

AVALIAÇÃO *IN SILICO* DAS PROPRIEDADES FARMACOCINÉTICAS, FARMACODINÂMICAS E TOXICOLÓGICAS DE NOVAS ESTRUTURAS DERIVADAS DE β-CARBOLINAS

<u>JÚLIA HINSCHINCK¹</u>; WESLEY VIEIRA FERREIRA²; ADRIANA CASTRO PINHEIRO³.

¹Universidade Federal de Pelotas – juliahinschinck@gmail.com ²Universidade Federal de Pelotas – vieiraw82@gmail.com ³Universidade Federal de Pelotas – acpinheiro@ufpel.edu.br

1. INTRODUÇÃO

O processo de desenvolvimento de um novo medicamento demanda tempo e investimento de diversos setores. Para entrar no mercado, um novo fármaco deve apresentar alta atividade biológica, baixa toxicidade e ser facilmente absorvido pelo organismo. Pensando nisso, centros de pesquisas, empresas tecnológicas e indústrias farmacêuticas se dedicam no desenvolvimento de diversas ferramentas computacionais que otimizam o tempo e a economia de recursos no desenvolvimento de um novo composto líder. A farmacocinética e o adequado perfil de toxicidade são determinantes para o sucesso de novos fármacos. Desta forma, a primeira etapa desse desenvolvimento consiste na análise in silico dos parâmetros ADMET (administração, distribuição, metabolismo, excreção e toxicidade). A avaliação in silico de tais parâmetros, pode ser feita de forma rápida e fácil, e ajuda a diminuir a falha tardia e dispendiosa de novos fármacos, assim como, a prática na experimentação animal. Portanto, a análise in silico das propriedades ADMET de novos candidatos a fármacos é considerada uma etapa fundamental nesse processo (DAINA et al., 2017; LAVENZO et al., 2021).

Neste trabalho, apresentamos estudos *in silico* das propriedades ADMET de novos compostos derivados de β -carbolinas e investigamos possíveis alvos biológicos para essas estruturas. As β -carbolinas são uma classe de compostos que apresentam ampla atividade biológica, sendo utilizadas principalmente como sedativos, ansiolíticos, hipnóticos, anticonvulsivos, antineoplásicos, antivirais, antiparasitários e antimicrobianos (AAGHAZ et al., 2021).

2. METODOLOGIA

Foram utilizadas as ferramentas computacionas (web servidores) SwissADME, molinspiration, ProTox-II, PassOnline e Osiris Property Explorer para avaliação das propriedades farmacocinéticas, farmacodinâmicas e toxicológicas dos novos compostos derivados de β -carbolinas (2,4-di-terc-butil-6-(9H-pirido[3,4-b]indol-1-il)fenol (**L1**) e 1-(3,5-di-terc-butil-2-hidroxifenil)-9H-pirido[3,4-b]indol-3-ácido carboxílico (**L2**), conforme **Figura 1**.

3. RESULTADOS E DISCUSSÃO

As β -carbolinas apresentam a estrutura primária (9*H*-pirido[3,4-*b*]indol) (**Figura 1**). Dois novos compostos derivados de β -carbolinas (**L1** e **L2**) foram investigados *in silico* para previsão das propriedades ADME, predição de toxicidade e atividade biológica. A estrutura química dos novos compostos é apresentada na **Figura 1**.

Figura 1. Estrutura química dos compostos L1 e L2.

O SwissADME (http://www.swissadme.ch/index.php), primeiro site utilizado nesse estudo, é capaz de prever algumas propriedades farmacocinéticas de novos compostos orgânicos. Na avaliação da biodisponibilidade de um fármaco, dois critérios principais devem ser levados em consideração, a absorção gastrointestinal e a permeabilidade na barreira hematoencefálica (BHE), a qual pode levar a efeitos no sistema nervoso. Os dados obtidos indicam alta absorção gastrointestinal para L1 e L2. L2 não demonstrou potencial para penetrar a BHE. Outro parâmetro analisado indica que L1 e L2 não são inibidores da glicoproteína de permeabilidade (P-gp). Ainda, foram analisadas cinco isoformas do citocromo P450. L1 apresentou potencial para inibir quatro isoformas e L2 para três das isoformas avaliadas. Os resultados são apresentados na Tabela 1.

Tabela 1. Propriedades farmacocinéticas obtidas através do SwissADME

Parâmetros avaliados	L1	L2
Absorção gastrointestinal	Alta	Alta
Permeação na BHE	Sim	Não
Substrato da glicoproteína-P	Não	Não
Inibidor CYP1A2	Não	Não
Inibidor CYP2C19	Sim	Sim
Inibidor CYP2C9	Sim	Sim
Inibidor CYP2D6	Sim	Não
Inibidor CYP3A4	Sim	Sim

Fonte: autora

A **Tabela 2**, resume os resultados relacionados com as previsões de bioatividade dos compostos candidatos a fármacos (**L1** e **L2**), avaliando se eles atuarão em receptores acoplados à proteína G (GPCR ligante), moduladores de canais iônicos, inibidores de proteínas quinases, proteases ou enzimáticos, e a nível nuclear em ligantes de receptores. A lipofilicidade (LogP) dos novos compostos também foi avaliada. Na **Tabela 2**, os valores de *score* maiores que 0 indicam maior probabilidade de atividade da molécula, contra aquele determinado alvo; valores de *score* entre -2,0 – 0,0 são considerados moderadamente ativo; e os valores menores do que -2,0 indicam inatividade. No que diz respeito à solubilidade em água, os valores ideais compreendem o intervalo entre 1 e 5 (PINHEIRO et al., 2021). Nossos estudos, sinalizam que **L1** e **L2** apresentam entre boa e moderada probabilidade de apresentar bioatividade para os alvos avaliados. Ambos compostos apresentaram baixa lipofilicidade.

Tabela 2. Propriedades farmacocinéticas e farmacodinâmicas obtidas através do molinspiration

Parâmetros avaliados	L1	L2
GPCR ligante	0,21	0,04
Modulador de canal iônico	0,14	0,12
Inibidor de quinase	-0,20	-0,41
Receptor nuclear	0,27	0,11
Inibidor de protease	-0,06	-0,17
Inibidor enzimático	0,14	0,03
LogP	6,18	5,88

Fonte: autora

De acordo com os dados disponíveis no site do programa *ProTox-II* (https://tox-new.charite.de/protox_II/index.php?site=home), os resultados previstos possuem um nível de confiança de 70%, seja para atividade ou inatividade de uma molécula em meio biológico. Ainda, de acordo com as informações disponibilizadas no próprio site, os valores variam de 0 até 1, e deseja-se que a inatividade esteja mais próxima de 1, ao passo que a atividade deve estar mais próxima de 0. Na **Tabela 3**, são apresentados os resultados obtidos referente as propriedades toxicológicas, sendo que **L1** apresentou potencial ativo no parâmetro da mutagenicidade.

Tabela 3. Propriedades toxicológicas obtidas através do ProTox-II

Parâmetros avaliados	L1	L2
Hepatotoxicidade	0,60 (i)	0,53 (i)
Carcinogenicidade	0,55 (i)	
Imunotoxicidade	0,67 (i)	
Mutagenicidade	0,57 (a)	0,51 (i)
Citotoxicidade	0,83 (i)	0,69 (i)

(a) atividade, (i) inatividade Fonte: autora

Através do site *PassOnline* (http://way2drug.com/passonline/index.php) é possível prever mais de 4000 tipos de atividades biológicas, além de calcular a probabilidade do composto analisado ser ativo (Pa) ou inativo (Pi). Os valores variam de 0 a 1, sendo que para uma maior chance de atividade o ideal é que os valores estejam acima de 0,5. Valores de inatividade próximos de 1, sinalizam que a molécula não apresenta potencial biológico (FILIMONOV et al., 2014). Os valores de *score* obtidos para **L1** e **L2** indicam potencial para atividade antioxidante (0,171 e 0,192, respectivamente) e antineoplásica (0,370 e 0,222, respectivamente).

Ainda, as propriedades toxicológicas e farmacocinéticas de **L1** e **L2** foram avaliadas empregando o software *Osiris Property Explorer* (**Tabela 4**). Ao analisarmos os resultados toxicológicos obtidos pelo programa, notamos que nenhuma das moléculas possui potencial nocivo para o corpo humano - resultado que contradiz o parâmetro da mutagenicidade obtido através do *ProTox-II*. Os valores de *druglikeness* (*DL*) (similaridade com fármacos) e *drug-score* (*DS*) (potencial para se tornar um fármaco) estão relacionados com a semelhança de grupos farmacofóricos dos compostos analisados com moléculas já disponíveis no mercado. Grupos farmacofóricos possuem características eletrônicas e

estéricas satisfatórias para o reconhecimento molecular do receptor. Os compostos que correspondem a um farmacóforo bem definido servem como compostos líderes em potencial para a descoberta de novos fármacos (KOES; CAMACHO, 2012). Desta forma, valores maiores que -2 para druglikeness e mais próximos de 1 para drug-score são os mais promissores. Na **Tabela 4** é possível verificar que os valores negativos de druglikeness para **L1** e **L2** indicam que esses compostos, derivados de β -carbolinas, apresentam pouca semelhança de grupos farmacofóricos com medicamentos comercializados atualmente. Ainda, os valores de drug-score obtidos indicam baixo potencial para serem utilizados como fármacos.

Tabela 4. Propriedades toxicológicas e farmacocinéticas obtidas através do Osiris Property Explorer

Parâmetros avaliados	L1	L2		
Mutagênico	Não	Não		
Tumorigênico	Não	Não		
Irritante	Não	Não		
Efeitos no sistema reprodutor	Não	Não		
Druglikeness	-9,39	-7,35		
Drug-score	0,18	0,20		

Fonte: autora

4. CONCLUSÕES

Neste trabalho avaliamos as propriedades ADMET de dois novos compostos derivados de β-carbolinas. As atividades biológicas dos novos compostos foram avaliadas empregando o software Pass Online®. Os valores dos parâmetros analisados indicam baixos valores para atividades antioxidante e antineoplásica. Os resultados toxicológicos obtidos indicam que as moléculas não apresentam potencial nocivo para o corpo humano. Porém, é necessário ampliar os estudos investigativos referente a mutagenicidade. Os compostos apresentaram pouca semelhança de grupos farmacofóricos com medicamentos comercializados atualmente.

5. REFERÊNCIAS BIBLIOGRÁFICAS

AAGHAZ, S. et al. β-Carbolines as potential anticancer agents. **European Journal of Medicinal Chemistry**, v. 216, p. 1-25, 2021.

DAINA, A. et al. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. **Scientific Reports**, v. 07, p. 1-13, 2017.

FILIMONOV, D. et al. Prediction of the biological activity spectra of organic compounds using the pass online web resource. **Chemistry of Heterocyclic Compounds**, vol. 50, p. 444-457, 2014.

KOES, D.R.; CAMACHO, J. ZINCPharmer: pharmacophore search of the ZINC database. **Nucleic Acids Research**, v. 40, p. W409-W414, 2012.

LAVENZO, I. et al. Prospecção *in silico* de moléculas antineoplásicas a partir da espécie *Artemisia annua*. **Repositório PUC Goiás**, 2021.

PINHEIRO, A. et al. Estudos in silico das propriedades farmacocinéticas, farmacodinâmicas, de toxicidade de derivados pirazol organocalcogênios (Se, S). Ciências Biológicas: Desenvolvimento em Pesquisas Aplicadas. Rio de Janeiro: Editora e-Publicar, 2021.