

O USO DA REALIDADE AUMENTADA E MESA TANGÍVEL NA EDUCAÇÃO PATRIMONIAL DA CIDADE DE PELOTAS

MAXWELL BURKE MOREIRA¹; VINICIUS KRUGER DA COSTA²; TATIANA AIRES TAVARES³

¹UFPel – mbmoreira@inf.ufpel.edu.br 1 ²PPGC/UFPel, IFSul – viniciusdacosta@inf.ufpel.edu.br ³CDTec/PPGC/UFPel – tatiana@inf.ufpel.edu.br

1. INTRODUÇÃO

As tecnologias da informação e comunicação (TICs) estão se desenvolvendo em ritmo acelerado e fazem, cada vez mais, parte do nosso dia a dia. A rápida disseminação e evolução dessas tecnologias fez com que hoje seja difícil encontrar pessoas que ainda não tiveram direta ou indiretamente contato com elas, independente da classe social, do nível de escolaridade e do local onde moram (BARBOSA; SILVA, 2010). A partir disso, a área de Interação Humano-Computador (IHC) também teve avanços significativos, com objetivo de possibilitar a interação com essas novas tecnologias de maneira mais natural. Dentro dos diversos tipos de interfaces de interação entre humano e computador, têm-se popularizado atualmente a Realidade Virtual (RV) e a Realidade Aumentada (RA) (PREECE; ROGERS; SHARP, 2005).

Realidade virtual e realidade aumentada são diferentes tipos de interface que usam representações tridimensionais para transportar total ou parcialmente objetos virtuais para o ambiente real (RA), ou levar o usuário para um ambiente virtual (RV). Diferentemente da realidade virtual, onde o usuário é transportado para o ambiente virtual, na realidade aumentada, o usuário permanece no seu ambiente físico e insere o ambiente virtual (ou objetos virtuais) para o espaço do usuário, permitindo a interação com o mundo virtual de maneira mais natural (TORI; KIRNER; SISCOUTO, 2006).

Para um maior enriquecimento da experiência do usuário, é possível unir as duas realidades, virtual e aumentada, criando assim a realidade mista (ou misturada). A realidade misturada pode ser definida como a sobreposição de objetos virtuais tridimensionais gerados por computador com o ambiente físico, mostrada ao usuário, com o apoio de algum dispositivo tecnológico, em tempo real (TORI; KIRNER; SISCOUTO, 2006).

Outro dispositivo que tem ganhado relevância nas pesquisa em IHC é a mesa tangível iterativa, ou *Tangible Tabletop* (TT), que é uma interface computacional com superfície horizontal onde a saída do computador é exibida ou projetada, que possibilita a interação com o computador através da manipulação de objetos físicos, posicionados e manipulados sobre a superfície. Para identificação de posicionamento e movimentação desses objetos, marcadores fiduciais podem ser fixados em suas superfícies (PREUSS,2021).

Nesse contexto, a proposta deste trabalho é apresentar o desenvolvimento de um sistema de visualização de prédios históricos da cidade de Pelotas através da utilização de realidade aumentada e mesa tangível, com o objetivo de gerar mais interesse pela educação patrimonial.

2. METODOLOGIA

A metodologia utilizada para o desenvolvimento deste trabalho será a de Design Centrado no Usuário (DCU), sendo uma abordagem onde o usuário é envolvido ao longo do processo de desenvolvimento. Essa metodologia consiste em colocar o usuário no centro do processo de desenvolvimento, buscando eliminar a ambiguidade e chegar ao ponto central da necessidade do usuário (LOWDERMILK, 2013).

O ciclo de desenvolvimento do DCU segue algumas determinadas etapas, que se retroalimentam iterativamente. Estas etapas consistem em a) identificar as necessidades, b) criar alternativas de solução para a demanda identificada, c) construir protótipos e d) depois testar diretamente com os usuários (COSTA, 2018).

Inicialmente, uma revisão bibliográfica é realizada em busca de alternativas e soluções para a utilização da realidade aumentada e da mesa interativa como método de aprendizado. Logo após é iniciado um processo de prototipagem para testes, onde um mínimo produto viável é criado para realização de testes com o usuário.

