problems and machine learning
techniques to achieve better performance.

However, this integration passes through the development of new methodologies,
such as entropy measures, improving the evaluation and interpretability of processed
information by such hybrid approaches.
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2.1 Historical Approach

The Theory of Fuzzy Sets (TFS) was formalized by the mathematician Lofti Asker
Zadeh (Zadeh, 1965a) by extending the concepts of the Theory of Classical Logic,
characterizing the attribution of membership degrees to the elements of a fuzzy set
mainly depending on application contexts. Since that technological resources based
on Boolean logic were not enough to automate industrial activities or even to compute
with the uncertainty of real problems (Fodor; Roubens, 1994).

The main advantage associated with the development systems based on Type-1
Fuzzy Sets (T1FS) is to obtain a mathematical model which not only is able to interpret
the uncertainty of linguistic terms from natural language but also makes it possible
to produce calculations even when we deal with inaccurate information in computer
programming languages (Dubois; Prade, 1991).

Due to the development of countless practical possibilities and theoretical founda-
tion allied to applications, FL is considered for uncertainty modeling in research areas
such as artificial intelligence, natural language, expert systems, neural networks, con-
trol theory, and decision-making for computational processes.

2.2 Basic Concepts of Fuzzy Logic

Introduced by Zadeh in 1965 (Zadeh, 1965a), Fuzzy Logic (FL) is non-classical
logic capable of numerically modeling ambiguous, uncertain, or vague information,
described through a natural language aiding the modeling of the human ability to make
decisions from information obtained by expert systems (Ross, 2004).

In classical set theory, an element belongs to or does not belong to a given set,
however, there are cases where the pertinence between elements and sets is not pre-
cise, and it is not possible to discreetly define whether an element belongs or not to a
set. Systems that model uncertainties, for example, do not always have well-defined
pertinence boundaries (Siler; Buckley, 2004; Carlsson; Fuller, 2002).

In the theory of fuzzy sets, the relevance of an element to a fuzzy set is given
by the related membership function. And, an element may have distinct membership
degrees in each one of the fuzzy sets related to a universe of discourse χ ̸= ∅. Thus,
the membership degree is a number in the unitary interval [0, 1] = U , obtained as the
related image by the membership function defining such fuzzy set.

According with Zadeh, a fuzzy set A is characterized by its membership function
µA : χ → U and µA(x) interpreting the membership degree of an element x in fuzzy
set A. In this sense, a fuzzy set A can be described as a set of ordered pairs, where
each generic element x in a nonempty universe χ (x ∈ χ) is associated with its degree
of relevance µA(x):
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A = {(x, µA(x)) : x ∈ χ, µA(x) ∈ [0, 1]}. (1)

In order to determine the membership functions, certain classes of functions are
considered, represented by some specific algebraic properties. The most common
forms are: linear by parts (triangular, trapezoidal), Gaussian, sigmoid, and singleton
(unitary sets) (Ross, 2004).

By considering the natural order (U,≤), the lattice Lat(U) = (U,≤,∨,∧, 1, 0) has the
supremum and infimum operations both given as the following

x ∨ y = max(x, y) and x ∧ y = min(x, y),∀x, y ∈ U. (2)

2.2.1 Automorphisms and Conjugation Operators

Automorphisms are considered a generation of new connectives, preserving as
algebraic properties the classes of these logical connectives. According to (Klement;
Navara, 1999, Def. 4.1), an automorphism ϕ : U → U is a bijective, strictly increasing
function satisfying the monotonicity property:

A1: x ≤ y if only if ϕ(x) ≤ ϕ(y), ∀x, y ∈ U .

In (Bustince; Burillo; Soria, 2003a), ϕ : U → U is a function satisfying the continuity
property and the boundary conditions:

A2: ϕ(0) = 0 and ϕ(1) = 1.

The set Aut(U) of all automorphisms are closed under composition:

A3: ϕ ◦ ϕ′ ∈ Aut(U), ∀ϕ, ϕ′ ∈ Aut(U).

In addition, there exists the inverse ϕ−1 ∈ U , such that

A4: ϕ ◦ ϕ−1 = idU , ∀ϕ ∈ Aut(U).

Thus, (Aut(U), ◦) is a group with the identity the function being the neutral element.
The action of an automorphism ϕ : U → U on a function f : Un → U is called the

conjugate of f and given by the following expression:

fϕ(x1, . . . , xn) = ϕ−1(f(ϕ(x1), . . . , ϕ(xn))). (3)

Example 2.2.1. For all k, l ∈ {1, .., n}, let ϕk, ψk,l be functions in Aut(U) given by:

ψk,l(x) = x
l
k ψ−1k,l (x) =

l
√
xk (4)

ϕk(x) =
(kx+ 1)2 − 1

k(k + 2)
ϕ−1k (x) =

√
(k2 + 2k)x+ 1− 1

k
(5)

Both results can be easily observed:
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• By taking l = 1 in Eq.(4), we obtain that ψk(x) = xk and ψ−1k (x) = k
√
x.

• And, when k = 1 in Eq.(5), ϕ(x) = (x+1)2−1
3

and ϕ−1(x) =
√
3x+ 1− 1.

2.2.2 Fuzzy Negations and Dual Operators

A function N : U → U is a fuzzy negation (FN) if

N1: N(0) = 1 and N(1) = 0;

N2: If x ≥ y then N(x) ≤ N(y), ∀ x, y ∈ U .

Fuzzy negation satisfying the involutive property below are called strong fuzzy nega-
tions (Bustince; Burillo; Soria, 2003a):

N3: N(N(x)) = x, ∀x ∈ U .

Moreover, an equilibrium point of a fuzzy negation N is a value e ∈ U such that
N(e) = e. And, based on (Klir; Yuan, 1995), all fuzzy negations have at most one
equilibrium point meaning that, when a fuzzy negation N has an equilibrium point then
it is unique.

Let N be a fuzzy negation and f : Un ↔ U be a real function. The N -dual function
of f is denoted by fN : Un → U and defined as follows:

fN(x1, . . . , xn) = N(f(N(x1), . . . , N(xn))). (6)

Example 2.2.2. For all k, n ∈ {1, 2 . . . , n}, let N∗, Ck : U → U be strong fuzzy negations
given by the corresponding expressions:

N∗(x) =
1− x
1 + x

Ck
n(x) =

n−k+1
√

1− xn−k+1. (7)

In particular, based on (Klir; Yuan, 1995, Theorem 3.4), every continuous fuzzy nega-
tion has a unique equilibrium point. Thus, the following holds:
(i) when n = 1 in Eq.(7), we obtain Ck(x) = 1− xk;
(ii) when k = 1 in Eq.(7), we have the negation Cn(x) =

n
√
1− xn which has e = n

√
1
2

as
the equilibrium point, meaning that Cn(e) = e.
(iii) When k = n = 1 in Eq.(7), the standard fuzzy negation given as follows:

NS(x) = 1− x; (8)

2.2.3 Aggregation Operators

Fuzzy set theory and aggregation operators have become powerful tools to deal
with decision-making theories. Methods under fuzzy aggregation operators have been
proposed and developed for effectively solving decision-making problems (Carlsson;
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Fuller, 2002) and numerous theoretical results and applications have been reported in
the literature.

The process of aggregation combines several numerical values into a single value
that somehow represents all the others. Thus, an aggregation is a function non-
decreasing, commutative, and further, preserves the boundary conditions relating to
the ends of the unitary interval (Deschrijver; Kerre, 2005, Definição 4.1).

Among several definitions, see (Torra, 2005), (Calvo et al., 2002) and (Bustince;
Barrenechea; Mohedano, 2004, Definition 2). An aggregation is a function M : U2 → U

demanding, for all x, y ∈ U , the following conditions:

M1: M (⃗0) =M(0, 0, . . . , 0) = 0 and M (⃗1) =M(1, 1, . . . 1) = 1;

M2: If x⃗ = (x1, x2, . . . , xn) ≤ y⃗ = (y1, y2, . . . , yn) then M(x⃗) ≤M(y⃗);

M3: M(−→xσ) = M(xσ1 , xσ2 , . . . , xσn) = M(x1, x2, . . . , xn) = M(x⃗), where σ is the permu-
tatation of the n elements in x⃗;

M4: M(x, x, . . . , x) = x,∀x ∈ U .

2.2.3.1 Ordered Weighted Averaging Operator (OWA)

The aggregation function Ordered Weighted Averaging Operator (OWA) was intro-
duced by Yager (Yager, 1988) providing a mean of aggregating values associated with
satisfying multiple criteria.

An aggregation function M is a median when min ≤M ≤ max.
Thus, an OWA operator unifies both element behaviors into fuzzy sets, the conjunc-

tive and the disjunctive.
An operator OWA : Un → U is defined by the expression:

OWA(x1, x2, ..., xn) =
n∑

j=1

wjxσ(j),∀x1, x2, ..., xn ∈ U, (9)

where σ : {1, . . . , n}, is a σ-ordering permutation with non-negatives weight-parameters
wi non-negatives verifying the following conditions:

xσ(1) ≤ xσ(2) ≤ . . . ≤ xσ(n) and
n∑

i=1

wi = 1,∀ 0 ≤ wi ≤ 1.

According to (Yager; Kacprzyk, 2012), OWA operators are aggregation functions
commutative, idempotent, and have a compensatory behavior also satisfying proper-
ties M1, M2 and M3.

Particular values of weight wi determine parameterized families of aggregation op-
erators which are defined from the OWA operator, including among many others, the
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minimun (min), the maximum (max), the median (Md), the weighted mean (Mw) and
the arithmetic mean (Med). See these examples expressed in accordance with Table
1.

Table 1 – Aggregations Obtained from the OWA Operator

OWA Parameters Algebric Expression{
wi = 0 if i ̸= 1
w1 = 1 otherwise. min(x1, x2, . . . , xn) = x1 ∧ x2 ∧ . . . ∧ xn{
wi = 0 if i ̸= n
wn = 1 otherwise. max(x1, x2, . . . , xn) = x1 ∨ . . . ∨ xn
wn+1

2
= 1, if n is odd;

wn
2
+1 =

1
2
, if n is even;

wi = 0, otherwise.
Md(x1, . . . , xn)=

{
xσ(n+1

2
), if n is odd;

1
2

(
xσ(n

2
) + xσ(n

2
+1)

)
, if n is even.

∑n
i=1wi = 1,∀wi ∈ Q+ Mw1,...,wn(x1, . . . , xn) =

∑n
i=1(wi.xi)

wi =
1
n
,∀i. Med(x1, . . . , xn) =

1
n

∑n
i=1 xi =

∑n
i=1

(
1
n
· xi )

2.2.3.2 Disjuntive and Conjuntive Operators

An aggregation function M with n-arity M : Un → U if M(x1, . . . , xn) ≤
min(x1, . . . , xn). So, every conjunctive aggregation function has 0⃗ as an element annihi-
lator and if it has a neutral element this is necessarily 1⃗, and M is called a semi-copula.
In a dual construction, a n-arity aggregation function M : Un → U is disjunctive if
max(x1, . . . , xn) ≤M(x1, . . . , xn).

According to with (Klement; Navara, 1999), a triangular (co)norm is a binary aggre-
gation T (S) : U2 → U which is symmetric, associative, monotonic and has the neutral
element. This also means that, for all x, y, z, t ∈ U , the corresponding algebraic prop-
erties are verified:

T1: T (x, y) = T (y, x); S1: S(x, y) = S(y, x);

T2: T (x, T (y, z)) = T (T (x, y), z); S2: S(x, S(y, z)) = S(S(x, y), z);

T3: T (x, y) ≤ T (z, t), if x ≤ z and y ≤ t S3: S(x, y) ≤ S(z, t) if x ≤ t and y ≤ z;

T4: T (x, 1) = x; S4: S(x, 0) = x

In the following, by (Klement; Mesiar; Pap, 1999), the expression of an N -dual
operator of a triangular (co)norm is considered. A function TN(SN) : U2 → U is a t-
conorm (t-norm) if, and only if, there exists a t-norm T (t-conorm S) such that for all
x, y ∈ U , the following holds:

TN(x, y) = N(T (N(x), N(y))), SN(x, y) = N(S(N(x), N(y))). (10)
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A t-conorm TN given by Eq. (10b) is called the t-conorm derived from T by the
duality relation and, similarly a t-norm TN given by Eq. (10a) is called the t-norm derived
from S by the duality relation, both defined with respect to the fuzzy negation N . When
N is a strong fuzzy negation, then (T, TN) ((S, SN)) is a pair of mutual N -dual functions.

Table 2 shows examples of pairs of mutual dual t-norms and t-conorms based on
previous results from (Dubois; Prade, 2000).

Table 2 – Examples of Fuzzy Triangular (Co)Norms.

Conjuntions Disjunctions Algebric Expression

Standard Intersection: TM (x, y) = min {x, y}
Standard Unity: SM (x, y) = max {x, y}

Algebraic Product: TP (x, y) = x.y

Probabilistic Sum: SP (x, y) = x+ y − xy

Drastic Intersection:
TD(x, y) =

{
0, if x < 1, y < 1
min{x, y}, otherwise

Drastic Unity:
SD(x, y) =

{
1, if 0 < x e 0 < y
max{x, y}, otherwise

Lukasiewicz Intersection: TL(x, y) = max{x+ y − 1, 0}
Lukasiewicz Union: SL(x, y) = min{x+ y, 1}

Minimum Nilpotente:
TnM(x, y) =

{
0, if x+ y ≤ 1
min{x, y}, otherwise

Maximum Nilpotente:
SnM(x, y) =

{
1, if x+ y ≥ 1
max{x, y}, otherwise

2.2.4 (Co)Implications Operators

Fuzzy implications play an important role in Fuzzy Logic. In a broad sense, it is
frequently applied to fuzzy control, analysis of vagueness in natural language, and
techniques of soft-computing, as well as in the narrow sense, contributing to a branch
of many-valued logic enabling the investigation of deep logical questions (Baczyński;
Jayaram, 2007; Bustince; Burillo; Soria, 2003a; Fodor; Roubens, 1994).

A fuzzy (co)implicator I(J) : U2 → U is a function verifying boundary conditions:

I0:I(0, 0) = I(0, 1) = I(1, 1) = 1; J0: J(0, 0) = J(0, 1) = J(1, 1) = 0.
Based on concepts introduced in (Fodor; Roubens, 1994), a fuzzy (co)implication

I(J) : U2 → U is a function verifying the following properties:
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I1: If x ≤ z then I(x, y) ≥ I(z, y); J1: If x ≤ z then J(x, y) ≥ J(z, y);
I2: If y ≤ z then I(x, y) ≤ I(x, z); J2: If y ≤ z then J(x, y) ≤ J(x, z);
I3: I(0, x) = 1 ; J3: J(1, x) = 0

I4: I(x, 1) = 1 ; J4: J(x, 0) = 0

I5: I(1, 0) = 0; J5: J(1, 0) = 1.

Several reasonable properties may be required for fuzzy (co)implications:
I6: I(1, x) = x ; J6: J(0, x) = x ;
I7: I(x, I(y, z)) = I(y, I(x, z)) ; J7: J(x, J(y, z)) = J(y, J(x, z)) ;
I8: I(x, y) = 1⇔ x ≤ y; J8: J(x, y) = 0⇔ x ≥ y;
I9: I(x, y) = I(N(y), N(x)), N is a SFN; J9: J(x, y) = J(N(y), N(x)), N is a SFN;
I10: I(x, y) = 0⇔ x = 1 and y = 0; J10: J(x, y) = 1⇔ x = 0 and y = 1.

Main results summarized in (Baczyński; Jayaram, 2007, Lemma 2.1) provide the
structure to define fuzzy negations induced by fuzzy (co)implicators. A function I(J) :
U2 → U satisfying I0(J0) and I1(J1) induces the definition of a natural fuzzy negation
N I(NJ) : U → U given as follows:

N I(x) = I(x, 0) and NJ(x) = J(x, 1) (11)

Moreover, the main results presented in (Reiser; Bedregal; Baczyński, 2013, Propo-
sition 4.3) provide the N -dual approach for fuzzy (co)implications.

Let N be an FN and (J) I be a (co)implication. Then IN (JN) defined according
with Eq. (6) is a (implication) coimplication given as follows

IN(x, y) = N(I(N(x), N(y))), JN(x, y) = N(J(N(x), N(y))). (12)

Let T (S) be a t-(co)norm and N be a FN. An (S,N)−implication
((T,N)−coimplication) is a fuzzy (co)implication IS,N : U2 → U defined by

IS,N(x, y) = S(N(x), y) JT,N(x, y) = T (N(x), y). (13)

In this work, we also consider the class of S-implications which is studied in (Trillas;
Valverde, 1985, Theorem 3.2) also taking into account main concepts from (Fodor;
Roubens, 1994, 10, Theorem 1.13) and introduced by Baczyński and Jayaram
in (Baczyński; Jayaram, 2007; Bustince; Burillo; Soria, 2003a).

Theorem 2.2.1. (Trillas; Valverde, 1985, Theorem 3.2) Let N be a strong fuzzy nega-
tion. An implication I : U2 → U is a strong S-implication if, and only if, it satisfies
Properties I1, I2, I6, I7, and I9.

Theorem 2.2.2. (Baczyński; Jayaram, 2007, Theorem 1.6) Let N be a strong fuzzy



33

negation. An implication I : U2 → U is a strong S-implication if, and only if, it satisfies
Properties I1, I7 and NI defined in Eq.(13) is a strong fuzzy negation.

In the following, Table 3 reports the algebraic expressions of fuzzy implications
considered in this work also including their corresponding fuzzy coimplications.

Each line in Table 3 is associated with a pair of mutual NS-dual operators, meaning
that Eq. (12)a and (12)b are both illustrated.

In these examples, the operators are obtained considering extensions of the
Lukaziewicz, Reichenbach, Klenee-Dienes, Gaines-Richard fuzzy (co)implications in
order to preserve the ordering property I8.

Table 3 – Fuzzy Implications, Coimplications and Duality Related.

Fuzzy Implications Fuzzy Coimplications

ILK(x, y)=

{
1, if x ≤ y,
1− x+ y, otherwise;

JLK(x, y)=

{
0, if x ≥ y,
y − x, otherwise;

IKD(x, y)=

{
1, if x ≤ y,
max(1− x, y), otherwise;

JKD(x, y)=

{
0, if x ≥ y,
min(1− x, y), otherwise;

IRB(x, y)=

{
1, if x ≤ y,
1− x+ xy, otherwise;

JRB(x, y)=

{
0, if x ≥ y,
y−xy, otherwise;

IGR(x, y)=

{
1, if x ≤ y,
0, otherwise;

JGR(x, y)=

{
0, if x ≥ y,
1, otherwise;

2.3 Fuzzy Entropy

In 1972, De Luca and Termini (Luca; Termini, 1972) introduced an axiomatic struc-
ture for the entropy based on the concept of Shannon’s entropy, in order to assess the
amount of vagueness within an FS.

It is essentially a measure of fuzziness and depends on the properties demanded
by fuzzy degrees. Thus, this concept measures how far the considered extension is
from a set of references (which may be a crisp set).

As introduced in (Luca; Termini, 1972), a function E : AU → U is called a fuzzy
entropy w.r.t. a strong fuzzy negation N : U → U , which has e as the equilibrium point
when the following properties are verified:

E1: E(A) = 0 if and only if A is crisp (non-fuzzy);

E2: E(A) = 1 if and only if A = {(x, µA(x) = e) : x ∈ χ};

E3: E(A) ≤ E(B) if A refines B, in the following sense: µA(xi) ≤ µB(xi) when µB(xi) ≤
e and µA(xi) ≥ µB(xi) when µB(xi) ≥ e;
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E4: E(A) = E(AC), AC as the complement of A.

The research in new methods extending this preliminary definition of entropy mea-
sures performed over fuzzy sets have been exhaustively studied.

2.4 Main Bibliographic References

Some relevant aspects of a brief historical revision are presented at the conclusion
of this chapter. The bibliographic references presented below are concerned with pub-
lication data, modeling type of uncertainty (TU) which considers the lack of information
(LI-FS) and lack of specificity (LS-FS) and also provides the main characterization of
entropy approaches. They are summarized in the following, see Table 4.

Table 4 – Historical Papers on Fuzzy Entropy.

Paper TU Characterization
(Zadeh, 1965b) LI-FS measuring the uncertainty information modelled by a fuzzy set
(Luca; Termini, 1972) LI-FS providing axiomatic definition of entropy
(Pal; Bezdek, 1984) LI-FS measuring fuzziness using additive and multiplicative classes
(Kosko, 1986) LI-FS measuring the distances from FS to crisp approach
(Liu, 1992) LS-FS structuring entropy as distance and similarity measures of FS
(Yager, 1998) LS-FS providing similarity measures and distance based on the con-

cept of specificity

There have been several attempts to quantify the uncertainty associated with fuzzy
sets as well as with Atanassov’s intuitionistic fuzzy sets. Usually, such measures are
called entropies. In 1965, Zadeh (Zadeh, 1965b) used entropy to measure the uncer-
tainty modeled by a fuzzy set.

In (Luca; Termini, 1972) the definition of entropy in the setting of Fuzzy Sets Theory
is introduced, by using non-probabilistic concepts in order to obtain a global measure
of vagueness related to situations described by fuzzy sets. The expression of a non-
probabilistic entropy measure is presented in (Kosko, 1986), conceived as a simple
ratio between distances between fuzzy sets and crisp sets.

The proposal of general families of measures of fuzziness, called additive class
and multiplicative class, was discussed by Pal and Bezdek (Pal; Bezdek, 1984). These
measures try to quantify only one aspect of uncertainty, i.e., fuzziness. But fuzzy sets
are associated with another kind of uncertainty, which is related to a lack of speci-
ficity. To make a distinction between the two, we can say that imprecision measures
graduality, while specificity is related to granularity.

In (Liu, 1992), an axiomatic definition of entropy for fuzzy sets is presented, con-
sidering a discussion of distance and similarity measures of fuzzy sets, including basic
relations between them. This approach enables us to quantify aspects of uncertainty,
i.e., fuzziness. The concepts of σ-entropy, σ-distance measure and σ-similarity mea-
sure are also studied.
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And, a discussion involving the similarity measures and distance related to the con-
cept of specificity is proposed in (Yager, 1998), indicating their importance as a mea-
sure of uncertainty for represented information using fuzzy sets or possibility distribu-
tions. The additional results presented an extension of the specificity measure.

2.5 Summary

This chapter presented the basic concepts of fuzzy logic, through the definitions of
fuzzy connectives, fuzzy negations and dual, automorphisms and conjugate functions,
aggregation operators as triangle norms and conorms, also including fuzzy implications
and coimplications. Finally, in addition to the definition of fuzzy entropy, a historical
recapitulation of works in this area according to the approach in question is considered.
We emphasize that the concepts presented in this chapter serve as a basis for the
constructions developed throughout the work.



3 ATANASSOV’S INTUITIONISTIC FUZZY LOGIC

The theory of intuitionistic fuzzy sets (Atanassov; Gargov, 1989), extends the theory
of fuzzy sets, associating to each element x in a universe X ̸= ∅, membership and non-
membership degrees in an intuitionistic fuzzy set AI , both defined in the unit interval
[0, 1] by the corresponding expressions (µA(x)) and (νA(x)), and such that the following
natural relation is satisfied:

0 ≤ µAI
(x) + νAI

(x) ≤ 1. (14)

Thus, expressions in Eq.(14) extend the fuzzy set theory, since membership and
non-membership degrees are not necessarily complementary with respect to unit in-
terval U .

3.1 Basic Concepts of Intuitionistic Fuzzy Sets

An intuitionistic fuzzy set (A-IFS) AI consists into a set of pairs (µAI
, νAI

), whose
components satisfy the natural restriction (Atanassov, 1986) given by Eq. (14). There-
fore, it is assumed that an intuitionistic fuzzy set can be described as follows:

AI = {(x, (µAI
(x), νAI

(x))) : x ∈ X e µAI
(x) + νAI

(x) ≤ 1},

where µAI
, νAI

: X → Ũ are the functions defining the corresponding membership
and non-membership degrees of a element x ∈ X in AI .

As a consequence, the fuzzy set theory can be studied as a special case of intu-
itionistic fuzzy set theory, whose non-membership degree can be obtained through the
equality: µAI

(x) + νAI
(x) = 1.

In the modeling system of inference rules based on A-IFL, not only the membership
function µAI

: χ→ U is considered, but also the non-membership function νAI
: χ→ U .

And, each element x ∈ X ≠ ∅ is associated to a membership degree µAI
(x) and a non-

membership degree νAI
(x) which can be different of NS(µAI

(x)), define an intuitionistic
fuzzy set AI , such that 0 ≤ µAI

(x) + νAI
(x) ≤ 1.

The set of all A-IFS is denoted by AŨ .
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Let Ũ = {(x1, x2) ∈ U2 : x1 + x2 ≤ 1} be the set of all intuitionistic fuzzy values
which can also be defined as the set of all intuitionistic fuzzy numbers. The projection
functions on Ũ , lŨ , rŨ : Ũ→U are given as follows:

lŨ(x̃) = lŨ(x1, x2) = x1; and rŨ(x̃) = rŨ(x1, x2) = x2. (15)

And, the set of all diagonal elements is given as D̃ = {x̃ ∈ Ũ : lŨ(x̃) + rŨ(x̃) = 1}.
According with (Atanassov; Gargov, 1998) and (Bustince; Burillo; Soria, 2003a),

the usual partial order relation ≤Ũ is given as follows:

(x1, x2) ≤Ũ (y1, y2)⇔ x1 ≤ y1 and x2 ≥ y2, (16)

for x̃, ỹ ∈ Ũ such that 0̃ = (0, 1) ≤Ũ x̃ and 1̃ = (1, 0) ≥Ũ x̃, which are, respectively, the
top and bottom elements of the (Ũ ,≤Ũ).

Additionally, we also consider another partial order expressed as follows:

(x1, x2) ≼Ũ (y1, y2)⇔ x1 ≤ y1 and x2 ≤ y2. (17)

This work studies the intuitionistic fuzzy index exploring related properties in the
lattice (Ũ ,≤Ũ ,maxŨ ,minŨ , 0̃, 1̃) such that, for all x̃ = (x1, x2) ∈ Ũ , the following holds:

x ∨Ũ y = (max(x, y),min(x, y)); x ∧Ũ y = (min(x, y),max(x, y)). (18)

Let AI , BI ∈ AŨ , the union and intersection are, respectively, given as

AI ∪BI = {(x,max(µAI
(x), µBI

(x)),min(νAI
(x), νBI

(x))) : x ∈ χ} (19)

AI ∩BI = {(x,min(µAI
(x), µBI

(x)),max(νAI
(x), νBI

(x))) : x ∈ χ}. (20)

And, the subsethood measure between AI , BI ∈ AŨ :

AI ⊆ BI ⇔ (µAI
(x), νAI

(x)) ≤Ũ (µBI
(x), νBI

(x)). (21)

3.1.1 Intuitionistic Fuzzy Negations and Dual Operators

An Atanassov’s intuitionistic fuzzy negation (IFN) NI : Ũ → Ũ satisfies, for all x̃, ỹ ∈
Ũ , the following properties:

NI 1: NI(0̃)=NI(0, 1)= 1̃ and NI(1̃)=NI(1, 0) = 0̃;

NI 2: If x̃≥ ỹ then NI(x̃)≤NI(ỹ).

And, a strong intuitionistic fuzzy negation (SIFN) is an IFN NI verifying the condition
NI 3: NI(NI(x̃)) = x̃, ∀x̃ ∈ Ũ .
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Additionally, taking NI as IFN, the NI-dual function fIN : Ũn → Ũ is given by:

fIN (x̃) = NI(f̃(NI(x̃1), . . . , NI(x̃n))),∀x̃ = (x̃1, . . . , x̃n) ∈ Ũn. (22)

By (Baczyński, 2004), taking a SFN N : U → U , an IFN NI : Ũ → Ũ such that

NI(x̃) = (N(NS(x2)), NS(N(x1))), (23)

is also called an SIFN and N -representable intuitionistic fuzzy negation . Moreover,
if N = NS, then Eq. (23) can be reduced to NI(x̃) = (x2, x1).

Thus, we consider the complement of an IFS AI which is given as

AIC = {(x, N(NS(νAI
(x)), NS(N(µAI

(x)))) : x∈χ, µAI
(x) + νAI

(x)≤ 1} ⊆ AŨ .

3.1.2 Intuitionistic Fuzzy Indexes and Total orders

The intuitionistic fuzzy index (A-IFIx) of an element x ∈ χ ̸= ∅ related to an intuition-
istic fuzzy set AI , denoted by the following expression πAI

(x) is named as the hesitant
degree or indeterminacy degree of x in the A-IFS AI .

According with (Xu; Yager, 2009; Atanassov, 1999), for all x ∈ χ, the intuitionistic
fuzzy index of x related to AI , is given by the function π : χ → [0, 1] in the following
expression:

πAI
(x) = 1− µAI

(x)− νAI
(x), when µAI

(x) + νAI
(x) ≤ 1. (24)

Whenever πAI
(x) = 0, AI is a fuzzy set A (Szmidt; Kacprzyk, 2004).

Based on the above, the accuracy and score functions hAI
, sAI

: χ→ Ũ , which are
respectively given as

hAI
(x) = µAI

(x) + νAI
(x) and sAI

(x) = µAI
(x)− νAI

(x) (25)

provide the corresponding accuracy degree and the score degree of x in AI .
So, it means that the larger πAI

(x) the higher the hesitancy degree of x ∈ χ. Analo-
gously, the larger the accuracy (score) degree the smaller the hesitancy. Thus, higher
scores are preferable, however, ties appear often. A tie-breaking rule in the case of
equal scores uses the respective accuracy of the intuitionistic fuzzy negation. The
accuracy can also be expressed as:

hAI
(x) + πAI

(x) = 1. (26)

So, the largest πAI
(x) (hAI

(x)), the higher the hesitancy (accuracy) degree of x in AI .
In order to compare A-IFS by their performance, standard rules use their score
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and accuracy. In (Xu; Yager, 2006a) a total order on Ũ is proposed, enabling the
comparison between two A-IFS.

Let AI , BI ∈ AŨ , we have that AI ⪯XY BI if and only if, the following holds:

AI≺XY BI ⇔ (µAI
(x), (νAI

(x)) ≺XY (µBI
(x), (νBI

(x))

⇔

{
sAI

(µAI
(x), (νAI

(x)) ≤ sBI
(µBI

(x), (νBI
(x)) or

sAI
(x, y) = sAI

(z, t) and hAI
(µAI

(x), (νAI
(x)) ≤ hAI

(µBI
(x), (νBI

(x))

AI =XY BI ⇔

{
sAI

(x, y) = sAI
(µAI

(x), (νAI
(x)) and

hAI
(µAI

(x), (νAI
(x)) = hAI

(µBI
(x), (νBI

(x)), ∀x ∈ χ.

3.1.3 Intuitionistic Fuzzy Implications

Inherent properties of implications related to A-IFIx are described as follows.

Definition 3.1.1. (Bustince; Barrenechea; Mohedano, 2004, Definition 3) An
intuitionistic fuzzy implication II : Ũ2 → Ũ is a function verifying, for all
(x, y), (x′, y′), (z, t), (z′, t′) ∈ Ũ , the following properties:
II0: If (x, y), (z, t) ∈ Ũ are such that x+ y = 1 and z + t = 1 then π((x, y), (z, t)) = 0;
II1: If (x, y) ≤ (x′, y′) then II((x, y), (z, t)) ≥ II((x

′, y′), (z, t));
II2: If (z, t) ≤ (z′, t′) then II((x, y), (z, t)) ≤ II((x, y), (z

′, t′));
II3: II((0, 1), (x, y)) = (1, 0);
II4: II((x, y), (1, 0)) = (1, 0);
II5: II((1, 0), (0, 1)) = (0, 1).

Additionally, considering the A-IFIx the group of properties of fuzzy implication
which are related to the hesitant index are reported in the following:
II6: π((x, y), (z, t)) ≥ maxŨ(1− x, 1− z);
II7: If (x, y) = (z, t), then π((x, y), (z, t)) = π(x,y);
II8: If π(x,y) = π(z,t), then π((x, y), (z, t)) = π(x,y).

3.1.4 Aggregation Functions on Ũ

In the following, aggregation operators are considered in order to define intuitionistic
fuzzy implications also demanding idempotent and symmetry from boundary conditions
and monotonicity properties.

Proposition 3.1.1. (Bustince; Barrenechea; Mohedano, 2004, Proposition 3) Let I be
a fuzzy implication in J. Fodor’s sense and let IN be the N -dual implication of I. Let
M1,M2,M3,M4 be four idempotent aggregation functions satisfying the conditions:

M1(x, y) +M3(1− x, 1− y) ≤ 1; (27)

M2(x, y) +M4(1− x, 1− y) ≥ 1,∀x, y ∈ Ũ . (28)
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Then II : Ũ2 → Ũ given by the following expression:

II((x, y), (z, t)) = (I(M1(x, 1− y),M2(z, 1− t)), IN(M3(y, 1− x),M4(t, 1− z))) (29)

is an Atanassov’s intuitionistic fuzzy implication, in sense of Fodor and
Roubens (Fodor; Roubens, 1994).

The generalized intuitionistic fuzzy index extending main properties in the especial
group of intuitionistic fuzzy implications, considered as follows:

Proposition 3.1.2. (Bustince; Barrenechea; Mohedano, 2004, Corollary 1(ii)) Let II :

Ũ2 → Ũ given by Eq.(29) according with conditions of Proposition 3.1.1. The function
II verifies the following property

π(II(x̃, ỹ)) ≤ π (I(NS(y), z), IN(NS(x), t)) . (30)

Proposition 3.1.3. (Bustince; Barrenechea; Mohedano, 2004, Corollary 2) Let II :

Ũ2 → Ũ given by Eq.(29) according with conditions of Proposition 3.1.1. If II(x, y) ≥
min(x, y) then II verifies property II6.

Proposition 3.1.4. (Bustince; Barrenechea; Mohedano, 2004) Let II : Ũ2 → Ũ given
by Eq.(29) according with conditions of Proposition 3.1.1. The function II verifies prop-
erty II7 and II8.

3.1.5 Intuitionistic Conjugation Operators

The study of automorphisms is relevant since they can be used in the generation
of new connectives, preserving the main algebraic properties of classes of logical con-
nectives (Costa; Bedregal; Neto, 2011).

Definition 3.1.2. (Bustince; Burillo; Soria, 2003a) The function Φ : Ũ → Ũ is an intu-
itionistic automorphism in Ũ if it is bijective and, for all x̃, ỹ, we have to x̃ ≤Ũ ỹ if and
only if Φ(x̃) ≤Ũ Φ(ỹ).

Just as Aut(U) denotes the set and all the automorphisms in U , Aut(Ũ) indicates
the set and all the intuitionistic automorphisms in Ũ .

The action of Φ ∈ Aut(Ũ) in a function fI : Ũn → Ũ is a function fΦ
I : Ũ → Ũ , called

intuitionistic conjugated of fI , defined for all x̃1, . . . , x̃n ∈ Ũ for expression:

fΦ
I (x̃1, . . . , x̃n) = Φ−1(fI(Φ(x̃1), . . . ,Φ(x̃n))). (31)

According with (Costa; Bedregal; Neto, 2011, Theorem 17), let ϕ : U → U be an
automorphism on U . Then, for all x ∈ U , a ϕ-representable automorphism Φ : Ũ → Ũ
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is defined by

Φ(x̃) = (ϕ(lŨ(x̃)), 1− ϕ(1− rŨ(x̃))). (32)

Example 3.1.1. Let ϕ : U → U ∈ Aut(U) defined by ϕn(x) = xn and let Φn : Ũ → Ũ be a
ϕ-representable automorphism given as Φn(x1, x2) = (xn1 , 1− (1− x2)n). For instance,
when n = 2 we have that Φ(x̃) = (x21, 2x2 + x22) is a ϕ-automorphism obtained according
with Eq.(32) in Aut(Ũ).

3.2 Summary

In this chapter, the basic concepts of intuitionistic fuzzy logic were discussed, in-
cluding measures of uncertainties inherent in this approach, such as index, accuracy,
and score degree. This revision also reports intuitionistic fuzzy negations and dual op-
erators. The notion of automorphism and intuitionistic conjugation operators and their
relationships are examined.

The next chapter also refers to the intuitionistic fuzzy logic approach, but it was
separated to highlight the definitions of measures extended in previous studies and
which serve as the theoretical fundamental for the constructions carried out in this
work, mainly related to the representability of fuzzy connectives.



4 ATANASSOV’S INTUITIONISTIC FUZZY ENTROPY

As the first relevant contribution of this thesis, this chapter introduces an expression
to obtain entropy in the context of Atanassov’s intuitionistic fuzzy sets considering the
Generalized Atanassov’s Intuitionistic Fuzzy Index (A-GIFIx).

The results described in the following subsections, are presented in two research
approaches. The former, studying the A-GIFIx, discusses its main properties and il-
lustrates the algebraic construction of an A-GIFIx based on compositions between in-
tuitionistic fuzzy implications and negations. And the latter is to obtain Atanassov’s
intuitionistic fuzzy entropy based on an A-GIFIx.

4.1 Generalized Atanassov’s Intuitionistic Fuzzy Index

In (Bustince et al., 2011), the concept of the Generalized Atanassov’s Intuitionis-
tic Fuzzy Index (A-GIFIx) is characterized in terms of fuzzy implication operators. In
addition, a constructive method with automorphisms is also proposed in (Barrenechea
et al., 2009), together with some special properties of A-GIFIx (DA SILVA et al., 2016).

In this section, we study the properties of A-GIFIx, contributing with an incremental
study of its duality and conjugation analysis (DA SILVA et al., 2016).

Definition 4.1.1. (Bustince et al., 2011, Definition 1) A function Π : Ũ → U is called
a generalized intuitionistic fuzzy index associated with a strong negation NI if, for all
x1, x2, y1, y2 ∈ U , it holds that:

Π1: Π(x1, x2) = 1 if and only if x1 = x2 = 0;

Π2: Π(x1, x2) = 0 if and only if x1 + x2 = 1;

Π3: (y1, y2) ≼Ũ (x1, x2) implies Π(x1, x2) ≤ Π(y1, y2)

Π4: Π(x1, x2) = Π(NI(x1, x2)) when NI is a SIFN.

In particular, the following interpretations are held:

(i) Property Π1 states the lack of information should be maximum, whenever there
exists no information supporting/against a proposition;
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(ii) In contrast, Property Π2 states that when the membership and non-membership
degrees are exactly complementary (related to fuzzy sets), the lack of information
is minimal.

(iii) By Π3, when the membership and the non-membership values increase, the lack
of information decreases since the considered A-IFS is closer to being an FS.

(iv) And analyzing Property Π4, no new information or knowledge is obtained by nega-
tion. With respect to the use of the ≼Ũ in ordering instead of ≤Ũ , one can observe
that the A-GIFIx is neither increasing nor decreasing with respect to ≤Ũ , whereas
it is decreasing with respect to ≼Ũ .

4.1.1 Obtaining A-GIFIx based on Fuzzy (Co)Implications

A constructive method to obtain an A-GIFIx based on fuzzy (co)implications are
proposed in (Bustince et al., 2011) and reported below:

Proposition 4.1.1. (Bustince et al., 2011, Theorem 3) Let N be a strong negation
SFN. A function Π : Ũ → U is a A-GIFIx if only if there exists a function I : U2 → U

verifying I1, I8, I9 and I10 such that

Π(x̃) = N(I(NS(x2), x1)),∀x̃ = (x1, x2) ∈ Ũ . (33)

The NS-dual construction related to Proposition 4.1.1 is considered in the following:

Proposition 4.1.2. (DA SILVA et al., 2016, Proposition 1) LetNI be anN -representable
IFN obtained by a SFN N . A function Π : Ũ → U is a A-GIFIx if only if there exists a
function J : U2 → U verifying J1, J8, J9 and J10 such that

ΠJ(x̃) = J(N(1− x2), N(x1)),∀x̃ = (x1, x2) ∈ Ũ . (34)

Theorem 4.1.1. Based on conditions of Propositions 4.1.1 and 4.1.2 , when I, J : U →
U is a pair of mutual N -dual fuzzy implications, meaning that IN = J or JN = I, the
following holds:

Π(x̃) = ΠJ(x̃), ∀x̃ = (x1, x2) ∈ Ũ . (35)

Proof. By Proposition 4.1.1, we have that:

Π(x̃) = N(I(NS(y), x)) = N(JN(NS(y), x)) = J(N(NS(y), N(x)) = ΠJ(x̃)

Therefore, Theorem 4.1.1 is also verified.
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4.1.2 Duality Relation of the Intuitionistic Fuzzy Index

Now, the duality and conjugation properties related to A-GIFIx are presented.

Theorem 4.1.2. Let N be a SFN and NI be its corresponding N -representable SIFN.
For an A-GIFIx Π : Ũ → U the following holds:

ΠN(x̃) = N(Π(x̃)),∀x̃ ∈ Ũ . (36)

Proof. By Eq.(23) and Property Π4, ΠN(x̃) = N(Π(NI(x̃))) = N (Π(x̃)).

Results in Proposition 4.1.3 are related to (DA SILVA et al., 2016, Proposition 2).

Proposition 4.1.3. (DA SILVA et al., 2018, Proposition 3) Let N be a SFN and NI be its
corresponding N -representable SIFN. For a A-GIFIx(N) Π(ΠJ) : Ũ → U the following
holds:

(Π)N (x̃) = I(NS(x2), x1); (37)

(ΠJ)N (x̃) = N(J(x1, NS(x2))),∀x̃ = (x1, x2) ∈ Ũ . (38)

Proof. For all x̃ ∈ Ũ , (ΠI)N (x̃) = N (ΠI(NI(x̃))) = N (Π(x̃)) = I(NS(x2), x1). Its dual
construction can be proved analogously.

In diagrams of Figures 1 and 2 the following denotation is considered:
(i) C(I) and C(J) denote the classes of fuzzy implications and coimplications verifying
the conditions in Propositions 4.1.1 and 4.1.2;
(ii) C(NI) denotes the class of strong fuzzy negations on Ũ ;
(iii) C(Π) provides denotation to the class of all A-GIFIx.
These interrelations summarize the results stated in Propositions 4.1.1 and 4.1.2, The-
orem 4.1.2 and Proposition 4.1.3.

The figures 1 and 2 represents the possibility of obtaining the A-GIFIX from an
(co)implication function and a strong fuzzy negation. It is observed that, according
to the functions available, it is possible to reach the same result by applying those
indicated by the arrows in the diagram.

C(I)
Eq. (33)

- C(Π)× C(I)

C(I)× C(N)

Eq.(12a)

? Eq. (34)
- C(Π)× C(I)× C(N)

Eq.(37)

?

Figure 1 – A-GIFIx Obtained by Fuzzy Implications and Corresponding Dual Operator.
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C(J)
Eq. (34)

- C(Π)× C(J)

C(J)× C(N)

Eq.(12b)

? Eq. (33)
- C(Π)× C(J)× C(N)

Eq.(38)

?

Figure 2 – A-GIFIx Obtained by Fuzzy Coimplications and Corresponding Dual Oper-
ator.

4.1.3 Hesitant and Accuracy Related to Intuitionistic Fuzzy Index

Consequently, one can describe hesitance and accuracy in terms of A-GIFIx. See,
in (DA SILVA et al., 2016, Corollary 1), it is shown that the A-IFIx π : Ũ → U , can be
defined as an A-GIFIx by considering the Lukaziewicz fuzzy implication ILK : U → U

given by the following expression

ΠILK
(x̃) = π(x̃) = 1− µA(x)− νA(x)),∀x ∈ χ; (39)

and analogously, its NS-dual construction can be given as follows:

(ΠILK
)NS

(x̃) = h(x̃) = µA(x) + νA(x)),∀x ∈ χ. (40)

Table 5 does not only illustrate Proposition 4.1.1 and Proposition 4.1.2, but also
presents additional examples of A-GIFIx associated with the following fuzzy implica-
tions: Lukaziewicz (LK), Klenee-Dienes (KD), Reichenbach (RB) and Gaines-Rescher
(GR).

4.1.4 Conjugation related to A-GIFIx

In the following, we study the action of automorphisms in A-GIFIx obtained by fuzzy
(co)implications.

Proposition 4.1.4. (DA SILVA et al., 2016, Prop. 4) Let Φ ∈ Aut(Ũ) be a ϕ-
representable automorphism, Nϕ : U → U be the ϕ-conjugate of a SFN N . A function
ΠΦ : Ũ → U is a A-GIFIx(Nϕ

I ) given by

ΠΦ(x1, x2) = (ϕ−1(Π(ϕ(x1)), 1− ϕ(1− x2)), (41)

whenever Π : Ũ → Ũ is also a A-GIFIx.

Proposition 4.1.5. (DA SILVA et al., 2018, Proposition 5) Let ϕ ∈ Aut(U) be an auto-
morphism, Nϕ : U → U be a ϕ-conjugate of a SFN N : U → U and Iϕ : U2 → U be a
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Table 5 – Generalized Intuitionistic Fuzzy Index Associated with the Standard Nega-
tion.

Pairs of Dual Fuzzy (Co)Implications Dual A-GIFIx

ILK(x, y)=

{
1, if x ≤ y,
1− x+ y,otherwise; ΠLK(x, y)=1− x− y

(ΠLK)NSI
(x, y)=x+ yJLK(x, y)=

{
0, if x ≥ y,
y − x,otherwise;

IKD(x, y)=

{
1, if x ≤ y,
max(1− x, y), otherwise; ΠKD(x, y)=1−max(x, y)

(ΠKD)NSI
(x, y)=max(x, y)

JKD(x, y)=

{
0, if x ≥ y,
min(1− x, y),otherwise;

IRB(x, y)=

{
1, if x ≤ y,
1− x+ xy,otherwise; ΠRB(x, y) = 1−x−y+xy

(ΠRB)NSI
(x, y) = y−xyJRB(x, y)=

{
0, if x ≥ y,
1−x−y+xy otherwise;

IGR(x, y)=

{
1, if x ≤ y,
0,otherwise; ΠGR(x, y)=1

(ΠGR)NSI
(x, y)=0

JGR(x, y)=

{
0, if x ≥ y,
1,otherwise;

ϕ-conjugate of I : U2 → U . A function ΠIϕ(ΠJϕ) : Ũ → U given by

ΠIϕ(x1, x2) = Nϕ(Iϕ(1− x2, x1)), (42)

ΠJϕ(x1, x2) = Jϕ(Nϕ(1− x2), Nϕ(x1)), (43)

is a A-GIFIx(N) whenever ΠI(ΠJ) : Ũ → Ũ is also a A-GIFIx(N).

The main results formalized in Propositions 4.1.1 and 4.1.2 together with Proposi-
tions 4.1.4 and 4.1.5 are summarized in the commutative diagrams in Figures 3 and 4,
respectively.

In diagrams of Figures 3 and 4 the following denotation is considered:
(i) C(I) and C(J) denotes the classes of fuzzy implications and coimplications
(ii) Aut(U) denotes the class of automorphisms on U ;
(iii) C(Π) provides denotation to the class of all A-GIFIx.
These interrelations summarize the results stated in Propositions 4.1.4 and 4.1.5.

Moreover, Table 6 illustrates the construction of A-GIFIx obtained by the ϕ-
conjugate implications as described in Table 5. In these examples, the conjugation of
the described implications, Lukaziewicz (LK), Klenee-Dienes (KD), Reichenbach (RB),
and Gaines-Rescher (GR), which are generated by the following automorphisms:

ϕ(x) = x2 and ϕ−1 =
√
x.
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C(I)
Eq. (33)

- C(Π)× C(I)

C(I)× Aut(U)

Eq.(3)

? Eq. (42)
- C(Π)× C(I)× Aut(Ũ)

Eq.(41)

?

Figure 3 – A-GIFIx Obtained by Fuzzy Implications and Conjugate Operator.

C(J)
Eq. (34)

- C(Π)× C(J)

C(J)× Aut(U)

Eq.(3)

? Eq. (43)
- C(Π)× C(J)× Aut(Ũ)

Eq.(41)

?

Figure 4 – A-GIFIx Obtained by Fuzzy Complications and Conjugate Operator.

Table 6 – A-GIFIx Obtained by Conjugate Functions

Fuzzy Implications A-GIFIx

IϕKD(x, y) =

{
1, if x ≤ y,√
max(1− x2, y2),otherwise; ΠIϕ

KD
(x, y) = 1−

√
max(x2, 1− (1− y)2)

ΠJϕ
KD

(x, y) =
√
1−max(x2, 1− (1− y)2))

Jϕ
KD(x, y) =

{
0, if x ≥ y,√
min((1− x)2, y2),otherwise;

IϕLK(x, y) =

{
1, if x ≤ y,√
1− x2 + y2, otherwise; ΠIϕ

LK
(x, y) = 1−

√
1 + x2 − (1− y)2

ΠJϕ
LK

(x, y) =
√
x2 − (1− y)2

Jϕ
LK(x, y) =

{
0, if x ≥ y,√
1− x2 + y2, otherwise;

IϕRH(x, y) =

{
1, if x ≤ y,√
1− x2 + x2y2,otherwise; ΠIϕ

RH
(x, y) = 1−

√
1− (1− y)2(1− x2)

ΠJϕ
RH

(x, y) =
√
(1− y)2(1− x2)

Jϕ
RH(x, y) =

{
0, if x ≥ y,√
y2 − x2y2,otherwise;

IϕGR(x, y) =

{
1, ifx ≤ y,
0,otherwise; ΠIϕ

GR
(x, y) = 0

ΠJϕ
GR

(x, y) = 1Jϕ
GR(x, y) =

{
0, ifx ≥ y,
1,otherwise;

Now, we attend to the class of (S,N)-implications, which is a class of explicit rep-
resentable fuzzy implications, from compositions of t-conorms and fuzzy negations,
discussing their main properties and duality relations.

4.1.5 Obtaining (S,N)-Implications and (T,N)-Coimplications via A-GIFIx

In the following, extending results from (DA SILVA et al., 2016), the classes of
(S,N)-implications and (T,N)-coimplications are considered in order to obtain new
expressions of A-GIFIx.
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Proposition 4.1.6. (DA SILVA et al., 2018, Proposition 6) Let N be a SFN. A function
Π : Ũ → U is an A-GIFIx related to a SFN N : U → U iff there exists an S-implication
(T-coimplication) IS(JT ) : U2 → U such that the following holds:

ΠIS,N (x1, x2) = S(NS(x2), N(x1))); (44)

ΠJT,N
(x1, x2) = T (NS(x2), N(x1)). (45)

In the following, by considering the standard negation NS, it is possible to obtain an
A-GIFIx making use of t-(co)norms:

Corollary 4.1.1. When N = NS, the A-IFIx can be expressed as

ΠIS,NS
(x1, x2) = NS(SNS

(x1, x2)); (46)

ΠJT,NS
(x1, x2) = NS(TNS

(x1, x2)). (47)

Proof. Strainghtforward Proposition 4.1.6.

4.2 Intuitionistic Fuzzy Entropy

In this section, the study of Atanassov’s intuitionistic fuzzy entropy follows from
results stated in (Bustince et al., 2011). Such an approach focuses more on the degree
of intuitionism of an A-IFS than the fuzziness of an intuitionistic fuzzy set.

Definition 4.2.1. (Bustince et al., 2011, Definition 2) A real function EI : AI → U is
called an Atanassov’s intuitionistic fuzzy entropy (A-IFE) if the following properties are
verified:

EI1: EI(AI) = 0 if and only if AŨ ∈ A,

EI2: EI(AI) = 1 if and only if µA(x) = νA(x) = 0, ∀x ∈ χ,

EI3: EI(AI) = E(AIC ),

EI4: if AI ≼Ũ BI then EI(AI) ≥ EI(BI),∀AI , BI ∈ AŨ .

According with (Bustince et al., 2011), some interpretations of Definition 4.2.1:

(i) By EI1, the lack of information should be the maximum whenever there is no infor-
mation supporting a proposition, and if there is no information against the same
proposition;

(ii) In the opposite position, by EI2, the lack of information;

(iii) As the third axiom, EI3 states that the lack of information decreases if the member-
ship and the non-membership values increase meaning that such A-IFS is closer
to being a fuzzy set;
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(iv) And, by the last axiom, EI4 we have that the order relation when entropy is applied
to intervals will be inverse to the order relation of intervals.

Proposition 4.2.1. (DA SILVA et al., 2018, Proposition 10) Let Φ be a ϕ-representable
automorphism in Aut(Ũ) and EI : AŨ → U be an A-IFE. Then, for all AI ∈ AI , the
Φ-conjugate function EΦ

I : AI → U is also an A-IFE.

Properties related to A-IFE obtained by aggregation of A-GIFIx are discussed below
by considering a finite set χ = {x1, . . . , xn}.

Proposition 4.2.2. (Bustince et al., 2011, Prop. 4) Let M be an aggregation on U , N
be a SFN, Π be an A-GIFIx. Then, for all AI ∈ AŨ , the mappings EI : AŨ → U defines
an Atanassov’s intuitionistic fuzzy entropy (A-IFE), respectively expressed by

EI(AI) = Mn
i=1Π(AI(xi)),∀xi ∈ χ. (48)

Proposition 4.2.3. (DA SILVA et al., 2018, Proposition 10) Let M be an aggregation
on U , N be a SFN, Π be an A-GIFIx(N) and ϕ ∈ Aut(U). Then, for all AI ∈ AŨ , the
mappings EΦ : AŨ → U expressed by

EΦ
I (AI) = Mn

i=1Π
Φ(AI(xi)),∀xi ∈ χ, (49)

defines Atanassov’s intuitionistic fuzzy entropy.

Let C(EI) be the class of all A-IFE. The diagram below summarizes the main results
related to the classes of A-GIFIx and A-IFE.

The main results in Propositions 4.2.2 and 4.2.3 together with Propositions 4.1.4
and 4.1.5 are summarized in the diagram below (Figure 5):

In diagram of Figure 5 the following denotation is considered:
(i) C(Π) provides denotation to the class of all A-IFIx;
(ii) Aut(U) denotes the class of all automorphisms on U ;
(iii) C(EI) provides denotation to the class of entropy related to an intuitionistic fuzzy
set.
These interrelations summarize the results stated in Propositions 4.1.4 and 4.1.5.

C(Π)
Eq.(48)

- C(EI)

C(Π)× Aut(U)

Eq.(41)

? Eq.(49)
- C(EI)× Aut(Ũ)

Eq.(31)

?

Figure 5 – Relatioship Between A-GIFIx(N) and A-IFE Aut(Ũ )
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In the following, an A-IFE is obtained from A-GIFIx as conceived in (Bustince;
Burillo; Soria, 2003a), with respect to its dual and conjugate constructions.

The next two propositions report the main results from (DA SILVA et al., 2016) and
(Bustince et al., 2011).

Proposition 4.2.4. Consider ϕ ∈ Aut(U). Let N : U → U be a SFN, M : Un → U be an
aggregation function and IN : U2 → U be a N -dual operator of an implication I : U2 →
U which satisfies properties II1, II8, II9 and II10, as discussed in Proposition 4.1.1.
Then, for all AI ∈ AŨ , the mappings EI (N,I), EI (NΦ,IΦ) : AŨ → U defined by

EI (N,I)(AI) = Mn
i=1N(I(1− νA(xi), µA(xi))), (50)

EI (NΦ,IΦ)(AI) = Mn
i=1N

ϕ(Iϕ(1− νA(xi), µA(xi))),∀xi ∈ χ, (51)

provide new expressions of A-IFE obtained from an A-GIFIx.

Proof. Straightforward from Propositions 4.1.2 and 6.3.3, also taking Eq.(33) and
(139).

Proposition 4.2.5. (DA SILVA et al., 2018, Proposition 12) Consider ϕ ∈ Aut(U). Let
N : U → U be a SFN, M : Un → U be an aggregation function and JN : U2 → U

be a N -dual operator of a coimplication J : U2 → U satisfying properties J2, J8,
J9 and J10, according with Proposition 4.1.2. Then, for all AI ∈ AŨ , the mappings
EI (J,N), EI (Jϕ,Nϕ) : AŨ → U defined by

EI (J,N)(AI) = Mn
i=1J (N(1− νA(xi)), N(µA(xi))) , (52)

EI (Jϕ,Nϕ)(AI) = Mn
i=1J

ϕ
(
Nϕ(1− νA(xi)), Nϕ(µA(xi))

)
,∀xi ∈ χ, (53)

are also Atanassov’s intuitionistic fuzzy entropy (A-IFE).

Proposition 4.2.6. Let EJ , EJN : AŨ → U be A-IFE according with Propositions 4.2.4
and 4.2.5. Then, for all AI ∈ AŨ , the following holds:

EI (JN ,N)(AI) = EI (J,N)(AI) and EI (IN ,N)(AI) = EI (I,N)(AI) (54)

4.3 Illustrating A-IFE based on A-GIFIx

Among the several applications of A-IFIx such as similarity, correlation, and distance
measures, we report a methodology to obtain the entropy via A-IFIx, contributing with
multi-attribute systems based on IFL (Lin; Xia, 2006).

In order to illustrate and compare the above proposed method to obtain
A-IFE making using aggregation of A-GIFIx, six expressions of A-IFEs intro-
duced in (Liu; Ren, 2014a) are considered. For AI = {(xi, µ(xi), ν(xi) : xi ∈
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χ}, see their references and related algebraic expressions listed below:

1.(Qian-sheng; Jiang, 2008) E1(AI) =
1
n

∑n
i=1

[
1
2
(2µA(xi) + ΠA(xi)) · log2 1

2
(2µA(xi)+

+ΠA(xi))+
1
2
(2νA(xi) + ΠA(xi)) · log2 1

2
(2νA(xi) + ΠA(xi))

]
2. (Ye, 2010) E2(AI) =

1
n

∑n
i=1

[(√
2cos(µA(xi)− νA(xi))π4 − 1

)
1√
2−1

]
3. (Verma; Sharma, 2013) E3(AI)=

1
2n(
√
e−1)

∑n
i=1

[
2µA(xi)+πA(xi)) · e1−

1
2
(2µA(xi)+πA(xi))

+1
2
(2νA(xi) + πA(xi))e

1− 1
2
(2νA(xi)+ΠA(xi)) − 1

]
4. (Wei; Gao; Guo, 2012) E4(AI) =

1
n

∑n
i=1 cos

(
µA(xi)−νA(xi)
(1+πA(xi))

π
4

)
5. (Yue; Jia; Ye, 2009) E5(AI) =

1
n

∑n
i=1 cot

(
π
4
+ |µA(xi)−νA(xi)|

(1+πA(xi))
∗ π

)
6. (Liu; Ren, 2014a) E6(AI) =

1
n

∑n
i=1 cot

(
π
4
+(|µA(xi)−νA(xi)| ∗ (1−πA(xi)))π4

)
Let an A-IFE obtained from Eq.(33)a by taking the arithmetic mean (M = AM ).

Thus, for AI = {(xi, µ(xi), ν(xi) : xi ∈ χ}, it is given as follows:

E7 (AI) =
1

n

n∑
i=1

ΠI(xi),∀x ∈ χ.

Let n be a positive integer and χ = {x1, x2, . . . , xn} be a finite set in order to define
the comparable A-IFS An, which are given by the following expression:

An
I = {(xi, (µA(xi)

n, 1− [1− νA(xi)]n) : xi ∈ χ}. (55)

For the finite universe χ = {6, 7, 8, 9, 10} and the A-IFS explicitly given as
AI = {(6, 0.1, 0.8), (7, 0.3, 0.5), (8, 0.6, 0.2), (9, 0.9, 0.0), (10, 1.0, 0.0)}, it results on
the following intuitionistic fuzzy sets: :
A

1
2
I = {(6, 0.3162, 0.5527), (7, 0.5477, 0.2929), (8, 0.7746, 0.1056), (9, 0.9487, 0.0), (10, 1.0, 0.0)};

A1
I = {(6, 0.1, 0.8), (7, 0.3, 0.5), (8, 0.6, 0.2), (9, 0.9, 0.0), (10, 1.0, 0.0)};

A2
I = {(6, 0.01, 0.96), (7, 0.09, 0.75), (8, 0.36, 0.36), (9, 0.81, 0.0), (10, 1.0, 0.0)};

A3
I = {(6, 0.001, 0.992), (7, 0.027, 0.875), (8, 0.216, 0.488), (9, 0.729, 0.0), (10, 1.0, 0.0)};

A4
I = {(6, 0.0001, 0.9984), (7, 0.0081, 0.9375), (8, 0.1296, 0.5904), (9, 0.6561, 0.0), (10, 1.0, 0.0)}.

Based on Eq.(55), the characterization of linguistic variables can be presented as:

A
1/2
I :“rather large” AI : “quite large” A2

I :“large” A3:“very large” A4
I :“extremely large”

As a remark, since the above presented A-IFS from A
1
2 to A4 are defined as a

comparable structure by the usual order on AŨ , from axioms of the logical approach
defining the A-GIFIx, the entropy related to these IFS follow the next ordering:

A
1/2
I ≤Ũ≤Ũ A

2
I ≤Ũ A

3
I ≤Ũ A

4 ⇒ E(A
1/2
I ) ≥ E(AI) ≥ E(A2

I) ≥ E(A3
I) ≥ E(A4

I).

The entropy expressions from E1 to E6, also including E7 are considered to analyze
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the above IFS, from A
1
2
I to A4

I .
For each A-IFS the related A-GIFIx is obtained by the action of the arithmetic mean,

taking into account the four A-GIFIx proposals ΠLK , ΠRB, ΠGR and ΠKD, whose expres-
sions are described in Table 5. Thus, the presented entropy measures are compared
based on these four expressions of the corresponding A-GIFIx, proposing the method-
ology related to the set of fuzzy implications {ILK , IRB, IGR, IKD}. The results related to
fuzzy implication ILK and the construction of the A-GIFIx ΠILK

, considering the A-IFS
from A

1
2
I to AI4, are reported in Table 7.

Table 7 – A-IFE is Obtained from the A-GIFIx ΠLK with respect to NS-Dual Construc-
tion

ΠLK E1 E2 E3 E4 E5 E6 E7

A
1
2
I 0.3786 0.5016 0.5106 0.8660 0.3645 0.3686 0.0923

A1
I 0.3810 0.4939 0.5054 0.8685 0.3564 0.3633 0.1200

A2
I 0.3160 0.3953 0.4065 0.8437 0.3339 0.3407 0.1320

A3
I 0.2700 0.3330 0.3438 0.8263 0.2512 0.2643 0.1424

A4
I 0.2403 0.2938 0.3044 0.8147 0.2142 0.2313 0.1359

The last column in Table 7, indicated as E7, summarizes the results for entropy
obtained according to the following calculations:
Π[A

1
2
I ] = {(6, 0.1311), (7, 0.1594), (8, 0.1198), (9, 0.0513), (10, 0.0)}; E[A

1
2
I ] = 0.09232;

Π[A1
I ] = {(6, 0.1), (7, 0.2), (8, 0.2), (9, 0.1), (10, 0.0)}; E[A1

I ] = 0.12;
Π[A2

I ] = {(6, 0.03), (7, 0.16), (8, 0.28), (9, 0.19), (10, 0.0)}; E[A2
I ] = 0.132;

Π[A3
I ] = {(6, 0.007), (7, 0.098), (8, 0.336), (9, 0.271), (10, 0.0)}; E[A3

I ] = 0.1424;
Π[A4

I ] = {(6, 0.0015), (7, 0.0544), (8, 0.28), (9, 0.3439), (10, 0.0)}, E[A4
I ] = 0.13596.

Moreover, other methods based on the expression of A-GIFIx as ΠRB, ΠGR and
ΠKD, obtained w.r.t. NS-dual constructions can be analogously obtained.

By comparing the results achieved with the 07 methods, from E1 to E7, we can
highlight that the entropy generated by ΠLK and ΠRB methods have the lowest entropy
values for all A-IFS AN

I . And, as a counterpart, the expression of entropy generated by
ΠGR always generates the largest values for all A-IFS AN

I .

4.4 Main Bibliographic References

Several research works have been studying entropy which attempts to quantify
the uncertainty information modeled by A-IFS. A large amount of literature (Li; Chen;
Huang, 2010; Wan, 2013; Li; Wan, 2014a,b) has been supporting the solutions for
decision-making problems based on entropy measures analyses. So, the study of
Atanassov’s intuitionistic fuzzy entropy (A-IFE) introduced new formulas underlying the
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development of applications and interpretations on such research topics. Table 8 sum-
marizes the main characteristics of related works considered in this thesis.

Table 8 – The Bibliographic Revision Integrating Entropy on A-IFS.

Paper/Year Operators Characterization

(Burillo; Bustince, 1996) Aggregation
Function

Providing a methodology to measure entropy for A-IFS

(Szmidt; Kacprzyk, 2001) Aggregation
Function

Defining an entropy based on the geometric interpretation for
A-IFS

(Zhang; Jiang, 2008a) Logarithmic
Functions

Fuzzy entropy measuring only the derivation of membership
and non-membership functions

(Bustince et al., 2011) A-GIFIx Structuring A-IFE based on the aggregation of generalized
Atanassov’s intuitionistic fuzzy index

(Wang; Wang, 2012) Cotangent
Function

Applying linguistic fuzzy multi-criteria decision-making method
based on intuitionistic fuzzy entropy

(Xia; Xu, 2012) Aggregation
Function

Developing entropy and cross-entropy measures for intuition-
istic fuzzy values

(Zhang, 2013) Aggregation
Function

Introducing axiomatic requirements for a set of A-IFE

(Pal et al., 2013) Aggregation
Function

Generating a new class of entropy measures on distinct facets
of the uncertainty of A-IFS

(Mao; Yao; Wang, 2013) Neperian
Logarithm

Defining novel symmetric cross-entropy models to measure
discrimination information

(Liu; Ren, 2014b) Cosine
Functions

Presenting an optimal model based on the minimum entropy
principle

(Xiong et al., 2017) Logarithmic
Functions

Method based on the entropy weight approach contributing to
determine MCDM weights

(Yuan; Zheng, 2022) Deviation
Operators

Improvements on A-IFE and application in the evaluation of
regional collaborative innovation capability

(i) In 1996, Burillo and Bustince (Burillo; Bustince, 1996) defined intuitionistic fuzzy
entropy to measure the degree of hesitation for intuitionistic fuzzy sets and on
interval-valued fuzzy sets, providing a methodology to measure how far an A-
IvIFS or A-IFS is from an FS.

(ii) In (Szmidt; Kacprzyk, 2001), a new non-probabilistic intuitionistic fuzzy entropy
is concerned with the geometric interpretation for Atanassov’s intuitionistic fuzzy
sets.

(iii) In (Zhang; Jiang, 2008a), a measure of IF entropy generalizing of the De Luca
and Termini proposal (Luca; Termini, 1972) is based on logarithmic fuzzy entropy,
measuring only the derivation of membership and non-membership.

(iv) In (Bustince et al., 2011), the concept of Atanassov’s intuitionistic fuzzy entropy is
based on an aggregation of generalized Atanassov’s intuitionistic fuzzy index (A-
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GIFIx), which is characterized in terms of fuzzy implication operators to propose
a construction method with order automorphisms.

(v) In (Xia; Xu, 2012), the authors developed entropy and cross-entropy measures
for intuitionistic fuzzy values, discussing the properties of these measures and the
relations between them and the existing ones. Aggregation operators are consid-
ered to treat the membership and non-membership information fairly, including
practical examples to illustrate the developed methods.

(vi) In (Zhang, 2013), based on such distance measures and intuitionistic index, a set
of entropy measures for IFS were proposed, verifying the axiomatic requirements
given by Szmidt and Kacprzyk in 2001. The numerical examples demonstrated
the efficiency of the proposed entropy methods for A-IFS.

(vii) Also in 2013, Pal et. al. (Pal et al., 2013) demonstrated that the existing measures
of uncertainty for A-IFE cannot capture all facets of uncertainty associated with
an A-IFS. Thus a generating family (class) of measures is proposed, where each
family is illustrated with several examples.

(viii) In 2013, Mao et. al. discussed novel cross-entropy and symmetric cross-entropy
models defined based on intuitionistic factors and fuzzy factor models to measure
the discrimination of uncertain information. A constructive principle of entropy is
refined and the relationship between cross-entropy and entropy is investigated.
See also applications of pattern recognition and decision-making to demonstrate
the efficiency of the cross-entropy and entropy models (Mao; Yao; Wang, 2013).

(ix) In (Liu; Ren, 2014b), a new intuitionistic fuzzy entropy modeling both the uncer-
tainty and the hesitancy degree of A-IFS are based on cosine functions. The opti-
mal model in sequence (Liu; Ren, 2015) is constructed according to the minimum
entropy principle and practical examples are given to illustrate the effectiveness
and practicability of the proposed method.

(x) In (Xiong et al., 2017), a generalized entropy measure for A-IFS based on loga-
rithmic functions and A-IFIx. So, an efficient method based on the entropy weight
approach is defined to determine the weights of decision makers (DM) and that
attributes simultaneously. The proposed weight determination method can be ap-
plied to address the multi-attribute group decision-making (MADM) the problem
in which the weight information is completely unknown.

(xi) In order to fully measure the fuzziness, the work reported in (Yuan; Zheng, 2022)
considers the deviation between membership and non-membership and the in-
fluence of hesitation to construct the general expression of intuitionistic fuzzy en-
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tropy. Based on such expression, the regional collaborative innovation capability
is evaluated, verifying the feasibility and practicability of the entropy.

Many other contributions can also be reported. See, e.g., in (Ye, 2010) presenting
a proposal of two A-IFE using triangular functions. In (Verma; Sharma, 2013), an
exponential A-IFE generalizes the exponential fuzzy entropy. And, in (Wei; Gao; Guo,
2012), an entropy measure using a cosine function is described.

4.5 Summary

This chapter studies the main reference describing the concepts of Atanassov’s
intuitionistic fuzzy sets underlying the notion of intuitionistic fuzzy entropy.

Main research on the study of entropy for A-IFS does not consider admissible linear
orders to avoid the effort to generate a comparable group of sets to perform a compar-
ison, as in the case described below. Moreover, the output result entropy in most of
the proposal methods studied is reduced to a point value, losing the uncertainty and
hesitation information, frequently presented on the input data of fuzzy systems.

In addition, this analysis shows relevant characteristics, discussed below:

(i) theoretical research using aggregation functions, similarity/dissimilarity measures
also including distinct notions of distance measures;

(ii) applications on solving problems on pattern recognition, multi-criteria fuzzy deci-
sion making, classification tasks mainly connected to image processing; medical
diagnosis and other technological areas;

(iii) Despite the proposals of new entropy formulas, mainly concerned with the
amount of information and reliability in intuitionistic fuzzy sets, the presented ap-
plications do not make use of simulations in the methodology validation;

(iv) few research works develop studies integrating optimization and machine learn-
ing techniques.

The same structured study is an extension to other extensions of fuzzy logic, which
here we consider A-IFL, IvFL, and A-IvIFL.



5 INTERVAL-VALUED FUZZY LOGIC

This chapter provides a brief account of Interval-valued Fuzzy Logic (IvFL). Firstly,
partial and total orders are discussed on the set of all interval-valued fuzzy values
U. And in sequence, based on these relations, the definition of fuzzy connectives is
presented regarding their main properties, which are relevant to the development of
this theoretical study on admissible fuzzy connectives.

Basic concepts of interval-valued fuzzy negations and duality, including aggregation
functions, fuzzy (co)implications, and conjugation operators related to automorphisms
on U are also considered.

5.1 Basic Concepts of the Interval-valued Fuzzy Sets

Based on interpretations provided by the interval-valued fuzzy set theory, the mem-
bership degree of an element x ∈ χ to a fuzzy set corresponds to a value in the
considered membership interval. So, we cannot say in a precise way what that value
is, meaning that we just provide bounds for it represented by the interval-valued mem-
bership function.

Let U = {[x1, x2] : x1, x2 ∈ U and x1 ≤ x2} be the set of all subintervals of the unit
interval U = [0, 1]. The projections lU, rU : U→U are defined by

lU([x1, x2]) = x1 and rU, ([x1, x2]) = x2, ∀x, y ∈ U (56)

and for X ∈ U, lU(X) and rU(X) are also denoted by X and X, respectively.
For each x ∈ U , the degenerate interval [x, x] will be denoted by x and related set

D = {x = [x, x] : x ∈ U} denotes the set of all degenerate intervals on U.
An interval-valued fuzzy set can be expressed as follows:

A = {(x, µA(x)) : x ∈ χ and µA(x) ∈ U}.

And, the set of all interval-valued fuzzy sets on the universe χ is denoted as AU.
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5.1.1 Partial Order Relations on ⟨U,≤U⟩

Among different order relations to compare elements in IvFSs (Gehrke; Walker;
Walker, 1996), we take the component-wise Kulisch-Miranker order (or product or-
der), given by:

X ≤U Y ⇔ X ≤ Y and X ≤ Y , ∀X, Y ∈ U.

Thus, 0 ≤U X ≤U 1, for all X ∈ U. Moreover, for all X, Y ∈ U, by taking

∧(X, Y ) = {min(x, y) : x ∈ X, y ∈ Y } and ∨ (X, Y ) = {max(x, y) : x ∈ X, y ∈ Y },

the structured set U ≡ (U,≤U,∧,∨,1,0) is a lattice.
We also consider the relation ≼U ⊆ U× U given as

X ≼U Y ⇔ X ≤ Y , ∀X, Y ∈ U.

Therefore, we have that X ≼U Y ⇒ X ≤U Y , ∀X, Y ∈ U. And, both partial orders have
0 = [0, 0] and 1 = [1, 1] as the least and greatest elements, respectively.

Remark 5.1.1. Since each interval [X,X] ⊆ U can be assigned uniquely to a point
(X,X) ∈ U × U = U2, intervals can be ordered through pointwise orders in U × U

induced by the partial order of intervals ≤U. Thus, when K([0, 1]) = {(x, y) ∈ [0, 1]2|x ≤
y}, there is a natural bijection from U onto K([0, 1]) resulting in the following

[X,X] ≤U [Y , Y ]⇔ (X,X) ≤U×U (Y , Y ),

and meaning that a partial (linear) order on U induces a partial (linear) order on the
other, K([0, 1]).

However, a linear order of intervals is required to compare anyone of its elements
on U. Thus, we consider an order relation extending the partial order ≤U to a linear
order by applying the notion of an admissible order.

5.1.2 Conjugation Operators on ⟨U,≤U⟩

In this session, some concepts of interval automorphisms are presented. This study
is the basis for obtaining the conjugated functions, used in this work.

An interval function ΦU : U → U is an interval automorphism (IvA) if it is bijective
and monotonic with respect to the product order, that is, X ≤U Y if and only if X ≤U Y .

Let Aut(U) the set of all intervals in U. Interval automorphisms are closed for com-
position, that is, (∀ΦU,ΨU ∈ Aut(U), ΦU ◦ ΨU) ∈ Aut(U); and ∀ΦU ∈ Aut(U), there is
the reverse automorphism Φ−1U ∈ U, such that ΦU ◦ Φ−1U = IdU. Thus, (Aut(U), ◦) is a
group.

The action of an IvA ΦU : U→ U about an interval function fU : Un → U is an interval
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function fΦU
U : U→ U, called interval conjugated of fU, defined by the expression:

fΦU
U (X1, . . . , Xn) = Φ−1U (fU(ΦU(X1), . . . ,ΦU(Xn))). (57)

5.1.3 Dual Operators on (U,≤U)

Interval-valued fuzzy negations and dual operators are considered in the following.

Definition 5.1.1. (Reiser et al., 2007) An interval function N : U → U is an interval-
valued fuzzy negation (IvFN) if, for all X, Y ∈ U, it verifies the conditions:

N1: N([0, 0]) = 1; e N([1, 1]) = 0;

N2a : If X ≥ Y then N(X) ≤ N(Y ).

N2b : If X ⊆ Y then N(X) ⊇ N(Y ).

If N also satisfies the involutive property:

N3 : N(N(X)) = X, for all X ∈ U,

then N is called strong IvFN (Reiser et al., 2007).

Definition 5.1.2. (Reiser; Bedregal; Reis, 2012) Let N an interval fuzzy strong negation
in U and fU : Un ↔ U an interval function. The interval function N-dual of fNU is given
by:

fNU(X1, . . . , Xn) = N(fU(N(X1), . . . ,N(Xn))). (58)

Example 5.1.1. The interval extension of the standard negation NS : U → U, w.r.t. to
the Kulisch-Miranker’s order, is given as:

NS(X) = 1−X = [1−X, 1−X]. (59)

The interval extension of fuzzy negation N2(x) = (1 −
√
x)2 w.r.t. to the Kulisch-

Miranker’s order is, respectively, given as follows:

N2(X) =

[(
1−

√
X
)2

,
(
1−

√
X
)2
]

(60)

5.1.4 Aggregation Operators on (U,≤U)

An interval-valued extension of an aggregation function M : Un → U demands the
following conditions:

M1: M(X) = 0⇔ X = (0, . . . ,0); M(X) = 1⇔ X = (1, . . . ,1);

M2: If X = (X1, . . . , Xn) ≤Un Y = (Y1, . . . , Yn) then M(X) ≤U M(Y);
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M3: M(Xσ) = M(Xσ1 , . . . , Xσn) = M(X1, . . . , Xn) = M(X), where σ is the permutation
of the elements;

Interval-valued aggregations (IvA) are idempotent if they also verify the follows:

M4 : M(X,X) = X, ∀X ∈ U (idempotency property).

Example 5.1.2. Let M : Un → U be an idempotent IvA, together with the functions∧
,
∨

: U2 → U, given by:∧
(X, Y ) = [∧(X, Y ),∧(X,Y )] and

∨
(X, Y ) = [∨(X, Y ),∨(X,Y )]. (61)

The following inequation is held:∧
(X, Y ) ≤M(X, Y ) ≤

∨
(X, Y ), ∀X, Y ∈ U. (62)

Let M :U2→U be a binary IvA. By(Bedregal et al., 2017, Def. 3), its left and right
projections are functions M,M : U2 → U given as

M(x1, x2) = M(x1,x2) and M(x1, x2) = M(x1,x2) (63)

Example 5.1.3. The interval expression of the quadratic-mean operator M∗ : U2 → U
given by Eq.(63) as follows

M∗(X, Y ) =

[
1

4

(√
X +

√
Y
)2

,
1

4

(√
X +

√
Y
)2
]

(64)

is an IvA verifying properties from M1 to M4.

In the following, the definition of an interval extension of conjuntive and disjuntive
connectives on U is considered.

Definition 5.1.3. (Bedregal et al., 2007) A function T(S) : U2 → U is an IvT (IvS) if, for
all X, Y, Z ∈ U the following properties are verified:

T1: T(X, Y ) = T(Y,X); S1: S(X, Y ) = S(Y,X);

T2: T(X(T(Y, Z)) = T(T(X, Y ), Z); S2: S(X(S(Y, Z)) = S(S(X, Y ), Z);

T3: T(X, 1) = X; S3: S(X, 0) = X;

T4: T(X, Y ) ≤ T(X,Z) if Y ≤ Z S4: S(X, Y ) ≤ (X,Z) if Y ≤ Z.

Proposition 5.1.1. (Bedregal; Takahashi, 2006a) A function T(S) : U2 → U is an IvT
(IvS) if there are T1, T2(S1, S2) : U2 → U such that T1(x, y) ≤ T2(x, y) (S1(x, y) ≤
S2(x, y)) and the following holds:

T(X, Y ) = [T1(X, Y ), T2(X,Y )] S(X, Y ) = [S1(X, Y ), S2(X,Y )] (65)
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In Proposition 5.1.1, an interval-valued t-(co)norm can be considered as an interval
representation of a t-(co)norm. This generalization fits with the fuzzy principle, meaning
that the interval-valued membership degree can be thought of as an approximation of
the degree of exact relevance related to a specialist.

Thus, an IvT T is t-representable by t-norms T1 and T2, in the sense as proposed
in (Deschrijver; Kerre, 2005; Cornelis; Deschrijver; Kerre, 2004). It is analogously
stated in the dual construction of an IvS, as can be seen, in (Bedregal; Takahashi,
2006b).

5.1.5 Interval-valued Fuzzy (Co)Implications on (U,≤U)

Fuzzy (co)implications can then be naturally extended to an interval-based ap-
proach. In the following, we study the definition and the main properties of interval-
valued fuzzy (co)implication, shortly as IvI (IvC).

Definition 5.1.4. (Bedregal et al., 2007) A function I(J) : U2 → U is an interval-valued
fuzzy (co)implication if it satisfies the following conditions:

I1: If X ≤ Z then I(X, Y ) ≥ I(Z, Y ); J1: If X ≤ Z then J(X, Y ) ≥ J(Z, Y );

I2: If Y ≤ Z then I(X, Y ) ≤ I(X,Z); J2: If Y ≤ Z then J(X, Y ) ≤ J(X,Z);

I3: I(0, Y ) = 1; J3: J(1, Y ) = 0;

I4: I(X,1) = 1; J4: J(X,0) = 0;

I5: I(1,0)=0; J5: J(0,1)=1.

Since real numbers may be identified with degenerate intervals in the context of
interval mathematics, the boundary conditions that must be satisfied by the clas-
sical fuzzy implications can be naturally extended to interval fuzzy degrees, when-
ever degenerate intervals are considered. So, an interval-valued fuzzy (co)implicator
I(J) : U2 → U verifies I5 (J5) together with the following boundary conditions:

I0: I(1,1) = I(0,0) = I(0,1) = 1; J0: J(1,1) = J(1,0) = J(0,0) = 0;

Several reasonable properties may be required for fuzzy (co)implications. In this
work, we consider the following ones:

I6: I(1, Y ) = Y ; J6: J(0, Y ) = Y .

I7: I(X, I(Y, Z))=I(Y, I(X,Z)); J7: J(X, J(Y, Z))=J(Y, J(X,Z));

I8: I(X, Y )=1⇔ X ≤U Y ; J8: J(X, Y )=0⇔ X ≥U Y ;

I9: I(X, Y ) = I(N(Y ),N(X)), N is a SIFN; J9: J(x, y) = J(N(Y ),N(X)), N is a SIFN;

I10: I(X, Y ) = 0⇔ X = 1 and Y = 0; J10: J(X, Y ) = 1⇔ X = 0 and Y = 1.
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The conditions under which an interval-valued fuzzy (co)implication can be obtained
by a fuzzy (co)implication is studied in the proposition below:

Proposition 5.1.2. (Baczyński; Jayaram, 2007, Prop 21) A fuzzy (co)implication
I(J) : U2 → U satisfies properties I1 (J1) and I2 (J2) if only if the interval fuzzy
(co)implication I (J) is given as

I(X, Y ) = [I(X,Y ), I(X, Y )]; J(X, Y ) = [J(X,Y ), J(X, Y )]. (66)

See in the Table ??, the interval-valued extension of the fuzzy (co)implications pre-
sented in the Table 5. In addition, since the conditions of Proposition 5.1.2 are verified,
these interval-valued fuzzy implications can be expressed by the corresponding fuzzy
implications, as detailed in the following example.

Table 9 – Interval-valued Fuzzy Implications and NS-Dual Constructions.

Interval-valued Fuzzy Implications Interval-valued Fuzzy Coimplications

ILK(X,Y )=

 1, if X ≤ Y,

1−X + Y, otherwise;
JLK(X,Y )=

 0, if X ≥ Y,

Y −X, otherwise;

IKD(X,Y )=

 1, if X ≤ Y,

max(1−X,Y ), otherwise;
JKD(X,Y )=

 0, if X ≥ Y,

min(1−X,Y ), otherwise;

IRB(X,Y )=

 1, if X ≤ Y,

1−X +XY, otherwise;
JRB(X,Y )=

 0, if X ≥ Y,

Y −XY, otherwise;

IGR(X,Y )=

 1, if X ≤ Y,

0, otherwise;
JGR(X,Y )=

 0, if X ≥ Y,

1, otherwise;

5.2 Main Bibliographic References

(i) In (Zhang; Zhang; Mei, 2009) a new axiomatic definition of entropy of IvFS is
based on distance, and the relationship between entropy and similarity measure
of IvFS is developed.

(ii) In (Bustince et al., 2019) a new class of similarity measures between interval-
valued fuzzy sets with respect to total orders of intervals is studied; and, re-
sults consider the interval width, meaning that the uncertainty of the output is
strongly related to the uncertainty of the input. For constructing the new interval-
valued similarity, interval-valued aggregation functions and interval-valued re-
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Table 10 – The Bibliographic Revision Integrating Entropy on IvFS.

Paper/Year Operators Characterization

(Zhang; Zhang; Mei, 2009) Similarity Mea-
sures

Proposal of a new interval-valued entropy, investigating
the distance notions and relationship on similarity mea-
sures of IvFS

(Bustince et al., 2019) REF-Operator
Aggregation

Defining entropy via similarity measures between interval-
valued fuzzy sets w.r.t. total orders of intervals

(Bustince et al., 2019) Aggregation
Function

New definition of interval entropy considering the width of
the membership intervals, based on normal functions

(Che; Suo; Li, 2021) Distance mea-
sure

Entropy measure based on the relationship between dis-
tance functions and distance measures

(Takáč et al., 2019) RDF-Operator
Aggregation

The construction of distance and entropy measures are
done by aggregating normal functions and applying for
admissible orders

(Takáč et al., 2019) Aggregation
Function

Distance and entropy measures for IvFS are yielded w.r.t.
total order as well

(Zhang et al., 2020) Abstract Shad-
owed sets

The proposal of interval fuzzy entropy enables a new
shadowed set model, namely, interval shadowed sets.

(Ohlan, 2022) Exponential
functions

Present a novel distance measures and the weighted ex-
ponential entropy measure

stricted equivalence functions (IvREF) which take into account the width of the
intervals are discussed, and the results are applied to stereo image matching.

(iii) In (Bustince et al., 2019), a new definition of interval entropy takes into account
the width of the membership intervals, by aggregating normal EN functions.

(iv) In (Che; Suo; Li, 2021), a new axiomatic definition of entropy measure from the
graphical representation of the relationship between the distance function and the
distance measure is explored, also illustrating an application in MCDM.

(v) In (Takáč et al., 2019), considering the width of intervals to connect the uncer-
tainty of the output with the uncertainty of the input and making use of total orders
between intervals, the construction of distance measures and entropy is done by
aggregating interval-valued restricted dissimilarity functions (RDF) and interval-
valued normal functions. An illustrative example in image thresholding uses the
expression of the proposed interval entropy to show the validity of the proposal.

(vi) In (Takáč et al., 2019), both interval-valued restricted equivalence functions and
interval-valued restricted dissimilarity functions are aggregated and similarity
measures, distance and entropy measures for IvFS are yielded w.r.t. total order
as well.

(vii) In (Zhang et al., 2020), a comprehensible method for measuring the interval fuzzy
entropy is defined based on the notion of Shadowed sets. And also, the interval
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fuzzy entropy enables a new shadowed set model, namely, interval shadowed
sets. By solving a fuzzy entropy loss minimization problem, a pair of optimal
thresholds can be obtained.

(viii) In (Ohlan, 2022) the study of entropy and distance measures under an interval-
valued intuitionistic fuzzy environment uses an exponential function. First, it
presents the novel exponential entropy and distance measures for interval-valued
intuitionistic fuzzy sets with proof of their authenticity. A method is offered to solve
multi-criteria group decision-making (MCDM) problems in the IvFS environment
based on the weighted exponential entropy measure.

5.3 Summary

The chapter reports the basic concepts of interval-valued fuzzy logic, which asso-
ciates each element with a range of values instead of a single value, allowing for a more
flexible and comprehensive representation of uncertainty and imprecision. This chap-
ter also presents some relations as duality, conjugation, and representability based on
the notion of partial orders on ⟨U,≤U⟩.

This study also considers the interval extension of aggregation, negation, and im-
plication, including illustrations of the interrelation of such classes of operators and
many examples. Concluding, the list of the main references supporting this revision is
presented.



6 INTERVAL-VALUED INTUITIONISTIC FUZZY LOGIC

The Atanassov Interval-valued Intuitionistic Fuzzy Logic (A-IvIFL) is an extension
of Intuitionistic Fuzzy Logic that takes into account the inherent uncertainty and impre-
cision associated with real-world data by employing interval-valued degrees on non-
complementary relations of membership and non-membership functions. In A-IvIFL,
instead of assigning precise real numbers as membership values, intervals are used to
represent such degrees.

This flexible modeling of hesitant and uncertain information results in a powerful
logical approach for decision-making processes, in environments where imprecise or
incomplete data is prevalent.

This chapter delves into the key concepts and operators of Interval-valued Intu-
itionistic Fuzzy Logic, exploring its theoretical foundations and practical applications in
areas such as decision support systems, expert systems, and pattern recognition.

6.1 Historical Approach

Atanassov and Gargov (Atanassov; Gargov, 1989) propose the interval-valued intu-
itionistic fuzzy logic (A-IvIFL) based on the notion of interval-valued intuitionistic fuzzy
sets (A-IvIFS), addressing a mathematical and more intuitive method than classical
logic, which can consider ambiguous or uncertainty, easily integrated with imprecise
information.

A-IvIFL not only deals with the indecision inherent in natural language variables
modeling computer systems but also collaborates with two other interpretations:

(i) The interpretation which is achieved when intervals may be considered as particular
types of fuzzy sets, representing the imprecision of a variable depending on the
computational context; and

(ii) The indecision about the relation between membership and non-membership de-
grees, not necessarily related as complementary degrees.

In this context, the former is concerned with calculations and numerical errors,
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regarding information related to various experts demanding membership and non-
membership degrees. The latter is consistent with a non-zero intuitionistic fuzzy index.

Interval-valued Atanassov’s intuitionistic fuzzy logic reinforces these interpretations
by using the duality principle and aggregation operators, providing more flexible mod-
eling for the truth associated with each variable. Thus, a more realistic analysis of the
veracity of this variable can be inferred as much as from its interval membership degree
and, from the complement, its relation with its interval non-membership degree.

Applications involve systems based on A-IvIFL together with computational tools,
such as neural networks and evolutionary programming, expert systems, approxima-
tion reasoning, and digital image processing. Also noteworthy are applications in re-
source management, military strategies, medical diagnosis, pattern recognition, and
clustering analysis in logistics (Bustince; Barrenechea; Mohedano, 2004).

However, despite the relevant advances, there is no consensus to consolidate a
solution to guide the theoretical basis as well as the mathematical methods to support
the area of decision-making based on multiple attributes.

This convergence is still a great research challenge, justified by many factors,
among which the following stand out:

(i) insufficient knowledge of decision-makers;

(ii) the ever-increasing need to aggregate two or more possible judgments;

(iii) the challenging ability to deal with subjective characteristics of alternatives of fuzzy
preference modeling supporting multi-attributes in decision making.

All these factors generate uncertain information that must be mapped from the mod-
eling of decision-making systems based on multiple attributes (Dubois; Prade, 2000).

To compare data in this work, some results are focused on the study of general-
ized interval-valued Atanassov’s intuitionistic fuzzy index (A-GIvIFIx) to obtain entropy
measures, which are related to other parameters as distance, similarity, bissimilar-
ity, correlation, accuracy, score, and many other ones performed over interval-valued
Atanassov’s intuitionistic fuzzy sets. Some authors put forward their axiomatic defi-
nitions in constructive methods to obtain interval-valued entropies for interval-valued
Atanassov’s intuitionistic fuzzy sets, including distance or similarity measures.

6.2 Main Concepts

Since Atanassov introduced the interval-valued fuzzy set theory, fruitful results have
been achieved, introducing several basic operations, expanding both depth and scope
and effectively aggregation and fuzzy connectives.

In the following, we review the definitions and basic results of the main interval-
valued intuitionistic fuzzy connectives (and some generalizations), which are: fuzzy
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negations and duality relation, automorphisms, and conjugate operators. These con-
nectives are important for the development and understanding of this work since the
operators that define the entropy proposed in this thesis are constructed from these
connectives.

The interval extension of generalized Atanassov’s intuitionistic fuzzy index is stud-
ied, based on the notion of interval-valued fuzzy negation. The methodology to con-
struct A-GIvIFIx by the composition of interval-valued fuzzy negations and interval-
valued fuzzy (co)implications is presented, and some methods are presented by a
selection of strong negations and selected classes of implications. In addition, some
examples illustrating the constructive methods are presented.

6.2.1 Interval-valued Intuitionistic Fuzzy Sets

Based on (Atanassov; Gargov, 1998) and later in (Cornelis; Deschrijver; Kerre,
2004), we briefly report the main concepts and properties of interval-valued
Atanassov’s intuitionistic fuzzy sets (A-IvIFS shortly). An A-IvIFS AI in a non-empty
universe χ is expressed as:

AI={(x, νAI
(x), νAI

(x)) : x∈χ, µAI
(x) + νAI

(x))≤1}, (67)

and the set of all IvIFS is denoted by AŨ. Thus, an intuitionistic fuzzy truth value of an
element in AI is related to the ordered pair (µAI

(x), νAI
(x)) where x ∈ χ.

When Ũ = {X̃ = (X1, X2) : (X1, X2) ∈ U2 and X1 + X2 ≤ 1}1 denotes the set of
all Atanassov’s interval-valued intuitionistic fuzzy degrees, the two order relations are
considered:

X̃ ≤Ũ Ỹ⇔X1≤Y1 and X2≥Y2;

X̃ ⋞Ũ Ỹ ⇒ X1 ≤ Y1 and X2 ≤ Y2, for all X̃, Ỹ ∈ Ũ;

we have that (Ũ,≤Ũ) and (Ũ,⋞Ũ) are partial ordered sets with 0̃ = (0,1)≤Ũ X̃ and
1̃ = (1,0)≥Ũ X̃ as the least and greatest elements on Ũ, respectivelly.

An Atanassov’s interval-valued intuitionistic fuzzy degree has the projections lII , rII :
Ũ→ U defined by

lII(X̃) = X1 and rII(X̃) = X2.

When X1 +X2 = 1 then AI is restricted to the set AI of all interval-valued fuzzy sets.
A function π̃ : χ→U, called an interval-valued intuitionistic fuzzy index (A-IvIFIx) of

an element x ∈ χ, related to an A-IvIFS AI , is given as

π̃(x) = NS(µAI
(x) + νAI

(x)), (68)

1We assume the component-wise addition on U, see (Moore, 1979).
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modeling not only the uncertainty degree but also the hesitancy (indeterminance) de-
gree of x ∈ χ.

Thus, the accuracy function h̃ : χ→U provides the interval-valued accuracy degree
of x ∈ χ, given as h̃(x) + π̃(x) = 1. So, it means that the larger π̃(h̃) the higher the
hesitancy (accuracy) degree of π̃(x)(h̃(x)) ∈ U.

Moreover, the difference between AI and BI is given by:

AI − BI = {X̃ =(min(νAI
(x), νBI

(x)),max(µAI
(x), µBI

(x))) : X̃ ∈ Ũ, x ∈ χ}.

6.2.2 Interval-valued Intuitionistic Conjugate Operator

A bijective and monotonic function ΦŨ : Ũ → Ũ is an interval-valued intuitionistic
automorphism on Ũ, meaning that below properties hold:

AI1: ΦŨ(1̃) = 1̃ and ΦŨ(0̃) = 0̃;

AI2: ΦŨ ◦ Φ
−1
Ũ (X̃) = X̃;

AI3: X̃ ≤Ũ Ỹ if only if ΦŨ(X̃) ≤Ũ ΦŨ(Ỹ ), for all X̃, Ỹ ∈ Ũ.

In the set of all interval-valued intuitionistic automorphism (Aut(Ũ)), the conjugate func-
tion of fŨ : Ũn → Ũ is a function fΦŨ

Ũ : Ũn → Ũ, defined as follows

f
ΦŨ
Ũ (X̃) = Φ−1Ũ (fŨ(Φ(X̃1), . . . ,ΦŨ(X̃n))). (69)

Reporting main results in (Costa; Bedregal; Neto, 2011, Theorem 17), let ΦU : U→
U be an interval-valued automorphism, ΦU ∈ Aut(U). Then, a ΦU-representability of
ΦŨ is given by

ΦŨ(X̃) = (ΦU(lŨ(X̃)),1− ΦU(1− rŨ(X̃))),∀X̃ ∈ Ũ; (70)

Moreover, when ΦU ∈ Aut(U), for all X̃ ∈ Ũ, a ΦŨ-representability of ΦŨ is given by

ΦŨ(X̃) =
(
[ΦU(X1),ΦU(X1)], [1− ΦU(1−X2, 1− ΦU(1−X2]

)
. (71)

6.2.3 Interval-valued Intuitionistic Dual Conectives

An interval-valued intuitionistic fuzzy negation (IvIFN shortly) NI : Ũ → Ũ satisfies,
for all X̃, Ỹ ∈ Ũ, the following properties:

NI1: NI(0̃)=NI(0,1)= 1̃ and NI(1̃)=NI(1,0) = 0̃;

NI2: If X̃ ≥Ũ Ỹ then NI(x̃)≤ŨNI(ỹ).

Moreover, NI is a strong IvIFN verifying the condition:
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NI3: NI(NI(X̃)) = X̃, ∀X̃ ∈ Ũ.

Consider NI as an IvIFN and fŨ : Ũn → Ũ. The NI-dual interval-valued intuitionistic
function of fŨ, denoted by fŨ : Ũn → Ũ, is given by:

fNŨ
(X̃) = NI(ΦŨ(NI(X̃1), . . . ,NI(X̃n))),∀X̃ = (X̃1, . . . , X̃n) ∈ Ũn. (72)

When ÑI is a strong IvIFN, f̃ is a self-dual interval-valued intuitionistic function. And,
by (Baczyński, 2004), taking a strong IvFN N : U→ U, an IvIFN NI : Ũ→ Ũ such that

NI(X̃) = (N(NS(X2)),NS(N(X1))), (73)

is a strong IvIFN generated by means of the standard IvFN NS. Additionally, if N = NS,
Eq. (23) can be reduced to

NI(X̃) = (X2, X1) = [NS(X), NS(X)].

Concluding this section, the complement of A-IvIFS AI is defined by

AIC={(x,N(NS(νAI
(x)),NS(N(µAI

(x)))) : x∈χ, µAI
(x) + νAI

(x)≤ 1} ⊆ AŨ (74)

6.3 Interval Extension of the A-GIFIx on ⟨Ũ,≤Ũ⟩

Since Atanassov’s interval-valued intuitionistic fuzzy logic was introduced, many
researchers have taken advantage of the interval-valued intuitionistic fuzzy index to
represent not only the uncertainty but also the imprecision in modeling the member-
ship and non-membership functions, which is strictly linked by interval-valued fuzzy
connectives and relevant in the composition of the if-then rule of corresponding fuzzy
system.

In intuitionistic fuzzy reasoning theory, intuitionistic fuzzy index operators play an
important role. In this chapter, we introduce distinct expressions for A-IvIFIx operators
which can be used in real applications, investigating properties, dual and conjugate
constructions.

Focusing on the expressions of Atanassov’s interval-valued intuitionistic fuzzy index
based on the use of interval-valued fuzzy coimplications, a methodology to provide new
expressions that preserve properties is considered.

Denoting a measure of non-determinacy, the intuitionistic fuzzy index of an element
x ∈ χ in an interval-valued intuitionistic set AI , is conceived

In this section, we first introduced the axiomatic definition of a generalized interval-
valued intuitionistic fuzzy index. In the sequence, its main properties and relationship
with dual and conjugate operators are also discussed.
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Definition 6.3.1. A function Π̃ : Ũ → U is called a generalized Atanasso’s interval-
valued intuitionistic fuzzy index associated with a strong IvFN N A-GIvIFIx if, for all
X1, X2, Y1, Y2 ∈ U, it holds that:

Π̃1: Π̃(X1, X2) = 1 if only if X1 = X2 = 0;

Π̃2: Π̃(X1, X2) = 0 if only if X1 +X2 = 1;

Π̃3: If (Y1, Y2) ⋞Ũ (X1, X2) then Π̃(X1, X2) ≤U Π̃(Y1, Y2);

Π̃4: Π̃(X1, X2) = Π̃(NI(X1, X2)) when N is a SIvFN.

6.3.1 Obtaining A-GIvIFIx via Interval-valued Fuzzy Connectives

In (DA SILVA et al., 2018) is discussed the condition under which an interval-valued
fuzzy (co)implication gives rise to generalized interval-valued Atanassov’s intuitionistic
fuzzy index associated with a strong IvFN, describing a new methodology to obtain
different expressions of such operator by making use of fuzzy (co)implication operators
and their dual constructors.

In the following, Theorem 6.3.1 extends main results in (Barrenechea et al., 2009).

Theorem 6.3.1. (DA SILVA et al., 2018, Theorem 1) A function Π̃N,I(Π̃N,J) : Ũ→ U is
A-GIvIFIx iff exists a (co)implicator I(J) : U2 → U verifying I1(J1), I8(J8), I9(J9) and
I10(J10) such that

Π̃I(X) = N(I(NS(X2), X1)), (75)

Π̃J(X) = J(N(NS(X2)),N(X1)). (76)

6.3.2 Dual Operators and A-IvIFIx with respect to IvFN

The Φ-representability and N-dual A-GIvIFIx constructions are discussed in (DA
SILVA et al., 2018) and reportes below.

Proposition 6.3.1. (DA SILVA et al., 2018, Proposition 2) Let IN (JN) : U2→ U be the
N-dual operator of a (co)implication I(J) : U2 → U. The following holds:

Π̃IN(X̃) = Π̃I(X̃),
(
Π̃JN(X̃) = Π̃J(X̃)

)
. (77)

In diagram of Figure 6 the following denotation is considered:
(i) C(I) and C(J)denotes the class of all (co)implications;
(ii) C(N) denotes the class of all negations;
(iii) C(Π̃) provides denotation to the class of all A-GIvIFIx;
In addition, the interrelations summarize the results stated in Theorem 6.3.1 and Propo-
sition 6.3.1 are summarized in the diagram presented in Figure 6).
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C(I)
Eq. (75)

- C(Π̃I) = C(Π̃J) �
Eq. (76)

C(J)

C(I)× C(N)

Eq.(72)

? Eq. (75)
- C(Π̃IN) = C(Π̃JN)

Eq.(72)

?
�
Eq. (76)

C(J)× C(N)

Eq.(72)

?

Figure 6 – Constructing A-GIvIFIx from Classes of Implications.

Corollary 6.3.1. When N = NS, Eq.(75) in Theorem 6.3.1 is given as

Π̃I(X̃) = NS(I(NS(X2), X1)) (78)

Π̃J(X̃) = J(X2,NS(X1) (79)

Proposition 6.3.2. Let N be an N -representable strong IvFN and ΠI (N,I)ΠI (J,N) : Ũ →
U be an A-IFIx(N,I). If I, J are representable (co)implications given by Eq.(66), a func-
tion Π̃I : Ũ→ U given by Eq.(78) can be expressed as

Π̃I(X̃) = [ΠI (N,I)(X2, X1),ΠI (N,I)(X2, X1)] (80)

Π̃J(X̃) = [ΠI (J,N)(X2, X1),ΠI (J,N)(X2, X1)]. (81)

Proof. We proof Eq.(80), the other one can be analogously done. By taking X1 =

[X1, X1] and X2 = [X2, X2] then X1 + X2 = [X1 + X2, X1 + X2] ≤ [1, 1], mean-
ing that X1 + X2 ≤ 1 and X1 + X2 ≤ 1. Therefore ΠN,I(X̃) = N(I([1 − X2, 1 −
X1], [X1, X1])) = [N(I(1 − X2, X1)), N(I(1 − X2, X1))]. Concluding, Π̃N,I(X̃) =

[ΠI (N,I)(X2, X1),ΠI (N,I)(X2, X1)]. So, Proposition 6.3.2 holds.

Example 6.3.1. Consider IRB and related NS-dual construction Π̃NS ,JRB
. By preserv-

ing the conditions of Proposition 6.3.2 and Eq.(76) we have that Π̃NS ,IRB
(X1, X2) =

Π̃JRB
(X1, X2) and it can be expressed as

Π̃NS ,IRB
(X1, X2)=

 0, if X1 +X2 = 1,

1−[1−X2−X1+X2X1, 1−X2−X1+X2X1],otherwise.
(82)

Analogously, the methodology can be applied to other implications, obtaining other
examples of generalized interval-valued intuitionistic fuzzy indexes associated with the
interval extension of the standard negation.

Table 11, in the following, illustrates the method to obtain generalized interval-
valued intuitionistic fuzzy indexes associated with the interval extension of the standard
negation. Such examples consider the interval-valued fuzzy implications IKD, ILK , IRB

and IGR, presenting their algebraic expressions and corresponding A-GIvIFIx.



71

Table 11 – Generalized Interval-valued Intuitionistic Fuzzy Index Associated with the
Standard Negation.

IvFI and NS-dual Constuctions A-GIvIFIx

IKD(X, Y )=

 1, if X ≤ Y,

max(1−X, Y ), otherwise;
Π̃KD(X, Y )=

 0, if X + Y = 1,

1−max(X, Y ), otherwise;

JKD(X, Y )=

 0, if X ≥ Y,

min(1−X, Y ), otherwise;

ILK(X, Y )=

 1, if X ≤ Y,

1−X + Y, otherwise;
Π̃LK(X, Y )=

 0, if X + Y = 1,

1−X − Y, otherwise;
JLK(x, y)=

 0, if X ≥ Y,

Y −X, otherwise;

IRB(X, Y )=

 1, if X ≤ Y,

1−X +XY, otherwise;
Π̃RB(X, Y )=

 0, if X + Y = 1,

1−X − Y +XY, otherwise;
JRB(X, Y )=

 0, if X ≥ Y,

Y −XY, otherwise;

IGR(X, Y )=

 1, if X ≤ Y,

0, otherwise;
Π̃GR(X, Y )=

 0, if X + Y = 1,

1, otherwise;
JGR(X, Y )=

 0, if X ≥ Y,

1, otherwise;

6.3.3 Relationship with Interval-valued Automorphisms

Proposition 6.3.3. Let NΦŨ : U→ U be the ΦU-conjugate of a strong IvFN N : U→ U
and ΦU : U → U be a ΦŨ-representable IvA given by Eq.(71). When ΦŨ : Ũ → Ũ is a
ΦŨ-representable IvIFA given by Eq.(70), a function Π̃ΦŨ : Ũ→ U given by

Π̃ΦŨ(X1, X2) = (Φ−1(Π̃(Φ(X1)),1− Φ(1−X2)), (83)

is an A-GIvIFIx whenever Π̃ : Ũ→ U is also an A-GIvIFIx.

Corollary 6.3.2. Under the conditions of Proposition 6.3.3 and considering a ΦU-
representable IvA given by Eq.(71), we can express Eq.(83) as follows:

Π̃ΦŨ(X1, X2) =
[
Π̃ΦU(X1, X2), Π̃

ΦU(X1, X2)
]
. (84)

Proof. Straightforward Proposition 6.3.3.
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These results present the expression for the hesitation index based on interval-
valued intuitionistic fuzzy implication and their dual construction.

Corollary 6.3.3. Let ΦŨ be a ΦŨ-representable automorphism in Aut(Ũ) and IΦŨ(JΦŨ) :

Ũ2 → Ũ be the corresponding ΦU-conjugate operator related to a (co)implication I(J) :
U2 → U, verifying the conditions of Theorem 6.3.1. When NΦU is a strong ΦU-conjugate
IvFN negation, the functions Π̃

ΦŨ
I (Π̃

ΦŨ
J ) : Ũ→ U given by

Π̃
ΦŨ
I (X1, X2) = NΦU(IΦŨ(NS(X2), X1)) (85)

Π̃
ΦŨ
J (X1, X2) = JΦŨ(NΦU(NS(X2),NΦU(X1)) (86)

are A-GIvIFIx.

Example 6.3.2. Consider IRB and related ΦU-conjugate construction Π̃NS ,IRB
given by

Eq.(82). For a ΦŨ-representable automorphism given as ΦŨ(X) = Xn, whenever N is
a nonnegative integer, we have the following:

Π̃
ΦŨ
NS ,IRC

(X1, X2) =

[
n

√
(1−Xn

1 )(1−X2)n;
n
√

(1−Xn
1 )(1−X2)

n

]
. (87)

6.4 Relationship between A-GIFIx and A-GIvIFIx

The following proposition expresses the conditions under which an A-GIvIFIx Π̃ :

Ũ→ U can be representable by A-GIFIx Π : Ũ → U .

Theorem 6.4.1. Let Π be a A-GIFIx. For X̃ = (X1, X2) ∈ Ũ, the function Π̃ : Ũ→U,

Π̃(X1, X2) = [Π(X1, X2),Π(X1, X2)], (88)

is a Π̃-representable A-GIvIFIx.

Example 6.4.1. Let ΠN2 : Ũ → U be an A-GIFIx w.r.t. N2(x) = (1 −
√
x)2, which is

given as

ΠN2(x1, x2)=

 0, if x1 + x2 = 1;(
1− 1

4
(
√
x2 −

√
x1)

)2
, otherwise.

So, by Theorem 6.4.1 and Eq.(60), we obtain the next Π̃-representable A-GIvIFIx :

Π̃N2(X1, X2) =


0, if X1 +X2 = 1;[(

1−1
4
(
√
X2−

√
X1)

)2

,
(
1−1

4
(
√
X2−

√
X1)

)2]
.

(89)
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Conversely, conditions under which an A-GIFIx can be obtained from an A-GIvIFIx
are discussed in sequence.

Theorem 6.4.2. Let Π̃ : Ũ → U be an A-GIvIFIx associated with an IvFN N. Each
function Π̃, Π̃ : Ũ → U given as

Π̃(x1, x2) = Π̃(x1,x2); Π̃(x1, x2) = Π̃(x1,x2) (90)

is an A-GIFIx, for all x̃ = (x1, x2) ∈ Ũ .

The actions of (Φ1,Φ2)-representable automorphisms on A-GIvIFIx provide a
methodology enabling new expressions of A-GIvIFIx on Ũ and preserving its main
properties.

Proposition 6.4.1. For Φ1,Φ2∈Aut(U), ΠΦ1,Φ2 : Ũ→ U given as

ΠΦ1,Φ2(X̃) = Φ−11 (Φ2(1−X2)−Φ2(X1)) (91)

is an A-GIvIFIx w.r.t. strong IvIN N(X) = Φ−12 (1− Φ2(X)).

Corollary 6.4.1. Under the conditions of Proposition 6.4.1 the following holds:

Π̃(0, X2) = 1−X2 ⇔ Φ1(X) = Φ2(X),∀X̃ = (X1, X2) ∈ Ũ.

6.5 Main Bibliographic References

In the following, we highlight results obtained by a systematic revision of the liter-
ature on entropy measures and A-IvIFS, from 2015 to nowadays. The characteristics
are pointed out in Table 12 and summarized in the following.

(i) In (Wei; Zhang, 2015), two proposals of entropy measures for A-IFS and IVFS
based on the cosine function are introduced. They can overcome some short-
comings to measure both the fuzziness and intuitionism of these sets. As a result,
the uncertain information can be described more sufficiently in applications to as-
sess the experts’ weights and to solve multi-criteria fuzzy group decision-making
problems (MCDM).

(ii) In (Meng; Chen, 2015), an entropy measure is based on Shapley weighted sim-
ilarity measures, exploring the interdependent or interactive characteristics be-
tween elements in IFS sets, defined by using the well-known Shapley functions,
as an extension of the associated weighted similarity measures.

(iii) In (Xie; Lv, 2016), the definition and formula of entropy for A-A-IvIFS are pro-
posed, including numerical examples verifying the appropriateness and effective-
ness method for solving multi-attribute decision-making problems.



74

Table 12 – The Bibliographic Revision Integrating Entropy on IvFS.

Paper Reference Operators Characterization.

(Wei; Zhang, 2015) Weight Average Providing entropy measure based on distance and IFIx.

(Meng; Chen, 2015) Shapley function Defining an entropy-based on Shapley weighted similarity
measures.

(Xie; Lv, 2016) Aggregation Entropy are studied considering fuzziness and lack of
knowledge.

(Mao; Zhao; Ma, 2016) Coef. Correlation Compositive entropy combined fuzzy intuitionistic and
span factors.

(Xian; Dong; Yin, 2017) Weighted Averaging Developing a new attribute weight based on the support
and entropy measure of attribute values.

(Tiwari; Gupta, 2018) Aggregation Entropy and similarity concepts are based on probability
and distance.

(Mishra; Chandel; Mot-
wani, 2018)

Logarithmic Entropy and divergence measures use the MABAC
method.

(Wei et al., 2019) Weight Average Proposing a novel generalized exponential entropy mea-
sures.

(Tiwari, 2019) Exponential Defining the generalized similarity measures using a new
entropy measure.

(Rani; Jain, 2019) VIKOR operator Study of a new entropy and divergence measures for A-
IvIFS.

(iv) In (Mao; Zhao; Ma, 2016), combining intuitionistic, fuzzy, and span factors, the ax-
iomatic definition of compositive entropy is proposed. Furthermore, such entropy
is applied to MADM problems using the weighted correlation coefficient between
A-IvIFS and pattern recognition by a similarity measure, which is transformed
from the compositive entropy.

(v) In (Xian; Dong; Yin, 2017), a new attribute weight based on the support of en-
tropy measure of attribute values is proposed, in order to determine the attribute
weights in MCDM related to hesitant and imprecision information. Then, A-IvIFS
are combined with weighted averaging (IvIFCWA) operators, whose interval-
valued intuitionistic fuzzy numbers are concerned with the investment strategy,
illustrating the validity and applicability of the proposed method.

(vi) In (Tiwari; Gupta, 2018), new axiomatic definitions of entropy measure applied
concepts of probability and distance for A-IvIFS also consider the degree of hes-
itancy, which is consistent with the definition of entropy given by De Luca and
Termini. The performance of proposed entropy and similarity measures on the
basis of intuition are checked and compared with the existing entropy and simi-
larity measures using numerical examples in the field of pattern recognition and
medical diagnoses.

(vii) In (Mishra; Chandel; Motwani, 2018), a new integrated method based on
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the multi-attributive border approximation area comparison method is pro-
posed (Mishra; Rani, 2017) using logarithmic functions. For the calculation of
criteria weight, the subjective weights expressed by decision experts are ag-
gregated and the proposed entropy and divergence measures method obtained
more realistic weights. Considering a programming language selection problem,
a sensitivity analysis with different weights of criteria showed the stability of the
approach, which is efficient and consistent with the other methods.

(viii) In (Wei et al., 2019), a novel generalized exponential intuitionistic fuzzy entropy
and generalized exponential interval-valued intuitionistic fuzzy entropy with inter-
val area. The advantages of the new generalized entropy measures are com-
pared with the existing A-IvIFE measures by some examples. The two novel gen-
eralized exponential entropy measures can distinguish the special cases well.
The two novel generalized entropy measures are reasonable and more flexible
than the existing entropy.

(ix) See in (Tiwari, 2019), the generalized entropy measure for A-IvIFS and relation
are established to define the generalized similarity measures using the proposed
entropy measure. Further, the proposed entropy measure is compared with some
existing measures of entropy with the help of an illustrative example.

(x) In (Rani; Jain, 2019), the authors studied new entropy and divergence measures
A-IvIFS and compared them with the existing measures. Further, to cope with the
MCDM problems with non-commensurable and conflicting criteria, an extended
VIKOR method is developed under an interval-valued intuitionistic environment.
MCDM problem of supplier selection is discussed under incomplete and uncertain
information situations, which employs its advantages and feasibility.

6.6 Summary

This chapter addressed the main concepts of interval-valued intuitionistic fuzzy logic
and definitions of connectives (aggregation, negations, and implications) including their
expression of interval-valued intuitionistic conjugate operators and dual constructions.

Next, the interval extension for the generalized intuitionistic fuzzy index (A-IvIFIx)
was obtained as a composition of negations and aggregation operators. Moreover,
we discuss the conditions under which an A-IvIFE was obtained by aggregation of an
A-IvIFIx, measuring not only fuzziness but also the hesitation related to the comple-
mentary relation of interval-valued intuitionistic membership functions. In sequence,
the relationship between A-GIFIx and A-GIvIFIx is presented.

At the end of this chapter, the bibliographic references underlying the study on A-
IvIFL are presented. However, the above concepts were studied considering the notion
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of partial order on ⟨Ũ,≤Ũ⟩.
In Part III, we extend such methodology to obtain connectives and entropy in A-

IvIFS by applying the notion of admissible orders on ⟨Ũ,⪯Ũ⟩.
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Part II

THEORETICAL CONTRIBUTIONS



7 CONCEPTS OF THE BOUNDED LATTICE ⟨U,⪯U⟩

This chapter studies of the concept of admissible linear orders on ⟨U,⪯U⟩, in-
spired by contributions given by (Matzenauer et al., 2021; Santana et al., 2020), which
have obtained significant results in many applications based on multi-valued logic con-
text (Bustince et al., 2013; Zapata et al., 2017; Matzenauer et al., 2022). And, in
sequence, a new admissible order is presented.

7.1 Admissible orders on ⟨U,⪯U⟩

A partial order ≤ may be extended to an admissible order on U meaning that it is
linear and refines ≤.

A linear order over U is a binary relation that is transitive, antisymmetric, and total.
Equivalently, a linear order is a partial order under which every pair of intervals in U is
comparable.

Definition 7.1.1. (Bustince et al., 2013) The order ⪯ is called an admissible order on
U if the following holds:

(i) ⪯ is a linear order on U,

(ii) for all X1, X2 ∈ U, X1 ⪯ X2 whenever X1 ≤ X2.

The degenerate intervals 0 and 1 are the greatest and the smallest elements of
(U,⪯), respectively (Bustince et al., 2013).

7.1.1 Admissible orders obtained from aggregation functions

Based on Proposition 2.4 (Zapata et al., 2017), let M1,M2 : U → U be two ag-
gregation functions such that ∀X, Y ∈ U, the expressions M1(X,X) = M1(Y , Y ) and
M2(X,X) = M2(Y , Y ) can only hold simultaneously if X = Y . The admissible order
⪯M1,M2 on U is given by

X⪯M1M2 Y ⇔

 M1(X,X) ≤M1(Y , Y ) or

M1(X,X) =M1(Y , Y ) and M2(X,X) ≤M2(Y , Y ).
(92)
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The admissible orders reported in (Takáč et al., 2019) are described based on
⪯M1M2-order.

Example 7.1.1. Both relations ⪯Lex1,⪯Lex2∈ U2, respectively, given by:

(i) X ⪯Lex1 Y ⇔ X < Y ∨ (X = Y ∧X ≤ Y );

(ii) X ⪯Lex2 Y ⇔ X < Y ∨ (X = Y ∧X ≤ Y ), ∀X, Y ∈ U.

are admissible orders refined by the lexicographical order of points in R2. In this case,
M1(X) = X and M2(X) = X, meaning the left and right-projections.

Example 7.1.2. The linear order ⪯XY on U introduced by Xu and Yager in (Xu; Yager,
2006b) is an admissible order refining the Kulisch-Miranker’s order ≤. For X, Y ∈ U,

X⪯XY Y ⇔

 X+X ≤ Y+Y or(
X+X=Y+Y and X−X ≤ Y−Y

)
.

(93)

In this case, M1 and M2 are the sum and difference functions, respectively.

Definition 7.1.2. (Bustince; Barrenechea; Pagola, 2008, Def. 3) For α ∈ [0, 1], a func-
tion Kα : U→ [0, 1] is a K−operator if:

K1 Kα(x) = x, for all x ∈ [0, 1];

K2 K0(X) = X, K1(X) = X, for all X ∈ U;

K3 If X ≤ Y then Kα(X) ≤ Kα(Y ), for all X, Y ∈ U and α ∈ [0, 1];

K4 α ≤ β iff Kα(X) ≤ Kβ(X), for all X ∈ U.

Proposition 7.1.1. Let Kα : U→U be a K−operator. When WX denotes the amplitude
of the interval X, for all X ∈ U, a K−operator can be expressed as:

Kα(X) = K0(X) + αW (X). (94)

Base on Eq.(94), Kα is a weighted mean, since Kα(X) = (1− α)X + αX.

Example 7.1.3. When α, β ∈ [0, 1] with α ̸= β, based on the aggregation function
Kα(x, y) = (1− α)x+ αy. we can obtain the ⪯α,β admissible order, refining to Kulisch-
Miranker’s order, just taking M1(x, y) = Kα(x, y) and M2(x, y) = Kβ(x, y).
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7.1.2 Fuzzy Conectives on ⟨U,⪯U⟩

A. Fuzzy Negations on ⟨U,⪯U⟩

Proposition 7.1.2. (Zapata et al., 2017) By denoting c = X+X
2

, α = ∧(c, 1 − c) and
r = X−X

2
, the function N : U→ U given as follows:

N(X) = [(1− c)− (α− r), (1− c) + (α− r)] (95)

is a strong IvFN w.r.t. Xu-Yager’s order given in Eq.(93).

Corollary 7.1.1. The strong IvFN N w.r.t. Xu-Yager’s order, given by Eq.(95), can also
be expressed as follows

NXY (X) =


[
1− X+3X

2
, 1− X−X

2

]
, if X +X ≤ 1 ;[

X−X
2
, 2− 3X+X

2

]
, otherwise.

(96)

B. Aggregation Functions on ⟨U,⪯U⟩
The aggregation functions w.r.t. Xu and Yager’s admissible order are reported now

to introduce a new class of interval-valued fuzzy implications, and their properties as
discussed in the sequence.

Proposition 7.1.3. (Zapata et al., 2017, Cor. 6.5 ) Let β ∈ [0, 1]. The function Mβ :

Un → U given as follows

Mα(X, Y )=

0, if X = 0 or Y = 0,[
βX+(1−β)Y , βX+(1−β)Y

]
, otherwise

(97)

is an IvA w.r.t. Xu-Yager’s order verifying M4.

Corollary 7.1.2. The function M 1
2
:Un→U given as follows

M 1
2
(X, Y ) =

 0, if X = 0 or Y = 0,[
1
2
(X + Y ), 1

2
(X + Y )

]
, otherwise;

(98)

is also an aggregation w.r.t. Xu-Yager’s order.

C. Fuzzy Implications on ⟨U,⪯U⟩
This subsection reports the notion of interval-valued fuzzy implication on ⟨U,⪯XY

⟩. Based on this admissible order, a new class of interval-valued fuzzy implications
is presented, verifying properties that guarantee the construction of interval-valued
intuitionistic fuzzy index in the next chapters.
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Proposition 7.1.4. (Zapata et al., 2017, Prop.5.8) Let M : U2→U be an IvA verifying
M4 and N : U→U be an IvN w.r.t. Kulish-Miranker order. The function IM,N : U2→U
given by the following expression:

IM,N(X, Y ) =

 1, if X ⪯ Y ;

M(N(X), Y ),otherwise.
(99)

is an IvFI w.r.t. an admissible ⪯-order.

Proposition 7.1.5. Under the conditions of Proposition 7.1.4, when N is a strong IvFN,
the IvFI IM,N in Eq.(99) satisfies the properties I4, I5 and I6 w.r.t. (partial/total) order
⪯.

Proof. For all X, Y ∈ U the following holds:
I4: Straightforward.
I5: For X, Y ∈ U, if N(Y ) ⪯ N(X) or X ⪯ Y we obtain that IM,N(N(Y ),N(X))) =

1 = M(N(X), Y ). Otherwise, if X ≺ Y , IM,N(N(Y ),N(X))) = M(N(N((Y )),N(X)) =

M(N(X), Y ). Thus, IM,N(N(Y ),N(X))= IM,N(X, Y ).
I6: By I1b, it holds that IM,N(1,0) = 0. For all X, Y ∈ U, by M1,M2 and N2, we have
that: IM,N(X, Y )) = 0 ⇒ M(N(X), Y ) = 0 ⇒ X = 1 ∧ Y = 0. Thus, Prop. 7.1.5 is
held.

The new class of implicantion I(Mβ,N) w.r.t. ⪯XY is presented now.

Proposition 7.1.6. The function IMβ ,N : U2 → U given as follows:

IMβ ,N(X,Y )=



1, if X ⪯XY Y ;

0, if X = 1 and Y = 0;[
β
(
1−X+3X

2

)
+(1−β)Y , β

(
1−X−X

2

)
+(1−β)Y ],

if X+X < 1 and Y ≺XY X;[
βX−X

2 +(1−β)Y , β
(
2−3X+X

2 ) + (1−β)Y ],otherwise.

(100)

is IvFI w.r.t. Xu-Yager’s admissible order given by Eq.(93).

Proof. It follows from results of Proposition 7.1.5 and Eq.(99) in Proposition 7.1.4, tak-
ing Mβ and N in Eqs.(97) and (96), respectively.

And now, a member in the class interval-valued fuzzy implications IMβ ,N, generated
by the fuzzy aggregation (Mβ and fuzzy negation NXY ) is obtained straightforward
Eqs.(98) and (96).
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Example 7.1.4. The function IM 1
2
,NXY

: U2 → U given as follows:

IM 1
2
,NXY

(X,Y ) =



1, if X ⪯ Y ;

0, if X = 1 or Y = 0;

1
2

[
1 + Y − X+3X

2 , 1 + Y − X−X
2

]
, if X +X < 1 and Y ≺ X;

1
2

[
Y − X−X

2 , 1 + Y − 3X+X
2

]
,otherwise.

(101)

is an IvFI w.r.t. Xu-Yager’s order.

In particular, another construction for the class of interval-valued fuzzy implications
can be described, when the partial order on ⟨U,≤U⟩ is considered. See, an illustration
in the following example.

Example 7.1.5. Let M∗ be IvA given in Eq.(64) and N2 be the strong IvFN given in
Eq.(60). The function IM∗,N2 : U2 → U is an IvFI w.r.t. Kulisch-Miranker’s order obtained
by Eq.(99) in Proposition 7.1.4 and given as:

IM∗,N2(X1, X2) =


1, if X1 ≤U X2;[
1
4

(
1−

√
X2−

√
X1))

2, 1
4

(
1−

√
X2−

√
X1

)2

],otherwise.
(102)

7.2 Admissible order on ⟨U,⪯A⟩

This section contributes with concepts on interval-valued fuzzy connectives w.r.t. a
class of admissible order generated from injective functions. In particular, the detailed
discussion on the admissible interleaving operators is also considered.

The next is a method for generating admissible orders based on an injective function
A.

Theorem 7.2.1. Let A : U → [0, 1] be a function and A(0) = 0 and A(1) = 1. The
⪯A-relation on U given by

X ⪯A Y ⇔

 X = Y, or

A(X) < A(Y ),
(103)

is a bounded partial order on U. In addition, ⪯A is an admissible order if and only if A is
injective and increasing w.r.t. the product and usual order on U and [0, 1], respectively.

Proof. The relation ⪯A is reflexive and antisymmetric, immediately. Let X, Y, Z ∈ U
such that X ⪯A Y and Y ⪯A Z. Then, the following hold:
(i) In case X = Y or Y = Z, we immediately have that X ⪯A Z.
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(ii) If X ̸= Y and Y ̸= Z then X ≺A Y ≺A Z. So, A(X) < A(Y ) < A(Z) and
consequently A(X) < A(Z). Thereby, X ≺A Z.

Based on the above cases, we have a transitive ⟨U,⪯A⟩-relation. Hence, since,
A(0)=0≤A(X)≤1 =A(1), then ⟨U,⪯A⟩ is a bounded partial order.
In addition, if A is injective then, for each X, Y ∈ U, we have three cases:
(i) In case A(X) < A(Y ), it implies that X ⪯A Y ;
(ii) In case A(Y ) < A(X), it implies Y ⪯A X; and
(iii) In case A(X) = A(Y ) then, since A is an injective function, it results on X = Y .
Therefore, if A is injective then ⪯A is a linear order.

Finally, consider X, Y ∈ U, such that X ≤ Y . If X = Y then, trivially, X ⪯A Y . If
X < Y then A(X) < A(Y ), since A is injective and increasing. Therefore, X ⪯A Y

and so, the ⪯A-order refines the usual ≤-order. Concluding, ⪯A-order is an admissible
order on U whenever A is injective and increasing w.r.t. product order. Conversely, if
⪯A is a linear order then for each X, Y ∈ U such that X ̸= Y then either X ≺A Y or
Y ≺A X. In both cases, from Eq.(103), we have that A(X) ̸= A(Y ). Besides, if ⪯A

is admissible then for each X, Y ∈ U such that X ≤ Y then X ⪯A Y and therefore
A(X) ≤ A(Y ), i.e. A is increasing w.r.t. product order.

In Theorem 7.2.1, since A(0) = 0 and A(1) = 1 then when A is injective, the
following additional properties can be considered:

(A0) A(X) = 0 iff X = 0; (A1) A(X) = 1 iff X = 1.

Now, a method for generating admissible orders ⟨U,⪯A⟩ by the injective functions
named decimal-digit interleaving (DDI), is discussed below.

Firstly, observe that there is a convention to represent each real number as an
infinite string of decimal digits, where decimals like 0.25 are represented by the infinite
string 0.2499 . . . = 0.249̃. However, here we will represent 0.25 by 0.2500... = 0.250̃,
but we will omit the 0̃ in this context when it is convenient for the sake of simplicity.
The only exception is 1.0 which will be represented by 0.99 . . . = 0.9̃. Obviously, when
the real number is irrational or an infinite rational, the infinite string of decimal digits
representing its are the usual one. For example, for 1

6
such string is 0.166.... = 0.16̃.

And, the i-th decimal digit of this representation of a real number x ∈ [0, 1] will be
denoted by x[i].

See, the same representation can be given to sub-intervals of the unit interval [0, 1].
For that, consider the infinite decimal expansion, described above, of the endpoints of
an interval X =

[
X,X

]
⊆ [0, 1], which is, indicated as:

[
X,X

]
=

[
0.X [1]X [2] . . . X [n]..., 0.X

[1]
X

[2]
. . . X

[n]
...
]
. (104)
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Thus, [0.25, 0.4] is represented by [0.250̃, 0.40̃].
In the next definitions, we consider two orderings for interleaving the digits compris-

ing the numbers X and X, which are the corresponding extremes of the subinterval
X ⊆ [0, 1]. These interleaves are related to the same position in their decimal expan-
sions.

Definition 7.2.1. The DDI functions
−→
A,
←−
A : U→ [0, 1] are, respectively, given by

−→
A(X) =

0.X [1]9X [2]9 . . . , if X =1;

0.X [1]X
[1]
X [2]X

[2]
. . . , otherwise; and

(105)

←−
A(X) =

0.9X [1]9X [2]9 . . . , if X =1;

0.X
[1]
X [1]X

[2]
X [2] . . . , otherwise.

(106)

Example 7.2.1. Take X = [0.3, 0.72], Y = [0.127, 0.4] and Z = [0.9, 1], then :
(i)
−→
A(X) = 0.3702 and

←−
A(X) = 0.732;

(ii)
−→
A(Y ) = 0.14207 and

←−
A(Y ) = 0.410207; and

(iii)
−→
A(Z) = 0.90̃9 and

←−
A(Z) = 0.999̃0.

Proposition 7.2.1. The functions
−→
A,
←−
A : U → [0, 1] given in Eq. (105) and Eq.(106)

are both injective functions, satisfying the boundary conditions A0 and A1 and are
increasing w.r.t. the product ≤-order, i.e.

X≤Y ⇒
−→
A(X)≤

−→
A(Y ); X≤Y ⇒

←−
A(X)≤

←−
A(Y ); and X≤Y ⇒

−→
A(X)≤

←−
A(Y ).

Proof. Analogous to (Santana et al., 2020, Proposition 1).

From now, a function A : U → [0, 1] such that A(0) = 0, A(1) = 1, injective and
increasing w.r.t. product and usual order on U and [0, 1] will be called just by admissible
interleaving. Thereby,

−→
A and

←−
A are admissible interleaving. In the following, we will

denote
−→
A(X) by A(X).

Example 7.2.2. For X = [0.3̃, 0.72], A(X) = 0.37323̃0 and
←−
A(X) = 0.7320̃3.

Corollary 7.2.1. The relations ⪯←−
A

-order and ⪯A-order given as

X ⪯A Y ⇔ A(X) ⩽ A(Y ) and X ⪯←−
A
Y ⇔

←−
A(X) ⩽

←−
A(Y ) (107)

are admissible orders on U.

Proof. Straight from Theorem 7.2.1 and Proposition 7.2.1.

Example 7.2.3. Let X = [0.15, 0.88], Y = [0.16, 0.86] ∈ U. We have that:
(i) X ⪯Lex1 Y , Y ⪯Lex2 X and Y ⪯XY X; and
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(ii) Since A(X) = 0.1858 < 0.1866 = A(Y ), then X ⪯A Y ;
(iii)
←−
A(X) = 0.8185 > 0.8166 =

←−
A(Y ), then Y ⪯←−

A
X.

Definition 7.2.2. Let A : U → [0, 1] be an admissible interleaving. The pseudo-inverse
of A is the function A(−1) : [0, 1]→ U defined as follows

A(−1)(x) = inf{X ∈U :A(X)≥x}, (108)

where the infimum in Eq.(108) is w.r.t. the admissible order ⪯A.

Example 7.2.4. See, in the following, illustrations considering the application of func-
tions introduced in Definition 7.2.2.

A. Taking x = 0.9819 we observe that:

1. A(−1)(x) = [0.9, 0.9] since A([0.9, 0.9]) = 0.99 > 0.9819 and if A(X) > 0.9819

for some X ∈ U then X ≥ 0.9 and therefore [0.9, 0.9] ≤ X. So because ⪯A

is admissible then [0.9, 0.9] ⪯A X. Analogously, the left-reverse construction is
given as

←−
A(−1)(x) = [0.89, 0.91];

2.
←−
A ◦
←−
A(−1)(x) =

←−
A([0.89, 0.91]) = 0.9819, therefore

←−
A ◦
←−
A(−1)(x) = x;

3. A ◦A(−1)(x) = A([0.9, 0.9]) = 0.99 and so, A ◦A(−1)(x) > x;

4.
←−
A ◦A(−1)(x) =

←−
A([0.9, 0.9]) = 0.99 and so,

←−
A ◦A(−1)(x) > x;

5. A ◦
←−
A(−1)(x) = A([0.89, 0.91]) = 0.8991 and so, A ◦

←−
A(−1)(x) < x;

B. Now, if z = 0.135, then A(−1)(z) = [0.15, 0.3]. And
←−
A(−1)(z) = [0, 0.2] since

←−
A([0, 0.2]) = 0.2 > 0.135 and if

←−
A(X) ≥ 0.135 for some X ∈ [0, 1] then X > 0.1

and X ≤ X. So, [0, 0.2]) ≤ X. Because ⪯A is admissible then [0, 0.2] ⪯A X. And,
other observations can be described below.

1. A ◦A(−1)(z) = A([0.15, 0.3]) = 0.135 so, it implies that A ◦A(−1)(z) = z;

2.
←−
A ◦
←−
A(−1)(z) =

←−
A([0, 0.2]) = 0.2 meaning that

←−
A ◦
←−
A(−1)(z) > z.

3.
←−
A ◦A(−1)(z) =

←−
A([0.15, 0.3]) = 0.3105 meaning that

←−
A ◦A(−1)(z) > z;

4. A ◦
←−
A(−1)(z) = A([0, 0.2]) = 0.02 meaning that A ◦

←−
A(−1)(z) < z.

C. Taking X = [0.8, 1.0], it holds that

1. A(−1) ◦A(X) = A(−1)(0.890̃9) = [0.8, 1.0] so, A(−1)(A(X)) = X;

2.
←−
A(−1) ◦

←−
A(X) =

←−
A(−1)(0.989̃0) = [0.8, 1.0] and

←−
A(−1)(

←−
A(X)) = X.
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3. A(−1) ◦
←−
A(X) = A(−1)(0.989̃0) = [0.9, 0.9]. So, A(−1)(

←−
A(X)) ≻A X;

4.
←−
A(−1) ◦A(X) =

←−
A(−1)(0.890̃9) = [0, 0.9]. So,

←−
A(−1)(A(X)) ≺A X

D. And, when Z = [0.3, 0.6], it holds that

1. A(−1) ◦A(Z) = A(−1)(0.36) = [0.3, 0.6] so, it implies that A(−1) ◦A(Z) = Z;

2.
←−
A(−1) ◦

←−
A(Z) =

←−
A(−1)(0.63) = [0.3, 0.6] meaning that

←−
A(−1) ◦

←−
A(Z) = Z.

3. A(−1) ◦
←−
A(Z) = A(−1)(0.63) = [0.6, 0.6], and A(−1)(

←−
A(Z)) ≻A Z;

4.
←−
A(−1) ◦A(Z) =

←−
A(−1)(0.36) = [0, 0.4], and

←−
A(−1)(A(Z)) ≺A Z.

Additionally, one can easily observe the following comparisons:

1. By A and B, if x > z, A ◦A(−1)(x) = 0.99 > x > z = 0.135 = A ◦A(−1)(z);

2. By C and D, if X ≻A Z, A(−1)(
←−
A(X)) = [0.9, 0.9] ≻A [0, 0.9] =

←−
A(−1)(A(X)).

The above examples motivate the analysis of the following properties of an injective
and increasing aggregation functionA, and its reverse construction is given in Eq.(108).

Lemma 1. Let A : U→ [0, 1] be an admissible interleaving. The function A(−1) : [0, 1]→
U defined in Eq. (108) verifies the following conditions:

(1) A(−1)(A(X)) = X, for each X ∈ U;

(2) x ≤ A(A(−1)(x)), for each x ∈ [0, 1];

(3) x ≤ y ⇒ A(−1)(x) ⪯A A
(−1)(y), for x, y ∈ [0, 1];

(4) A(−1)(x)=0⇔ x=0 and A(−1)(x)=1⇔ x=1, for each x ∈ [0, 1];

(5) X ⪯A Y ⇒ A(−1)(A(X)) ⪯A A
(−1)(A(Y )), for X, Y ∈ U;

(6) x ≤ y ⇒ A(A(−1)(x)) ≤ A(A(−1)(y)), for x, y ∈ [0, 1].

Proof. (1), (4) and (5) are straightforward. And, for each x, y ∈ [0, 1], it holds that: (2) By
Eq.(108), A(−1)(x) = inf{X ∈ U :A(X)≥ x} and since A is an injective and increasing
function w.r.t. the usual order on [0, 1], we have that A(A(−1)(x)) = A(inf{X ∈ U :

A(X)≥x}) ≥ x.
(3) When x ≤ y, then for each X ∈ U, since A(X) ≥ y ⇒ A(X) ≥ x, then {X ∈ U :

A(X)≥ y} ⊇ {X ∈U :A(X)≥ x}. So, inf{X ∈U :A(X)≥ y} ⪯A inf{X ∈U :A(X)≥ x}.
Therefore, A(−1)(x) ⪯A A

(−1)(y).
(6) Straightforward from item (3).
Therefore, Lemma 1 is verified.
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Now, we analyze other properties for the aggregation functions A,
←−
A and their re-

verse constructions. For that, firstly consider the following expressions related to a
decimal expansion of a real number x ∈ [0, 1].

Definition 7.2.3. Let x∈ [0, 1] given as x=0.x[1]x[2] . . . x[2i]x[2i+1] . . . x[2n−1]x[2n] . . ..

(i) x ∈ [0, 1] is named pre-sequence when x[2i−1] = x[2i], ∀i ∈ Nj = {1, . . . , j} and
x[2j+1] < x[2j+2] for j ∈ N;

(ii) x ∈ [0, 1] is named pos-sequence when x[2i−1] = x[2i], ∀i ∈ Nj and x[2j+1] > x[2j+2]

for j ∈ N.

Example 7.2.5. Illustrating Definition 7.2.3, consider the following two examples:

• Let x = 0.3333105 ∈ [0, 1]. It illustrates a pos-sequence, since for j = 2, i ∈ N4

and x[1] = x[2] = x[3] = x[4] = 3. Moreover, we have that x[2j+1] = x[5] = 1

and x[2j+2] = x[6] = 0, meaning that x[2j+1] > x[2j+2]. So, by Definition 7.2.3,
A(−1)(x) = [0.331, 0.331] and

←−
A(−1)(x) = [0.33, 0.3315].

• Let x = 0.3333145 ∈ [0, 1]. It exemplifies a pre-sequence, since for j = 2 and i ∈
N4, it holds that x[1] = x[2] = x[3] = x[4] = 3. However, we have that x[2j+1] = x[5] =

1 and x[2j+2] = x[6] = 4, meaning that x[2j+1] < x[2j+2]. So, by Definition 7.2.3,
A(−1)(x) = [0.3315, 0.334] and

←−
A(−1)(x) = [0.33, 0.332].

The above constructions are formalized in the next lemma.

Lemma 2. Let x ∈ [0, 1] expressed by Definition 7.2.3.
(I) When x ∈ [0, 1] is a pos-sequence then

(1) A(−1)(x)=
[
0.x[1] . . . x[2j−1]x[2j+1], 0.x[2] . . . x[2j]x[2j+1

]
;

(2) A(A(−1)(x)) > x;

(3)
←−
A(
←−
A(−1)(x)) = x;

(4) A(
←−
A(−1)(x)) < x.

(II) When x ∈ [0, 1] is a pre-sequence

(5)
←−
A(−1)(x) = [0.x[1] . . . x[2j−1], 0.x[2] . . . x[2j]x[2j+1] + 1].

(6) A(A(−1)(x)) = x;

(7) A(
←−
A(−1)(x)) =

←−
A(
←−
A(−1)(x)) > x

Proof. Let x ∈ [0, 1] given as x = 0.x[1]x[2] . . . x[2j+1]x[2j+2] . . .. Based on Definition 7.2.3,
the following holds:
(1) Since x ∈ [0, 1] is a pos-sequence, we have that x[2j+1]>x[2j+2] and if y = A(X) ≥ x
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for some X ∈ U then, because A(X) is pre-sequence, A(X) > x and there is i ∈ Nj

such that y[2i] > x[2i] and y[l] = x[l] for each l < 2i. So,the following is verified:

A(−1)(x) = inf{X ∈U :A(X)≥x} =
[
0.x[1]x[3] . . . x[2j−1]x[2j+1], 0.x[2]x[4] . . . x[2j]x[2j+1]

]
(109)

(2) Straightforward from item (1).
(3) Since x is a pos-sequence, x[2i−1] = x[2i], ∀i ∈ Nj = {1, . . . , j} and x[2j+1] >

x[2j+2], for j ∈ N. Then,
←−
A(−1)(x) = [0.x[2]x[4] . . . x[2j+2] . . . , 0.x[1]x[3] . . . x[2j+1] . . .]. So,

←−
A(
←−
A(−1)(x)) = 0.x[1]x[2] . . . x[2j+1]x[2j+2] . . . = x.

(4) Straightforward from item (1).
(5) Since x ∈ [0, 1] is a pre-sequence, we have that x[2j+1]<x[2j+2] and if y =

←−
A(X) ≥ x

for some X ∈ U then, because
←−
A(X) is pos-sequence, A(X) > x and there is i ∈ Nj

such that y[2i+1] > x[2i+1] and y[l] = x[l] for each l ≤ 2i. So, the following holds:

←−
A(−1)(x) = inf{X ∈U :

←−
A(X)≥x} =

[
0.x[1]x[3] . . . x[2j−1], 0.x[2]x[4] . . . x[2j]x[2j+1] + 1

]
(110)

(6) Since A(−1) and A are aggregations and x is a pre-sequence, meaning that
x[2i−1] = x[2i], ∀i ∈ Nj and x[2j+2] > x[2j+1], for j ∈ N. Then, we have that
A(−1)(x) = [0.x[1]x[3] . . . x[2j−1]x[2j+1] . . . , 0.x[2]x[4] . . . x[2j]x[2j+2] . . .] and it results that
A(A(−1)(x)) = 0.x[1]x[2] . . . x[2j+1]x[2j+2] . . . = x.
(7) Straightforward from item (5).
Therefore, Lemma 2 is verified.

7.3 Fuzzy Connectives on ⟨U,⪯A⟩

This section explores the notion of admissible interleaving orders in the definition
of the width-based interval-valued extension of fuzzy negations, aggregations and re-
stricted equivalence (dissimilarity) functions on ⟨U,⪯A⟩.

7.3.1 Negations on ⟨U,⪯A⟩

Now we consider the study of interval-valued fuzzy negation on ⟨U,⪯A⟩.

A. Generating Negation by Injective and Increasing Function

Theorem 7.3.1. Let A : U → [0, 1] be an injective and increasing function and
N : [0, 1]→ [0, 1] be a strict fuzzy negation. The function NA : U→ U defined by

NA(X) = A(−1)(N(A(X))); (111)
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is a ⟨U,⪯A⟩-negation, which is called a representable ⟨U,⪯A⟩-negation.

Proof. Straightforward from Corollary 7.2.1 and Lemma 1.

Proposition 7.3.1. Let A be an admissible interleaving. Whenever N : [0, 1]→ [0, 1] is
a strong fuzzy negation, NA verifies NA(NA(X)) ⪰A X.

Proof. Let N : [0, 1]→ [0, 1] be a strong fuzzy negation. The following holds:

NA(NA(X)) = A(−1)(N(A(A(−1)(N(A(X)))))) by Eq.(111)

≥ A(−1)(N(N(A(X))))by Lemma 1 (item 2.)

= A(−1)(A(X)) = X by N3 and Lemma 1 (item 1).

Then, because⪯A is an admissible order, NA(NA(X)) ⪰A X. So, Prop. 7.3.1 holds.

B. Generating Negation on ⟨U,⪯A⟩ by DDI functions

We start this subsection by illustrating the results from Theorem 7.3.1.

Example 7.3.1. The ⟨U,⪯A⟩-representable negation generated by the standard nega-
tion NS is given as:

NA
S (X) = A(−1)(NS(A(X))), ∀X ∈ U. (112)

By Example 7.2.3, taking X = [0.15, 0.88] ∈ U, then we obtain that NA
S (X) =

A(−1)(NS(0.1858)) = A(−1)(0.8142) = [0.8, 0.8]. And, it holds that NA
S ([0.8, 0.8]) =

A(−1)(0.12) = [0.1, 0.2]. So, NA
S (NA

S (X)) ⪯A X. Analogously, for Y = [0.26, 0.43] ∈ U,
NA

S (Y ) = A(−1)(NS(0.2463)) = A(−1)(0.7537) = [0.7, 0.7]. Therefore, NA
S (NA

S (Y )) ⪯A Y ,
since NS

A([0.7, 0.7]) = [0.2, 0.3]. So, NA
S (NA

S (Y )) ⪯A Y .

Corollary 7.3.1. Let x ∈ [0, 1] expressed by Definition 7.2.3 and ⪯A be the admissible
order in Corollary 7.2.1. Then, it holds that :

(i) If x ∈ N(A[U]) then x is a pos-sequence;

(ii) If x ∈ A[U] then x is a pre-sequence.

Proof. Straightforward.

Now, the concept of interleaving fuzzy negation is presented, based on the admis-
sible pairwise (⪯A,⪯←−A)-order.

Theorem 7.3.2. LetNS : [0, 1]→ [0, 1] be the standard negation. The function N
←−
A
S : U→

U defined by

N
←−
A
S (X) =

←−
A(−1)(NS(A(X))) (113)
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is called the NS-interleaving negation on U w.r.t. admissible pairwise (⪯A,⪯←−A)-
order and it satisfies the following properties:

1. N
←−
A
S (X) = 0 iff X = 1;

2. N
←−
A
S (X) = 1 iff X = 0;

3. If X ≺A Y then N
←−
A
S (Y ) ≺←−

A
N
←−
A
S (X);

4. NA
S (X) = NA

S (Y ) iff X = Y , for each X ∈ U.

Proof. (1). Let X ∈ U, given as X =
[
0.X [1]X [2] . . . X [n] . . . , 0.X

[1]
X

[2]
. . . X

[n]
. . .

]
, and

so, there exists i ∈ N such that X [j] = X
[j]

for each j ≤ i and X [i+1] < X
[i+1]

. So, by
application of NS, we obtain that

N
←−
A
S (X) =

←−
A(−1)(NS(A(X)))

=
←−
A(−1)

(
NS

(
0.X [1]X

[1]
. . . X [i]X

[i]
X [i+1]X

[i+1]
. . . X [n]X

[n]
. . .

))
=
←−
A(−1)

(
0.(9−X [1])(9−X [1]

). . .(9−X [i])(9−X [i]
) (9−X [i+1])(9−X [i+1]

)(9−X [i+1])

. . .(9−X [n])(9−X [n]
) . . .

)
=
[
0.(9−X [1]

). . .(9−X [i]
)(9−X [i+1]

). . .X
[n]
), 0.(9−X [1]). . .(9−X [i])(9−X [i+1]). . .X [n])

]
Since (9−X [j]) = (9−X [j]

), for j ≤ i and (9−X [i+1]) > (9−X [i+1]
), then

N
←−
A
S (X) = 0.(9−X [1]

) . . . (9−X [i]
)(9−X [i+1]

) . . . (9−X [n]
)

≤ 0.(9−X [1]) . . . (9−X [i])(9−X [i+1]) . . . (9−X [n]) . . . = N
←−
A
S (X)

Therefore, N
←−
A
S (X) =

←−
A(−1)(NS(A(X))) is well defined. (2.) In addition, the boundary

conditions are also verified:

(i) N
←−
A
S (0) =

←−
A(−1)(NS(A(0)))) =

←−
A(−1)(NS(0)) =

←−
A(−1)(1) = 1. If 0 ≺A X then

A(X) > 0 and therefore NS(A(X)) < 1. Since, A(X) is a pre-sequence then,
by Corollary 7.3.1, NS(A(X)) is a pos-sequence. Hence, by Lemma 2 (1),
N
←−
A
S (X) ̸= 0. Therefore, N

←−
A
S (X) = 0 iff X = 1.

(ii) N
←−
A
S (1) =

←−
A(−1)(NS(A(1)))) =

←−
A(−1)(NS(1)) =

←−
A(−1)(0) = 0. If X ≺A 1 then

A(X) < 1 and therefore NS(A(X)) > 0. Since, A(X) is a pre-sequence then, by
Corollary 7.3.1, NS(A(X)) is a pos-sequence. Hence, by Lemma 2 (1), N

←−
A
S (X) ̸=

⊮. Therefore, N
←−
A
S (X) = 1 iff X = 0.

(3.) Moreover, let X, Y ∈ U. If X ⪯A Y then A(X) ≤ A(Y ) and therefore NS(A(X)) ≥
NS(A(Y )). So, by Lemma 1(3), we have that

←−
A(−1)(NS(A(Y ))) ⪯←−

A

←−
A(−1)(NS(A(X))).
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Thereby, N
←−
A
S (Y ) ≺←−

A
N
←−
A
S (X).

(4.) Now, by Corollary 7.3.1, if x ∈ NS(A(X)) implies that X is a pos-sequence. Then,
see the following results:

N
←−
A
S (X) = N

←−
A
S (Y )⇔

←−
A(−1)(NS(A(X))) =

←−
A(−1)(NS(A(Y ))) by Eq.(113)

⇔
←−
A(
←−
A(−1)(NS(A(X)))) =

←−
A(
←−
A(−1)((NS(A(Y ))))) because

←−
A is injectiva

⇔ NS(A(X)) = NS(A(Y )) by Corollary 7.3.1 and Lemma 2(5)

⇔ A(X) = A(Y )⇔ X = Y because NS is strong.

Concluding, Theorem 7.3.2 is verified.

Example 7.3.2. Illustrating the ⟨U,⪯A⟩-negation presented in Eq.(113):

• If X = [0.15, 0.88] ∈ U, then we have that N
←−
A
S (X) =

←−
A(−1)(NS(0.1858)) =

←−
A(−1)(0.81419̃) = [0.12, 0.85]; In addition, w(X) = 0.73 = w(N

←−
A
S (X)).

• And, if Y = [0.26, 0.43], NS

←−
A(Y ) =

←−
A(−1)(NS(0.2463)) =

←−
A(−1)(0.75369̃) =

[0.57, 0.74]. In addition, w(Y ) = 0.17 = w(N
←−
A
S (Y )).

Therefore, we can observe that X ̸≤U Y and Y ̸≤U X, meaning that they are not
comparable in ⟨U,≤U⟩. Moreover, X ≺A Y implies that N

←−
A
S (Y ) ≺←−

A
N
←−
A
S (X). However,

it also implies that N
←−
A
S (X) ≺A N

←−
A
S (Y ).

C. Generating Negation on ⟨U,⪯A⟩ by Equilibrium Point

To introduce an expression to obtain interval-valued fuzzy negation w.r.t. an admis-
sible interleaving order we introduce fuzzy negation Ne, which has e as the equilibrium
point.

Lemma 3. Let e ∈ (0, 1). Then, Ne : [0, 1]→ [0, 1] given as

Ne(x) =

 1− (1−e)
e
x, if x ≤ e,

e
1−e(1− x), otherwise;

(114)

is a strong (strict) fuzzy negation and it has e as the equilibrium point.

Remark 7.3.1. Let Ne be the negation given by Eq.(114). Then, the following holds:

(i) when e = 0.5 then Ne = NS; and

(ii) when e = ϕ(0.5) then Ne(x) = ϕ−1(NS(ϕ(x))), for each automorphism ϕ : U → U ,
see (Bustince; Burillo; Soria, 2003b).
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Theorem 7.3.3. Let Ne be the negation given by Eq.(114) which has e as the equilib-
rium point. The function NA

e : U→ U defined by

NA
e (X) =


←−
A(−1)(Ne(A(X))), if X ≤ e,

A(−1)(Ne(A(X))), otherwise;
(115)

is called as the Ne-interleaving negation on U w.r.t. admissible pairwise (⪯A,⪯←−A)-order
and it satisfies the following properties:

1. NA
e (1) = 0 and NA

e (0) = 1;

2. If X ≺A Y then NA
e (Y ) ≺←−

A
NA

e (X);

3. NA
e (X) = NA

e (Y ) iff X = Y , for each X ∈ U;

4. NA
e is strictly decreasing;

5. NA
e (E) = E, where E = A(−1)(e).

Proof. Firstly, NA
e (0) =

←−
A(−1)(Ne(A(0))) =

←−
A(−1)(Ne(0)) =

←−
A(−1)(1) = 1 and Ne(1) =←−

A(−1)(Ne(A(1)) =
←−
A(−1)(Ne(1)) =

←−
A(−1)(0) = 0. If X ≺A Y then, analogously to

Theorem 7.3.2.3, NA
e (Y ) ≺←−

A
NA

e (X). By Corollary 7.3.1, if x ∈ Ne(A(X)) implies that
X is a pos-sequence. Then, it results that

NA
e (X) = NA

e (Y )⇔
←−
A(−1)(Ne(A(X))) =

←−
A(−1)(Ne(A(Y ))) by Eq.(111)

⇔
←−
A(
←−
A(−1)(Ne(A(X)))) =

←−
A(
←−
A(−1)((Ne(A(Y ))))) because

←−
A is injectiva

⇔ Ne(A(X)) = Ne(A(Y )) by Corollary 7.3.1 and Lemma 2(5)

⇔ A(X) = A(Y )⇔ X = Y because Ne is strong.

In addition, from previous two item, straightforward NA
e is strictly decreasing. And

finally, since E = A(−1)(e) then we obtain that NA
e (E) =

←−
A(−1)Ne(A(E)) =

←−
A(−1)Ne(A(A(−1)(e))) =

←−
A(−1)Ne(e) =

←−
A(−1)(e) = E = [0, e]. Therefore, we also proved

that Ne(
←−
A(E)) = E.

Example 7.3.3. Let Ne : [0, 1] → [0, 1] given in Eq. (114) with the equilibrium point as
e = 4

5
. By Eq.(111), the function NA

4
5

: U→ U given as

NA
4
5
(X) =


←−
A(−1)(1− 1

4
(A(X))), if X ≤ 4

5
,

A(−1)(4(1−A(X)), otherwise;
(116)

is a strict IvFN w.r.t admissible ⪯A-order. In addition, it also has E =
[
0, 4

5

]
as the

equilibrium point.
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7.3.2 Aggregations on ⟨U,⪯A⟩

Proposition 7.3.2. Let M : [0, 1]n → [0, 1] be (a strictly increasing) aggregator, and
A : U→ [0, 1] be an admissible interleaving function. Then, MA : Un → U, given as

MA(X1, . . . , Xn) = A(−1) (M(A(X1), . . . , A(Xn))) (117)

is an IvA function related to the admissible ⪯A-order. In addition, if M is idempotent,
then MA is also idempotent.

Proof. Let M : [0, 1]n → [0, 1] be a strictly increasing aggregation function and A : U →
[0, 1] be an admissible interleaving. So, the following holds:

MA(0, . . . ,0) = A(−1) (M(A(0), . . . , A(0))) = A(−1) (M(0, . . . , 0)) = A(−1)(0) = 0;

MA(1, . . . ,1) = A(−1) (M(A(1), . . . , A(1))) = A(−1) (M(1, . . . , 1)) = A(−1)(1) = 1.

If A(Xi) ≤ A(Yi), ∀i ∈ Nn, then Xi ⪯A Yi,∀i ∈ Nn and follows that

M(A(X1), . . . , A(Xn)) ≤M(A(Y1), . . . , A(Yn)).

So, since A is an increasing function,

A(−1)(M(A(X1), . . . , A(Xn))) ⪯A A
(−1)(M(A(Y1), . . . , A(Yn))).

Therefore MA(X1, . . . , Xn) ⪯A MA(Y1, . . . , Yn). Moreover, when M is idempotent ag-
gregation, by Lemma 1(1), we have that:

MA(X,X, . . . , X) = A(−1) (M(A(X), . . . , A(X)) = A(−1)(A(X)) = X.

Thus, Proposition 7.3.2 is verified.

Example 7.3.4. Let A : U → [0, 1] be an admissible interleaving. When M is the mini-
mum, then MA also is the minimum but w.r.t. ⪯A. So, by Proposition7.3.2,

MA(X1, . . . , Xn)=A
(−1)(M(A(X1), . . . , A(Xn)))=A

(−1)Mn
i=1A(Xi).

Analogous expressions can be obtained for the idempotent aggregations as arith-
metic means, maximum, left-median, or right-median. So, MA is an idempotent IvA
function related to the admissible ⪯A-order.

Proposition 7.3.3. Let M be a strict aggregation function and A an admissible inter-
leaving. The MA is idempotent if, and only if, MA is an average function ⟨U,⪯A⟩.

Proof. Straightforward Proposition 7.3.2.
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7.3.3 Width-based Interval-valued Restricted Equivalence Functions

Methodologies to obtain REF operator by admissible ⪯A-orders are presented.

Theorem 7.3.4. Let A : U → [0, 1] be an admissible interleaving, and ⪯A be the order
on U defined in Eq. (103). Then the function SA : U2 → U defined by

SA(X, Y ) = [min(a, 1− ω(X), 1− ω(Y )),max(a, 1− |A(X)− A(Y )|)], (118)

where a = min
(

A(X)
A(Y )

, A(Y )
A(X)

)
with the convention that x

0
= 1, is an interval-valued re-

stricted equivalence function w.r.t. ⪯A.

Proof. First observe that SA is well defined, once min(a, 1 − ω(X), 1 − ω(Y )) ≤ a ≤
max(a, 1− |A(X)− A(Y )|).
S1 : If S(X, Y ) = 0 then max(a, 1 − |A(X) − A(Y )|) = 0. So, |A(X) − A(Y )| =
1. So, by (A0) and (A1), we have that {X, Y } = {0,1}. Conversely, S(1,0) =

[min(min(1, 0), 1, 1),max(min(1, 0), 1− |1− 0|)] = 0 = [min(min(0, 1), 1, 1),

max(min(0, 1), 1− |0− 1|)] = S(0,1).
S2 : For eachX ∈ U, S(X,X) = [min(a, 1−ω(X), 1−ω(X)),max(a, 1−|A(X)−A(X)|)] =
[min(min(1, 1), 1− ω(X)),max(min(1, 1), 1− 0] = [1− ω(X), 1].
S3 : Direct from definition of SA.
S4 : Let X, Y, Z ∈ U such that X ⪯A Y ⪯A Z and ω(X) = ω(Y ) = ω(Z). Then,
A(X) ≤ A(Y ) ≤ A(Z) and

a1 = min

(
A(X)

A(Z)
,
A(Z)

A(X)

)
=
A(X)

A(Z)
≤ A(X)

A(Y )
= min

(
A(X)

A(Y )
,
A(Y )

A(X)

)
= a2.

And , min(a1, 1 − ω(X), 1 − ω(Z)) ≤ min(a2, 1 − ω(X), 1 − ω(Y )) and |A(X) −
A(Z)| = A(Z) − A(X) ≥ A(Y ) − A(X) = |A(X) − A(Y )|, i.e. max(a1, 1 − |A(x) −
A(Z)|) ≤ max(a2, 1 − |A(x) − A(Y )|). Therefore, SA(X,Z) = [min(a1, 1 − ω(X), 1 −
ω(Z)),max(a1, 1 − |A(x) − A(Z)|)] ≤ [min(a2, 1 − ω(X), 1 − ω(Y )),max(a2, 1 − |A(x) −
A(Y )|)] = SA(X, Y ). Analogously, we prove SA(X,Z) ≤ SA(Y, Z). Finally, once ⪯A is
an admissible order then SA(X,Z) ⪯A SA(X, Y ) and SA(X,Z) ⪯A SA(Y, Z).

Example 7.3.5. In order to illustrate the method introduced in Theorem 7.3.4, consider
the calculus to obtain aXY = min

(
A(X)
A(Y )

, A(Y )
A(X)

)
for any pair X and Y of intervals on U.

In particular, taking the interval-data: X = [0.1, 0.3], Y = [0.5, 0.7], Z = [0.6, 0.8] ∈ U.

aXY =
0.13

0.57
= 0.2280; aY Z =

0.57

0.68
= 0.838235294; aXZ =

0.13

0.68
= 0.1911.

Observing that ω(X) = ω(Y ) = ω(Z) = 0.2 and X ⪯A Y ⪯A Z, the related ω-IvREF
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w.r.t. ⪯A are given as follows:

SA(X, Y ) = [min(0.228, 0.8, 0.8),max(0.228, 0.56)] = [0.228, 0.56]

SA(Y, Z) = [min(0.838235294, 0.8, 0.8),max(0.838235294, 0.89)] = [0.8, 0.89];

SA(X,Z) = [min(0.1911, 0.8, 0.8),max(0.1911, 0.45)] = [0.1911, 0.45].

Theorem 7.3.5. Let Ne : [0, 1] → [0, 1] given in Eq. (114) taking e as the equilibrium
point. The function RA : U2 → U given as

RA(X, Y )=[max(0, Ne(|A(X)−A(Y )|)−max(ω(X), ω(Y ))), Ne(|A(X)−A(Y )|)] (119)

is an interval-valued restricted equivalence function w.r.t. the ⪯A-order.

Proof. Firstly, observe that RA is well defined, once 0 ≤ max(0, Ne(|A(X) −A(Y )|) −
max(ω(X), ω(Y ))) ≤ Ne(|A(X)−A(Y )|) ≤ 1.

S1: If RA(X, Y ) = 0 then Ne(|A(X) − A(Y )|) = 0 ⇒ |A(X) − A(Y )| = 1 ⇒ X =

0 and Y = 1 or X = 1 and Y = 0. Moreover, max(0, Ne(|A(X) − A(Y )|) −
max(ω(X), ω(Y ))) = max(0, 0 − max(ω(X), ω(Y ))) = 0. Now, conversely, tak-
ing X = 0 and Y = 1 or X = 1 and Y = 0, then RA = max(0, Ne(1) −
max(1, 0), Ne(1)) = 0.

S2: For each X ∈ U, we have that RA(X,X) = [max(0, Ne(|A(X) − A(X)|) −
max(ω(X), ω(X))), Ne(|A(X) − A(X)|)]. So, it means that R(X,X) =

[max(0, Ne(0)−max(ω(X), ω(Y ))), Ne(0)] = [1− ω(X), 1].

S3: Direct from definition of RA.

S4: Let X, Y, Z ∈ U a such that X ⪯A Y ⪯A Z and ω(X) = ω(Y ) = ω(Z). Then, when
A(X) ≤ A(Y ) ≤ A(Z) we have that

RA(X,Z) = [max(0, Ne(|A(X)−A(Z)|)−max(ω(X), ω(Z))), Ne(|A(X)−A(Z)|)]

⪯A max(0, Ne(|A(X)−A(Y )|)−max(ω(X), ω(Y ))), Ne(|A(X)−A(Y )|)]

= RA(X, Y )

And, analogously, one can prove that RA(X,Z) ⪯A RA(Y, Z).

Therefore, Theorem 7.3.4 is verified.

7.4 Summary

This chapter considers the concepts of total admissible orders, ⟨U,⪯U⟩ to define the
corresponding axiomatic expressions of interval-valued fuzzy connective. In particular,
these definitions are illustrated w.r.t. Xu and Yager’s ⪯XY -order.
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As a more relevant contribution, this chapter presents a new admissible order based
on injective and increasing function A. This approach to total orders, as an extension
of the usual partial ≤U-order on U, does not depend on a pair of functions, as remains
the literature (Xu; Yager, 2006b; Zapata et al., 2017; Bustince; Barrenechea; Pagola,
2008).

The main conditions under which the connectives were defined based on the lattice
⟨U,⪯U⟩ are also discussed in the proposed theorems.

Illustrating this methodology, the DDI functions are defined and the related admis-
sible order ⪯A is introduced, including its reverse construction and many examples
stressing main properties and compositions.

Preceding the definition of width-based interval-valued entropy on ⟨U,⪯A⟩, the no-
tion of width-based interval-valued restricted equivalence (dissimilarity) functions, fuzzy
negations and aggregations are also defined in such lattice structure, proving a com-
plete comparison between any pair of interval-valued fuzzy values.



8 WIDTH-BASED INTERVAL FUZZY ENTROPY

This section introduces the study of interval entropies generated by interval-valued
fuzzy aggregations and interval-valued restricted equivalence functions w.r.t. admissi-
ble ⪯-order.

8.1 Width-based Interval Fuzzy Entropy: Main Concepts

In the remainder of this Section, only fuzzy sets defined on a nonempty finite refer-
ential set U = {u1, u2, . . . , un} will be considered. In the following we provide a definition
essentially equivalent to the given in (Takáč et al., 2019, Def. 39)

Definition 8.1.1. Let ε ∈ U such that ε > 0 and ε < 1 and ≤L be a partial order on
U such that 0 and 1 are the least and greatest elements. A function Ew : AU → U
is called a width-based interval fuzzy entropy (ω-IvE) w.r.t. ⟨≤L, ε⟩ if it satisfies the
following conditions:

(Ew1) Eω(A) = 0 iff A is crisp;

(Ew2) Eω(ε̃) = [1− ω(ε), 1];

(Ew3) Eω(A) ≤L Eω(B) if for all u ∈ U , ω(A(u)) = ω(B(u)) and, either A(u) ≤L B(u) ≤L

ε or ε ≤L B(u) ≤L A(u).

8.2 Width-based Interval Fuzzy Entropy: Main Constructions

Firstly, we consider aggregation function width-based average functions, meaning
that, by the action of mean aggregations, the diameter of the interval input data is
preserved in the interval output data in the expression of width-based interval fuzzy
entropy (ωA-IvE) w.r.t. a partial order ≤L.

In the following, let Av : U2 → U be an average fuzzy aggregation function. Then
Âv : AU → AU is the function defined for each A ∈ AU and u ∈ U as Âv(A)(u) =

Av(A(u),A(u)).
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Proposition 8.2.1. Let E : AU → U be a fuzzy entropy w.r.t. a strong fuzzy negation
N , e ∈]0, 1[ the equilibrium point of N , ⪯ be an admissible order on U, Av : U2 → U
be an idempotent averaging aggregation function and AVIV : Un → U be an idem-
potent averaging aggregation function on ⟨U),⪯⟩ such that ω(AVIV (X1, . . . , Xn)) = k

whenever ω(X1) = . . . = ω(Xn) = k. If there is ε = [e1, e2] ∈ U such that

(Av1) Av(e1, e2) = e;

(Av2) Av(X,X) ≤ e whenever X ⪯ ε.

then the function Ew : AU → U defined by

Eω(A) = [E(Âv(A)) · (1− ω(AVIV (A(u1), . . . ,A(un)))), E(Âv(A))]

is a width-based interval fuzzy entropy w.r.t. (≤L, ε).

Proof. Let A ∈ AU, the following holds

(Eω1)Eω(A)=0⇔ E(Âv(A))=0⇔Âv(A) is crisp, by(E1)⇔ Av(A(u),A(u)) ∈ {0, 1} for
each u ∈ U ⇔ A(u) = 0 or A(u) = 1 for each u ∈ U ⇔ A is crisp.

(Ew2) Since, for each u ∈ U , ε̃(u) = ε then Âv(ε̃)(u) = Av(ε, ε) = Av(e1, e2) = e, i.e.
Âv(ε̃) = ẽ. So, Eω(ε̃) = [E(Âv(ε̃)) · (1 − ω(AVIV (ε̃(u1), . . . , ε̃(un)))), E(Âv(ε̃))] =
[E(ẽ) · (1− ω(AVIV (ε, . . . , ε))), E(ẽ)] = [1− ω(ε), 1].

(Ew3) Let A,B ∈ FIV (U) such that for each u ∈ U , ω(A(u)) = ω(B(u)) and A(u) ⪯
B(u) ⪯ ε. Since ω(A(u)) = ω(B(u)), A(u) and B(u) are comparable w.r.t. the
product order ≤. So, since ⪯ refines the ≤ and by conditions (Av1) and (Av2),
we have that Av(A(u), A(u)) ≤ Av(B(u), B(u)) ≤ Av(e1, e2) = e for each u ∈
U . Hence, Âv(A)(u) ≤ Âv(B)(u). So, E(Âv(A)) ≤ E(Âv(B)). Thus, since 1 −
ω(AVIV (A(u1), . . . ,A(un))) = 1−ω(AVIV (B(u1), . . . ,B(un))) then [E(Âv(A)) · (1−
ω(AVIV (A(u1), . . . ,A(un)))), E(Âv(A))] ≤ [E(Âv(B))·
(1− ω(AVIV (B(u1), . . . ,B(un)))), E(Âv(B))] and, since ⪯ refines ≤, then Eω(A) ⪯
Eω(B). Analogously, for each u ∈ U , one can proved that when ω(A(u)) = ω(B(u))
then ε ⪯ B(u) ⪯ A(u).

Corollary 8.2.1. Let E : AU → U be a fuzzy entropy w.r.t. a strong fuzzy negation N ,
e ∈ (0, 1) the equilibrium point ofN and Av : Uk → U be the idempotent averaging fuzzy
aggregation, given as Av(a1, . . . , ak) = 1

k
Σk

i=1ai for k ∈ {2, n}. Consider AVIV : Un → U
as the idempotent averaging interval-valued fuzzy aggregation (U,⪯XY ) defined by

AVIV (X1, . . . , Xn) = [max(0, a− ϵ),min(a+ ϵ, 1)] (120)
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where ϵ = 1
2
Av(ω(X1), . . . , ω(Xn)) and a = Av(Av(X1, X1), . . . , Av(Xn, Xn)). Then the

function Eω : AU → U defined by

Eω(A) =
[
E(Âv(A)) · (1− ω(AVIV (A(u1), . . . ,A(un)))), E(Âv(A))

]
(121)

is a width-based interval fuzzy entropy w.r.t. (⪯XY , ε) for Av(ε) = e.

The previous results are related to the notion of width-based interval fuzzy entropy
introduced in (Takáč et al., 2019, Proposition 40), which is related to a linear order
⪯ on U and to an interval-valued fuzzy negation N w.r.t. ⪯-order, in the terms of
Proposition 8.2.1.

Corollary 8.2.2. Let ε ∈ U+, and A : U → U be an admissible interleaving. Consider
E : AU → U as a fuzzy entropy w.r.t. a strong fuzzy negation N such that e = A(ε) is
the equilibrium point. Taking Av : U2 → U as the average aggregation function

Av(a, b) = A([min(a, b),max(a, b)])

and AVIV : Un → U be the left-median or right-median w.r.t. ⪯A admissible order.
Then, for each A ∈ AU, the function Ew : AU → U defined by

Eω(A) = [E(Âv(A)) · (1− ω(AVIV (A(u1), . . . ,A(un)))), E(Âv(A))] (122)

is a width-based interval fuzzy entropy w.r.t. ⟨⪯A, ε⟩.

Example 8.2.1. Let U = {u1, u2, u3} and A ∈ AU such that A(ui) = Xi for X1 =

[0.1, 0.3], X2 = [0.5, 0.7] and X3 = [0.6, 0.8]. Taking the fuzzy entropy E : AU → [0, 1]

expressed as E(A) = 1
3

3∑
i=1

1− |2A(ui)− 1| w.r.t. the ⪯XY -order, we obtain the following

results:

(i) Firstly, according with Corollary 8.2.1, we illustrate the interval entropy Eω w.r.t. the
⪯XY -order, taking the IvF negation N given in Eq.(96) with the equilibrium point
[1
4
, 3
4
]). The operator Eω is constructed as follows:

1. Âv(A)(u) = 1
2
(A(u) + A(u)) for each u ∈ U . Thereby, Âv(A)(u1) = 0.2,

Âv(A)(u2) = 0.6 and Âv(A)(u3) = 0.7.

2. E(Âv(A)) = 1
3

3∑
i=1

1− |2Âv(A)(ui)− 1| = 1
3
(0.2 + 0.6 + 0.7) = 0.5.

3. AVIV (A(u1),A(u2),A(u3)) = [max(0, a − ϵ),min(1, a + ϵ)] = [0.4, 0.6], since
ω(AVIV (X1, X2, X3)=0.2, a = 0.5 and ϵ = 0.1.
4.Eω(A) = [0.5 · (1− 0.2), 0.5] = [0.48, 0.5] by Eq.(121).

(ii) And now, consider the interval entropy Eω w.r.t. the ⪯A-order, when A : U → U

is defined in Eq(108). The interval entropy w.r.t. ⟨⪯A, [0, 0.8]⟩ which is based on
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Corollary 8.2.2, can be obtained as follows:
1. Âv(A)(u) = A(A(u),A(u)). Then we have that Âv(A)([0.1, 0.3]) = 0.13,
Âv(A)([0.5, 0.7]) = 0.57 and Âv(A)([0.6, 0.8]) = 0.68.

2.E(Âv(A)) = 1
3

3∑
i=1

1− |2Âv(A)(ui)− 1| = 1
3
Σn

i=1(0.26, 0.86, 0.64) = 0.586̃;

3.Taking M as the median, then M(A[0.1, 0.3],A[0.5, 0.7],A[0.6, 0.8]) =

M(0.13, 0.57, 0.68) = 0.57. Then ω(AVIV (A)) = ω([0.5, 0.7]) = 0.2, since
AVIV (A) = A(−1)M3

i=1A(ui) = A(−1)(0.57) = [0.5, 0, 7];
4. Eω(A) = [0, 586̃ · (1− 0.2), 0, 586̃] = [0.4693̃, 0, 586̃], by Eq.(122).
5. AvIV 3

i=1(Xi)=
1
3
Σ3

i=1(Xi)=[0.4, 0.6] and ω(AvIV (Xi))=0.2.
6. Eω(A) = [0.58 · (1− 0.2), 0.58] = [0.46, 0.58].

Proposition 8.2.2. Let ⪯ be an admissible order on U which refines the ≤-order, N be
a frontier interval-valued fuzzy negation on U,⪯) with ε ∈ U as the equilibrium interval,
Sw be a width preserving interval-valued restricted equivalence function w.r.t. the ⪯-
order and MIV : Un → U be an idempotent averaging w.r.t. the ⪯-order. If MIV satisfy
M4 then ES,w : AU → U defined by

ES,w(A) =MIV (Sω(A(u1),N(A(u1))), . . . ,Sω(A(un),N(A(un))))

is a width-based interval fuzzy entropy w.r.t. the (⪯, ε).

Proof. For A,B ∈ AU, the following holds:

(Ew1) ES,w(A)=0 iff MIV (Sω(A(u1),N(A(u1))), . . . ,Sω(A(un),N(A(un))))=0 iff, by M4,
Sω(A(ui),N(A(ui))) = 0 for each i = 1, . . . , n iff, because N is frontier A(u1) ∈
{0,1} iff A is crisp.

(Ew2) By Proposition , MIV is idempotent, ε is equilibrium interval of N and based on
(S2) property,

ES,w(ε̃) =MIV (Sω(ε̃(u1),N(ε̃(u1))), . . . ,Sω(ε̃(un),N(ε̃(un))))

=MIV (Sω(ε,N(ε)), . . . ,Sω(ε,N(ε))) =MIV (Sω(ε, ε), . . . ,Sω(ε, ε))

= Sω(ε, ε) = [1− ω(ε), 1]

(Ew3) Let A,B ∈ AU such that for each u ∈ U , ω(A(u)) = ω(B(u)) and A(u) ⪯ B(u) ⪯ ε.
Then, A(u) ⪯ B(u) ⪯ ε ⪯ N(B(u)) ⪯ N(A(u)) for each u ∈ U . So, by (S4)
property, Sω(A(u),N(A(u))) ⪯ Sω(B(u),N(B(u))) for each u ∈ U . Hence, we
obtain that

MIV (Sω(A(u1),N(A(u1))), . . . ,Sω(A(un),N(A(un)))) ⪯

⪯MIV (Sω(B(u1),N(B(u1))), . . . ,Sω(B(un),N(B(un)))).
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So, ES,w(A) ⪯ ES,w(B). And, ω(A(u)) = ω(B(u)) and ε ⪯ B(u) ⪯ A(u), ∀u ∈ U , is
analogously proved.

Corollary 8.2.3. Let (ω1, . . . , ωn) ∈ (0, 1)n such that Σn
i=1ωi = 1, Sw be a width preserv-

ing interval-valued restricted equivalence function w.r.t. ⪯XY . Then ES,w : AU → U
defined by

ES,w(A) = Σn
i=1ωi · Sω(A(ui),NXY (A(ui))) (123)

is a width-based interval fuzzy entropy w.r.t. ⟨⪯XY , [0.5, 0.5]⟩.

Proof. Straightforward.

Example 8.2.2. Let χ be a universe set and A ∈ AU as defined in Ex. 8.2.1 (i). Con-
sidering the width preserving interval-valued restricted equivalence function presented
in Example 7.3.5, given in Eq.(118). Then, we have that:

S(X1,NXY (X1)) = [1− |0.2− 0.8| − 0.2, 1− |0.2− 0.8|] = [0.2, 0.4];

S(X2,NXY (X2)) = [1− |0.6− 0.4| − 0.2, 1− |0.6− 0.4|] = [0.6, 0.8];

S(X3,NXY (X3)) = [1− |0.7− 0.3| − 0.2, 1− |0.7− 0.3|] = [0.4, 0.6].

Therefore, considering the arithmetic means, ES,w(A) = 1
3
([0.2, 0.4] + [0.6, 0.8] +

[0.4, 0.6]) = [0.3, 0.6].

Corollary 8.2.4. Let AVIV : Un → U be the left-median or right-median with respect the
⪯A admissible order, ε ∈ U+, NA be an interval-valued fuzzy negation w.r.t. ⪯A and
equilibrium point ε, SA be the width preserving interval-valued restricted equivalence
function w.r.t. ⪯A defined in Eq.(118). Then, the function ESA,w : AU → U given as

ESA,w(A) = AVIV (SA(A(u1),NA(A(u1))), . . . ,SA(A(un),NA(A(un)))) (124)

is a width-based interval fuzzy entropy w.r.t. (⪯A, ε).

Proof. Straightforward.

Example 8.2.3. Let A ∈ AU as in Ex. 8.2.1 and NA
e as given in Eq.(116) when e = 0.8.

Consider the restricted equivalence functions SA given by Eq.(118) and reported here
as:

SA(X,NA(X)) = [min(a, 1− ω(X), 1− ω(NA(X))),max(a, 1− |A(X)−A(NA)|)].
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And, we obtain:

SA(X1,NA(X1)) = SA([0.1, 0.3], [0.65, 0.97]) = [min(0.1863, 0.8, 0.32)),max(0.1863, 0.4325)]

= [0.1863, 0.4325];

SA(X2,NA(X2)) = SA([0.5, 0.7], [0.55, 0.87]) = [min(0.9731, 0.8, 0.68)),max(0.9731, 0.9843)]

= [0.68, 0.9843];

SA(X3,NA(X3)) = SA([0.6, 0.8], [0.3, 0.8]) = [min(0.5588, 0.8, 0.5)),max(0.5588, 0.7)]

= [0.5, 0.7].

So, ESA,w(A) = min([0.1863, 0.4325], [0.68, 0.9843], [0.5, 0.7]) = [0.1863, 04325].

8.3 Width-based interval fuzzy entropy: Methodology

The methodology ωA-IvE, proposed to measure the disorganized information, is ap-
plied to data obtained from the interval-valued fuzzy controller of the FuzzyNetClass.foi
definido?

The procedure methods are introduced in Algorithm 1, considering the concept
of width-based interval-valued fuzzy entropy presented in Definition 8.1.1. The en-
tropy methods are generated by interval-valued aggregations, including strict interval-
valued fuzzy negations with equilibrium intervals and the width-based interval-valued
restricted equivalence functions, as presented by constructions in Corollary 8.2.1 and
Corollary 8.2.2 related to Proposition 8.2.1. Other constructions are presented in Corol-
laries 8.2.1, 8.2.2, 8.2.3 and 8.2.4, which are derived from Proposition 8.2.2.

Now we illustrate the algorithm approach based on the theoretical studies related
to five interval entropy measures generated by interval-valued fuzzy aggregations and
interval-valued restricted equivalence functions w.r.t. the admissible ⪯-order.

For that, let A(ui) = Xi ∈ U be the interval-valued fuzzy value of an element ui ∈ U
in A ∈ AU, and EN : U → U be the fuzzy normal-entropy given as EN(Xi) = 1−|2Xi−
1|. In addition, to compare our proposal we applied the entropy on (Takáč et al., 2019).

Method 1 Based on Corollary 8.2.1, this method is defined by Eq.(121), by taking
the interval-valued average function as the arithmetic mean. Thus, the interval-
valued entropy Eω : AU → U related to (U,⪯XY ) can be expressed as follows:

Eω(A) =
1

n

n∑
i=1

EN
ω (A(ui)) =

1

n

n∑
i=1

EN
ω (Xi),
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Algorithm 1: Methods to Analyse Video Streaming Traffic Information via Interval
Entropy Measure

Input: IvFS quantifying each language variable

Output: ωA-IvE measuring the information related to each IvFS

1. Select the Interval Entropy Method, Admissible ⪯-order and Aggregation
2. Select the dataset.
3. Select the Attribute and the IvFS based on Att_LV _List
for IvFS in Att_LV − List do

En ← GETINTERVALENTROPY(An)
for n in EntropyList do

1.1 Apply the selected method to each membership degree for all
elements in the IvFS selected;
1.2 Aggregate Final Results in Entropy − List;

end
2. Present Entropy − List_Result;

end
4. Apply the ⪯-order to compare results from Entropy − List_Result

whenever EN
ω : U→ U is given by the following expression

EN
ω (Xi) =


[
(Xi +Xi) · K, (Xi +Xi)

]
, if Xi +Xi ≤ 1

[
2− (Xi +Xi) · K, 2− (Xi +Xi)

]
, otherwise,

(125)

and taking K = (1− ω(AVIV (X1), . . . , Xn))).

Method 2 Based on Corollary 8.2.2, this method is defined by Eq.(122), taking the
average fuzzy as the arithmetic means. Thus, for all ui ∈ U , let (A(ui) = Xi ∈ U,
the interval-valued entropy EA : AU → U related to (U,⪯XY ) is given as follows:

EA(A) =
1

n

n∑
i=1

EN
A(A(ui)) =

1

n

n∑
i=1

EN
A(Xi).

whenever EN
A : U→ U is obtained as

EN
A(Xi) =


[
2A(Xi, Xi) · KA, 2A(Xi, Xi)

]
, if 2A(Xi) ≤ 1

[
2− 2A(Xi, Xi) · KA, 2− 2A(Xi, Xi)

]
, otherwise,

(126)

and taking KA = 1−ω(Mn
i=1A(Xi)), when M is the median aggregation function.

Method 3 Based on Corollary 8.2.3, this method is defined by Eq.(123), taking the
average fuzzy as the arithmetic mean. Thus, the interval-valued entropy ES,ω :
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AU → U is given as follows:

ES,ω(A) =
1

n

n∑
i=1

EN
S,ω(A(ui)) =

1

n

n∑
i=1

EN
S,ω(Xi) =

1

n

n∑
i=1

Sω(Xi,N(Xi)),

whenever we take Sω : U2 → U as the width-based interval-valued restricted
equivalence function w.r.t. the ⪯XY -order, N as the strong interval-valued fuzzy
negation w.r.t. the ⪯XY -order given in Eq.(96) and M as the medium point of an
interval. Thus, ES,ω is defined as follows:

Sω(Xi,NXY (Xi)) =

[
1− α− 1

2
(ω(Xi)+ω(NXY (Xi)), 1−α

]
where α = |M(Xi)−M(NXY (Xi))|. And then, Sω can also be expressed as pre-
sented in the following:

Sω(Xi,NXY (Xi)) =


[
1
2
(Xi +Xi), Xi +Xi

]
if Xi +Xi ≤ 1;[

1− 1
2
(Xi +Xi), 2− (Xi +Xi)

]
, otherwise.

(127)

Method 4 Based on Corollary 8.2.4, this method is defined by Eq.(124), taking the
average fuzzy as the arithmetic mean. Thus, the interval-valued entropy ESA,ω :

AU → U is given as follows:

ESA,ω(A)=
1

n

n∑
i=1

EN
SA,ω(A(ui))=

1

n

n∑
i=1

EN
SA,ω(Xi)=

1

n

n∑
i=1

SA(Xi,NA(Xi)),

whenever we take SA : U2 → U as the width-based interval-valued restricted
equivalence function w.r.t. the ⪯A-order, expressed here as follows

SA(Xi,NA(Xi)) = (128)

[min(K, 1−ω(Xi), 1−ω(NA(Xi))),max(K, 1−A(NA(Xi))+A(Xi))],

if A(Xi) ≤ A(NA(Xi));

[min(K−1, 1− ω(Xi), 1− ω(NA(Xi))),max(K−1, 1−A(Xi) +A(NA(Xi)))],

otherwise.

by taking A as the aggregation given in Eq.(105) and KA = A(Xi)
A(NA(Xi))

.

Method 5 Again, by Corollary 8.2.4, the next method is defined by Eq.(124), taking the
average fuzzy as the arithmetic mean. Thus, the interval-valued entropy ER,ω :
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AU → U is given as follows:

ER,ω(A) =
1

n

n∑
i=1

EN
R,ω(A(ui)) =

1

n

n∑
i=1

EN
R,ω(Xi) =

1

n

n∑
i=1

Rω(Xi,Ne(Xi)),

whenever we take RA : U2 → U as the width-based interval-valued restricted
equivalence function w.r.t. the ⪯A-order, as given in Eq.(119), and expressed as

RA(X,Ne(X)) =

[max(0, Ne(|A(X)−A(Ne(X))|)−max(ω(X), ω(Ne(X)))), Ne(|A(X)−A(Ne(X))|)] (129)

Method 6 In order to compare the above proposed methods we also consider the
width-based interval fuzzy entropy related to (U,⪯XY ) introduced in (Takáč et al.,
2019, Example 30), and reported below:

Ep
IV (A) =

1

n

n∑
i=1

EN(A(ui)) =
1

n

n∑
i=1

ENXY (Xi),

when Ep
IV : U→ U is expressed as follows:

Ep
IV (Xi) =

[
1− |X i +X i − 1| − (X i −X i), 1− |X i + |X i − 1|

]
Then, new results comparing Ep

IV , from Method 01 to Method 05 are discussed
in the next section.

8.4 Summary

This chapter presents the main contribution of this research work, introducing the
concepts and related constructions of a new methodology based on ω-preserving
fuzzy connectives, under which we are able to propose new methods for obtaining
the interval-valued fuzzy entropy.

The methodology is generated by ω-preserving interval-valued fuzzy aggregations
and interval-valued fuzzy restricted equivalence function w.r.t. the admissible orders.

In particular, the well-known Xu and Yager’s ⪯XY -order is explored in order to ex-
press the list of five proposed methods. We also should highlight the use of DDI func-
tions defining the ⪯A-order applied in the expression of two interval-valued entropy
constructive methods.

The algebraic expression defining each one of the five methods is presented, includ-
ing illustrative examples for a more intuitive comprehension, instigating their application
in the next chapters.



9 INTERVAL-VALUED INTUITIONISTIC FUZZY ENTROPY

The concept of entropy measuring the fuzziness of a fuzzy set was introduced by De
Luca and Termini (Luca; Termini, 1972) in order to measure how far a fuzzy set (FS) is
from a crisp one. Since then, this concept has been adapted to the different extensions
of FS and with different interpretations, as in modeling type-2 fuzzy sets (DE MIGUEL
et al., 2017) (Xu; Shen, 2014), interpreting vague sets (Zhang; Jiang, 2008b), dealing
with intuitionistic fuzzy set (Wei; Gao; Guo, 2012), (Ye, 2010),(Verma; Sharma, 2013),
(Liu; Ren, 2014a) and also modeling interval-valued intuitionistic fuzzy sets (Jing; Min,
2013) (Zhang; Jiang, 2008b), all of them measure how far the considered extension is
from a fuzzy set of reference.

In this sense, it is worth mentioning the following concepts: the Atanassov intuition-
istic fuzzy entropy measure, given by Szmidt and Kacprzyk (Szmidt; Kacprzyk, 2001)
to measure how far A-IFS is from a crisp set. The entropy for interval-valued fuzzy sets
(IvFSs) is defined by Burillo and Bustince (Burillo; Bustince, 1996), which measures
how far an IvFS or A-IFS is from an FS.

The generalized interval-valued intuitionistic fuzzy index seems to be suitable to
deal with measures of entropy in A-IvIFS, modeling uncertainty, and imprecision in
membership and non-membership functions.

Following this approach, this chapter generalizes results from (Bustince et al.,
2011), discussing properties related to Atanassov’s interval-valued intuitionistic fuzzy
entropy (A-IvIFE) which are obtained by the action of an interval-valued aggregation
applied to the generalized interval-valued intuitionistic fuzzy index, using admissible
orders on ⟨Ũ,⪯Ũ⟩.

9.1 Interval-valued Intuitionistic Fuzzy Indexes on ⟨Ũ,⪯Ũ⟩

This section presents a proposal of obtain IvIFE based on the aggregation of A-
GIvIFIx, considering this operator defined on ⟨Ũ,⪯Ũ⟩.

Thus, this section contemplates the study of relevant admissible orders on Ũ, de-
manding a review reach from interval-valued intuitionistic fuzzy indexes, referred to as
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an interval-valued intuitionistic extension of the score, the accuracy, and the hesitancy
indexes.

The main results presented in (Lee, 2009) and (Ze-shui, 2007) extend the score
measure from Ũ to Ũ. So, the score function S : Ũ→ [−1, 1] is defined as follows:

S(X, Y ) =
1

2
(X +X − (Y + Y )), ∀(X, Y ) ∈ Ũ. (130)

Consider the preorder in Ũ given as (X1, Y1) ≤Ũ (X2, Y2) ⇔ S((X1, Y1)) ≤ S(X2, Y2)

and the equivalence relation given as (X1, Y1) ≡Ũ (X2, Y2)⇔ S((X1, Y1)) = S((X2, Y2)).
The binary relation is given as

(X1, Y1) <S (X2, Y2)⇔ S(X1, Y1) < S(X2, Y2), and

(X1, Y1) ≡S (X2, Y2)⇔ S(X1, Y1) = S(X1, Y1),

is a partial order on ⟨Ũ,≤Ũ⟩.
Additionally, based on (Ze-shui, 2007), by taking ω(X)) = X − X, the accuracy

function H : Ũ → [0, 1] and two other functions T : Ũ → [−1, 1] and G : Ũ → [0, 1] can
also be defined as follows

H(X, Y ) =
1

2
(X +X + Y + Y ). (131)

T(X, Y ) = ω(X)− ω(Y ); (132)

G(X, Y ) = ω(X) + ω(Y ), (133)

These function are applied to define a total order in Ũ.

9.1.1 Admissible Orders on ⟨Ũ,⪯Ũ⟩

In order to compare A-IvIFS, the Xu and Yager’s admissible ⪯∗XY -order is consid-
ered in this section.

Theorem 9.1.1. Let AI ,BI ∈ AŨ. Then, we have that AI ⪯∗XY BI if, and only if, ∀x ∈ χ,
the following inequality holds:

AI ≺∗XY BI ⇔

⇔

SAI
(µAI

(x), (νAI
(x)) ≤ SBI

(µBI
(x), (νBI

(x)) or

SAI
(µAI

(x), (νAI
(x)) = SBI

(µBI
(x), (νBI

(x));HAI
(µAI

(x), (νAI
(x)) ≤ HAI

(µBI
(x), (νBI

(x))
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And, the corresponding equality is defined as follows:

AI =XY BI ⇔

 SAI
(x, y) = SAI

(µAI
(x), (νAI

(x)) and

HAI
(µAI

(x), (νAI
(x)) = HAI

(µBI
(x), (νBI

(x)).

formalizing the admissible ⪯∗XY -order w.r.t. the usual partial ≤Ũ-order on Ũ.

Theorem 9.1.2. (Wang; Li; Wang, 2009) The ⪯∗WLW -relation defined, for each pair
((X1, Y1), (X1, Y1)) ∈ Ũ2, by the following expression:

(X1, Y1) ⪯∗WLW (X2, Y2)⇔ (134)

(X1, Y1) <S (X2, Y2) or

(X1, Y1) ≡S (X2, Y2);H(X1, Y1) < H(X2, Y2) or

(X1, Y1) ≡S (X2, Y2);H(X1, Y1) = H(X2, Y2);T (X1, Y1) < T ((X2, Y2)) or

(X1, Y1) ≡S (X2, Y2);H(X) = H(Y ) and T (X1, Y1) = T ((X2, Y2));G(X1, Y1) < G(X2, Y2).

is an admissible ⪯Ũ-order w.r.t. the usual partial ≤Ũ-order on Ũ.

In (DA SILVA; Bedregal; Santiago, 2016), the authors proposed a parametric family
composed of total orders on Ũ, which is reported below.

Theorem 9.1.3. (DA SILVA; Bedregal; Santiago, 2016) Let ⪯U-relation be a total order
on U. The⪯Ũ-relation defined, for each pair ((X1, Y1), (X1, Y1)) ∈ Ũ2, by the expression:

(X1, Y1) ⪯Ũ (X2, Y2)⇔ X1 ⪯U X2 or (X1 = X2 and Y2 ⪯U Y1) (135)

is a total order.

Since the ⪯XY is an admissible order on U, the following holds from Proposi-
tion 9.1.3.

Proposition 9.1.1. (DA SILVA; Bedregal; Santiago, 2016, Theorem 4.2) Let ⪯XY -
relation be the Xu and Yager’s admissible linear order on U. Then the binary relation
⪯∗XY on Ũ2, defined, for each pair ((X1, Y1), (X2, Y2)) ∈ Ũ2, by the expression

(X1, Y1) ⪯∗XY (X2, Y2)⇔ X1 ⪯XY X2 or (X1 = X2 and Y2 ⪯XY Y1) (136)

is a (total) admissible order on Ũ.

Thus, according with (DA SILVA; Bedregal; Santiago, 2016) the ordered structured
sets ⟨Ũ,⪯Ũ⟩, ⟨Ũ,⪯∗XY ⟩ are bounded lattices.
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9.1.2 Interval Extension of an A-GIFIx on ⟨Ũ,⪯Ũ⟩

In this section, the axiomatic definition of an A-GIFIx given in (Bustince et al., 2011,
Definiton 1) is extended to Atanassov’s interval-valued intuitionistic approach, consid-
ering Xu and Yager admissible ⪯XY -order.

Definition 9.1.1. A function Π̃ : Ũ→U is called a generalized interval-valued intuition-
istic fuzzy index associated with a strong IvFN N (A-GIvIFIx(N)) w.r.t. a ⟨Ũ,⪯Ũ⟩ if, for
all X̃ = (X1, X2), Ỹ = (Y1, Y2) ∈ Ũ, it holds that:

Π̃1: Π̃(X1, X2) = 1⇔ X1 = X2 = 0;

Π̃2: Π̃(X1, X2) = 0⇔ X1 +X2 = 1;

Π̃3: (Y1, Y2) ⋞Ũ (X1, X2)⇒ Π̃(X1, X2) ⪯U Π̃(Y1, Y2);

Π̃4: Π̃(X1, X2) = Π̃(NSI(X1, X2)) taking NSI
in Eq.(23).

Based on Definiton 9.1.1, a class of A-GIvIFIx obtained from IvIFI and IvFN w.r.t.
Xu-Yager’s order ⪯U is formalized in the next proposition.

Proposition 9.1.2. Let IMβ ,N : U2 → U be an IvFI w.r.t. a total order given in Proposi-
tion 7.1.6, by Eq.(100). The function Π̃IMβ

,NXY
: Ũ2 → Ũ given as follows:

Π̃IMβ,NXY
(X1, X2) =



0, if N(X2) ⪯XYX1;

1, if X2 = 0 and X1 = 0;[
1−β 3X2+X2

2
+ (1−β)3X1+X1

2
, (1−β)X2−X2

2
−(1−β)X1−X1

2

]
,

if (1−β)X1+X1 < 1−β(X2+X2) and X2 ̸=0, X2 ̸=0;[
β

X2−X2

2
+(1− β)X1−X1

2
, 2−β(3X2−X2

2
)+(1−β)(3X1−X1

2
)
]
,otherwise.

(137)

is an A-GIvIFIx obtained from IvIFI and IvFN w.r.t. the ⪯XY -order.

Proof. It follows from results of Propositions 7.1.6 and 7.1.5, also including Eq.(99) in
Prop. 7.1.4 and taking Mβ and N given by Eqs.(97) and (95), respectively.

Thus, the above proposition presents a method to obtain an interval extension of
the A-GIFIx, which is compatible with comparisons, enabling the ranking of results in
fuzzy systems based on A-IvIFS.

Concluding, we present a member of the above class, an IvFI obtained by compo-
sition of the IvA M 1

2
and the strong IvFN N, given in Eqs.(98) and (96), respectively.
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Example 9.1.1. In the conditions of Proposition 7.1.5, taking β = 1
2

and NXY given in
Eq.(96), then the function Π̃IMβ,N : Ũ2 → U given as follows:

Π̃IMβ,NXY
(X1, X2) =



0, if N(X2) ⪯X1;

1, if X2 = 0 or X1 = 0;[
1− 3X2+X2

4
− 3X1+X1

4
, 1− X2−X2

4
− X1−X1

4

]
,

if X1 +X1 < 2− (X2 +X2) and X2 ̸= 0, X2 ̸= 0;[
X2−X2

4
+

X1−X1

4
, 2−(

3X2+X2

4
)+(

3X1−X1

4
)
]
, otherwise.

is an A-GIvIFIx w.r.t. Xu-Yager’s order on ⟨Ũ,⪯XY ⟩

9.2 Interval Extension of Entropy on ⟨Ũ,⪯Ũ⟩

Definition 9.2.1. An interval-valued function EI : AŨ → U is called an A-IvIFE on
⟨Ũ,⪯Ũ⟩ if and only if EI verifies the following properties:

EI1: EI(AI) = 0⇔ AI ∈ AŨ;

EI2: EI(AI) = 1⇔ µAI
(x) = νAI

(x) = 0, ∀x ∈ χ;

EI3: EI(AI) = E(AIC );

EI4: If AI ⪯Ũ BI then EI(AI) ⪯U EI(BI), ∀AI ,BI ∈ AŨ.

Considering the axiomatic Definition 9.2.1 of Atanassov Interval-valued intuitionistic
fuzzy entropy, the following Theorem presents the construction of the A-IvIFE obtained
through A-GIvIFIx and idempotents aggregators that satisfies the axioms of the above
definition.

Theorem 9.2.1. Consider χ = {x1, . . . , xn}. Let M : Un → U be an IvA , N be a strong
IvFN and Π̃ be an A-GIvIFIx(N). A function EI : AŨ → U given by

EI(AI) = Mn
i=1Π̃I(AI(xi)) = Mn

i=1Π̃I(µAI
(xi), νAI

(xi)),∀xi ∈ χ, (138)

is an A-IvIFE in the sense of Definition 9.2.1.

Proof. Let AIC be the complement of AI given by Eq.(74). For all xi ∈ χ and AI ,BI ∈
AŨ, we have that:

EI1 : EI(AI) = 0 ⇔ Mn
i=1Π̃(AI(xi)) = 0̃. By MI1, EI(AI) = 0 ⇔ µAI

(xi) + νAI
(xi) = 1̃.

Then, by Π̃2, EI(AI) = 0̃⇔ AI ∈ AŨ.
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E2 : Analogous to EI1.

E3 : EI(AIC ) = Mn
i=1Π̃(AIC (xi)) = Mn

i=1Π̃(NSI
(X1, X2)) = Mn

i=1Π̃(X1, X2), by Π̃4. So,
the following holds EI(AIC ) = Mn

i=1Π̃(X1, X2). Concluding, EI(AIC ) = EI(AI).

E4 : If AI ⪯Ũ BI then AI(xi) ⪯Ũ BI(xi), ∀xi ∈ χ. Based on Π̃3, it holds that
Π̃(BI(xi)) ⪯U Π̃(AI(xi)). By M3, we obtain that MI

n
i=1Π̃(BI(xi)) ⪯U Mn

i=1Π̃(BI(xi)).
As conclusion, we have that EI(AI) ⪯U EI(BI).

Therefore, Theorem 9.2.1 is verified.

The next proposition formalizes the interval extension of the constructive method to
obtain interval fuzzy entropy generalized interval-valued fuzzy intuitionistic fuzzy index.
Such a method extends the main results presented in (Bustince et al., 2011).

Proposition 9.2.1. Consider χ = {x1, . . . , xn}. Let M : Un → U be an interval-
valued aggregation on ⟨Ũ,⪯XY ⟩. Let NXY be a strong negation defined in Eq.(95)
and IMβ ,N : U2 → U be an IvFI given by Eq.(100) which is considered in definition of the
A-GIvIFIx(NXY ) Π̃IMβ,NXY

: Ũ2 → U. Then, the operator EI : AŨ → U defined as follows

EI Π̃IMβ,NXY

(AI) = Mn
i=1Π̃IMβ,NXY

(µAI
(xi), νAI

(xi)),∀xi ∈ χ. (139)

is an A-IvIFE on ⟨Ũ,⪯XY ⟩.

Proof. Straightforward Proposition 9.1.2 and Proposition 9.2.1.

Corollary 9.2.1. In Proposition 9.2.1, consider the aggregation operator M as the arith-
metic, and β = 1

2
in the IvIFI IMβ ,NXY

. For all xi ∈ χ and AI ∈ AŨ, we have the following
expression for an A-IvIFE

EI Π̃IM 1
2
,NXY

(AI) =
1

n

n∑
i=1

Π̃IM 1
2
,NXY

(µAI
(xi), νAI

(xi)),∀xi ∈ χ.

Proof. Straightforward Proposition 9.2.1.

9.3 Summary

The chapter presented the constructions referring to interval-valued intuitionistic
fuzzy entropy treated at intervals through the aggregation of the generalized interval-
valued intuitionistic fuzzy index. For these constructions, the concepts of total orders
were considered, and the concepts of interval extension of the A-GIFIx and of the
intuitionistic fuzzy entropy are discussed over the ordered structure ⟨Ũ,⪯Ũ⟩.

Moreover, in order to generate a new method to obtain interval-valued intuitionistic
fuzzy entropy, we restricted our focus to Xu and Yager’s admissible order, providing
related interval extension of fuzzy implications and fuzzy negations on ⟨Ũ,⪯XY ⟩.
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Part III

PRACTICAL CONTRIBUTIONS



10 PRACTICAL CONTRIBUTION OF NEW INTERVAL EN-
TROPY ON VIDEO STREAMING RATING

In this chapter, we present a case study involving the interval entropy methodology
developed throughout this work. For this, we consider an application in the area of
network traffic classification.

The dynamicity of current networks and the similarity between the protocols used,
associated with techniques such as cryptography for data privacy and oscillations in
the operational conditions of networks, are relevant challenges for classifying network
traffic in a classical way.

Network traffic classification is the process of identifying specific applications or
activities by matching them with network traffic. This task is essential for network man-
agement and security (Wang et al., 2017).

In (Monks, 2023) a hybrid approach was proposed, called FuzzyNetClass, for the
classification of network traffic, focused on the current profile of computer network
usage. This approach considers uncertainties generated by fluctuations in network
resources of shared infrastructures, which are non-deterministic in nature.

By applying entropy to this approach, we enable the quantifying inaccurate or un-
known information about its input and output data. Thus, based on the proposed
methodology composed by the six methods presented in Section 8.3, the compar-
isons among the results through distinct admissible orders are performed, including
the particular analysis considering the ⪯A-order, as introduced in this research work.

10.1 Main Concepts of FuzzyNetClass Approach

The FuzzyNetClass approach aims to contribute to the classification of traffic re-
lated to video streaming protocols, exploring the integration of inference systems based
on interval-valued fuzzy logic and machine learning algorithms.

As can be seen in Figure 7, its architecture is divided into three modules: data
insertion, network traffic classification and data extraction. In the data insertion stage,
the network flow is captured using tools configured with selection of package types,
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for a specified period of time. From this, there is an extraction and selection of the
attributes of the packets that were collected in the network.

The traffic classification step networking can occur through the fuzzy approach or
through a hybrid approach that uses machine learning and fuzzy logic techniques. Also
including the phases of fuzzification, rule base, inference and finally defuzzification
through a type reducer.

Finally, the data extraction step that goes through the selection of the output type,
which can be of three options: crisp data, linguistic terms and interval data. In the
interval data option, it is possible to calculate the entropy, and thus, the contribution
step of our study with this approach is located here.

In this case study we consider the Datasets captured from real network traffic, from
the Federal University of Pelotas. It is important to mention that this capture was only
possible thanks to the support of servers in the network sector from the university.

From the traffic capture, on different days and periods, the FuzzyNetClass approach
was able to identify the protocols that circulated through the network, especially the
video streaming ones, which were of interest to such an application. Four datasets
were generated, each with eleven linguistic terms. These linguistic terms characterize
the nature of the identification proposed by the approach and have five linguistic terms
that correspond to the interval fuzzy sets "very low", "low", "below reasonable", "rea-
sonable" and "high", which identified the amount of chance the analyzed protocol has
to be dealing with video.

Applying the different methods of interval entropy, in the input and output character-
istics, we obtained results that validate the promising proposal of the hybrid approach
FuzzyNetClass. The modeling of this identification generates output data that charac-
terize three sets of interval values "low", "average" and "high".

The proposed methodologies are characterized by precision in the results obtained,
by using an interval as a response. For purposes of comparison between the methods,
we used admissible orders.

10.2 Application of Theoretical Contributions on Video Streaming
Traffic Rating

For the application of the distinct theoretical constructions for width-based interval-
valued entropy, and of the proposed methods from these constructions, this work
shows the information evaluation provided by the fuzzy controller of the FuzzyNetClass
approach. This approach considers the classification of traffic related to video stream-
ing, exploring the integration of inference systems based on interval-valued fuzzy logic
and machine learning algorithms.

They are applied considering admissible interleaving ⪯A-order and the well-known
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Figure 7 – FuzzyNetClass Architecture

Xu and Yager ⪯XY -order. The IvE definitions are presented in two approaches, both
based on a fuzzy entropy E w.r.t. the strong fuzzy negation N with equilibrium point on
⟨[0, 1],≤⟩.

Thus, in order to evaluate the contributions of entropy, six case studies were dis-
cussed, which considered four datasets conceived from real captures of network traffic.

The results obtained were promising and point to the continuation of study and
research efforts on the subject of width-based interval entropy.

10.2.1 ωA-IvE Applied to Video Streaming Traffic Classification

The methodology ωA-IvE (width-based interval fuzzy entropy) proposed is now ap-
plied in the interpretation of (possible disorganized and/or discrepant) information re-
lated to output/input data in the FuzzyNetClass.
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The considered approach is directed to the current profile of the use of computer
networks, considering the uncertainties generated by fluctuations in network flow be-
havior and resources of the infrastructures shared, which are set as non-deterministic.
Such conditions increase the complexity of accurate results to identify, in a network,
the video protocols (on demand and live streaming) and differentiate them from of
other protocols in network traffic.

For that, the analysis of interval fuzzy entropy measures and their comparisons
based on admissible orders demand interpretation of input/output IvFS which are mod-
eling the fuzzy control in the FuzzyNetClass. The eleven selected attributes or Linguis-
tic Variables (LV), all of them normalized to the range of [0, 10], each with 05 Linguistic
Terms (LT) as “VeryLow”(V), “Low”(L), “BellowReasonable”(B), “Reasonable”(R) and
“High”(H) comprising 55 IvFS to modeling input data as presented in Table 13.

Moreover, three linguistic terms are associated with the output linguistic variable
Video:
(i) “LowVideo”(Lv), establishing the chance is low that the design control will detect a
characterization as a video streaming in the flows fuzzy classifier;
(ii) “AverageVideo” (Av): presenting a moderate chance of detection of a potential char-
acterization of video streaming by the design control;
(iii) “HighVideo”(Hv), considering the chance is high that the design control will detect
a potential characterization of a video streaming in the flows fuzzy classifier.

Table 13 – Selected Input Attributes in the FuzzyNetClass Approach

Attribute Description

Fwd Packet Length Mean Mean size of packet in forward direction

Fwd Packet Length Std Standard deviation Fwd Packet Length Mean

Bwd Packet Length Mean Mean size of packet in backward direction

Bwd Packet Length Std Standard deviation of Bwd Packet Length Mean

Flow IAT Mean Mean value of the inter-arrival time of the flow

Flow IAT Std Standard deviation of Flow IAT Mean

Fwd IAT Mean Inter-arrival mean time of packets in forward direction

Fwd IAT Std Standard deviation of Fwd IAT Mean

Bwd IAT Mean Inter-arrival mean time of packets in backward direction

PLM Packet Length Mean

PLS Standard Deviation of Packet Length Mean

In the input attributes extraction, the selection algorithms were supervised by
CREI/UFPEL 1 experts from modeling, through development and information validation
of 04 elected datasets (DA, DB, DC, DD) supporting video streaming traffic classifi-
cation. The validation is performed via such datasets considering the ωA-IvE methods
analysis, as a metric to measure the disordered information through interval-valued

1https://institucional.ufpel.edu.br/unidades/id/944

https://institucional.ufpel.edu.br/unidades/id/944
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fuzzy data.
FuzzyNetClass’s interval-valued fuzzy inference system considered lower and up-

per trapezoidal membership functions. The inference process applies the Mamdani
method, considering a rule base with “AND” logical connective which applies triangular
norms, totalizing 140 distinct rules. The defuzzification step is performed by two Type-
1 Reductors, named Centroid (C) and Center of Sets (CoS) taking the fuzzy outputs
and converting them to a single or crisp output value. In addition, the FuzzyNetClass
controller can also identify the linguistic terms, and the membership degrees and also
enable a comparison over the output video data by the admissibility of ⪯-order rela-
tions.

10.2.2 ωA-IvE Methods Interpreting Input Information on IvFS

In this section, the information related to the fuzzification step in the FuzzyNetClass
approach, considering the proposed width-based interval entropy methods.

For the implementation of each of the ωA-IvE methods, we use the GNU Octave 2

tool, which is free software under the terms of the GPL license. The code files used in
this Thesis, referring to the ωA-IvE methodology, are available in a public repository 3.

2https://octave.org/
3https://github.com/Lidicostas/wa-IvFE

https://octave.org/
https://github.com/Lidicostas/wa-IvFE
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Table 14 – Entropy Measures for Input Data

Very Low Low Below Reasonable Reasonable High

D M Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper

A

1 0.415077 0.44961 0.283394 0.30886 0.075666 0.079628 0.015045 0.015418 0.006161 0.00621

2 0.062799 0.08345 0.042176 0.04521 0.066017 0.066017 0.03709 0.03709 0.021140 0.02114

3 0.058216 0.116431 0.052931 0.105862 0.050575 0.101149 0.027054 0.054107 0.014252 0.028505

4 0.380804 0.419014 0.564541 0.58641 0.773876 0.804021 0.886776 0.903371 0.845328 0.856192

5 0.38463 0.494215 0.564245 0.643398 0.778492 0.842255 0.890245 0.924544 0.848242 0.869791

6 0.039614 0.116431 0.023416 0.105862 0.051394 0.101149 0.029913 0.054107 0.020529 0.028505

B

1 0.338153 0.36205 0.27848 0.29944 0.093177 0.097558 0.008794 0.009045 0.001483 0.001496

2 0.239899 0.2916 0.258455 0.299292 0.269885 0.298825 0.270702 0.285383 0.251019 0.258834

3 0.051391 0.102783 0.045658 0.091316 0.046834 0.093669 0.029064 0.058128 0.015324 0.030649

4 0.420155 0.455952 0.619302 0.637783 0.788813 0.817528 0.867324 0.884849 0.797547 0.808605

5 0.239074 0.289154 0.27326 0.312343 0.299473 0.33018 0.306201 0.322604 0.282103 0.290993

6 0.036786 0.102783 0.021306 0.091316 0.048767 0.093669 0.030433 0.058128 0.022058 0.030648

C

1 0.326598 0.3522 0.256412 0.27705 0.092595 0.096987 0.023763 0.024385 0.008630 0.008699

2 0.058056 0.081577 0.037759 0.040826 0.061849 0.061849 0.035627 0.035627 0.021549 0.021549

3 0.055737 0.111473 0.047446 0.094891 0.046387 0.092774 0.027044 0.054087 0.014266 0.028533

4 0.399337 0.435907 0.593377 0.614861 0.788625 0.816873 0.878551 0.895142 0.820577 0.830599

5 0.200436 0.245628 0.22317 0.260453 0.235254 0.263733 0.227947 0.243771 0.205008 0.212646

6 0.038783 0.111471 0.020397 0.094891 0.047484 0.092774 0.028599 0.054087 0.020579 0.028533

D

1 0.362322 0.39159 0.232535 0.25246 0.077767 0.081537 0.019873 0.020307 0.005583 0.005619

2 0.061877 0.087209 0.041909 0.043888 0.05784 0.05784 0.030139 0.030139 0.017923 0.017923

3 0.057914 0.115829 0.050667 0.101334 0.045253 0.090506 0.022814 0.045628 0.011495 0.02299

4 0.385988 0.425088 0.630786 0.652345 0.792621 0.819235 0.89943 0.913396 0.826297 0.834654

5 0.180348 0.223705 0.195979 0.229483 0.208586 0.233434 0.202202 0.215882 0.179451 0.185672

6 0.041086 0.115828 0.022431 0.101334 0.04427 0.090506 0.024286 0.045628 0.016666 0.022989

• D: Dataset • M: ωA-IvE Method
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In Table 14, for each of the selected datasets (DA, DB, DC, DD), are provided
the results from average (arithmetic means) of the 11 input attributes, as presented in
Table 13, and related to ωA-IvE of the five IvFS defined by the linguistic variables.

The rows from 1 to 6, describing the results of the methodologies for calculating
the width-based interval fuzzy entropy. They are showing the results obtained as the
arithmetic mean of the 11 selected input attributes, which were performed over the
lower and upper bond of each IvFS related to linguistic variables (“VeryLow”, “Low”,
“BelowReasonable”, “Reasonable”, “High”).

The data are given by the arithmetic mean performed overall 11 attributes (linguistic
variables) related to the linguistic variable “High”, giving a relevant interpretation for the
high compatibility of each network flow to the IvFS defined by this variable H. So, the
input IvFS H achieves the least entropy measurements in four ωA-IvE methods, and for
all selected datasets. In contrast, the input IvFS identified by LV “VeryLow” achieves
the least entropy measurements in two ωA-IvE methods. These are detailed in the
following comparisons based on admissible interleaving ⪯A-order:

I. Dataset DA

(1) Entropy Measures of IvFS “High”(H)
M1: EN

ω (AH) = [0.006161, 0.00621] and ω(EN
ω (AH)) = 0.000049;

M2: EN
A(AH) = [0.021140, 0.02114] and ω(EN

A(AH)) = 0.0;
M3: ES,ω(AH) = [0.014252, 0.028505]) and ω(ES,ω(AH)) = 0.014253;
M6: Ep

IV (AH) = [0.020529, 0.028505] and ω(Ep
IV (AH)) = 0.007976.

Moreover, EN
ω (AH) ⪯A ES,ω(AH) ⪯A Ep

IV (AH) ⪯A EN
A(AH).

(2) Entropy Measures of IvFS “VeryLow”(V)
M4: ESA,ω(AV ) = [0.380804, 0.419014] and ω(ESA,ω(AV )) = 0.03821;
M5: ER,ω(AV ) = [0.38463, 0.494215] and ω(ER,ω(AV )) = 0.109585;
And, ESA,ω(AV ) ⪯A ER,ω(AV ).

II. Dataset DB

(1) Entropy Measures of IvFS “High”(H)
M1: EN

ω (AH) = [0.001483, 0.001496] and ω(EN
ω (AH)) = 0.000013;

M2: EN
A(AH) = [0.251019, 0.258834] and ω(EN

A(AH)) = 0.007815;
M3: ES,ω(AH) = [0.015324, 0.030649]) and ω(ES,ω(AH)) = 0.015325;
M6: Ep

IV (AH) = [0.022058, 0.030648] and ω(Ep
IV (AH)) = 0.008590.

Moreover, EN
ω (AH) ⪯A ES,ω(AH) ⪯A Ep

IV (AH) ⪯A EN
A(AH).

(2) Entropy Measures of IvFS “VeryLow”(V)
M4: ESA,ω(AV ) = [0.420155, 0.455952] and ω(ESA,ω(AV )) = 0.035837;
M5: ER,ω(AV ) = [0.239074, 0.289154] and ω(ER,ω(AV )) = 0.05008;
And, ER,ω(AV ) ⪯ ESA,ω(AV ).

III. Dataset DC
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(1) Entropy Measures of IvFS “High”(H)
M1: EN

ω (AH) = [0.008630, 0.008699] and ω(EN
ω (AH)) = 0.000069;

M2: EN
A(AH) = [0.021549, 0.021549] and ω(EN

A(AH)) = 0.00;
M3: ES,ω(AH) = [0.014266, 0.028533]) and ω(ES,ω(AH)) = 0.014267;
M5: ER,ω(AH) = [0.205008, 0.212646] and ω(ER,ω(AH)) = 0.007638;
M6: Ep

IV (AH) = [0.020579, 0.028533] and ω(Ep
IV (AH)) = 0.007954.

Moreover, EN
ω (AH) ⪯A ES,ω(AH) ⪯A Ep

IV (AH) ⪯A EN
A(AH) ⪯A ER,ω(AH).

(2) Entropy Measures of IvFS “VeryLow”(V)
M4: ESA,ω(AV ) = [0.399337, 0.435907] and ω(ESA,ω(AV )) = 0.03657.

IV. Dataset DD

(1) Entropy Measures of IvFS “High”(H)
M1: EN

ω (AH) = [0.005583, 0.005619] and ω(EN
ω (AH)) = 0.000036;

M2: EN
A(AH) = [0.017923, 0.017923] and ω(EN

A(AH)) = 0.0;
M3: ES,ω(AH) = [0.011495, 0.02299]) and ω(ES,ω(AH)) = 0.011495;
M5: ER,ω(AH) = [0.179451, 0.185672] and ω(Ep

IV (AH)) = 0.006221;
M6: Ep

IV (AH) = [0.016666, 0.022989] and ω(Ep
IV (AH)) = 0.006323.

Moreover, EN
ω (AH) ⪯A EN

A(AH) ⪯A ES,ω(AH) ⪯A Ep
IV (AH) ⪯A ER,ω(AH).

(2) Entropy Measures of IvFS “VeryLow”(V)
M4: ESA,ω(AV ) = [0.385988, 0.425088] and ω(ESA,ω(AV )) = 0.0391.

These results can also be graphically described based on bar graphs to compare
and contrast different methods to measure IvE in input attributes on FuzzyNetClass,
as presented in Figure 8, seen below.

Concluding the data analysis in Table 14, one can easily observe that Methods
04 and 05 show more sensibility, presenting the greatest intervals related to ωA-IvE
of IvFS w.r.t. the admissible pairwise (⪯A,⪯←−A)-order. In particular, for linguist term
“Reasonable” it is detailed in the following results:

I. Dataset DA

M4: ESA,ω(AR) = [0.886776, 0.903371], and ω(ESA,ω(AR)) = 0.016595;
M5: ER,ω(AR) = [0.890245, 0.924544], and ω(ER,ω(AR)) = 0.034299.

II. Dataset DB

M4: ESA,ω(AR) = [0.867324, 0.884849], and ω(ESA,ω(AR)) = 0.017525.

III. Dataset DC

M4: ESA,ω(AR) = [0.878551, 0.895142], and ω(ESA,ω(AR)) = 0.016591.

IV. Dataset DD

M4: ESA,ω(AR) = [0.89943, 0.913396], and ω(ESA,ω(AR)) = 0.013966.
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Figure 8 – Entropy Measures for Input Data

By flexibility of our algorithmic proposal, the above analysis suggests a reevalua-
tion of M4 and M5 methodologies, reloading new parameters and operators (as ag-
gregation, negation, and restricted equivalence functions) in the definition of ωA-IvE,
considering the decision-making for this application directed to video streaming traf-
fic classification. So, it can improve the M4 and M5 entropy measure estimation by
comparing these to the results achieved by the others.

10.2.3 ωA-IvE Methods Interpreting Output Information of IvFS

In this section, the information in the defuzzification step of the FuzzyNetClass is
analyzed considering the proposed width-based interval entropy methods. To do so,
Table 15 presents the average related to the entropy measures for output IvFS, consid-
ering in the defuzzification step two type-1 reduction techniques (T1R), the Center of
Sets (CoS), and the Centroid (C).
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Table 15 – Entropy Measures for Output IvFS - Center of Sets and Centroid

Center of Sets Centroid

D M
Low Average High Low Average High

Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper

A

1 0.4294 0.4496 0.2734 0.3089 0.0741 0.0796 0.4269 0.4496 0.2864 0.3089 0.0770 0.0796

2 0.1385 0.1385 0.1698 0.2807 0.1826 0.1926 0.1674 0.1674 0.0915 0.1510 0.1760 0.1760

3 0.0859 0.1718 0.1819 0.3639 0.1172 0.2343 0.1034 0.2067 0.1000 0.2001 0.0898 0.1797

4 0.7522 0.8138 0.5329 0.6908 0.6048 0.6764 0.7402 0.8221 0.3909 0.4638 0.8778 0.9370

5 0.7568 0.8542 0.5567 0.8000 0.5954 0.7404 0.7519 0.8745 0.4456 0.6291 0.8908 0.9669

6 0.1268 0.1718 0.2490 0.3639 0.1650 0.2343 0.1561 0.2067 0.1273 0.2001 0.1462 0.1797

B

1 0.3462 0.3621 0.2738 0.2994 0.0919 0.0976 0.3433 0.3621 0.2772 0.2994 0.0933 0.0976

2 0.1742 0.1742 0.2362 0.2362 0.2206 0.2206 0.1888 0.1888 0.1668 0.1773 0.2531 0.2531

3 0.0998 0.1996 0.1394 0.2787 0.1233 0.2466 0.1121 0.2242 0.1156 0.2311 0.1276 0.2553

4 0.7110 0.7630 0.6725 0.7636 0.7017 0.7722 0.6777 0.7499 0.4929 0.5975 0.8463 0.9265

5 0.7161 0.8247 0.6990 0.8627 0.6850 0.8443 0.6788 0.8132 0.5225 0.7163 0.8670 0.9703

6 0.1559 0.1996 0.1931 0.2787 0.1887 0.2466 0.1724 0.2242 0.1569 0.2311 0.2118 0.2553

C

1 0.3393 0.3522 0.2503 0.2771 0.0899 0.0970 0.3366 0.3522 0.2554 0.2771 0.0926 0.0970

2 0.1361 0.1361 0.2002 0.2324 0.2116 0.2317 0.1537 0.1537 0.1364 0.1770 0.2116 0.2116

3 0.0806 0.1611 0.1508 0.3016 0.1345 0.2690 0.0934 0.1868 0.1132 0.2265 0.1132 0.2265

4 0.7847 0.8287 0.5853 0.7086 0.6253 0.7081 0.7471 0.8107 0.4285 0.5100 0.8183 0.8984

5 0.7905 0.8808 0.6118 0.8151 0.6130 0.7782 0.7503 0.8662 0.4811 0.6567 0.8341 0.9396

6 0.1245 0.1611 0.2052 0.3016 0.1964 0.2690 0.1425 0.1868 0.1483 0.2265 0.1810 0.2265

D

1 0.3725 0.3916 0.2203 0.2525 0.0763 0.0815 0.3707 0.3916 0.2306 0.2525 0.0795 0.0815

2 0.1431 0.1431 0.1879 0.2926 0.1323 0.1323 0.1690 0.1690 0.1543 0.2149 0.1074 0.1074

3 0.0900 0.1799 0.1906 0.3811 0.0881 0.1762 0.1061 0.2123 0.1326 0.2651 0.0588 0.1175

4 0.7276 0.7762 0.4993 0.6643 0.6440 0.6941 0.6883 0.7656 0.4023 0.4934 0.8879 0.9282

5 0.7354 0.8377 0.5253 0.7962 0.6375 0.7411 0.6931 0.8306 0.4688 0.6755 0.8945 0.9510

6 0.1311 0.1799 0.2537 0.3811 0.1114 0.1762 0.1590 0.2123 0.1786 0.2651 0.0920 0.1175

• D: Dataset • M: ωA-IvE Methodology
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The bold intervals highlight the best results for each of the width-based interval
entropy methods, considering the four datasets. It is immediate that the number of
such intervals is much more frequent in the two last columns (mapping results from
linguistic terms “Average” and “High”) in the Centroid case. These are discussed in the
following:

I. Dataset DA

(1) Entropy Measures in CoS/T1R
M1: EN

ω (AH) = [0.0741, 0.0796] and ω(EN
ω (AH)) = 0.0055 in CoS /T1R;

M3: ES,ω(AL) = [0.0859, 0.1718]) and ω(ES,ω(AL)) = 0.0859 in CoS/T1R;
M6: Ep

IV (AL) = [0.1268, 0.1718] and ω(Ep
IV (AL)) = 0.045 in CoS/T1R.

Thus, we have that EN
ω (AH) ⪯A ES,ω(AH) ⪯A Ep

IV (AH).
(2) Entropy Measures in C/T1R
M2: EN

A(AA) = [0.0915, 0.1510] and ω(EN
A(AA)) = 0.0595 in C/T1R;

M4: ESA,ω(AA) = [0.3909, 0.4638] and ω(ESA,ω(AA)) = 0.0729 in C/T1R.
M5: ER,ω(AA) = [0.4456, 0.6291] and ω(ER,ω(AA)) = 0.1835 in C/T1R.
Thus, we have that EN

A ⪯A ESA,ω ⪯A ER,ω.

II. Dataset DB

(1) Entropy Measures in CoS/T1R
M1: EN

ω (AH) = [0.0919, 0.0976] and ω(EN
ω (AH)) = 0.0057;

M3: ES,ω(AL) = [0.0998, 0.1996]) and ω(ES,ω(AL)) = 0.0998;
M6: Ep

IV (AL) = [0.1559, 0.1996] and ω(Ep
IV (AL)) = 0.0437.

Thus, we have that EN
ω (AH) ⪯A ES,ω(AL) ⪯A Ep

IV (AL).
(2) Entropy Measures in C/T1R
M2: EN

A(AA) = [0.1668, 0.1773] and ω(EN
A(AA)) = 0.0105;

M4: ESA,ω(AA) = [0.4929, 0.5975] and ω(ESA,ω(AA)) = 0.1046;
M5: ER,ω(AA) = [0.5225, 0.7163] and ω(ER,ω(AA)) = 0.1938;
Thus, we have that EN

A(AA) ⪯A ESA,ω(AA) ⪯A ER,ω(AA)

III. Dataset DC

(1) Entropy Measures in CoS/T1R
M1: EN

ω (AH) = [0.0899, 0.0970] and ω(EN
ω (AH)) = 0.0071;

M2: EN
A(AL) = [0.1361, 0.1361] and ω(EN

A(AL)) = 0.0;
M3: ES,ω(AL) = [0.0806, 0.1611]) and ω(ES,ω(AL)) = 0.0805;
M6: Ep

IV (AL) = [0.1245, 0.1611] and ω(Ep
IV (AL)) = 0.0366.

Thus, we have that EN
ω (AH) ⪯A ES,ω(AL) ⪯A Ep

IV (AL) ⪯A EN
A(AL).

(2) Entropy Measures in C/T1R
M4: ESA,ω(AA) = [0.4285, 0.5100] and ω(ESA,ω(AA)) = 0.0815;
M5: ER,ω(AA) = [0.4811, 0.6567] and ω(ER,ω(AA)) = 0.1756.
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Thus, we have that ESA,ω(AA) ⪯A ER,ω(AA)

IV. Dataset DD

(1) Entropy Measures in CoS/T1R
M1: EN

ω (AH) = [0.0763, 0.0815] and ω(EN
ω (AH)) = 0.0052;

(2) Entropy Measures in C/T1R
M2: EN

A(AH) = [0.1074, 0.1074] and ω(EN
A(AH)) = 0.0;

M3: ES,ω(AH) = [0.0588, 0.1175]) and ω(ES,ω(AH)) = 0.0587;
M4: ESA,ω(AA) = [0.4023, 0.4934] and ω(ESA,ω(AA)) = 0.0911;
M5: ER,ω(AA) = [0.4688, 0.6755] and ω(ER,ω(AA)) = 0.2067;
M6: Ep

IV (AH) = [0.0920, 0.1175] and ω(Ep
IV (AH)) = 0.0255.

Thus, we have the following comparison:
ES,ω(AH) ⪯A Ep

IV (AH) ⪯A EN
A(AH) ⪯A ESA,ω(AA) ⪯A ER,ω(AA)

Analogously, the results exploring ωA-IvE applied to input of IvFS from the fuzzifica-
tion step, the greatest ωA-IvE of IvFS in the defuzzification step addressing the output
data before the action of type-1 reduction is related to M4 and M5 methodologies,
expressing the major sensibility in FuzzyNetClass application. These methodologies
based on IvREF methods increment in the analysis of disorganized information, when
they are compared to the other ones. This analysis happened in the four datasets, as
shown in the bar graphs in Figure 9.

For the IvFS associated with the linguistic terms "AverageVideo" and "HighVideo",
the comparison using an admissible interleaving order shows that in both cases, the
results indicate lower IVE for information in the defuzzification process via the Centroid
methodology compared to the Center of Sets reduction methodologies. The corre-
sponding diameter was also smaller in these cases. Therefore, this entropy measure
indicates that for the linguistic variables "Average" and "High," there is less disorgani-
zation of information and less imprecision regarding the output IvFS.

Therefore, for the FuzzyNetClass hybrid approach, the output data for IvFS related
to the linguistic variables "Average" and "High" classes show a lower upper bound (and
diameter) for interval entropy performed by M1, M2, M3, and M6. Thus, using these
four methods, the FuzzyNetClass demonstrates proficiency in information classifica-
tion, encompassing both the "On Demand" and "Live Streaming" video streams.

10.3 Summary

In this chapter, we can check the application of the methodology ωA-IvE (width-
based interval fuzzy entropy) to a real inference system. The proposed methods pro-
mote distinct interpretations of (possibly disorganized and/or discrepant) information
related to output/input data in the FuzzyNetClass – which is a hybrid approach to net-
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Figure 9 – Entropy Analysis of Output Attribute
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work traffic classification integrating fuzzy approximate thinking and machine learning
techniques.

This practical contribution of this thesis is applied to video streaming ratings. For
that, the main concepts of the FuzzyNetClass approach are described and then, the
application of contributions on video streaming traffic rating is discussed.

The algorithm expression for the methodology based on ωA-IvE is described, con-
sidering the video streaming traffic classification. The five ωA-IvE methods introduced
in this work and another one previously presented in the literature are implemented
and evaluated by the selected databases. The ωA-IvE methods interpreting output in-
formation of IvFS are considered to analyze the results obtained in terms of graphical
presentation and discussion on the data preservation w.r.t. the relation of input/output
interval diameters.



11 CONCLUSION

This chapter describes the main contributions of this work and also points out pos-
sible further work.

11.1 Main Results

This work contributed to distinct approaches, extending formal concepts and
methodologies to obtain width-based interval fuzzy entropy and an A-IvIFE, includ-
ing applying these theoretical results in the evaluation of video information provided by
the FuzzyNetClass approach.

11.1.1 Results on Theoretical Contributions

A. Theoretical Contributions on Interval Fuzzy Entropy Measures

This section introduces the theoretical studies described in this work starting with
the notion of just one injective and increasing function A : U → U w.r.t the corre-
sponding product order on U and the usual order on U to generate admissible orders
⟨U,⪯A⟩.

Thus, the admissible interleaving functions A,
←−
A : U → U , respectively named as

right and left Decimal-Digit Interleaving (DDI) are introduced, as particular injective and
increasing functions. This study includes examples and propositions discussing their
main properties. Moreover, the two reverse constructions of such DDI-based admissi-
ble interleaving functions indicated as A(−1) and

←−
A(−1), are also analyzed, underlying

the study of (anti-) monotonicity of admissible interleaving interval-valued fuzzy con-
nectives on ⟨U,⪯A⟩.

The main results extend the definition of fuzzy connectives on ⟨U,⪯A⟩, considering
admissible interleaving negations generated by strong fuzzy negations with equilibrium
point, as NS and Ne, and also width-based interval-valued operators on ⟨U,⪯A⟩, as
aggregation functions, IvREF and IvRDF functions.

In sequence, important concepts on width-based interval fuzzy entropy are pre-
sented considering the set AU of all interval-valued fuzzy sets defined on the finite and
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non-empty universe χ.
The relevant discussion of the main conditions to define width-based interval-valued

entropy (ωA-IvE) measures on ⟨U,⪯A⟩ takes into account the DDI-based admissible
interleaving ⪯A-order.

• The first approaches consider the IvE on ⟨U,⪯⟩, which is generated by an aver-
aging aggregation function and width-based functions on ⟨U,≤⟩, as an interval-
valued fuzzy negation with equilibrium point and an average aggregation. In par-
ticular, for such proposed IvE, the text promotes illustrative examples for the DDI-
based admissible interleaving ⪯A-order and the Xu-Yager ⪯XY -order.

• Then, in sequence, the second approach to generate width-based interval-valued
entropy (IvE) on ⟨U,⪯⟩ considers the width-based restricted equivalence func-
tions and strong fuzzy negation with equilibrium point, also including a width-
based interval-valued average aggregation on ⟨U,⪯⟩. Thus, three other def-
initions are proposed by varying the aggregation operators. To illustrate the
construction, the DDI-based admissible interleaving ⪯A-order and the Xu-Yager
⪯XY -order are considered.

Each one of the described IvE definitions gives us 05 methodologies to obtain
width-based interval-valued entropy (ω-IvE) on ⟨U,⪯⟩. Moreover, to compare the
results of the proposal application, an additional method reports the definition of ω-IvE
as presented in (Takáč et al., 2019).

B. Theoretical Contributions on Atanassov’s Interval-valued Intuitionistic Fuzzy
Entropy

Making use of A-IvIFL and the admissible orders on ⟨Ũ,⪯Ũ⟩, this work consolidate
the following both approaches:

• Synthesizing the notion of admissible orders, the general concept of the gener-
alized A-GIvIFIx associated with a strong interval-valued fuzzy negation is char-
acterized in terms of interval-valued fuzzy implication operators as a construction
method to model hesitation in A-IvIFS;

• Promoting the interval extension of Atanassov’s intuitionistic fuzzy entropy as pro-
posed in (Bustince et al., 2011), which considers aggregation the generalized
Atanassov’s Intuitionistic Fuzzy Index related to admissible orders, in particular
considering the well-known Xu and Yager ⪯XY -order.

Moreover, this thesis also consolidates a more general concept of the generalized
Atanassov’s interval-valued intuitionistic fuzzy index associated with a strong interval-
valued intuitionistic fuzzy negation. And, fuzzy implication operators are characterized
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to construct methodologies taking into account the hesitation and imprecision modeling
in an A-IvIFS, by using total orders. Thus, the application of admissible linear order
provides results in comparison to the methodology for building an interval fuzzy entropy
on Ũ.

11.1.2 Application of Theoretical Results on Video Streaming Traffic Rating

For the application of the distinct theoretical constructions for width-based interval-
valued entropy, and of the proposed methods from these constructions, this work
shows the information evaluation provided by the fuzzy controller of the FuzzyNetClass
approach. This approach considers the classification of traffic related to video stream-
ing, exploring the integration of inference systems based on interval-valued fuzzy logic
and machine learning algorithms.

They are applied considering the admissible interleaving ⪯A-order and the well-
known Xu and Yager’s⪯XY -order. The IvE definitions are presented in two approaches,
both are based on a fuzzy entropy E w.r.t. a strong fuzzy negation N with equilibrium
point on ⟨U,≤⟩.

In this perspective, the FuzzyNetClass approach integrates two research areas:
(i) Machine Learning, considering algorithms that contribute to the classification per-
formed; and (ii) Fuzzy Control Systems, preserving for the specialists involved aspects
related to its interpretability, e.g., the relation between cause and effect observed on
such system.

Among the contributions of the FuzzyNetClass approach, the following stand out
Hybrid Classification Algorithms, based on the knowledge of specialists and on the
exploration of interval-valued fuzzy logic. However, such an approach also explores
the potential to provide more reliable and realistic results and the design of optimization
mechanisms that come from the integration between Machine Learning techniques and
Fuzzy Inference.

In sequence, to evaluate the contributions of entropy, 06 case studies were dis-
cussed, which considered 04 datasets conceived from real captures of network traffic.
The results obtained were promising and point to the continuation of study and re-
search efforts on the subject of width-based interval-valued entropy.

11.1.3 Presentation and Publication of Main Results

The main publications obtained from the studies developed throughout this work
are shown in Table 16.
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Table 16 – Publications

Publication Title Year

NAFIPS Interval version of Generalized Atanassov’s Intuitionistic Fuzzy
Index

2018

WEIT Generalized Atanassov’s Intuitionistic Fuzzy Index: Interpret-
ing Hesitance, Favour and Against degrees

2019

FUZZIEEE Interval Extension of the Generalized Atanassov’s Intuitionistic
Fuzzy Index using Admissible Orders

2019

EUSFLAT Extending representability on the set of intervals endowed with
admissible orders for the construction of interval-valued fuzzy
operators

2021

International Journal
of Approximation
Reasonable

ωA-IvE Methodology: Admissible Interleaving Entropy Meth-
ods Applied to Video Streaming Traffic Classification (in revi-
sion)

2023

11.2 Further Work

Further work considers the extension of our results related to other properties veri-
fied by the generalized Atanassov’s interval-valued intuitionistic fuzzy index and interval
extension Atanassov’s intuitionistic fuzzy entropy. Besides, it also takes into account
others classes of admissible linear orders to compare the results of the interval entropy.

We also intend to handle both problems, focusing particularly on how other ag-
gregations can be used to obtain interval-valued intuitionistic fuzzy entropy based on
generalized Atanassov’s interval-valued intuitionistic fuzzy index, for instance, Cho-
quet’s integral (Choquet, 1954) allows us to define many of the most usual aggregation
functions.

Due to the relevance of the theoretical methods to calculate the interval entropy,
we leave for future work the deeper study of the negations and aggregations w.r.t.
the admissibility provided by ⪯A-order, i.e., analyzing the conditions under which the
methodology and illustrative examples can improve the inference by enabling a non-
restrictive comparison of data information supporting decision-making systems.

Another proposal for extending the research themes is to formalize the study of total
orders for interval data based on pairs of order relations, modeling the comparison of
binary connectives presenting increasing monotone behavior in one argument and, de-
creasing monotone behavior in the other, e.g, the interval-valued fuzzy (co)implications.

Application of the methodology to analyze/compare data information in applied and
theoretical research, e.g., those in development on LUPS/UFPEL 1 research group and

1https://wp.ufpel.edu.br/lups/

https://wp.ufpel.edu.br/lups/
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mainly addressing:

• Medical Diagnosis as clinic deterioration and/or early warning for patients in inten-
sive care units, where hybrid approaches are considered to estimate the situation
based on techniques from computational intelligence;

• Resource Discovery and Classification in IoT considering EXEHDA-Resource
Ranking, a proposal stands out in IoT resource classification, exploring three
approaches: (i) initial selection of resources with MCDA algorithm; (ii) pre-
classification of newly discovered resources with machine learning; and (iii) treat-
ment of uncertainty in preference processing using Interval-valued Fuzzy Logic.

• Dynamic Consolidation of the Virtual Machines in Cloud Computing, based on
uncertainty provided by determining overloaded/underloaded physical machines,
selection/allocation of virtual machines for migration. The entropy analysis im-
pacts on resource management, and directly influence aspects of it‘s use, such
as energy efficiency, SLA, and, consequently, QoS.
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