Com o protótipo em mãos, são realizados testes de usabilidade com o usuário. A avaliação destes testes será realizada através da aplicação do questionário AttrakDiff. O AttrakDiff é uma ferramenta online que permite avaliar a experiência de usuário de produtos interativos, oferecendo questionários para avaliação, além de gerar gráficos com o resultado obtido das respostas dos questionários (DARLEY, 2017).

3. RESULTADOS E DISCUSSÃO

Atualmente, a mesa tangível iterativa já se encontra em estado funcional, sendo utilizada no espaço cultural do Museu do Doce da Universidade Federal de Pelotas.

Imagem 1: Aluno utilizando Google Cardboard e mesa tangível para realização de testes de desenvolvimento.

Fonte: Acervo pessoal

Um protótipo de aplicação de realidade aumentada se encontra em desenvolvimento, onde já é possível visualizar o prédio da faculdade de Direito da UFPel em realidade aumentada, com a utilização de ferramentas de teste de desenvolvimento internas.

Imagem 2: Demonstração do ponto de vista ocular direito exibido no dispositivo móvel e percepção do objeto tridimensional exibido (à esquerda). Diferença de entre a realidade física e a realidade aumentada vista através do dispositivo (à direita)

Fonte: Acervo pessoal

Como próximos passos, se encontram a modelagem tridimensional digital de alguns prédios históricos do centro da cidade de Pelotas e a criação do ambiente de aplicação na mesa tangível, onde uma imagem da praça Coronel Pedro Osório será utilizada.

4. CONCLUSÕES

Através do presente trabalho, podemos perceber uma nova maneira não convencional de ensino sobre a educação patrimonial na cidade de Pelotas. Demonstrando como novas tecnologias, como a realidade aumentada e mesas tangíveis podem oferecer meios alternativos para o aprendizado, de uma maneira tecnologicamente atraente e imersiva.

5. REFERÊNCIAS BIBLIOGRÁFICAS

BARBOSA, S. D. J.; SILVA, B. S.Interação Humano-Computador. [S.I.]: Elsevier, 2010. 388p

PREECE, J.; ROGERS, Y.; SHARP, H. Design de Interação: Além da Interação Humano-Computador. [S.I.]: Bookman, 2005. 548p

TORI, Romero; KIRNER, Claudio; SISCOUTTO, Robson Augusto. Fundamentos e tecnologia de realidade virtual e aumentada. Porto Alegre: Editora SBC, 2006

BIAGINI, Amalyn Mazzottini; RUTH, Thiago; CERUTTI, Diolete Marcante Lati. Realidade Aumentada e Crianças: Estudo de Viabilidade para o uso no Museu da Computação da UEPG-Museu Virtual. 2015.

PREUSS, Evandro et al. Uso de mesa tangível na educação inclusiva. In: Anais do XXXI Simpósio Brasileiro de Informática na Educação. SBC, 2020. p. 742-751.

MENEZES, Graciela Sardo; VIANNA, William Barbosa; MATIAS, Márcio. O uso de Realidade Aumentada no contexto dos museus: o portfólio brasileiro de teses e dissertações até 2017. Em questão, v. 25, n. 3, p. 246-268, 2019.

PREUSS, Evandro. NIDABA: plataforma digital para produção de recursos educacionais inclusivos baseados em mesa tangível. 2021.

LOWDERMILK, T. Design Centrado no Usuário: Um guia para o desenvolvimento de aplicativos amigáveis. [S.I.]: Novatec Editora, 2013. 184p.

COSTA, V. K. da. Diretrizes para projeto de interfaces gráficas do usuário (IGU) com interação baseada em movimentos de cabeça. 2018. 170p. Dissertação (Mestrado) — Programa de Pós-Graduação em Computação, Centro de Desenvolvimento Tecnológico — Universidade Federal de Pelotas, Pelotas.

DARLEY, N. T. Interação de usuário com interfaces tangíveis : uma análise de experiências utilizando o projeto AR Sandbox. 2017. 58p. Trabalho de Conclusão (Curso de Ciência da Computação) — Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas